WO2023075586A1 - Method and process for in vitro decellularisation of cardiovascular tissue - Google Patents

Method and process for in vitro decellularisation of cardiovascular tissue Download PDF

Info

Publication number
WO2023075586A1
WO2023075586A1 PCT/MX2021/050071 MX2021050071W WO2023075586A1 WO 2023075586 A1 WO2023075586 A1 WO 2023075586A1 MX 2021050071 W MX2021050071 W MX 2021050071W WO 2023075586 A1 WO2023075586 A1 WO 2023075586A1
Authority
WO
WIPO (PCT)
Prior art keywords
tissue
solution
decellularization
cardiovascular
hypotonic
Prior art date
Application number
PCT/MX2021/050071
Other languages
Spanish (es)
French (fr)
Inventor
Beni CAMACHO PÉREZ
Juan Pablo AGUILAR ALEMÁN
Octavio Israel ROJAS GARCÍA
Omar PEZA CHÁVEZ
Original Assignee
Top Health, S.A.P.I. De C.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Top Health, S.A.P.I. De C.V. filed Critical Top Health, S.A.P.I. De C.V.
Publication of WO2023075586A1 publication Critical patent/WO2023075586A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents

Definitions

  • the present invention is related to biotechnology and medical science in general, in particular it is related to methods and processes for decellularization of cardiovascular tissue and more specifically it refers to a method and process for in vitro decellularization of cardiovascular tissue using a model diffusion in gradients with hypotonic solutions
  • Aortic valve disease is a condition in which the valve between the heart's main pumping chamber (left ventricle) and the body's main artery (aorta) does not work properly.
  • Aortic valve disease may be present from birth (congenital heart disease) or may have other causes.
  • Aortic stenosis (frequent valvular abnormality, which generates an obstruction of the outflow of blood from the left ventricle to the aorta) is one of the most frequent valvulopathies worldwide with a significant prevalence, being a entity increasingly diagnosed in the elderly population who has a large degenerative component of valvular calcification and sometimes a substrate of underlying congenital heart disease with associated comorbidities (Genoveva Elva Henry Vera et al, 2018).
  • Bioprosthetic valves typically include a leaflet portion and a conduit portion, both generally made of biologic material and possibly a stent. While bioprosthetic valves have a number of advantages over mechanical valves, including a lower risk of complications from thrombus formation, they are associated with an increased risk of mineralization. This increased risk significantly limits the durability of the replacement valve (Black Kirby S and Goldstein Steven 2003).
  • surgical heart valve replacement may involve the implantation of one of three different types of prostheses; mechanical (synthetic), bioprosthetic (chemically fixed porcine valve or bovine pericardium), or human allograft.
  • mechanical synthetic
  • bioprosthetic chemically fixed porcine valve or bovine pericardium
  • human allograft These prostheses provide effective hemodynamic enhancement for the replacement of native aortic valves that are congenitally malformed or have been damaged by degenerative changes or disease resulting in aortic regurgitation or aortic stenosis. Criteria for an ideal prosthesis would include natural hemodynamics, long-term durability, low incidence of thromboembolic complications, absence of calcification, demonstrated lack of immunogenicity, and absence of inappropriate hyperplastic responses after implantation. Even in autotransplant situations, surgical manipulation of tissue, such as vein grafting, can itself be a stimulus for tissue hyperplasia and subsequent graft failure.
  • valve tissue of porcine or bovine origin are prepared from valve tissue of porcine or bovine origin. Because these are species immunologically discordant from man, they are rapidly rejected by the implant recipient despite the use of immunosuppressive drug therapy that would otherwise maintain an allograft. Significantly, these tissues are prone to hyperacute rejection by the recipient due to the presence in the recipient of preformed natural antibodies that recognize antigens on the surface of foreign cells, particularly those of the endothelial lining of heart valves and blood vessels. While bovine or porcine valve tissues are structurally and biomechanically appropriate for use in humans, the potential for such foreign tissue to stimulate immunological rejection in the recipient has in the past dictated treatments with chemical cross-linking agents such as glutaraldehyde.
  • tissue treatment reduces the stimulation of an immune response by the recipient to the foreign tissue and also stabilizes the collagen protein of the resulting non-viable valve tissue making it more resistant to degradation by proteolytic enzymes.
  • tissue grafts are not viable, there is no biosynthetic mechanism to repair the structural proteins degraded during tissue operation in the recipient.
  • tissue grafts tend to calcify over time, increasing the risk of structural damage and consequent failure. Although it occurs less frequently in relation to mechanical grafts.
  • organs such as kidneys have been allogeneically transplanted from one sibling to another in an effort to minimize immune-mediated reactions in the transplant recipient, which would result in organ rejection.
  • organs such as kidneys
  • immunosuppressive drugs Although the immune response to transplanted tissue or organs can be suppressed through the use of immunosuppressive drugs to minimize rejection, immunosuppressive therapy is general in nature. Therefore, immunosuppressive drugs also tend to suppress the immune response in general, reducing the transplant recipient's ability to fight infection.
  • the invention of said patent provides novel and advantageous processes for generating implant tissue suitable for implanting in humans.
  • the process of this invention generally relates to the treatment of xenogeneic or allogeneic tissue to generate a viable bioprosthesis that does not elicit an adverse immune response from the recipient upon implantation, and possesses the regenerative capabilities of allografts, while exhibiting only a propensity. Limited to calcify and little stimulation of thromboembolism.
  • a process that makes it possible to generate a substantially non-immunogenic tissue matrix suitable for subsequent processing in an implant tissue and that comprises the steps of: A. Eliminating the native cells by treating a tissue with components selected from the group consisting of enzymes and nucleases effective to inhibit subsequent native cell growth in the treated tissue and effective to limit the generation of new immunological sites in the tissue thereby producing a tissue matrix; B. Treating the tissue matrix with cell adhesion factor to promote subsequent attachment of cultured allogeneic or autologous cells to tissue matrix surfaces; and C. Repopulating the tissue matrix throughout the matrix with allogeneic or autologous cultured cells.
  • tissue undergoes a different decellularization process and, in the end, it must undergo a process of cell repopulation of the tissue matrix using cultured allogeneic or autologous cells.
  • patent US7318998B2 by Black Kirby S and Steven Goldstein dated March 24, 2003, which discloses a method for making tissues, including heart valves, resistant to mineralization or immunoreactivity by in vivo implementation while preserving the biomechanical properties of the tissue; it also provides a method of reducing the immunoreactivity of transplanted tissues that are not fixed by chemical or physical means, or combinations thereof, prior to implantation.
  • Said document also discloses a tissue decellularization method and in particular the tissue treatment method (heart valves, tendons and ligaments).
  • the method comprises exposing the tissue to a hypotonic solution in order to lyse the cells, then treating the tissue with a nuclease solution to remove nucleic acids and phosphorous-containing groups, which can bind to calcium, to avoid calcification. Finally, the tissue is transferred to an isotonic solution to maintain the intact tissue structure.
  • the cell lysis solution is a stepped gradient treatment so that the tissue adapts to changes in the concentration of the hypotonic solution (NaCI), taking advantage of the diffusion gradient and the transport phenomenon of the cellular remains to spread in a more controlled way to the solution, avoiding the rupture of the fibers of the extracellular matrix.
  • the decellularization efficiency of our invention is 99% compared to that of this document, which is 70%.
  • the decellularization process for a complete valve is carried out in a sterile 7 oz (207 mL) bottle and the decellularization process consists of tissue disinfection using a cocktail of antibiotics and antifungals such as netilmicin, lincomycin, cefotaxime, vancomycin, rifampin, fluconazole, amphotericin; cell lysis with a hypotonic solution; incubation of the tissue with a nuclease solution (DNAase and/or RNAase) and integrity of the tissue structure with base culture medium solution (Dulbecco's Modified Eagle Medium, DMEM), later terminal sterilization is performed by gamma irradiation, carbon dioxide ethylene, peracetic acid ⁇ beta-propio I actona, povidone iodide, UV irradiation in the presence or absence of photos
  • DMEM
  • cell lysis with hypotonic solution, tissue incubation with nucleases and isotonic solution treatment are carried out in a temperature range of 30°C to 40°C and at an atmosphere of 5% CO2.
  • the decellularization process for a complete valve is carried out in a sterile 7 oz (207 mL) bottle.
  • the volume of the decellularizing solutions is 80 mL and requires terminal sterilization by gamma irradiation, ethylene oxide, peracetic acid, beta-propio I actone, povidone iodide, UV irradiation in the presence or absence of photosensitizers. It has a decellularization efficiency of Another located document is the document EP1,698,356 A1 of Matsuda H et al.
  • a method to improve decellularization that, unlike our invention, consists of immersing a tissue in a solution containing an amphiphilic molecule in non-micellar form (for example, 1,2-epoxide polymer) and performing a radical reaction (for example, treatment selected from the group consisting of exposure to gamma irradiation, ultraviolet irradiation, a free radical supply source, ultrasound, electron beam irradiation, and X-ray irradiation) that is not used in our invention.
  • a radical reaction for example, treatment selected from the group consisting of exposure to gamma irradiation, ultraviolet irradiation, a free radical supply source, ultrasound, electron beam irradiation, and X-ray irradiation
  • the decellularization method consists of exposing the tissue in a solution with an antipathic molecule (polyethylene glycol), then exposing it to a phosphate buffered saline solution (also known by its acronym in English, PBS, phosphate buffered saline) with a cocktail of antibiotics. and antifungals, they are washed with PBS and then submerged in a PBS solution with DNase I and MgCh, the tissue is washed with PBS and finally preserved in PBS with antibiotics at 4°C. This methodology does not offer a 99% decellularization efficiency.
  • an antipathic molecule polyethylene glycol
  • EP2,431,063 by Taylor Dorris A and Ott Harald, dated August 28, 2006, which discloses a method and materials for decellularization of a solid organ and recellularization to thereby generate a solid organ that Comprising: providing a mammalian organ having an extracellular matrix and a substantially closed bed of vasculature, and cells embedded in the extracellular matrix, or providing a mammalian vascularized tissue having an extracellular matrix and vascular tree, and cells embedded in the extracellular matrix; cannulating said organ or tissue in one or more cavities, vessels and/or ducts, thus producing a cannulated organ or tissue; and perfusing the vasculature of said cannulated organ or vascularized tissue with a first cell disruption means through said one or more cannulations; wherein the entire vascular bed is brought into contact with the first means of cell disruption (which is an anionic detergent) and wherein said perfusion is multi-directed from each cavity, vessel and/or cannulated conduit, particularly comprising further
  • Tissue prepared according to the process of the invention exhibits physical and biological properties that make it particularly well suited for tissue grafting applications, as stated in the description.
  • An isolated ureter of animal or human origin is the tissue graft material to be subjected to a decellularization procedure.
  • Cell lysis is carried out with an aqueous hypotonic buffer solution or low ionic strength buffer, the decellularization solution may include other agents, such as protease inhibitors (EDTA).
  • EDTA protease inhibitors
  • Decellularization is preferably achieved by incubation of the tissue in a solution effective to lyse the native cells in the tissue.
  • the tissue is incubated (for example, at about 37°C) in sterile water (for example, for about 4 hours in the case of ureters), however, an aqueous hypotonic buffer or low ionic strength buffer can also be used.
  • the decellularization solution can include other agents, such as protease inhibitors (eg, chelating agents such as EDTA).
  • nucleases that can be used for digestion of cell native DNA and RNA include both exonucleases and endonucleases.
  • the nucleases are present in a buffer solution containing magnesium and calcium salts (eg, chloride salts).
  • the ionic strength and pH of the buffered solution, the temperature of the treatment, and the length of the treatment are selected to ensure the desired level of effective nuclease activity.
  • the buffer is preferably a Tris buffer at pH 7.6.
  • the nuclease cocktail contains about 0.1 pg/ml to 50 pg/ml, preferably 17 pg/ml, DNAse I , and about 0.1 pg/ml to 50 pg/ml, preferably 17 pg/ml, RNAse A.
  • Nuclease treatment can be effected at, for example, about 20°C to about 38°C, preferably 37°C, for approximately 1 to 36 hours. In the case of ureters, nuclease treatment for approximately 19 hours is typically sufficient.
  • the resulting tissue matrix can be treated (washed) to ensure removal of cell debris which may include cellular protein, cellular lipids, and cellular nucleic acid, as well as extracellular debris, such as extracellular soluble proteins, lipids and proteoglycans.
  • cell debris may include cellular protein, cellular lipids, and cellular nucleic acid, as well as extracellular debris, such as extracellular soluble proteins, lipids and proteoglycans.
  • the tissue can be incubated in a buffer (eg, PBS) or in a detergent solution such as a solution of TritonX-100 in water.
  • a buffer eg, PBS
  • a detergent solution such as a solution of TritonX-100 in water.
  • the cell lysis solution is a stepped gradient treatment so that the tissue adapts to changes in the concentration of the hypotonic solution (NaCI), taking advantage of the diffusion gradient and the transport phenomenon of the cellular remains to spread in a more controlled way to the solution, avoiding the rupture of the fibers of the extracellular matrix.
  • concentration of the hypotonic solution NaCI
  • Another important factor in our invention is the controlled conditions of the system, which allows the tissue to be preserved at body temperature (37°C), 95% relative humidity, and a 5% CO2 atmosphere to maintain neutral pH.
  • detergents Triton X-100
  • hypotonic solutions and/or detergents such as 100x triton, and SDS
  • the main objective of the present invention is to make available a methodology and process to decellularize cardiovascular tissue such as heart valves, great vessels, veins and peripheral arterial networks, which entails the use of a system that injects hypotonic solutions in "n" stepped gradient. , and nucleic acid degrading enzymes.
  • Another objective of the invention is to provide said method and process for decellularizing cardiovascular tissue that allows preserving the tissue at body temperature (37°C), a relative humidity of 95%, and an atmosphere of 5% CO2 to maintain neutral pH.
  • Another objective of the invention is to provide said methodology and process for decellularizing cardiovascular tissue, which also allows decellularization to be carried out simultaneously in an aortic valve and a pulmonary artery.
  • Another objective of the invention is to provide said methodology and process for decellularizing cardiovascular tissue, which also offers a stepped gradient treatment so that the tissue adapts to changes in the concentration of a hypotonic solution, taking advantage of the diffusion gradient and the bass of transport of the cellular remains spread in a more controlled way to the solution, avoiding the rupture of the fibers of the extracellular matrix.
  • Another objective of the invention is to provide said methodology and process for decellularizing cardiovascular tissue, which also avoids the denaturation of proteins caused by detergent solutions due to the unfolding of protein structures due to charge imbalance.
  • Another objective of the invention is to provide said methodology and process for decellularizing cardiovascular tissue, which also offers excellent quality of decellularized homografts, preservation of tissue architecture after the decellularization process, and successful recei - I u I a r i z a t i o No. of tissue.
  • Another objective of the invention is to provide said methodology and process for decellularizing cardiovascular tissue, which also makes it possible to obtain a decellularized aortic valve, pulmonary artery, and vascular structures with minimal adverse effects on their mechanical integrity.
  • tissue such as heart valves, pulmonary arteries, great vessels, veins, and peripheral arterial networks were subjected to a low concentration hypotonic solution (8-0 mM of NaCI) and it was found that it damaged the extracellular matrix of the tissue, causing the fragmentation of 40% of the fibers of the tissue. Consequently, it was possible to determine that the decellularization processes with hypotonic static solutions do not reach the disintegration of the cells and/or edemas can be generated in the intrace I u I ar zone. While with the use of detergent solutions, complete decellularization can be achieved, but compromising the denaturation of the anchoring proteins and growth factors that will promote adequate adoption of the graft and therefore cell proliferation and differentiation in the grafted patient. about the same.
  • hypotonic solutions cause edema and fail to complete complete decellularization of the tissue.
  • its functionality is validated by culturing primary human cells (fibroblasts and adipose tissue mesenchymal cells), which at the time of seeding did not use serum-added medium to promote cell recognition of intact anchoring proteins. in the tissue.
  • hypotonic solution and instead of subjecting it to static solutions, a system was devised that would allow the hypotonic solution to recirculate by passing through the tissue and surprisingly it was possible to identify that by varying the concentration of the hypotonic solution and making it present a flow dynamic, several of the problems detected in the previous experiments were resolved.
  • the methodology could be determined based on experimentation and the concentration gradients of the hypotonic solutions that offered better results in the decellularization process were found, together with the determination of the enzymatic treatment of the tissue for the elimination of cellular residues in the tissue and subsequent treatment with isotonic solutions to remove toxic residues and preserve the structural integrity of the tissue.
  • a chemical method is used, where the plasmatic membrane of the cells is solubilized to induce cell lysis through the action of hypotonic solutions. Its effectiveness lies in the fact that they break lipid interactions. However, it does not totally remove the cellular remnants of the tissue. Due to the above, it was necessary to complement the chemical method with an enzymatic treatment for the elimination of the remaining nucleic acids in the structure.
  • Nucleases such as endonucleases, catalyze the hydrolysis of the internal bonds of the ribonucleotide or deoxyribonucleotide chains, whereas exonucleases catalyze the hydrolysis of the terminal bonds of d e oxy r i b o n u c I e o t i d o or ribunonucleotides, allowing the degradation of DNA or RNA.
  • the method for in vitro decellularization of cardiovascular tissue consists of subjecting the cardiovascular tissue to a recirculation system of decellularizing hypotonic solutions in "n ”gradient in a stepwise manner with the aim of lysing the cells of the plasmatic membrane; but maintaining the extracellular matrix integrates; b) subjecting the cardiovascular tissue to a recirculation system of a solution of acid-degrading enzymes nucleases (nucleases) to remove cellular debris in tissue; and c) subjecting the cardiovascular tissue to a recirculation system of isotonic solutions to remove toxic residues and preserve the structural integrity of the tissue.
  • Said recirculation system is configured with means to preserve the tissue at body temperature between (36.1 to 37.2 °C) and preferably 37 °C, a relative humidity between (95 to 98%) and preferably 95%, and a atmosphere with a CO2 concentration of between (5 to 10%) and preferably a CO2 concentration of 5% to maintain neutral pH and in order to emulate the conditions of the human body and not damage the extracellular matrix.
  • Said hypotonic solutions are selected from NaCl or a solution composed of a buffer solution of 10 mM Tris (hydroxymethyl) aminomethane hydrochloride (Trizma-HCI) and 5 mM ethylenediaminetetraacetic acid also known as EDTA.
  • Tris (hydroxymethyl) aminomethane hydrochloride Trizma-HCI
  • EDTA ethylenediaminetetraacetic acid
  • nucleic acid degrading enzymes select from Deoxyribonucleases I (DNase I) and ribonuclease A (RNase A).
  • Said solution of degradative enzymes is defined by Tris (48 mM), MgCI 2 (2.88 mM), CaCI 2 (0.96 mM), DNase I (19 pg/mL) and RNase A (19.2 g/mL).
  • Said isotonic solution consists of a solution of base culture (Dulbecco's Modified Eagle Medium, DMEM).
  • the recirculation system for hypotonic solutions, recirculation of nucleic acid degrading enzymes, and isotonic solutions consists of a reactor defined by a closed and isolated reservoir with temperature control means, relative humidity control means; atmospheric CO2 concentration control means, preferably at 5%, to preserve the neutral pH and in order to emulate the conditions of the human body and not damage the extracellular matrix; configured to house a first container where the tissue to be treated is arranged with means for holding and supporting the tissue and conducting means for a solution selected from a hypotonic solution at different concentrations, sterile water, nucleic acid degrading enzymes and an isotonic solution , wherein said solution conduction means define at least one end to be connected to the upper end of a duct with or without a shunt inserted into at least one tissue to pass said solutions or to connect to the upper end of a second duct that opens close to the bottom of the first container to withdraw or discharge the solution that is recirculated by means of a recirculation pump to which said con
  • the process for decellularization of cardiovascular tissues consists of the following stages: a) Disinfect the tissue by subjecting it to a solution of 1 L of medium cell “Roswell Park Memorial Institute medium”, (better known by its acronym RPMI), with a cocktail of antibiotics and antifungals (50 pg/mL amphotericin B, 500 pg/mL vancomycin, 80 pg/mL gentamicin, 250 pg/mL cefuroxime , 240 pg/mL cefotaxime) for a period of (20 to 36 hours) and preferably 24 hours at a temperature between (6 to 8°C) and preferably at 4°C for tissue disinfection and inhibition of bacterial growth and fungi, preserving its viability.
  • RPMI medium cell
  • antibiotics and antifungals 50 pg/mL amphotericin B, 500 pg/mL vancomycin, 80 pg/mL gentamicin, 250 pg/mL cefuroxi
  • b) Decellularize the cardiovascular tissue in a reactor with a recirculation system of decellularizing hypotonic solutions, whose main objective is to eliminate cellular and nuclear material, minimizing the adverse effects on the mechanical integrity of the extracellular matrix of the tissue in a reactor with recirculation of the decellularizing solutions.
  • bi Subject the tissue to a hypotonic 60-40 mM NaCI solution. The solution is recirculated at a flow of between 2 to 8 L/h and preferably 4 L/h for 6 to 10 hours.
  • b.ii Replace the NaCI solution (60 to 40 mM) with a 35-20 mM NaCI solution.
  • the 35-20 mM NaCI solution is recirculated at a flow rate of between 2 and 8 L/h and preferably 4 L/h for 6 to 10 hours.
  • b.iii carry out a posteriori, a new change of the 35-20 mM NaCI solution for a 15-10 mM NaCI solution.
  • the 15-10 mM NaCl solution is recirculated at a flow rate of between 2 and 8 L/h and preferably 4 L/h for 24-30 hours.
  • b.iv again change the NaCI solution to 15-10 mM with sterile water.
  • the same procedure described above is followed.
  • the water is recirculated at a flow of between 2 to 8 L/h and preferably 4 L/h for 24-30 hours. Afterwards, the sterile water is removed.
  • bv Finally, recirculate 800 to 1000 mL of nucleic acid degrading enzyme solution to remove remaining nucleic acids.
  • the solution is recirculated for 24-30 hours at a flow of between 2 to 8 L/h and preferably 4 L/h. After this time, the nuclease solution is removed.
  • nucleases used are selected from Deoxyribonucleases I (DNase I) and ribonuclease A (RNase A).
  • DNase I Deoxyribonucleases I
  • RNase A ribonuclease A
  • the decellularization process is carried out simultaneously in an aortic valve and a pulmonary artery in a reactor with recirculation of the decellularizing solutions.
  • the decellularization process is capable of generating acellular three-dimensional structures, free of genetic material, without toxicity and, therefore, biocompatible.
  • Said isotonic solution consists of a base culture medium solution (Dulbecco's Modified Eagle Medium, DMEM).
  • DMEM Dulbecco's Modified Eagle Medium
  • Said solution of nucleic acid degrading enzymes is defined by Tris (48 mM), MgCh (2.88 mM), CaCh (0.96 mM), DNase I (19 pg/mL) and RNase A (19.2 ⁇ g/mL).
  • Said method and process allow having decellularized cardiovascular and vascular structures, which offer alternatives to allogeneic grafts with low/null immunohistological rejection, given the absence of genetic material and the presence of allogeneic proteins and structures.
  • the quality of the decellularization process reflected in the quality of the decellularized homograft, preservation of tissue architecture after the decellularization process, and the impact of successful tissue recellularization.
  • the quality of the decellularized homograft is assessed with histological analysis (absence of cell nuclei), quantification of residual DNA in the tissue ( ⁇ 50 ng DNA/g dry tissue), cell migration of human fibroblasts in the decellularized matrix (i.e. because the cell matrix preserves the signals of cell migration, proliferation and differentiation).
  • Figure 1 shows a tissue image illustrating a fragment of myocardium decellularized with a low concentration hypotonic solution (8-0 mM NaCI sodium chloride, showing 40% fragmentation of tissue fibers.
  • Figure 2 shows a graph of the gradual variation of the concentration of a hypotonic solution with which the tissue is treated for decellularization, in accordance with the present invention.
  • Figures 3 show images taken under a microscope at 20X of non-decellularized tissues of the myocardium, aortic arch, and aortic leaflet, respectively, showing that the structure and location of nuclei marked with arrows are preserved.
  • Figures 4 show images taken under a microscope at 20X of decellularized tissues of the myocardium, aortic arch, and aortic leaflet, respectively, showing that the structure is preserved, without localization of nuclei.
  • Figure 5 shows a diagram of the recirculation system for hypotonic solutions, recirculation of nucleic acid degrading enzymes, and isotonic solutions through the tissue to be treated, in accordance with one of the modalities of the system of the present invention.
  • Figure 6 shows a diagram of the recirculation system for hypotonic solutions, recirculation of nucleic acid degrading enzymes, and isotonic solutions through the tissue to be treated, in accordance with a second modality of the system of the present invention.
  • Figures 7A, 7B, 7C, 7D and 7E illustrate schematic diagrams of the recirculation system of decellularizing hypotonic solutions, through a heart valve and a pulmonary artery, simultaneously, where the variation of the concentration in gradients of these occurs. hypotonic solutions and changes of said hypotonic solution at a concentration of 60-40 mM NaCl to a concentration of 35-20 mM NaCl in the system.
  • Figures 8A, 8B, 8C, 8D and 8E illustrate schematic diagrams of the recirculation system of decellularizing hypotonic solutions through a heart valve and a pulmonary artery, simultaneously, where the variation of the concentration gradients of said solutions occurs. hypotonic solutions and changes of said hypotonic solution at a concentration of 35-20 mM NaCI to a concentration of 15-10 mM NaCI in the system.
  • Figures 9A, 9B, 9C, 9D and 9E illustrate schematic diagrams of the decellularizing hypotonic solution recirculation system through a heart valve and a pulmonary artery, simultaneously, where the change of the hypotonic solution occurs at a concentration of 15-10 mM NaCI per deionized water in the system.
  • Figure 1 shows an image of the tissue that illustrates a fragment of decellularized myocardium that underwent a decellularization process with a low concentration hypotonic solution (8-0 mM NaCI), showing a fragmentation of 40% of the cells. tissue fibers.
  • the present invention it was determined that using a method for in vitro decellularization of cardiovascular tissue such as heart valves, pulmonary arteries, great vessels, veins and peripheral arterial networks, using a stepwise concentration gradient of hypotonic solutions, since the The tissue gradually adapts to changes in the concentration of the hypotonic solution, taking advantage of the fact that the diffusion gradient and the phenomenon of transport of cell debris diffuse into the solution in a more controlled manner, avoiding the rupture of the extracellular matrix fibers.
  • the methodology of hypotonic solutions the denaturation caused by detergent solutions due to the unfolding of protein structures due to charge imbalance was avoided.
  • the method for in vitro decellularization of cardiovascular tissue consists of a) subjecting the cardiovascular tissue to a recirculation system of decellularizing hypotonic solutions in a stepped "n" gradient with the aim of lyse cells from the plasma membrane; but maintaining the extracellular matrix integrates; b) subjecting the cardiovascular tissue to a recirculating system of nucleic acid degrading enzymes (nucleases) to remove cellular debris in the tissue; and c) subjecting the cardiovascular tissue to a recirculation system of isotonic solutions to remove toxic residues and preserve the structural integrity of the tissue.
  • nucleic acid degrading enzymes nucleic acid degrading enzymes
  • the system of recirculation of hypotonic solutions, recirculation of acid degrading enzymes nucleic acid and isotonic solutions consists of a reactor defined by a closed and isolated reservoir (1) with temperature control means, relative humidity control means; atmospheric CO2 concentration control means, preferably at 5% (not shown), to maintain neutral pH, configured to house a container (2) where the tissue to be treated is placed (in this case, a heart valve (VC) is simultaneously treated ) and a pulmonary artery (PA)), with holding and support means (not shown) of the tissues and conduction means (3) of a solution selected from a hypotonic solution at different concentrations, sterile water, nucleic acid degrading enzymes and an isotonic solution, wherein said conduction means (3) of a solution are connected to a duct (4) with two shunts that are inserted into a heart valve (VC) and a pulmonary artery (AP) to pass said solutions; a duct (5) that opens close to the bottom of the first container (2) in which
  • the recirculation system for hypotonic solutions, recirculation of nucleic acid degrading enzymes, and isotonic solutions consists of a reactor defined by a closed and isolated reservoir (1) with temperature control means, control means relative humidity; means of atmospheric CO2 concentration control (not shown) preferably at 5%, to maintain neutral pH, configured to house a first container (2) where the tissue to be treated is placed (in this case a heart valve (VC) is treated simultaneously) and a pulmonary artery (PA)), with holding and support means (not shown) of the tissues and conduction means (3) of a solution selected from a hypotonic solution at different concentrations, sterile water, nucleic acid degrading enzymes and an isotonic solution, wherein said conduction means (3) of a solution define at least one end to be connected to the upper end of a duct (4) with two shunts inserted in the heart valve (VC) and in the pulmonary artery ( AP) to pass said solutions or to connect to the upper end of a second duct
  • the process for decellularization of cardiovascular tissues consists of the following stages: a) Disinfect the tissue by subjecting it to a 1L solution of cellular medium "Roswell Park Memorial Institute medium", (better known by its acronym RPMI), with a cocktail of antibiotics and antifungals (50 pg/mL amphotericin B, 500 pg/mL vancomycin, 80 pg/mL gentamicin, 250 pg/mL cefuroxime, 240 pg/mL cefotaxime) for a period of 20 to 36 hours and preferably 24 hours at a temperature between 6 to 8°C and preferably at 4°C for the disinfection of the tissue and inhibit the growth of bacteria and fungi, preserving its viability.
  • RPMI Roswell Park Memorial Institute medium
  • antibiotics and antifungals 50 pg/mL amphotericin B, 500 pg/mL vancomycin, 80 pg/mL gentamicin, 250 pg/
  • b) Decellularize the cardiovascular tissue in a reactor with a recirculation system of decellularizing hypotonic solutions, whose main objective is to eliminate cellular and nuclear material, minimizing the adverse effects on the mechanical integrity of the extracellular matrix of the tissue in a reactor with recirculation of the decellularizing solutions.
  • bi Submit the tissue to a hypotonic 60-40 mM NaCI solution. The solution is recirculated at a flow of between 2 to 8 L/h and preferably at 4 L/h for 6 to 10 hours.
  • b.ii Replace the NaCI solution (60 to 40 mM) with a 35-20 mM NaCI solution.
  • the 35-20 mM NaCI solution is recirculated at a flow rate of between 2 to 8 L/h and preferably 4 L/h for 6 to 10 hours.
  • b.iii Subsequently, change the 35-20 mM NaCI solution for a 15-10 mM NaCI solution. Following the same procedure described above.
  • the 15-10 mM NaCl solution is recirculated at a flow rate of between 2 to 8 L/h and preferably 4 L/h for 24-30 hours.
  • b.iv Change the NaCl solution again to 15-10 mM with sterile water.
  • the same procedure described above is followed.
  • the water is recirculated at a flow of between 2 to 8 L/h and preferably at 4 L/h for 24-30 hours. Afterwards, the sterile water is removed.
  • bv Finally, recirculate 800 to 1000 mL of a nuclease solution selected from Deoxyribonucleases I (DNase I) and Ribonuclease A (RNase A) to remove remaining nucleic acids.
  • DNase I Deoxyribonucleases I
  • RNase A Ribonuclease A
  • c) Recirculate a base culture medium solution (Dulbecco's Modified Eagle Medium, DMEM) at a flow of between 2 to 8 L/h and preferably 4 L/h for 10-7 days, changing the solution every 48 hours. for the preservation of the structural integrity of the tissue with the aim of removing nuclease residues.
  • DMEM Dulbecco's Modified Eagle Medium
  • FIGS. 7A, 7B, 7C, 7D and 7E schematic diagrams of the decellularizing hypotonic solution recirculation system through a heart valve and a pulmonary artery are illustrated simultaneously; where the variations of the concentration in gradients of said hypotonic solutions and the changes of said hypotonic solution at a concentration of 60-40 mM NaCl to a concentration of 35-20 mM NaCl in the system are given; noting the following: having started the treatment of the tissues, cardiac valve (VC) and in the pulmonary artery (PA), with recirculation of a hypotonic solution at a concentration of 60-40mM of NaCl, 500 mL of said hypotonic solution is withdrawn at a concentration of 60-40mM NaCl from the reactor vessel (2) by action of the recirculation pump (6) is discharged to the second vessel (7) ( Figure 7A).
  • VC cardiac valve
  • PA pulmonary artery
  • the concentration of the hypotonic solution is changed and 500 mL of this hypotonic solution at a concentration of 35-20 mM NaCl is added from the second container (7) and recirculated through the cardiac valve (VC) tissues and in the artery. lung (AP) by action of the recirculation pump (6) discharging into the container (2) ( Figure 7B).
  • the 1000 mL of the solution is removed from the container (2) and is discharged into the container (7) by action of the recirculation pump (6) ( Figure 7C).
  • the concentration of the hypotonic solution in the container (7) is changed and 1000 mL of the hypotonic solution at a concentration of 35-20 mM of NaCI are added, which is passed through the action of the recirculation pump (6) through the tissues heart valve (VC) and the pulmonary artery (AP) and are discharged into the first container (2) ( Figure 7D). Finally, in the same container (2) the concentration of the hypotonic solution is changed to a concentration of 35-20 mM NaCI and the solution is recirculated for 6 hours with a flow of 4L/h by action of the recirculation pump ( 6) ( Figure 7E). In all stages, the interior of the reservoir where the tissues are housed in the recirculation system maintains a temperature preferably of 37°C, a relative humidity p of 95%, and an atmosphere with a CO2 concentration of preferably 5%.
  • FIGS 8A, 8B, 8C, 8D and 8E they illustrate schematic diagrams of the recirculation system of decellularizing hypotonic solutions through a heart valve and a pulmonary artery, simultaneously, where the concentration variations occur in gradients. of said hypotonic solutions and changing said hypotonic solution at a concentration of 35-20 mM NaCI to a hypotonic solution at a concentration of 15-10 mM in the system; noting the following: 500 mL of the hypotonic solution at a concentration of 35-20mM NaCI is withdrawn from the reactor vessel (2) by action of the recirculation pump (6) ( Figure 8A).
  • the concentration is changed and 500 mL of the hypotonic solution at a concentration of 15-10 mM NaCI are added from the second container (7) and recirculated through the cardiac valve (VC) and pulmonary artery (AP) tissues. ) by action of the recirculation pump (6) discharging into the container (2) ( Figure 8B).
  • HE 1000 ml_ of the solution are removed from the container (2) and it is discharged into the container (7) by action of the recirculation pump (6) ( Figure 8C).
  • the concentration of the hypotonic solution in the container (7) is changed and 1000 mL of the hypotonic solution at a concentration of 15-10 mM of NaCI are added, which is passed through the action of the recirculation pump (6) through heart valve (VC) and pulmonary artery (PA) tissues and are discharged into the first container (2) ( Figure 8D). Finally, in the same container (2) the concentration of the hypotonic solution is changed to a concentration of 15-10 mM for 24 hours with a flow of 4L/h by action of the recirculation pump (6) ( Figure 8E). In all stages, the interior of the reservoir where the tissues are housed in the recirculation system maintains a temperature preferably of 37°C, a relative humidity preferably of 95% and an atmosphere with a CO2 concentration preferably of 5%.
  • FIGS 9A, 9B, 9C, 9D and 9E they illustrate schematic diagrams of the recirculation system of decellularizing hypotonic solutions through a heart valve and a pulmonary artery, simultaneously, where the change from the hypotonic solution to a concentration of 15-10 mM of NaCI by deionized water in the system, noting the following: 500 mL of the hypotonic solution with a concentration of 15-10 mM of NaCI is withdrawn from the vessel (2) of the reactor by action of the pump of recirculation (6) is discharged to the second container (7) ( Figure 9A).
  • the deionized water is recirculated for 24 hours with a flow of 4L/h by action of the recirculation pump (6) ( Figure 9E).
  • the interior of the reservoir where the tissues are housed in the recirculation system maintains a temperature preferably of 37°C, a relative humidity preferably of 95% and an atmosphere with a CO2 concentration preferably of 5%.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Transplantation (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Materials For Medical Uses (AREA)

Abstract

The present invention relates to a method and process for in vitro decellularisation of cardiovascular tissue such as cardiac valves, lung arteries, large vessels, veins and peripheral arterial networks, characterised in that it consists of a) subjecting the cardiovascular tissue to a recirculation system of decellularising hypotonic solutions in "n" concentration gradient in a tiered manner to lyse the cells of the plasma membrane, but keeping the extracellular matrix intact; b) subjecting the cardiovascular tissue to a recirculation system of nucleic acid degradative enzymes to eliminate cell debris in the tissue; and c) subjecting the cardiovascular tissue to a recirculation system of isotonic solutions to remove toxic residues and preserve the structural integrity of the tissue.

Description

MÉTODO Y PROCESO PARA DESCELULARIZACIÓN IN VITRO DE TEJIDO CARDIOVASCULAR METHOD AND PROCESS FOR IN VITRO DECELLULARIZATION OF CARDIOVASCULAR TISSUE
CAMPO DE LA INVENCIÓN FIELD OF THE INVENTION
La presente invención está relacionada con la biotecnología y la ciencia médica en lo general, en lo particular se relaciona con métodos y proceso de descelularización de tejido cardiovascular y más específicamente se refiere a un método y proceso para descelularización in vitro de tejido cardiovascular usando un modelo de difusión en gradientes con soluciones hipotónicas The present invention is related to biotechnology and medical science in general, in particular it is related to methods and processes for decellularization of cardiovascular tissue and more specifically it refers to a method and process for in vitro decellularization of cardiovascular tissue using a model diffusion in gradients with hypotonic solutions
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
La enfermedad de la válvula aórtica es una afección en la cual la válvula que se encuentra entre la cavidad de bombeo principal del corazón (ventrículo izquierdo) y la arteria principal del cuerpo (aorta) no funciona de manera correcta. La enfermedad de la válvula aórtica puede estar presente desde el nacimiento (enfermedad cardiaca congénita) o puede tener otras causas. Aortic valve disease is a condition in which the valve between the heart's main pumping chamber (left ventricle) and the body's main artery (aorta) does not work properly. Aortic valve disease may be present from birth (congenital heart disease) or may have other causes.
La estenosis aórtica (anomalía valvular frecuente, que genera una obstrucción de la salida del flujo sanguíneo desde el ventrículo izquierdo hacia la aorta) es una de las valvulopatias más frecuentes a nivel mundial con una prevalencia significativa, siendo una entidad cada vez más diagnosticada en la población adulta mayor quien posee un gran componente degenerativo de calcificación valvular y algunas veces un sustrato de cardiopatía congénita de base con comorbilidades asociadas (Genoveva Elva Henry Vera et al, 2018). Aortic stenosis (frequent valvular abnormality, which generates an obstruction of the outflow of blood from the left ventricle to the aorta) is one of the most frequent valvulopathies worldwide with a significant prevalence, being a entity increasingly diagnosed in the elderly population who has a large degenerative component of valvular calcification and sometimes a substrate of underlying congenital heart disease with associated comorbidities (Genoveva Elva Henry Vera et al, 2018).
Los trastornos de las válvulas cardiacas pueden ser graves y, de hecho, a menudo son fatales. El tratamiento puede requerir el reemplazo de la válvula con una válvula protésica, mecánica o bioprotésica. Las válvulas bioprotésicas incluyen típicamente una porción de valva y una porción de conducto vascular, ambas generalmente de material biológico y posiblemente una endoprótesis. Si bien las válvulas bioprotésicas tienen una serie de ventajas sobre las válvulas mecánicas, incluido un menor riesgo de complicaciones derivadas de la formación de trombos, están asociadas con un mayor riesgo de mineralización. Este mayor riesgo limita significativamente la durabilidad de la válvula de reemplazo (Black Kirby S y Goldstein Steven 2003). Heart valve disorders can be serious and, in fact, are often fatal. Treatment may require valve replacement with a prosthetic, mechanical, or bioprosthetic valve. Bioprosthetic valves typically include a leaflet portion and a conduit portion, both generally made of biologic material and possibly a stent. While bioprosthetic valves have a number of advantages over mechanical valves, including a lower risk of complications from thrombus formation, they are associated with an increased risk of mineralization. This increased risk significantly limits the durability of the replacement valve (Black Kirby S and Goldstein Steven 2003).
En los países desarrollados la cirugía más común es el “bypass” arterial (Quint et al., 2011), obteniendo alternativas para generar el puente vascular, los vasos autólogos. Sin embargo, en el 40% de estos procedimientos, no es posible obtener autoinjertos ya que la enfermedad del paciente está presente en todo el sistema cardiovascular (Salacinski et al., 2001 ). Por ende, estos pacientes tienen la alternativa de materiales sintéticos, ofreciendo una solución limitada dado la formación posible de trombosis, y la imposibilidad de mimetizar correctamente los diámetros adecuado a los vasos periféricos (Ravi and Chaikof, 2010). In developed countries, the most common surgery is arterial bypass (Quint et al., 2011), obtaining alternatives to generate the vascular bridge, autologous vessels. However, in 40% of these procedures, it is not possible to obtain autografts since the patient's disease is present in the entire cardiovascular system (Salacinski et al., 2001). Therefore, these patients have the alternative of synthetic materials, offering a limited solution given the possible formation of thrombosis, and the impossibility of correctly mimicking the diameters suitable for peripheral vessels (Ravi and Chaikof, 2010).
De acuerdo con la patente US5632778A de Goldstein Steven del 05 de junio de 1995, el reemplazo quirúrgico de la válvula cardiaca puede implicar la implantación de uno de tres tipos distintos de prótesis; mecánico (sintético), bioprotésico (válvula porcina fijada químicamente o pericardio bovino) o aloinjerto humano. Estas prótesis proporcionan una mejora hemodinámica eficaz para el reemplazo de válvulas aórticas nativas que están malformadas congénitamente o han sido dañadas por cambios degenerativos o enfermedades que dan como resultado insuficiencia aórtica o estenosis aórtica. Los criterios para una prótesis ideal incluirían hemodinámica natural, durabilidad a largo plazo, baja incidencia de complicaciones tromboembólicas, ausencia de calcificación, falta demostrada de inmunogenicidad y ausencia de respuestas hiperplásicas inapropiadas después de la implantación. Incluso en situaciones de autotrasplante, la manipulación quirúrgica del tejido, como los injertos de venas, puede ser en si misma un estimulo para la hiperpl asía tisú lar y el posterior fracaso del injerto. According to Goldstein Steven's patent US5632778A dated June 05, 1995, surgical heart valve replacement may involve the implantation of one of three different types of prostheses; mechanical (synthetic), bioprosthetic (chemically fixed porcine valve or bovine pericardium), or human allograft. These prostheses provide effective hemodynamic enhancement for the replacement of native aortic valves that are congenitally malformed or have been damaged by degenerative changes or disease resulting in aortic regurgitation or aortic stenosis. Criteria for an ideal prosthesis would include natural hemodynamics, long-term durability, low incidence of thromboembolic complications, absence of calcification, demonstrated lack of immunogenicity, and absence of inappropriate hyperplastic responses after implantation. Even in autotransplant situations, surgical manipulation of tissue, such as vein grafting, can itself be a stimulus for tissue hyperplasia and subsequent graft failure.
Se han desarrollado varios injertos sintéticos y órganos mecánicos y se utilizan actualmente. Sin embargo, se sabe que estos reemplazos sintéticos están sujetos a complicaciones embólicas o disminuciones en la resistencia del material durante largos periodos de implantación. Aunque las modificaciones estructurales en prótesis mecánicas como válvulas cardiacas se han mejorado con respecto a sus características de desgaste, siguen siendo susceptibles de mal funcionamiento de la válvula, que puede ocurrir repentinamente y sin previo aviso, dando lugar a situaciones de emergencia que requieran intervención quirúrgica y reemplazo del dispositivo protésico artificial. Debido a las propiedades superficiales de las prótesis sintéticas / mecánicas utilizadas en la vasculatura, Various synthetic grafts and mechanical organs have been developed and are currently used. However, these synthetic replacements are known to be subject to embolic complications or decreases in the strength of the material over long periods of implantation. Although structural modifications in mechanical prostheses such as heart valves have been improved with Regarding their wear characteristics, they remain susceptible to valve malfunction, which can occur suddenly and without warning, leading to emergency situations requiring surgical intervention and replacement of the artificial prosthetic device. Due to the surface properties of synthetic/mechanical prostheses used in the vasculature,
Una alternativa, las válvulas cardiacas bioprotésicas, se preparan a partir de tejidos valvulares de origen porcino o bovino. Debido a que éstas son especies inmunológicamente discordantes con respecto al hombre, el receptor del implante las rechaza rápidamente a pesar del uso de la terapia con fármacos inmunosupresores que de otro modo mantendrían un aloinjerto. Significativamente, estos tejidos son propensos a un rechazo hiperagudo por parte del receptor debido a la presencia en el receptor de anticuerpos naturales preformados que reconocen antígenos en la superficie de células extrañas, particularmente las del revestimiento endotelial de las válvulas cardíacas y los vasos sanguíneos. Si bien los tejidos valvulares bovinos o porcinos son estructural y biomecánicamente apropiados para su uso en humanos, el potencial de tal tejido extraño para estimular el rechazo inmunológico en el receptor ha dictado en el pasado tratamientos con agentes químicos de reticulación tales como gl utaraldehí do. An alternative, bioprosthetic heart valves, are prepared from valve tissue of porcine or bovine origin. Because these are species immunologically discordant from man, they are rapidly rejected by the implant recipient despite the use of immunosuppressive drug therapy that would otherwise maintain an allograft. Significantly, these tissues are prone to hyperacute rejection by the recipient due to the presence in the recipient of preformed natural antibodies that recognize antigens on the surface of foreign cells, particularly those of the endothelial lining of heart valves and blood vessels. While bovine or porcine valve tissues are structurally and biomechanically appropriate for use in humans, the potential for such foreign tissue to stimulate immunological rejection in the recipient has in the past dictated treatments with chemical cross-linking agents such as glutaraldehyde.
Dicho tratamiento del tejido reduce la estimulación de una respuesta inmunológica por parte del receptor al tejido extraño y también estabiliza la proteina de colágeno del tejido valvular no viable resultante haciéndolo más resistente a la degradación por enzimas proteoliticas. Sin embargo, debido a que estos injertos de tejido no son viables, no existe un mecanismo biosintético para reparar las proteínas estructurales degradadas durante la operación del tejido en el receptor. Dichos injertos de tejido tienden a calcificarse con el tiempo, aumentando el riesgo de daño estructural y falla consecuente. Si bien ocurre con menos frecuencia en relación con los injertos mecánicos. Such tissue treatment reduces the stimulation of an immune response by the recipient to the foreign tissue and also stabilizes the collagen protein of the resulting non-viable valve tissue making it more resistant to degradation by proteolytic enzymes. However, because these tissue grafts are not viable, there is no biosynthetic mechanism to repair the structural proteins degraded during tissue operation in the recipient. Such tissue grafts tend to calcify over time, increasing the risk of structural damage and consequent failure. Although it occurs less frequently in relation to mechanical grafts.
De manera similar, órganos como los riñones se han trasplantado alogénicamente de un hermano a otro en un esfuerzo por minimizar las reacciones mediadas inmunológicamente en el receptor del trasplante, lo que resultaría en el rechazo del órgano. A estos pacientes, asi como a los pacientes que reciben trasplantes de órganos de donantes distintos de un hermano, se les administran con frecuencia medicamentos para inhibir su sistema inmunológico. Si bien la respuesta inmunológica al tejido u órganos trasplantados puede suprimirse mediante el uso de fármacos inmunosupresores para minimizar el rechazo, la terapia inmunosupresora es de naturaleza general. Por tanto, los fármacos inmunosupresores también tienden a suprimir la respuesta inmu nitaria en general, lo que reduce la capacidad del receptor del trasplante para combatir la infección. Similarly, organs such as kidneys have been allogeneically transplanted from one sibling to another in an effort to minimize immune-mediated reactions in the transplant recipient, which would result in organ rejection. These patients, as well as patients who receive organ transplants from donors other than a sibling, are often given drugs to suppress their immune systems. Although the immune response to transplanted tissue or organs can be suppressed through the use of immunosuppressive drugs to minimize rejection, immunosuppressive therapy is general in nature. Therefore, immunosuppressive drugs also tend to suppress the immune response in general, reducing the transplant recipient's ability to fight infection.
La invención de dicha patente proporciona procesos nuevos y ventajosos para generar tejido de implante adecuado para implantar en seres humanos. El proceso de esta invención generalmente se refiere al tratamiento de tejido xenogénico o alogénico para generar una bioprótesis viable que no produzca una respuesta inmune adversa por parte del receptor tras el implante, y posea las capacidades regenerativas de los aloinjertos, mientras que exhibe solo una propensión limitada a calcificarse y poca estimulación del tromboembolismo. The invention of said patent provides novel and advantageous processes for generating implant tissue suitable for implanting in humans. The process of this invention generally relates to the treatment of xenogeneic or allogeneic tissue to generate a viable bioprosthesis that does not elicit an adverse immune response from the recipient upon implantation, and possesses the regenerative capabilities of allografts, while exhibiting only a propensity. Limited to calcify and little stimulation of thromboembolism.
Sin embargo, en dicho documento a diferencia de nuestra invención se divulga un proceso que permite generar una matriz de tejido sustancialmente no inmunogénica adecuada para el procesamiento posterior en un tejido de implante y que comprende las etapas de: A. Eliminar las células nativas tratando un tejido con componentes seleccionados del grupo que consiste en enzimas y nucleasas eficaces para inhibir el crecimiento celular nativo posterior en el tejido tratado y eficaces para limitar la generación de nuevos sitios i nmu nológicos en el tejido produciendo asi una matriz de tejido; B. Tratar la matriz de tejido con factor de adhesión celular para promover la unión posterior de células alogénicas o autólogas cultivadas a las superficies de la matriz de tejido; y C. Repoblar la matriz tisular en toda la matriz con células alogénicas o autólogas cultivadas. However, in said document, unlike our invention, a process is disclosed that makes it possible to generate a substantially non-immunogenic tissue matrix suitable for subsequent processing in an implant tissue and that comprises the steps of: A. Eliminating the native cells by treating a tissue with components selected from the group consisting of enzymes and nucleases effective to inhibit subsequent native cell growth in the treated tissue and effective to limit the generation of new immunological sites in the tissue thereby producing a tissue matrix; B. Treating the tissue matrix with cell adhesion factor to promote subsequent attachment of cultured allogeneic or autologous cells to tissue matrix surfaces; and C. Repopulating the tissue matrix throughout the matrix with allogeneic or autologous cultured cells.
Como puede notarse en este proceso el tejido se somete a un proceso de descelularización diferente y al final se debe someter a un proceso de repoblación celular de la matriz tisular mediante células alogénicas o autólogas cultivadas. Se ubicó también la patente US7318998B2 de Black Kirby S y Goldstein Steven del 24 de marzo de 2003, que revela un método para hacer que los tejidos, incluidas las válvulas cardiacas, sean resistentes a la mineralización lo inmunoreactividad mediante implementación en vivo mientras se conservan las propiedades biomecánicas del tejido; también proporciona un método para reducir la inmunorreactividad de tejidos trasplantados que no se fijan por medios químicos o físicos, o combinaciones de los mismos, antes de la implantación. Dicho documento también divulga un método de descelularización de tejidos y en particular al método de tratamiento de tejidos (válvulas de corazón, tendones y ligamentos). El método comprende la exposición del tejido a una solución hipotónica con el objetivo de lisar las células, posteriormente el tratamiento del tejido con una solución de nucleasas para remover los ácidos nucleicos y los grupos que contienen grupo de fósforo, los cuales pueden enlazarse a calcio, para evitar la calcificación. Finalmente, el tejido es transferido a una solución ¡sotónica para mantener la estructura del tejido integra. Es importante mencionar, que en nuestra invención la solución de lisis celular es un tratamiento de gradiente escalonado para que el tejido se vaya adaptando a los cambios de concentración de la solución hipotónica (NaCI), aprovechando que el gradiente de difusión y el fenómeno de transporte de los restos celulares difundan de manera más contralada a la solución, evitando la ruptura de las fibras de la matriz extracelular. Además, cabe recalcar que la eficiencia de descelularización de nuestra invención es de 99% comparado con la de este documento que es de 70%. El proceso de descelularización para una válvula completa se lleva a cabo en un frasco estéril de 7 oz (207 mL) y el proceso de descelularización consiste en la desinfección del tejido mediante un cóctel de antibióticos y antimicóticos como netilmicina, l¡ ncomicina, cefotaxima, vancomicina, rifampina, fluconazol, amfoterici na; lisis celular con una solución hipotónica; incubación del tejido con una solución de nucleasas (DNAasa y/o RNAasa) e integridad de la estructura del tejido con solución de medio de cultivo base (Dulbecco's Modified Eagle Medium, DMEM), posteriormente se realiza una esterilización terminal mediante irradiación gamma, óxido de etileno, ácido peracético \ beta- p ro p i o I acto n a , yoduro de povidona, irradiación UV en presencia o ausencia de fotosensibilizadores. As can be seen in this process, the tissue undergoes a different decellularization process and, in the end, it must undergo a process of cell repopulation of the tissue matrix using cultured allogeneic or autologous cells. Also located was patent US7318998B2 by Black Kirby S and Steven Goldstein dated March 24, 2003, which discloses a method for making tissues, including heart valves, resistant to mineralization or immunoreactivity by in vivo implementation while preserving the biomechanical properties of the tissue; it also provides a method of reducing the immunoreactivity of transplanted tissues that are not fixed by chemical or physical means, or combinations thereof, prior to implantation. Said document also discloses a tissue decellularization method and in particular the tissue treatment method (heart valves, tendons and ligaments). The method comprises exposing the tissue to a hypotonic solution in order to lyse the cells, then treating the tissue with a nuclease solution to remove nucleic acids and phosphorous-containing groups, which can bind to calcium, to avoid calcification. Finally, the tissue is transferred to an isotonic solution to maintain the intact tissue structure. It is important to mention that in our invention the cell lysis solution is a stepped gradient treatment so that the tissue adapts to changes in the concentration of the hypotonic solution (NaCI), taking advantage of the diffusion gradient and the transport phenomenon of the cellular remains to spread in a more controlled way to the solution, avoiding the rupture of the fibers of the extracellular matrix. In addition, it should be noted that the decellularization efficiency of our invention is 99% compared to that of this document, which is 70%. The decellularization process for a complete valve is carried out in a sterile 7 oz (207 mL) bottle and the decellularization process consists of tissue disinfection using a cocktail of antibiotics and antifungals such as netilmicin, lincomycin, cefotaxime, vancomycin, rifampin, fluconazole, amphotericin; cell lysis with a hypotonic solution; incubation of the tissue with a nuclease solution (DNAase and/or RNAase) and integrity of the tissue structure with base culture medium solution (Dulbecco's Modified Eagle Medium, DMEM), later terminal sterilization is performed by gamma irradiation, carbon dioxide ethylene, peracetic acid \beta-propio I actona, povidone iodide, UV irradiation in the presence or absence of photosensitizers.
La invención del documento anterior la lisis celular con solución hipotónica, la incubación del tejido con nucleasas y el tratamiento de una solución ¡sotónica se llevan a cabo en un rango de temperaturas de 30°C a 40°C y a una atmósfera de 5% de CO2. El proceso de descelularización para una válvula completa se lleva a cabo en un frasco estéril de 7 oz (207 mL). In the invention of the above document, cell lysis with hypotonic solution, tissue incubation with nucleases and isotonic solution treatment are carried out in a temperature range of 30°C to 40°C and at an atmosphere of 5% CO2. The decellularization process for a complete valve is carried out in a sterile 7 oz (207 mL) bottle.
El volumen de las soluciones descelularizantes es de 80 mL y requiere de una esterilización terminal por irradiación gamma, óxido de etileno, ácido peracético, b eta - p ro p i o I acto n a , yoduro de povidona, irradiación UV en presencia o ausencia de fotosensibilizadores. Tiene una eficiencia de descelularización de Otro documento localizado es el documento EP1,698,356 A1 de Matsuda H et al. del 24 de diciembre de 2004, que revela un método para mejorar la descelularización que a diferencia de nuestra invención cosiste en sumergir un tejido en una solución que contiene una molécula anfifílica en forma no micelar (por ejemplo, polímero 1,2-epóxido) y realizar una reacción de radicales (por ejemplo, tratamiento seleccionado del grupo que consiste en exposición a irradiación de rayos gamma, irradiación ultravioleta, una fuente de suministro de radicales libres, ultrasonidos, irradiación con haz de electrones e irradiación con rayos X) que no se emplea en nuestra invención. El método de descelularización consiste en exponer el tejido en una solución con una molécula antipática (polietilenglicol), posteriormente se exponen a una solución buffer fosfato salino (conocido también por sus siglas en inglés, PBS, de phosphate buffered saline) con un cóctel de antibióticos y antimicóticos, se realiza un lavado con PBS y después son sumergidos en una solución de PBS con DNasa I y MgCh, el tejido es lavado con PBS y finalmente preservado en PBS con antibióticos a 4°C. Esta metodología no ofrece una eficiencia de descelularización del 99%. The volume of the decellularizing solutions is 80 mL and requires terminal sterilization by gamma irradiation, ethylene oxide, peracetic acid, beta-propio I actone, povidone iodide, UV irradiation in the presence or absence of photosensitizers. It has a decellularization efficiency of Another located document is the document EP1,698,356 A1 of Matsuda H et al. of December 24, 2004, which reveals a method to improve decellularization that, unlike our invention, consists of immersing a tissue in a solution containing an amphiphilic molecule in non-micellar form (for example, 1,2-epoxide polymer) and performing a radical reaction (for example, treatment selected from the group consisting of exposure to gamma irradiation, ultraviolet irradiation, a free radical supply source, ultrasound, electron beam irradiation, and X-ray irradiation) that is not used in our invention. The decellularization method consists of exposing the tissue in a solution with an antipathic molecule (polyethylene glycol), then exposing it to a phosphate buffered saline solution (also known by its acronym in English, PBS, phosphate buffered saline) with a cocktail of antibiotics. and antifungals, they are washed with PBS and then submerged in a PBS solution with DNase I and MgCh, the tissue is washed with PBS and finally preserved in PBS with antibiotics at 4°C. This methodology does not offer a 99% decellularization efficiency.
Se ubicó también el documento EP2,431 ,063 de Taylor Dorris A y Ott Harald, del 28 de agosto de 2006, que revela un método y materiales para la descelularización de un órgano sólido y la recelularización para generar de ese modo un órgano sólido que comprende: proporcionar un órgano de mamífero que tenga una matriz extracelular y un lecho de vasculatura sustancialmente cerrado, y células incrustadas en la matriz extracelular, o proporcionar un tejido vascularizado de mamífero que tenga una matriz extracelular matriz y árbol vascular, y células incrustadas en la matriz extracelular; canular dicho órgano o tejido en una o más cavidades, vasos y / o conductos, produciendo asi un órgano o tejido canulado; y perfundir la vasculatura de dicho órgano canulado o tejido vascularizado con un primer medio de ruptura celular a través de dichas una o más canulaciones; en donde todo el lecho vascular se pone en contacto con el primer medio de disrupción celular (que es un detergente aniónico) y en donde dicha perfusión es m u I ti d i re c c i o n a I desde cada cavidad, vaso y/o conducto canulado, comprendiendo particularmente además perfundir dicho órgano canulado con un segundo medio de disrupción celular (que es un detergente iónico) a través de dicha una o más canulaciones, particularmente en el que dicho segundo medio de disrupción celular comprende DNasa. Also located was EP2,431,063 by Taylor Dorris A and Ott Harald, dated August 28, 2006, which discloses a method and materials for decellularization of a solid organ and recellularization to thereby generate a solid organ that Comprising: providing a mammalian organ having an extracellular matrix and a substantially closed bed of vasculature, and cells embedded in the extracellular matrix, or providing a mammalian vascularized tissue having an extracellular matrix and vascular tree, and cells embedded in the extracellular matrix; cannulating said organ or tissue in one or more cavities, vessels and/or ducts, thus producing a cannulated organ or tissue; and perfusing the vasculature of said cannulated organ or vascularized tissue with a first cell disruption means through said one or more cannulations; wherein the entire vascular bed is brought into contact with the first means of cell disruption (which is an anionic detergent) and wherein said perfusion is multi-directed from each cavity, vessel and/or cannulated conduit, particularly comprising further perfusing said cannulated organ with a second cell disruption medium (which is an ionic detergent) through said one or more cannulations, particularly wherein said second cell disruption medium comprises DNase.
Sin embargo, con en este método no se consigue un alto porcentaje de descelularización y se tiene el inconveniente de dejar residuos químicos al emplearse detergentes y generan una pérdida de las proteínas de la matriz extracelular. However, with this method a high percentage of decellularization is not achieved and it has the drawback of leaving chemical residues when using detergents and generating a loss of extracellular matrix proteins.
También se ubicó la solicitud de patente US2011 /0165676 de Hopkins Richard A del 10 de junio de 2010, que revela un método para descel ularizar tejido y tejido descelularizado . El método general comprende en tratar el tejido con una enzima, lavar el tejido con un detergente, extracción con un solvente orgánico. Este método tiene la desventaja de dejar residuos de detergentes, debris celular y pérdida de las proteínas de la matriz extracelular (perdiendo la habilidad para ser re-cel ularizado por las células del donador). Also located was patent application US2011/0165676 by Hopkins Richard A dated June 10, 2010, which discloses a method for decellularizing tissue and decellularized tissue. The general method comprises treating the fabric with an enzyme, washing the fabric with a detergent, extraction with an organic solvent. This method has the disadvantage of leaving residues of detergents, debris cellular and loss of extracellular matrix proteins (losing the ability to be re-cellularized by donor cells).
Sin embargo, los métodos y protocolos actuales para el proceso de descelularización en general tienen la desventaja de dejar residuos químicos (ejemplo, detergentes), debris celular y pérdida de las proteínas de la matriz extracelular (perdiendo la habilidad para ser re-celularizado por las células del donador). However, current methods and protocols for the decellularization process generally have the disadvantage of leaving behind chemical residues (eg, detergents), cellular debris, and loss of extracellular matrix proteins (losing the ability to be recellularized by cells). donor cells).
Se ubicó también el documento ES2329480 de Ollerenshaw Jeremy D et al. del 29 de enero del 2001, que revela un procedimiento de preparación de un tejido animal o humano en una forma tal para volverlo adecuado para el uso en aplicaciones de injerto vascular y no-vascular. El tejido preparado según el procedimiento de la invención exhibe propiedades físicas y biológicas que lo vuelven particularmente bien adaptado para las aplicaciones de injerto de tejido, según se manifiesta en la descripción. Document ES2329480 by Ollerenshaw Jeremy D et al. of January 29, 2001, which discloses a process for preparing animal or human tissue in such a way as to render it suitable for use in vascular and non-vascular graft applications. Tissue prepared according to the process of the invention exhibits physical and biological properties that make it particularly well suited for tissue grafting applications, as stated in the description.
Un uréter aislado de origen animal o humano es el material de injerto de tejido a someter a un procedimiento de descelularización. La lisis celular se lleva a cabo con una solución de un tampón hipotónico acuoso o tampón de baja fuerza iónica, la solución de descelularización puede incluir otros agentes, tales como inhibidores de proteasas (EDTA). An isolated ureter of animal or human origin is the tissue graft material to be subjected to a decellularization procedure. Cell lysis is carried out with an aqueous hypotonic buffer solution or low ionic strength buffer, the decellularization solution may include other agents, such as protease inhibitors (EDTA).
La descelularización preferentemente se logra mediante la incubación del tejido en una solución efectiva para lisar las células nativas en el tejido. Ventajosamente, el tejido se incuba (por ejemplo, a aproximadamente 37°C) en agua estéril (por ejemplo, durante aproximadamente 4 horas en el caso de uréteres), sin embargo, un tampón hipotónico acuoso o un tampón de baja fuerza iónica también puede utilizarse. Si se desea, la solución de decelularización puede incluir otros agentes, tales como inhibidores de proteasa (por ejemplo, agentes quelantes tales como EDTA).Decellularization is preferably achieved by incubation of the tissue in a solution effective to lyse the native cells in the tissue. Advantageously, the tissue is incubated (for example, at about 37°C) in sterile water (for example, for about 4 hours in the case of ureters), however, an aqueous hypotonic buffer or low ionic strength buffer can also be used. be used. If desired, the decellularization solution can include other agents, such as protease inhibitors (eg, chelating agents such as EDTA).
Después de la descelularización, la matriz de tejido resultante se trata con un coctel de nucleasas para degradar el material nuclear. Las nucleasas que puede utilizarse para la digestión de ADN y ARN nativo de la célula incluyen tanto exonucleasas como endonucleasas. After decellularization, the resulting tissue matrix is treated with a nuclease cocktail to degrade the nuclear material. Nucleases that can be used for digestion of cell native DNA and RNA include both exonucleases and endonucleases.
Las nucleasas están presentes en una solución tampón que contiene sales de magnesio y calcio (por ejemplo, sales cloruro). La concentración iónica y el pH de la solución tamponada, la temperatura del tratamiento y la longitud del tratamiento se seleccionan para asegurar el nivel deseado de actividad nucleasa efectiva. En el caso de uréteres, el tampón es preferentemente un tampón Tris a pH 7, 6. Preferentemente, el coctel de nucleasas contiene aproximadamente de O, 1 pg/ml a 50 pg/ml, preferentemente de 17 pg/ml, de ADNsa I, y aproximadamente de 0,1 pg/ml a 50 pg/ml, preferentemente 17 pg/ml, de ARNsa A. El tratamiento con nucleasas puede ser efectuado a, por ejemplo, aproximadamente de 20°C a aproximadamente 38°C, preferentemente 37°C, durante aproximadamente de 1 a 36 horas. En el caso de uréteres, el tratamiento con nucleasas durante aproximadamente 19 horas típicamente es suficiente. The nucleases are present in a buffer solution containing magnesium and calcium salts (eg, chloride salts). The ionic strength and pH of the buffered solution, the temperature of the treatment, and the length of the treatment are selected to ensure the desired level of effective nuclease activity. In the case of ureters, the buffer is preferably a Tris buffer at pH 7.6. Preferably, the nuclease cocktail contains about 0.1 pg/ml to 50 pg/ml, preferably 17 pg/ml, DNAse I , and about 0.1 pg/ml to 50 pg/ml, preferably 17 pg/ml, RNAse A. Nuclease treatment can be effected at, for example, about 20°C to about 38°C, preferably 37°C, for approximately 1 to 36 hours. In the case of ureters, nuclease treatment for approximately 19 hours is typically sufficient.
A continuación de la descelularización y el tratamiento con nucleasas, la matriz de tejido resultante puede ser tratada (lavada) para asegurar la extracción de los restos de células que pueden incluir proteina celular, lípidos celulares, y ácido nucleico celular, asi como restos extracelulares, tales como proteínas solubles extracelulares, lípidos y proteoglicanos. Following decellularization and nuclease treatment, the resulting tissue matrix can be treated (washed) to ensure removal of cell debris which may include cellular protein, cellular lipids, and cellular nucleic acid, as well as extracellular debris, such as extracellular soluble proteins, lipids and proteoglycans.
La extracción de restos celulares y extracelulares reduce la posibilidad de que la matriz de tejido trasplantado provoque una respuesta inmune adversa del receptor ante un implante. Por ejemplo, el tejido puede ser incubado en un tampón (por ejemplo, PBS) o en una solución detergente tal como una solución de TritonX - 100 en agua. Removal of cellular and extracellular debris reduces the possibility that the transplanted tissue matrix will elicit an adverse immune response from the recipient to an implant. For example, the tissue can be incubated in a buffer (eg, PBS) or in a detergent solution such as a solution of TritonX-100 in water.
A diferencia de nuestra invención, en donde la solución de lisis celular es un tratamiento de gradiente escalonado para que el tejido se vaya adaptando a los cambios de concentración de la solución hipotónica (NaCI), aprovechando que el gradiente de difusión y el fenómeno de transporte de los restos celulares difundan de manera más contralada a la solución, evitando la ruptura de las fibras de la matriz extracelular. Otro factor importante en nuestra invención son las condiciones controladas del sistema, que permite preservar el tejido a temperatura corporal (37°C), humedad relativa del 95%, y una atmósfera al 5% de CO2 para conservar el pH neutral. Finalmente, en la patente ES2329480 usan detergentes (Triton X- 100), los cuales son necesarios eliminar con varios lavados. Si quedan residuos de los detergentes, existe la probabilidad de que el receptor presente una respuesta inmune. A diferencia de nuestra invención, donde se usa una solución ¡sotónica con la finalidad de eliminar los residuos celulares y en paralelo preservar la integridad estructural. El impacto del proceso de descelularización en la integridad estructural del tejido descelularizado se evaluó en ensayos (in vitro) de migración celular de fibroblastos humanos en el andamio descelularizado, donde se observó que el tejido es funcional en promover el desarrollo celular (la matriz celular preserva las señales de migración celular, la proliferación y la diferenciación). Unlike our invention, where the cell lysis solution is a stepped gradient treatment so that the tissue adapts to changes in the concentration of the hypotonic solution (NaCI), taking advantage of the diffusion gradient and the transport phenomenon of the cellular remains to spread in a more controlled way to the solution, avoiding the rupture of the fibers of the extracellular matrix. Another important factor in our invention is the controlled conditions of the system, which allows the tissue to be preserved at body temperature (37°C), 95% relative humidity, and a 5% CO2 atmosphere to maintain neutral pH. Finally, in patent ES2329480 they use detergents (Triton X-100), which need to be removed with several washes. If detergent residue remains, there is a chance that the recipient will mount an immune response. Unlike our invention, where an isotonic solution is used in order to eliminate cell debris and in parallel preserve structural integrity. The impact of the decellularization process on the structural integrity of the decellularized tissue was evaluated in assays (in vitro) of cell migration of human fibroblasts in the decellularized scaffold, where it was observed that the tissue is functional in promoting cell development (the cell matrix preserves signals for cell migration, proliferation and differentiation).
Otros procesos de descelularización, que generalmente utilizan soluciones hipotónicas y/o detergentes como triton 100x, y SDS pueden no alcanzar una descelularización total del tejido (soluciones hipotónicas) o pueden dañar la funcionalidad de la matriz extracelular. Other decellularization processes, which generally use hypotonic solutions and/or detergents such as 100x triton, and SDS, may not achieve total tissue decellularization (hypotonic solutions) or may damage the functionality of the extracellular matrix.
Ante la necesidad de contar con un método y proceso para descelularizar tejido cardiovascular como por ejemplo válvulas cardiacas, grandes vasos, venas y redes arteriales periféricas, que ofrezca mayor calidad de homoinjertos descelularizados, mayor preservación de la arquitectura del tejido después del proceso de descelularización y que tenga mayor impacto del éxito de la re- celularización del tejido, fue que se desarrolló la presente invención. Given the need for a method and process to decellularize cardiovascular tissue, such as heart valves, great vessels, veins, and peripheral arterial networks, that offers a higher quality of decellularized homografts, greater preservation of tissue architecture after the decellularization process, and that has the greatest impact on the success of tissue recellularization, was that the present invention.
OBJETIVOS DE LA INVENCIÓN OBJECTIVES OF THE INVENTION
La presente invención tiene como objetivo principal hacer disponible una metodología y proceso para descel ularizar tejido cardiovascular como por ejemplo válvulas cardiacas, grandes vasos, venas y redes arteriales periféricas, que conlleva el uso de un sistema que inyecta soluciones hipotónicas en “n” gradiente escalonado, y enzimas degradativas de ácidos nucleicos. The main objective of the present invention is to make available a methodology and process to decellularize cardiovascular tissue such as heart valves, great vessels, veins and peripheral arterial networks, which entails the use of a system that injects hypotonic solutions in "n" stepped gradient. , and nucleic acid degrading enzymes.
Otro objetivo de la invención es proveer dicho método y proceso para descelularizar tejido cardiovascular que permita preservar el tejido a temperatura corporal (37°C), una humedad relativa del 95%, y una atmosfera al 5% de CO2 para conservar el pH neutral. Another objective of the invention is to provide said method and process for decellularizing cardiovascular tissue that allows preserving the tissue at body temperature (37°C), a relative humidity of 95%, and an atmosphere of 5% CO2 to maintain neutral pH.
Otro objetivo de la invención es proveer dicha metodología y proceso para descelularizar tejido cardiovascular, que además permita ejecutar la descelularización simultáneamente en una válvula aórtica y arteria pulmonar. Another objective of the invention is to provide said methodology and process for decellularizing cardiovascular tissue, which also allows decellularization to be carried out simultaneously in an aortic valve and a pulmonary artery.
Otro objetivo de la invención es proveer dicha metodología y proceso para descelularizar tejido cardiovascular, que además ofrezca un tratamiento de gradiente escalonado para que el tejido se vaya adaptando a los cambios de concentración de una solución h ipotónica, aprovechando que el gradiente de difusión y el fenómeno de transporte de los restos celulares difundan de manera más contralada a la solución, evitando la ruptura de las fibras de la matriz extracelular. Another objective of the invention is to provide said methodology and process for decellularizing cardiovascular tissue, which also offers a stepped gradient treatment so that the tissue adapts to changes in the concentration of a hypotonic solution, taking advantage of the diffusion gradient and the freak of transport of the cellular remains spread in a more controlled way to the solution, avoiding the rupture of the fibers of the extracellular matrix.
Otro objetivo de la invención es proveer dicha metodología y proceso para descelularizar tejido cardiovascular, que además evite la desnaturalización de proteínas que ocasiona las soluciones detergentes por el desdoblado de las estructuras proteicas por el desequilibrio de cargas. Another objective of the invention is to provide said methodology and process for decellularizing cardiovascular tissue, which also avoids the denaturation of proteins caused by detergent solutions due to the unfolding of protein structures due to charge imbalance.
Otro objetivo de la invención es proveer dicha metodología y proceso para descelularizar tejido cardiovascular, que además ofrezca excelente calidad de homoinjertos descel ularizados, la preservación de la arquitectura del tejido después del proceso de descelularización y éxito de la re - c e I u I a r i z a c i ó n del tejido. Another objective of the invention is to provide said methodology and process for decellularizing cardiovascular tissue, which also offers excellent quality of decellularized homografts, preservation of tissue architecture after the decellularization process, and successful recei - I u I a r i z a t i o No. of tissue.
Otro objetivo de la invención es proveer dicha metodología y proceso para descelularizar tejido cardiovascular, que además permita obtener una válvula aórtica, arteria pulmonar y estructuras vasculares descelularizadas con mínimos efectos adversos en su integridad mecánica. Another objective of the invention is to provide said methodology and process for decellularizing cardiovascular tissue, which also makes it possible to obtain a decellularized aortic valve, pulmonary artery, and vascular structures with minimal adverse effects on their mechanical integrity.
Y todas aquellas cualidades y objetivos que se harán aparentes al realizar una descripción general y detallada de la presente invención apoyados en las modalidades ¡lustradas. And all those qualities and objectives that will become apparent when carrying out a general and detailed description of the present invention supported by the illustrated modalities.
BREVE DESCRIPCIÓN DEL INVENTO Durante el proceso de desarrollo de la presente invención se suscitaron diversos problemas, por ejemplo, se sometió el tejido tal como válvulas cardiacas, arterias pulmonares, grandes vasos, venas y redes arteriales periféricas, a una solución hipotónica de concentración baja (8-0 mM de NaCI) y se encontró que perjudicó la matriz extracelular del tejido, ocasionando la fragmentación del 40% de las fibras del tejido. Pudo determinarse consecuentemente que los procesos de descelularización con soluciones estáticas h ipotónicas, no alcanzan la disgregación de las células y/o se puede generar edemas en la zona i ntrace I u I ar. Mientras con el uso de soluciones detergentes, se puede alcanzar una descelularización completa, pero comprometiendo la desnaturalización de las proteínas de anclaje y de los factores de crecimiento que promoverán ya en el paciente injertado una adopción adecuada del injerto y por ende una proliferación y diferenciación celular sobre el mismo. BRIEF DESCRIPTION OF THE INVENTION During the development process of the present invention, various problems arose, for example, tissue such as heart valves, pulmonary arteries, great vessels, veins, and peripheral arterial networks were subjected to a low concentration hypotonic solution (8-0 mM of NaCI) and it was found that it damaged the extracellular matrix of the tissue, causing the fragmentation of 40% of the fibers of the tissue. Consequently, it was possible to determine that the decellularization processes with hypotonic static solutions do not reach the disintegration of the cells and/or edemas can be generated in the intrace I u I ar zone. While with the use of detergent solutions, complete decellularization can be achieved, but compromising the denaturation of the anchoring proteins and growth factors that will promote adequate adoption of the graft and therefore cell proliferation and differentiation in the grafted patient. about the same.
Las soluciones hipotónicas causan edema y no alcanzan a terminar una descelularización completa del tejido. Asi mismo, se valida la funcionalidad de éste, cultivando células humanas primarias (fibroblastos y mesenquimales de tejido adiposo), que al momento de su siembra no se utilizó medio adicionado con suero, para promover el reconocimiento de las células de las proteínas de anclaje intactas en el tejido. Hypotonic solutions cause edema and fail to complete complete decellularization of the tissue. Likewise, its functionality is validated by culturing primary human cells (fibroblasts and adipose tissue mesenchymal cells), which at the time of seeding did not use serum-added medium to promote cell recognition of intact anchoring proteins. in the tissue.
Derivado de ello se realizaron experimentos tendientes a someter los tejidos a otros métodos y procedimientos que involucraron otras variables como la variación de las concentraciones de la solución hipotónica y en lugar de someterlo en soluciones estáticas se ideó un sistema que permitiera recircular la solución hipotónica haciéndose pasar por el tejido y sorprendentemente pudo identificarse que variando la concentración de la solución hipotónica y haciendo que ésta presentara una dinámica de flujo, varios de los problemas detectados en los experimentos anteriores se fueron resolviendo. Derived from this, experiments were carried out tending to subject the tissues to other methods and procedures that involved other variables such as the variation of the concentrations of the solution. hypotonic solution and instead of subjecting it to static solutions, a system was devised that would allow the hypotonic solution to recirculate by passing through the tissue and surprisingly it was possible to identify that by varying the concentration of the hypotonic solution and making it present a flow dynamic, several of the problems detected in the previous experiments were resolved.
Entonces pudo determinarse sorprendentemente que usando un método para descelularización in vitro de tejido cardiovascular tal como válvulas cardiacas, arterias pulmonares, grandes vasos, venas y redes arteriales periféricas, usando un gradiente escalonado de concentración de las soluciones hipotónicas, dado que el tejido se va adaptando a los cambios de concentración de la solución hipotónica, aprovechando que el gradiente de difusión y el fenómeno de transporte de los restos celulares difunden de manera más contralada a la solución, se evita la ruptura de las fibras de la matriz extracelular. Aunado a ello, para seleccionar la metodología de soluciones hipotónicas, se evitó la desnaturalización que ocasiona las soluciones detergentes por el desdoblado de las estructuras proteicas por el desequilibrio de cargas. It could then surprisingly be determined that using a method for in vitro decellularization of cardiovascular tissue such as heart valves, pulmonary arteries, great vessels, veins and peripheral arterial networks, using a stepwise concentration gradient of hypotonic solutions, since the tissue adapts Due to changes in the concentration of the hypotonic solution, taking advantage of the fact that the diffusion gradient and the phenomenon of transport of cell debris diffuse into the solution in a more controlled manner, the rupture of the extracellular matrix fibers is avoided. In addition to this, to select the methodology of hypotonic solutions, the denaturation caused by detergent solutions due to the unfolding of protein structures due to charge imbalance was avoided.
Finalmente pudo determinarse a base de experimentación la metodología y se encontraron los gradientes de concentración de las soluciones hipotónicas que ofrecieron mejores resultados en el proceso de descelularización, aunado a la determinación del tratamiento enzimático del tejido para la eliminación de residuos celulares en el tejido y el tratamiento posterior con soluciones ¡sotónicas para remover residuos tóxicos y preservar la integridad estructural del tejido. Finally, the methodology could be determined based on experimentation and the concentration gradients of the hypotonic solutions that offered better results in the decellularization process were found, together with the determination of the enzymatic treatment of the tissue for the elimination of cellular residues in the tissue and subsequent treatment with isotonic solutions to remove toxic residues and preserve the structural integrity of the tissue.
Se utiliza un método químico, donde se solubiliza la membrana plasmática de las células para inducir lisis celular a través de la acción de soluciones hipotónicas. Su efectividad radica en que rompen las interacciones lipidicas. Sin embargo, no remueve totalmente los remanentes celulares del tejido. Debido a lo anterior, fue necesario complementar el método químico, con un tratamiento enzimático para la eliminación de los ácidos nucleicos remanentes en la estructura. Las nucleasas como lo son las endonucleasas catalizan la hidrólisis de los enlaces internos de las cadenas de los ribonucleótidos o deoxirribonucleótidos donde las exonucleasas catalizan la hidrólisis de los enlaces terminales de d e o x i r r i b o n u c I e ó t i d o o ribunocleótidos permitiendo la degradación de DNA o RNA. A chemical method is used, where the plasmatic membrane of the cells is solubilized to induce cell lysis through the action of hypotonic solutions. Its effectiveness lies in the fact that they break lipid interactions. However, it does not totally remove the cellular remnants of the tissue. Due to the above, it was necessary to complement the chemical method with an enzymatic treatment for the elimination of the remaining nucleic acids in the structure. Nucleases, such as endonucleases, catalyze the hydrolysis of the internal bonds of the ribonucleotide or deoxyribonucleotide chains, whereas exonucleases catalyze the hydrolysis of the terminal bonds of d e oxy r i b o n u c I e o t i d o or ribunonucleotides, allowing the degradation of DNA or RNA.
De manera general, el método para descelularización in vitro de tejido cardiovascular tal como válvulas cardiacas, arterias pulmonares, grandes vasos, venas y redes arteriales periféricos, consiste en ajsometer el tejido cardiovascular a un sistema de recirculación de soluciones h i potó nicas descelularizantes en “n” gradiente de manera escalonada con el objetivo de lisa r las células de la membrana plasmática; pero manteniendo integra la matriz extracelular; b) someter el tejido cardiovascular a un sistema de recirculación de una solución de enzimas degradativas de ácidos nucleicos (nucleasas) para eliminar residuos celulares en el tejido; y c) someter el tejido cardiovascular a un sistema de recirculación de soluciones ¡sotónicas para remover residuos tóxicos y preservar la integridad estructural del tejido. In general, the method for in vitro decellularization of cardiovascular tissue such as heart valves, pulmonary arteries, great vessels, veins, and peripheral arterial networks, consists of subjecting the cardiovascular tissue to a recirculation system of decellularizing hypotonic solutions in "n ”gradient in a stepwise manner with the aim of lysing the cells of the plasmatic membrane; but maintaining the extracellular matrix integrates; b) subjecting the cardiovascular tissue to a recirculation system of a solution of acid-degrading enzymes nucleases (nucleases) to remove cellular debris in tissue; and c) subjecting the cardiovascular tissue to a recirculation system of isotonic solutions to remove toxic residues and preserve the structural integrity of the tissue.
Dicho sistema de recirculación, está configurado con medios para preservar el tejido a temperatura corporal de entre (36.1 a 37.2 °C) y preferentemente 37°C, una humedad relativa de entre (95 a 98%) y preferentemente del 95%, y una atmosfera con una concentración de CO2 de entre (5 a 10%) y preferentemente una concentración de CO2 al 5% para conversar el pH neutral y con la finalidad de emular las condiciones del cuerpo humano y no dañar la matriz extracelular. Said recirculation system is configured with means to preserve the tissue at body temperature between (36.1 to 37.2 °C) and preferably 37 °C, a relative humidity between (95 to 98%) and preferably 95%, and a atmosphere with a CO2 concentration of between (5 to 10%) and preferably a CO2 concentration of 5% to maintain neutral pH and in order to emulate the conditions of the human body and not damage the extracellular matrix.
Dichas soluciones hipotónicas se seleccionan de NaCI o una solución compuesta por una solución buffer de 10 mM de Tris (hidroximetil) aminometano clorhidrato (Trizma-HCI) y 5 mM de ácido e t i I e n d i a m i n o t e t r a a c é t i c o también conocido como EDTA. Said hypotonic solutions are selected from NaCl or a solution composed of a buffer solution of 10 mM Tris (hydroxymethyl) aminomethane hydrochloride (Trizma-HCI) and 5 mM ethylenediaminetetraacetic acid also known as EDTA.
Dichas enzimas degradativas de ácidos nucleicos (nucleasas) seleccionan de Desoxirribonucleasas I (DNasa I) y ribonucleasa A (RNasa A). Said nucleic acid degrading enzymes (nucleases) select from Deoxyribonucleases I (DNase I) and ribonuclease A (RNase A).
Dicha solución de enzimas degradativas está definida por Tris (48 mM), MgCI2 (2.88 mM), CaCI2 (0.96 mM), DNasa I (19 pg/mL) y RNasa A (19.2 g/mL). Said solution of degradative enzymes is defined by Tris (48 mM), MgCI 2 (2.88 mM), CaCI 2 (0.96 mM), DNase I (19 pg/mL) and RNase A (19.2 g/mL).
Dicha solución ¡sotónica consiste en una solución de medio de cultivo base (Dulbecco's Modified Eagle Medium, DMEM). Said isotonic solution consists of a solution of base culture (Dulbecco's Modified Eagle Medium, DMEM).
El sistema de recirculación de soluciones hipotó nicas, recirculación de enzimas degradativas de ácidos nucleicos y soluciones ¡sotónicas consiste en un reactor definido por un reservorio cerrado y aislado con medios de control de temperatura, medios de control de humedad relativa; medios de control de concentración de CO2 atmosférico preferentemente al 5%, para conservar el pH neutral y con la finalidad de emular las condiciones del cuerpo humano y no dañar la matriz extracelular; configurado para alojar un primer recipiente donde se dispone el tejido a tratar con medios de sujeción y soporte del tejido y medios de conducción de una solución seleccionada de una solución hipotónica a diferentes concentraciones, agua estéril, enzimas degradativas de ácidos nucleicos y una solución ¡sotónica, en donde dichos medios de conducción de una solución definen al menos un extremo para conectarse al extremo superior de un ducto con o sin una derivación inserto en al menos un tejido para hacer pasar dichas soluciones o para conectarse al extremo superior de un segundo ducto que desemboca próximo al fondo del primer recipiente para sustraer o descargar la solución que se recircula mediante una bomba de recirculación en la que se conectan dichos medios de conducción, dispuesta al exterior del reservorio para recircular la solución a través del tejido o para extraer la solución del primer recipiente y pudiendo comprender un segundo recipiente para la descarga o extracción de la solución de recirculación por acción de la bomba de recirculación. En la modalidad preferida de la invención el proceso para descelularización de tejidos cardiovascular (válvulas cardiacas, arterias pulmonares, grandes vasos, venas y redes arteriales periféricos) consta de las siguientes etapas: a) Desinfectar el tejido sometiéndolo a una solución de 1 L de medio celular “Roswell Park Memorial Institute médium”, (más conocido por su siglas RPMI), con un cóctel de antibióticos y antimicóticos (50 pg/mL amfotericina B, 500 pg/mL vancomicina, 80 pg/mL gentamicina, 250 pg/mL cefuroxima, 240 pg/mL cefotaxima) por un periodo de (20 a 36 horas) y preferentemente 24 horas a una temperatura de entre (6 a 8°C) y preferentemente a 4°C para la desinfección del tejido e inhibir el crecimiento de bacterias y hongos, preservando la viabilidad del mismo. b) Descelularizar el tejido cardiovascular en un reactor con sistema de recirculación de soluciones hipotónicas descelularizantes, cuyo objetivo principal es eliminar el material celular y nuclear, minimizando los efectos adversos en la integridad mecánica de la matriz extracelular del tejido en un reactor con recirculación de las soluciones descelularizantes. b.i someter el tejido a una solución hipotónica NaCI a 60-40 mM. La solución es recirculada a un flujo de entre 2 a 8 L/h y preferentemente 4L/h durante 6 a 10 horas. b.ii reemplazar la solución de NaCI (60 a 40 mM) por una solución de NaCI a 35-20 mM. Ejecutar el cambio de concentraciones de forma gradual para no dañar la estructura tridimensional del tejido (el uso de soluciones hipotónicas induce la hinchazón de las células y posteriormente el lisado). La solución de NaCI a 35-20 mM es recirculada a un flujo de entre 2 a 8 L/h y preferentemente de 4L/h durante 6 a 10 horas. b.iii realizar a posteriori, un nuevo cambio de la solución de NaCI a 35-20 mM por una solución de NaCI a 15-10 mM. Siguiendo el mismo procedimiento descrito anteriormente. La solución de NaCI a 15-10 mM es recirculada a un flujo de entre 2 a 8 L/h y preferentemente 4L/h durante 24-30 horas. b.iv realizar nuevamente el cambio de la solución de NaCI a 15-10 mM por agua estéril. Se sigue el mismo procedimiento descrito anteriormente. El agua es recirculada a un flujo de entre 2 a 8 L/h y preferentemente 4L/h durante 24- 30 horas. Después, se le retira el agua estéril. b.v Finalmente, recircular de 800 a 1000 mL de una solución de enzimas degradativas de ácidos nucleicos para remover los ácidos nucleicos remanentes. La solución se recircula durante 24-30 horas en un flujo de entre 2 a 8 L/h y preferentemente 4L/h. Después de este tiempo, es retirada la solución de nucleasas. c) Recircular a un flujo de entre 2 a 8 L/h y preferentemente de 4L/h, una solución ¡sotónica durante 10-7 dias, realizando cambios de la solución cada 48 horas para la preservación de la integridad estructural del tejido con el objetivo de remover residuos de nucleasas. The recirculation system for hypotonic solutions, recirculation of nucleic acid degrading enzymes, and isotonic solutions consists of a reactor defined by a closed and isolated reservoir with temperature control means, relative humidity control means; atmospheric CO2 concentration control means, preferably at 5%, to preserve the neutral pH and in order to emulate the conditions of the human body and not damage the extracellular matrix; configured to house a first container where the tissue to be treated is arranged with means for holding and supporting the tissue and conducting means for a solution selected from a hypotonic solution at different concentrations, sterile water, nucleic acid degrading enzymes and an isotonic solution , wherein said solution conduction means define at least one end to be connected to the upper end of a duct with or without a shunt inserted into at least one tissue to pass said solutions or to connect to the upper end of a second duct that opens close to the bottom of the first container to withdraw or discharge the solution that is recirculated by means of a recirculation pump to which said conduction means are connected, arranged outside the reservoir to recirculate the solution through the tissue or to extract the solution from the first container and being able to comprise a second container for the discharge or extraction of the recirculation solution by action of the recirculation pump. In the preferred embodiment of the invention, the process for decellularization of cardiovascular tissues (heart valves, pulmonary arteries, great vessels, veins, and peripheral arterial networks) consists of the following stages: a) Disinfect the tissue by subjecting it to a solution of 1 L of medium cell “Roswell Park Memorial Institute medium”, (better known by its acronym RPMI), with a cocktail of antibiotics and antifungals (50 pg/mL amphotericin B, 500 pg/mL vancomycin, 80 pg/mL gentamicin, 250 pg/mL cefuroxime , 240 pg/mL cefotaxime) for a period of (20 to 36 hours) and preferably 24 hours at a temperature between (6 to 8°C) and preferably at 4°C for tissue disinfection and inhibition of bacterial growth and fungi, preserving its viability. b) Decellularize the cardiovascular tissue in a reactor with a recirculation system of decellularizing hypotonic solutions, whose main objective is to eliminate cellular and nuclear material, minimizing the adverse effects on the mechanical integrity of the extracellular matrix of the tissue in a reactor with recirculation of the decellularizing solutions. bi Subject the tissue to a hypotonic 60-40 mM NaCI solution. The solution is recirculated at a flow of between 2 to 8 L/h and preferably 4 L/h for 6 to 10 hours. b.ii Replace the NaCI solution (60 to 40 mM) with a 35-20 mM NaCI solution. Execute the change of concentrations gradually so as not to damage the structure three-dimensional tissue (the use of hypotonic solutions induces the swelling of the cells and subsequently the lysate). The 35-20 mM NaCI solution is recirculated at a flow rate of between 2 and 8 L/h and preferably 4 L/h for 6 to 10 hours. b.iii carry out a posteriori, a new change of the 35-20 mM NaCI solution for a 15-10 mM NaCI solution. Following the same procedure described above. The 15-10 mM NaCl solution is recirculated at a flow rate of between 2 and 8 L/h and preferably 4 L/h for 24-30 hours. b.iv again change the NaCI solution to 15-10 mM with sterile water. The same procedure described above is followed. The water is recirculated at a flow of between 2 to 8 L/h and preferably 4 L/h for 24-30 hours. Afterwards, the sterile water is removed. bv Finally, recirculate 800 to 1000 mL of nucleic acid degrading enzyme solution to remove remaining nucleic acids. The solution is recirculated for 24-30 hours at a flow of between 2 to 8 L/h and preferably 4 L/h. After this time, the nuclease solution is removed. c) Recirculate at a flow of between 2 to 8 L/h and preferably 4 L/h, an isotonic solution for 10-7 days, changing the solution every 48 hours to preserve the structural integrity of the tissue with the objective of to remove nuclease residues.
En la modalidad preferida del proceso de descelularización de tejidos cardiovascular (válvulas cardiacas, arterias pulmonares, grandes vasos, venas y redes arteriales periféricos) dichas nucleasas empleadas se seleccionan de Desoxirribonucleasas I (DNasa I) y ribonucleasa A (RNasa A). In the preferred modality of the decellularization process of cardiovascular tissues (heart valves, pulmonary arteries, great vessels, veins and peripheral arterial networks) said nucleases used are selected from Deoxyribonucleases I (DNase I) and ribonuclease A (RNase A).
En una de las modalidades el proceso de descelularización se realiza de manera simultánea en una válvula aórtica y una arteria pulmonar en un reactor con recirculación de las soluciones descelularizantes. In one of the modalities, the decellularization process is carried out simultaneously in an aortic valve and a pulmonary artery in a reactor with recirculation of the decellularizing solutions.
El proceso de descelularización es capaz de generar estructuras tridimensionales acelulares, libres de material genético, sin toxicidad y, por tanto, biocompatibles. The decellularization process is capable of generating acellular three-dimensional structures, free of genetic material, without toxicity and, therefore, biocompatible.
Dicha solución ¡sotónica consiste en una solución de medio de cultivo base (Dulbecco's Modified Eagle Medium, DMEM). Said isotonic solution consists of a base culture medium solution (Dulbecco's Modified Eagle Medium, DMEM).
Dicha solución de enzimas degradativas de ácidos nucleicos está definida por Tris (48 mM), MgCh (2.88 mM), CaCh (0.96 mM), DNasa I (19 pg/mL) y RNasa A (19.2 ¡jg/mL). Said solution of nucleic acid degrading enzymes is defined by Tris (48 mM), MgCh (2.88 mM), CaCh (0.96 mM), DNase I (19 pg/mL) and RNase A (19.2 µg/mL).
Dicho método y proceso permiten tener estructuras cardiovasculares y vasculares descelularizadas, que ofrecen alternativas de injertos alogénicos con baja/nulo rechazo inmuno-histológico, dado que la ausencia de material genético y la presencia de proteínas y estructuras alogénicas. La calidad del proceso de descelularización, reflejado en la calidad del homoinjerto descelularizado, preservación de la arquitectura del tejido después del proceso de descelularización y en el impacto del éxito de la re-celularización del tejido. La calidad del homoinjerto descelularizado se evalúa con análisis histológicos (ausencia de núcleos celulares), cuantificación de DNA residual en el tejido (< de 50 ng de DNA/g de tejido seco), migración celular de fibroblastos humanos en la matriz descelularizada (esto es debido a que la matriz celular preserva las señales de migración celular, la proliferación y la diferenciación). Said method and process allow having decellularized cardiovascular and vascular structures, which offer alternatives to allogeneic grafts with low/null immunohistological rejection, given the absence of genetic material and the presence of allogeneic proteins and structures. The quality of the decellularization process, reflected in the quality of the decellularized homograft, preservation of tissue architecture after the decellularization process, and the impact of successful tissue recellularization. The quality of the decellularized homograft is assessed with histological analysis (absence of cell nuclei), quantification of residual DNA in the tissue (<50 ng DNA/g dry tissue), cell migration of human fibroblasts in the decellularized matrix (i.e. because the cell matrix preserves the signals of cell migration, proliferation and differentiation).
Para comprender mejor las características de la invención se acompaña a la presente descripción, como parte integrante de la misma, los dibujos con carácter ilustrativo más no limitativo, que se describen a continuación. In order to better understand the characteristics of the invention, the present description is accompanied, as an integral part thereof, by the drawings with an illustrative but non-limiting nature, which are described below.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
La figura 1 muestra una imagen del tejido que ¡lustra un fragmento de miocardio descelularizado con una solución hipotónica de concentración baja (8-0 mM NaCI cloruro de sodio, mostrando una fragmentación del 40% de las fibras del tejido. Figure 1 shows a tissue image illustrating a fragment of myocardium decellularized with a low concentration hypotonic solution (8-0 mM NaCI sodium chloride, showing 40% fragmentation of tissue fibers.
La figura 2 muestra una gráfica de la variación gradual de la concentración de una solución hipotónica con la que se trata el tejido para descelularización, de conformidad con la presente invención. Figure 2 shows a graph of the gradual variation of the concentration of a hypotonic solution with which the tissue is treated for decellularization, in accordance with the present invention.
Las figuras 3 (A, B y C) muestran imágenes tomadas con microscopio a 20X de tejidos no descelularizados de miocardio, cayo aórtico y valva aórtica, respectivamente, donde se muestran que se conserva la estructura, localización de núcleos marcados con flechas. Figures 3 (A, B, and C) show images taken under a microscope at 20X of non-decellularized tissues of the myocardium, aortic arch, and aortic leaflet, respectively, showing that the structure and location of nuclei marked with arrows are preserved.
Las figuras 4 (D, E y F) muestran imágenes tomadas con microscopio a 20X de tejidos descelularizados de miocardio, cayo aórtico y valva aórtica, respectivamente, donde se muestran que se conserva la estructura, sin localización de núcleos. Figures 4 (D, E, and F) show images taken under a microscope at 20X of decellularized tissues of the myocardium, aortic arch, and aortic leaflet, respectively, showing that the structure is preserved, without localization of nuclei.
La figura 5 muestra un esquema del sistema de recirculación de soluciones hipotónicas, recirculación de enzimas degradativas de ácidos nucleicos y soluciones ¡sotónicas por el tejido a tratar, de conformidad con una de las modalidades del sistema de la presente invención. Figure 5 shows a diagram of the recirculation system for hypotonic solutions, recirculation of nucleic acid degrading enzymes, and isotonic solutions through the tissue to be treated, in accordance with one of the modalities of the system of the present invention.
La figura 6 muestra un esquema del sistema de recirculación de soluciones hipotónicas, recirculación de enzimas degradativas de ácidos nucleicos y soluciones ¡sotónicas por el tejido a tratar, de conformidad con una segunda modalidad del sistema de la presente invención. Figure 6 shows a diagram of the recirculation system for hypotonic solutions, recirculation of nucleic acid degrading enzymes, and isotonic solutions through the tissue to be treated, in accordance with a second modality of the system of the present invention.
Las figuras 7A, 7B, 7C, 7D y 7E ¡lustran diagramas esquemáticos del sistema de recirculación de soluciones hipotónicas descelularizante, a través de una válvula cardiaca y una arteria pulmonar, simultáneamente, en donde se dan la variación de la concentración en gradientes de dichas soluciones hipotónicas y los cambios de dicha solución hipotónica a una concentración de 60-40 mM de NaCI a una concentración de 35-20 mM de NaCI en el sistema. Figures 7A, 7B, 7C, 7D and 7E illustrate schematic diagrams of the recirculation system of decellularizing hypotonic solutions, through a heart valve and a pulmonary artery, simultaneously, where the variation of the concentration in gradients of these occurs. hypotonic solutions and changes of said hypotonic solution at a concentration of 60-40 mM NaCl to a concentration of 35-20 mM NaCl in the system.
Las figuras 8A, 8B, 8C, 8D y 8E ¡lustran diagramas esquemáticos del sistema de recirculación de soluciones hipotónicas descelularizante a través de una válvula cardiaca y una arteria pulmonar, simultáneamente, en donde se dan la variación de la concentración en gradientes de dichas soluciones hipotónicas y los cambios de dicha solución hipotónica a una concentración de 35-20 mM de NaCI a una concentración de 15-10 mM de NaCI en el sistema. Figures 8A, 8B, 8C, 8D and 8E illustrate schematic diagrams of the recirculation system of decellularizing hypotonic solutions through a heart valve and a pulmonary artery, simultaneously, where the variation of the concentration gradients of said solutions occurs. hypotonic solutions and changes of said hypotonic solution at a concentration of 35-20 mM NaCI to a concentration of 15-10 mM NaCI in the system.
Las figuras 9A, 9B, 9C, 9D y 9E ¡lustran diagramas esquemáticos del sistema de recirculación de soluciones hipotónicas descelularizante a través de una válvula cardiaca y una arteria pulmonar, simultáneamente, en donde se da el cambio de la solución hipotónica a una concentración de 15-10 mM de NaCI por agua desionizada en el sistema. Figures 9A, 9B, 9C, 9D and 9E illustrate schematic diagrams of the decellularizing hypotonic solution recirculation system through a heart valve and a pulmonary artery, simultaneously, where the change of the hypotonic solution occurs at a concentration of 15-10 mM NaCI per deionized water in the system.
Para una mejor comprensión del invento, se pasará a hacer la descripción detallada de alguna de las modalidades del mismo, mostrada en los dibujos que con fines ilustrativos mas no limitativos se anexan a la presente descripción. For a better understanding of the invention, a detailed description of some of its modalities will be made, shown in the drawings that are attached to this description for illustrative but not limiting purposes.
DESCRIPCIÓN DETALLADA DEL INVENTO DETAILED DESCRIPTION OF THE INVENTION
Los detalles característicos del método y proceso para descelularización in vitro de tejido cardiovascular, se muestran claramente en la siguiente descripción y en los dibujos ilustrativos que se anexan, sirviendo los mismos signos de referencia para señalar las mismas partes. The characteristic details of the method and process for in vitro decellularization of cardiovascular tissue, are clearly shown in the following description and in the attached illustrative drawings, the same reference signs serving to indicate the same parts.
En la figura 1 se muestra una imagen del tejido que ¡lustra un fragmento de miocardio descel ularizado que se sometió a un proceso de descelularización con una solución hipotónica de concentración baja (8-0 mM NaCI), mostrando una fragmentación del 40% de las fibras del tejido. Figure 1 shows an image of the tissue that illustrates a fragment of decellularized myocardium that underwent a decellularization process with a low concentration hypotonic solution (8-0 mM NaCI), showing a fragmentation of 40% of the cells. tissue fibers.
De acuerdo con la presente invención se determinó que usando un método para descelularización in vitro de tejido cardiovascular tal como válvulas cardiacas, arterias pulmonares, grandes vasos, venas y redes arteriales periféricas, usando un gradiente escalonado de concentración de las soluciones hipotónicas, dado que el tejido se va adaptando a los cambios de concentración de la solución hipotónica, aprovechando que el gradiente de difusión y el fenómeno de transporte de los restos celulares difunden de manera más contralada a la solución, se evita la ruptura de las fibras de la matriz extracelular. Aunado a ello, por seleccionar la metodología de soluciones hipotónicas, se evitó la desnaturalización que ocasiona las soluciones detergentes por el desdoblado de las estructuras proteicas por el desequilibrio de cargas. According to the present invention it was determined that using a method for in vitro decellularization of cardiovascular tissue such as heart valves, pulmonary arteries, great vessels, veins and peripheral arterial networks, using a stepwise concentration gradient of hypotonic solutions, since the The tissue gradually adapts to changes in the concentration of the hypotonic solution, taking advantage of the fact that the diffusion gradient and the phenomenon of transport of cell debris diffuse into the solution in a more controlled manner, avoiding the rupture of the extracellular matrix fibers. In addition to this, by selecting the methodology of hypotonic solutions, the denaturation caused by detergent solutions due to the unfolding of protein structures due to charge imbalance was avoided.
El método para descelularización in vitro de tejido cardiovascular tal como válvulas cardíacas, arterias pulmonares, grandes vasos, venas y redes arteriales periféricos, consiste en a) someter el tejido cardiovascular a un sistema de recirculación de soluciones h i potó n ¡cas descelularizante en “n” gradiente de manera escalonada con el objetivo de lisar las células de la membrana plasmática; pero manteniendo integra la matriz extracelular; b) someter el tejido cardiovascular a un sistema de recirculación de enzimas degradativas de ácidos nucleicos (nucleasas) para eliminar residuos celulares en el tejido; y c) someter el tejido cardiovascular a un sistema de recirculación de soluciones ¡sotónicas para remover residuos tóxicos y preservar la integridad estructural del tejido. The method for in vitro decellularization of cardiovascular tissue such as heart valves, pulmonary arteries, great vessels, veins and peripheral arterial networks, consists of a) subjecting the cardiovascular tissue to a recirculation system of decellularizing hypotonic solutions in a stepped "n" gradient with the aim of lyse cells from the plasma membrane; but maintaining the extracellular matrix integrates; b) subjecting the cardiovascular tissue to a recirculating system of nucleic acid degrading enzymes (nucleases) to remove cellular debris in the tissue; and c) subjecting the cardiovascular tissue to a recirculation system of isotonic solutions to remove toxic residues and preserve the structural integrity of the tissue.
De acuerdo con las figuras 3 (A, B y C) se pueden apreciar que en tejidos no descel ulari zados como el caso de miocardio, cayo aórtico y valva aórtica, respectivamente, el tejido no descelularizado conserva la estructura de los núcleos. According to figures 3 (A, B and C) it can be seen that in non-decellularized tissues such as the myocardium, aortic arch and aortic valve, respectively, the non-decellularized tissue preserves the structure of the nuclei.
De acuerdo con las figuras 4 (A, B y C) se pueden apreciar que en tejidos descelularizados como el caso de miocardio, cayo aórtico y valva aórtica, respectivamente, en el tejido descelularizado se conserva la estructura sin localización de núcleos. Este aspecto juega un papel importante en la implantación del injerto, debido que una eliminación incompleta del material nuclear pudiera provocar un proceso inflamatorio que comprometería el desempeño óptimo del tejido. According to Figures 4 (A, B and C) it can be seen that in decellularized tissues such as the myocardium, aortic arch and aortic leaflet, respectively, in decellularized tissue the structure is preserved without localization of nuclei. This aspect plays an important role in the implantation of the graft, since an incomplete removal of the nuclear material could cause an inflammatory process that would compromise the optimal performance of the tissue.
De acuerdo con la figura 5, el sistema de recirculación de soluciones hipotónicas, recirculación de enzimas degradativas de ácidos nucleicos y soluciones ¡sotónicas consiste en un reactor definido por un reservorio (1) cerrado y aislado con medios de control de temperatura, medios de control de humedad relativa; medios de control de concentración de CO2 atmosférico preferentemente al 5% (no mostrados), para conversar el pH neutral, configurado para alojar un recipiente (2) donde se dispone el tejido a tratar (en este caso se trata simultáneamente una válvula cardiaca (VC) y una arteria pulmonar (AP)), con medios de sujeción y soporte (no mostrados) de los tejidos y medios de conducción (3) de una solución seleccionada de una solución hipotónica a diferentes concentraciones, agua estéril, enzimas degradativas de ácidos nucleicos y una solución ¡sotónica, en donde dichos medios de conducción (3) de una solución se conectan a un ducto (4) con dos derivaciones que se insertan en una válvula cardiaca (VC) y una arteria pulmonar (AP) para hacer pasar dichas soluciones; un ducto (5) que desemboca próximo al fondo del primer contenedor (2) en el que se conectan en su extremo superior otro extremo de los medios de conducción (3) para sustraer la solución que se hace recircular mediante una bomba de recirculación (6) dispuesta al exterior del reservorio para recircular la solución a través de válvula cardiaca (VC) y de la arteria pulmonar (AP). According to figure 5, the system of recirculation of hypotonic solutions, recirculation of acid degrading enzymes nucleic acid and isotonic solutions consists of a reactor defined by a closed and isolated reservoir (1) with temperature control means, relative humidity control means; atmospheric CO2 concentration control means, preferably at 5% (not shown), to maintain neutral pH, configured to house a container (2) where the tissue to be treated is placed (in this case, a heart valve (VC) is simultaneously treated ) and a pulmonary artery (PA)), with holding and support means (not shown) of the tissues and conduction means (3) of a solution selected from a hypotonic solution at different concentrations, sterile water, nucleic acid degrading enzymes and an isotonic solution, wherein said conduction means (3) of a solution are connected to a duct (4) with two shunts that are inserted into a heart valve (VC) and a pulmonary artery (AP) to pass said solutions; a duct (5) that opens close to the bottom of the first container (2) in which another end of the conduction means (3) is connected at its upper end to remove the solution that is recirculated by means of a recirculation pump (6 ) arranged outside the reservoir to recirculate the solution through the heart valve (VC) and the pulmonary artery (AP).
De acuerdo con la figura 6, el sistema de recirculación de soluciones hipotónicas, recirculación de enzimas degradativas de ácidos nucleicos y soluciones ¡sotónicas consiste en un reactor definido por un reservorio (1) cerrado y aislado con medios de control de temperatura, medios de control de humedad relativa; medios de control de concentración de CO2 atmosférico (no mostrados) preferentemente al 5%, para conservar el pH neutral, configurado para alojar un primer recipiente (2) donde se dispone el tejido a tratar (en este caso se trata simultáneamente una válvula cardiaca (VC) y una arteria pulmonar (AP)), con medios de sujeción y soporte (no mostrados) de los tejidos y medios de conducción (3) de una solución seleccionada de una solución hipotónica a diferentes concentraciones, agua estéril, enzimas degradativas de ácidos nucleicos y una solución ¡sotónica, en donde dichos medios de conducción (3) de una solución definen al menos un extremo para conectarse al extremo superior de un ducto (4) con dos derivaciones insertas en la válvula cardiaca (VC) y en la arteria pulmonar (AP) para hacer pasar dichas soluciones o para conectarse al extremo superior de un segundo ducto (5) que desemboca próximo al fondo del primer recipiente (2) para sustraer o descargar la solución que se recircula mediante una bomba de recirculación (6) en la que se conectan dichos medios de conducción (3), dispuesta al exterior del reservorio para recircular la solución a través de los tejidos o para extraer la solución del primer recipiente (2) y pudiendo comprende un segundo recipiente (7) con un ducto (8) donde se conectan los medios de conducción (3) para la descarga o extracción de la solución de recirculación por acción de la bomba de recirculación (6). Los sentidos de flujo pueden variar en función de la etapa de descelularización y los cambios de gradiente de concentración de las soluciones hipotónicas a aplicar a los tejidos o a extraer de los diferentes recipientes. According to figure 6, the recirculation system for hypotonic solutions, recirculation of nucleic acid degrading enzymes, and isotonic solutions consists of a reactor defined by a closed and isolated reservoir (1) with temperature control means, control means relative humidity; means of atmospheric CO2 concentration control (not shown) preferably at 5%, to maintain neutral pH, configured to house a first container (2) where the tissue to be treated is placed (in this case a heart valve (VC) is treated simultaneously) and a pulmonary artery (PA)), with holding and support means (not shown) of the tissues and conduction means (3) of a solution selected from a hypotonic solution at different concentrations, sterile water, nucleic acid degrading enzymes and an isotonic solution, wherein said conduction means (3) of a solution define at least one end to be connected to the upper end of a duct (4) with two shunts inserted in the heart valve (VC) and in the pulmonary artery ( AP) to pass said solutions or to connect to the upper end of a second duct (5) that opens close to the bottom of the first container (2) to remove or discharge the solution that is recirculated by means of a recirculation pump (6) in the which said conduction means (3) are connected, arranged outside the reservoir to recirculate the solution through the tissues or to extract the solution from the first container (2) and may comprise a second container (7) with a duct (8 ) where the conduction means (3) are connected for the discharge or extraction of the recirculation solution by action of the recirculation pump (6). The directions of flow may vary depending on the stage of decellularization and the changes in the concentration gradient of the hypotonic solutions to be applied to the tissues or to be extracted from the different containers.
El proceso para descelularización de tejidos cardiovascular (válvulas cardíacas, arterias pulmonares, grandes vasos, venas y redes arteriales periféricos) consta de las siguientes etapas: a) Desinfectar el tejido sometiéndolo a una solución de 1L de medio celular “Roswell Park Memorial Institute médium”, (más conocido por su siglas RPMI), con un cóctel de antibióticos y antimicóticos (50 pg/mL amfotericina B, 500 pg/mL vancomicina, 80 pg/mL gentamicina, 250 pg/mL cefuroxima, 240 pg/mL cefotaxima) por un periodo de 20 a 36 horas y preferentemente 24 horas a una temperatura de entre 6 a 8°C y preferentemente a 4°C para la desinfección del tejido e inhibir el crecimiento de bacterias y hongos, preservando la viabilidad del mismo. b) Descelularizar el tejido cardiovascular en un reactor con sistema de recirculación de soluciones hipotónicas descelularizante, cuyo objetivo principal es eliminar el material celular y nuclear, minimizando los efectos adversos en la integridad mecánica de la matriz extracelular del tejido en un reactor con recirculación de las soluciones descel ularizantes. b.i Someter el tejido a una solución hipotónica NaCI a 60-40 mM. La solución es recirculada a un flujo de entre 2 a 8 L/h y preferentemente a 4L/h durante 6 a 10 horas. b.ii Reemplazar la solución de NaCI (60 a 40 mM) por una solución de NaCI a 35-20 mM. Ejecutar el cambio de concentraciones de forma gradual para no dañar la estructura tridimensional del tejido (el uso de soluciones hipotónicas induce la hinchazón de las células y posteriormente el lisado). La solución de NaCI a 35-20 mM es recirculada a un flujo de entre 2 a 8 L/h y preferentemente a 4L/h durante 6 a 10 horas. b.iii Realiza a posteriori, un nuevo cambio de la solución de NaCI a 35-20 mM por una solución de NaCI a 15-10 mM. Siguiendo el mismo procedimiento descrito anteriormente. La solución de NaCI a 15-10 mM es recirculada a un flujo de entre 2 a 8 L/h y preferentemente a de 4L/h durante 24-30 horas. b.iv Realizar nuevamente el cambio de la solución de NaCI a 15-10 mM por agua estéril. Se sigue el mismo procedimiento descrito anteriormente. El agua es recirculada a un flujo de entre 2 a 8 L/h y preferentemente a 4L/h durante 24- 30 horas. Después, se le retira el agua estéril. b.v Finalmente, recircular de 800 a 1000 mL de una solución de nucleasas seleccionadas de Desoxirribonucleasas I (DNasa I) y ribonucleasa A (RNasa A) para remover los ácidos nucleicos remanentes. La solución se recircula durante 24-30 horas en un flujo de entre 2 a 8 L/h y preferentemente a de 4L/h. Después de este tiempo, es retirada la solución de nucleasas. c) Recircular a un flujo de entre 2 a 8 L/h y preferentemente a 4L/h, una solución de medio de cultivo base (Dulbecco's Modified Eagle Medium, DMEM), durante 10-7 dias, realizando cambios de la solución cada 48 horas para la preservación de la integridad estructural del tejido con el objetivo de remover residuos de nucleasas. The process for decellularization of cardiovascular tissues (heart valves, pulmonary arteries, great vessels, veins and peripheral arterial networks) consists of the following stages: a) Disinfect the tissue by subjecting it to a 1L solution of cellular medium "Roswell Park Memorial Institute medium", (better known by its acronym RPMI), with a cocktail of antibiotics and antifungals (50 pg/mL amphotericin B, 500 pg/mL vancomycin, 80 pg/mL gentamicin, 250 pg/mL cefuroxime, 240 pg/mL cefotaxime) for a period of 20 to 36 hours and preferably 24 hours at a temperature between 6 to 8°C and preferably at 4°C for the disinfection of the tissue and inhibit the growth of bacteria and fungi, preserving its viability. b) Decellularize the cardiovascular tissue in a reactor with a recirculation system of decellularizing hypotonic solutions, whose main objective is to eliminate cellular and nuclear material, minimizing the adverse effects on the mechanical integrity of the extracellular matrix of the tissue in a reactor with recirculation of the decellularizing solutions. bi Submit the tissue to a hypotonic 60-40 mM NaCI solution. The solution is recirculated at a flow of between 2 to 8 L/h and preferably at 4 L/h for 6 to 10 hours. b.ii Replace the NaCI solution (60 to 40 mM) with a 35-20 mM NaCI solution. Execute the change of concentrations gradually so as not to damage the three-dimensional structure of the tissue (the use of hypotonic solutions induces the swelling of the cells and subsequently the lysate). The 35-20 mM NaCI solution is recirculated at a flow rate of between 2 to 8 L/h and preferably 4 L/h for 6 to 10 hours. b.iii Subsequently, change the 35-20 mM NaCI solution for a 15-10 mM NaCI solution. Following the same procedure described above. The 15-10 mM NaCl solution is recirculated at a flow rate of between 2 to 8 L/h and preferably 4 L/h for 24-30 hours. b.iv Change the NaCl solution again to 15-10 mM with sterile water. The same procedure described above is followed. The water is recirculated at a flow of between 2 to 8 L/h and preferably at 4 L/h for 24-30 hours. Afterwards, the sterile water is removed. bv Finally, recirculate 800 to 1000 mL of a nuclease solution selected from Deoxyribonucleases I (DNase I) and Ribonuclease A (RNase A) to remove remaining nucleic acids. The solution is recirculated for 24-30 hours at a flow of between 2 to 8 L/h and preferably 4 L/h. After this time, the nuclease solution is removed. c) Recirculate a base culture medium solution (Dulbecco's Modified Eagle Medium, DMEM) at a flow of between 2 to 8 L/h and preferably 4 L/h for 10-7 days, changing the solution every 48 hours. for the preservation of the structural integrity of the tissue with the aim of removing nuclease residues.
La variación gradual de la concentración de la solución hipotónica con la que se trata el tejido para descelu larización, se puede apreciar en la gráfica de la figura 2, apoyada con el proceso antes descrito. The gradual variation of the concentration of the hypotonic solution with which the tissue is treated for decellularization can be appreciate in the graph of figure 2, supported by the process described above.
De acuerdo con las figuras 7A, 7B, 7C, 7D y 7E se ¡lustran diagramas esquemáticos del sistema de recirculación de soluciones hipotónicas descelularizante a través de una válvula cardiaca y una arteria pulmonar, simultáneamente; en donde se dan las variación de la concentración en gradientes de dichas soluciones hipotónicas y los cambio de dicha solución hipotónica a una concentración de 60-40 mM de NaCI a una concentración de 35-20 mM de NaCI en el sistema; apreciándose lo siguiente: habiendo iniciado el tratamiento de los tejidos, válvula cardiaca (VC) y en la arteria pulmonar (AP), con recirculación de una solución hipotónica a una concentración de 60-40mM de NaCI, se retira 500 mL de dicha solución hipotónica a una concentración de 60-40mM de NaCI del recipiente (2) del reactor por acción de la bomba de recirculación (6) se descarga al segundo recipiente (7) (Figura 7A). Posteriormente, se cambia la concentración de la solución hipotónica y se agregan 500 mL de esta solución hipotónica a una concentración de 35-20 mM de NaCI desde el segundo recipiente (7) y recircula por los tejidos válvula cardiaca (VC) y en la arteria pulmonar (AP) por acción de la bomba de recirculación (6) descargando en el recipiente (2) (Figura 7B). Se retiran los 1000 mL de la solución del recipiente (2) y se descarga hacia el recipiente (7) por acción de la bomba de recirculación (6) (Figura 7C). Se cambian la concentración de la solución hipotónica en el recipiente (7) y se agregan 1000 mL de la solución hipotónica a una concentración de 35-20 mM de NaCI que se hace pasar por acción de la bomba de recirculación (6) a través de los tejidos válvula cardíaca (VC) y en la arteria pulmonar (AP) y se descargan en el primer recipiente (2) (Figura 7D). Finalmente, en el mismo recipiente (2) se cambia la concentración de la solución hipotónica a una concentración de 35-20 mM de NaCI y se recircula la solución durante 6 horas con un flujo de 4L/h por acción de la bomba de recirculación (6) (Figura 7E). En todas las etapas el interior del reservorio donde se alojan los tejidos en el sistema de recirculación se mantiene una temperatura preferentemente 37°C, una humedad relativa p referentemente del 95% y una atmosfera con una concentración de CO2 preferentemente al 5%. According to figures 7A, 7B, 7C, 7D and 7E, schematic diagrams of the decellularizing hypotonic solution recirculation system through a heart valve and a pulmonary artery are illustrated simultaneously; where the variations of the concentration in gradients of said hypotonic solutions and the changes of said hypotonic solution at a concentration of 60-40 mM NaCl to a concentration of 35-20 mM NaCl in the system are given; noting the following: having started the treatment of the tissues, cardiac valve (VC) and in the pulmonary artery (PA), with recirculation of a hypotonic solution at a concentration of 60-40mM of NaCl, 500 mL of said hypotonic solution is withdrawn at a concentration of 60-40mM NaCl from the reactor vessel (2) by action of the recirculation pump (6) is discharged to the second vessel (7) (Figure 7A). Subsequently, the concentration of the hypotonic solution is changed and 500 mL of this hypotonic solution at a concentration of 35-20 mM NaCl is added from the second container (7) and recirculated through the cardiac valve (VC) tissues and in the artery. lung (AP) by action of the recirculation pump (6) discharging into the container (2) (Figure 7B). The 1000 mL of the solution is removed from the container (2) and is discharged into the container (7) by action of the recirculation pump (6) (Figure 7C). The concentration of the hypotonic solution in the container (7) is changed and 1000 mL of the hypotonic solution at a concentration of 35-20 mM of NaCI are added, which is passed through the action of the recirculation pump (6) through the tissues heart valve (VC) and the pulmonary artery (AP) and are discharged into the first container (2) (Figure 7D). Finally, in the same container (2) the concentration of the hypotonic solution is changed to a concentration of 35-20 mM NaCI and the solution is recirculated for 6 hours with a flow of 4L/h by action of the recirculation pump ( 6) (Figure 7E). In all stages, the interior of the reservoir where the tissues are housed in the recirculation system maintains a temperature preferably of 37°C, a relative humidity p of 95%, and an atmosphere with a CO2 concentration of preferably 5%.
De acuerdo con las figuras 8A, 8B, 8C, 8D y 8E ¡lustran diagramas esquemáticos del sistema de recirculación de soluciones hipotónicas descelularizantes a través de una válvula cardiaca y una arteria pulmonar, simultáneamente, en donde se dan las variación de la concentración en gradientes de dichas soluciones hipotónicas y los cambio de dicha solución hipotónica a una concentración de 35-20 mM de NaCI a una solución hipotónica a una concentración de 15-10 mM en el sistema; apreciándose lo siguiente: Se retira 500 mL de la solución hipotónica a una concentración de 35-20mM de NaCI del recipiente (2) del reactor por acción de la bomba de recirculación (6) (Figura 8A). Posteriormente, se cambia la concentración y se agregan 500 mL de la solución hipotónica a una concentración de 15-10 mM de NaCI desde el segundo recipiente (7) y se recircula por los tejidos válvula cardiaca (VC) y en la arteria pulmonar (AP) por acción de la bomba de recirculación (6) descargando en el recipiente (2) (Figura 8B). Se retiran los 1000 ml_ de la solución del recipiente (2) y se descarga hacia el recipiente (7) por acción de la bomba de recirculación (6) (Figura 8C). Se cambia la concentración de la solución hipotónica en el recipiente (7) y se agregan 1000 mL de la solución hipotónica a una concentración de 15-10 mM de NaCI que se hace pasar por acción de la bomba de recirculación (6) a través de los tejidos válvula cardiaca (VC) y en la arteria pulmonar (AP) y se descargan en el primer recipiente (2) (Figura 8D). Finalmente, en el mismo recipiente (2) se cambia la concentración de la solución hipotónica a una concentración de 15-10 mM durante 24 horas con un flujo de 4L/h por acción de la bomba de recirculación (6) (Figura 8E). En todas las etapas el interior del reservorio donde se alojan los tejidos en el sistema de recirculación se mantiene una temperatura preferentemente 37°C, una humedad relativa preferentemente del 95% y una atmosfera con una concentración de CO2 preferentemente al 5%. According to figures 8A, 8B, 8C, 8D and 8E, they illustrate schematic diagrams of the recirculation system of decellularizing hypotonic solutions through a heart valve and a pulmonary artery, simultaneously, where the concentration variations occur in gradients. of said hypotonic solutions and changing said hypotonic solution at a concentration of 35-20 mM NaCI to a hypotonic solution at a concentration of 15-10 mM in the system; noting the following: 500 mL of the hypotonic solution at a concentration of 35-20mM NaCI is withdrawn from the reactor vessel (2) by action of the recirculation pump (6) (Figure 8A). Subsequently, the concentration is changed and 500 mL of the hypotonic solution at a concentration of 15-10 mM NaCI are added from the second container (7) and recirculated through the cardiac valve (VC) and pulmonary artery (AP) tissues. ) by action of the recirculation pump (6) discharging into the container (2) (Figure 8B). HE 1000 ml_ of the solution are removed from the container (2) and it is discharged into the container (7) by action of the recirculation pump (6) (Figure 8C). The concentration of the hypotonic solution in the container (7) is changed and 1000 mL of the hypotonic solution at a concentration of 15-10 mM of NaCI are added, which is passed through the action of the recirculation pump (6) through heart valve (VC) and pulmonary artery (PA) tissues and are discharged into the first container (2) (Figure 8D). Finally, in the same container (2) the concentration of the hypotonic solution is changed to a concentration of 15-10 mM for 24 hours with a flow of 4L/h by action of the recirculation pump (6) (Figure 8E). In all stages, the interior of the reservoir where the tissues are housed in the recirculation system maintains a temperature preferably of 37°C, a relative humidity preferably of 95% and an atmosphere with a CO2 concentration preferably of 5%.
De acuerdo con las figuras 9A, 9B, 9C, 9D y 9E ¡lustran diagramas esquemáticos del sistema de recirculación de soluciones hipotónicas descelularizantes a través de una válvula cardiaca y una arteria pulmonar, simultáneamente, en donde se da el cambio de la solución hipotónica a una concentración de 15-10 mM de NaCI por agua desionizada en el sistema, apreciándose lo siguiente: Se retira 500 mL de la solución hipotónica a una concentración de 15- 10 mM de NaCI del recipiente (2) del reactor por acción de la bomba de recirculación (6) se descarga al segundo recipiente (7) (Figura 9A). Posteriormente, se agregan 500 mL de agua desionizada desde el segundo recipiente (7) y recircula por los tejidos válvula cardiaca (VC) y en la arteria pulmonar (AP) por acción de la bomba de recirculación (6) descargando en el recipiente (2) (Figura 9B). Se retiran los 1000 mL de la solución del recipiente (2) por acción de la bomba de recirculación (6) hacia el recipiente (7) (Figura 9C). Se agregan 1000 mL de agua desionizada desde el recipiente (7) y se hace pasar por la válvula cardiaca (VC) y en la arteria pulmonar (AP) y se descargan en el primer recipiente (2) (Figura 9D). Finalmente, en el mismo recipiente (2) se recircula el agua desionizada durante 24 horas con un flujo de 4L/h por acción de la bomba de recirculación (6) (Figura 9E). En todas las etapas el interior del reservorio donde se alojan los tejidos en el sistema de recirculación se mantiene una temperatura preferentemente 37°C, una humedad relativa preferentemente del 95% y una atmosfera con una concentración de CO2 preferentemente al 5%. According to figures 9A, 9B, 9C, 9D and 9E, they illustrate schematic diagrams of the recirculation system of decellularizing hypotonic solutions through a heart valve and a pulmonary artery, simultaneously, where the change from the hypotonic solution to a concentration of 15-10 mM of NaCI by deionized water in the system, noting the following: 500 mL of the hypotonic solution with a concentration of 15-10 mM of NaCI is withdrawn from the vessel (2) of the reactor by action of the pump of recirculation (6) is discharged to the second container (7) (Figure 9A). Subsequently, 500 mL of deionized water are added from the second container (7) and recirculates through the cardiac valve (VC) and pulmonary artery (AP) tissues by action of the recirculation pump (6) discharging into the container (2) (Figure 9B). The 1000 mL of the solution from the container (2) are withdrawn by action of the recirculation pump (6) towards the container (7) (Figure 9C). 1000 mL of deionized water is added from the container (7) and passed through the cardiac valve (VC) and into the pulmonary artery (PA) and discharged into the first container (2) (Figure 9D). Finally, in the same container (2) the deionized water is recirculated for 24 hours with a flow of 4L/h by action of the recirculation pump (6) (Figure 9E). In all stages, the interior of the reservoir where the tissues are housed in the recirculation system maintains a temperature preferably of 37°C, a relative humidity preferably of 95% and an atmosphere with a CO2 concentration preferably of 5%.
El invento ha sido descrito suficientemente como para que una persona con conocimientos medios en la materia pueda reproducir y obtener los resultados que mencionamos en la presente invención. The invention has been sufficiently described so that a person with average knowledge in the matter can reproduce and obtain the results that we mention in the present invention.

Claims

38 REIVINDICACIONES Habiendo descrito suficientemente la invención, se reclama como propiedad lo contenido en las siguientes cláusulas reivindicatorías. 38 CLAIMS Having sufficiently described the invention, the contents of the following claim clauses are claimed as property.
1.- Un método para descelularización in vitro de tejido cardiovascular tales como válvulas cardiacas, arterias pulmonares, grandes vasos, venas y redes arteriales periféricos, caracterizado porque consiste en a) someter el tejido cardiovascular a un sistema de recirculación de soluciones hipotónicas descelularizantes en “n” gradiente de concentración de manera escalonada para lisar las células de la membrana plasmática; pero manteniendo integra la matriz extracelular; b) someter el tejido cardiovascular a un sistema de recirculación de una solución de enzimas degradativas de ácidos nucleicos para eliminar residuos celulares en el tejido; y c) someter el tejido cardiovascular a un sistema de recirculación de soluciones ¡sotónicas para remover residuos tóxicos y preservar la integridad estructural del tejido. 1.- A method for in vitro decellularization of cardiovascular tissue such as heart valves, pulmonary arteries, great vessels, veins, and peripheral arterial networks, characterized in that it consists of a) subjecting the cardiovascular tissue to a recirculation system of decellularizing hypotonic solutions in " n” concentration gradient in a stepwise manner to lyse cells from the plasma membrane; but maintaining the extracellular matrix integrates; b) subjecting the cardiovascular tissue to a recirculation system of a solution of nucleic acid degrading enzymes to eliminate cellular debris in the tissue; and c) submitting the cardiovascular tissue to a recirculation system of isotonic solutions to remove toxic residues and preserve the structural integrity of the tissue.
2.- El método para descelularización in vitro de tejido cardiovascular, de acuerdo con la reivindicación 1, caracterizado porque el tejido se mantiene a temperatura corporal de entre 36.1 a 37.2 °C, una humedad relativa de entre 95 a 98%, y una atmosfera con una concentración de CO2 de entre 5 a 10% para conservar el pH neutral. 2.- The method for in vitro decellularization of cardiovascular tissue, according to claim 1, characterized in that the tissue is maintained at a body temperature of between 36.1 to 37.2 °C, a relative humidity of between 95 to 98%, and an atmosphere with a CO2 concentration between 5 to 10% to maintain the neutral pH.
3.- El método para descelularización in vitro de tejido 39 cardiovascular, de acuerdo con la reivindicación 1, caracterizado porque dichas soluciones hipotónicas se seleccionan de NaCI o una solución compuesta por una solución búfer de T r i s ( h i d r o x i m e t i I ) aminometano clorhidrato (Trizma-HCI) y ácido e t i I e n d i a m i n o te t r a a c é t i c o también conocido como EDTA. 3.- The method for in vitro tissue decellularization 39 cardiovascular, according to claim 1, characterized in that said hypotonic solutions are selected from NaCI or a solution composed of a buffer solution of Tris (hydroxymeti I) aminomethane hydrochloride (Trizma-HCI) and ethyl I diaminotetraacetic acid also known as EDTA.
4.- El método para descelularización in vitro de tejido cardiovascular, de acuerdo con la reivindicación 1, caracterizado porque dichas enzimas degradativas de ácidos nucleicos se seleccionan de Desoxirribonucleasas I (DNasa I) y ribonucleasa A (RNasa A). 4. The method for in vitro decellularization of cardiovascular tissue, according to claim 1, characterized in that said nucleic acid degrading enzymes are selected from Deoxyribonucleases I (DNase I) and ribonuclease A (RNase A).
5.- El método para descelularización in vitro de tejido cardiovascular, de acuerdo con la reivindicación 1, caracterizado porque dicha solución de enzimas degradativas está definida por Tris (48 mM), MgCh (2.88 mM), CaCI2 (0.96 mM), DNasa I (19 pg/mL) y RNasa A (19.2 g/mL). 5.- The method for in vitro decellularization of cardiovascular tissue, according to claim 1, characterized in that said solution of degradative enzymes is defined by Tris (48 mM), MgCh (2.88 mM), CaCI 2 (0.96 mM), DNase I (19 pg/mL) and RNase A (19.2 g/mL).
6.- El método para descelularización in vitro de tejido cardiovascular, de acuerdo con la reivindicación 1, caracterizado porque dicha solución ¡sotónica consiste en una solución de medio de cultivo base (Dulbecco's Modified Eagle Medium, DMEM). 6. The method for in vitro decellularization of cardiovascular tissue, according to claim 1, characterized in that said isotonic solution consists of a base culture medium solution (Dulbecco's Modified Eagle Medium, DMEM).
7.- Un proceso para descelularización de tejidos cardiovascular tales como válvulas cardiacas, arterias pulmonares, grandes vasos, venas y redes arteriales periféricos, caracterizado por comprender las siguientes etapas: a) Desinfectar el tejido sometiéndolo a una solución de 1L medio 40 celular RPM I “Roswell Park Memorial Institute médium”, con un cóctel de antibióticos y antimicóticos por un periodo de 20 a 36 horas a una temperatura de entre 6 a 8°C para la desinfección del tejido e inhibir el crecimiento de bacterias y hongos, preservando la viabilidad del mismo; b) Descelularizar el tejido cardiovascular en un reactor con sistema de recirculación de soluciones h ¡potó nicas descelularizante para eliminar el material celular y nuclear, minimizando los efectos adversos en la integridad mecánica de la matriz extracelular del tejido en un reactor con recirculación de las soluciones descelularizantes bajo las siguientes condiciones. b.i Someter el tejido a una solución hipotónica NaCI a 60-40 mM que se recircula a un flujo de entre 2 a 8L/h durante 6 a 10 horas. b.ii Reemplazar la solución de NaCI a 60-40 mM por una solución de NaCI a 35-20 mM, ejecutando el cambio de concentraciones de forma gradual y recirculando a un flujo de entre 2 a 8L/h durante 6 a 10 horas; b.iii Reemplazar la solución de NaCI a 35-20 mM por una solución de NaCI a 15-10 mM, ejecutando el cambio de concentraciones de forma gradual y recirculando a un flujo de entre 2 a 8L/h durante 24-30 horas; b.iv Reemplazar la solución de NaCI a 15-10 mM por agua estéril, ejecutando el cambio de forma gradual y recirculando a un flujo de entre 2 a 8L/h durante 24-30 horas y retirar el agua estéril al final; b.v Recircular de 800 a 1000 mL de una solución de enzimas degradativas de ácidos nucleicos para remover los ácidos nucleicos remanentes, durante 24-30 horas a un flujo de entre 2 a 8L/h y retirar la solución de nucleasas al final; c) Recircular una solución ¡sotónica a un flujo de entre 2 a 8L/h durante 10-7 dias, realizando cambios de la solución cada 48 horas para la preservación de la integridad estructural del tejido y remover residuos de nucleasas. 7.- A process for decellularization of cardiovascular tissue such as heart valves, pulmonary arteries, great vessels, veins and peripheral arterial networks, characterized by comprising the following stages: a) Disinfect the tissue by subjecting it to a solution of 1L of medium 40 cell RPM I “Roswell Park Memorial Institute medium”, with a cocktail of antibiotics and antifungals for a period of 20 to 36 hours at a temperature between 6 to 8°C for tissue disinfection and inhibit the growth of bacteria and fungi , preserving its viability; b) Decellularize cardiovascular tissue in a reactor with a decellularizing hypotonic solution recirculation system to remove cellular and nuclear material, minimizing adverse effects on the mechanical integrity of the extracellular tissue matrix in a solution recirculation reactor decellularizing under the following conditions. bi Submit the tissue to a hypotonic 60-40 mM NaCI solution that is recirculated at a flow rate of 2 to 8L/h for 6 to 10 hours. b.ii Replace the 60-40 mM NaCI solution with a 35-20 mM NaCI solution, executing the change of concentrations gradually and recirculating at a flow of between 2 to 8L/h for 6 to 10 hours; b.iii Replace the 35-20 mM NaCI solution with a 15-10 mM NaCI solution, executing the change of concentrations gradually and recirculating at a flow of between 2 to 8L/h for 24-30 hours; b.iv Replace the 15-10 mM NaCI solution with sterile water, executing the change gradually and recirculating at a flow rate of between 2 to 8L/h for 24-30 hours and removing the sterile water at the end; bv Recirculate 800 to 1000 mL of a solution of nucleic acid degrading enzymes to remove remaining nucleic acids, for 24-30 hours at a flow rate of 2 to 8L/h and remove the nuclease solution at the end; c) Recirculate an isotonic solution at a flow of between 2 to 8L/h for 10-7 days, changing the solution every 48 hours to preserve the structural integrity of the tissue and remove nuclease residues.
8.- El proceso para descelularización de tejidos cardiovascular, de acuerdo con la reivindicación 7, caracterizado porque dicho medio de cultivo celular es un medio de cultivo RPMI “Roswell Park Memorial Institute médium”. 8. The process for decellularization of cardiovascular tissues, according to claim 7, characterized in that said cell culture medium is a RPMI "Roswell Park Memorial Institute medium" culture medium.
9.- El proceso para descelularización de tejidos cardiovascular, de acuerdo con la reivindicación 7, caracterizado porque dicho cóctel de antibióticos y antimicóticos comprende amfotericina B, vancomicina, gentamicina, cefuroxima y cefotaxima. 9. The process for decellularization of cardiovascular tissue, according to claim 7, characterized in that said cocktail of antibiotics and antifungals comprises amphotericin B, vancomycin, gentamicin, cefuroxime and cefotaxime.
10.- El proceso para descelularización de tejidos cardiovascular, de acuerdo con la reivindicación 7, caracterizado porque se realiza de manera simultánea en una válvula aórtica y una arteria pulmonar en un reactor con recirculación de las soluciones descel ularizantes. 10. The process for decellularization of cardiovascular tissue, according to claim 7, characterized in that it is carried out simultaneously in an aortic valve and a pulmonary artery in a reactor with recirculation of decellularizing solutions.
11.- El proceso para descelularización de tejidos cardiovascular, de acuerdo con la reivindicación 7, caracterizado porque dicha solución ¡sotónica consiste en una solución de medio de cultivo base Dulbecco's Modified Eagle Medium, DMEM). 11. The process for decellularization of cardiovascular tissues, according to claim 7, characterized in that said isotonic solution consists of a culture medium solution based on Dulbecco's Modified Eagle Medium, DMEM).
12.- El proceso para descel ularización de tejidos cardiovascular, de acuerdo con la reivindicación 7, caracterizado porque dicha solución de enzimas degradativas está definida por Tris (48 mM), MgCh (2.88 mM), CaCI2 (0.96 mM), DNasa I (19 pg/mL) y RNasa A (19.2 pg/mL). 12.- The process for decellularization of cardiovascular tissues, according to claim 7, characterized in that said solution of degradative enzymes is defined by Tris (48 mM), MgCh (2.88 mM), CaCI 2 (0.96 mM), DNase I (19 pg/mL) and RNase A (19.2 pg/mL).
PCT/MX2021/050071 2021-10-27 2021-10-29 Method and process for in vitro decellularisation of cardiovascular tissue WO2023075586A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MXMX/A/2021/013191 2021-10-27
MX2021013191A MX2021013191A (en) 2021-10-27 2021-10-27 Method and process for in vitro decellularization of cardiovascular tissue.

Publications (1)

Publication Number Publication Date
WO2023075586A1 true WO2023075586A1 (en) 2023-05-04

Family

ID=86160131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2021/050071 WO2023075586A1 (en) 2021-10-27 2021-10-29 Method and process for in vitro decellularisation of cardiovascular tissue

Country Status (2)

Country Link
MX (1) MX2021013191A (en)
WO (1) WO2023075586A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040076657A1 (en) * 1999-06-07 2004-04-22 Lifenet. Process for decellularizing soft-tissue engineered medical implants, and decellularized soft-tissue medical implants produced
US20110165676A1 (en) * 2009-11-06 2011-07-07 The Children's Mercy Hospital Method for decellularization
US20190374680A1 (en) * 2014-04-02 2019-12-12 Biotronik Ag Method for the preparation of biological tissue for dry use in an implant
US11077230B2 (en) * 2015-10-21 2021-08-03 Videregen Limited Decellularising tissue

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040076657A1 (en) * 1999-06-07 2004-04-22 Lifenet. Process for decellularizing soft-tissue engineered medical implants, and decellularized soft-tissue medical implants produced
US20110165676A1 (en) * 2009-11-06 2011-07-07 The Children's Mercy Hospital Method for decellularization
US20190374680A1 (en) * 2014-04-02 2019-12-12 Biotronik Ag Method for the preparation of biological tissue for dry use in an implant
US11077230B2 (en) * 2015-10-21 2021-08-03 Videregen Limited Decellularising tissue

Also Published As

Publication number Publication date
MX2021013191A (en) 2023-04-28

Similar Documents

Publication Publication Date Title
Keane et al. Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance
McFetridge et al. Preparation of porcine carotid arteries for vascular tissue engineering applications
Gilbert et al. Decellularization of tissues and organs
JP4469981B2 (en) Decellularized tissue
Crapo et al. An overview of tissue and whole organ decellularization processes
US9936688B2 (en) Process for devitalizing soft-tissue engineered medical implants, and devitalized soft-tissue medical implants produced
US8445278B2 (en) Process for producing decellularized biological tissues
EP1698358A1 (en) Transplantable biomaterial and method of preparing the same
EP1698356A1 (en) Decellularized tissue and method of preparing the same
Aguiari et al. In vitro comparative assessment of decellularized bovine pericardial patches and commercial bioprosthetic heart valves
Dohmen et al. Review tissue-engineered heart valve scaffolds
Snyder et al. Strategies for development of decellularized heart valve scaffolds for tissue engineering
Mathapati et al. Biomimetic acellular detoxified glutaraldehyde cross-linked bovine pericardium for tissue engineering
Keane et al. Decellularization of mammalian tissues: preparing extracellular matrix bioscaffolds
van Steenberghe et al. Enhanced vascular biocompatibility of decellularized xeno-/allogeneic matrices in a rodent model
Gulbins et al. Preseeding with autologous fibroblasts improves endothelialization of glutaraldehyde-fixed porcine aortic valves
Shahabipour et al. Novel approaches toward the generation of bioscaffolds as a potential therapy in cardiovascular tissue engineering
van Steenberghe et al. Porcine pulmonary valve decellularization with NaOH-based vs detergent process: preliminary in vitro and in vivo assessments
Della Barbera et al. Morphologic studies of cell endogenous repopulation in decellularized aortic and pulmonary homografts implanted in sheep
Durko et al. Tissue engineered materials in cardiovascular surgery: the surgeon's perspective
Sokol et al. Comparison of bovine pericardium decellularization protocols for production of biomaterial for cardiac surgery
JP2008228744A (en) Treatment method for preventing transplantation tissue with biological origin from calcification and tissue treated thereby
WO2023075586A1 (en) Method and process for in vitro decellularisation of cardiovascular tissue
Devarathnam et al. Optimization of protocols for decellularization of buffalo aorta
Dainese et al. Human or animal homograft: could they have a future as a biological scaffold for engineered heart valves?

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962652

Country of ref document: EP

Kind code of ref document: A1