WO2023075537A1 - Positive displacement turbine engine and positive displacement turbine engine system comprising same - Google Patents
Positive displacement turbine engine and positive displacement turbine engine system comprising same Download PDFInfo
- Publication number
- WO2023075537A1 WO2023075537A1 PCT/KR2022/016794 KR2022016794W WO2023075537A1 WO 2023075537 A1 WO2023075537 A1 WO 2023075537A1 KR 2022016794 W KR2022016794 W KR 2022016794W WO 2023075537 A1 WO2023075537 A1 WO 2023075537A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- displacement type
- turbine
- displacement
- compressor
- turbine engine
- Prior art date
Links
- 238000006073 displacement reaction Methods 0.000 title claims abstract description 252
- 230000008859 change Effects 0.000 claims abstract description 27
- 239000000446 fuel Substances 0.000 claims abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- 230000005540 biological transmission Effects 0.000 claims description 7
- 239000008400 supply water Substances 0.000 claims 1
- 238000002485 combustion reaction Methods 0.000 abstract description 6
- 238000007599 discharging Methods 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 10
- 239000007789 gas Substances 0.000 description 5
- 239000000567 combustion gas Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 235000012489 doughnuts Nutrition 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 210000003746 feather Anatomy 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C1/00—Rotary-piston machines or engines
- F01C1/08—Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C1/00—Rotary-piston machines or engines
- F01C1/08—Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
- F01C1/082—Details specially related to intermeshing engagement type machines or engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C1/00—Rotary-piston machines or engines
- F01C1/08—Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
- F01C1/10—Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C21/00—Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
- F01C21/10—Outer members for co-operation with rotary pistons; Casings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/02—Gearboxes; Mounting gearing therein
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to an engine that obtains rotational power from internal energy expanded by burning air and a technology for the application system.
- an engine is an engine that receives rotational power from internal energy that is sucked in, compressed, and then combusted and expanded in a defined system, and has been widely used as a power source throughout the industry.
- Such an engine is divided into a volumetric type that transmits and receives power while seeking a volume change and a turbo type that transmits and receives power during an expansion process of internal energy without volume change according to a method of transmitting and receiving power from internal energy.
- the piston which is structurally a power source, inevitably stops at the top dead center and bottom dead center every revolution, so the inertia according to the mass of the piston cannot be converted into energy. There are fatal flaws.
- a rotor with triangular sides which was devised to solve the fatal problem of not being able to continue inertia in the same volumetric upper piston method, rotates eccentrically along the epitoid curve in the shape of a cocoon, sucking in each side,
- the Wankel engine was created that transmits rotational power by sequentially performing 4 strokes of compression, expansion, and exhaust.
- Wankel engine always has limitations in maintaining internal confidentiality due to loss due to eccentric rotation of the rotor and wear of the tip of the rotor, and the internal energy in the expansion section acts on the cross section of the rotor with the center of rotation of the rotor as a feather point. Since the reaction and the reaction act simultaneously, if the reaction is subtracted, the cross section acting purely as work is relatively small, resulting in a problem in energy efficiency, so it is currently discouraged.
- the rotating blades of the rotor and the stator blades, which are fixed, are arranged at the front and rear ends, so they do not interfere with each other and have inertia.
- the blades of the rotor and the blades of the stator arranged in front and back are always open to each other from the front and back, so when the internal energy expands between the blades and cannot overcome the load on the rotor, no work is done and the external There has been a problem in that it expands and is discarded and lost.
- Patent Application No. 10-2020-0038688 2020.03.31, application.
- a speed change means is provided between them so that the displacement type compressor rotates 2 to 3 times faster than the displacement type turbine. Even if the displacement type compressor and displacement type turbine have the same volume, the displacement type compressor supplies 2 to 3 times as much air to the displacement type turbine, mixes fuel with the air, and burns it to expand the displacement type turbine with internal energy. It was to provide a displacement type turbine engine that rotates and continuously rotates by forming a cycle of rotating the displacement type compressor with the rotational force.
- the displacement type compressor and the displacement type turbine have the same volume, and the displacement type compressor rotates 2 to 3 times faster than the displacement type turbine as a transmission means, so that the displacement type turbine has 2 to 3 times more internal volume than the displacement type turbine. Even if a positive amount of air is supplied, the internal energy obtained by mixing fuel with the supplied air and combusting it is 2 to 3 times larger than that of a positive displacement turbine according to Pascal's principle and gearwheel principle. As it acts as a force, the displacement type compressor has no choice but to perform the function of a turbine, not a compressor, unlike intended. There is a fatal error that is completely opposite to the above, so we want to correct it and apply for an improved technology.
- One object of the present invention is to provide a displacement type turbine engine and a displacement type turbine engine system including the same that can solve the problem of loss due to the inability of the piston to continue the inertia according to the up and down reciprocation of each revolution in light of the conventional piston type engine. are doing
- Another problem of the present invention is that the internal energy obtained from the conventional jet engine, which is roughly divided into a compressor and a turbine in a rotary method, structurally in the system does not work, and the internal energy corresponding to the load loaded on the turbine does not work, and the rotor and stator provided back and forth
- the internal energy to expand by replacing the conventional turbo type compressor and turbine with a rotary type displacement type compressor and a displacement type turbine, which is a completely new type displacement turbine engine that can solve the loss flowing between each blade of It is an object of the present invention to provide a volumetric turbine engine and a volumetric turbine engine system including the same, which are exhausted after completing their work by necessarily pushing the displacement turbine.
- Displacement type turbine engine for achieving the above object is a rotary type displacement type compressor that performs a function of inhaling and discharging external air, a combustor mixing fuel with air for combustion, and combustion by the combustor. It includes a rotary type displacement turbine that obtains rotational power from the volume change that expands, and the displacement type turbine is configured to cause a larger volume change than the displacement type compressor.
- the combustor may be installed in at least one of a displacement type compressor and a displacement type turbine.
- the rotational shaft of the displacement type turbine is connected to the rotational shaft of the displacement type compressor by a speed changer, and the speed of the rotational shaft of the displacement type turbine can be set higher than the speed of the rotational shaft of the displacement type compressor by the speed changer.
- the displacement type turbine engine system includes the displacement type turbine engine, a load connected to the displacement type compressor and rotating, and water vapor discharged by heat exchange with gas exhausted from the displacement type turbine by receiving water supplied from the outside. It includes a heat exchange means for supplying to the positive displacement turbine.
- the positive displacement turbine engine according to the present invention can theoretically transfer all of the laboriously obtained internal energy into work (power) except for mechanical loss, so a new type of engine with high energy efficiency is expected.
- the displacement type turbine engine system according to the present invention can be used to provide rotational power with high energy efficiency to various loads such as generators.
- FIG. 1 is a perspective view of a positive displacement turbine engine according to an embodiment of the present invention.
- FIG. 2 is an exploded perspective view of FIG. 1 .
- FIG. 3 is an example for explaining the principle of operation of the displacement type compressor and the displacement type turbine shown in FIG. 2, in which the displacement type compressor starts suction and expansion at the same time, and the corresponding displacement type turbine starts expansion and exhaust at the same time. It is a cross-sectional view showing the state.
- FIG. 4 is a front cross-sectional view showing a state in which the displacement compressor of FIG. 3 completes suction and expansion at the same time, and the corresponding displacement turbine completes expansion and exhaust at the same time.
- FIG. 5 is a cross-sectional front view of another exemplary displacement compressor or displacement turbine.
- FIG. 6 is a perspective view showing an example in which a displacement type turbine is connected to a displacement type compressor as a gear shifting means.
- FIG. 7 is an exploded perspective view of FIG. 6 .
- FIG. 8 is a configuration diagram of a positive displacement turbine engine system according to an embodiment of the present invention.
- FIG. 1 is a perspective view of a positive displacement turbine engine according to an embodiment of the present invention.
- FIG. 2 is an exploded perspective view of FIG. 1 .
- FIG. 3 is an example for explaining the principle of operation of the displacement type compressor and the displacement type turbine shown in FIG. 2, in which the displacement type compressor starts suction and expansion at the same time, and the corresponding displacement type turbine starts expansion and exhaust at the same time. It is a cross-sectional view showing the state.
- FIG. 4 is a front cross-sectional view showing a state in which the displacement compressor of FIG. 3 completes suction and expansion at the same time, and the corresponding displacement turbine completes expansion and exhaust at the same time.
- a displacement turbine engine includes a rotary displacement compressor 100, a combustor 200, and a rotary displacement turbine 300. do.
- the positive displacement compressor 100 performs functions of sucking in and discharging external air.
- the combustor 200 mixes fuel with air and burns it.
- the combustor 200 may be installed on at least one of the displacement compressor 100 and the displacement turbine 300 .
- the combustor 200 may provide (expand) internal energy to the displacement turbine 300 by continuously combusting fuel by mixing fuel with air sucked into the displacement compressor 100 and/or the displacement turbine 300. .
- the volumetric turbine 300 obtains rotational power through a volume change that is combusted and expanded by the combustor 200 .
- the displacement type turbine 300 is configured to generate a larger volume change than the displacement type compressor 100 . Accordingly, the displacement type turbine 300 diffuses the combustion gas with a larger volume change than the displacement type compressor 100, so that rotational power can be obtained without reverse flow.
- the displacement type turbine 300 passively rotates the displacement type compressor 100 provided on the same rotation shaft with modest rotational power, so that the displacement type compressor 100 and the displacement type turbine 300 form a rotation cycle that is repeated with each other. Rotational power can be obtained continuously.
- the displacement type turbine engine of the present invention can theoretically transfer all of the laboriously obtained internal energy into work (power) except for mechanical loss, and thus can have high energy efficiency.
- the positive displacement compressor 100 includes a casing 110, a main rotor 120, blades 130, satellite rotors 140, and a suction port 150. ), and discharge ports 160.
- the casing 110 has a cylindrical inner surface therein.
- the main rotor 120 has a cylindrical cross section and is disposed in the center of the casing 110 .
- the main rotor 120 is coupled to the rotating shaft 101 to perform a rotational motion.
- the main rotor 120 may rotate only through initial ignition through the rotation shaft 101 .
- the main rotor 120 forms an internal passage 111 between the outer diameter portion and the inner diameter portion of the casing 110 .
- the internal passage 111 may be formed in a donut shape having a uniform width in a radial direction.
- the blades 130 are arranged at regular intervals along the outer diameter of the main rotor 120 .
- the blades 130 orbitally move according to the rotation of the main rotor 120 while maintaining airtightness with the inner diameter of the casing 110 while protruding from the outer diameter of the main rotor 120 .
- the blades 130 simultaneously decrease and increase in volume independently for each closed section 111a, 111b, and 111c.
- the blades 130 may be provided in three pieces and arranged at intervals of 120 degrees on the outer diameter of the main rotor 120 .
- two or more blades 130 may be provided and arranged at equal intervals on the outer diameter of the main rotor 120 .
- the satellite rotors 140 rotate the internal flow path 111 of the casing 110 along the rotational direction of the main rotor 120 at equal intervals in the same number of closed sections 111a, 111b, and 111c as the number of blades 130. partitioned into The satellite rotors 140 are partially accommodated in the satellite rotor chambers 112 formed on the inner circumference of the casing 110 and are supported so as to be able to rotate while maintaining airtightness.
- a portion of the satellite rotor 140 excluding the passage groove 141 may be formed in a cylindrical shape.
- Each passage groove 141 may be formed on an outer circumference of the corresponding satellite rotor 140 .
- the satellite rotors 140 pass the blades 130 through each of the passage grooves 141 while rotating by the linkage mechanism 170 when the blades 130 orbit.
- the passage groove 141 protrudes into the internal passage 111 to avoid collision or interference with the orbiting blade 130 .
- the linkage mechanism 170 may include satellite rotor gears 171 and a main rotor gear 172 .
- the satellite rotor gears 171 are formed on outer diameter portions of the satellite rotors 140, respectively.
- the main rotor gear 172 is formed on the outer diameter of the main rotor 120 with the same number of teeth as the total number of teeth of the satellite rotor gears 171, and is engaged with the satellite rotor gears 171 to rotate the blades 130.
- the satellite rotors 140 are rotated accordingly.
- the satellite rotor gear 171 and the main rotor gear 172 which are linkage mechanisms 170, may be provided on one end surface.
- the suction ports 150 correspond to the starting points of the closed sections 111a, 111b, and 111c and are formed in the casing 110 through the closed sections 111a, 111b, and 111c.
- the suction ports 150 allow air to be sucked into the closed sections 111a, 111b, and 111c, respectively.
- the discharge ports 160 correspond to the end points of the closed sections 111a, 111b, and 111c and are formed in the casing 110 through the closed sections 111a, 111b, and 111c.
- the outlets 160 allow air to be discharged from the closed sections 111a, 111b, and 111c, respectively.
- the discharge port 160 may form a pair with the suction port 150 and pass through the casing 110 on both sides of the corresponding satellite rotor 140 .
- Displacement turbine 300 may also be configured similarly to displacement compressor 100 . Therefore, the displacement turbine 300 includes the casing 110 constituting the displacement compressor 100, the main rotor 120, the blades 130, the satellite rotors 140, and the inlet 150. s, and discharge ports (exhaust ports, 160).
- the main rotor 120 of the displacement type turbine 300 may be coupled to the same rotating shaft 101 as the main rotor 120 of the displacement type compressor 100 .
- the displacement type turbine 300 is configured to have an internal flow path 111 having a large volume by being longer in the axial direction and/or radial direction than the internal flow path 111 of the displacement type compressor 100, It can cause a larger volume change than the compressor 100.
- each discharge port 160 provided in the displacement type compressor 100 is connected to each suction port 150 provided in the displacement type turbine 300 through a closed passage.
- the combustor 200 includes the front end surface (or front end) of the blade 130 protruding from the main rotor 120 of the displacement type compressor 100 and the displacement type turbine 300. It may be installed between the rear end surface (or rear end) of the blade 130 protruding from the main rotor 120 of the.
- the combustor 200 may be combusted on the front surface of the blade 130 of the displacement type compressor 100 through the main rotor 120 of the displacement type compressor 100 .
- the combustor 200 may be combusted at the rear end surface of the blade 130 of the displacement type turbine 300 through the main rotor 120 of the displacement type turbine 300 .
- the combustor 200 performs primary combustion on the front surface of the blades 130 of the displacement type compressor 100 through the main rotor 120 of the displacement type compressor 100, and then the main rotor of the displacement type turbine 300 Through 120, secondary combustion may be performed at the rear end of the blade 130 of the positive displacement turbine 300.
- the displacement compressor 100 and displacement turbine 300 may act as follows.
- the blades 130 rotate according to the rotation of the main rotor 120.
- the satellite rotors 140 rotate in a direction opposite to the rotational direction of the main rotor 120 by the action between the satellite rotor gears 171 and the casing gear 172 .
- the blades 130 sequentially pass through the satellite rotors 140 through the respective passage grooves 141 of the satellite rotors 140 according to their own orbital motion and the rotational motion of the satellite rotors 140 while passing through three closed sections.
- s (111a, 111b, 111c) moves continuously.
- the volume of the front end of the blade 130 is narrowed and the volume of the rear end of the blade 130 is widened at each closed section (111a, 111b, 111c), so that air is sucked and discharged independently.
- the air sucked in by the compressor 100 goes through the inlet 150 provided in the displacement type turbine 300 and exits through the discharge port (exhaust port 160) of the displacement type turbine 300.
- each rear end of each blade 130 moves from the already passed closed sections 111a, 111b, and 111c.
- Each suction is completed, and at the same time, each front end passes through each closed section (111a, 111b, 111c) and completes expansion (see FIG. 4), and enters each new closed section (111a, 111b, 111c) to achieve new suction and expansion is in the starting position.
- the volumetric turbine 300 completes the expansion of the rear end of each blade 130 in the preceding closed sections 111a, 111b, and 111c, and at the same time the front end finishes each exhaust, and in the new closed sections 111a, 111b, and 111c. It is in a position to start exhausting at the same time as expansion, and in each closed section (111a, 111b, 111c) between each blade 130 of the displacement type compressor 100 and the blade 130 of the displacement type turbine 300, the preceding blades (130) is full of uncombusted air that each inhaled.
- the internal energy is the same on the front surface of the blade 130 of the displacement type compressor 100 and the rear surface of the blade 130 of the displacement type turbine 300.
- the pressure simultaneously acts.
- the cross-sectional area of the blade 130 provided in the displacement turbine 300 is large or the volume change is large, the displacement turbine 300 receives relatively more internal energy, The turbine 300 rotates and the positive displacement compressor 100 passively rotates accordingly.
- the displacement compressor 100 expands and simultaneously performs suction on the other side
- the displacement turbine 300 expands and simultaneously pushes and exhausts the combustion gas that has completed work on the other side to the discharge port (exhaust port 160) and exhausts it.
- the cycle of is repeated to achieve continuous rotation.
- the displacement compressor 100 completes suction and expansion simultaneously, and the corresponding displacement turbine 300 completes expansion and exhaust simultaneously.
- FIG. 5 is a cross-sectional front view of another exemplary displacement compressor or displacement turbine.
- the positive displacement compressor 100' includes a casing 110', a main rotor 120', blades 130', satellite rotors 140', and a suction port ( 150'), and discharge ports 160'.
- the casing 110' has a cylindrical inner surface therein.
- the main rotor 120' has a cylindrical cross section and is disposed centrally in the casing 110'.
- the main rotor 120' forms an internal passage 111' between the outer diameter portion and the inner diameter portion of the casing 110'.
- the internal passage 111' may be formed in a donut shape having a uniform width in a radial direction.
- the blades 130' each protrude from the inner diameter of the casing 110' to form the inner passage 111' of the casing 110' along the rotational direction of the main rotor 120' and form a plurality of closed sections 111a'. , 111b', 111c') at equal intervals.
- the protruding ends of the blades 130' are formed to maintain airtightness with the outer diameter of the main rotor 120'.
- the satellite rotors 140' are arranged at equal intervals along the outer diameter of the main rotor 120' with the same number as the closed sections 111a', 111b', and 111c'.
- the satellite rotors 140' are partially accommodated in the satellite rotor chambers 121' formed on the outer diameter of the main rotor 120', and are supported to rotate while maintaining airtightness with the inner diameter of the casing 110'. In addition, it orbits according to the rotation of the main rotor 120 '.
- the satellite rotor 140' may be formed in a cylindrical shape except for the passage groove 141' for avoiding collision or interference with the blades 130'.
- the linkage mechanism 170' may include satellite rotor gears 171' and a casing gear 172'.
- the satellite rotor gears 171' are formed on outer diameter portions of the satellite rotors 140', respectively.
- the casing gear 172' is formed on the inner diameter of the casing 110' with the same number of teeth as the total number of teeth of the satellite rotor gears 171', and is engaged with the satellite rotor gears 171' to the satellite rotor 140'. ) rotates the satellite rotors 140'.
- the intake ports 150' correspond to the starting points of the closed sections 111a', 111b', and 111c' and are formed in the casing 110' through the closed sections 111a', 111b', and 111c'.
- the suction ports 150' allow air to be sucked into the closed sections 111a', 111b', and 111c', respectively.
- the outlets 160' correspond to the end points of the closed sections 111a', 111b', and 111c' and are formed in the casing 110' through the closed sections 111a', 111b', and 111c'.
- the outlets 160' allow air to be discharged from the closed sections 111a', 111b', and 111c', respectively.
- the discharge port 160' may form a pair with the suction port 150' and pass through the casing 110' on both sides of the corresponding blade 130'.
- the displacement turbine 300 may also be configured similarly to the displacement compressor 100' of the present example.
- the displacement type compressor 100' and the displacement turbine of this example may act in the same way as the displacement type compressor 100 and displacement type turbine 300 of the above-described example.
- FIG. 6 is a perspective view showing an example in which a displacement type turbine is connected to a displacement type compressor as a gear shifting means.
- FIG. 7 is an exploded perspective view of FIG. 6 .
- the rotational shaft 301 of the displacement type turbine 300 may be connected to the rotational shaft 101 of the displacement type compressor 100 by means of a shift unit 400 .
- the rotating shaft speed of the displacement type turbine 300 is set faster than the rotating shaft speed of the displacement type compressor 100 by the transmission unit 400 .
- the displacement type turbine 300 has a rotational shaft speed faster than the displacement type compressor 100 by the transmission means 400, the internal flow path having the same volume as the internal flow path 111 of the displacement type compressor 100 ( 111), it is possible to generate a larger volume change than the positive displacement compressor (100).
- the displacement type turbine 300 has an internal flow path 111 with a larger volume than the internal flow path 111 of the displacement type compressor 100, the rotational shaft is faster than the displacement type compressor 100 by the speed change means 400. It can cause a larger volume change with velocity.
- the shift unit 400 may be configured as a planetary gear train.
- the transmission unit 400 may include an internal gear 410, a planet gear 420, a carrier 430, and a sun gear 440. .
- the internal gear 410 is connected to the rotary shaft 101 of the positive displacement compressor 100 .
- the internal gear 410 is input from the main rotor 120 of the displacement type compressor 100 by binding the central portion to the center of the main rotor 120 of the displacement type compressor 100 through the rotating shaft 101 by a spline method or the like. rotational power can be transmitted.
- the planetary gears 420 are arranged around the internal gear 410 in a state of meshing with the internal gear 410 , respectively.
- the planetary gears 420 may be arranged at regular intervals around the internal gear 410 .
- the planetary gears 420 are illustrated as three, but are not limited thereto.
- the carrier 430 supports the planetary gears 420 so as to be able to rotate each other.
- the carrier 430 supports the planetary gears 420 to revolve around the internal gear 410 while maintaining a distance from each other.
- the sun gear 440 is connected to the rotating shaft 301 of the positive displacement turbine 300 in a state of meshing with the planetary gears 420 at the center of the internal gear 410 .
- the center of the sun gear 440 is coupled to the center of the main rotor 120 of the displacement type turbine 300 by a spline method, etc., so that the shifted rotational power can be output to the main rotor 120 of the displacement type turbine 300. there is.
- the sun gear 440 and the internal gear 410 have a gear ratio of 3:1. It can be, but is not limited to the exemplified bar.
- the shift unit 400 As the main rotor 120 of the displacement type compressor 100 rotates, the internal gear 410 rotates in the same direction as the rotation direction of the main rotor 120. Accordingly, the planetary gears 420 rotate in the same direction as the rotational direction of the main rotor 120 while being supported by the carrier 430 . Then, the sun gear 440 is accelerated and rotated in the opposite direction to the rotational direction of the main rotor 120 at a speed change ratio, thereby moving the main rotor 120 of the displacement type turbine 300 to the main rotor of the displacement type compressor 100 ( 120) and rotate in the opposite direction.
- the suction ports 150 are formed in the casing 110 to correspond to the starting points of the closed sections 111a, 111b, and 111c based on the rotation direction of the displacement type compressor 100. It is connected to the discharge port 160, and the discharge port 160 is formed in the casing 110 to correspond to each end point of the closed sections 111a, 111b, and 111c to exhaust.
- the displacement type turbine 300 since the main rotor 120 of the displacement type turbine 300 is accelerated and rotates faster than the main rotor 120 of the displacement type compressor 100 at the speed ratio of the transmission unit 400, the displacement type turbine 300 It can cause a larger volume change than the type compressor (100).
- FIG. 8 is a configuration diagram of a positive displacement turbine engine system according to an embodiment of the present invention.
- a displacement turbine engine system 10 includes the aforementioned displacement turbine engine, a load 500, and a heat exchanging means 600.
- the displacement type turbine engine is illustrated as having the configuration shown in FIG. 1, but may also be configured with the configuration shown in FIG. 6.
- the displacement type compressor 100 may mount an intake duct 700 on a side of the intake 150 .
- the intake duct 700 sucks in air through the intake port 710 and delivers it to the intake port 150 of the displacement type compressor 100 .
- the positive displacement compressor 100 receives fuel from the combustor 200 and allows it to be mixed into intake air.
- the displacement type turbine 300 may be equipped with an exhaust duct 800 on the discharge port 160 side.
- the exhaust duct 800 receives the gas discharged from the discharge port 160 of the displacement type turbine 300 and discharges it to the outside through the exhaust port 810 .
- the load machine 500 is connected to the displacement type compressor 100 through a rotating shaft 101 to perform a rotational motion.
- the load machine 500 may correspond to various loads that require rotational motion, such as a generator generating electricity through rotational motion.
- the heat exchanging means 600 receives water supplied from the outside, heat-exchanges it with gas exhausted from the displacement type turbine 300, and supplies the discharged water vapor into the displacement type turbine 300.
- the water vapor supplied into the displacement turbine 300 is heated again as combustion gas together with air within the displacement turbine 300 to amplify internal energy, thereby further increasing the power transmission efficiency of the displacement turbine 300. .
- the heat exchange means 600 may include a heat exchange unit 610, a supply pipe 620, a discharge pipe 630, and a pump 640.
- the heat exchanger 610 is disposed in the exhaust duct 800 and changes the phase of the water flowing through the internal passage to water vapor by exchanging heat with the gas exhausted from the positive displacement turbine 300 .
- the heat exchange unit 610 may be configured in various configurations in a category capable of phase-changing water into steam by heat-exchanging water.
- the supply pipe 620 supplies water from an external water supply source to the heat exchange unit 610 .
- the discharge pipe 630 discharges water vapor phase-changed in the heat exchanger 610 into the positive displacement turbine 300 .
- the pump 640 is installed in the supply pipe 620 and pumps water to the heat exchanger 610 and pumps water vapor from the heat exchanger 610 through the discharge pipe 630 into the positive displacement turbine 300.
- the displacement type turbine engine system 10 can be utilized to provide rotational power with high energy efficiency to various loads 500 such as generators.
- the displacement type turbine engine includes a rotary type displacement type compressor having a suction port and a discharge port on one rotating shaft, and a rotary type having a suction port and a discharge port (exhaust port) corresponding thereto. It is configured by combining the displacement type turbine of the method, and the discharge port of the displacement type compressor is configured to be coupled with the inlet of the displacement type turbine as a closed passage, and a combustor is provided at an appropriate part between the displacement type compressor and the displacement type turbine. .
- the displacement type turbine is configured to have a relatively large volume change compared to the displacement type compressor, so that the internal energy combusted and expanded between the displacement type compressor and the displacement type turbine is always transferred between the displacement type compressor and the displacement type turbine simultaneously on both sides.
- the volumetric turbine receives a large force corresponding to the large volume change due to the large cross-sectional area to which the volumetric turbine is relatively acted, and the volumetric turbine performs a rotational circular motion, and the volumetric turbine is constrained on the same axis of rotation.
- the compressor passively performs rotational circular motion, and the displacement type turbine and the displacement type compressor repeat one cycle and continuously rotate circular motion.
- the displacement type compressor and the displacement type turbine may be provided on one rotation axis, or the rotation axis is different from each other and a speed change means is provided between them so that the displacement type turbine rotates at a relatively high speed compared to the displacement type compressor. Even if it has an internal volume, the displacement turbine always has a relatively larger volume change, so the internal energy burned between the displacement compressor and the displacement turbine is always relatively greater in the displacement turbine according to the gearwheel principle. As a result, the volumetric turbine rotates in a circular motion, and at the same time, the combustion gas that has completed the work is exhausted to atmospheric pressure through the discharge port that is always open.
- the positive displacement turbine engine according to the present invention configured as described above has several peculiarities that have not been seen so far as follows.
- the displacement type compressor provided in the displacement type turbine engine of the present invention, as the rotor rotates, the rear end of the protruding blade expands the volume and performs a function of sucking in external air, but at the same time, the front end divides the compression function, It performs the function of mixing and burning fuel with already inhaled air and pushing the internal energy that expands to the inlet of the volumetric turbine to expand in the volumetric turbine.
- the other is the function of the volumetric turbine.
- the turbine protrudes from the rotor to the internal volume, and the rear end of the blade, which actually seeks a volume change, is pushed under the action of internal energy to expand the volume and rotates the rotor.
- the front end It simultaneously performs the function of exhausting the exhaust gas left after the preceding blade has already finished its work by pushing it through the open discharge port.
- the work done by the displacement type turbine engine of the present invention in one rotation is that when the displacement type turbine is at the starting point of expansion, the internal energy is originally confined in the internal volume of the displacement type compressor, but when the expansion is completed, it is converted to the internal volume of the displacement type turbine. Therefore, the amount of work is the amount obtained by subtracting the internal volume of the positive displacement turbine from the internal volume of the positive displacement turbine, which is also a strange rotation principle that has never been seen before.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
The present invention relates to a positive displacement turbine engine and a positive displacement turbine engine system comprising same. The positive displacement turbine engine comprises: a rotary-type positive displacement compressor which performs the function of suctioning and discharging external air; a combustor in which fuel is mixed with air and combusted; and a rotary-type positive displacement turbine which obtains rotational power from the positive change in volume caused by the combustion in the combustor, wherein the positive displacement turbine is configured to produce a greater change in volume than the positive displacement compressor.
Description
본 발명은 공기를 연소시켜 팽창하는 내부에너지로부터 회전 동력을 얻는 엔진과 그 응용 시스템에 관한 기술이다.The present invention relates to an engine that obtains rotational power from internal energy expanded by burning air and a technology for the application system.
일반적으로, 엔진은 정해진 시스템 내에 공기를 흡입하여 압축한 다음, 연소시켜 팽창하는 내부에너지로부터 회전동력을 수수하는 기관으로서, 산업 전반에서 하나의 동력원으로 널리 사용되어 왔다.BACKGROUND ART In general, an engine is an engine that receives rotational power from internal energy that is sucked in, compressed, and then combusted and expanded in a defined system, and has been widely used as a power source throughout the industry.
그러한 엔진은 내부에너지로부터 동력을 수수하는 방식에 따라 체적변화를 꾀하면서 동력을 수수하는 용적형과, 체적변화를 하지 아니하고 내부에너지의 팽창과정에서 동력을 수수하는 터보형으로 구분된다.Such an engine is divided into a volumetric type that transmits and receives power while seeking a volume change and a turbo type that transmits and receives power during an expansion process of internal energy without volume change according to a method of transmitting and receiving power from internal energy.
그런데 용적형으로 산업 전반에서 가장 광범위하게 자리하고 있는 피스톤 방식의 엔진은 구조적으로 동력원이 되는 피스톤이 매 회전마다 상사점과 하사점에서 필연적으로 정지하게 되어 피스톤의 질량에 따른 관성을 에너지로 이어가지 못하는 치명적인 단점이 상존하고 있다.However, in the piston-type engine, which is the most widely used volumetric engine in the industry, the piston, which is structurally a power source, inevitably stops at the top dead center and bottom dead center every revolution, so the inertia according to the mass of the piston cannot be converted into energy. There are fatal flaws.
반면, 같은 용적형으로 위 피스톤 방식에서 관성을 이어가지 못하는 치명적인 문제점을 해소하고자 안출된, 삼각 변을 갖는 로터(rotor)가 누에고치 형상의 에피트로이드 곡선 면을 따라 편심 회전하면서 각각의 변마다 흡입, 압축, 팽창, 배기의 4행정을 순차적으로 수행하여 회전 동력을 수수하는 방켈(Wankel) 엔진이 창출되었다.On the other hand, a rotor with triangular sides, which was devised to solve the fatal problem of not being able to continue inertia in the same volumetric upper piston method, rotates eccentrically along the epitoid curve in the shape of a cocoon, sucking in each side, The Wankel engine was created that transmits rotational power by sequentially performing 4 strokes of compression, expansion, and exhaust.
그러나 그러한 방켈엔진은 로터가 편심 회전에 따른 손실과, 로터의 끝 단이 마모로 인하여 내부기밀 유지에 한계점이 상존하고, 팽창구간에서 내부에너지는 로터의 회전중심점을 깃 점으로 로터의 단면에 작용과 반작용이 동시에 작용하게 되어 반작용을 공제하면 순수하게 일로 작용하는 단면은 상대적으로 적어져 에너지 효율이 낳은 문제점이 있어 현재는 사양되고 있다.However, such a Wankel engine always has limitations in maintaining internal confidentiality due to loss due to eccentric rotation of the rotor and wear of the tip of the rotor, and the internal energy in the expansion section acts on the cross section of the rotor with the center of rotation of the rotor as a feather point. Since the reaction and the reaction act simultaneously, if the reaction is subtracted, the cross section acting purely as work is relatively small, resulting in a problem in energy efficiency, so it is currently discouraged.
반면, 항공기 등에서 널리 사용되고 있는 축류(axial) 방식의 제트엔진은 회전체인 로터의 블레이드(blade)와 고정체인 스테이터(stator)의 블레이드가 각 전단과 후단으로 배치되어 서로간에 간섭이 없어 관성을 가지고 고속회전에 유리한 장점이 있는 반면, 전후로 배치된 로터의 블레이드와 스테이터의 블레이드는 항상 앞과 뒤로 서로 열려 있어 내부에너지가 블레이드 사이로 팽창하면서 로터에 실려 있는 부하를 이겨내지 못하는 경우에는 아무런 일을 하지 아니하고 외부로 팽창하여 버려 손실되는 문제점이 있어 왔다.On the other hand, in the axial jet engine, which is widely used in aircraft, etc., the rotating blades of the rotor and the stator blades, which are fixed, are arranged at the front and rear ends, so they do not interfere with each other and have inertia. While there is an advantage in high-speed rotation, the blades of the rotor and the blades of the stator arranged in front and back are always open to each other from the front and back, so when the internal energy expands between the blades and cannot overcome the load on the rotor, no work is done and the external There has been a problem in that it expands and is discarded and lost.
이러한 문제점을 해결하기 위해, 본 출원인은 용적형 터빈엔진을 특허출원번호 제10-2020-0038688호(2020.03.31, 출원)로 출원한 바 있다.In order to solve this problem, the present applicant has applied for a volumetric turbine engine as Patent Application No. 10-2020-0038688 (2020.03.31, application).
그런데 그 출원에서는 로터리 방식의 용적형 압축기와 용적형 터빈을 각기 다른 회전축에 결속함에 있어 그 사이에 변속수단을 마련하여 용적형 압축기가 용적형 터빈에 비하여 2~3배 빠른 속도로 회전하도록 변속함으로써 용적형 압축기와 용적형 터빈이 같은 체적을 갖더라도 용적형 압축기는 용적형 터빈에 2~3배 많은 양의 공기를 공급하고 그 공기에 연료를 혼합하여 연소시켜 팽창하는 내부에너지로 용적형 터빈을 회전시키고 그 회전력으로 용적형 압축기를 회전시키는 사이클을 이루어 지속적으로 회전을 이룬다는 용적형 터빈엔진을 제공한다는 것이었다.However, in that application, in coupling the rotary type displacement type compressor and the displacement type turbine to different rotation shafts, a speed change means is provided between them so that the displacement type compressor rotates 2 to 3 times faster than the displacement type turbine. Even if the displacement type compressor and displacement type turbine have the same volume, the displacement type compressor supplies 2 to 3 times as much air to the displacement type turbine, mixes fuel with the air, and burns it to expand the displacement type turbine with internal energy. It was to provide a displacement type turbine engine that rotates and continuously rotates by forming a cycle of rotating the displacement type compressor with the rotational force.
그러나 그와 같이 용적형 압축기와 용적형 터빈이 같은 체적을 갖고 변속수단으로 용적형 압축기가 용적형 터빈에 비하여 2~3배 빠른 속도로 회전하여 용적형 터빈에 내부체적에 비하여 2~3배 많은 양의 공기를 공급한다 하더라도 그 공급되는 공기에 연료를 혼합하여 연소시킨 내부에너지는 파스칼의 원리와 톱니바퀴 원리에 따라 오히려 용적형 터빈에 비하여 공기를 압축하여야 하는 용적형 압축기에 2~3배 큰 힘으로 작용하게 되어 용적형 압축기는 의도한 바와 달리 압축기가 아닌 터빈의 기능을 수행할 수 밖에 없고, 반면 용적형 터빈이 외부공기를 흡입하여 압축기에 공급하는 기능을 수행하게 되어 의도한 바와 실제 작용과는 전혀 상반되는 치명적인 오류가 있어 이를 바로잡아 개선한 기술을 출원하고자 한다.However, as such, the displacement type compressor and the displacement type turbine have the same volume, and the displacement type compressor rotates 2 to 3 times faster than the displacement type turbine as a transmission means, so that the displacement type turbine has 2 to 3 times more internal volume than the displacement type turbine. Even if a positive amount of air is supplied, the internal energy obtained by mixing fuel with the supplied air and combusting it is 2 to 3 times larger than that of a positive displacement turbine according to Pascal's principle and gearwheel principle. As it acts as a force, the displacement type compressor has no choice but to perform the function of a turbine, not a compressor, unlike intended. There is a fatal error that is completely opposite to the above, so we want to correct it and apply for an improved technology.
본 발명의 일 과제는 종래 피스톤 방식의 엔진에 비추어 매 회전마다 피스톤이 상하 왕복 운동에 따라 관성을 이어가지 못하여 손실되는 문제점을 해소할 수 있는 용적형 터빈엔진 및 이를 포함하는 용적형 터빈엔진 시스템을 제공하는데 있다.One object of the present invention is to provide a displacement type turbine engine and a displacement type turbine engine system including the same that can solve the problem of loss due to the inability of the piston to continue the inertia according to the up and down reciprocation of each revolution in light of the conventional piston type engine. are doing
본 발명의 다른 과제는 로터리 방식으로 압축기와 터빈으로 대별되는 종래방식의 제트엔진에서 애써 얻은 내부에너지가 시스템 내에서 구조적으로 터빈에 실린 부하에 상당한 내부에너지는 일을 하지 않고 전후로 구비된 로터와 스테이터의 각 블레이드 사이로 흘러 나가버리는 손실을 해소할 수 있는 전혀 새로운 방식의 용적형 터빈엔진, 즉 종래 터보 방식인 압축기와 터빈을 공히 로터리 방식의 용적형 압축기와 용적형 터빈으로 대체함으로써 팽창하려는 내부에너지는 반드시 용적형 터빈을 밀어내, 자신이 할 일을 마친 다음 배기되는 용적형 터빈엔진과 이를 포함하는 용적형 터빈엔진 시스템을 제공하는데 있다.Another problem of the present invention is that the internal energy obtained from the conventional jet engine, which is roughly divided into a compressor and a turbine in a rotary method, structurally in the system does not work, and the internal energy corresponding to the load loaded on the turbine does not work, and the rotor and stator provided back and forth The internal energy to expand by replacing the conventional turbo type compressor and turbine with a rotary type displacement type compressor and a displacement type turbine, which is a completely new type displacement turbine engine that can solve the loss flowing between each blade of It is an object of the present invention to provide a volumetric turbine engine and a volumetric turbine engine system including the same, which are exhausted after completing their work by necessarily pushing the displacement turbine.
상기의 과제를 달성하기 위한 본 발명에 따른 용적형 터빈엔진은 외부 공기를 흡입하고 토출하는 기능을 수행하는 로터리 방식의 용적형 압축기와, 공기에 연료를 혼합하여 연소시키는 연소기, 및 연소기에 의해 연소되어 팽창하는 체적변화로 회전동력을 얻는 로터리 방식의 용적형 터빈을 포함하는 것으로, 용적형 터빈은 용적형 압축기보다 큰 체적변화를 일으키게 구성된다.Displacement type turbine engine according to the present invention for achieving the above object is a rotary type displacement type compressor that performs a function of inhaling and discharging external air, a combustor mixing fuel with air for combustion, and combustion by the combustor. It includes a rotary type displacement turbine that obtains rotational power from the volume change that expands, and the displacement type turbine is configured to cause a larger volume change than the displacement type compressor.
여기서, 연소기는 용적형 압축기와 용적형 터빈 중 적어도 어느 한쪽에 설치될 수 있다. 용적형 터빈의 회전축은 변속수단으로 용적형 압축기의 회전축과 연결되며, 용적형 터빈의 회전축 속도는 변속수단에 의해 용적형 압축기의 회전축 속도보다 빠르게 설정될 수 있다.Here, the combustor may be installed in at least one of a displacement type compressor and a displacement type turbine. The rotational shaft of the displacement type turbine is connected to the rotational shaft of the displacement type compressor by a speed changer, and the speed of the rotational shaft of the displacement type turbine can be set higher than the speed of the rotational shaft of the displacement type compressor by the speed changer.
본 발명에 따른 용적형 터빈엔진 시스템은 상기 용적형 터빈엔진과, 용적형 압축기에 연결되어 회전운동을 하는 부하기, 및 외부로부터 물을 공급받아 용적형 터빈으로부터 배기되는 가스와 열교환시켜서 배출되는 수증기를 용적형 터빈으로 공급하는 열교환수단을 포함한다.The displacement type turbine engine system according to the present invention includes the displacement type turbine engine, a load connected to the displacement type compressor and rotating, and water vapor discharged by heat exchange with gas exhausted from the displacement type turbine by receiving water supplied from the outside. It includes a heat exchange means for supplying to the positive displacement turbine.
본 발명에 따른 용적형 터빈엔진은 애써 얻은 내부에너지로부터 이론적으로는 기계적 손실을 제외하고 모두 일(동력)로 수수할 수 있어, 높은 에너지 효율을 갖는 새로운 방식의 엔진이 기대된다.The positive displacement turbine engine according to the present invention can theoretically transfer all of the laboriously obtained internal energy into work (power) except for mechanical loss, so a new type of engine with high energy efficiency is expected.
본 발명에 따른 용적형 터빈엔진 시스템은 발전기 등과 같은 각종 부하기에 높은 에너지 효율로 회전동력을 제공하는데 활용될 수 있다.The displacement type turbine engine system according to the present invention can be used to provide rotational power with high energy efficiency to various loads such as generators.
도 1은 본 발명의 일 실시예에 따른 용적형 터빈엔진에 대한 사시도이다.1 is a perspective view of a positive displacement turbine engine according to an embodiment of the present invention.
도 2는 도 1에 대한 분해 사시도이다.FIG. 2 is an exploded perspective view of FIG. 1 .
도 3은 도 2에 도시된 용적형 압축기와 용적형 터빈의 작용 원리를 설명하기 위한 일 예로서, 용적형 압축기가 흡입과 팽창을 동시에 시작하고, 상응하는 용적형 터빈이 팽창과 배기를 동시에 시작한 상태를 나타낸 정단면도이다.FIG. 3 is an example for explaining the principle of operation of the displacement type compressor and the displacement type turbine shown in FIG. 2, in which the displacement type compressor starts suction and expansion at the same time, and the corresponding displacement type turbine starts expansion and exhaust at the same time. It is a cross-sectional view showing the state.
도 4는 도 3에 있어서, 용적형 압축기가 흡입과 팽창을 동시에 마치고, 상응하는 용적형 터빈이 팽창과 배기를 동시에 마친 상태를 나타낸 정단면도이다.FIG. 4 is a front cross-sectional view showing a state in which the displacement compressor of FIG. 3 completes suction and expansion at the same time, and the corresponding displacement turbine completes expansion and exhaust at the same time.
도 5는 다른 예의 용적형 압축기 또는 용적형 터빈에 대한 정단면도이다.5 is a cross-sectional front view of another exemplary displacement compressor or displacement turbine.
도 6은 용적형 터빈이 변속수단으로 용적형 압축기와 연결된 예를 나타낸 사시도이다.6 is a perspective view showing an example in which a displacement type turbine is connected to a displacement type compressor as a gear shifting means.
도 7은 도 6에 대한 분해 사시도이다.FIG. 7 is an exploded perspective view of FIG. 6 .
도 8은 본 발명의 일 실시예에 따른 용적형 터빈엔진 시스템에 대한 구성도이다.8 is a configuration diagram of a positive displacement turbine engine system according to an embodiment of the present invention.
본 발명에 대해 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다. 여기서, 동일한 구성에 대해서는 동일부호를 사용하며, 반복되는 설명, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다. 본 발명의 실시형태는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다.The present invention will be described in detail with reference to the accompanying drawings. Here, the same reference numerals are used for the same components, and repeated descriptions and detailed descriptions of well-known functions and configurations that may unnecessarily obscure the gist of the present invention are omitted. Embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art. Accordingly, the shapes and sizes of elements in the drawings may be exaggerated for clarity.
도 1은 본 발명의 일 실시예에 따른 용적형 터빈엔진에 대한 사시도이다. 도 2는 도 1에 대한 분해 사시도이다. 도 3은 도 2에 도시된 용적형 압축기와 용적형 터빈의 작용 원리를 설명하기 위한 일 예로서, 용적형 압축기가 흡입과 팽창을 동시에 시작하고, 상응하는 용적형 터빈이 팽창과 배기를 동시에 시작한 상태를 나타낸 정단면도이다. 도 4는 도 3에 있어서, 용적형 압축기가 흡입과 팽창을 동시에 마치고, 상응하는 용적형 터빈이 팽창과 배기를 동시에 마친 상태를 나타낸 정단면도이다.1 is a perspective view of a positive displacement turbine engine according to an embodiment of the present invention. FIG. 2 is an exploded perspective view of FIG. 1 . FIG. 3 is an example for explaining the principle of operation of the displacement type compressor and the displacement type turbine shown in FIG. 2, in which the displacement type compressor starts suction and expansion at the same time, and the corresponding displacement type turbine starts expansion and exhaust at the same time. It is a cross-sectional view showing the state. FIG. 4 is a front cross-sectional view showing a state in which the displacement compressor of FIG. 3 completes suction and expansion at the same time, and the corresponding displacement turbine completes expansion and exhaust at the same time.
도 1 내지 도 4를 참조하면, 본 발명의 일 실시예에 따른 용적형 터빈엔진은 로터리 방식의 용적형 압축기(100)와, 연소기(200), 및 로터리 방식의 용적형 터빈(300)을 포함한다.1 to 4, a displacement turbine engine according to an embodiment of the present invention includes a rotary displacement compressor 100, a combustor 200, and a rotary displacement turbine 300. do.
용적형 압축기(100)는 외부 공기를 흡입하고 토출하는 기능을 수행한다. 연소기(200)는 공기에 연료를 혼합하여 연소시킨다. 연소기(200)는 용적형 압축기(100)와 용적형 터빈(300) 중 적어도 어느 한쪽에 설치될 수 있다. 연소기(200)는 용적형 압축기(100) 및/또는 용적형 터빈(300)으로 흡입되는 공기에 연료를 혼합하여 연속적으로 연소시켜 내부에너지를 용적형 터빈(300)으로 제공(팽창)할 수 있다.The positive displacement compressor 100 performs functions of sucking in and discharging external air. The combustor 200 mixes fuel with air and burns it. The combustor 200 may be installed on at least one of the displacement compressor 100 and the displacement turbine 300 . The combustor 200 may provide (expand) internal energy to the displacement turbine 300 by continuously combusting fuel by mixing fuel with air sucked into the displacement compressor 100 and/or the displacement turbine 300. .
용적형 터빈(300)은 연소기(200)에 의해 연소되어 팽창하는 체적변화로 회전동력을 얻는다. 여기서, 용적형 터빈(300)은 용적형 압축기(100)보다 큰 체적변화를 일으키게 구성된다. 따라서, 용적형 터빈(300)은 용적형 압축기(100)보다 큰 체적변화로 연소 가스를 확산시켜 역류 없이 온전히 회전동력을 얻을 수 있게 한다.The volumetric turbine 300 obtains rotational power through a volume change that is combusted and expanded by the combustor 200 . Here, the displacement type turbine 300 is configured to generate a larger volume change than the displacement type compressor 100 . Accordingly, the displacement type turbine 300 diffuses the combustion gas with a larger volume change than the displacement type compressor 100, so that rotational power can be obtained without reverse flow.
용적형 터빈(300)은 수수한 회전동력으로 같은 회전축 상에 구비된 용적형 압축기(100)를 피동적으로 회전시킴으로써, 용적형 압축기(100)와 용적형 터빈(300)은 서로 반복되는 회전 사이클을 이루어 연속적으로 회전동력을 얻을 수 있다.The displacement type turbine 300 passively rotates the displacement type compressor 100 provided on the same rotation shaft with modest rotational power, so that the displacement type compressor 100 and the displacement type turbine 300 form a rotation cycle that is repeated with each other. Rotational power can be obtained continuously.
이와 같이, 본 발명의 용적형 터빈엔진은 애써 얻은 내부에너지로부터 이론적으로는 기계적 손실을 제외하고 모두 일(동력)로 수수할 수 있어, 높은 에너지 효율을 가질 수 있다.As described above, the displacement type turbine engine of the present invention can theoretically transfer all of the laboriously obtained internal energy into work (power) except for mechanical loss, and thus can have high energy efficiency.
한편, 용적형 압축기(100)는 케이싱(casing, 110)과, 메인로터(main rotor, 120)와, 블레이드(blade, 130)들과, 위성로터(satellite rotor, 140)들과, 흡입구(150)들, 및 토출구(160)들을 포함할 수 있다.On the other hand, the positive displacement compressor 100 includes a casing 110, a main rotor 120, blades 130, satellite rotors 140, and a suction port 150. ), and discharge ports 160.
케이싱(110)은 내부에 원주의 내면을 갖는다. 메인로터(120)는 원통형의 단면을 갖고 케이싱(110) 내의 중앙에 배치된다. 메인로터(120)는 회전축(101)에 결속되어 회전운동을 한다. 메인로터(120)는 회전축(101)을 통해 초기 점화만으로 회전할 수 있다. 메인로터(120)는 외경부와 케이싱(110)의 내경부 사이에 내부유로(111)를 형성한다. 내부유로(111)는 반경 방향으로 균일한 폭을 갖는 도넛 형태로 이루어질 수 있다.The casing 110 has a cylindrical inner surface therein. The main rotor 120 has a cylindrical cross section and is disposed in the center of the casing 110 . The main rotor 120 is coupled to the rotating shaft 101 to perform a rotational motion. The main rotor 120 may rotate only through initial ignition through the rotation shaft 101 . The main rotor 120 forms an internal passage 111 between the outer diameter portion and the inner diameter portion of the casing 110 . The internal passage 111 may be formed in a donut shape having a uniform width in a radial direction.
블레이드(130)들은 메인로터(120)의 외경부를 따라 등간격으로 배열된다. 블레이드(130)들은 메인로터(120)의 외경부로부터 각각 돌출된 상태로 케이싱(110)의 내경부와 기밀을 유지하면서 메인로터(120)의 회전에 따라 공전 운동한다. 블레이드(130)들은 메인로터(120)의 회전에 따라 폐쇄구간(111a, 111b, 111c)마다 독자적으로 체적의 감소와 증가를 동시에 이룬다.The blades 130 are arranged at regular intervals along the outer diameter of the main rotor 120 . The blades 130 orbitally move according to the rotation of the main rotor 120 while maintaining airtightness with the inner diameter of the casing 110 while protruding from the outer diameter of the main rotor 120 . As the main rotor 120 rotates, the blades 130 simultaneously decrease and increase in volume independently for each closed section 111a, 111b, and 111c.
일 예로, 블레이드(130)들은 3개로 구비되어 메인로터(120)의 외경부에 120도 간격으로 배열될 수 있다. 다른 예로, 블레이드(130)들은 2개 또는 4개 이상으로 구비되어 메인로터(120)의 외경부에 등간격으로 배열될 수도 있다.For example, the blades 130 may be provided in three pieces and arranged at intervals of 120 degrees on the outer diameter of the main rotor 120 . As another example, two or more blades 130 may be provided and arranged at equal intervals on the outer diameter of the main rotor 120 .
위성로터(140)들은 케이싱(110)의 내부유로(111)를 메인로터(120)의 회전 방향을 따라 블레이드(130)들의 개수와 동일한 개수의 폐쇄구간들(111a, 111b, 111c)로 등간격으로 구획한다. 위성로터(140)들은 케이싱(110)의 내경부에 형성된 위성로터 챔버(112)들에 각각 일부 수용되어 기밀을 유지한 상태로 자전 운동 가능하게 지지된다.The satellite rotors 140 rotate the internal flow path 111 of the casing 110 along the rotational direction of the main rotor 120 at equal intervals in the same number of closed sections 111a, 111b, and 111c as the number of blades 130. partitioned into The satellite rotors 140 are partially accommodated in the satellite rotor chambers 112 formed on the inner circumference of the casing 110 and are supported so as to be able to rotate while maintaining airtightness.
위성로터(140)는 통과홈(141)을 제외한 부위가 원통형을 이루게 형성될 수 있다. 각각의 통과홈(141)은 해당 위성로터(140)의 외경부에 형성될 수 있다. 위성로터(140)들은 블레이드(130)들의 공전 운동시 연계기구(170)에 의해 자전 운동하면서 각각의 통과홈(141)을 통해 블레이드(130)들을 통과시킨다. 통과홈(141)은 내부유로(111)로 돌출되어 공전 운동하는 블레이드(130)와 충돌이나 간섭을 피할 수 있게 한다.A portion of the satellite rotor 140 excluding the passage groove 141 may be formed in a cylindrical shape. Each passage groove 141 may be formed on an outer circumference of the corresponding satellite rotor 140 . The satellite rotors 140 pass the blades 130 through each of the passage grooves 141 while rotating by the linkage mechanism 170 when the blades 130 orbit. The passage groove 141 protrudes into the internal passage 111 to avoid collision or interference with the orbiting blade 130 .
연계기구(170)는 위성로터 기어(171)들과, 메인로터 기어(172)를 포함할 수 있다. 위성로터 기어(171)들은 위성로터(140)들의 외경부들에 각각 형성된다. 메인로터 기어(172)는 위성로터 기어(171)들의 합계 잇수와 동일한 잇수로 메인로터(120)의 외경부에 형성되어 위성로터 기어(171)들과 치합된 상태로 블레이드(130)들의 공전에 따라 위성로터(140)들을 자전 운동시킨다. 한편, 연계기구(170)인 위성로터 기어(171), 메인로터 기어(172)는 한쪽 단면에 구비하여도 무방하다.The linkage mechanism 170 may include satellite rotor gears 171 and a main rotor gear 172 . The satellite rotor gears 171 are formed on outer diameter portions of the satellite rotors 140, respectively. The main rotor gear 172 is formed on the outer diameter of the main rotor 120 with the same number of teeth as the total number of teeth of the satellite rotor gears 171, and is engaged with the satellite rotor gears 171 to rotate the blades 130. The satellite rotors 140 are rotated accordingly. Meanwhile, the satellite rotor gear 171 and the main rotor gear 172, which are linkage mechanisms 170, may be provided on one end surface.
흡입구(150)들은 폐쇄구간들(111a, 111b, 111c)의 각 시작 지점에 대응되어 폐쇄구간들(111a, 111b, 111c)과 통하게 케이싱(110)에 형성된다. 흡입구(150)들은 폐쇄구간들(111a, 111b, 111c)에 각각 공기를 흡입할 수 있게 한다.The suction ports 150 correspond to the starting points of the closed sections 111a, 111b, and 111c and are formed in the casing 110 through the closed sections 111a, 111b, and 111c. The suction ports 150 allow air to be sucked into the closed sections 111a, 111b, and 111c, respectively.
토출구(160)들은 폐쇄구간들(111a, 111b, 111c)의 각 끝 지점에 대응되어 폐쇄구간들(111a, 111b, 111c)과 통하게 케이싱(110)에 형성된다. 토출구(160)들은 폐쇄구간들(111a, 111b, 111c)로부터 각각 공기를 토출할 수 있게 한다. 토출구(160)는 흡입구(150)와 1조를 이루어 해당 위성로터(140)의 양쪽에서 케이싱(110)을 관통하여 형성될 수 있다.The discharge ports 160 correspond to the end points of the closed sections 111a, 111b, and 111c and are formed in the casing 110 through the closed sections 111a, 111b, and 111c. The outlets 160 allow air to be discharged from the closed sections 111a, 111b, and 111c, respectively. The discharge port 160 may form a pair with the suction port 150 and pass through the casing 110 on both sides of the corresponding satellite rotor 140 .
용적형 터빈(300)도 용적형 압축기(100)와 유사하게 구성될 수 있다. 따라서, 용적형 터빈(300)은 용적형 압축기(100)를 구성하는 케이싱(110)과, 메인로터(120)와, 블레이드(130)들과, 위성로터(140)들과, 흡입구(150)들, 및 토출구(배기구, 160)들을 포함할 수 있다. 용적형 터빈(300)의 메인로터(120)는 용적형 압축기(100)의 메인로터(120)와 같은 회전축(101)으로 결속될 수 있다. Displacement turbine 300 may also be configured similarly to displacement compressor 100 . Therefore, the displacement turbine 300 includes the casing 110 constituting the displacement compressor 100, the main rotor 120, the blades 130, the satellite rotors 140, and the inlet 150. s, and discharge ports (exhaust ports, 160). The main rotor 120 of the displacement type turbine 300 may be coupled to the same rotating shaft 101 as the main rotor 120 of the displacement type compressor 100 .
다만, 용적형 터빈(300)은 용적형 압축기(100)의 내부유로(111)에 비해 축 방향 길이 및/또는 반경 방향 길이가 길게 되어 큰 용적의 내부유로(111)를 갖도록 구성됨으로써, 용적형 압축기(100)보다 큰 체적변화를 일으키게 할 수 있다. 또한, 용적형 압축기(100)에 마련된 각 토출구(160)는 용적형 터빈(300)에 마련된 각 흡입구(150)와 폐쇄된 통로로 연결된다.However, the displacement type turbine 300 is configured to have an internal flow path 111 having a large volume by being longer in the axial direction and/or radial direction than the internal flow path 111 of the displacement type compressor 100, It can cause a larger volume change than the compressor 100. In addition, each discharge port 160 provided in the displacement type compressor 100 is connected to each suction port 150 provided in the displacement type turbine 300 through a closed passage.
일 예로, 도 3에 도시된 바와 같이, 연소기(200)는 용적형 압축기(100)의 메인로터(120)에 돌출된 블레이드(130)의 전단면(또는 전단부)와 용적형 터빈(300)의 메인로터(120)에 돌출된 블레이드(130)의 후단면(또는 후단부) 사이에 설치될 수 있다.For example, as shown in FIG. 3 , the combustor 200 includes the front end surface (or front end) of the blade 130 protruding from the main rotor 120 of the displacement type compressor 100 and the displacement type turbine 300. It may be installed between the rear end surface (or rear end) of the blade 130 protruding from the main rotor 120 of the.
연소기(200)는 용적형 압축기(100)의 메인로터(120)를 통해 용적형 압축기(100)의 블레이드(130) 전단면에서 연소시킬 수 있다. 도시하고 있지 않지만, 연소기(200)는 용적형 터빈(300)의 메인로터(120)를 통해 용적형 터빈(300)의 블레이드(130) 후단면에서 연소시킬 수도 있다. 또한, 연소기(200)는 용적형 압축기(100)의 메인로터(120)를 통해 용적형 압축기(100)의 블레이드(130) 전단면에서 1차 연소시킨 후, 용적형 터빈(300)의 메인로터(120)를 통해 용적형 터빈(300)의 블레이드(130) 후단면에서 2차 연소시킬 수도 있다.The combustor 200 may be combusted on the front surface of the blade 130 of the displacement type compressor 100 through the main rotor 120 of the displacement type compressor 100 . Although not shown, the combustor 200 may be combusted at the rear end surface of the blade 130 of the displacement type turbine 300 through the main rotor 120 of the displacement type turbine 300 . In addition, the combustor 200 performs primary combustion on the front surface of the blades 130 of the displacement type compressor 100 through the main rotor 120 of the displacement type compressor 100, and then the main rotor of the displacement type turbine 300 Through 120, secondary combustion may be performed at the rear end of the blade 130 of the positive displacement turbine 300.
용적형 압축기(100)와 용적형 터빈(300)은 다음과 같이 작용할 수 있다.The displacement compressor 100 and displacement turbine 300 may act as follows.
먼저, 용적형 압축기(100)는 메인로터(120)가 케이싱(110)의 내부공간에서 회전동력에 의해 공기 흡입을 위한 방향으로 회전하면, 블레이드(130)들은 메인로터(120)의 회전에 따라 공전 운동한다. 이와 동시에, 위성로터(140)들은 위성로터 기어(171)들과 케이싱 기어(172) 간의 작용에 의해 메인로터(120)의 회전방향과 반대 방향으로 자전 운동한다.First, in the positive displacement compressor 100, when the main rotor 120 rotates in the direction for air intake by rotational power in the inner space of the casing 110, the blades 130 rotate according to the rotation of the main rotor 120. do orbital exercise At the same time, the satellite rotors 140 rotate in a direction opposite to the rotational direction of the main rotor 120 by the action between the satellite rotor gears 171 and the casing gear 172 .
이때, 블레이드(130)들은 자체 공전 운동과 위성로터(140)들의 자전 운동에 따라 위성로터(140)들의 각 통과홈(141)을 통해 위성로터(140)들을 순차적으로 통과하면서 3곳의 폐쇄구간들(111a, 111b, 111c)을 연속되게 이동한다.At this time, the blades 130 sequentially pass through the satellite rotors 140 through the respective passage grooves 141 of the satellite rotors 140 according to their own orbital motion and the rotational motion of the satellite rotors 140 while passing through three closed sections. s (111a, 111b, 111c) moves continuously.
이 과정에서, 폐쇄구간(111a, 111b, 111c)마다 블레이드(130)의 전단 쪽 체적이 좁아짐과 동시에 블레이드(130)의 후단 쪽 체적이 넓어지면서 공기의 흡입과 토출이 독립적으로 이루어지며, 용적형 압축기(100)가 흡입한 공기는 용적형 터빈(300)에 마련된 흡입구(150)로 진행하여 용적형 터빈(300)의 토출구(배기구, 160)로 빠져나가는 구조를 갖는다.In this process, the volume of the front end of the blade 130 is narrowed and the volume of the rear end of the blade 130 is widened at each closed section (111a, 111b, 111c), so that air is sucked and discharged independently. The air sucked in by the compressor 100 goes through the inlet 150 provided in the displacement type turbine 300 and exits through the discharge port (exhaust port 160) of the displacement type turbine 300.
여기에서 도 3에 도시된 바와 같이, 용적형 압축기(100)의 각 블레이드(130)가 흡입의 시작점에 위치하면 각 블레이드(130)의 각 후단은 이미 지나온 폐쇄구간(111a, 111b, 111c)에서 각각 흡입을 마치고, 동시에 각 전단은 각 폐쇄구간(111a, 111b, 111c)을 지나면서 각각 팽창을 마치고(도 4 참조), 각 새로운 폐쇄구간(111a, 111b, 111c)에 진입하여 새로운 흡입과 팽창을 시작하는 위치에 있다.Here, as shown in FIG. 3, when each blade 130 of the positive displacement compressor 100 is located at the starting point of suction, each rear end of each blade 130 moves from the already passed closed sections 111a, 111b, and 111c. Each suction is completed, and at the same time, each front end passes through each closed section (111a, 111b, 111c) and completes expansion (see FIG. 4), and enters each new closed section (111a, 111b, 111c) to achieve new suction and expansion is in the starting position.
반면 용적형 터빈(300)은 앞선 폐쇄구간(111a, 111b, 111c)에서 각 블레이드(130)의 후단은 팽창을 마침과 동시에 전단은 각 배기를 마치고, 새로운 폐쇄구간(111a, 111b, 111c)에서 팽창과 동시에 배기를 시작하는 위치에 있고, 용적형 압축기(100)의 각 블레이드(130)와 용적형 터빈(300)의 블레이드(130) 사이 각 폐쇄구간(111a, 111b, 111c)에는 이미 선행 블레이드(130)들이 각 흡입하여 둔 연소되지 아니한 공기가 가득하다.On the other hand, the volumetric turbine 300 completes the expansion of the rear end of each blade 130 in the preceding closed sections 111a, 111b, and 111c, and at the same time the front end finishes each exhaust, and in the new closed sections 111a, 111b, and 111c. It is in a position to start exhausting at the same time as expansion, and in each closed section (111a, 111b, 111c) between each blade 130 of the displacement type compressor 100 and the blade 130 of the displacement type turbine 300, the preceding blades (130) is full of uncombusted air that each inhaled.
그 흡입된 공기에 연소기(200)로 연료를 혼합하여 연소시키면 그 내부에너지는 용적형 압축기(100)의 블레이드(130) 전단면과 용적형 터빈(300)의 블레이드(130)의 후단면에 동일한 압력으로 동시에 작용하게 되는데 용적형 터빈(300)에 구비된 블레이드(130)의 단면적이 큰 만큼, 또는 체적변화가 큰 만큼 용적형 터빈(300)이 상대적으로 보다 많은 내부에너지를 수수하게 되어 용적형 터빈(300)은 회전을 이루고 그에 용적형 압축기(100)는 피동적으로 회전을 이룬다.When fuel is mixed with the combustor 200 to the inhaled air and combusted, the internal energy is the same on the front surface of the blade 130 of the displacement type compressor 100 and the rear surface of the blade 130 of the displacement type turbine 300. The pressure simultaneously acts. As the cross-sectional area of the blade 130 provided in the displacement turbine 300 is large or the volume change is large, the displacement turbine 300 receives relatively more internal energy, The turbine 300 rotates and the positive displacement compressor 100 passively rotates accordingly.
이때, 용적형 압축기(100)는 팽창과 동시에 다른 쪽에서는 흡입을 수행하고 용적형 터빈(300)은 팽창과 동시에 반대 쪽에서는 일을 마친 연소가스를 토출구(배기구, 160)로 밀어내 배기하며 하나의 사이클을 이루어 반복하여 지속적인 회전을 이루게 된다.At this time, the displacement compressor 100 expands and simultaneously performs suction on the other side, and the displacement turbine 300 expands and simultaneously pushes and exhausts the combustion gas that has completed work on the other side to the discharge port (exhaust port 160) and exhausts it. The cycle of is repeated to achieve continuous rotation.
참고적으로 도 4에 도시된 바와 같이, 용적형 압축기(100)는 흡입과 팽창을 동시에 마치고, 상응하는 용적형 터빈(300)은 팽창과 배기를 동시에 마친 상태에 있다.For reference, as shown in FIG. 4 , the displacement compressor 100 completes suction and expansion simultaneously, and the corresponding displacement turbine 300 completes expansion and exhaust simultaneously.
도 5는 다른 예의 용적형 압축기 또는 용적형 터빈에 대한 정단면도이다.5 is a cross-sectional front view of another exemplary displacement compressor or displacement turbine.
도 5에 도시된 바와 같이, 용적형 압축기(100')는 케이싱(110')과, 메인로터(120')와, 블레이드(130')들과, 위성로터(140')들과, 흡입구(150')들, 및 토출구(160')들을 포함할 수 있다.As shown in FIG. 5, the positive displacement compressor 100' includes a casing 110', a main rotor 120', blades 130', satellite rotors 140', and a suction port ( 150'), and discharge ports 160'.
케이싱(110')은 내부에 원주의 내면을 갖는다. 메인로터(120')는 원통형의 단면을 갖고 케이싱(110') 내의 중앙에 배치된다. 메인로터(120')는 외경부와 케이싱(110')의 내경부 사이에 내부유로(111')를 형성한다. 내부유로(111')는 반경 방향으로 균일한 폭을 갖는 도넛 형태로 이루어질 수 있다.The casing 110' has a cylindrical inner surface therein. The main rotor 120' has a cylindrical cross section and is disposed centrally in the casing 110'. The main rotor 120' forms an internal passage 111' between the outer diameter portion and the inner diameter portion of the casing 110'. The internal passage 111' may be formed in a donut shape having a uniform width in a radial direction.
블레이드(130')들은 케이싱(110')의 내경부로부터 각각 돌출되어 케이싱(110')의 내부유로(111')를 메인로터(120')의 회전 방향을 따라 복수의 폐쇄구간들(111a', 111b', 111c')로 등간격으로 구획한다. 블레이드(130')들은 각 돌출된 단부가 메인로터(120')의 외경부와 기밀을 유지하도록 형성된다.The blades 130' each protrude from the inner diameter of the casing 110' to form the inner passage 111' of the casing 110' along the rotational direction of the main rotor 120' and form a plurality of closed sections 111a'. , 111b', 111c') at equal intervals. The protruding ends of the blades 130' are formed to maintain airtightness with the outer diameter of the main rotor 120'.
위성로터(140')들은 메인로터(120')의 외경부를 따라 폐쇄구간들(111a', 111b', 111c')의 개수와 동일한 개수로 등간격으로 배열된다. 위성로터(140')들은 메인로터(120')의 외경부에 형성된 위성로터 챔버(121')들에 각각 일부 수용된 상태로 케이싱(110')의 내경부와 기밀을 유지하면서 자전 운동 가능하게 지지됨과 아울러 메인로터(120')의 회전에 따라 공전 운동한다. 위성로터(140')는 블레이드(130')와 충돌이나 간섭을 피하기 위한 통과홈(141')을 제외한 부위가 원통형을 이루게 형성될 수 있다.The satellite rotors 140' are arranged at equal intervals along the outer diameter of the main rotor 120' with the same number as the closed sections 111a', 111b', and 111c'. The satellite rotors 140' are partially accommodated in the satellite rotor chambers 121' formed on the outer diameter of the main rotor 120', and are supported to rotate while maintaining airtightness with the inner diameter of the casing 110'. In addition, it orbits according to the rotation of the main rotor 120 '. The satellite rotor 140' may be formed in a cylindrical shape except for the passage groove 141' for avoiding collision or interference with the blades 130'.
연계기구(170')는 위성로터 기어(171')들과, 케이싱 기어(172')를 포함할 수 있다. 위성로터 기어(171')들은 위성로터(140')들의 외경부들에 각각 형성된다. 케이싱 기어(172')는 위성로터 기어(171')들의 합계 잇수와 동일한 잇수로 케이싱(110')의 내경부에 형성되어 위성로터 기어(171')들과 치합된 상태로 위성로터(140')들의 공전에 따라 위성로터(140')들을 자전 운동시킨다.The linkage mechanism 170' may include satellite rotor gears 171' and a casing gear 172'. The satellite rotor gears 171' are formed on outer diameter portions of the satellite rotors 140', respectively. The casing gear 172' is formed on the inner diameter of the casing 110' with the same number of teeth as the total number of teeth of the satellite rotor gears 171', and is engaged with the satellite rotor gears 171' to the satellite rotor 140'. ) rotates the satellite rotors 140'.
흡입구(150')들은 폐쇄구간들(111a', 111b', 111c')의 각 시작 지점에 대응되어 폐쇄구간들(111a', 111b', 111c')과 통하게 케이싱(110')에 형성된다. 흡입구(150')들은 폐쇄구간들(111a', 111b', 111c')에 각각 공기를 흡입할 수 있게 한다.The intake ports 150' correspond to the starting points of the closed sections 111a', 111b', and 111c' and are formed in the casing 110' through the closed sections 111a', 111b', and 111c'. The suction ports 150' allow air to be sucked into the closed sections 111a', 111b', and 111c', respectively.
토출구(160')들은 폐쇄구간들(111a', 111b', 111c')의 각 끝 지점에 대응되어 폐쇄구간들(111a', 111b', 111c')과 통하게 케이싱(110')에 형성된다. 토출구(160')들은 폐쇄구간들(111a', 111b', 111c')로부터 각각 공기를 토출할 수 있게 한다. 토출구(160')는 흡입구(150')와 1조를 이루어 해당 블레이드(130')의 양쪽에서 케이싱(110')을 관통하여 형성될 수 있다.The outlets 160' correspond to the end points of the closed sections 111a', 111b', and 111c' and are formed in the casing 110' through the closed sections 111a', 111b', and 111c'. The outlets 160' allow air to be discharged from the closed sections 111a', 111b', and 111c', respectively. The discharge port 160' may form a pair with the suction port 150' and pass through the casing 110' on both sides of the corresponding blade 130'.
한편, 용적형 터빈(300)도 본 예의 용적형 압축기(100')와 유사하게 구성될 수 있다. 본 예의 용적형 압축기(100')와 용적형 터빈은 전술한 예의 용적형 압축기(100)와 용적형 터빈(300)과 동일하게 작용할 수 있다.Meanwhile, the displacement turbine 300 may also be configured similarly to the displacement compressor 100' of the present example. The displacement type compressor 100' and the displacement turbine of this example may act in the same way as the displacement type compressor 100 and displacement type turbine 300 of the above-described example.
도 6은 용적형 터빈이 변속수단으로 용적형 압축기와 연결된 예를 나타낸 사시도이다. 도 7은 도 6에 대한 분해 사시도이다.6 is a perspective view showing an example in which a displacement type turbine is connected to a displacement type compressor as a gear shifting means. FIG. 7 is an exploded perspective view of FIG. 6 .
도 6 및 도 7을 참조하면, 용적형 터빈(300)의 회전축(301)은 변속수단(400)으로 용적형 압축기(100)의 회전축(101)과 연결될 수 있다. 여기서, 용적형 터빈(300)의 회전축 속도는 변속수단(400)에 의해 용적형 압축기(100)의 회전축 속도보다 빠르게 설정된다.Referring to FIGS. 6 and 7 , the rotational shaft 301 of the displacement type turbine 300 may be connected to the rotational shaft 101 of the displacement type compressor 100 by means of a shift unit 400 . Here, the rotating shaft speed of the displacement type turbine 300 is set faster than the rotating shaft speed of the displacement type compressor 100 by the transmission unit 400 .
이와 같이, 용적형 터빈(300)은 변속수단(400)에 의해 용적형 압축기(100)보다 빠른 회전축 속도를 갖게 되면, 용적형 압축기(100)의 내부유로(111)와 동일한 용적의 내부유로(111)를 갖더라도, 용적형 압축기(100)보다 큰 체적변화를 일으킬 수 있다. 또한, 용적형 터빈(300)이 용적형 압축기(100)의 내부유로(111)보다 큰 용적의 내부유로(111)를 갖는 경우, 변속수단(400)에 의해 용적형 압축기(100)보다 빠른 회전축 속도로 더 큰 체적변화를 일으킬 수 있다.In this way, when the displacement type turbine 300 has a rotational shaft speed faster than the displacement type compressor 100 by the transmission means 400, the internal flow path having the same volume as the internal flow path 111 of the displacement type compressor 100 ( 111), it is possible to generate a larger volume change than the positive displacement compressor (100). In addition, when the displacement type turbine 300 has an internal flow path 111 with a larger volume than the internal flow path 111 of the displacement type compressor 100, the rotational shaft is faster than the displacement type compressor 100 by the speed change means 400. It can cause a larger volume change with velocity.
변속수단(400)은 유성 기어 트레인으로 구성될 수 있다. 예컨대, 변속수단(400)은 내접 기어(internal gear, 410)와, 유성 기어(planet gear, 420)들과, 캐리어(carrier, 430), 및 선 기어(sun gear, 440)를 포함할 수 있다.The shift unit 400 may be configured as a planetary gear train. For example, the transmission unit 400 may include an internal gear 410, a planet gear 420, a carrier 430, and a sun gear 440. .
내접 기어(410)는 용적형 압축기(100)의 회전축(101)과 연결된다. 내접 기어(410)는 중심부가 스플라인 방식 등에 의해 용적형 압축기(100)의 메인로터(120) 중심에 회전축(101)을 통해 결속됨으로써, 용적형 압축기(100)의 메인로터(120)로부터 입력되는 회전동력을 전달받을 수 있다.The internal gear 410 is connected to the rotary shaft 101 of the positive displacement compressor 100 . The internal gear 410 is input from the main rotor 120 of the displacement type compressor 100 by binding the central portion to the center of the main rotor 120 of the displacement type compressor 100 through the rotating shaft 101 by a spline method or the like. rotational power can be transmitted.
유성 기어(420)들은 내접 기어(410)와 각각 치합된 상태로 내접 기어(410)를 중심으로 배열된다. 유성 기어(420)들은 내접 기어(410)를 중심으로 등간격으로 배열될 수 있다. 유성 기어(420)들은 3개로 예시되어 있으나, 이에 한정되지 않는다.The planetary gears 420 are arranged around the internal gear 410 in a state of meshing with the internal gear 410 , respectively. The planetary gears 420 may be arranged at regular intervals around the internal gear 410 . The planetary gears 420 are illustrated as three, but are not limited thereto.
캐리어(430)는 유성 기어(420)들을 각각 자전 운동 가능하게 지지한다. 또한, 캐리어(430)는 유성 기어(420)들이 서로 간격을 유지한 상태로 내접 기어(410)를 중심으로 공전 운동할 수 있게 지지한다.The carrier 430 supports the planetary gears 420 so as to be able to rotate each other. In addition, the carrier 430 supports the planetary gears 420 to revolve around the internal gear 410 while maintaining a distance from each other.
선 기어(440)는 내접 기어(410)의 중앙에서 유성 기어(420)들과 치합된 상태로 용적형 터빈(300)의 회전축(301)과 연결된다. 선 기어(440)는 중심부가 스플라인 방식 등에 의해 용적형 터빈(300)의 메인로터(120) 중심에 결속됨으로써, 변속된 회전동력을 용적형 터빈(300)의 메인로터(120)로 출력할 수 있다.The sun gear 440 is connected to the rotating shaft 301 of the positive displacement turbine 300 in a state of meshing with the planetary gears 420 at the center of the internal gear 410 . The center of the sun gear 440 is coupled to the center of the main rotor 120 of the displacement type turbine 300 by a spline method, etc., so that the shifted rotational power can be output to the main rotor 120 of the displacement type turbine 300. there is.
용적형 압축기(100)와 용적형 터빈(300)이 각각 3개의 폐쇄구간들(111a, 111b, 111c)을 갖는 경우, 선 기어(440)는 내접 기어(410)와 3:1의 기어비를 가질 수 있으나, 예시된 바에 한정되지는 않는다.When the positive displacement compressor 100 and the displacement turbine 300 each have three closed sections 111a, 111b, and 111c, the sun gear 440 and the internal gear 410 have a gear ratio of 3:1. It can be, but is not limited to the exemplified bar.
이러한 변속수단(400)에 의하면, 용적형 압축기(100)의 메인로터(120)가 회전함에 따라 내접 기어(410)가 메인로터(120)의 회전방향과 동일한 방향으로 회전한다. 그에 따라, 유성 기어(420)들은 캐리어(430)에 지지된 상태로 메인로터(120)의 회전방향과 동일한 방향으로 회전한다. 그러면, 선 기어(440)는 메인로터(120)의 회전방향과 반대 방향으로 변속비로 가속되어 회전함에 따라 용적형 터빈(300)의 메인로터(120)를 용적형 압축기(100)의 메인로터(120)와 반대 방향으로 회전시킨다.According to the shift unit 400, as the main rotor 120 of the displacement type compressor 100 rotates, the internal gear 410 rotates in the same direction as the rotation direction of the main rotor 120. Accordingly, the planetary gears 420 rotate in the same direction as the rotational direction of the main rotor 120 while being supported by the carrier 430 . Then, the sun gear 440 is accelerated and rotated in the opposite direction to the rotational direction of the main rotor 120 at a speed change ratio, thereby moving the main rotor 120 of the displacement type turbine 300 to the main rotor of the displacement type compressor 100 ( 120) and rotate in the opposite direction.
여기서, 용적형 터빈(300)은 회전 방향 기준으로, 흡입구(150)들이 폐쇄구간들(111a, 111b, 111c)의 각 시작 지점에 대응되게 케이싱(110)에 형성되어 용적형 압축기(100)의 토출구(160)와 연결되고, 토출구(160)들이 폐쇄구간들(111a, 111b, 111c)의 각 끝 지점에 대응되게 케이싱(110)에 형성되어 배기할 수 있다.Here, in the displacement type turbine 300, the suction ports 150 are formed in the casing 110 to correspond to the starting points of the closed sections 111a, 111b, and 111c based on the rotation direction of the displacement type compressor 100. It is connected to the discharge port 160, and the discharge port 160 is formed in the casing 110 to correspond to each end point of the closed sections 111a, 111b, and 111c to exhaust.
이와 같이, 용적형 터빈(300)의 메인로터(120)는 변속수단(400)의 변속비로 용적형 압축기(100)의 메인로터(120)보다 가속되어 회전하므로, 용적형 터빈(300)은 용적형 압축기(100)보다 큰 체적변화를 일으킬 수 있다. In this way, since the main rotor 120 of the displacement type turbine 300 is accelerated and rotates faster than the main rotor 120 of the displacement type compressor 100 at the speed ratio of the transmission unit 400, the displacement type turbine 300 It can cause a larger volume change than the type compressor (100).
도 8은 본 발명의 일 실시예에 따른 용적형 터빈엔진 시스템에 대한 구성도이다.8 is a configuration diagram of a positive displacement turbine engine system according to an embodiment of the present invention.
도 8을 참조하면, 본 발명의 일 실시예에 따른 용적형 터빈엔진 시스템(10)은 전술한 용적형 터빈엔진과, 부하기(500), 및 열교환수단(600)을 포함한다.Referring to FIG. 8 , a displacement turbine engine system 10 according to an embodiment of the present invention includes the aforementioned displacement turbine engine, a load 500, and a heat exchanging means 600.
용적형 터빈엔진은 도 1에 도시된 구성으로 이루어진 것으로 예시되어 있으나, 도 6에 도시된 구성으로 이루어질 수도 있다. 용적형 압축기(100)는 흡입구(150) 쪽 부위에 흡기 덕트(700)를 장착할 수 있다. 흡기 덕트(700)는 흡기구(710)를 통해 공기를 흡입해서 용적형 압축기(100)의 흡입구(150)로 전달한다. 용적형 압축기(100)는 연소기(200)로부터 연료를 공급받아 흡입 공기에 혼합될 수 있게 한다.The displacement type turbine engine is illustrated as having the configuration shown in FIG. 1, but may also be configured with the configuration shown in FIG. 6. The displacement type compressor 100 may mount an intake duct 700 on a side of the intake 150 . The intake duct 700 sucks in air through the intake port 710 and delivers it to the intake port 150 of the displacement type compressor 100 . The positive displacement compressor 100 receives fuel from the combustor 200 and allows it to be mixed into intake air.
용적형 터빈(300)은 토출구(160) 쪽 부위에 배기 덕트(800)를 장착할 수 있다. 배기 덕트(800)는 용적형 터빈(300)의 토출구(160)로부터 토출되는 가스를 전달받아 배기구(810)를 통해 외부로 배출한다.The displacement type turbine 300 may be equipped with an exhaust duct 800 on the discharge port 160 side. The exhaust duct 800 receives the gas discharged from the discharge port 160 of the displacement type turbine 300 and discharges it to the outside through the exhaust port 810 .
부하기(500)는 용적형 압축기(100)에 회전축(101)으로 연결되어 회전운동을 한다. 부하기(500)는 회전운동으로 전기를 발생시키는 발전기 등과 같은 회전운동을 필요로 하는 각종 부하기에 해당할 수 있다.The load machine 500 is connected to the displacement type compressor 100 through a rotating shaft 101 to perform a rotational motion. The load machine 500 may correspond to various loads that require rotational motion, such as a generator generating electricity through rotational motion.
열교환수단(600)은 외부로부터 물을 공급받아 용적형 터빈(300)으로부터 배기되는 가스와 열교환시켜서 배출되는 수증기를 용적형 터빈(300) 내로 공급한다. 용적형 터빈(300) 내로 공급된 수증기는 용적형 터빈(300) 내에서 공기와 함께 다시 연소가스로 가열되어 내부에너지를 증폭시킴으로써, 용적형 터빈(300)의 동력 수수효율을 더욱 높일 수 있게 한다.The heat exchanging means 600 receives water supplied from the outside, heat-exchanges it with gas exhausted from the displacement type turbine 300, and supplies the discharged water vapor into the displacement type turbine 300. The water vapor supplied into the displacement turbine 300 is heated again as combustion gas together with air within the displacement turbine 300 to amplify internal energy, thereby further increasing the power transmission efficiency of the displacement turbine 300. .
열교환수단(600)은 열교환부(610)와, 공급관(620)과, 배출관(630), 및 펌프(640)를 포함하여 구성될 수 있다. 열교환부(610)는 배기 덕트(800) 내에 배치되어 내부유로를 흐르는 물을 용적형 터빈(300)으로부터 배기되는 가스와 열교환시킴에 따라 수증기로 상변화시킨다. 열교환부(610)는 물을 열교환시켜 수증기로 상변화시킬 수 있는 범주에서 다양한 구성으로 이루어질 수 있다.The heat exchange means 600 may include a heat exchange unit 610, a supply pipe 620, a discharge pipe 630, and a pump 640. The heat exchanger 610 is disposed in the exhaust duct 800 and changes the phase of the water flowing through the internal passage to water vapor by exchanging heat with the gas exhausted from the positive displacement turbine 300 . The heat exchange unit 610 may be configured in various configurations in a category capable of phase-changing water into steam by heat-exchanging water.
공급관(620)은 외부의 물 공급원으로부터 열교환부(610)로 물을 공급한다. 배출관(630)은 열교환부(610)에서 상변화된 수증기를 용적형 터빈(300) 내로 배출한다. 펌프(640)는 공급관(620)에 설치되어 열교환부(610)로 물을 압송하고 열교환부(610)로부터 배출관(630)을 통해 용적형 터빈(300) 내로 수증기를 압송한다.The supply pipe 620 supplies water from an external water supply source to the heat exchange unit 610 . The discharge pipe 630 discharges water vapor phase-changed in the heat exchanger 610 into the positive displacement turbine 300 . The pump 640 is installed in the supply pipe 620 and pumps water to the heat exchanger 610 and pumps water vapor from the heat exchanger 610 through the discharge pipe 630 into the positive displacement turbine 300.
이와 같이, 본 실시예에 따른 용적형 터빈엔진 시스템(10)은 발전기 등과 같은 각종 부하기(500)에 높은 에너지 효율로 회전동력을 제공하는데 활용될 수 있다.As such, the displacement type turbine engine system 10 according to the present embodiment can be utilized to provide rotational power with high energy efficiency to various loads 500 such as generators.
본 실시예에 따른 용적형 터빈엔진에 대해 부연하자면, 용적형 터빈엔진은 하나의 회전축에 흡입구와 토출구를 구비한 로터리 방식의 용적형 압축기와, 그에 대응하여 흡입구와 토출구(배기구)를 구비한 로터리 방식의 용적형 터빈을 결합하여 구성되고 상기 용적형 압축기의 토출구는 상기 용적형 터빈의 흡입구와 폐쇄된 통로로 서로 결합하여 구성되며, 상기 용적형 압축기와 용적형 터빈 사이 적절한 부위에 연소기를 구비한다.To elaborate on the displacement type turbine engine according to the present embodiment, the displacement type turbine engine includes a rotary type displacement type compressor having a suction port and a discharge port on one rotating shaft, and a rotary type having a suction port and a discharge port (exhaust port) corresponding thereto. It is configured by combining the displacement type turbine of the method, and the discharge port of the displacement type compressor is configured to be coupled with the inlet of the displacement type turbine as a closed passage, and a combustor is provided at an appropriate part between the displacement type compressor and the displacement type turbine. .
이때 용적형 터빈은 용적형 압축기에 비하여 상대적으로 체적변화가 크도록 구성함으로써 상기 용적형 압축기와 상기 용적형 터빈 사이에 연소되어 팽창하는 내부에너지는 항상 용적형 압축기와 용적형 터빈 사이에서 양쪽에 동시에 같은 압력으로 작용하나 용적형 터빈이 상대적으로 작용 받는 단면적이 커서 체적변화를 크게 하는 만큼 상응한 크기의 큰 힘을 받아 용적형 터빈은 회전원운동을 하게 되고, 같은 회전축상에 구속되어 있는 용적형 압축기는 피동적으로 회전원운동을 하게 되며 용적형 터빈과 용적형 압축기는 하나의 사이클을 반복하며 연속적으로 회전원운동을 하도록 하는 것이다.At this time, the displacement type turbine is configured to have a relatively large volume change compared to the displacement type compressor, so that the internal energy combusted and expanded between the displacement type compressor and the displacement type turbine is always transferred between the displacement type compressor and the displacement type turbine simultaneously on both sides. Although it acts with the same pressure, the volumetric turbine receives a large force corresponding to the large volume change due to the large cross-sectional area to which the volumetric turbine is relatively acted, and the volumetric turbine performs a rotational circular motion, and the volumetric turbine is constrained on the same axis of rotation. The compressor passively performs rotational circular motion, and the displacement type turbine and the displacement type compressor repeat one cycle and continuously rotate circular motion.
또한 용적형 압축기와 용적형 터빈은 하나의 회전축에 구비하여도 되며, 아니면 서로 회전축을 달리하고 그 사이에 변속수단을 구비하여 용적형 터빈이 용적형 압축기에 비하여 상대적으로 빠른 속도로 회전하게 함으로써 같은 내부체적을 갖더라도 항상 용적형 터빈이 상대적으로 보다 더 큰 체적변화를 하게 되어, 용적형 압축기와 용적형 터빈 사이에서 연소되는 내부에너지는 톱니바퀴 원리에 따라 항상 상대적으로 용적형 터빈에 더 큰 힘으로 작용하게 되어 용적형 터빈이 회전원운동을 하게 되며 동시에 일을 마친 연소가스는 항상 열려 있는 토출구를 통하여 대기압으로 배기된다.In addition, the displacement type compressor and the displacement type turbine may be provided on one rotation axis, or the rotation axis is different from each other and a speed change means is provided between them so that the displacement type turbine rotates at a relatively high speed compared to the displacement type compressor. Even if it has an internal volume, the displacement turbine always has a relatively larger volume change, so the internal energy burned between the displacement compressor and the displacement turbine is always relatively greater in the displacement turbine according to the gearwheel principle. As a result, the volumetric turbine rotates in a circular motion, and at the same time, the combustion gas that has completed the work is exhausted to atmospheric pressure through the discharge port that is always open.
여기에서 용적형 압축기와 용적형 터빈을 결합함에 있어 상대적으로 용적형 터빈의 체적변화를 크게 하기 위한 방안으로 용적형 터빈을 용적형 압축기에 비하여 원주방향으로 키우든, 가로 길이를 늘리든 아니면 변속수단을 이용하여 용적형 압축기에 비하여 용적형 터빈의 회전속도를 빠르게 하여 체적변화를 크게 하는 등 여러 방법이 있다.Here, in combining the displacement type compressor and the displacement type turbine, as a method to increase the volume change of the displacement type turbine relatively, either increase the displacement type turbine in the circumferential direction or increase the horizontal length compared to the displacement type compressor, or There are several methods, such as increasing the volume change by increasing the rotational speed of the displacement type turbine compared to the displacement type compressor using .
또한 상기와 같이 구성되는 본 발명에 따른 용적형 터빈엔진은 다음과 같이 지금까지 보지 못한 몇 가지 특이점이 있다.In addition, the positive displacement turbine engine according to the present invention configured as described above has several peculiarities that have not been seen so far as follows.
그 중 하나는 본 발명인 용적형 터빈엔진에 구비되는 용적형 압축기는 로터가 회전함에 따라 그에 돌출된 블레이드의 후단부는 체적을 넓혀가면서 외부 공기를 흡입하는 기능을 수행하나 동시에 전단부는 압축 기능에 가름하여 이미 흡입한 공기에 연료를 혼합하여 연소시켜 팽창하는 내부에너지를 용적형 터빈의 흡입구로 밀어내 용적형 터빈에서 팽창하도록 하는 기능을 수행하는 것이다.One of them is the displacement type compressor provided in the displacement type turbine engine of the present invention, as the rotor rotates, the rear end of the protruding blade expands the volume and performs a function of sucking in external air, but at the same time, the front end divides the compression function, It performs the function of mixing and burning fuel with already inhaled air and pushing the internal energy that expands to the inlet of the volumetric turbine to expand in the volumetric turbine.
다른 하나는 용적형 터빈의 기능으로 그 터빈은 로터에서 내부체적에 돌출되어 실질적으로 체적변화를 꾀하는 블레이드의 후단부는 내부에너지의 작용 받아 밀려나 체적을 넓혀가며 로터를 회전시키는 기능을 수행하고 동시에 전단부는 이미 선행 블레이드가 일을 마치고 남겨둔 배가가스를 열려 있는 토출구로 밀어내어 배기하는 기능을 동시에 수행하는 것이다.The other is the function of the volumetric turbine. The turbine protrudes from the rotor to the internal volume, and the rear end of the blade, which actually seeks a volume change, is pushed under the action of internal energy to expand the volume and rotates the rotor. At the same time, the front end It simultaneously performs the function of exhausting the exhaust gas left after the preceding blade has already finished its work by pushing it through the open discharge port.
또 다른 하나는 용적형 압축기와 용적형 터빈은 하나의 축에 구속되어 함께 회전하기 때문에 상기 용적형 압축기의 블레이드와 상기 용적형 터빈의 블레이드 간격은 항상 변하지 않고 일정함에도 그 사이에서 연소되어 팽창하는 내부에너지는 상기 용적형 압축기와 용적형 터빈에 동시에 작용하여도 직접 내부에너지로부터 작용을 받는 양쪽 블레이드 중 용적형 터빈 쪽 블레이드의 단면적이 상대적으로 크기 때문에 내부에너지는 용적형 터빈 쪽 블레이드를 밀어 내면서 팽창하고 일을 마친 다음에야 배기되며, 용적형 터빈이 내부에너지의 작용을 받아 회전하게 되며, 같은 축에 구속된 용적형 압축기 또한 피동적으로 회전을 이루고 사이클을 이루어 연속적으로 회전을 이루는 전혀 새로운 방식의 용적형 터빈엔진이 제공되며, 이는 지금까지 보지 못한 기이한 회전원리이기도 하다.Another is that since the displacement type compressor and the displacement type turbine are constrained to one shaft and rotate together, the distance between the blades of the displacement type compressor and the blades of the displacement type turbine is always constant and does not change. Even if the energy acts on the displacement type compressor and the displacement type turbine at the same time, the internal energy expands while pushing the displacement type turbine side blade because the cross-sectional area of the displacement type turbine side blade is relatively large among both blades directly affected by the internal energy. It is exhausted only after work is completed, and the displacement type turbine rotates under the action of internal energy, and the displacement type compressor, which is constrained to the same axis, also passively rotates and cycles to continuously rotate. A turbine engine is provided, which is also a strange rotation principle that has never been seen before.
또한 용적형 압축기와 용적형 터빈 사이에서 연소되어 발생되는 내부에너지는 팽창하면서 용적형 터빈을 밀어내는 일을 다하지 않고는 외부로 배기되지 못한다.In addition, the internal energy generated by combustion between the displacement type compressor and the displacement type turbine cannot be exhausted to the outside without completing the task of pushing the displacement type turbine while expanding.
여기에서 본 발명인 용적형 터빈엔진이 1회전에서 한 일량은 용적형 터빈이 팽창 시작점일 때 내부에너지는 당초 용적형 압축기의 내부체적에 가두어졌던 것이 팽창을 완료하였을 때는 용적형 터빈의 내부체적으로 바꾸어졌으므로 일량은 용적형 터빈의 내부체적에서 용적형 터빈의 내부체적을 공제한 양이 되며, 이 또한 지금까지 보지 못한 기이한 회전 원리이다.Here, the work done by the displacement type turbine engine of the present invention in one rotation is that when the displacement type turbine is at the starting point of expansion, the internal energy is originally confined in the internal volume of the displacement type compressor, but when the expansion is completed, it is converted to the internal volume of the displacement type turbine. Therefore, the amount of work is the amount obtained by subtracting the internal volume of the positive displacement turbine from the internal volume of the positive displacement turbine, which is also a strange rotation principle that has never been seen before.
본 발명은 첨부된 도면에 도시된 일 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 수 있을 것이다. 따라서, 본 발명의 진정한 보호 범위는 첨부된 청구 범위에 의해서만 정해져야 할 것이다.The present invention has been described with reference to an embodiment shown in the accompanying drawings, but this is only exemplary, and those skilled in the art will understand that various modifications and equivalent other embodiments are possible therefrom. You will be able to. Therefore, the true protection scope of the present invention should be defined only by the appended claims.
Claims (4)
- 외부 공기를 흡입하고 토출하는 기능을 수행하는 로터리 방식의 용적형 압축기와, 공기에 연료를 혼합하여 연소시키는 연소기, 및 상기 연소기에 의해 연소되어 팽창하는 체적변화로 회전동력을 얻는 로터리 방식의 용적형 터빈을 포함하는 용적형 터빈엔진에 있어서,A rotary volume type compressor that sucks in and discharges external air, a combustor that mixes and burns fuel with air, and a rotary volume type that obtains rotational power from the volume change that is combusted and expanded by the combustor. In the volumetric turbine engine comprising a turbine,상기 용적형 터빈은 상기 용적형 압축기보다 큰 체적변화를 일으키게 구성된 것을 특징으로 하는 용적형 터빈엔진.The displacement type turbine engine, characterized in that the displacement type turbine is configured to cause a larger volume change than the displacement type compressor.
- 제1항에 있어서,According to claim 1,상기 연소기는 상기 용적형 압축기와 용적형 터빈 중 적어도 어느 한쪽에 설치되는 것을 특징으로 하는 용적형 터빈엔진.The combustor is a displacement type turbine engine, characterized in that installed in at least one of the displacement type compressor and the displacement type turbine.
- 제1항에 있어서,According to claim 1,상기 용적형 터빈의 회전축은 변속수단으로 상기 용적형 압축기의 회전축과 연결되며,The rotation shaft of the displacement type turbine is connected to the rotation shaft of the displacement type compressor by a gear shifting means,상기 용적형 터빈의 회전축 속도는 상기 변속수단에 의해 상기 용적형 압축기의 회전축 속도보다 빠른 것을 특징으로 하는 용적형 터빈엔진.The rotational shaft speed of the displacement type turbine is higher than the rotational shaft speed of the displacement type compressor by the transmission means.
- 제1항 내지 제3항 중 어느 하나의 항에 기재된 용적형 터빈엔진;The displacement type turbine engine according to any one of claims 1 to 3;상기 용적형 압축기에 연결되어 회전운동을 하는 부하기; 및a load that is connected to the positive displacement compressor and rotates; and외부로부터 물을 공급받아 상기 용적형 터빈으로부터 배기되는 가스와 열교환시켜서 배출되는 수증기를 상기 용적형 터빈으로 공급하는 열교환수단;a heat exchanging means for receiving water supplied from the outside and exchanging heat with gas exhausted from the displacement type turbine to supply water vapor discharged to the displacement type turbine;을 포함하는 것을 특징으로 하는 용적형 터빈엔진 시스템.Displacement type turbine engine system comprising a.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210147732A KR102545051B1 (en) | 2021-11-01 | 2021-11-01 | Positive displacement turbine engine and positive displacement turbine engine system comprising the same |
KR10-2021-0147732 | 2021-11-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023075537A1 true WO2023075537A1 (en) | 2023-05-04 |
Family
ID=86160116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2022/016794 WO2023075537A1 (en) | 2021-11-01 | 2022-10-31 | Positive displacement turbine engine and positive displacement turbine engine system comprising same |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102545051B1 (en) |
WO (1) | WO2023075537A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100536468B1 (en) * | 2003-03-21 | 2005-12-14 | 이용춘 | a rotary engine |
US20060101800A1 (en) * | 2002-03-14 | 2006-05-18 | Newton Propulsion Technologies Ltd | Gas turbine engine system |
KR20100032280A (en) * | 2008-09-16 | 2010-03-25 | 기덕종 | Separated rotary vane gasoline engine |
KR20130050043A (en) * | 2011-11-07 | 2013-05-15 | 김성수 | Power generator by using waste gas heat in vehicle engine |
KR20200116421A (en) * | 2019-04-01 | 2020-10-12 | 김관현 | Positive displacement turbine engine |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5896449B2 (en) * | 2011-09-05 | 2016-03-30 | 国立研究開発法人宇宙航空研究開発機構 | Turbofan jet engine |
KR20200038688A (en) | 2018-10-04 | 2020-04-14 | 서희 | Apparatus and method for providing sound source |
-
2021
- 2021-11-01 KR KR1020210147732A patent/KR102545051B1/en active IP Right Grant
-
2022
- 2022-10-31 WO PCT/KR2022/016794 patent/WO2023075537A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060101800A1 (en) * | 2002-03-14 | 2006-05-18 | Newton Propulsion Technologies Ltd | Gas turbine engine system |
KR100536468B1 (en) * | 2003-03-21 | 2005-12-14 | 이용춘 | a rotary engine |
KR20100032280A (en) * | 2008-09-16 | 2010-03-25 | 기덕종 | Separated rotary vane gasoline engine |
KR20130050043A (en) * | 2011-11-07 | 2013-05-15 | 김성수 | Power generator by using waste gas heat in vehicle engine |
KR20200116421A (en) * | 2019-04-01 | 2020-10-12 | 김관현 | Positive displacement turbine engine |
Also Published As
Publication number | Publication date |
---|---|
KR20230062987A (en) | 2023-05-09 |
KR102545051B1 (en) | 2023-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6125814A (en) | Rotary vane engine | |
US6129067A (en) | Rotary engine | |
US3289647A (en) | Cooling system for multi-unit rotary mechanisms | |
WO2012079468A1 (en) | Rotary engine and rotor unit thereof | |
JP2859739B2 (en) | Rotary engine | |
US3809026A (en) | Rotary vane internal combustion engine | |
EP0510125A4 (en) | Rotary internal combustion engine | |
US3807368A (en) | Rotary piston machine | |
US3744940A (en) | Rotary expansion engine of the wankel type | |
US3809022A (en) | Rotary power translation machine | |
US3897756A (en) | Tandem rotor rotary engine | |
WO2023075537A1 (en) | Positive displacement turbine engine and positive displacement turbine engine system comprising same | |
US3621820A (en) | Rotary internal combustion engine | |
WO2020204568A1 (en) | Positive displacement turbine engine | |
US3921595A (en) | Rotary internal combustion engine | |
US4022168A (en) | Two-cycle rotary-reciprocal-engine | |
JPS5914612B2 (en) | rotary engine | |
EP0221151A1 (en) | Rotary engine | |
WO2018199490A1 (en) | Rotary engine | |
US3626911A (en) | Rotary machines | |
KR20200116421A (en) | Positive displacement turbine engine | |
US4239027A (en) | Rotary internal stage combustion engine | |
CN110439678A (en) | Rotary engine | |
RU2786838C1 (en) | Two-rotor four-stroke combustion engine | |
RU2250381C2 (en) | Gas-turbine engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22887731 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |