WO2023077374A1 - 高级脂肪醇在提高植物抗病抗逆能力方面的应用 - Google Patents

高级脂肪醇在提高植物抗病抗逆能力方面的应用 Download PDF

Info

Publication number
WO2023077374A1
WO2023077374A1 PCT/CN2021/128773 CN2021128773W WO2023077374A1 WO 2023077374 A1 WO2023077374 A1 WO 2023077374A1 CN 2021128773 W CN2021128773 W CN 2021128773W WO 2023077374 A1 WO2023077374 A1 WO 2023077374A1
Authority
WO
WIPO (PCT)
Prior art keywords
higher fatty
application
plants
plant
preparation
Prior art date
Application number
PCT/CN2021/128773
Other languages
English (en)
French (fr)
Inventor
彭小明
孙昀浩
蔡典贤
喻国辉
秦迪
Original Assignee
珠海市润农科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海市润农科技有限公司 filed Critical 珠海市润农科技有限公司
Priority to CN202180003280.XA priority Critical patent/CN116634858A/zh
Priority to PCT/CN2021/128773 priority patent/WO2023077374A1/zh
Publication of WO2023077374A1 publication Critical patent/WO2023077374A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G13/00Protecting plants

Definitions

  • the invention relates to the application of higher fatty alcohols in improving plant disease and stress resistance.
  • Plant growth substances regulate the growth and development of plants, and then affect the yield, quality and resistance of plants (crops), in terms of promoting or regulating crop growth, enhancing plant stress resistance, increasing yield, improving plant quality and postharvest quality, etc. Play an important role; compared with traditional agricultural technology, the application of plant growth regulators has the advantages of low cost, quick results, high benefits, good safety, and labor saving. Its use has become one of the important measures of modern agriculture. It is conducive to the scale, intensification and sustainable production of agriculture.
  • lysophosphatidylcholine and lysophosphatidylethanolamine are important signal substances of plants, which can significantly increase the stress resistance of plants and improve the postharvest shelf life of agricultural products.
  • lysophosphatidylethanolamine can activate the activity of the key enzyme phenylalanine ammonia-lyase in the phenylpropane metabolic pathway, and the phenylpropane metabolic pathway and its branch isoflavone biosynthesis pathway are involved in plant lignin, phytoalexin and other anti-inflammatory pathways. Synthesis of important substances for disease resistance and up-regulation of such physiological pathways through breeding or induction techniques can significantly improve crop resistance to biotic and abiotic stress.
  • there is currently a lack of non-toxic, low-cost, and widely applicable exogenous substances or methods of use that can be applied externally to adjust the above-mentioned physiological pathways in crops.
  • the object of the present invention is to provide a kind of application of higher fatty alcohol in improving plant disease resistance and stress resistance.
  • the invention provides an application of a higher fatty alcohol in preparing a preparation for increasing the content of lysophospholipid signal substances in plants.
  • lysophospholipid signal substances include lysophosphatidylcholine and lysophosphatidylethanolamine.
  • higher fatty alcohols can be used in activating plant immunity and inhibiting premature aging of plants by increasing the content of lysophosphatidylethanolamine in plants.
  • the present invention provides an application of a higher fatty alcohol in the preparation of a preparation for increasing the transcription level of genes related to plant phenylpropane metabolic pathways.
  • the present invention provides an application of a higher fatty alcohol in the preparation of a preparation for increasing the transcription level of genes related to plant isoflavone biosynthetic pathways.
  • the present invention provides an application of a higher fatty alcohol in the preparation of a preparation for increasing the content of plant isoflavones.
  • the present invention provides an application of a higher fatty alcohol in the preparation of a preparation for improving plant disease resistance.
  • the preparation containing a higher fatty alcohol can increase the transcription level of genes related to the phenylpropane metabolic pathway and increase the level of genes related to the isoflavone biosynthesis pathway. Gene transcription level and increase the content of isoflavones in plants to achieve the application of improving plant disease resistance.
  • the present invention provides an application of a higher fatty alcohol in the preparation of a preparation for improving plant stress resistance.
  • the preparation containing a higher fatty alcohol can increase the transcription level of genes related to the phenylpropane metabolic pathway and increase the level of genes related to the isoflavone biosynthesis pathway.
  • the transcription level of the gene and the increase of the isoflavone compound content of the plant are used to realize the application of improving the stress resistance of the plant.
  • the application of plant stress resistance includes the application of sun protection and anti-cracking.
  • the higher fatty alcohol is one of lauryl alcohol and cetyl alcohol or a mixture of both.
  • the preparation is a water emulsion, which includes higher fatty alcohol, emulsifier, thickener, and water.
  • the preparation containing higher fatty alcohol of the present invention is not limited to emulsion in water, as long as it adopts all dosage forms of the inventive concept of the present invention, it is applicable, such as wettable powder, emulsion, sprayable solution, concentrated emulsion, aerosol, seed coating .
  • the present invention uses advanced transcriptome and metabolome sequencing and analysis techniques to screen and determine that emulsifiers containing higher fatty alcohols can affect the content of signal substances lysophosphatidylcholine and lysophosphatidylethanolamine in plants through external application, benzene Propane metabolism pathway and isoflavone biosynthesis pathway-related gene transcription levels, accumulate isoflavones, thereby improving the plant's ability to resist disease and stress.
  • Figure 1 is a schematic diagram of the biosynthetic pathway of isoflavones in peanut leaves.
  • This embodiment provides a water emulsion containing higher fatty alcohol, which is composed of the following components by weight percentage: 24% lauryl alcohol, 3% cetyl alcohol, 3% emulsifier, 5% thickener, and the balance of water.
  • the emulsifier is polyoxyethylene fatty acid ester
  • the thickener is methyl cellulose
  • the present embodiment also provides the preparation method of above-mentioned emulsion in water, comprises the following steps:
  • This embodiment provides a water emulsion containing higher fatty alcohol, which is composed of the following components by weight percentage: 24% lauryl alcohol, 3% emulsifier, 5% thickener, and the balance of water.
  • the emulsifier is polyoxyethylene fatty acid ester
  • the thickener is methyl cellulose
  • the present embodiment also provides the preparation method of above-mentioned emulsion in water, comprises the following steps:
  • This embodiment provides an aqueous emulsion containing higher fatty alcohol, which consists of the following components by weight percentage: 3% cetyl alcohol, 3% emulsifier, 5% thickener, and the balance of water.
  • the emulsifier is polyoxyethylene fatty acid ester
  • the thickener is methyl cellulose
  • the present embodiment also provides the preparation method of above-mentioned emulsion in water, comprises the following steps:
  • cetyl alcohol in a container and heat it to 60 degrees to melt, then add an emulsifier into the container, process it through a high-shear homogenizer at a speed of 5000 rpm, rotate for 10 minutes, and then add water at 60 degrees to the container , processed by a high-shear homogenizer at a speed of 10,000 rpm, rotated for 10 minutes, cooled to 40 degrees, and then added a thickener to the container, processed by a high-shear homogenizer, and rotated at 10,000 rpm After 30 minutes, it's ready.
  • This embodiment provides an emulsion in water, which consists of the following components by weight percentage: 3% of emulsifier, 5% of thickener, and the balance of water.
  • the emulsifier is polyoxyethylene fatty acid ester
  • the thickener is methyl cellulose
  • the emulsifier into the container, process it through a high-shear homogenizer at a speed of 5,000 rpm, and rotate for 10 minutes, then add water at 60 degrees to the container, and process it through a high-shear homogenizer at a speed of 10,000 rpm. Minute, rotate for 10 minutes, cool down to 40 degrees, then add a thickener to the container, process it through a high-shear homogenizer, and rotate it at 10,000 rpm for 30 minutes to get it.
  • Embodiment 5 The water emulsion that contains higher fatty alcohol is to the impact of peanut lysophosphatidylcholine and lysophosphatidylethanolamine content
  • Lysophosphatidylcholine and lysophosphatidylethanolamine are important signal substances in plant cells. Normal physiology comes from the formation of phospholipids after being hydrolyzed by phospholipase to remove a long carbon chain, which can be induced by various pressures. Lysophosphatidylcholine plays an important role in root nodule formation. Lysophosphatidylethanolamine can activate the activity of phenylalanine ammonia-lyase, a key enzyme related to immunity and resistance to abiotic stress, and inhibit premature senescence in plants.
  • Peanut samples were treated with the aqueous emulsion containing higher fatty alcohols of the present invention, metabolite determination and transcriptome sequencing were performed, and the influence of the aqueous emulsion of the present invention on the content of peanut lysophosphatidylcholine and lysophosphatidylethanolamine was analyzed.
  • the test results showed that the content of lysophosphatidylcholine in the mixed preparation increased by 4070 times compared with the peanut leaves treated with water control, and the content of lysophosphatidylcholine in the mixed preparation also increased by 4070 times compared with the emulsifier treatment, indicating that the signal substance increased Caused by non-emulsifiers.
  • Dodecyl alcohol treatment alone compared with clear water control lysophosphatidylcholine content increased 1850 times
  • dodecyl alcohol treatment alone compared with emulsifier alone dodecyl alcohol treatment alone compared with emulsifier alone
  • lysophosphatidylcholine content increased 1850 times, indicating that dodecyl alcohol treatment caused the signal Matter rise is also not caused by emulsifiers.
  • the content of signal substances in the emulsifier treatment was consistent with that in the clear water treatment.
  • the content of another signal substance, lysophosphatidylethanolamine, in the mixed preparation increased by 960 times, which was consistent with the increase in the emulsifier treatment, indicating that the increase in the content of the signal substance was caused by the treatment with higher fatty alcohols.
  • Dodecyl alcohol treatment alone has the same increase fold compared with control and emulsifier treatment, and is lower than dodecyl alcohol and cetyl alcohol treatment, which is consistent with the situation of lysophosphatidylcholine.
  • lysophosphatidylcholine and lysophosphatidylethanolamine were also up-regulated by the mixed preparation of lauryl alcohol and cetyl alcohol (S) and the single lauryl alcohol preparation (A).
  • lysophospholipid The type of lysophospholipid is marked: 12:0 means 12 carbons without double bonds, 14:0 means 14 carbons without double bonds, 16:3 means 16 carbons with three double bonds, 14:0 (2n isomer) means 14 carbon isomers without double bonds
  • Embodiment 6 The effect of water emulsion containing higher fatty alcohols on the transcription of genes related to the phenylpropane metabolic pathway of various representative plants
  • Lysophospholipids participate in the regulation of phenylalanine ammonia-lyase activity, which is a specific metabolic pathway for signaling substances and one of the most important plant secondary metabolic pathways, playing an important role in plant growth and development and plant-environment interactions.
  • This pathway includes multiple branched pathways that lead to metabolites such as isoflavones. Isoflavone metabolites are involved in physiological processes such as helping plant cells reduce UV damage, resist disease occurrence, and tolerate uncomfortable temperature and high-salt drought conditions.
  • Several higher fatty alcohol preparations involved in the present invention can significantly increase the content of lysophospholipid signal substances in peanut and tomato leaves, indicating that they may further affect downstream metabolic pathways.
  • Table 5 Difference ratios of transcription levels of genes related to phenylpropane metabolic pathway in plant leaves
  • Example 7 Effects of Water Emulsion Containing Higher Fatty Alcohol on Gene Transcription and Metabolite Content of Peanut Isoflavone Biosynthetic Pathway
  • the phenylpropane metabolic pathway involves many physiological activities of plants.
  • the isoflavone biosynthetic pathway was selected as the object, and the 72-hour S samples and water-treated peanut leaves were used to determine the transcription levels of pathway-related genes and corresponding metabolomics, and combined analysis was performed. The results are shown in Figure 1 and Tables 6 and 7.
  • Plant culture conditions 70/0 ⁇ mol m -2 s -1 (light intensity of light/dark cycle), 14 hours/10 hours (time of light/dark cycle), 27°C/24°C, 70% relative humidity, four weeks old.
  • the biosynthetic pathway of isoflavones in peanut leaves is shown in Figure 1, where the mixed preparations of dodecyl alcohol and cetyl alcohol caused the transcription levels of multiple genes to be up-regulated, and gray represents the transcription levels of corresponding genes (rectangles) after treatment with S preparation or Metabolite (circle) content was significantly up-regulated compared to the control group.
  • the average up-regulation level of three biological repetitions of related genes is shown in Table 6, in which the transcription level of the 2-hydroxyisoflavone synthase gene was up-regulated by 5.80 times, and the transcription level of the isoflavone 4'-O-methyltransferase gene was up-regulated by 4.53 times.
  • the transcription level of isoflavone/4'-methoxyisoflavone 2'-hydroxylase gene was up-regulated by 2.25 times, and the transcription level of glutamine reductase gene was up-regulated by 4.21 times.
  • the contents of several important isoflavones were also significantly increased, as shown in Table 7, in which the content of 3,9-dihydroxy pterostalline was increased by 1223.67 times, calycosin was increased by 2657.76 times, and daidzein was increased by 1982.35 times.
  • 3,9-dihydroxy pterostilbene is an important phytoalexin prerequisite, which can improve the resistance of crops to diseases and insect pests; calycosin and daidzein have been proved to have significant anti-stress activities.
  • Table 6 Ratio of difference in transcription levels of genes related to isoflavone biosynthesis pathway in leaves of peanut plants (S/control)
  • Embodiment 8 The water emulsion containing higher fatty alcohol affects the physiological phenotype of peanut
  • the water emulsion containing higher fatty alcohols of the present invention can significantly affect the signal substances lysophosphatidylcholine and lysophosphatidylethanolamine of peanuts, and further affect the bioactivity of phenylpropane metabolic pathways and isoflavones.
  • the specific physiological phenotypes of these physiological pathways include disease resistance, production increase, anti-ultraviolet radiation, etc., in order to verify that the physiological metabolic pathways caused by higher fatty alcohols in the present invention do have the above-mentioned physiological activities, environmental variables can be controlled in the laboratory. Validation of conditions.
  • MDA malondialdehyde
  • POD peroxidase
  • the measurement results of the average number of three biological repetitions are shown in Tables 9 and 10.
  • the results show that the mixture of lauryl alcohol and cetyl alcohol can significantly improve the germination potential of peanuts, which is higher than that of lauryl alcohol or cetyl alcohol alone and the control, and that of lauryl alcohol and cetyl alcohol alone is also significantly higher than that of the control. But there was no difference between the two fatty alcohols alone. Germination rate, germination index and vigor index all showed the same rule.
  • the average germination days can be significantly shortened by mixed treatment and lauryl alcohol alone treatment, and the germination days can also be significantly shortened by cetyl alcohol treatment compared with the control.
  • a, b and c represent the significant difference relationship of data in statistics, group b is significantly higher than group c, and group a is significantly higher than group b.
  • Table 9 Physiological indicators of peanut seed germination after treatment
  • the phenylpropane metabolic pathway and isoflavone metabolites can increase the resistance of plants to stress.
  • the single or mixed treatment of dodecyl alcohol and cetyl alcohol can significantly improve the drought resistance of peanuts, and the treatments significantly increased
  • the plant height of peanuts, the proline content of leaves treated with lauryl alcohol and cetyl alcohol was significantly higher than that of lauryl alcohol and cetyl alcohol alone and the control, and the proline content of leaves treated with the two alcohols was also significantly higher than that of the control .
  • the content of malondialdehyde was consistent with that of proline.
  • the POD content of mixed treatment was significantly higher than that of other treatments and control, and that of dodecanol and cetyl alcohol alone was higher than that of control but the difference was not significant. Data for dry weight are consistent with POD.
  • Table 9 Physiological indicators of peanut plants after simulated drought treatment
  • Example 9 Preparations containing higher fatty alcohols improve stress resistance and yield-increasing effects of rice
  • Sample S is the emulsion in water prepared in Example 1
  • Crop Rice Meixiangni
  • the rice of the test group treated with the preparation water emulsion containing higher fatty alcohol of the present invention has no disease hazard in the whole growth process, and the appearance performance has obvious advantages in terms of growth and appearance, the plant type is higher, and the functional leaves are darker and shiny. , There are more effective panicles, the number of grains per panicle increases, and the panicle shape is compact; these aspects of the control group are obviously weaker.
  • the flowering stage and grain filling stage of the rice in the control group and the treatment group coincided with more than 20 consecutive days of cloudy and rainy weather, and the rice in the control group was significantly affected.
  • Table 11 Yield test results of rice preparations containing higher fatty alcohols of the present invention
  • serial number project test group control group 1 Proportion of empty shells (%) 6.0 13.3 2 Thousand grain weight (g) 20.1 15.0 3 Wet grain yield (kg/mu) 600.3 344.3
  • the control group encountered cloudy and rainy weather for more than 20 days due to the flowering stage and the grouting stage, which greatly affected the pollination and grouting of rice, resulting in an increase in shriveled grains and a significant decline in output.
  • the effect produced is that the grains are full, and the normal output is maintained and slightly improved.
  • the number of empty husks of rice in the experimental group is significantly better than that of the control group, the weight of a single grain of rice is also much greater than that of the control group, and the yield is 76.6% higher than that of the control group, showing that the preparation water emulsion containing higher fatty alcohols of the present invention is effective in rice production. It has a significant anti-stress and yield-increasing effect.
  • Example 10 Anti-adversity and yield-increasing effects of preparations containing higher fatty alcohols in fruit tree production
  • Sample S is the emulsion in water prepared in Example 1
  • Plums red thread plum, honey fragrant plum
  • test group is produced as follows: Dilute the sample S with 900 times of water and spray it. Spray once at the beginning of flowering stage, the middle stage of physiological fruit drop, and when the fruit is 3-5 cm. Spray at an interval of 15 days, the dosage of each sample: 200mL/mu, and the control group is not treated.
  • the plums of the test group treated with the preparation aqueous emulsion containing higher fatty alcohols of the present invention have no obvious damage to diseases in the whole growth process, the crown width, branches and new shoots are neat, and the new shoots mature faster.
  • Some, fruit cracking and falling fruit were significantly reduced (see Table 13 and Table 14), the fruit was uniform and smooth, the sugar content increased by 3-4, the taste was fresh and natural, and the overall yield increased by about 30.1%.
  • serial number project tree number test group control group 1 Number of fallen fruit (pieces) 1# 1 13 2 Number of fallen fruit (pieces) 2# 5 9 3 Number of fallen fruit (pieces) 3# 0 14 4 Number of fallen fruit (pieces) 4# 3 8 5 Number of fallen fruit (pieces) 5# 2 25 6 Number of fallen fruit (pieces) 6# 0 19 7 Number of fallen fruit (pieces) 7# 1 16 8 Number of fallen fruit (pieces) 8# 2 16 9 Number of fallen fruit (pieces) 9# 3 twenty one 10 Number of fallen fruit (pieces) 10# 0 11 11 Total number of fallen fruit (pieces) the 17 152
  • Sample S is the preparation water emulsion containing higher fatty alcohol prepared in Example 1
  • test group is produced as follows: Dilute the sample S with 900 times of water and spray it. Spray for 15 days, the dosage of each sample: 200mL/mu, the control group is not treated.
  • the tribute mandarin oranges of the test group treated with the preparation water emulsion containing higher fatty alcohol of the present invention have a large crown width, uniform and reasonable branch distribution in the whole growth process, tender green leaves, smooth new shoots and neat shoots, and new shoots are old.
  • the ripening speed is faster, the fruit is less cracked, dropped and sunburned (see Table 15, Table 16), no canker and other diseases are found, the fruit size is uniform, the peel is smooth, and the fruit is strong.
  • Table 15 Fruit drop statistics of tribute oranges containing higher fatty alcohols of the present invention
  • serial number project tree number test group control group 1 Number of fallen fruit (pieces) 1# 0 9 2 Number of fallen fruit (pieces) 2# 0 10 3 Number of fallen fruit (pieces) 3# 4 7 4 Number of fallen fruit (pieces) 4# 1 8 5 Number of fallen fruit (pieces) 5# 0 7 6 Number of fallen fruit (pieces) 6# 0 16 7 Number of fallen fruit (pieces) 7# 1 13 8 Number of fallen fruit (pieces) 8# 0 6 9 Number of fallen fruit (pieces) 9# 3 11 10 Number of fallen fruit (pieces) 10# 0 9 11 Total number of fallen fruit (pieces) the 9 93
  • serial number project tree number test group control group 1 Number of sunburned fruits (pcs) 1# 0 4 2 Number of sunburned fruits (pcs) 2# 1 5 3 Number of sunburned fruits (pcs) 3# 0 1 4 Number of sunburned fruits (pcs) 4# 0 13 5 Number of sunburned fruits (pcs) 5# 2 7 6 Number of sunburned fruits (pcs) 6# 0 4 7 Number of sunburned fruits (pcs) 7# 1 11 8 Number of sunburned fruits (pcs) 8# 0 11 9 Number of sunburned fruits (pcs) 9# 0 6 10 Number of sunburned fruits (pcs) 10# 1 8 11 The total number of sunburn fruit (pcs) the 5 70
  • Example 11 The effect of preparations containing higher fatty alcohols in the field production of peanuts
  • Sample S is the emulsion in water prepared in Example 1
  • test group is produced as follows: Dilute the sample S with 900 times of water and spray it, and spray 1 dose each at the seedling stage, flowering stage, pod stage, and mature stage. Time, each sample dosage: 15mL/mu, control application of brassinolide product treatment (trade name Yun Leshou).
  • serial number project test group control group 1 rotten fruit disease index 0.2121 0.4946 2 Single fruit weight (g) 81.25 65.6 3 Yield per mu of fresh fruit (Kg) 751.62 606.85
  • the preparation containing higher fatty alcohols of the present invention is diluted with water to treat plants, which can improve plant signal substances and regulate plant phenylpropane metabolic pathways, and higher fatty alcohol compositions can significantly improve plant metabolism.
  • the signal substances lysophosphatidylcholine and lysophosphatidylethanolamine can regulate the gene transcription level and metabolite content related to the plant phenylpropane metabolic pathway, thereby effectively improving the stress and disease resistance of plants, and improving the quality and yield of agricultural products; as can be seen from Example 8,
  • the laboratory physiological phenotype test proves that using the preparation containing higher fatty alcohol of the present invention can significantly affect peanut seed germination situation and plant stress resistance;
  • Example 9 use effect shows that using the emulsifier containing higher fatty alcohol of the present invention can make Rice effectively resists adverse effects of external growth environment, improves the quality of agricultural products, increases yield, and improves the storage resistance of rice at the same time;
  • the field use effect of Example 10 shows that using the emulsifier containing higher fatty alcohols of the present invention can make fruit trees effectively resist external growth Environmental adverse effects, reduce fruit drop, cracked fruit, sunburned fruit, improve fruit quality, increase yield;
  • Example 11 field use results show that using
  • the application of the preparations containing higher fatty alcohols of the present invention on plants can increase the content of plant signal substances lysophosphatidylcholine and lysophosphatidylethanolamine in plant tissues, and regulate plant phenylpropane-related Pathway gene transcription level and corresponding metabolite content, so as to increase the changes in plant-related disease resistance and stress resistance pathways and substances, improve plant resistance to stress, disease resistance and storage capacity in actual agricultural production, improve the quality of agricultural products, and increase the output of agricultural products.

Abstract

本发明提供一种高级脂肪醇在制备提高植物抗病和抗逆能力方面的制剂的应用,含有高级脂肪醇的制剂通过提高苯丙烷代谢途径相关基因的转录水平、提高异黄酮生物合成途径相关基因的转录水平以及提高植物的异黄酮类化合物含量,来实现提高植物抗病和抗逆能力方面的应用。

Description

高级脂肪醇在提高植物抗病抗逆能力方面的应用 技术领域
本发明涉及高级脂肪醇在提高植物抗病抗逆能力方面的应用。
背景技术
植物生长物质调控植物的生长与发育,并进而影响植物(农作物)的产量、品质和抗性,在促进或调节作物生长、增强植物抗逆性、提高产量、改善植物品质和采后保质等方面发挥重大作用;与传统的农业技术相比,植物生长调节剂的应用有成本低、收效快、效益高、安全性好、节省劳动力的优点,它的使用已经成为现代化农业的重要措施之一,有利于农业规模化、集约化和可持续化生产。
研究表明,溶血磷脂酰胆碱及溶血磷脂酰乙醇胺是植物重要的信号物质,能够显著增加植物抗逆能力并提高农产品的采后货架期。另有研究表明,溶血磷脂酰乙醇胺能够激活苯丙烷代谢通路关键酶苯丙氨酸解氨酶的活性,而苯丙烷代谢途径及其分支异黄酮生物合成途径参与植物的木质素、植保素等抗病抗逆重要物质的合成,通过育种或诱导技术上调该类生理通路,能够显著提高作物抵抗生物与非生物逆境能力。但目前缺乏可通过外部施用的无毒、成本低、适用范围广的外源物质或使用方法来调整上述作物生理通路。
发明内容
为了克服现有技术的不足,本发明的目的在于提供一种高级脂肪醇在提高植物抗病抗逆能力方面的应用。
为解决上述问题,本发明所采用的技术方案如下:
本发明提供一种高级脂肪醇在制备提高植物的溶血磷脂类信号物质的含量的制剂的应用。
进一步地,溶血磷脂类信号物质包括溶血磷脂酰胆碱和溶血磷脂酰乙醇胺。
进一步地,高级脂肪醇通过提高植物的溶血磷脂酰乙醇胺的含量来实现在激活植物免疫力、抑制植物早衰方面的应用。
在另一个方面,本发明提供一种高级脂肪醇在制备提高植物苯丙烷代谢途径相关基因转录水平的制剂的应用。
在另一个方面,本发明提供一种高级脂肪醇在制备提高植物异黄酮生物合成途径相关基因转录水平的制剂的应用。
在另一个方面,本发明提供一种高级脂肪醇在制备提高植物异黄酮类化合物含量的制剂的应用。
在另一个方面,本发明提供一种高级脂肪醇在制备提高植物抗病能力的制剂的应用,含有高级脂肪醇的制剂通过提高苯丙烷代谢途径相关基因的转录水平、提高异黄酮生物合成途径相关基因的转录水平以及提高植物的异黄酮类化合物含量,来实现提高植物抗病能力方面的应用。
在另一个方面,本发明提供一种高级脂肪醇在制备提高植物抗逆能力的制剂的应用,含有高级脂肪醇的制剂通过提高苯丙烷代谢途径相关基因的转录水平、提高异黄酮生物合成途径相关基因的转录水平以及提高植物的异黄酮类化合物含量,来实现提高植物抗逆能力方面的应用。进一步地,植物抗逆能力方面的应用包括防晒伤、防裂果方面的应用。
在本发明中,高级脂肪醇为十二醇、十六醇其中一种或者二者的混合。
进一步地,所述制剂为水乳剂,其包括高级脂肪醇、乳化剂、增稠剂、水。
本发明含有高级脂肪醇的制剂不限于水乳剂,只要是采用本发明的发明构思的所有剂型,均适用,比如可湿性粉剂、乳剂、可喷的溶液、浓乳剂、气雾剂、种衣剂。
相比现有技术,本发明的有益效果在于:
本发明利用先进的转录组、代谢组测序和分析技术,筛选并确定了含有高 级脂肪醇的乳化剂可以通过外部施用来影响植物中信号物质溶血磷脂酰胆碱及溶血磷脂酰乙醇胺的含量、苯丙烷代谢途径及异黄酮生物合成途径相关基因转录水平,累积异黄酮类物质,从而提高植物的抗病和抗逆的能力。
下面结合附图和具体实施方式对本发明作进一步详细说明。
附图说明
图1为花生叶片异黄酮生物合成途径的示意图。
具体实施方式
实施例1
本实施例提供一种含有高级脂肪醇的水乳剂,按重量百分比由以下组分组成:十二醇24%、十六醇3%、乳化剂3%、增稠剂5%、水余量。
在本实施例中,所述乳化剂是脂肪酸聚氧乙烯酯,所述增稠剂是甲基纤维素。
本实施例还提供上述水乳剂的制备方法,包括以下步骤:
将十二醇、十六醇放入容器中加热至60度熔化,再于容器中加入乳化剂,通过高剪切均质机处理,转速5000转/分,转动10分钟,再于容器中加入60度的水,通过高剪切均质机处理,转速10000转/分,转动10分钟,降温至40度,然后再于容器中加入增稠剂,通过高剪切均质机处理,以10000转/分转动30分钟后,即得。
实施例2
本实施例提供一种含有高级脂肪醇的水乳剂,按重量百分比由以下组分组成:十二醇24%、乳化剂3%、增稠剂5%、水余量。
在本实施例中,所述乳化剂是脂肪酸聚氧乙烯酯,所述增稠剂是甲基纤维素。
本实施例还提供上述水乳剂的制备方法,包括以下步骤:
将十二醇放入容器中加热至60度熔化,再于容器中加入乳化剂,通过高剪切均质机处理,转速5000转/分,转动10分钟,再于容器中加入60度的水,通过高剪切均质机处理,转速10000转/分,转动10分钟,降温至40度,然后再于容器中加入增稠剂,通过高剪切均质机处理,以10000转/分转动30分钟后,即得。
实施例3
本实施例提供一种含有高级脂肪醇的水乳剂,按重量百分比由以下组分组成:十六醇3%、乳化剂3%、增稠剂5%、水余量。
在本实施例中,所述乳化剂是脂肪酸聚氧乙烯酯,所述增稠剂是甲基纤维素。
本实施例还提供上述水乳剂的制备方法,包括以下步骤:
将十六醇放入容器中加热至60度熔化,再于容器中加入乳化剂,通过高剪切均质机处理,转速5000转/分,转动10分钟,再于容器中加入60度的水,通过高剪切均质机处理,转速10000转/分,转动10分钟,降温至40度,然后再于容器中加入增稠剂,通过高剪切均质机处理,以10000转/分转动30分钟后,即得。
实施例4
本实施例提供一种水乳剂,按重量百分比由以下组分组成:乳化剂3%、增稠剂5%、水余量。
在本实施例中,所述乳化剂是脂肪酸聚氧乙烯酯,所述增稠剂是甲基纤维素。
将乳化剂放入容器中,通过高剪切均质机处理,转速5000转/分,转动10 分钟,再于容器中加入60度的水,通过高剪切均质机处理,转速10000转/分,转动10分钟,降温至40度,然后再于容器中加入增稠剂,通过高剪切均质机处理,以10000转/分转动30分钟后,即得。
实施例5:含有高级脂肪醇的水乳剂对花生溶血磷脂酰胆碱和溶血磷脂酰乙醇胺含量的影响
溶血磷脂酰胆碱和溶血磷脂酰乙醇胺为植物细胞中重要的信号物质,正常生理来源于磷脂被磷脂酶水解去一条长碳链后形成,可以被多种压力诱导产生。溶血磷脂酰胆碱对根瘤形成具有重要作用。溶血磷脂酰乙醇胺能够激活免疫和抗非生物逆境相关关键酶苯丙氨酸解氨酶活性、抑制植物早衰。用本发明所述含有高级脂肪醇的水乳剂处理花生样品,进行代谢物测定和转录组测序,分析本发明所述水乳剂对花生溶血磷脂酰胆碱和溶血磷脂酰乙醇胺含量的影响。
(1)脂肪醇样品:以表1所列本发明制作成的水乳剂
表1:样品编号
Figure PCTCN2021128773-appb-000001
(2)供试植物:
表2:试验用植物
Figure PCTCN2021128773-appb-000002
培养条件:70/0μmol m -2s -1(光照/黑暗周期光照强度),14小时/10小时(光照/黑暗周期的时间),27℃/24℃,70%相对湿度,四周龄。
(3)样品处理和数据收集:
选取健康且组内生长状态相近的植株,用上述样品的稀释液(900倍兑水稀 释)对叶片进行喷施,直至叶面完全覆盖液膜。对照组喷施等量的用于稀释原液的无菌水。于48小时后进行第二次喷施处理。每组设置3个生物学重复。
于第一次处理后72小时,收取各组4克叶片样品。液氮速冻3分钟后用干冰保温中送武汉迈特维尔生物科技有限公司实验室进行代谢组测定。(下述所有代谢组及转录组测序数据均由武汉迈特维尔生物科技有限公司提供)
(4)处理对2种信号物质含量的影响:
使用十二醇和十六醇的混合制剂(S)、十二醇单独醇制剂(A)、乳化剂(C)以及CK(清水)处理花生和番茄叶片72小时后,生理代谢物中信号物质溶血磷脂酰胆碱(12:0,花生;14:0,番茄)和溶血磷脂酰乙醇胺含量检测结果如表3所示。检测结果表明,混合制剂相比清水对照处理的花生叶片,溶血磷脂酰胆碱含量上升4070倍,混合制剂相比乳化剂处理,溶血磷脂酰胆碱含量也上升4070倍,说明该信号物质的上升非乳化剂引起。十二醇单独处理相比清水对照,溶血磷脂酰胆碱含量上升1850倍,十二醇单独处理相比乳化剂单独处理,溶血磷脂酰胆碱含量上升1850倍,说明十二醇处理引起的信号物质上升也不是由乳化剂引起。乳化剂处理与清水处理的信号物质含量一致。同样,混合制剂相比清水对照,另一信号物质溶血磷脂酰乙醇胺含量上升960倍,与相比乳化剂处理的上升倍数一致,说明信号物质含量上调是由高级脂肪醇处理引起。十二醇单独处理相比对照和乳化剂处理的上升倍数一致,并低于十二醇和十六醇处理,与溶血磷脂酰胆碱的情况一致。番茄各处理中,溶血磷脂酰胆碱和溶血磷脂酰乙醇胺的含量也在十二醇和十六醇的混合制剂(S)、十二醇单独醇制剂(A)的作用下上调了。
从高级脂肪醇的单独处理和混合处理引起两种信号物质的含量变化结果来看,说明高级脂肪醇单独处理和混合处理都可以引起上述两种信号物质的含量 上调。
表3:植株叶片中溶血磷脂酰胆碱及溶血磷脂酰乙醇胺含量比值
Figure PCTCN2021128773-appb-000003
溶血磷脂的种类标注:12:0意思为12个碳无双键,14:0意思为14个碳无双键,16:3意思为16个碳三个双键,14:0(2n isomer)意思为14个碳无双键的异构体
实施例6:含有高级脂肪醇的水乳剂对多种代表植物的苯丙烷代谢途径相关基因转录的影响
(1)脂肪醇样品:同实施例5
(2)供试植物:
表4:试验用植物
Figure PCTCN2021128773-appb-000004
培养条件:70/0μmol m -2s -1(光照/黑暗周期光照强度),14小时/10小时(光照/黑暗周期的时间),24℃/22℃(拟南芥),27℃/24℃(花生、小麦、水稻、番茄、大豆),70%相对湿度,四周龄。
(3)样品处理和数据收集:同实施例5,转录组测序由武汉迈特维尔生物科技有限公司完成
(4)处理对苯丙烷代谢途径相关基因转录水平的影响
溶血磷脂参与苯丙氨酸解氨酶活性调节,是信号物质作用的具体代谢途径, 也是最重要的植物次生代谢途径之一,对植物生长发育及植物环境互作具有重要作用。该途径包括多个分支途径,产生异黄酮等代谢物。异黄酮类代谢物参与帮助植物细胞减少紫外线损伤、抵抗病害发生、耐受不适温度和高盐干旱条件等生理过程。本发明涉及的几种高级脂肪醇制剂可以显著提高花生和番茄叶片中溶血磷脂类信号物质的含量,显示可能会进一步影响下游代谢途径。因此对使用S样品、A样品、B样品以及清水处理花生、小麦、水稻叶片进一步展开了苯丙烷代谢途径相关基因的转录水平检测。结果如表5所示,无论是十二醇单独处理,还是十六醇单独处理,或者2者的混合处理,都可以显著上调其中一些重要基因的表达水平。总体来看,十二醇和十六醇混合在调节基因转录水平方面优于单独处理。运用相同的研究方法,使用S样品及清水处理模式植物拟南芥及作物番茄、大豆,进一步验证了本发明的S制剂对多种植物具有相似的生理效果。
表5:植株叶片中苯丙烷代谢途径相关基因转录水平差异比值
Figure PCTCN2021128773-appb-000005
Figure PCTCN2021128773-appb-000006
实施例7:含有高级脂肪醇的水乳剂对花生异黄酮生物合成途径相关基因转录和代谢产物含量的影响
苯丙烷代谢途径涉及到植物众多的生理活性,为进一步验证本发明高级脂肪醇制剂能够调节植物苯丙烷代谢途径相关基因转录水平和代谢物含量,选取异黄酮生物合成途径为对象,使用72小时的S样品及清水处理花生叶片,进行通路相关基因转录水平和对应代谢物组学测定,并进行联合分析。结果如图1和表6、7所示。
(1)脂肪醇样品:同实施例5
(2)供试植物:花生(栽培种汕油35号),
植株培养条件:70/0μmol m -2s -1(光照/黑暗周期光照强度),14小时/10小时(光照/黑暗周期的时间),27℃/24℃,70%相对湿度,四周龄。
(3)样品处理和数据收集:同实施例5,转录组及代谢组测定由武汉迈特维尔生物科技有限公司完成
(4)处理对异黄酮生物合成途径相关基因转录和代谢产物含量
花生叶片异黄酮生物合成途径如图1所示,其中十二醇和十六醇的混合制剂处理后,引起多个基因的转录水平上调,灰色代表S制剂处理后对应的基因(矩形)转录水平或代谢产物(圆形)含量相比于对照组出现显著上调。相关基因三次生物学重复平均上调水平如表6所示,其中2-羟基异黄酮合酶基因转录水平上调了5.80倍,异黄酮4'-O-甲基转移酶基因转录水平上调了4.53倍,异黄酮/4'-甲氧基异黄酮2'-羟化酶基因转录水平上调了2.25倍,谷氨酰胺还原酶基因转 录水平上调了4.21倍。相应,几种重要的异黄酮类化合物的含量也大幅度上调,如表7所示,其中3,9-二羟基紫檀碱含量上调1223.67倍,毛蕊异黄酮上调2657.76倍,大豆黄素上调1982.35倍。研究表明,3,9-二羟基紫檀碱是重要的植保素前提,能够提高作物对病虫害的抵抗能力;毛蕊异黄酮和大豆黄素已被证明具有显著的抗逆境活性。
表6:花生植株叶片中异黄酮生物合成途径相关基因转录水平差异比值(S/对照)
Figure PCTCN2021128773-appb-000007
表7:花生植株叶片中异黄酮生物合成途径标志代谢产物含量差异比值(S/对照)
Figure PCTCN2021128773-appb-000008
实施例8:含有高级脂肪醇的水乳剂对花生生理表型的影响
通过实施例5,6和7发现,本发明的含有高级脂肪醇的水乳剂能够显著影响花生的信号物质溶血磷脂酰胆碱和溶血磷脂酰乙醇胺,并进一步影响苯丙烷代谢途径和异黄酮的生物合成,这些生理途径的具体生理表型包括抗病、增产、抗紫外线等,为验证本发明所述的高级脂肪醇引起的生理代谢途径确实具有上述生理活性,在实验室中进行环境变量可控条件的验证。
(1)供试品种:同实施例7;
(2)供试方法:
使用150倍稀释的S样品、A样品、B样品及清水分别对花生种子进行拌种晾干后播种,测定了发芽势、发芽率、发芽指数、平均发芽日、活力指数,以 及喷叶后(900倍稀释)用5%聚乙二醇6000灌根处理模拟干旱条件下生长8天后株高、叶片组织脯氨酸含量、丙二醛(MDA)含量、过氧化物酶(POD)活性、及植株干重生理生化指标。
(3)处理对花生生理的影响
三次生物学重复平均数的测定结果如表9、10所示。结果表明十二醇和十六醇混合可以显著提高花生的发芽势,比十二醇或十六醇单独处理和对照的发芽势都高,十二醇和十六醇单独处理的也显著高于对照,但2种脂肪醇单独处理之间没有差异。发芽率、发芽指数和活力指数都表现出相同的规律。混合处理和十二醇单独处理可以显著缩短平均发芽日,十六醇处理也可以显著缩短与对照的发芽日。说明十二醇和十六醇混合在提高花生发芽率和芽势,缩短发芽时间方面具有明显的表型。其中a、b和c代表统计学中数据的显著性差异关系,b组显著性高于c组,a组显著性高于b组。
表9:处理后花生种子萌发生理指标
Figure PCTCN2021128773-appb-000009
苯丙烷代谢途径和异黄酮类代谢物可以增加植物对逆境的抗性,通过模拟干旱实验,确定十二醇和十六醇单独或混合处理可以显著提高花生对干旱的抗性,其中处理显著提高了花生的株高,十二醇和十六醇的混合处理的叶片脯氨酸含量显著高于十二醇和十六醇单独处理和对照,2种醇的单独处理叶片脯氨酸含量也显著高于对照。丙二醛含量与脯氨酸含量规律一致。混合处理的POD含量显 著高于其他处理和对照,十二醇和十六醇单独处理高于对照但差异不显著。干重的数据与POD一致。
生理测定的结果进一步验证,高级脂肪醇通过影响溶血磷脂酰胆碱和溶血磷脂乙醇胺信号物质含量后,的确可以提高花生对干旱的抗性。
表9:模拟干旱处理后花生植株生理指标
Figure PCTCN2021128773-appb-000010
综上所述,从代谢组和转录组测序结果及植物生理表型试验结果可以看出,本发明的提高植物信号物质、调节植物苯丙烷代谢途径的高级脂肪醇制剂可以显著提高植物信号物质溶血磷脂酰胆碱和溶血磷脂酰乙醇胺、能够调节植物苯丙烷代谢途径相关基因转录水平和代谢物含量,从而有效提高植物抗逆抗病及耐储性,农产品提质增产。
实施例9:含有高级脂肪醇的制剂提高水稻抗逆、增产效果
取样:样品S为实施例1制备的水乳剂
作物:水稻美香粘
地点:广东省韶关市始兴县马市镇
方法:在生产基地选取50亩试验组、50亩对照组按表10进行生产
表10:本发明的制剂水稻试验方案
Figure PCTCN2021128773-appb-000011
Figure PCTCN2021128773-appb-000012
使用效果对比:
使用本发明的含有高级脂肪醇的制剂水乳剂处理的试验组水稻,整个生长过程无病害危害,外观表现在长势、长相方面有明显的优势,株型较高、功能叶叶色较深有光泽、有效穗较多,每穗粒数增多,穗型紧凑;对照组这几个方面明显较弱。
实验期间,对照组和处理组水稻的扬花期和灌浆期恰逢连续二十多天阴雨天气,对照组水稻受影响明显。
采样测产结果如下:
表11:本发明的含有高级脂肪醇的制剂水稻试验测产结果
序号 项目 试验组 对照组
1 空壳数占比(%) 6.0 13.3
2 千粒重(g) 20.1 15.0
3 湿谷产量(kg/亩) 600.3 344.3
对照组因扬花期、灌浆期遭遇二十多天阴雨天气,极大地影响了稻谷授粉灌浆,造成瘪谷增多、产量明显下降,试验组因为使用本发明的含有高级脂肪醇的制剂水乳剂处理后产生的作用,谷粒饱满,保持了正常的产量还略有提升。两者对比,实验组的水稻空壳数明显好于对照组,单颗稻谷重量也远大于对照组,产量高于对照组76.6%,显示本发明的含有高级脂肪醇的制剂水乳剂在水稻生产中具有显著的抗逆增产作用。
实施例10:含有高级脂肪醇的制剂在果树生产中抗逆、增产效果
10.A李子抗逆性
取样:样品S为实施例1制备的水乳剂
作物:李子(红线李、蜜香李)
地点:广东省韶关市始兴县顿岗镇
方法:在生产基地选取50亩试验组、50亩对照组,试验组如下生产:用样品S兑水900倍稀释后喷雾,始花期、生理落果中期、果实3-5公分时各喷1次,间隔期15天喷,每次样品用量:200mL/亩,对照组不做处理。
使用效果对比:
李子成熟前,基本上都会遇到自然天气规律影响李子的收成:高温天气下晒几天后遇上大雨、暴雨造成严重的裂果、落果。与对照组相比,使用本发明的含有高级脂肪醇的制剂水乳剂处理的试验组李子,整个生长过程无明显病害危害,冠幅、枝条及新梢嫩梢整齐,新梢老熟速度要快些,裂果、落果明显减少(见表13、表14),果实均匀、光滑,糖度增加3-4,味道清新自然,总体增产了30.1%左右。
李子成熟前,自然天气导致高温强光一周,在中大雨天气后,随机各抽取十颗树进行落果、裂果统计,结果如下:
表13:本发明的含有高级脂肪醇的制剂李子落果统计
序号 项目 树编号 试验组 对照组
1 落果数(颗) 1# 1 13
2 落果数(颗) 2# 5 9
3 落果数(颗) 3# 0 14
4 落果数(颗) 4# 3 8
5 落果数(颗) 5# 2 25
6 落果数(颗) 6# 0 19
7 落果数(颗) 7# 1 16
8 落果数(颗) 8# 2 16
9 落果数(颗) 9# 3 21
10 落果数(颗) 10# 0 11
11 落果总数(颗)   17 152
表14:本发明的含有高级脂肪醇的制剂李子裂果统计
序号 项目 树编号 试验组 对照组
1 裂果数(颗) 1# 2 7
2 裂果数(颗) 2# 1 5
3 裂果数(颗) 3# 0 6
4 裂果数(颗) 4# 2 15
5 裂果数(颗) 5# 1 6
6 裂果数(颗) 6# 1 14
7 裂果数(颗) 7# 1 10
8 裂果数(颗) 8# 0 12
9 裂果数(颗) 9# 1 11
10 裂果数(颗) 10# 3 9
11 裂果总数(颗)   12 95
10.B柑橘抗逆性
取样:样品S为实施例1制备的含有高级脂肪醇的制剂水乳剂
作物:贡柑
地点:广东省韶关市曲江区樟市镇
方法:
在生产基地选取10亩试验组、10亩对照组,试验组如下生产:用样品S兑水900倍稀释后喷雾,始花期、生理落果中期、果实3-5公分时各喷1次,间隔期15天喷,每次样品用量:200mL/亩,对照组不做处理。
使用效果对比:
与对照组相比,使用本发明的含有高级脂肪醇的制剂水乳剂处理的试验组贡柑,整个生长过程中冠幅大、枝条分布均匀合理,叶片嫩绿光滑新梢嫩梢整齐,新梢老熟速度要快些,裂果、落果及日灼果少(见表15、表16),未见溃疡病等病害,果实大小均匀,果皮光滑,果香浓郁。
在第三次生理性落果期,随机抽取十颗树进行落果、日灼果统计,结果如下:
表15:本发明的含有高级脂肪醇的制剂贡柑落果统计
序号 项目 树编号 试验组 对照组
1 落果数(颗) 1# 0 9
2 落果数(颗) 2# 0 10
3 落果数(颗) 3# 4 7
4 落果数(颗) 4# 1 8
5 落果数(颗) 5# 0 7
6 落果数(颗) 6# 0 16
7 落果数(颗) 7# 1 13
8 落果数(颗) 8# 0 6
9 落果数(颗) 9# 3 11
10 落果数(颗) 10# 0 9
11 落果总数(颗)   9 93
表16:本发明的含有高级脂肪醇的制剂贡柑日灼果统计
序号 项目 树编号 试验组 对照组
1 日灼果数(颗) 1# 0 4
2 日灼果数(颗) 2# 1 5
3 日灼果数(颗) 3# 0 1
4 日灼果数(颗) 4# 0 13
5 日灼果数(颗) 5# 2 7
6 日灼果数(颗) 6# 0 4
7 日灼果数(颗) 7# 1 11
8 日灼果数(颗) 8# 0 11
9 日灼果数(颗) 9# 0 6
10 日灼果数(颗) 10# 1 8
11 日灼果总数(颗)   5 70
实施例11:含有高级脂肪醇的制剂在花生大田生产使用效果
取样:样品S为实施例1制备的水乳剂
作物:花生汕油35号
地点:广东省韶关市曲江区樟市镇
方法:在生产基地选取20亩试验组、20亩对照组进行生产,试验组如下生产:用样品S兑水900倍稀释后喷雾,幼苗期、开花期、结荚期、成熟期始各喷1次,每次样品用量:15mL/亩,对照施用芸苔素内酯产品处理(商品名芸乐 收)。
由广东省花生大豆产业技术体系岗位专家对试验进行指导、对试验结果进行测定并测量产品的常规成分,结果如表17、表18所示。
表17:采用本发明的S制剂花生试验效果
序号 项目 试验组 对照组
1 烂果病情指数 0.2121 0.4946
2 单株果实重量(g) 81.25 65.6
3 鲜果亩产(Kg) 751.62 606.85
上表显示,采用本发明所述含有高级脂肪醇的制剂处理的花生烂果明显减少,烂果病的防效达到57.12%,同时增产23.86%。
表18:采用本发明的S制剂花生常规成分对比
序号 项目 试验组 对照组
1 水分(%) 5.80 6.23
2 灰分(%) 2.44 2.46
3 粗蛋白(%) 25.92 23.74
4 粗脂肪(%) 47.50 43.52
上表显示,采用本发明所述含有高级脂肪醇的制剂处理的花生的品质远远高于对照组。
由实施例5、6、7可见,采用本发明所述含有高级脂肪醇的制剂兑水稀释对植物处理,可提高植物信号物质、调节植物苯丙烷代谢途径,高级脂肪醇组合物可以显著提高植物信号物质溶血磷脂酰胆碱和溶血磷脂酰乙醇胺、能够调节植物苯丙烷代谢途径相关基因转录水平和代谢物含量,从而有效提高植物抗逆抗病能力,农产品提质增产;从实施例8可见,实验室生理表型试验证明使用本发明的含有高级脂肪醇的制剂可以显著影响花生种子萌发情况及植株抗逆性能;实施例9使用效果显示,使用本发明的含有高级脂肪醇的乳化剂可以让水稻有效抵抗外部生长环境不利影响,提高农产品品质,提高产量,同时提高稻谷的耐储性;实施例10大田使用效果显示,使用本发明的含有高级脂肪醇的乳化剂可以让果树有效抵抗外部生长环境不利影响,减少落果、裂果、日灼果, 提高果实品质,提高产量;实施例11大田使用效果显示,使用本发明的含有高级脂肪醇的乳化剂可以有效预防花生烂果病,提升花生品质,提高产量。
综合实施例5到实施例11,在植物上应用本发明所述含有高级脂肪醇的制剂,可以提高植物组织中植物信号物质溶血磷脂酰胆碱和溶血磷脂酰乙醇胺的含量、调节植物苯丙烷相关途径基因转录水平和对应代谢物含量,从而增加植物相关抗病抗逆通路和物质的变化,在实际农业生产上提高植物抗逆抗病及耐储能力,提升农产品品质,提高农产品产量。
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。

Claims (10)

  1. 高级脂肪醇在制备提高植物的溶血磷脂类信号物质的含量的制剂的应用。
  2. 如权利要求1所述的应用,其特征在于,溶血磷脂类信号物质包括溶血磷脂酰胆碱和溶血磷脂酰乙醇胺。
  3. 如权利要求2所述的应用,其特征在于,高级脂肪醇通过提高植物的溶血磷脂酰乙醇胺的含量来实现在激活植物免疫力、抑制植物早衰方面的应用。
  4. 高级脂肪醇在制备提高植物苯丙烷代谢途径相关基因转录水平的制剂的应用。
  5. 高级脂肪醇在制备提高植物异黄酮生物合成途径相关基因转录水平的制剂的应用。
  6. 高级脂肪醇在制备提高植物异黄酮类化合物含量的制剂的应用。
  7. 高级脂肪醇在制备提高植物抗病能力的制剂的应用,其特征在于,含有高级脂肪醇的制剂通过提高苯丙烷代谢途径相关基因的转录水平、提高异黄酮生物合成途径相关基因的转录水平以及提高植物的异黄酮类化合物含量,来实现提高植物抗病能力方面的应用。
  8. 高级脂肪醇在制备提高植物抗逆能力的制剂的应用,其特征在于,含有高级脂肪醇的制剂通过提高苯丙烷代谢途径相关基因的转录水平、提高异黄酮生物合成途径相关基因的转录水平以及提高植物的异黄酮类化合物含量,来实现提高植物抗逆能力方面的应用。
  9. 如权利要求8所述的应用,其特征在于,植物抗逆能力方面的应用包括防晒伤、防裂果方面的应用。
  10. 如权利要求1-9任一项所述的应用,其特征在于,高级脂肪醇为十二醇、十六醇其中一种或者二者的混合。
PCT/CN2021/128773 2021-11-04 2021-11-04 高级脂肪醇在提高植物抗病抗逆能力方面的应用 WO2023077374A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180003280.XA CN116634858A (zh) 2021-11-04 2021-11-04 高级脂肪醇在提高植物抗病抗逆能力方面的应用
PCT/CN2021/128773 WO2023077374A1 (zh) 2021-11-04 2021-11-04 高级脂肪醇在提高植物抗病抗逆能力方面的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/128773 WO2023077374A1 (zh) 2021-11-04 2021-11-04 高级脂肪醇在提高植物抗病抗逆能力方面的应用

Publications (1)

Publication Number Publication Date
WO2023077374A1 true WO2023077374A1 (zh) 2023-05-11

Family

ID=86240344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128773 WO2023077374A1 (zh) 2021-11-04 2021-11-04 高级脂肪醇在提高植物抗病抗逆能力方面的应用

Country Status (2)

Country Link
CN (1) CN116634858A (zh)
WO (1) WO2023077374A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116406229B (zh) * 2021-11-04 2024-04-26 珠海市润农科技有限公司 高级脂肪醇在促进水稻和小麦木质素的合成以及增产方面的应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108378028A (zh) * 2018-03-23 2018-08-10 渭南高新区促花王科技有限公司 一种新型高分子脂肪膜助剂及其制备方法
CN108402091A (zh) * 2018-05-31 2018-08-17 佛山市高明区爪和新材料科技有限公司 一种植物节水抗蒸腾剂及其制备方法
CN109769538A (zh) * 2019-03-08 2019-05-21 珠海市润农科技有限公司 利用光合高脂膜剂防控苦瓜果蝇的方法
CN109769539A (zh) * 2019-03-08 2019-05-21 珠海市润农科技有限公司 利用光合高脂膜剂预防控大棚番茄白粉虱的方法
CN109845770A (zh) * 2019-03-08 2019-06-07 珠海市润农科技有限公司 防治果蝇的驱避缓释膜剂及制备方法和用途
CN109874579A (zh) * 2019-03-08 2019-06-14 珠海市润农科技有限公司 利用光合高脂膜剂防控鲜食玉米锈病的方法
CN109924057A (zh) * 2019-03-08 2019-06-25 珠海市润农科技有限公司 利用光合高脂膜剂防控柑橘黄龙病扩散的方法
CN110140564A (zh) * 2019-06-04 2019-08-20 珠海市润农科技有限公司 利用光合高脂膜剂防控烟草病毒病的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108378028A (zh) * 2018-03-23 2018-08-10 渭南高新区促花王科技有限公司 一种新型高分子脂肪膜助剂及其制备方法
CN108402091A (zh) * 2018-05-31 2018-08-17 佛山市高明区爪和新材料科技有限公司 一种植物节水抗蒸腾剂及其制备方法
CN109769538A (zh) * 2019-03-08 2019-05-21 珠海市润农科技有限公司 利用光合高脂膜剂防控苦瓜果蝇的方法
CN109769539A (zh) * 2019-03-08 2019-05-21 珠海市润农科技有限公司 利用光合高脂膜剂预防控大棚番茄白粉虱的方法
CN109845770A (zh) * 2019-03-08 2019-06-07 珠海市润农科技有限公司 防治果蝇的驱避缓释膜剂及制备方法和用途
CN109874579A (zh) * 2019-03-08 2019-06-14 珠海市润农科技有限公司 利用光合高脂膜剂防控鲜食玉米锈病的方法
CN109924057A (zh) * 2019-03-08 2019-06-25 珠海市润农科技有限公司 利用光合高脂膜剂防控柑橘黄龙病扩散的方法
CN110140564A (zh) * 2019-06-04 2019-08-20 珠海市润农科技有限公司 利用光合高脂膜剂防控烟草病毒病的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DENG, DINGHUI: "Application of High-lipid Membranes in Plant Protection", AGRICULTURAL TECHNOLOGY SERVICE, no. 10, 31 December 2001 (2001-12-31), XP009546036, ISSN: 1004-8421 *
LIU, BAOCAI: "A Complete Collection of Identification and Prevention of Vegetable Pests and Diseases", HIGH LIPID FILM, 30 September 1998 (1998-09-30), XP009546134 *
MA, ANMIN ET AL.: "Landscape Plant Fungicide Application Technology", HIGH LIPID FILM, 31 October 2016 (2016-10-31), XP009546139 *
ZHANG, GECHENG, ET AL.: "Orchard Pesticide Usage Guidelines", HIGH LIPID FILM, 31 October 1993 (1993-10-31), XP009546137 *

Also Published As

Publication number Publication date
CN116634858A (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
Holá et al. The effect of brassinosteroids on the morphology, development and yield of field-grown maize
Alikhani-Koupaei et al. Effects of deficit irrigation on some physiological traits, production and fruit quality of ‘Mazafati’date palm and the fruit wilting and dropping disorder
CN103951523A (zh) 植物均衡生长调节剂及其制备方法
Liu et al. Exogenous gibberellins alter morphology and nutritional traits of garlic (Allium sativum L.) bulb
Hamadina The control of yam tuber dormancy: a framework for manipulation
WO2023077374A1 (zh) 高级脂肪醇在提高植物抗病抗逆能力方面的应用
Ntombela Growth and yield responses of cowpeas (Vigna unguiculata L.) to water stress and defoliation.
Ognjanov et al. Anatomical and biochemical studies of fruit development in peach
Wu et al. Effect of chilling temperature on chlorophyll florescence, leaf anatomical structure, and physiological and biochemical characteristics of two Camellia oleifera cultivars.
WO2023077376A1 (zh) 高级脂肪醇在提高豆科植物固氮能力以及抗旱能力方面的应用
Gelmesa et al. Effects of Gibberellic acid and 2, 4-Dichlorophenoxy Acetic Acid Spray on Vegetative Growth, Fruit Anatomy and Seed Setting of Tomato (Lycopersicon esculentum Mill.)
Zhu et al. Susceptibility of two grape varieties to berry abscission
CN112889850B (zh) 一种利用南药植物提取物制备的水稻穗萌抑制剂及其制备方法与应用
WO2023077378A1 (zh) 高级脂肪醇在促进水稻和小麦木质素的合成以及增产方面的应用
Shevchuk et al. Impact of retardants on sugar beet seed productivity
Servani et al. Influence of drought stress on photosynthetic, radical oxygen, respiration, assimilate partitioning, activities of enzymes, phytohormones and essential oils in crop plants.
Divya Nair et al. Changes in growth and photosynthetic characteristics of Ocimum sanctum under growth regulator treatments
Nissim-Levi et al. Effects of temperature and auxin treatment on fruit set and pigmentation of Dodonaea ‘Dana’
Shalom et al. Effects of Ethrel and auxin applications on date palm fruit abscission during development
Junaidy et al. Germinability and Seedling Growth Performance of Chilli (Capsicum annuum) Seeds in Response to Different Gibberellic Acid Concentrations Pre-Treatment
CN114190393B (zh) 一种食用葫芦科促花增产的农药组合物、制剂及其应用
Yue et al. Auxins regulations of branched spike development and expression of TFL, a LEAFY-Like Gene in Branched Spike Wheat (Triticum aestivum)
WO2023077377A1 (zh) 高级脂肪醇在十字花科植物的脂肪酸代谢途径中的应用
Sindhuja et al. Efficient method for breaking seed dormancy in lamb’s quarters (Chenopodium album L.)
WO2023077372A1 (zh) 高级脂肪醇在抑制茄科植物衰老、增加货架期方面的应用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202180003280.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962891

Country of ref document: EP

Kind code of ref document: A1