WO2023075436A1 - 차세대 이동통신 시스템에서 복수의 유심을 가진 단말의 단말 능력 협상을 위한 방법 및 장치 - Google Patents
차세대 이동통신 시스템에서 복수의 유심을 가진 단말의 단말 능력 협상을 위한 방법 및 장치 Download PDFInfo
- Publication number
- WO2023075436A1 WO2023075436A1 PCT/KR2022/016537 KR2022016537W WO2023075436A1 WO 2023075436 A1 WO2023075436 A1 WO 2023075436A1 KR 2022016537 W KR2022016537 W KR 2022016537W WO 2023075436 A1 WO2023075436 A1 WO 2023075436A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terminal
- musim
- base station
- information
- usim
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 60
- 238000010295 mobile communication Methods 0.000 title description 21
- 238000004891 communication Methods 0.000 claims abstract description 17
- 230000009977 dual effect Effects 0.000 claims abstract description 16
- 230000008859 change Effects 0.000 claims description 31
- 230000002776 aggregation Effects 0.000 claims description 13
- 238000004220 aggregation Methods 0.000 claims description 13
- 230000005540 biological transmission Effects 0.000 abstract description 22
- 230000006870 function Effects 0.000 description 64
- 238000010586 diagram Methods 0.000 description 31
- 238000005516 engineering process Methods 0.000 description 25
- 238000012546 transfer Methods 0.000 description 16
- 238000012545 processing Methods 0.000 description 14
- 230000004044 response Effects 0.000 description 11
- 238000001514 detection method Methods 0.000 description 8
- 238000013507 mapping Methods 0.000 description 7
- 238000013473 artificial intelligence Methods 0.000 description 6
- 238000012937 correction Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000000969 carrier Substances 0.000 description 4
- 238000007726 management method Methods 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 3
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 2
- 238000012508 change request Methods 0.000 description 2
- 230000006837 decompression Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 102100022734 Acyl carrier protein, mitochondrial Human genes 0.000 description 1
- 101000678845 Homo sapiens Acyl carrier protein, mitochondrial Proteins 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
- H04W88/06—Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
- H04L69/24—Negotiation of communication capabilities
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W68/00—User notification, e.g. alerting and paging, for incoming communication, change of service or the like
- H04W68/02—Arrangements for increasing efficiency of notification or paging channel
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/15—Setup of multiple wireless link connections
- H04W76/16—Involving different core network technologies, e.g. a packet-switched [PS] bearer in combination with a circuit-switched [CS] bearer
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/20—Manipulation of established connections
- H04W76/25—Maintenance of established connections
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/20—Manipulation of established connections
- H04W76/27—Transitions between radio resource control [RRC] states
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
- H04W8/18—Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data
- H04W8/183—Processing at user equipment or user record carrier
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
- H04W8/22—Processing or transfer of terminal data, e.g. status or physical capabilities
- H04W8/24—Transfer of terminal data
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the present disclosure relates to the operation of a terminal and a base station in a mobile communication system. More specifically, the present disclosure relates to a method and apparatus for UE capability negotiation of a UE (eg, Multi-USIM UE) supporting a plurality of universal subscriber identity modules (USIMs).
- a UE eg, Multi-USIM UE
- USIMs universal subscriber identity modules
- 5G mobile communication technology defines a wide frequency band to enable fast transmission speed and new services. It can also be implemented in the ultra-high frequency band ('Above 6GHz') called Wave.
- 6G mobile communication technology which is called a system after 5G communication (Beyond 5G)
- Beyond 5G in order to achieve transmission speed that is 50 times faster than 5G mobile communication technology and ultra-low latency reduced to 1/10, tera Implementations in Terahertz bands (eg, such as the 3 Terahertz (3 THz) band at 95 GHz) are being considered.
- eMBB enhanced mobile broadband
- URLLC ultra-reliable low-latency communications
- mMTC massive machine-type communications
- Beamforming and Massive MIMO to mitigate the path loss of radio waves in the ultra-high frequency band and increase the propagation distance of radio waves, with the goal of satisfying service support and performance requirements, and efficient use of ultra-high frequency resources
- numerology support multiple subcarrier interval operation, etc.
- BWP Band-Width Part
- large capacity New channel coding methods such as LDPC (Low Density Parity Check) code for data transmission and Polar Code for reliable transmission of control information, L2 pre-processing, and dedicated services specialized for specific services Standardization of network slicing that provides a network has been progressed.
- LDPC Low Density Parity Check
- NR-U New Radio Unlicensed
- UE Power Saving NR terminal low power consumption technology
- NTN non-terrestrial network
- IAB Intelligent Internet of Things
- IIoT Intelligent Internet of Things
- DAPS Dual Active Protocol Stack
- 2-step random access that simplifies the random access procedure
- RACH for Standardization in the field of air interface architecture/protocol for technologies such as NR
- 5G baseline for grafting Network Functions Virtualization (NFV) and Software-Defined Networking (SDN) technologies Standardization in the field of system architecture/service is also in progress for an architecture (eg, service based architecture, service based interface), mobile edge computing (MEC) for which services are provided based on the location of a terminal, and the like.
- an architecture eg, service based architecture, service based interface
- MEC mobile edge computing
- AR augmented reality
- VR virtual reality
- MR mixed reality
- XR extended reality
- AI artificial intelligence
- ML machine learning
- FD-MIMO Full Dimensional MIMO
- Array Antenna for guaranteeing coverage in the terahertz band of 6G mobile communication technology.
- multi-antenna transmission technologies such as large scale antennas, metamaterial-based lenses and antennas to improve coverage of terahertz band signals, high-dimensional spatial multiplexing technology using Orbital Angular Momentum (OAM), RIS ( Reconfigurable Intelligent Surface) technology, as well as full duplex technology to improve frequency efficiency and system network of 6G mobile communication technology, satellite, and AI (Artificial Intelligence) are utilized from the design stage and end-to-end (End-to-End) -to-End) Development of AI-based communication technology that realizes system optimization by internalizing AI-supported functions and next-generation distributed computing technology that realizes complex services beyond the limits of terminal computing capabilities by utilizing ultra-high-performance communication and computing resources could be the basis for
- a terminal supporting multiple SIMs wants to perform an operation related to dual connectivity set in one network while maintaining RRC connection settings with two networks, a method for accurately transmitting the corresponding terminal capabilities to each network is required. It needs to be devised.
- the present disclosure for solving the above problems is a method of a terminal including a first SIM and a second SIM, including information on whether a multi universal subscriber identify module (MUSIM) operation is supported by a first base station. transmitting a terminal capability information message; Based on the capability information message of the terminal, receiving a radio resource control (RRC) message including information about whether the first base station supports the MUSIM operation from the first base station; Receiving a paging message from a second base station; and performing the MUSIM operation based on the paging message.
- RRC radio resource control
- the first SIM maintains a dual connectivity (DC) or carrier aggregation (CA) connection with the first base station
- 2 SIM is characterized in that it comprises performing an RRC connection with the second base station.
- the present disclosure for solving the above problems is a method of a first base station supporting a multi universal subscribe identify module (MUSIM) operation in a wireless communication system, information from a terminal about whether the terminal supports the MUSIM operation.
- Receiving a terminal capability information message including; Generating a radio resource control (RRC) message including information on whether the first base station supports the MUSIM operation based on the capability information message of the terminal; Transmitting the RRC message, wherein the terminal includes the first SIM and the second SIM, and the MUSIM operation is such that the first SIM is connected to the first base station by dual connectivity (DC) or carrier aggregation (CA ) while maintaining the connection, the second USIM is characterized in that it comprises performing an RRC connection with the second base station.
- RRC radio resource control
- CA carrier aggregation
- the present disclosure for solving the above problems is a terminal including a first SIM and a second SIM, a transmitting and receiving unit for transmitting and receiving signals; And a control unit, wherein the control unit transmits a terminal capability information message including information on whether or not a multi universal subscriber identify module (MUSIM) operation is supported to the first base station, and based on the terminal capability information message , Receiving a radio resource control (RRC) message including information on whether the first base station supports the MUSIM operation from the first base station, receiving a paging message from the second base station, and receiving the paging message
- RRC radio resource control
- the MUSIM operation is controlled to perform the MUSIM operation based on, while the first SIM maintains a dual connectivity (DC) or carrier aggregation (CA) connection with the first base station, and the second SIM operates on the second SIM. It is characterized in that it comprises performing an RRC connection with the base station.
- DC dual connectivity
- CA carrier aggregation
- the present disclosure provides a first base station supporting a multi universal subscribe identify module (MUSIM) operation in a wireless communication system, comprising: a transceiver for transmitting and receiving signals; and a control unit, wherein the control unit receives a terminal capability information message including information on whether or not the terminal supports MUSIM operation from a terminal, and the MUSIM operation of the first base station based on the terminal capability information message Generating a radio resource control (RRC) message including information on whether or not to support, and controlling to transmit the RRC message, the terminal includes the first SIM and the second SIM, and the MUSIM operation is performed on the first SIM. While the SIM maintains a dual connectivity (DC) or carrier aggregation (CA) connection with the first base station, the second SIM is characterized by performing an RRC connection with the second base station.
- DC dual connectivity
- CA carrier aggregation
- a terminal supporting multiple SIMs maintains RRC connection setup with two networks, and operates related to dual connectivity configured in one network. We can also help you do it.
- LTE long term evolution
- FIG. 2 is a diagram illustrating a radio protocol structure in an LTE system to which the present disclosure can be applied.
- FIG. 3 is a diagram showing the structure of a next-generation mobile communication system to which the present disclosure can be applied.
- FIG. 4 is a diagram illustrating a radio protocol structure of a next-generation mobile communication system to which the present disclosure can be applied.
- FIG. 5 is a diagram illustrating a message structure for reporting UE capabilities in a new radio (NR) system to which the present disclosure can be applied.
- NR new radio
- FIG. 6 is a diagram illustrating a case in which a terminal (Multi-USIM UE) supporting a plurality of USIMs performs an operation related to another USIM while maintaining an RRC connected mode (RRC_CONNECTED) with a base station associated with one USIM according to an embodiment of the present disclosure. It is a drawing showing that
- FIG. 7A is a diagram illustrating method 1 in which a MUSIM-supporting terminal supports dual connectivity (DC) and carrier aggregation (CA) while maintaining two RRC connection states as an embodiment 1 proposed in the present disclosure.
- DC dual connectivity
- CA carrier aggregation
- FIG. 7B is a diagram illustrating method 1 in which a MUSIM-supporting terminal supports dual connectivity (DC) and carrier aggregation (CA) while maintaining two RRC connection states as an embodiment 1 proposed in the present disclosure.
- DC dual connectivity
- CA carrier aggregation
- 8A is a diagram illustrating method 2 in which a MUSIM-supporting terminal supports DC and CA while maintaining two RRC connection states as an embodiment 2 proposed in the present disclosure.
- FIG. 8B is a diagram illustrating method 2 in which a MUSIM-supporting terminal supports DC and CA while maintaining two RRC connection states as an embodiment 2 proposed in the present disclosure.
- 9A is a diagram illustrating the entire operation of requesting a temporary terminal capability change by a MUSIM-supporting USIM 1 terminal proposed in the present disclosure.
- 9B is a diagram illustrating the entire operation of requesting a temporary terminal capability change by a MUSIM-supporting USIM 1 terminal proposed in the present disclosure.
- FIG. 10 is a diagram illustrating overall operations when a USIM 2 terminal in an IDLE or INACTIVE state proposed in the present disclosure performs a MUSIM operation.
- 11A is a diagram illustrating overall operations of a base station that receives a temporary terminal capability change of a terminal proposed in the present disclosure.
- 11B is a diagram illustrating overall operations of a base station that receives a temporary terminal capability change of a terminal proposed in the present disclosure.
- FIG. 12 is a diagram illustrating a block configuration of a terminal according to an embodiment of the present disclosure.
- FIG. 13 is a diagram illustrating a block configuration of a base station according to an embodiment of the present disclosure.
- 3GPP LTE 3rd Generation Partnership Project Long Term Evolution
- dual connectivity (DC) operation may mean that a master node (MN) and a secondary node (SN) are simultaneously configured and an RRC connection is established, and data transmission and reception are performed through the two nodes. .
- MN master node
- SN secondary node
- a carrier aggregation (CA) operation may mean performing data transmission and reception using a primary cell (PCell) and one or more secondary cells (SCells).
- PCell primary cell
- SCells secondary cells
- LTE long term evolution
- the radio access network of the LTE system includes a next-generation base station (Evolved Node B, hereinafter eNB, Node B or base station) 105, 110, 115, 120 and a Mobility Management Entity (MME) 125. and S-GW (Serving-Gateway, 130).
- eNB next-generation base station
- MME Mobility Management Entity
- S-GW Serving-Gateway, 130
- a user equipment (UE or terminal) 135 accesses an external network through the eNBs 105 to 120 and the S-GW 130 .
- eNBs 105 to 120 correspond to existing Node Bs of the UMTS system.
- the eNB is connected to the UE 135 through a radio channel and performs a more complex role than the existing Node B.
- status information such as buffer status, available transmission power status, and channel status of UEs
- One eNB typically controls multiple cells.
- the LTE system uses Orthogonal Frequency Division Multiplexing (hereinafter referred to as OFDM) as a radio access technology in a 20 MHz bandwidth, for example.
- OFDM Orthogonal Frequency Division Multiplexing
- AMC adaptive modulation & coding
- the S-GW 130 is a device that provides a data bearer and creates or removes a data bearer under the control of the MME 125 .
- the MME is a device in charge of various control functions as well as a mobility management function for a terminal, and is connected to a plurality of base stations.
- FIG. 2 is a diagram illustrating a radio protocol structure in an LTE system to which the present disclosure can be applied.
- the radio protocols of the LTE system include PDCP (Packet Data Convergence Protocol 205 and 240), RLC (Radio Link Control 210 and 235), and MAC (Medium Access Control 215 and 230) in the terminal and the eNB, respectively.
- PDCP Packet Data Convergence Protocol
- RLC Radio Link Control 210 and 235
- MAC Medium Access Control 215 and 230
- the PDCPs 205 and 240 are in charge of operations such as IP header compression/restoration.
- the main functions of PDCP are summarized as follows.
- Radio Link Control (hereinafter referred to as RLC) (210, 235) reconstructs the PDCP PDU (Packet Data Unit) into an appropriate size and performs an ARQ operation or the like.
- PDCP PDU Packet Data Unit
- RLC SDU discard function (RLC SDU discard (only for UM and AM data transfer)
- the MACs 215 and 230 are connected to several RLC layer devices configured in one terminal, and perform operations of multiplexing RLC PDUs to MAC PDUs and demultiplexing RLC PDUs from MAC PDUs.
- the main functions of MAC are summarized as follows.
- the physical layers 220 and 225 channel-code and modulate higher-layer data, make OFDM symbols and transmit them through a radio channel, or demodulate and channel-decode OFDM symbols received through a radio channel and transmit them to higher layers.
- the physical layer also uses HARQ (Hybrid ARQ) for additional error correction, and the receiving end transmits whether or not the packet transmitted from the transmitting end has been received by 1 bit. This is referred to as HARQ ACK/NACK information.
- HARQ Hybrid ARQ
- Downlink HARQ ACK/NACK information for uplink transmission is transmitted through a Physical Hybrid-ARQ Indicator Channel (PHICH) physical channel
- PHICH Physical Hybrid-ARQ Indicator Channel
- uplink HARQ ACK/NACK information for downlink transmission is transmitted through a Physical Uplink Control Channel (PUCCH) or It may be transmitted through a Physical Uplink Shared Channel (PUSCH) physical channel.
- PUCCH Physical Uplink Control Channel
- PUSCH Physical Uplink Shared Channel
- the PHY layer may be composed of one or a plurality of frequencies/carriers, and a technique of simultaneously setting and using a plurality of frequencies is referred to as carrier aggregation (hereinafter referred to as CA).
- CA technology refers to the use of only one carrier for communication between a UE (or User Equipment, UE) and a base station (E-UTRAN NodeB, eNB). The amount of transmission can be drastically increased by the number of .
- a cell in a base station using a primary carrier is referred to as a PCell (Primary Cell), and a secondary carrier is referred to as a SCell (Secondary Cell).
- PCell Primary Cell
- SCell Secondary Cell
- Radio Resource Control (RRC) layer above the PDCP layer of the terminal and the base station, respectively, and the RRC layer transmits access and measurement-related configuration control messages for radio resource control.
- RRC Radio Resource Control
- FIG. 3 is a diagram showing the structure of a next-generation mobile communication system to which the present disclosure can be applied.
- the radio access network of the next-generation mobile communication system includes a next-generation base station (New Radio Node B, hereinafter referred to as NR NB, 310) and a NR CN (New Radio Core Network, or NG CN: Next Generation Core Network). , 305).
- a user terminal (New Radio User Equipment, hereinafter, NR UE or terminal, 315) accesses an external network through the NR NB 310 and the NR CN 305.
- the NR CN 305 may be used interchangeably with 5G CN (5G Core Network) or 5GC (5G Core).
- the NR NB 310 corresponds to an evolved Node B (eNB) of an existing LTE system.
- the NR NB is connected to the NR UE 315 through a radio channel and can provide superior service to the existing Node B.
- eNB evolved Node B
- a device that performs scheduling by collecting status information such as buffer status, available transmit power status, and channel status of UEs is required, which is called NR NB (310) is in charge.
- One NR NB usually controls multiple cells.
- NR CN 305 In order to implement high-speed data transmission compared to existing LTE, it can have more than the existing maximum bandwidth, and additional beamforming technology can be grafted using Orthogonal Frequency Division Multiplexing (OFDM) as a radio access technology. .
- OFDM Orthogonal Frequency Division Multiplexing
- a plurality of SCSs are simultaneously supported in one system. It is also possible to have an SCS in which the control signal and the data signal are different.
- AMC adaptive modulation & coding (AMC) method for determining a modulation scheme and a channel coding rate according to the channel condition of the terminal is applied.
- AMC adaptive modulation & coding
- one system uses a method of managing multiple BWPs.
- the NR CN 305 performs functions such as mobility support, bearer setup, and QoS setup.
- the NR CN is a device in charge of various control functions as well as a mobility management function for a terminal, and is connected to a plurality of base stations.
- the next-generation mobile communication system can be interworked with the existing LTE system, and the NR CN is connected to the MME 325 through a network interface.
- the MME is connected to the eNB 330, which is an existing base station.
- FIG. 4 is a diagram illustrating a radio protocol structure of a next-generation mobile communication system to which the present disclosure can be applied.
- the radio protocols of the next-generation mobile communication system include NR Service Data Adaptation Protocol (SDAP) (401, 445), NR PDCP (405, 440), NR RLC (410, 435), It consists of NR MACs (415, 430).
- SDAP NR Service Data Adaptation Protocol
- NR PDCP (405, 440)
- NR RLC 435
- It consists of NR MACs (415, 430).
- the main functions of the NR SDAPs 401 and 445 may include some of the following functions.
- mapping function between a QoS flow and a data bearer for uplink and downlink mapping between a QoS flow and a DRB for both DL and UL
- the terminal may receive a RRC message to set whether to use the header of the SDAP layer device or the function of the SDAP layer device for each PDCP layer device, each bearer, or each logical channel, and SDAP header is set, the NAS QoS reflection setting 1-bit indicator (NAS reflective QoS) and the AS QoS reflection setting 1-bit indicator (AS reflective QoS) in the SDAP header allow the terminal to provide uplink and downlink QoS flows and mapping information for data bearers can be instructed to update or reset.
- the SDAP header may include QoS flow ID information indicating QoS.
- the QoS information may be used as data processing priority and scheduling information to support smooth service.
- the main functions of the NR PDCPs 405 and 440 may include some of the following functions.
- the reordering function of the NR PDCP device refers to a function of rearranging PDCP PDUs received from a lower layer in order based on a PDCP SN (sequence number), and a function of transmitting data to an upper layer in the rearranged order Alternatively, it may include a function of immediately forwarding without considering the order, and may include a function of rearranging the order to record lost PDCP PDUs, and reporting the status of lost PDCP PDUs. to the transmitting side, and may include a function of requesting retransmission of lost PDCP PDUs.
- the main functions of the NR RLCs 410 and 435 may include some of the following functions.
- the in-sequence delivery function of the NR RLC device refers to a function of sequentially delivering RLC SDUs received from a lower layer to an upper layer, and originally one RLC SDU is divided into several RLC SDUs and received , it may include a function of reassembling and forwarding the received RLC PDUs, and may include a function of rearranging the received RLC PDUs based on RLC SN (sequence number) or PDCP SN (sequence number). It may include a function of recording lost RLC PDUs, a function of reporting the status of lost RLC PDUs to the transmitting side, and a function of requesting retransmission of lost RLC PDUs.
- RLC SDU may include a function of delivering only RLC SDUs prior to the lost RLC SDU to the upper layer in order, or if a predetermined timer expires even if there is a lost RLC SDU, a timer may be included.
- RLC PDUs may be processed in the order in which they are received (regardless of the order of serial numbers and sequence numbers, in the order of arrival) and delivered to the PDCP device regardless of order (out-of sequence delivery).
- segments stored in a buffer or to be received later may be received, reconstructed into one complete RLC PDU, processed, and transmitted to the PDCP device.
- the NR RLC layer may not include a concatenation function, and the function may be performed in the NR MAC layer or replaced with a multiplexing function of the NR MAC layer.
- the out-of-sequence delivery function of the NR RLC device refers to a function of immediately delivering RLC SDUs received from a lower layer to an upper layer regardless of the order, and originally one RLC SDU is multiple RLC When received divided into SDUs, it may include a function of reassembling and forwarding them, and may include a function of storing RLC SNs or PDCP SNs of received RLC PDUs and arranging them in order to record lost RLC PDUs.
- the NR MACs 415 and 430 may be connected to several NR RLC layer devices configured in one terminal, and the main functions of the NR MAC may include some of the following functions.
- the NR PHY layers 420 and 425 channel-code and modulate higher-layer data, make OFDM symbols and transmit them through a radio channel, or demodulate OFDM symbols received through a radio channel, channel-decode, and transmit the data to a higher layer. can be done
- NR 5 is a diagram illustrating a message structure for reporting UE capabilities in a new radio (NR) system to which the present disclosure can be applied.
- a UE 501 in a state in which a UE 501 is connected to a serving base station 502 It may have a procedure for reporting capabilities supported by the terminal to the base station.
- the base station may transmit a UE capability inquiry message requesting a capability report to a terminal in a connected state.
- the base station may include a UE capability request for each radio access technology (RAT) type.
- the request for each RAT type may include requested frequency band information.
- RAT radio access technology
- the UE capability inquiry message may request a plurality of RAT types in one RRC message container, or may transmit a plurality of UE capability inquiry messages including requests for each RAT type to the terminal. That is, the UE capability inquiry of step 505 may be repeated multiple times, and the UE may construct a corresponding UE capability information message and report it to the base station multiple times.
- a terminal capability request for MR-DC Multi-Radio-DC
- NR Long Term Evolution
- EN-DC E-UTRA-NR DC
- the UE capability inquiry message is generally sent during the process of establishing a DC connection by the terminal or after establishment is completed, but the base station can request it under any condition when necessary.
- the terminal receiving the UE capability report request from the base station may configure the terminal capability according to the RAT type and band information requested from the base station.
- a method for configuring UE capability by a UE may be as follows, for example.
- the terminal can configure a band combination (BC) for EN-DC and NR stand alone (SA). That is, BC candidate lists for EN-DC and NR SAs can be configured based on the bands requested by FreqBandList to the base station. In addition, bands have priorities in the order described in FreqBandList.
- BC band combination
- SA stand alone
- the NR SA BCs can be completely removed from the candidate list of BCs configured above. This can happen only when the LTE base station (eNB) requests “” capability.
- the terminal can remove fallback BCs from the candidate list of BCs configured in step 1 above.
- the fallback BC corresponds to a case where a band corresponding to at least one SCell is removed from a certain super set BC, and since the super set BC can already cover the fallback BC, it can be omitted.
- These 3 steps can also be applied to MR-DC. That is, LTE bands may also be applied.
- the remaining BCs after this 3rd step are the final “candidate BC list”.
- the UE can select BCs to report by selecting BCs suitable for the requested RAT type from the final “candidate BC list” above.
- the terminal can configure the supportedBandCombinationList in a predetermined order. That is, the terminal can configure the BC and UE capabilities to be reported according to the order of the rat-Type set in advance (nr -> eutra-nr -> eutra).
- a featureSetCombination for the configured supportedBandCombinationList can be configured, and a list of “candidate feature set combinations” can be configured in the candidate BC list from which the list for fallback BC (including capabilities of the same or lower level) is removed.
- the above "candidate feature set combination” includes both feature set combinations for NR and EUTRA-NR BC, and can be obtained from the feature set combination of the UE-NR-Capabilities and UE-MRDC-Capabilities containers.
- featureSetCombinations may be included in both containers of UE-MRDC-Capabilities and UE-NR-Capabilities.
- the feature set of NR may include only UE-NR-Capabilities.
- the UE may transmit a UE capability information message including the UE capabilities to the base station. Based on the terminal capabilities received from the terminal, the base station can then perform appropriate scheduling and transmission/reception management for the corresponding terminal.
- FIG. 6 is a diagram in which a terminal (eg, a multi-USIM UE) supporting a plurality of Universal Subscriber Identity Modules (USIMs) establishes an RRC connection mode (RRC_CONNECTED) with a base station associated with one USIM according to an embodiment of the present disclosure. It is a diagram showing that an operation related to another USIM is performed while being maintained.
- a terminal eg, a multi-USIM UE
- USIMs Universal Subscriber Identity Modules
- a multi-USIM terminal 601 may refer to a terminal supporting two or more USIMs.
- a dual-USIM terminal supporting two USIMs is considered, and the present disclosure is not limited thereto.
- a single-USIM terminal has a characteristic of transmitting or receiving a signal (or data) only to a base station associated with one USIM at a given time.
- a multi-USIM (eg, Dual-USIM) terminal can transmit or receive a signal from a base station associated with one USIM at a given time, or simultaneously transmit or receive signals from a base station associated with each USIM. has characteristics.
- a multi-USIM terminal 601 may mean a terminal supporting a plurality of USIMs in one device.
- the multi-USIM terminal may refer to a USIM 1 terminal 602 when operating in USIM 1 or a USIM 2 terminal 603 when operating in USIM 2.
- a base station associated with each USIM may recognize the multi-USIM terminal as one terminal instead of recognizing the multi-USIM terminal as one terminal.
- base station 1 604 may recognize USIM 1 terminal 602 as one terminal
- base station 2 605 may recognize USIM 2 terminal 603 as one terminal.
- the Multi-USIM terminal when a Multi-USIM terminal communicates using USIM 1, the Multi-USIM terminal is referred to as a USIM 1 terminal, and the Multi-USIM terminal uses USIM 2 In the case of communication, the Multi-USIM terminal will be referred to as a USIM 2 terminal. That is, the multi-USIM terminal may be a USIM 1 terminal or a USIM 2 terminal depending on which USIM among USIM 1 and USIM 2 is used.
- the USIM 1 terminal 602 may be in RRC connected mode (RRC_CONNECTED) by establishing an RRC connection with base station 1 604.
- the USIM 2 terminal 603 may be in an RRC idle mode (RRC_IDLE) or an RRC inactive mode (RRC_INACTIVE) by not establishing an RRC connection with base station 2 605.
- the USIM 1 terminal 602 may transmit a UE Capability Information message (UECapabilityInformation) to the base station 1 604.
- the terminal capability information message may include at least one of the following information. For reference, in this figure, for convenience of description, it is assumed that a multi-USIM terminal does not support an operation of maintaining two RRC connections, and the present disclosure is not limited thereto.
- base station 1 604 transmits a predetermined RRC message including configuration information (SwitchingGapReportingConfig) for the USIM1 terminal 602 to report preferred or necessary switching gap information for multi-USIM operation.
- the predetermined RRC message may mean an RRCReconfiguration message, an RRCResume message, or a new RRC message.
- the SwitchingGapReportingConfig may be stored in otherConfig.
- the SwitchingGapReportingConfig may be configuration information related to switching procedure without leaving RRC_CONNECTED state.
- the SwitchingGapReportingConfig may include at least one of the following.
- Base station 1 604 is an indicator or information element (eg, SetupRelease) indicating whether the USIM 1 terminal 602 may transmit preferred switching gap setting information while maintaining the RRC connection mode with base station 1 604
- indicator or information element eg, SetupRelease
- USIM 1 terminal 602 When base station 1 (604) sets or sets up the new prohibit timer value to USIM 1 terminal 602, USIM 1 terminal 602 performs a procedure for sending preferred switching gap setting information to base station 1 (604). When starting, a new timer may be driven with the new prohibit timer value, and a predetermined RRC message including preferred switching gap setting information may be transmitted to base station 1 (604).
- the USIM 2 terminal 603 may determine whether to perform a predetermined operation in the RRC idle mode or the RRC inactive mode.
- the predetermined operation is an operation of the USIM 2 terminal 603 related to base station 2 605, and may mean at least one of the following.
- ⁇ Operation 1 The USIM 2 terminal 603 does not perform an RRC connection establishment procedure or an RRC connection resume procedure with the base station 2 605, but the base station 2 605 transmits Receiving a signal or performing an internal operation of a USIM 2 terminal through reception. For example,
- ⁇ USIM 2 terminal 603 monitors a paging channel or short message associated with base station 2 605.
- the USIM2 terminal 603 may monitor a paging occasion for each Discontinuous Reception (DRX) cycle.
- DRX Discontinuous Reception
- ⁇ USIM 2 terminal 603 monitors to receive system information change notification associated with base station 2 1605.
- the USIM2 terminal 603 may monitor paging opportunities for each DRX cycle.
- the USIM 2 terminal 603 performs a cell selection or cell reselection evaluation procedure.
- the USIM 2 terminal may perform serving cell or neighbor cell measurement as part of a cell selection or cell reselection evaluation procedure.
- ⁇ Operation 2 The USIM 2 terminal 603 does not perform an RRC connection establishment procedure or an RRC connection resume procedure with the base station 2 605, but transmits and receives data with the base station 2 605. action to perform. For example,
- ⁇ USIM 2 terminal 603 requests on-demand system information to base station 2 605 or to obtain system information in an on-demand manner
- Operation 3 The USIM 2 terminal 603 in the RRC inactive mode performs an RRC connection resumption procedure with the base station 2 605 but fails to transition to the RRC connected mode. For example,
- the USIM 2 terminal 603 receives the RAN paging message transmitted by the base station 2 605, and the UE identifier (I-RNTI) indicating the USIM 2 terminal 603 is included in the received RAN paging message.
- the USIM 1 terminal 602 may have to continuously transmit and receive data with the base station 1 604.
- the USIM 2 terminal 603 may transmit to the base station 2 605 an RRCResumeRequest/1 message containing a busy indication indicating that it cannot respond to the LAN paging message received from the base station 2 605. For reference, busy indication can be stored in resumeCause.
- base station 2 605 may transmit an RRCReject or RRCRelease message to USIM 2 terminal 603.
- ⁇ Operation 4 The USIM 2 terminal 603 performs an RRC connection setup or resumption procedure with the base station 2 605 to transition to the RRC connected mode (this operation is not considered in this figure). For example,
- the aforementioned operation may be a periodic operation, an aperiodic operation, or a one-time operation.
- step 630 the USIM 2 terminal 603 may inform the USIM 1 terminal 602 of information required to perform the above-described operation in step 625 in the RRC idle mode or the RRC inactive mode. Meanwhile, step 630 may be implemented by the Multi-USIM terminal 601.
- the USIM 1 terminal 602 may transmit a predetermined RRC message containing configuration information (SwitchingGapConfigPreference) for one or a plurality of preferred switching gap patterns to the base station 1 604.
- the predetermined RRC message may mean UEAssistanceInformation or a new RRC message.
- USIM 1 terminal 602 may transmit a predetermined RRC message including SwitchingGapConfigPreference to base station 1 604 when at least one of the following conditions is satisfied.
- the SwitchingGapConfigPreference may mean setting information different from the measurement setting information (MeasConfig) of the above-described embodiment.
- one or a plurality of SwitchingGapConfigPreferences according to an embodiment of the present disclosure may differ from MeasGapConfig of the above-described embodiment as follows.
- SwitchingGapConfigPreference is switching gap setting information that the USIM 1 terminal 602 transmits to and requests from the base station 1 604 so that the USIM 2 terminal can perform the predetermined operation described above in step 630.
- SwitchingGapConfigPreference may include one or a plurality of preferred switching gap patterns according to the required operation in step 625.
- a unit of switching gap repetition periodicity, switching gap length, and switching gap timing advance may mean one of units representing time. For example, it may be ms, slot units, or subframe units.
- the switching gap offset may be indicated as one of the values from 0 to switching gap repetition periodicty - 1.
- base station 1 604 may transmit a predetermined RRC message containing one or a plurality of switching gap setting information (SwitchingGapConfig) based on SwitchingGapConfigPreference requested by USIM 1 terminal 602 in response to step 635.
- the predetermined RRC message may mean RRCReconfiguration or RRCResume or a new RRC message.
- base station 1 may include permissible (or set) information among the SwitchingGapConfigPreference received in step 640 in SwitchingGapConfig, or change (delta) some information and include it in SwitchingGapConfig.
- USIM 1 terminal 602 may transmit a predetermined RRC message to base station 1 604 in response to the predetermined RRC message received in step 640.
- the predetermined RRC message may mean RRCReconfigurationComplete or RRCResumeComplete or a new RRC message.
- the USIM 1 terminal 602 may determine whether one or a plurality of switching gaps occur through the SwitchingGapConfig received and applied in step 640. For example,
- One or a plurality of switching gap patterns indicated in the SwitchingGapConfig received in step 640 can be set up. Specifically, the first subframe and the SNF in which each switching gap occurs must satisfy the following condition 1 (the SFN can be based on the cell indicated by the PCell or refServCellIndicator).
- subframe switching gap offset mod 10
- T switching gap repetition periodicity/10 as defined in TS 38.133;
- Switching gap timing advance can be applied to gaps that occur when the above conditions are satisfied. That is, the terminal may apply a timing advance indicated in switching gap timing advance to a gap time point that occurs when the condition is satisfied. For example, the UE may start measurement as early as the switching gap timing advance before the gap subframe occurs.
- the constant value 10 may be fixed to another constant value, or may be set to a specific value by base station 1 (604) in step 640 or set to a requested value by USIM 1 terminal (602) in step 635.
- the USIM 2 terminal 603 may perform a predetermined operation as much as the switching length from the generation of the gap subframe.
- the USIM 2 terminal 603 may perform at least one of the above-described operations in step 625 during the switching gap length from the time when the switching gap occurs. At this time, USIM 1 terminal 602 maintains an RRC connection mode with base station 1 604.
- FIG. 7a and 7b are diagrams illustrating method 1 in which a MUSIM-supporting terminal supports DC and CA while maintaining two RRC connection states as an embodiment 1 proposed in the present disclosure.
- the terminal when the terminal transmits the terminal capability to the base station, it is characterized by transmitting a separate terminal capability to maintain DC and CA while maintaining two RRC connection states.
- a multi-USIM terminal 701 may refer to a terminal supporting two or more USIMs.
- a dual-USIM terminal supporting two USIMs is considered, and the present disclosure is not limited thereto.
- a single-USIM terminal has a characteristic of transmitting or receiving a signal (or data) only to a base station associated with one USIM at a given time.
- a multi-USIM (eg, Dual-USIM) terminal can transmit or receive a signal from a base station associated with one USIM at a given time, or simultaneously transmit or receive signals from a base station associated with each USIM. has characteristics.
- a multi-USIM terminal 701 may mean a terminal supporting a plurality of USIMs in one device.
- the multi-USIM terminal may refer to a USIM 1 terminal 702 when operating in USIM 1 or a USIM 2 terminal 703 when operating in USIM 2.
- a base station associated with each USIM may recognize the multi-USIM terminal as one terminal instead of recognizing the multi-USIM terminal as one terminal.
- base station 1 704 may recognize USIM 1 terminal 702 as one terminal
- base station 2 705 may recognize USIM 2 terminal 703 as one terminal.
- the multi-USIM terminal when a multi-USIM terminal communicates using USIM 1, the multi-USIM terminal is referred to as a USIM 1 terminal, and the multi-USIM terminal communicates using USIM 2 In this case, the Multi-USIM terminal is referred to as a USIM 2 terminal. That is, the multi-USIM terminal may be a USIM 1 terminal or a USIM 2 terminal depending on which USIM among USIM 1 and USIM 2 is used. This can be equally applied to FIG. 8 .
- the USIM 1 terminal 702 may establish an RRC connection with base station 1 704 to be in RRC connected mode (RRC_CONNECTED).
- the USIM 2 terminal 703 may be in an RRC idle mode (RRC_IDLE) or an RRC inactive mode (RRC_INACTIVE) by not establishing an RRC connection with base station 2 705.
- base station 1 704 may request terminal capability information from USIM 1 terminal 702.
- the corresponding UECapabilityEnquiry message may include at least one of RAT type information, band information, and filtering information applied as a restriction of UE capability.
- step 720 the terminal receives the terminal capability according to the received terminal capability request and transfers it to the base station.
- step 720 when the terminal can perform dual connectivity (hereinafter referred to as DC) and carrier aggregation (hereinafter referred to as CA) while maintaining a connection state to two base stations through Multi-USIM, the terminal capability can be delivered to the base station.
- DC dual connectivity
- CA carrier aggregation
- This embodiment is characterized in that the UE capability of the new structure is additionally delivered separately from the UE capability report in the existing band combination supporting DC and CA. That is, even in the same band combination (band combination, BC), the terminal capability when operating in the existing DC and CA, and DC and CA operations while maintaining a connection state to two base stations through Multi-USIM in the corresponding band combination Since the capabilities of the terminal at the time of execution may vary, the terminal may distinguish and report them.
- the UE capability for the corresponding UE may be indicated in Featuresetccombination associated with the corresponding band combination.
- the terminal capability when performing DC and CA operations while maintaining a connection state to two base stations through Multi-USIM can be configured by introducing a new featuresetcombination (e.g. FeaturesetcombinationMUSIM).
- a new featuresetcombination e.g. FeaturesetcombinationMUSIM.
- FeaturesetcombinationMUSIM may be a subset of Featuresetcombination or a fallback capability set.
- the base station receives the corresponding terminal capability, and simultaneously knows whether the terminal can perform DC and CA operations while maintaining a connection state to two base stations through Multi-USIM and with what capability it operates. ability to support.
- base station 1 may transmit RRC reset considering the terminal capability to the USIM 1 terminal, and in step 725, DC or CA configuration and at the same time, the connection state to the two base stations through Multi-USIM that meets the terminal capability It may indicate that DC or CA operation can be set while maintaining. Meanwhile, the indication operation may be omitted, and may be implicitly implemented through RRC configuration.
- the terminal receiving the RRCReconfiguration configuration may transmit an RRCReconfigurationComplete message in response thereto.
- base station 2 705 may generate and transmit paging to the USIM 2 terminal for reasons such as downlink data generation. That is, an RRC connection procedure may be requested from the USIM 2 terminal.
- step 735 in addition to paging, any one of operations 1 to 4 described in step 625 may be performed.
- the USIM 2 terminal may confirm that an RRC connection to base station 2 is required and determine a MUSIM operation.
- the USIM 2 terminal may transmit to the USIM 1 terminal a request to attempt an RRC connection to base station 2. This may be through a standardized interface, but may be delivered through an implementation-defined message.
- the USIM 1 terminal knows that the USIM 2 terminal will attempt an RRC connection to base station 2 through the above procedure, and informs base station 1 that it may need to change DC and CA settings due to a change in terminal capability.
- the USIM 1 terminal may transmit an indicator indicating that the MUSIM operation is performed through a UEAssistanceInformation message or a new uplink RRC message.
- a cause value indicating that the MUSIM operation starts may be delivered.
- the terminal may operate a prohibit timer. Meanwhile, the actual expiration value of the prohibit timer may be set by the base station in step 725.
- base station 1 may determine what setting to configure for the terminal, and accordingly, transmit an RRC reset.
- the base station may transmit settings that are changed by reflecting FeaturesetcombinationMUSIM for a band combination that operates as requested by the terminal, or may release DC and CA settings.
- the terminal may receive RRC configuration from base station 1 and transmit an RRCReconfigurationComplete message to stop the prohibit timer in operation and apply the configuration.
- RRCReconfigurationComplete message to stop the prohibit timer in operation and apply the configuration.
- the USIM 2 terminal may perform an RRC connection procedure as a subsequent operation to the paging from base station 2 in step 735.
- USIM 2 terminal and base station 2 may transmit and receive data in an RRC connection state, and in step 780, RRC connection release is instructed and an RRC release operation may be performed.
- the USIM 2 terminal may inform the USIM 1 terminal that the RRC connection with the base station 2 is released. This is to allow the USIM 1 terminal to transmit the corresponding information to the base station 1 so that it can be provided with a service change (790).
- the instruction from the USIM 1 terminal to the base station 1 in step 790 may be performed through a new RRC message or may be indicated through a UEAssistanceInformation message. Alternatively, a new MAC CE may be introduced and indicated.
- base station 1 having received the message may deliver a response message to the terminal.
- the response message may be a new RRC message, explicitly delivered as an RRCReconfiguration message, or implicitly transmitted after changing the RRC reconfiguration.
- step 799 base station 1 determines that the terminal has been restored to static UE capability (a state in which FeaturesetcombinationMUSIM was applied has changed to a state in which Featuresetcombination is applied), and can operate accordingly.
- the terminal may explicitly request cancellation of the terminal capability change as in step 790 above, other cases where the base station can check the temporary capability change of the terminal may be as follows. Meanwhile, the following conditions may be simultaneously applied and applied to the terminal.
- a separate timer is provided to set the maintenance period of the changed terminal capability (FeaturesetcombinationMUSIM) of the terminal, and when the timer expires (the timer may be included in the RRC reconfiguration setting delivered to the terminal, also depending on the situation).
- Multiple timers can be set, for example, different timers can be set when the reason for the temporary UE capacity limitation (cause value) is different, and different values are set for each UE in the RRC connected state, IDLE state, and INACITVE state. can be set). if.
- the timer the terminal wants to extend may be requested by a method such as UE Assistance Information, a new RRC message, or a MAC CE.
- 8a and 8b are diagrams illustrating method 2 in which a MUSIM-supporting terminal supports DC and CA while maintaining two RRC connection states, as embodiment 2 proposed in the present disclosure.
- the terminal when the terminal transmits the terminal capability to the base station, while maintaining two RRC connection states, in addition to the procedure of transmitting the existing terminal capability to maintain DC and CA, the terminal capability that is temporarily changed to the base station characterized by transmission.
- USIM 1 terminal 802 may establish an RRC connection with base station 1 804 and be in RRC connected mode (RRC_CONNECTED).
- the USIM 2 terminal 803 may be in an RRC idle mode (RRC_IDLE) or an RRC inactive mode (RRC_INACTIVE) by not establishing an RRC connection with base station 2 803.
- base station 1 804 may request terminal capability information from USIM 1 terminal 802.
- the corresponding UECapabilityEnquiry message may include at least one of RAT type information, band information, and filtering information applied as a restriction of UE capability.
- the terminal receives the terminal capability according to the received terminal capability request and transfers it to the base station.
- the terminal when the terminal can perform DC and CA operations while maintaining a connection state to two base stations through Multi-USIM, the corresponding terminal capability can be delivered to the base station.
- This may be a 1-bit indicator, and may be signaled for each terminal or signaled and delivered for each band and band combination.
- an indicator is added in the procedure for transmitting the UE capabilities, and when an actual MUSIM operation is performed, the base station is requested to change the temporary UE capabilities.
- base station 1 may transmit RRC reset considering the terminal capabilities to the USIM 1 terminal, and in step 825, DC or CA configuration and simultaneously connected to two base stations through Multi-USIM that meets the terminal capabilities It may indicate that DC and CA operations can be set while maintaining. Meanwhile, the indication operation may be omitted, and may be implicitly implemented through RRC configuration.
- step 830 the terminal receiving the RRCReconfiguration configuration may transmit an RRCReconfigurationComplete message in response thereto.
- base station 2 (805) can generate and transmit paging to the USIM 2 terminal for reasons such as downlink data generation. That is, an RRC connection procedure may be requested from the USIM 2 terminal.
- any one of operations 1 to 4 described in operation 625 may be performed in addition to paging.
- the USIM 2 terminal may confirm that an RRC connection to base station 2 is required and determine a MUSIM operation.
- the USIM 2 terminal may transmit to the USIM 1 terminal a request to attempt an RRC connection to base station 2. This may be through a standardized interface, but may be delivered through an implementation-defined message.
- the USIM 1 terminal knows that the USIM 2 terminal will attempt an RRC connection to base station 2 through the above procedure, and informs base station 1 that it may need to change DC and CA settings due to a change in terminal capability.
- the USIM 1 terminal may transmit an indicator indicating that MUSIM operation is performed or a cause value indicating that MUSIM operation starts in step 850 through a UEAssistanceInformation message or a new uplink RRC message.
- an indicator indicating that MUSIM operation is performed or a cause value indicating that MUSIM operation starts in step 850 through a UEAssistanceInformation message or a new uplink RRC message.
- band and band combination information that the terminal wants to temporarily change may include at least one.
- the terminal may operate a prohibit timer. The actual expiration value of the prohibit timer may be set by the base station in step 825.
- base station 1 may determine what setting to be configured for the terminal based on the information requested by the terminal through the UEAssistanceInformation message or the new uplink RRC message in step 850, and accordingly, the RRC reset may be transmitted.
- the base station may transmit the changed setting by reflecting the requested information to the band combination that operates as requested by the terminal, or may release the DC and CA settings.
- the terminal may receive the RRC configuration from base station 1 and transmit an RRCReconfigurationComplete message to stop the prohibit timer in operation and apply the configuration.
- RRCReconfigurationComplete message to stop the prohibit timer in operation and apply the configuration.
- the USIM 2 terminal may perform an RRC connection procedure as a subsequent operation to the paging from base station 2 in step 835.
- the USIM 2 terminal and base station 2 may transmit and receive data in an RRC connected state.
- step 880 RRC connection release is instructed and an RRC release operation may be performed.
- the USIM 2 terminal may inform the USIM 1 terminal that the RRC connection with the base station 2 is released. This is to allow the USIM 1 terminal to transmit the corresponding information to the base station 1 so that it can be provided with a service change (step 890).
- the instruction from the USIM 1 terminal to the base station 1 in step 890 may be performed through a new RRC message or may be indicated through a UEAssistanceInformation message.
- a new MAC CE may be introduced and indicated.
- base station 1 having received the message may deliver a response message to the terminal.
- the response message may be a new RRC message, explicitly delivered as an RRCReconfiguration message, or implicitly transmitted after changing the RRC reconfiguration.
- step 899 base station 1 determines that the terminal has been restored to static UE capability (the situation in which the temporary terminal capability change was applied has changed to the situation in which the original Featuresetccombination is applied), and can operate accordingly.
- the terminal may explicitly request release of the temporary terminal capability change as in step 890, other cases where the base station can check the temporary capability change of the terminal may be as follows. Meanwhile, the following conditions may be simultaneously applied and applied to the terminal.
- a separate timer is provided to set the maintenance period of the terminal's temporary capability restriction, and when the timer expires (the timer may be included in the RRC reconfiguration setting delivered to the terminal. Also, depending on the situation, a plurality of timers may be set. For example, different timers may be set when the reason for the temporary UE capability limitation (cause value) is different, or different values may be set for each UE in the RRC connected state, IDLE state, and INACITVE state. can). If the terminal requests an extension of the set timer value, the terminal may request the timer it wants to extend using a method such as UE Assistance Information, a new RRC message, or a MAC CE.
- a method such as UE Assistance Information, a new RRC message, or a MAC CE.
- FIGS. 9a and 9b are diagrams illustrating overall operations of requesting a temporary terminal capability change by a MUSIM-supporting USIM 1 terminal proposed in the present disclosure.
- the USIM 1 terminal in the RRC-connected state receives the terminal capability report request in step 905 and may receive the terminal capability and transmit it to the base station.
- Embodiment 1 and Embodiment 2 have different characteristics.
- specific UE capability information supporting DC and CA may be provided for each band combination while maintaining two RRC connection states through MUSIM. .
- an indicator supporting a corresponding function may be transmitted.
- RRC configuration is received from the base station, and this message may include whether or not the base station supports two RRC connections for a plurality of USIM terminals.
- the USIM 1 terminal may recognize that it should attempt to connect to another network through the USIM 2 terminal.
- step 920 the USIM 1 terminal informs the base station connected to it that the MUSIM operation can be performed. That is, in step 920, the terminal implicitly requests a change in the terminal capability through an indicator or cause value in the first embodiment, and specific change request information may be transmitted to the base station in the second embodiment. Meanwhile, a method of transmitting the information may be a UEAssistanceInformation message, a new RRC message, or a new MAC CE.
- the USIM 1 terminal receives the RRC configuration from the base station, and the operation may vary depending on whether the DC and CA configurations are maintained or included in the corresponding configuration.
- step 930 when DC and CA settings are included in the RRC settings, the USIM 1 terminal may apply DC and CA operations according to the settings in step 935 and operate according to the changed RRC settings.
- the USIM 1 terminal may receive information that RRC connection release with the network to which the USIM 2 terminal is connected has been performed.
- the USIM 1 terminal can inform the base station connected to it that the USIM 2 terminal has released the RRC connection.
- the USIM 1 terminal may receive a response message from the base station and operate accordingly. Meanwhile, the response message may be an RRC reset message or a new RRC message. Alternatively, when the USIM 1 terminal does not receive information indicating that the RRC connection with the network to which the USIM 2 terminal has been connected has been released, in step 955, the previous configuration may be maintained and data transmission/reception may be performed.
- step 930 when the DC and CA settings are released in the RRC settings, the terminal may release DC and CA according to the settings and transmit and receive data.
- FIG. 10 is a diagram illustrating overall operations when a USIM 2 terminal in an IDLE or INACTIVE state proposed in the present disclosure performs a MUSIM operation.
- step 1005 the USIM 2 terminal in the RRC IDLE state or the RRC INACTIVE state receives paging from a camped-on network and knows that an RRC connection procedure needs to be established.
- the USIM 2 terminal may instruct the USIM 1 terminal that MUSIM operation is required. That is, it informs that it needs to connect to a new network.
- step 1015 it is possible to establish an RRC connection procedure with a corresponding network after a specific time has elapsed or after receiving a confirm message from the USIM 1 terminal.
- the USIM 2 terminal may receive an RRC release message.
- step 1025 if an RRC release message is received, the RRC connection is released, and in step 1030, the USIM 1 terminal is notified of this.
- the USIM 2 terminal may transmit and receive data in an RRC connection state.
- 11a and 11b are diagrams illustrating overall operations of a base station supporting MUSIM operation proposed in the present disclosure.
- UE capability may be received from a UE in an RRC connected state.
- the base station determines whether or not the corresponding terminal supports MUSIM operation through the received terminal capabilities, DC and CA operations are possible in two RRC connected states (Example 2) and specific terminal capability information in the corresponding situation. can be received (Embodiment 1 or Embodiment 2).
- the base station may deliver the setting considering the terminal capability to the terminal in step 1115.
- the setting is transmitted to the terminal through an RRC setting message. can do it
- information that the base station supports the function of maintaining DC and CA operations in two RRC connected states may be delivered to the terminal through the corresponding RRC configuration message.
- the base station receives an indicator (Embodiment 1) or a temporary UE capability change request (Embodiment 2) indicating that the connected terminal and the terminal operating in MUSIM will attempt a connection procedure to another network.
- an indicator Embodiment 1
- a temporary UE capability change request Embodiment 2
- the base station may determine whether to maintain DC and CA operations for the terminal in the current RRC connected state. If it is determined to maintain the DC and CA operation, in step 1130, the base station may maintain the DC and CA settings of the terminal according to the reported terminal capability and the terminal request information, and transmit an RRC reset. If it is determined not to maintain the DC and CA operations, the RRC settings may be transmitted by releasing the DC and CA settings for the terminal in the connected state.
- RRC setting (or resetting) by preventing DC and CA settings from being set at the same time during MUSIM operation can be delivered to the terminal.
- FIG. 12 is a diagram illustrating a block configuration of a terminal according to an embodiment of the present disclosure.
- a terminal includes a transceiver 1205, a control unit 1210, a multiplexing and demultiplexing unit 1215, various upper layer processing units 1220 and 1225, and a control message processing unit. (1230).
- the transceiver 1205 receives data and a predetermined control signal through a forward channel of the serving cell and transmits data and a predetermined control signal through a reverse channel. When a plurality of serving cells are configured, the transceiver 1205 transmits and receives data and control signals through the plurality of serving cells.
- the multiplexing and demultiplexing unit 1215 multiplexes the data generated by the upper layer processing units 1220 and 1225 or the control message processing unit 1230 or demultiplexes the data received from the transceiving unit 1205, so that the appropriate upper layer processing unit 1220, 1225) or control message processor 1230.
- the control message processing unit 1230 transmits and receives a control message from the base station and takes necessary actions.
- the upper layer processing units 1220 and 1225 refer to DRB devices and may be configured for each service.
- Data generated from user services such as FTP (File Transfer Protocol) or VoIP (Voice over Internet Protocol) are processed and transmitted to the multiplexing and demultiplexing unit 1215, or the data transmitted from the multiplexing and demultiplexing unit 1215 is processed. It is processed and passed to the service application of the upper layer.
- the controller 1210 checks scheduling commands received through the transceiver 1205, for example, reverse grants, and performs reverse transmission at an appropriate time with appropriate transmission resources. 1215) to control.
- the terminal is composed of a plurality of blocks and each block performs different functions, but this is only one embodiment and is not necessarily limited thereto.
- the controller 1210 itself may perform the function performed by the demultiplexer 1215.
- FIG. 13 is a diagram illustrating a block configuration of a base station according to an embodiment of the present disclosure.
- the base station device of FIG. 13 may include a transceiver 1305, a control unit 1310, a multiplexer and demultiplexer 1320, a control message processor 1335, various upper layer processors 1325 and 1330, and a scheduler 1315.
- the transceiver 1305 transmits data and a predetermined control signal through a forward carrier and receives data and a predetermined control signal through a reverse carrier. When multiple carriers are configured, the transceiver 1305 transmits and receives data and control signals through the multiple carriers.
- the multiplexing and demultiplexing unit 1320 multiplexes data generated by the upper layer processing units 1325 and 1330 or the control message processing unit 1335 or demultiplexes the data received from the transceiving unit 1305, so that the appropriate upper layer processing unit 1325, 1330), the control message processor 1335, or the controller 1310.
- the control message processing unit 1335 receives instructions from the control unit, generates a message to be delivered to the terminal, and delivers it to a lower layer.
- the upper layer processing units 1325 and 1330 may be configured for each terminal and service, process data generated from user services such as FTP and VoIP, and deliver the data to the multiplexing and demultiplexing unit 1320 or the multiplexing and demultiplexing unit 1320. ) and transfers it to the service application of the upper layer.
- the scheduler 1315 allocates transmission resources to the terminal at an appropriate time in consideration of the terminal's buffer status, channel status, and active time of the terminal, and processes the signal transmitted by the terminal to the transceiver or transmits the signal to the terminal. do.
- the methods proposed in the present disclosure may be executed by combining some or all of the contents included in each embodiment within the scope of not spoiling the essence of the present disclosure.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Databases & Information Systems (AREA)
- Computer Security & Cryptography (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
본 개시는 보다 높은 데이터 전송률을 지원하기 위한 5G 또는 6G 통신 시스템에 관련된 것이다. 본 개시의 다양한 실시예들에 따르면, 복수의 유심을 지원하는 단말이 두 개의 네트워크와 RRC 연결 설정을 유지하면서, 하나의 네트워크에 설정되어 있는 Dual connectivity와 관련된 동작도 수행할 수 있도록 지원할 수 있다.
Description
본 개시는 이동 통신 시스템에서 단말 및 기지국의 동작에 관한 것이다. 보다 구체적으로, 본 개시는 복수의 USIM(universal subscriber identity module)을 지원하는 단말(예를 들어, Multi-USIM UE)의 단말 능력 협상(UE capability negotiation) 방법 및 장치에 관한 것이다.
5G 이동통신 기술은 빠른 전송 속도와 새로운 서비스가 가능하도록 넓은 주파수 대역을 정의하고 있으며, 3.5 기가헤르츠(3.5GHz) 등 6GHz 이하 주파수('Sub 6GHz') 대역은 물론 28GHz와 39GHz 등 밀리미터파(㎜Wave)로 불리는 초고주파 대역('Above 6GHz')에서도 구현이 가능하다. 또한, 5G 통신 이후(Beyond 5G)의 시스템이라 불리어지는 6G 이동통신 기술의 경우, 5G 이동통신 기술 대비 50배 빨라진 전송 속도와 10분의 1로 줄어든 초저(Ultra Low) 지연시간을 달성하기 위해 테라헤르츠(Terahertz) 대역(예를 들어, 95GHz에서 3 테라헤르츠(3THz) 대역과 같은)에서의 구현이 고려되고 있다.
5G 이동통신 기술의 초기에는, 초광대역 서비스(enhanced Mobile BroadBand, eMBB), 고신뢰/초저지연 통신(Ultra-Reliable Low-Latency Communications, URLLC), 대규모 기계식 통신 (massive Machine-Type Communications, mMTC)에 대한 서비스 지원과 성능 요구사항 만족을 목표로, 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위한 빔포밍(Beamforming) 및 거대 배열 다중 입출력(Massive MIMO), 초고주파수 자원의 효율적 활용을 위한 다양한 뉴머롤로지 지원(복수 개의 서브캐리어 간격 운용 등)와 슬롯 포맷에 대한 동적 운영, 다중 빔 전송 및 광대역을 지원하기 위한 초기 접속 기술, BWP(Band-Width Part)의 정의 및 운영, 대용량 데이터 전송을 위한 LDPC(Low Density Parity Check) 부호와 제어 정보의 신뢰성 높은 전송을 위한 폴라 코드(Polar Code)와 같은 새로운 채널 코딩 방법, L2 선-처리(L2 pre-processing), 특정 서비스에 특화된 전용 네트워크를 제공하는 네트워크 슬라이싱(Network Slicing) 등에 대한 표준화가 진행되었다.
현재, 5G 이동통신 기술이 지원하고자 했던 서비스들을 고려하여 초기의 5G 이동통신 기술 개선(improvement) 및 성능 향상(enhancement)을 위한 논의가 진행 중에 있으며, 차량이 전송하는 자신의 위치 및 상태 정보에 기반하여 자율주행 차량의 주행 판단을 돕고 사용자의 편의를 증대하기 위한 V2X(Vehicle-to-Everything), 비면허 대역에서 각종 규제 상 요구사항들에 부합하는 시스템 동작을 목적으로 하는 NR-U(New Radio Unlicensed), NR 단말 저전력 소모 기술(UE Power Saving), 지상 망과의 통신이 불가능한 지역에서 커버리지 확보를 위한 단말-위성 직접 통신인 비 지상 네트워크(Non-Terrestrial Network, NTN), 위치 측위(Positioning) 등의 기술에 대한 물리계층 표준화가 진행 중이다.
뿐만 아니라, 타 산업과의 연계 및 융합을 통한 새로운 서비스 지원을 위한 지능형 공장 (Industrial Internet of Things, IIoT), 무선 백홀 링크와 액세스 링크를 통합 지원하여 네트워크 서비스 지역 확장을 위한 노드를 제공하는 IAB(Integrated Access and Backhaul), 조건부 핸드오버(Conditional Handover) 및 DAPS(Dual Active Protocol Stack) 핸드오버를 포함하는 이동성 향상 기술(Mobility Enhancement), 랜덤액세스 절차를 간소화하는 2 단계 랜덤액세스(2-step RACH for NR) 등의 기술에 대한 무선 인터페이스 아키텍쳐/프로토콜 분야의 표준화 역시 진행 중에 있으며, 네트워크 기능 가상화(Network Functions Virtualization, NFV) 및 소프트웨어 정의 네트워킹(Software-Defined Networking, SDN) 기술의 접목을 위한 5G 베이스라인 아키텍쳐(예를 들어, Service based Architecture, Service based Interface), 단말의 위치에 기반하여 서비스를 제공받는 모바일 엣지 컴퓨팅(Mobile Edge Computing, MEC) 등에 대한 시스템 아키텍쳐/서비스 분야의 표준화도 진행 중이다.
이와 같은 5G 이동통신 시스템이 상용화되면, 폭발적인 증가 추세에 있는 커넥티드 기기들이 통신 네트워크에 연결될 것이며, 이에 따라 5G 이동통신 시스템의 기능 및 성능 강화와 커넥티드 기기들의 통합 운용이 필요할 것으로 예상된다. 이를 위해, 증강현실(Augmented Reality, AR), 가상현실(Virtual Reality, VR), 혼합 현실(Mixed Reality, MR) 등을 효율적으로 지원하기 위한 확장 현실(eXtended Reality, XR), 인공지능(Artificial Intelligence, AI) 및 머신러닝(Machine Learning, ML)을 활용한 5G 성능 개선 및 복잡도 감소, AI 서비스 지원, 메타버스 서비스 지원, 드론 통신 등에 대한 새로운 연구가 진행될 예정이다.
또한, 이러한 5G 이동통신 시스템의 발전은 6G 이동통신 기술의 테라헤르츠 대역에서의 커버리지 보장을 위한 신규 파형(Waveform), 전차원 다중입출력(Full Dimensional MIMO, FD-MIMO), 어레이 안테나(Array Antenna), 대규모 안테나(Large Scale Antenna)와 같은 다중 안테나 전송 기술, 테라헤르츠 대역 신호의 커버리지를 개선하기 위해 메타물질(Metamaterial) 기반 렌즈 및 안테나, OAM(Orbital Angular Momentum)을 이용한 고차원 공간 다중화 기술, RIS(Reconfigurable Intelligent Surface) 기술 뿐만 아니라, 6G 이동통신 기술의 주파수 효율 향상 및 시스템 네트워크 개선을 위한 전이중화(Full Duplex) 기술, 위성(Satellite), AI(Artificial Intelligence)를 설계 단계에서부터 활용하고 종단간(End-to-End) AI 지원 기능을 내재화하여 시스템 최적화를 실현하는 AI 기반 통신 기술, 단말 연산 능력의 한계를 넘어서는 복잡도의 서비스를 초고성능 통신과 컴퓨팅 자원을 활용하여 실현하는 차세대 분산 컴퓨팅 기술 등의 개발에 기반이 될 수 있을 것이다.
복수의 유심을 지원하는 단말이 두 개의 네트워크와 RRC 연결 설정을 유지하면서, 하나의 네트워크에 설정되어 있는 Dual connectivity와 관련된 동작도 수행하고자 하는 경우, 각 네트워크에 해당 단말 능력을 정확하게 전달할 수 있는 방법이 고안될 필요가 있다.
상기와 같은 문제점을 해결하기 위한 본 개시는 제1 유심 및 제2 유심을 포함하는 단말의 방법에 있어서, 제1 기지국으로 복수 유심 (multi universal subscriber identify module, MUSIM) 동작 지원 여부에 관한 정보를 포함하는 단말 능력 정보 메시지를 송신하는 단계; 상기 단말의 능력 정보 메시지에 기반하여, 상기 제1 기지국으로부터, 상기 제1 기지국의 상기 MUSIM 동작 지원 여부에 관한 정보를 포함하는 RRC(radio resource control) 메시지를 수신하는 단계; 제2 기지국으로부터 페이징(paging) 메시지를 수신하는 단계; 및 상기 페이징 메시지에 기반하여 상기 MUSIM 동작을 수행하는 것을 특징으로 하며, 상기 MUSIM 동작은 상기 제1 유심은 상기 제1 기지국과 dual connectivity (DC) 또는 Carrier aggregation(CA) 연결을 유지하면서, 상기 제2 유심은 상기 제2 기지국과 RRC 연결을 수행하는 것을 포함하는 것을 특징으로 한다.
상기와 같은 문제점을 해결하기 위한 본 개시는 무선 통신 시스템에서 복수 유심(multi universal subscribe identify module, MUSIM) 동작을 지원하는 제1 기지국의 방법에 있어서, 단말로부터 상기 단말의 MUSIM 동작 지원 여부에 관한 정보를 포함하는 단말 능력 정보 메시지를 수신하는 단계; 상기 상기 단말의 능력 정보 메시지에 기반하여 상기 제1 기지국의 상기 MUSIM 동작 지원 여부에 관한 정보를 포함하는 RRC(radio resource control) 메시지를 생성하는 단계; 상기 RRC 메시지를 송신하는 단계를 포함하며, 상기 단말은 상기 제1 유심 및 제2 유심을 포함하며, 상기 MUSIM 동작은 상기 제1 유심은 상기 제1 기지국과 dual connectivity (DC) 또는 Carrier aggregation(CA) 연결을 유지하면서, 상기 제2 유심은 상기 제2 기지국과 RRC 연결을 수행하는 것을 포함하는 것을 특징으로 한다.
상기와 같은 문제점을 해결하기 위한 본 개시는 제1 유심 및 제2 유심을 포함하는 단말에 있어서, 신호를 송수신 하는 송수신부; 및 제어부를 포함하며, 상기 제어부는 제1 기지국으로 복수 유심 (multi universal subscriber identify module, MUSIM) 동작 지원 여부에 관한 정보를 포함하는 단말 능력 정보 메시지를 송신하고, 상기 단말의 능력 정보 메시지에 기반하여, 상기 제1 기지국으로부터, 상기 제1 기지국의 상기 MUSIM 동작 지원 여부에 관한 정보를 포함하는 RRC(radio resource control) 메시지를 수신하며, 제2 기지국으로부터 페이징(paging) 메시지를 수신하고, 상기 페이징 메시지에 기반하여 상기 MUSIM 동작을 수행하도록 제어하며, 상기 MUSIM 동작은 상기 제1 유심은 상기 제1 기지국과 dual connectivity (DC) 또는 Carrier aggregation(CA) 연결을 유지하면서, 상기 제2 유심은 상기 제2 기지국과 RRC 연결을 수행하는 것을 포함하는 것을 특징으로 한다.
상기와 같은 문제점을 해결하기 위하여 본 개시는, 무선 통신 시스템에서 복수 유심(multi universal subscribe identify module, MUSIM) 동작을 지원하는 제1 기지국에 있어서, 신호를 송수신 하는 송수신부; 및 제어부를 포함하며, 상기 제어부는 단말로부터 상기 단말의 MUSIM 동작 지원 여부에 관한 정보를 포함하는 단말 능력 정보 메시지를 수신하고, 상기 상기 단말의 능력 정보 메시지에 기반하여 상기 제1 기지국의 상기 MUSIM 동작 지원 여부에 관한 정보를 포함하는 RRC(radio resource control) 메시지를 생성하며, 상기 RRC 메시지를 송신하도록 제어하며, 상기 단말은 상기 제1 유심 및 제2 유심을 포함하고, 상기 MUSIM 동작은 상기 제1 유심은 상기 제1 기지국과 dual connectivity (DC) 또는 Carrier aggregation(CA) 연결을 유지하면서, 상기 제2 유심은 상기 제2 기지국과 RRC 연결을 수행하는 것을 포함하는 것을 특징으로 한다.
본 개시의 다양한 실시예들을 통해 제안되는 단말 능력 전달 및 협상 방법에 따르면, 복수의 유심을 지원하는 단말이 두 개의 네트워크와 RRC 연결 설정을 유지하면서, 하나의 네트워크에 설정되어 있는 Dual connectivity와 관련된 동작도 수행할 수 있도록 지원할 수 있다.
도 1은 본 개시가 적용될 수 있는 LTE(long term evolution) 시스템의 구조를 도시한 도면이다.
도 2는 본 개시가 적용될 수 있는 LTE 시스템에서의 무선 프로토콜 구조를 도시한 도면이다.
도 3은 본 개시가 적용될 수 있는 차세대 이동통신 시스템의 구조를 도시한 도면이다.
도 4는 본 개시가 적용될 수 있는 차세대 이동통신 시스템의 무선 프로토콜 구조를 도시한 도면이다.
도 5는 본 개시가 적용될 수 있는 NR(new radio) 시스템에서의 단말 능력(capability)을 보고하는 메시지 구조를 도시한 도면이다.
도 6은 본 개시의 일 실시 예에 따라 복수 개의 USIM을 지원하는 단말(Multi-USIM UE)이 하나의 USIM에 연관된 기지국과 RRC 연결 모드(RRC_CONNECTED)를 유지한 채 다른 USIM에 연관된 동작을 수행하는 것을 도시한 도면이다.
도 7a는 본 개시에서 제안하는 실시 예 1로써, MUSIM 지원 단말이 두 개의 RRC 연결 상태를 유지하면서, DC(dual connectivity) 및 CA(carrier aggregation)를 지원하는 방법 1을 도시한 도면이다.
도 7b는 본 개시에서 제안하는 실시 예 1로써, MUSIM 지원 단말이 두 개의 RRC 연결 상태를 유지하면서, DC(dual connectivity) 및 CA(carrier aggregation)를 지원하는 방법 1을 도시한 도면이다.
도 8a는 본 개시에서 제안하는 실시 예 2로써, MUSIM 지원 단말이 두 개의 RRC 연결 상태를 유지하면서, DC 및 CA를 지원하는 방법 2를 도시한 도면이다.
도 8b는 본 개시에서 제안하는 실시 예 2로써, MUSIM 지원 단말이 두 개의 RRC 연결 상태를 유지하면서, DC 및 CA를 지원하는 방법 2를 도시한 도면이다.
도 9a는 본 개시에서 제안하는 MUSIM 지원 USIM 1 단말이 일시적 단말 능력 변경을 요청하는 전체 동작을 도시한 도면이다.
도 9b는 본 개시에서 제안하는 MUSIM 지원 USIM 1 단말이 일시적 단말 능력 변경을 요청하는 전체 동작을 도시한 도면이다.
도 10은 본 개시에서 제안하는 IDLE 혹은 INACTIVE 상태의 USIM 2 단말이 MUSIM 동작을 수행할 때의 전체 동작을 도시한 도면이다.
도 11a는 본 개시에서 제안하는 단말의 일시적 단말 능력 변경을 수신한 기지국의 전체 동작을 도시한 도면이다.
도 11b는 본 개시에서 제안하는 단말의 일시적 단말 능력 변경을 수신한 기지국의 전체 동작을 도시한 도면이다.
도 12는 본 개시의 실시예에 따른 단말의 블록 구성을 도시한 도면이다.
도 13은 본 개시의 실시예에 따른 기지국의 블록 구성을 도시한 도면이다.
이하 첨부된 도면을 참조하여 본 개시의 동작 원리를 상세히 설명한다. 하기에서 본 개시를 설명하기에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 개시의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 개시에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 이하 설명에서 사용되는 접속 노드(node)를 식별하기 위한 용어, 망 객체(network entity)들을 지칭하는 용어, 메시지들을 지칭하는 용어, 망 객체들 간 인터페이스를 지칭하는 용어, 다양한 식별 정보들을 지칭하는 용어 등은 설명의 편의를 위해 예시된 것이다. 따라서, 본 개시가 후술되는 용어들에 한정되는 것은 아니며, 동등한 기술적 의미를 가지는 대상을 지칭하는 다른 용어가 사용될 수 있다.
이하 설명의 편의를 위하여, 본 개시에서는 3GPP LTE(3rd Generation Partnership Project Long Term Evolution) 규격에서 정의하고 있는 용어 및 명칭들을 사용한다. 하지만, 본 개시가 상기 용어 및 명칭들에 의해 한정되는 것은 아니며, 다른 규격에 따르는 시스템에도 동일하게 적용될 수 있다.
예를 들어, 본 개시에서, DC(dual connectivity) 동작은 MN(master node)와 SN(secondary node)가 동시에 설정 및 RRC 연결이 수립되고, 두 노드를 통해 데이터 송수신을 수행하는 것을 의미할 수 있다.
예를 들어, 본 개시에서, CA(carrier aggregation) 동작은 PCell(primary cell) 및 하나 이상의 SCell(secondary cell)을 사용하여 데이터 송수신을 수행하는 것을 의미할 수 있다.
도 1은 본 개시가 적용될 수 있는 LTE(long term evolution) 시스템의 구조를 도시한 도면이다
도 1을 참조하면, 도시한 바와 같이 LTE 시스템의 무선 액세스 네트워크는 차세대 기지국(Evolved Node B, 이하 eNB, Node B 또는 기지국)(105, 110, 115, 120)과 MME(Mobility Management Entity, 125) 및 S-GW(Serving-Gateway, 130)로 구성된다. 사용자 단말(User Equipment, 이하 UE 또는 단말)(135)은 eNB(105~120) 및 S-GW(130)를 통해 외부 네트워크에 접속한다.
도 1에서 eNB(105~120)는 UMTS 시스템의 기존 노드 B에 대응된다. eNB는 UE(135)와 무선 채널로 연결되며 기존 노드 B 보다 복잡한 역할을 수행한다. LTE 시스템에서는 인터넷 프로토콜을 통한 VoIP(Voice over IP)와 같은 실시간 서비스를 비롯한 모든 사용자 트래픽이 공용 채널(shared channel)을 통해 서비스 되므로, UE들의 버퍼 상태, 가용 전송 전력 상태, 채널 상태 등의 상태 정보를 취합해서 스케줄링을 하는 장치가 필요하며, 이를 eNB(105~120)가 담당한다. 하나의 eNB는 통상 다수의 셀들을 제어한다. 예컨대, 100 Mbps의 전송 속도를 구현하기 위해서 LTE 시스템은 예컨대, 20 MHz 대역폭에서 직교 주파수 분할 다중 방식(Orthogonal Frequency Division Multiplexing, 이하 OFDM이라 한다)을 무선 접속 기술로 사용한다. 또한 단말의 채널 상태에 맞춰 변조 방식(modulation scheme)과 채널 코딩률(channel coding rate)을 결정하는 적응 변조 코딩(Adaptive Modulation & Coding, 이하 AMC라 한다) 방식을 적용한다. S-GW(130)는 데이터 베어러를 제공하는 장치이며, MME(125)의 제어에 따라서 데이터 베어러를 생성하거나 제거한다. MME는 단말에 대한 이동성 관리 기능은 물론 각종 제어 기능을 담당하는 장치로 다수의 기지국 들과 연결된다.
도 2는 본 개시가 적용될 수 있는 LTE 시스템에서의 무선 프로토콜 구조를 도시한 도면이다.
도 2를 참조하면, LTE 시스템의 무선 프로토콜은 단말과 eNB에서 각각 PDCP(Packet Data Convergence Protocol 205, 240), RLC(Radio Link Control 210, 235), MAC(Medium Access Control 215, 230)으로 이루어진다. PDCP(205, 240)는 IP header 압축/복원 등의 동작을 담당한다. PDCP의 주요 기능은 하기와 같이 요약된다.
- 헤더 압축 및 압축 해제 기능(Header compression and decompression: ROHC only)
- 사용자 데이터 전송 기능(Transfer of user data)
- 순차적 전달 기능(In-sequence delivery of upper layer PDUs at PDCP re-establishment procedure for RLC AM)
- 순서 재정렬 기능(For split bearers in DC(only support for RLC AM): PDCP PDU routing for transmission and PDCP PDU reordering for reception)
- 중복 탐지 기능(Duplicate detection of lower layer SDUs at PDCP re-establishment procedure for RLC AM)
- 재전송 기능(Retransmission of PDCP SDUs at handover and, for split bearers in DC, of PDCP PDUs at PDCP data-recovery procedure, for RLC AM)
- 암호화 및 복호화 기능(Ciphering and deciphering)
- 타이머 기반 SDU 삭제 기능(Timer-based SDU discard in uplink.)
무선 링크 제어(Radio Link Control, 이하 RLC라고 한다)(210, 235)는 PDCP PDU(Packet Data Unit)를 적절한 크기로 재구성해서 ARQ 동작 등을 수행한다. RLC의 주요 기능은 하기와 같이 요약된다.
- 데이터 전송 기능(Transfer of upper layer PDUs)
- ARQ 기능(Error Correction through ARQ(only for AM data transfer))
- 접합, 분할, 재조립 기능(Concatenation, segmentation and reassembly of RLC SDUs(only for UM and AM data transfer))
- 재분할 기능(Re-segmentation of RLC data PDUs(only for AM data transfer))
- 순서 재정렬 기능(Reordering of RLC data PDUs(only for UM and AM data transfer)
- 중복 탐지 기능(Duplicate detection(only for UM and AM data transfer))
- 오류 탐지 기능(Protocol error detection(only for AM data transfer))
- RLC SDU 삭제 기능(RLC SDU discard(only for UM and AM data transfer))
- RLC 재수립 기능(RLC re-establishment)
MAC(215, 230)은 한 단말에 구성된 여러 RLC 계층 장치들과 연결되며, RLC PDU들을 MAC PDU에 다중화하고 MAC PDU로부터 RLC PDU들을 역다중화하는 동작을 수행한다. MAC의 주요 기능은 하기와 같이 요약된다.
- 맵핑 기능(Mapping between logical channels and transport channels)
- 다중화 및 역다중화 기능(Multiplexing/demultiplexing of MAC SDUs belonging to one or different logical channels into/from transport blocks(TB) delivered to/from the physical layer on transport channels)
- 스케쥴링 정보 보고 기능(Scheduling information reporting)
- HARQ 기능(Error correction through HARQ)
- 로지컬 채널 간 우선 순위 조절 기능(Priority handling between logical channels of one UE)
- 단말간 우선 순위 조절 기능(Priority handling between UEs by means of dynamic scheduling)
- MBMS 서비스 확인 기능(MBMS service identification)
- 전송 포맷 선택 기능(Transport format selection)
- 패딩 기능(Padding)
물리 계층(220, 225)은 상위 계층 데이터를 채널 코딩 및 변조하고, OFDM 심벌로 만들어서 무선 채널로 전송하거나, 무선 채널을 통해 수신한 OFDM 심벌을 복조하고 채널 디코딩해서 상위 계층으로 전달하는 동작을 한다. 또한, 물리 계층에서도 추가적인 오류 정정을 위해, HARQ(Hybrid ARQ) 를 사용하고 있으며, 수신단에서는 송신단에서 전송한 패킷의 수신여부를 1 비트로 전송한다. 이를 HARQ ACK/NACK 정보라 한다. 업링크 전송에 대한 다운링크 HARQ ACK/NACK 정보는 PHICH(Physical Hybrid-ARQ Indicator Channel) 물리 채널을 통해 전송되며, 다운링크 전송에 대한 업링크 HARQ ACK/NACK 정보는 PUCCH(Physical Uplink Control Channel)이나 PUSCH(Physical Uplink Shared Channel) 물리 채널을 통해 전송될 수 있다.
한편, 상기 PHY 계층은 하나 혹은 복수 개의 주파수/반송파로 이루어질 수 있으며, 복수 개의 주파수를 동시에 설정하여 사용하는 기술을 반송파 집적 기술(carrier aggregation, 이하 CA라 칭함)이라 한다. CA 기술이란 단말(혹은 User Equipment, UE) 과 기지국(E-UTRAN NodeB, eNB) 사이의 통신을 위해 하나의 반송파만 사용하던 것을, 주반송파와 하나 혹은 복수개의 부차반송파를 추가로 사용하여 부차반송파의 갯수만큼 전송량을 획기적으로 늘릴 수 있다. 한편, LTE에서는 주반송파를 사용하는 기지국 내의 셀을 PCell(Primary Cell)이라 하며, 부차반송파를 SCell(Secondary Cell)이라 칭한다.
본 도면에 도시하지 않았지만, 단말과 기지국의 PDCP 계층의 상위에는 각각 RRC(Radio Resource Control, 이하 RRC라고 한다) 계층이 존재하며, 상기 RRC 계층은 무선 자원 제어를 위해 접속, 측정 관련 설정 제어 메시지를 주고 받을 수 있다.
도 3은 본 개시가 적용될 수 있는 차세대 이동통신 시스템의 구조를 도시한 도면이다.
도 3을 참조하면, 도시한 바와 같이 차세대 이동통신 시스템의 무선 액세스 네트워크는 차세대 기지국(New Radio Node B, 이하 NR NB, 310)과 NR CN(New Radio Core Network, 혹은 NG CN: Next Generation Core Network, 305)로 구성된다. 사용자 단말(New Radio User Equipment, 이하 NR UE 또는 단말, 315)은 NR NB(310) 및 NR CN(305)를 통해 외부 네트워크에 접속한다. 여기서 NR CN(305)은 5G CN(5G Core Network) 또는 5GC(5G Core)로 혼용하여 사용될 수 있다.
도 3에서 NR NB(310)는 기존 LTE 시스템의 eNB(Evolved Node B)에 대응된다. NR NB는 NR UE(315)와 무선 채널로 연결되며 기존 노드 B 보다 더 월등한 서비스를 제공해줄 수 있다. 차세대 이동통신 시스템에서는 모든 사용자 트래픽이 공용 채널(shared channel)을 통해 서비스 되므로, UE들의 버퍼 상태, 가용 전송 전력 상태, 채널 상태 등의 상태 정보를 취합해서 스케줄링을 하는 장치가 필요하며, 이를 NR NB(310)가 담당한다. 하나의 NR NB는 통상 다수의 셀들을 제어한다. 기존 LTE 대비 초고속 데이터 전송을 구현하기 위해서 기존 최대 대역폭 이상을 가질 수 있고, 직교 주파수 분할 다중 방식(Orthogonal Frequency Division Multiplexing, 이하 OFDM이라 한다)을 무선 접속 기술로 하여 추가적으로 빔포밍 기술이 접목될 수 있다. 또한, 복수의 SCS가 하나의 시스템에서 동시에 지원되는 것도 가능하다. 제어 신호와 데이터 신호가 다른 SCS를 갖는 것도 가능하다. 또한 단말의 채널 상태에 맞춰 변조 방식(modulation scheme)과 채널 코딩률(channel coding rate)을 결정하는 적응 변조 코딩(Adaptive Modulation & Coding, 이하 AMC라 한다) 방식을 적용한다. 또한 하나의 시스템이 복수개의 BWP를 관리하는 방법을 사용한다. NR CN(305)는 이동성 지원, 베어러 설정, QoS 설정 등의 기능을 수행한다. NR CN는 단말에 대한 이동성 관리 기능은 물론 각종 제어 기능을 담당하는 장치로 다수의 기지국들과 연결된다. 또한 차세대 이동통신 시스템은 기존 LTE 시스템과도 연동될 수 있으며, NR CN이 MME(325)와 네트워크 인터페이스를 통해 연결된다. MME는 기존 기지국인 eNB(330)과 연결된다.
도 4는 본 개시가 적용될 수 있는 차세대 이동통신 시스템의 무선 프로토콜 구조를 도시한 도면이다.
도 4를 참조하면, 차세대 이동통신 시스템의 무선 프로토콜은 단말과 NR 기지국에서 각각 NR SDAP(Service Data Adaptation Protocol)(401, 445), NR PDCP(405, 440), NR RLC(410, 435), NR MAC(415, 430)으로 이루어진다.
NR SDAP(401, 445)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.
- 사용자 데이터의 전달 기능(transfer of user plane data)
- 상향 링크와 하향 링크에 대해서 QoS flow와 데이터 베어러의 맵핑 기능(mapping between a QoS flow and a DRB for both DL and UL)
- 상향 링크와 하향 링크에 대해서 QoS flow ID의 마킹 기능(marking QoS flow ID in both DL and UL packets)
- 상향 링크 SDAP PDU들에 대해서 relective QoS flow를 데이터 베어러에 맵핑시키는 기능(reflective QoS flow to DRB mapping for the UL SDAP PDUs).
상기 SDAP 계층 장치에 대해 단말은 RRC 메시지로 각 PDCP 계층 장치 별로 혹은 베어러 별로 혹은 로지컬 채널 별로 SDAP 계층 장치의 헤더를 사용할 지 여부 혹은 SDAP 계층 장치의 기능을 사용할 지 여부를 설정 받을 수 있으며, SDAP 헤더가 설정된 경우, SDAP 헤더의 NAS QoS 반영 설정 1비트 지시자(NAS reflective QoS)와 AS QoS 반영 설정 1비트 지시자(AS reflective QoS)로 단말이 상향 링크와 하향 링크의 QoS flow와 데이터 베어러에 대한 맵핑 정보를 갱신 혹은 재설정할 수 있도록 지시할 수 있다. 상기 SDAP 헤더는 QoS를 나타내는 QoS flow ID 정보를 포함할 수 있다. 상기 QoS 정보는 원할한 서비스를 지원하기 위한 데이터 처리 우선 순위, 스케쥴링 정보 등으로 사용될 수 있다.
NR PDCP(405, 440)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.
- 헤더 압축 및 압축 해제 기능(Header compression and decompression: ROHC only)
- 사용자 데이터 전송 기능(Transfer of user data)
- 순차적 전달 기능(In-sequence delivery of upper layer PDUs)
- 비순차적 전달 기능(Out-of-sequence delivery of upper layer PDUs)
- 순서 재정렬 기능(PDCP PDU reordering for reception)
- 중복 탐지 기능(Duplicate detection of lower layer SDUs)
- 재전송 기능(Retransmission of PDCP SDUs)
- 암호화 및 복호화 기능(Ciphering and deciphering)
- 타이머 기반 SDU 삭제 기능(Timer-based SDU discard in uplink.)
상기에서 NR PDCP 장치의 순서 재정렬 기능(reordering)은 하위 계층에서 수신한 PDCP PDU들을 PDCP SN(sequence number)을 기반으로 순서대로 재정렬하는 기능을 말하며, 재정렬된 순서대로 데이터를 상위 계층에 전달하는 기능을 포함할 수 있으며, 혹은 순서를 고려하지 않고, 바로 전달하는 기능을 포함할 수 있으며, 순서를 재정렬하여 유실된 PDCP PDU들을 기록하는 기능을 포함할 수 있으며, 유실된 PDCP PDU들에 대한 상태 보고를 송신 측에 하는 기능을 포함할 수 있으며, 유실된 PDCP PDU들에 대한 재전송을 요청하는 기능을 포함할 수 있다.
NR RLC(410, 435)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.
- 데이터 전송 기능(Transfer of upper layer PDUs)
- 순차적 전달 기능(In-sequence delivery of upper layer PDUs)
- 비순차적 전달 기능(Out-of-sequence delivery of upper layer PDUs)
- ARQ 기능(Error Correction through ARQ)
- 접합, 분할, 재조립 기능(Concatenation, segmentation and reassembly of RLC SDUs)
- 재분할 기능(Re-segmentation of RLC data PDUs)
- 순서 재정렬 기능(Reordering of RLC data PDUs)
- 중복 탐지 기능(Duplicate detection)
- 오류 탐지 기능(Protocol error detection)
- RLC SDU 삭제 기능(RLC SDU discard)
- RLC 재수립 기능(RLC re-establishment)
상기에서 NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은 하위 계층으로부터 수신한 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 말하며, 원래 하나의 RLC SDU가 여러 개의 RLC SDU들로 분할되어 수신된 경우, 이를 재조립하여 전달하는 기능을 포함할 수 있으며, 수신한 RLC PDU들을 RLC SN(sequence number) 혹은 PDCP SN(sequence number)를 기준으로 재정렬하는 기능을 포함할 수 있으며, 순서를 재정렬하여 유실된 RLC PDU들을 기록하는 기능을 포함할 수 있으며, 유실된 RLC PDU들에 대한 상태 보고를 송신 측에 하는 기능을 포함할 수 있으며, 유실된 RLC PDU들에 대한 재전송을 요청하는 기능을 포함할 수 있으며, 유실된 RLC SDU가 있을 경우, 유실된 RLC SDU 이전까지의 RLC SDU들만을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있으며, 혹은 유실된 RLC SDU가 있어도 소정의 타이머가 만료되었다면 타이머가 시작되기 전에 수신된 모든 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있으며, 혹은 유실된 RLC SDU가 있어도 소정의 타이머가 만료되었다면 현재까지 수신된 모든 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있다. 또한 상기에서 RLC PDU들을 수신하는 순서대로(일련번호, Sequence number의 순서와 상관없이, 도착하는 순으로) 처리하여 PDCP 장치로 순서와 상관없이(Out-of sequence delivery) 전달할 수도 있으며, segment 인 경우에는 버퍼에 저장되어 있거나 추후에 수신될 segment들을 수신하여 온전한 하나의 RLC PDU로 재구성한 후, 처리하여 PDCP 장치로 전달할 수 있다. 상기 NR RLC 계층은 접합(Concatenation) 기능을 포함하지 않을 수 있고 상기 기능을 NR MAC 계층에서 수행하거나 NR MAC 계층의 다중화(multiplexing) 기능으로 대체할 수 있다.
상기에서 NR RLC 장치의 비순차적 전달 기능(Out-of-sequence delivery)은 하위 계층으로부터 수신한 RLC SDU들을 순서와 상관없이 바로 상위 계층으로 전달하는 기능을 말하며, 원래 하나의 RLC SDU가 여러 개의 RLC SDU들로 분할되어 수신된 경우, 이를 재조립하여 전달하는 기능을 포함할 수 있으며, 수신한 RLC PDU들의 RLC SN 혹은 PDCP SN을 저장하고 순서를 정렬하여 유실된 RLC PDU들을 기록해두는 기능을 포함할 수 있다.
NR MAC(415, 430)은 한 단말에 구성된 여러 NR RLC 계층 장치들과 연결될 수 있으며, NR MAC의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.
- 맵핑 기능(Mapping between logical channels and transport channels)
- 다중화 및 역다중화 기능(Multiplexing/demultiplexing of MAC SDUs)
- 스케쥴링 정보 보고 기능(Scheduling information reporting)
- HARQ 기능(Error correction through HARQ)
- 로지컬 채널 간 우선 순위 조절 기능(Priority handling between logical channels of one UE)
- 단말간 우선 순위 조절 기능(Priority handling between UEs by means of dynamic scheduling)
- MBMS 서비스 확인 기능(MBMS service identification)
- 전송 포맷 선택 기능(Transport format selection)
- 패딩 기능(Padding)
NR PHY 계층(420, 425)은 상위 계층 데이터를 채널 코딩 및 변조하고, OFDM 심벌로 만들어서 무선 채널로 전송하거나, 무선 채널을 통해 수신한 OFDM 심벌을 복조하고 채널 디코딩해서 상위 계층으로 전달하는 동작을 수행할 수 있다.
도 5는 본 개시가 적용될 수 있는 NR(new radio) 시스템에서의 단말 능력(capability)을 보고하는 메시지 구조를 도시한 도면이다 기본적으로 단말(501)은 서빙 기지국(502)에 연결한 상태에서 해당 기지국에게 단말이 지원하는 capability를 보고하는 절차를 가질 수 있다. 505 단계에서 기지국은 연결 상태의 단말에게 capability 보고를 요청하는 UE capability enquiry 메시지를 전달할 수 있다. 상기 메시지에는 기지국이 RAT(radio access technology) type 별 단말 capability 요청을 포함할 수 있다. 상기 RAT type 별 요청에는 요청하는 주파수 밴드 정보를 포함할 수 있다. 또한, 상기 UE capability enquiry 메시지는 하나의 RRC 메시지 container에서 복수의 RAT type을 요청할 수 있으며, 혹은 각 RAT type 별 요청을 포함한 UE capability enquiry 메시지를 복수번 포함해서 단말에게 전달할 수 있다. 즉, 505 단계의 UE capability Enquiry가 복수 번 반복 될 수 있고, 단말은 이에 해당하는 UE capability information 메시지를 구성하여 복수 번 기지국에 보고할 수 있다. 한편, 본 개시가 적용될 수 있는 차세대 이통 통신 시스템에서는 NR, LTE, EN-DC(E-UTRA-NR DC)를 비롯한 MR-DC(Multi-Radio-DC)에 대한 단말 capability 요청을 할 수 있다. 한편, 상기 UE capability Enquiry 메시지는 일반적으로 단말이 DC 연결을 수립하는 과정에서 또는 수립이 완성된 이후에 보내는 것이 일반적이지만, 기지국이 필요할 때 어떤 조건에서도 요청할 수 있다.
상기 505 단계에서 기지국으로부터 UE capability 보고 요청을 받은 단말은 기지국으로부터 요청받은 RAT type 및 밴드 정보에 따라 단말 capability를 구성할 수 있다. 본 개시가 적용될 수 있는 NR 시스템에서 단말이 UE capability를 구성하는 방법은 예를 들어 다음과 같을 수 있다.
1. 만약 단말이 기지국으로부터 UE capability 요청으로 LTE 그리고/혹은 NR 밴드에 대한 리스트를 제공받으면, 단말은 EN-DC 와 NR stand alone(SA)에 대한 band combination(BC)를 구성할 수 있다. 즉, 기지국에 FreqBandList로 요청한 밴드들을 바탕으로 EN-DC 와 NR SA에 대한 BC의 후보 리스트를 구성할 수 있다. 또한, 밴드의 우선순위는 FreqBandList에 기재된 순서대로 우선순위를 가진다.
2. 만약 “”flag 혹은 “”flag가 세팅되어 있다면, 상기의 구성된 BC의 후보 리스트 중에서 NR SA BC들에 대한 것은 완전히 제거할 수 있다. 이는 LTE 기지국(eNB)이 “”capability를 요청하는 경우에만 일어날 수 있다.
3. 이후 단말은 상기 1 단계에서 구성된 BC의 후보 리스트에서 fallback BC들을 제거할 수 있다. 여기서 fallback BC는 어떤 super set BC에서 최소 하나의 SCell에 해당하는 밴드를 제거한 경우에 해당하며, super set BC가 이미 fallback BC를 커버할 수 있기 때문에 생략이 가능하다. 본 3 단계는 MR-DC에서도 적용될 수 있다. 즉 LTE 밴드들도 적용될 수 있다. 본 3 단계 이후에 남아있는 BC는 최종 “후보 BC 리스트”이다.
4. 단말은 상기의 최종 “후보 BC 리스트”에서 요청 받은 RAT type에 맞는 BC들을 선택하여, 보고할 BC들을 선택할 수 있다. 본 4 단계에서는 정해진 순서대로 단말이 supportedBandCombinationList를 구성할 수 있다. 즉, 단말은 미리 설정된 rat-Type의 순서에 맞춰서 보고할 BC 및 UE capability를 구성할 수 있게 된다(nr -> eutra-nr -> eutra). 또한, 구성된 supportedBandCombinationList에 대한 featureSetCombination을 구성하고, fallback BC(같거나 낮은 단계의 capability를 포함하고 있는)에 대한 리스트가 제거된 후보 BC 리스트에서 “후보 feature set combination”의 리스트를 구성할 수 있다. 상기의 “후보 feature set combination”은 NR 및 EUTRA-NR BC에 대한 feature set combination을 모두 포함하며, UE-NR-Capabilities와 UE-MRDC-Capabilities 컨테이너의 feature set combination으로부터 얻을 수 있다.
5. 또한, 만약 요청된 rat Type이 eutra-nr이고 영향을 준다면, featureSetCombinations은 UE-MRDC-Capabilities 와 UE-NR-Capabilities 의 두 개의 컨테이너에 전부 포함될 수 있다. 하지만, NR의 feature set은 UE-NR-Capabilities만 포함될 수 있다.
단말 capability가 구성되고 난 이후, 510단계에서 단말은 단말 capability가 포함된 UE capability information 메시지를 기지국에 전달할 수 있다. 기지국은 단말로부터 수신한 단말 capability를 기반으로 이후 해당 단말에게 적당한 스케쥴링 및 송수신 관리를 수행할 수 있다.
도 6은 본 개시의 일 실시예에 따라, 복수 개의 USIM(Universal Subscriber Identity Module)을 지원하는 단말(예를 들어, Multi-USIM UE)이 하나의 USIM에 연관된 기지국과 RRC 연결 모드(RRC_CONNECTED)를 유지한 채 다른 USIM에 연관된 동작을 수행하는 것을 도시한 도면이다.
본 개시의 일 실시 예에 따른 Multi-USIM 단말(601)은 두 개 이상의 USIM을 지원하는 단말을 칭할 수 있다. 본 개시에서는 설명의 편의 상 두 개의 USIM을 지원하는 Dual-USIM 단말을 고려하며, 본 개시가 이에 국한되는 것은 아니다. 한편, Single-USIM 단말은 주어진 시간에 하나의 USIM에 연관된 기지국에 대해서만 신호(또는, 데이터)를 송신 또는 수신하는 특징을 지니고 있다. 이와 달리, Multi-USIM(예를 들어, Dual-USIM) 단말은 주어진 시간에 하나의 USIM에 연관된 기지국으로부터 신호를 송신 또는 수신하거나, 또는 각 USIM에 연관된 기지국으로부터 동시에 신호를 송신 또는 수신할 수 있는 특징을 지니고 있다.
도 6을 참조하면, Multi-USIM 단말(601)은 하나의 device에서 복수 개의 USIM을 지원하는 단말을 의미할 수 있다. 일 예로, Multi-USIM 단말은 USIM 1에서 동작하는 경우 USIM 1 단말(602), 또는 USIM 2에서 동작하는 경우 USIM 2 단말(603)을 의미할 수 있다. 각 USIM과 연관된 기지국은 상기 Multi-USIM 단말을 하나의 단말로 인식하지 않고, USIM 단말 별 하나의 단말로 인식할 수 있다. 일 예로, 기지국 1(604)은 USIM 1 단말(602)를 하나의 단말로 인식하며, 기지국 2(605)은 USIM 2 단말(603)을 하나의 단말로 인식할 수 있다.
이하, 본 개시의 실시 예들에서 설명의 편의를 위해 Multi-USIM 단말에서 USIM 1을 이용하여 통신하는 경우, 그 Multi-USIM 단말은 USIM 1 단말로 칭하고, 상기 Multi-USIM 단말에서 USIM 2을 이용하여 통신하는 경우, 그 Multi-USIM 단말은 USIM 2 단말로 칭하기로 한다. 즉, 상기 Multi-USIM 단말은 USIM 1과 USIM 2 중 어떤 USIM 을 이용하는 지에 따라 USIM 1 단말 또는 USIM 2 단말이 될 수 있다.
610 단계에서, USIM 1 단말(602)은 기지국 1(604)과 RRC 연결을 설정하여 RRC 연결 모드(RRC_CONNECTED)에 있을 수 있다. 반면에, 610 단계에서, USIM 2 단말(603)은 기지국 2(605)과 RRC 연결을 설정하지 않아 RRC 유휴 모드(RRC_IDLE) 또는 RRC 비활성화 모드(RRC_INACTIVE)에 있을 수 있다.
615 단계에서, USIM 1 단말(602)은 기지국 1(604)에게 단말 능력 정보 메시지(UECapabilityInformation)를 전송할 수 있다. 상기 단말 능력 정보 메시지에는 다음 중 적어도 하나의 정보가 포함될 수 있다. 참고로 본 도면에서는 설명의 편의를 위하여, Multi USIM 단말이 두 개의 RRC 연결을 유지하는 동작은 지원하지 않는 경우를 가정하며, 본 개시가 이에 국한되는 것은 아니다.
- Multi-USIM을 지원한다는 지시자 또는 정보 요소(information element).
- USIM 1 단말(602)이 기지국 1(604)로부터 RRC 연결 모드를 벗어나서 USIM 2 단말(603)로 스위칭하는 절차를 지원(support of switching procedure for leaving RRC_CONNECTED state)한다는 지시자 또는 정보 요소.
620 단계에서, 기지국 1(604)은 USIM1 단말(602)이 Multi-USIM 동작을 위해 선호하는 또는 필요한 스위칭 갭(switching gap) 정보를 보고하라는 설정 정보(SwitchingGapReportingConfig)가 포함된 소정의 RRC 메시지를 전송할 수 있다. 일 예로, 상기 소정의 RRC 메시지는 RRCReconfiguration 메시지 또는 RRCResume 메시지 또는 신규 RRC 메시지를 의미할 수 있다. 추가적으로, 상기 SwitchingGapReportingConfig 는 otherConfig에 수납될 수 있다. 상기 SwitchingGapReportingConfig 은 switching procedure without leaving RRC_CONNECTED state 와 연관된 설정 정보일 수 있다. 상기 SwitchingGapReportingConfig에는 다음 중 적어도 하나가 포함될 수 있다.
● 기지국 1(604)은 USIM 1 단말(602)이 기지국 1(604)과 RRC 연결 모드를 유지한 채 선호하는 스위칭 갭 설정 정보를 전송해도 되는지를 나타내는 지시자 또는 정보 요소(일 예로, SetupRelease)
● 신규 prohibit timer 값
■ 기지국 1(604)은 상기 신규 prohibit timer 값을 USIM 1 단말(602)에게 설정 또는 셋업한 경우, USIM 1 단말(602)은 기지국 1(604)에게 선호하는 스위칭 갭 설정 정보를 보내기 위한 절차를 개시할 때, 상기 신규 prohibit timer 값으로 신규 타이머를 구동하고, 선호하는 스위칭 갭 설정 정보가 포함된 소정의 RRC 메시지를 기지국 1(604)에게 전송할 수 있다.
625 단계에서 USIM 2 단말(603)은 RRC 유휴 모드 또는 RRC 비활성화 모드에서 소정의 동작을 수행해야 하는 지 판단할 수 있다. 상기 소정의 동작은 USIM 2 단말(603)이 기지국 2(605)와 관련된 동작으로, 다음 중 적어도 하나를 의미할 수 있다.
● 동작 1: USIM 2 단말(603)은 기지국 2(605)과 RRC 연결 설립 절차(RRC connection establishment procedure) 또는 RRC 연결 재개 절차(RRC connection resume procedure)를 수행하지 않지만, 기지국 2(605)가 전송하는 신호를 수신하는 동작 또는 수신을 통한 USIM 2 단말 내부 동작을 수행. 일 예로,
■ USIM 2 단말(603)은 기지국 2(605)와 연관된 페이징 채널 또는 짧은 메시지 모니터링. 일 예로, USIM2 단말(603)은 DRX(Discontinuous Reception) 사이클 마다 페이징 기회(paging occasion)을 모니터링할 수 있다.
■ USIM 2 단말(603)은 기지국 2(1605)와 연관된 시스템 정보 변경 알림 수신하기 위한 모니터링. 일 예로, USIM2 단말(603)은 DRX사이클 마다 페이징 기회을 모니터링 할 수 있다.
■ USIM 2 단말(603)은 셀 선택 또는 셀 재선택 평가 절차. 일 예로, USIM 2 단말은 셀 선택 또는 셀 재선택 평가 절차의 일환으로 서빙 셀 또는 주변 셀 측정을 수행할 수 있다.
■ USIM 2 단말(603)이 PLMN(Public Land Mobile Network) 선택 절차
● 동작 2: USIM 2 단말(603)은 기지국 2(605)과 RRC 연결 설립 절차(RRC connection establishment procedure) 또는 RRC 연결 재개 절차(RRC connection resume procedure)를 수행하지 않지만, 기지국 2(605)과 송수신을 수행하는 동작. 일 예로,
■ USIM 2 단말(603)은 기지국 2(605)에게 또는 on-demand 방식으로 시스템 정보를 획득하기 위한 on-demand 시스템 정보 요청
● 동작 3: RRC 비활성화 모드에 있는 USIM 2 단말(603)은 기지국 2(605)과 RRC 연결 재개 절차를 수행하지만 RRC 연결 모드로 천이하지 못하는 동작. 일 예로,
■ USIM 2 단말(603)은 기지국 2(605)이 전송한 랜 페이징 메시지(RAN paging)을 수신하고, 수신한 랜 페이징 메시지에 USIM 2 단말(603)을 지시하는 UE 식별자(I-RNTI)가 포함되어 있으나 USIM 1 단말(602)이 기지국 1(604)과 계속 데이터 송수신을 수행하여야 할 수 있다. 이럴 경우, USIM 2 단말(603)은 기지국 2(605)으로부터 수신한 랜 페이징 메시지에 응답할 수 없다는 것을 나타내는 busy indication을 수납한 RRCResumeRequest/1 메시지를 기지국 2(605)에게 전송할 수 있다. 참고로, busy indication은 resumeCause에 수납될 수 있다. 이에 대한 응답으로, 기지국 2(605)은 USIM 2 단말(603)에게 RRCReject 또는 RRCRelease 메시지를 전송할 수 있다.
● 동작 4: USIM 2 단말(603)은 기지국 2(605)과 RRC 연결을 설정 또는 재개 절차를 수행하여 RRC 연결 모드로 천이할 수 있는 동작(본 도면에서는 해당 동작을 고려하지 않는다). 일 예로,
■ USIM 2 단말(603)이 Registration Update procedure 또는 RAN Notification Area Update 절차
상기 전술한 동작은 주기적인 동작일 수도 있고, 비주기적인 동작일 수도 있고 또는 일회성 동작을 의미할 수 있다.
630 단계에서, USIM 2 단말(603)은 RRC 유휴 모드 또는 RRC 비활성화 모드에서 625 단계에서 전술한 동작을 수행하기 위해 필요한 정보들을 USIM 1 단말(602)에게 알릴 수 있다. 한편, 630 단계는 Multi-USIM 단말(601)이 구현적으로 수행할 수도 있다.
635 단계에서, USIM 1 단말(602)은 하나 또는 복수 개의 선호하는 switching gap pattern에 대한 설정 정보(SwitchingGapConfigPreference)를 수납한 소정의 RRC 메시지를 기지국 1(604)에게 전송할 수 있다. 일 예로, 상기 소정의 RRC 메시지는 UEAssistanceInformation 또는 신규 RRC 메시지를 의미할 수 있다. 구체적으로, USIM 1 단말(602)은 하기 조건들 중 적어도 하나가 충족할 경우 SwitchingGapConfigPreference 가 포함된 소정의 RRC 메시지를 기지국 1(604)에게 전송할 수 있다.
● 조건 1: 620 단계에서 SwitchingGapReportingConfig가 설정된 이후 SwitchingGapConfigPreference 가 포함된 소정의 RRC 메시지를 전송하지 않은 경우
● 조건 2: 현재 선호하는 SwitchingGapConfigPreference 가 가장 최근에 보냈던 SwitchingGapConfigPreference 와 다를 경우
● 조건 3: 현재 선호하는 SwitchingGapConfigPreference 가 현재 설정되어 있는 SwitchingGapConfig 와 다를 경우
● 조건 4: 현재 선호하는 SwitchingGapConfigPreference 가 가장 최근에 보낸 SwitchingGapConfigPreference 와 다르면서 620 단계에서 전술한 신규 prohibit timer 가 구동되지 않고 있는 경우
● 조건 5: 현재 선호하는 SwitchingGapConfigPreference 가 현재 설정되어 있는 SwitchingGapConfig와 다르면서, 620 단계에서 전술한 신규 prohibit timer 가 구동되지 않고 있는 경우
한편, 635 단계에서 USIM 1 단말(602)은 620 단계에서 설정된 신규 prohibit timer 값으로 신규 타이머를 (재)구동(start or restart)하고 SwitchingGapConfigPreference 가 포함된 소정의 RRC 메시지를 기지국 1(604)에게 전송할 수 있다. 상기 SwitchingGapConfigPreference 는 전술한 실시 예의 측정 설정 정보(MeasConfig)와는 다른 설정 정보를 의미할 수 있다. 구체적으로, 본 개시의 일 실시 예를 따르는 하나 또는 복수 개의 SwitchingGapConfigPreference는 전술한 실시 예의 MeasGapConfig와 아래와 같이 차이점이 있을 수 있다.
● SwitchingGapConfigPreference 은 USIM 2 단말이 630 단계에서 전술한 소정의 동작을 수행할 수 있도록 USIM 1 단말(602)이 기지국 1(604)에게 전송하여 요청하는 스위칭 갭 설정 정보이다. SwitchingGapConfigPreference 은 625 단계에서 필요한 동작에 따라 하나 또는 복수 개의 선호하는 switching gap pattern이 포함될 수 있다.
● Switching gap repetition periodicity, switching gap length, switching gap timing advance 의 단위는 시간을 나타내는 단위 중 하나를 의미할 수 있다. 일 예로, ms 일 수도 있고 slot 단위 일 수도 있고 subframe 단위 일 수도 있다. Switching gap offset은 0부터 switching gap repetition periodicty - 1의 값 중 하나로 지시 될 수 있다.
640 단계에서, 기지국 1(604)은 635 단계에 대한 응답으로, USIM 1 단말(602)이 요청한 SwitchingGapConfigPreference 에 기반하여 하나 또는 복수 개의 스위칭 갭 설정 정보(SwitchingGapConfig)가 담긴 소정의 RRC 메시지를 전송할 수 있다. 일 예로, 상기 소정의 RRC 메시지는 RRCReconfiguration 또는 RRCResume 또는 신규 RRC 메시지를 의미할 수 있다. 구체적으로, 상기 기지국 1은 640 단계에서 수신한 SwitchingGapConfigPreference 중 허용(또는 설정) 가능한 정보를 SwitchingGapConfig 에 포함 또는 일부 정보를 변경(delta)하여 SwitchingGapConfig 에 포함할 수 있다.
645 단계에서, USIM 1 단말(602)은 640 단계에서 수신한 소정의 RRC 메시지에 대한 응답으로 기지국 1(604)에게 소정의 RRC 메시지를 전송할 수 있다. 일 예로, 상기 소정의 RRC 메시지는 RRCReconfigurationComplete 또는 RRCResumeComplete 또는 신규 RRC 메시지 등을 의미할 수 있다.
650 단계에서 USIM 1 단말(602)은 640 단계에서 수신하고 적용한 SwitchingGapConfig를 통해 하나 또는 복수 개의 switching gap이 발생하는 지 판단할 수 있다. 예를 들면,
- 만약 SwitchingGapConfig가 셋업으로 설정된 경우:
● 만약 SwitchingGapConfig가 이미 셋업된 경우, 해당 SwitchingGapConfig를 해제할 수 있다;
● 640 단계에서 수신한 SwitchingGapConfig에서 지시된 하나 또는 복수 개의 switching gap pattern를 셋업할 수 있다. 구체적으로, 각 스위칭 갭이 발생하는 첫 번째 서브 프레임과 SNF은 하기 조건 1을 만족해야 한다(SFN는 PCell 또는 refServCellIndicator에서 지시된 셀을 기반으로 할 수 있다).
<조건 1>
SFN mod T = FLOOR(switching gap offset/10);
subframe = switching gap offset mod 10;
with T = switching gap repetition periodicity/10 as defined in TS 38.133;
● 상기 조건을 만족하여 발생하는 갭에 대해 switching gap timing advance 를 적용할 수 있다. 즉, 상기 단말은 상기 조건이 만족하여 발생하는 갭 시점에 대해 switching gap timing advance 에서 지시된 timing advance를 적용할 수 있다. 예를 들면, 단말은 갭 서브프레임 발생 시전보다 switching gap timing advance 만큼 빨리 측정을 시작할 수 있다.
● 상기 상수 값 10은 다른 상수 값으로 고정될 수도 있으며, 또는 기지국 1(604) 이 640 단계에서 특정 값으로 설정하거나, USIM 1 단말(602)이 635 단계에서 요청한 값으로 설정될 수도 있다.
● 상기 갭 서프프레임 발생부터 switching length 만큼 USIM 2 단말(603)은 소정의 동작을 수행할 수 있다.
- SwitchingGapConfig에서 해제된 하나 또는 복수 개의 gap pattern을 해제할 수 있다;
650 단계에서 switching gap이 발생하는 경우, 650 단계에서 USIM 2 단말(603)은 switching gap이 발생하는 시점부터 switching gap length 동안 전술한 625 단계의 동작 중 적어도 하나를 수행할 수 있다. 이 때, USIM 1 단말(602)은 기지국 1(604)과 RRC 연결 모드를 유지하고 있다.
도 7a, 7b는 본 개시에서 제안하는 실시 예 1로써, MUSIM 지원 단말이 두 개의 RRC 연결 상태를 유지하면서, DC 및 CA를 지원하는 방법 1을 도시한 도면이다.
본 실시 예에서는 특히 단말이 기지국에게 단말 능력을 전달할 때 두 개의 RRC 연결 상태를 유지하면서, DC 및 CA를 유지하는 별도의 단말 능력을 전달하는 특징으로 한다.
본 개시의 일 실시 예에 따른 Multi-USIM 단말(701)은 두 개 이상의 USIM을 지원하는 단말을 칭할 수 있다. 본 개시에서는 설명의 편의 상 두 개의 USIM을 지원하는 Dual-USIM 단말을 고려하며, 본 개시가 이에 국한되는 것은 아니다. 한편, Single-USIM 단말은 주어진 시간에 하나의 USIM에 연관된 기지국에 대해서만 신호(또는, 데이터)를 송신 또는 수신하는 특징을 지니고 있다. 이와 달리, Multi-USIM(예를 들어, Dual-USIM) 단말은 주어진 시간에 하나의 USIM에 연관된 기지국으로부터 신호를 송신 또는 수신하거나, 또는 각 USIM에 연관된 기지국으로부터 동시에 신호를 송신 또는 수신할 수 있는 특징을 지니고 있다.
도 7a, 7b를 참조하면, Multi-USIM 단말(701)은 하나의 device에서 복수 개의 USIM을 지원하는 단말을 의미할 수 있다. 일 예로, Multi-USIM 단말은 USIM 1에서 동작하는 경우 USIM 1 단말(702), 또는 USIM 2에서 동작하는 경우 USIM 2 단말(703)을 의미할 수 있다. 각 USIM과 연관된 기지국은 상기 Multi-USIM 단말을 하나의 단말로 인식하지 않고, USIM 단말 별 하나의 단말로 인식할 수 있다. 일 예로, 기지국 1(704)은 USIM 1 단말(702)을 하나의 단말로 인식하며, 기지국 2(705)은 USIM 2 단말(703)을 하나의 단말로 인식할 수 있다. 이하 본 개시의 실시 예들에서 설명의 편의를 위해 Multi-USIM 단말에서 USIM 1을 이용하여 통신하는 경우 그 Multi-USIM 단말은 USIM 1 단말로 칭하고, 상기 Multi-USIM 단말에서 USIM 2을 이용하여 통신하는 경우 그 Multi-USIM 단말은 USIM 2 단말로 칭하기로 한다. 즉, 상기 Multi-USIM 단말은 USIM 1과 USIM 2 중 어떤 USIM 을 이용하는 지에 따라 USIM 1 단말 또는 USIM 2 단말이 될 수 있다. 이는 도 8에도 똑같이 적용될 수 있다.
710 단계에서, USIM 1 단말(702)은 기지국 1(704)과 RRC 연결을 설정하여 RRC 연결 모드(RRC_CONNECTED)에 있을 수 있다. 반면에, 710 단계에서, USIM 2 단말(703)은 기지국 2(705)과 RRC 연결을 설정하지 않아 RRC 유휴 모드(RRC_IDLE) 또는 RRC 비활성화 모드(RRC_INACTIVE)에 있을 수 있다.
715 단계에서, 기지국 1(704)은 USIM 1 단말(702)에게 단말 능력 정보를 요청할 수 있다. 해당 UECapabilityEnquiry 메시지에는 적어도 RAT type 정보, 밴드 정보, 단말 능력의 restriction으로 적용되는 필터링 정보 중 적어도 하나가 포함될 수 있다.
720 단계에서, 단말은 수신한 단말 능력 요청에 따라 단말 능력을 수납해서 기지국에게 전달한다. 720 단계에서, 단말은 Multi-USIM을 통해 두 개의 기지국에 연결상태를 유지하면서, Dual connectivity(이하, DC로 명칭) 및 carrier aggregation(이하, CA로 명칭) 동작을 수행할 수 있는 경우, 해당 단말 능력을 기지국에게 전달할 수 있다.
본 실시 예에서는 기존의 DC 및 CA 를 지원하는 밴드 조합에서의 단말 능력 보고와 별개로 새로운 구조의 단말 능력을 추가로 전달하는 것을 특징으로 한다. 즉, 동일 밴드 조합(band combination, BC)이더라도 기존의 DC 및 CA로 동작할 때의 단말 능력과, 해당 밴드 조합에서, Multi-USIM을 통해 두 개의 기지국에 연결 상태를 유지하면서 DC 및 CA 동작을 수행할 때의 단말 능력이 달라질 수 있으므로, 단말이 이를 구분해서 보고할 수 있다.
예를 들어, 밴드 조합이 N1N2(NR 밴드 1과 NR 밴드 2)일 경우에, 해당 단말에 대한 단말 능력은 해당 밴드 조합과 연관된 Featuresetcombination에서 지시될 수 있다. Multi-USIM을 통해 두 개의 기지국에 연결상태를 유지하면서 DC 및 CA 동작을 수행할 때의 단말 능력은 새로운 featuresetcombination(e.g. FeaturesetcombinationMUSIM)을 도입해서 구성될 수 있다. 직관적으로 기존 N1N2 밴드 조합에서 특정 단말 능력을 가지지만, 해당 N1N2 밴드조합을 유지하면서 추가적인 네트워크와 RRC 연결 상태를 가지려면, 기존 단말 능력보다 줄어든 단말 능력을 가질 것이다.
즉, FeaturesetcombinationMUSIM은 Featuresetcombination의 subset 혹은 fallback capability set 일 수 있다. 기지국은 해당 단말 능력을 수신하여, 단말이 Multi-USIM을 통해 두 개의 기지국에 연결 상태를 유지하면서 DC 및 CA 동작을 수행할 수 있는지 여부와 정확하게 어떤 능력으로 동작하는지 동시에 알 수 있으며, 이에 따라 해당 능력을 지원할 수 있다.
725 단계에서, 기지국 1은 USIM 1 단말에게 단말 능력을 고려한 RRC 재설정을 전달할 수 있으며, 725 단계에서 DC 또는 CA에 대한 설정과 동시에 단말 능력에 부합한 Multi-USIM을 통해 두 개의 기지국에 연결 상태를 유지하면서 DC 또는 CA 동작을 설정할 수 있음을 지시할 수도 있다. 한편, 상기 지시 동작은 생략될 수 있고, 암시적으로 RRC 설정을 통해 구현될 수 있다.
730 단계에서, RRCReconfiguration 설정을 수신한 단말은 이에 대한 응답으로 RRCReconfigurationComplete 메시지를 전달할 수 있다.
735 단계에서, 기지국 2(705)는 USIM 2 단말에게 하향링크 데이터 발생등의 이유로 페이징을 생성해서 전달할 수 있다. 즉, USIM 2 단말에게 RRC 연결 절차를 요청할 수 있다. 상기 735 단계에서는 페이징 뿐만아니라, 625 단계에서 설명한 동작 1 내지 동작 4 중 어느 하나가 수행될 수 있다.
740 단계에서, USIM 2 단말은 기지국 2로의 RRC 연결이 필요함을 확인하고, MUSIM 동작을 결정할 수 있다.
745 단계에서, USIM 2 단말은 USIM 1 단말에게 기지국 2로의 RRC 연결을 시도할 것을 전달할 수 있다. 이는 표준화된 인터페이스를 통해서일 수도 있지만, 구현적으로 정해진 메시지를 통해 전달될 수 있다. USIM 1 단말은 상기 절차를 통해 USIM 2 단말이 기지국 2로 RRC 연결을 시도할 것임을 알고, 기지국 1에게 이를 알리는 동시에 단말 능력의 변화로 인해 DC 및 CA 설정의 변경이 필요할 수 있음을 전달할 수 있다.
750 단계에서, USIM 1 단말은 UEAssistanceInformation 메시지 또는 새로운 상향링크 RRC 메시지를 통해 MUSIM 동작이 수행됨을 지시하는 지시자를 전달할 수 있다. 또는, 750 단계에서 MUSIM 동작이 시작됨을 나타내는 cause value가 전달될 수 있다. 750 단계에서, 단말은 prohibit timer를 동작할 수 있다. 한편, prohibit timer의 실제 만료 값은 725 단계에서 기지국으로부터 설정받을 수 있다.
755 단계에서, 기지국 1은 750 단계에서 단말로부터 전달받은 지시자를 기반으로, 이후 단말에게 어떤 설정을 할지 결정할 수 있으며, 이에 따라 RRC 재설정을 전달할 수 있다. 기지국은 단말의 요청대로 동작하는 밴드 조합에 대해 FeaturesetcombinationMUSIM을 반영해서 변경되는 설정을 전달할 수 있으며, 혹은 DC 및 CA 설정을 해제(release) 할 수도 있다.
760 단계에서, 단말은 기지국 1로부터 RRC 설정을 수신하고, RRCReconfigurationComplete 메시지를 전송함으로써, 동작 중이던 prohibit timer를 중단하고, 설정을 적용할 수 있다. 한편, 실시 예 1에서는 DC가 유지되고 단말 능력을 반영한 RRC 설정이 변경되는 경우(765)를 기술하였으나, 본 개시가 이에 국한 되는 것은 아니다.
770 단계에서, USIM 2 단말은 상기 735 단계에서의 기지국 2로부터의 페이징에 대한 후속 동작으로써, RRC 연결 절차를 수행할 수 있다.
775 단계에서, USIM 2 단말과 기지국 2는 RRC 연결 상태에서 데이터 송수신을 수행할 수 있으며, 780 단계에서, RRC 연결 해제가 지시되어 RRC release 동작이 수행될 수 있다.
785 단계에서, USIM 2 단말은 기지국 2와의 RRC 연결이 해제되었음을 USIM 1 단말에게 전달할 수 있다. 이는 USIM 1 단말이 해당 정보를 기지국 1에게 전달하여, 서비스 변경을 제공받을 수 있게 하기 위함이다(790).
상기 790 단계의 USIM 1 단말에서 기지국 1로의 지시는 새로운 RRC 메시지를 통해 수행되거나, UEAssistanceInformation 메시지를 통해 지시될 수 있다. 또는, 새로운 MAC CE가 도입되어 이를 지시할 수 있다.
795 단계에서, 상기 메시지를 수신한 기지국 1은 응답 메시지를 단말에게 전달할 수 있다. 상기 응답 메시지는 새로운 RRC 메시지 이거나 RRCReconfiguration 메시지로 명시적으로 전달되거나, 또는 암시적으로 RRC 재설정을 변경해서 전달되는 방법 중에 하나일 수 있다.
799 단계에서, 기지국 1은 단말이 static UE capability(FeaturesetcombinationMUSIM이 적용되던 상황에서 Featuresetcombination이 적용되는 상황으로 바뀌었음)로 복구되었음을 판단하고, 이에 따른 동작을 할 수 있다.
또한, 단말이 상기의 790 단계와 같이 명시적으로 단말 능력 변경의 해제를 요청할 수도 있지만, 이 외에도 기지국이 단말의 일시적 능력 변경을 확인할 수 있는 경우는 예를 들어 아래와 같을 수 있다. 한편, 하기의 조건들은 동시에 적용되어 단말에게 적용될 수 있다.
1. 단말이 명시적으로 변경된 단말 능력의 해제(release)를 요청하는 경우
2. 단말이 새로운 temporary restriction 요청을 지시하는 경우(UEAssistanceInformation)
3. 단말이 RRC IDLE 혹은 RRC INACTIVE 상태로 천이하는 경우
4. 별도의 타이머를 제공하여 단말의 변경된 단말 능력(FeaturesetcombinationMUSIM)의 유지 기간을 설정하고, 해당 타이머가 만료되는 경우(해당 타이머는 단말에게 전달하는 RRC reconfiguration 설정에 포함될 수 있음, 또한, 상황에 따라 복수 개의 타이머가 설정될 수 있음. 예를 들어, 일시적인 단말 능력 제한의 이유(cause value)가 다를 때 다른 타이머를 설정할 수 있고, RRC 연결상태, IDLE 상태, INACITVE 상태일 때의 단말 별로 다른 값으로 설정할 수 있음). 만약. 단말이 설정된 타이머 값의 연장을 요청하는 경우, UE Assistance Information 혹은 새로운 RRC 메시지, 혹은 MAC CE 등과 같은 방법으로 단말이 연장하기 원하는 타이머가 요청될 수도 있다.
도 8a, 8b는 본 개시에서 제안하는 실시 예 2로써, MUSIM 지원 단말이 두 개의 RRC 연결 상태를 유지하면서, DC 및 CA를 지원하는 방법 2를 도시한 도면이다.
본 실시 예에서는 특히 단말이 기지국에게 단말 능력을 전달할 때 두 개의 RRC 연결 상태를 유지하면서, DC 및 CA를 유지하기 위해 기존의 단말 능력을 전달하는 절차에 추가로 기지국에게 일시적으로 변경되는 단말 능력을 전달하는 것을 특징으로 한다.
810 단계에서, USIM 1 단말(802)은 기지국 1(804)과 RRC 연결을 설정하여 RRC 연결 모드(RRC_CONNECTED)에 있을 수 있다. 반면에, 810 단계에서, USIM 2 단말(803)은 기지국 2(803)과 RRC 연결을 설정하지 않아 RRC 유휴 모드(RRC_IDLE) 또는 RRC 비활성화 모드(RRC_INACTIVE)에 있을 수 있다.
815 단계에서, 기지국 1(804)은 USIM 1 단말(802)에게 단말 능력 정보를 요청할 수 있다. 해당 UECapabilityEnquiry 메시지에는 적어도 RAT type 정보, 밴드 정보, 단말 능력의 restriction으로 적용되는 필터링 정보 중 적어도 하나가 포함될 수 있다.
820 단계에서, 단말은 수신한 단말 능력 요청에 따라 단말 능력을 수납해서 기지국에게 전달한다. 820 단계에서, 단말은 Multi-USIM을 통해 두 개의 기지국에 연결 상태를 유지하면서, DC 및 CA 동작을 수행할 수 있는 경우, 해당 단말 능력을 기지국에게 전달할 수 있다. 이는 1bit 지시자일 수 있으며, 단말 별로 시그널링 되거나 밴드 및 밴드 조합별로 시그널링되어서 전달될 수 있다. 본 실시 예에서는 상술한 실시 예 1과는 다르게, 단말 능력을 전달하는 절차에서는 지시자만 추가되며, 실제 MUSIM 동작이 수행될 때 일시적 단말 능력의 변경을 기지국에게 요청하는 것을 특징으로 한다.
825 단계에서, 기지국 1은 USIM 1 단말에게 단말 능력을 고려한 RRC 재설정을 전달할 수 있으며, 825 단계에서, DC 혹은 CA에 대한 설정과 동시에 단말 능력에 부합한 Multi-USIM을 통해 두 개의 기지국에 연결 상태를 유지하면서 DC 및 CA 동작을 설정할 수 있음을 지시할 수도 있다. 한편, 상기 지시 동작은 생략될 수 있고, 암시적으로 RRC 설정을 통해 구현될 수 있다.
830 단계에서, RRCReconfiguration 설정을 수신한 단말은 이에 대한 응답으로 RRCReconfigurationComplete 메시지를 전달할 수 있다.
835 단계에서, 기지국 2(805)는 USIM 2 단말에게 하향링크 데이터 발생등의 이유로 페이징을 생성해서 전달할 수 있다. 즉, USIM 2 단말에게 RRC 연결 절차를 요청할 수 있다. 상기 835 단계는 페이징뿐만 아니라, 625에서 설명한 동작 1 내지 동작 4 중 어느 하나가 수행될 수 있다.
840 단계에서, USIM 2 단말은 기지국 2로의 RRC 연결이 필요함을 확인하고, MUSIM 동작을 결정할 수 있다.
845 단계에서, USIM 2 단말은 USIM 1 단말에게 기지국 2로의 RRC 연결을 시도할 것을 전달할 수 있다. 이는 표준화된 인터페이스를 통해서일 수도 있지만, 구현적으로 정해진 메시지를 통해 전달될 수 있다. USIM 1 단말은 상기 절차를 통해 USIM 2 단말이 기지국 2로 RRC 연결을 시도할 것임을 알고, 기지국 1에게 이를 알리는 동시에 단말 능력의 변화로 인해 DC 및 CA 설정의 변경이 필요할 수 있음을 전달할 수 있다.
850 단계에서, USIM 1 단말은 UEAssistanceInformation 메시지 또는 새로운 상향링크 RRC 메시지를 통해 MUSIM 동작이 수행됨을 지시하는 지시자 또는 850 단계에서, MUSIM 동작이 시작됨을 나타내는 cause value를 전달할 수 있다. 또한, 상기 cause value와 더불어 단말이 일시적으로 변경되길 원하는 band 및 band combination 정보, 단말의 물리적인 기능 변경(component carrier 개수 변경, MIMO layer 개수 변경, 지원하는 밴드 및 CC 별 밴드위스(bandwidth) 정보 변경, 지원 전력 변경, 주파수 영역(frequency range) 지원 변경 등) 등이 적어도 하나 포함될 수 있다. 850 단계에서, 단말은 prohibit timer를 동작할 수 있다. prohibit timer의 실제 만료 값은 825 단계에서 기지국으로부터 설정받을 수 있다.
855 단계에서, 기지국 1은 단말이 상기 850 단계에서 UEAssistanceInformation 메시지 혹은 새로운 상향링크 RRC 메시지를 통해 요청하는 정보를 기반으로, 이후 단말에게 어떤 설정을 할지 결정할 수 있으며, 이에 따라 RRC 재설정을 전달할 수 있다. 기지국은 단말의 요청대로 동작하는 밴드 조합에 요청 정보를 반영해서 변경되는 설정을 전달할 수 있으며, 혹은 DC 및 CA 설정을 해제(release) 할 수도 있다.
860 단계에서, 단말은 기지국 1로부터 RRC 설정을 수신하고, RRCReconfigurationComplete 메시지를 전송함으로써, 동작 중이던 prohibit timer를 중단하고, 설정을 적용할 수 있다. 한편, 실시 예 2에서는 DC가 유지되고 단말 능력을 반영한 RRC 설정이 변경되는 경우(865)를 기술하였으나, 본 개시가 이에 국한되는 것은 아니다.
870 단계에서, USIM 2 단말은 상기 835 단계에서의 기지국 2로부터의 페이징에 대한 후속 동작으로써, RRC 연결 절차를 수행할 수 있다.
875 단계에서, USIM 2 단말과 기지국 2는 RRC 연결 상태에서 데이터 송수신을 수행할 수 있다.
880 단계에서, RRC 연결 해제가 지시되어 RRC release 동작이 수행될 수 있다.
885 단계에서, USIM 2 단말은 기지국 2와의 RRC 연결이 해제되었음을 USIM 1 단말에게 전달할 수 있다. 이는 USIM 1 단말이 해당 정보를 기지국 1에게 전달하여, 서비스 변경을 제공받을 수 있게 하기 위함이다(890단계).
상기 890 단계의 USIM 1 단말에서 기지국 1로의 지시는 새로운 RRC 메시지를 통해 수행되거나, UEAssistanceInformation 메시지를 통해 지시될 수 있다. 이 경우 지시자 뿐만 아니라, 다시 변경되고자 하는 단말 능력에 대한 정보들이 수납되어 요청될 수 있다. 또는, 새로운 MAC CE가 도입되어 이를 지시할 수 있다.
895 단계에서, 상기 메시지를 수신한 기지국 1은 응답 메시지를 단말에게 전달할 수 있다. 상기 응답 메시지는 새로운 RRC 메시지 이거나 RRCReconfiguration 메시지로 명시적으로 전달되거나, 또는 암시적으로 RRC 재설정을 변경해서 전달되는 방법 중에 하나일 수 있다.
899 단계에서, 기지국 1은 단말이 static UE capability(일시적 단말 능력 변경이 적용되던 상황에서 원래의 Featuresetcombination이 적용되는 상황으로 바뀌었음)로 복구되었음을 판단하고, 이에 따른 동작을 할 수 있다.
또한, 단말이 890 단계와 같이 명시적으로 일시적 단말 능력 변경의 해제를 요청할 수도 있지만, 이 외에도 기지국이 단말의 일시적 능력 변경을 확인할 수 있는 경우는 예를 들어 아래와 같을 수 있다. 한편, 하기의 조건들은 동시에 적용되어 단말에게 적용될 수 있다.
1. 단말이 명시적으로 temporary restriction의 해제(release)를 요청하는 경우
2. 단말이 이전에 새로운 temporary restriction 요청을 지시하는 경우
3. 단말이 RRC IDLE 혹은 RRC INACTIVE 상태로 천이하는 경우
4. 별도의 타이머를 제공하여 단말의 temporary capability restriction의 유지 기간을 설정하고, 해당 타이머가 만료되는 경우(해당 타이머는 단말에게 전달하는 RRC reconfiguration 설정에 포함될 수 있다. 또한, 상황에 따라 복수개의 타이머가 설정될 수 있다. 예를 들어, 일시적인 단말 능력 제한의 이유(cause value)가 다를 때 다른 타이머를 설정할 수 있다. 또는, RRC 연결상태, IDLE 상태, INACITVE 상태일 때의 단말 별로 다른 값으로 설정할 수 있음). 만약 단말이 설정된 타이머 값의 연장을 요청하는 경우, UE Assistance Information 혹은 새로운 RRC 메시지, 혹은 MAC CE 등과 같은 방법으로 단말이 연장하기 원하는 타이머를 요청할 수도 있다.
도 9a, 9b는 본 개시에서 제안하는 MUSIM 지원 USIM 1 단말이 일시적 단말 능력 변경을 요청하는 전체 동작을 도시한 도면이다.
도 9a 및 9b를 참조하면, RRC 연결 상태의 USIM 1 단말은 905 단계에서 단말 능력 보고 요청을 수신함에 따라 단말 능력을 수납해서 기지국에게 전달할 수 있다.
910 단계에 있어서, 실시 예 1과 실시 예 2에서는 특징을 달리한다 실시 예 1에서는 MUSIM을 통해 두 개의 RRC 연결 상태를 유지하면서 DC 및 CA를 지원하는 구체적인 단말 능력 정보가 밴드 조합별로 제공될 수 있다. 이와 달리, 실시 예 2에서는 해당 기능을 지원하는 지시자가 전달될 수 있다. 910 단계에서, 기지국으로부터 RRC 설정을 수신하며, 이 메시지에는 기지국이 복수의 USIM 단말에 대한 두 개의 RRC 연결 지원 여부가 포함될 수 있다.
915 단계에서, USIM 1 단말은 USIM 2 단말을 통해 다른 네트워크에 연결을 시도해야함을 인지할 수 있다.
920 단계에서, USIM 1 단말은 자신과 연결 상태인 기지국에게 MUSIM 동작이 수행될 수 있음을 알린다. 즉, 920 단계에서, 단말은 실시 예 1에서는 지시자 혹은 cause value를 통해 암시적으로 단말 능력의 변경을 요청하고, 실시 예 2에서는 구체적인 변경 요청 정보들이 기지국에 전달될 수 있다. 한편, 상기 정보가 전달되는 방식은 UEAssistanceInformation 메시지 혹은 새로운 RRC 메시지 혹은 새로운 MAC CE 일 수 있다.
925 단계에서, USIM 1 단말은 기지국으로부터 RRC 설정을 수신하게 되며, 해당 설정에 DC 및 CA 설정이 유지 또는 포함되어 있는지 여부에 따라 동작이 달라질 수 있다.
930 단계에서, RRC 설정에 DC 및 CA 설정이 포함된 경우, USIM 1 단말은 935 단계에서 설정에 따라 DC 및 CA 동작을 적용하고, 변경된 RRC 설정에 따라 동작할 수 있다.
940 단계에서, USIM 1 단말은 USIM 2 단말이 연결되어 있던 네트워크와의 RRC 연결 해제가 수행되었다는 정보를 수신할 수 있다.
945단계에서 상기 정보(또는, 지시)가 수신되면, USIM 1 단말은 자신과 연결상태인 기지국에게 USIM 2 단말이 RRC 연결이 해제되었음을 알릴 수 있다.
950 단계에서, USIM 1 단말은 기지국으로부터 응답 메시지를 수신하고, 그에 따라 동작할 수 있다. 한편, 상기 응답 메시지는 RRC 재설정 메시지 이거나 새로운 RRC 메시지 일 수 있다. 또는, USIM 1 단말은 USIM 2 단말이 연결되어 있던 네트워크와의 RRC 연결 해제가 수행되었다는 정보를 수신하지 않은 경우, 955 단계에서, 이전 설정을 유지하고, 데이터 송수신을 할 수 있다.
930 단계에서, RRC 설정에 DC 및 CA 설정이 해제된 경우, 단말은 설정에 따라 DC 및 CA를 해제(release)하고 데이터 송수신을 할 수 있다.
도 10은 본 개시에서 제안하는 IDLE 혹은 INACTIVE 상태의 USIM 2 단말이 MUSIM 동작을 수행할 때의 전체 동작을 도시한 도면이다.
1005단계에서, RRC IDLE 상태 또는 RRC INACTIVE 상태의 USIM 2 단말은 캠프 온(camp on)한 네트워크로부터 페이징을 수신하여 RRC 연결 절차를 수립이 필요함을 알 수 있다.
1010 단계에서 USIM 2 단말은 USIM 1 단말에게 MUSIM 동작이 필요함을 지시할 수 있다. 즉, 새로운 네트워크에 연결이 필요함을 알린다.
1015 단계에서, 특정 시간이 지난 이후 혹은 USIM 1 단말로부터 confirm 메시지를 수신한 이후 해당 네트워크와 RRC 연결 절차를 수립할 수 있다.
1020 단계에서 USIM 2 단말은 RRC release 메시지를 수신할 수 있다.
1025단계에서, 만약 RRC release 메시지를 수신하면 RRC 연결을 해제하고, 1030 단계에서 USIM 1 단말에게 이를 알린다.
한편, RRC release를 수신하지 않은 경우, 즉, 현재 기지국과 RRC 연결 상태를 유지하고 있는 경우, 1035 단계에서 USIM 2 단말은 RRC 연결 상태에서 데이터 송수신을 수행할 수 있다.
도 11a, 11b는은 본 개시에서 제안하는 MUSIM 동작을 지원하는 기지국의 전체 동작을 도시한 도면이다.
1105 단계에서, RRC 연결 상태의 단말로부터 단말 능력을 수신할 수 있다.
1110 단계에서, 기지국은 수신한 단말 능력을 통해 해당 단말이 MUSIM 동작을 지원하는 단말이며, 두 개의 RRC 연결 상태에서 DC 및 CA 동작이 가능한지 여부(실시 예 2)와 해당 상황에서의 구체적인 단말 능력 정보를 수신(실시 예 1 또는 실시 예 2) 할 수 있다.
만약, 단말이 두 개의 RRC 연결 상태에서 DC 및 CA 동작이 가능한 경우, 기지국은 1115 단계에서 단말 능력을 고려한 설정을 단말에 전달해줄 수 있다 예를 들어, RRC 설정 메시지를 통해 단말에 상기 설정을 전달해줄 수 있다. 또한, 해당 RRC 설정 메시지를 통해 기지국이 두 개의 RRC 연결 상태에서 DC 및 CA 동작을 유지하는 기능을 지원한다는 정보를 단말에 전달할 수도 있다.
1120 단계에서, 기지국은 연결된 단말과 MUSIM으로 동작하는 단말이 다른 네트워크에 연결 절차를 시도할 것에 대한 정보로써 이를 지시하는 지시자(실시 예 1) 혹은 일시적 단말 능력 변경 요청(실시 예 2)을 전달받을 수 있다.
이후 1125 단계에서, 기지국은 현재 RRC 연결 상태의 단말에 대해 DC 및 CA 동작을 유지할지 여부를 결정할 수 있다. 만약, DC 및 CA 동작을 유지하기로 결정했다면, 1130 단계에서 기지국은 보고된 단말 능력 및 단말의 요청 정보에 따라 단말의 DC 및 CA 설정을 유지하고, RRC 재설정을 전달할 수 있다. 만약, DC 및 CA 동작을 유지하지 않기로 결정했다면, 연결 상태의 단말에 대한 DC 및 CA 설정을 해제(release)하여 RRC 설정을 전달할 수 있다.
이와 달리, 1110 단계에서 수신한 단말 능력에서 단말이 두 개의 RRC 연결 상태에서 DC 및 CA 동작이 가능하지 않다면, MUSIM 동작 시에 DC 및 CA 설정이 동시에 설정되지 않도록 하여, RRC 설정(또는, 재설정)을 단말에 전달할 수 있다.
도 12는 본 개시의 실시 예에 따른 단말의 블록 구성을 도시한 도면이다.
도 12에서 도시되는 바와 같이, 본 개시의 실시 예에 따른 단말은 송수신부(1205), 제어부(1210), 다중화 및 역다중화부(1215), 각종 상위 계층 처리부(1220, 1225), 제어 메시지 처리부(1230)를 포함할 수 있다.
상기 송수신부(1205)는 서빙 셀의 순방향 채널로 데이터 및 소정의 제어 신호를 수신하고 역방향 채널로 데이터 및 소정의 제어 신호를 전송한다. 다수의 서빙 셀이 설정된 경우, 송수신부(1205)는 상기 다수의 서빙 셀을 통한 데이터 송수신 및 제어 신호 송수신을 수행한다. 다중화 및 역다중화부(1215)는 상위 계층 처리부(1220, 1225)나 제어 메시지 처리부(1230)에서 발생한 데이터를 다중화하거나 송수신부(1205)에서 수신된 데이터를 역다중화해서 적절한 상위 계층 처리부(1220, 1225)나 제어 메시지 처리부(1230)로 전달하는 역할을 한다. 제어 메시지 처리부(1230)는 기지국으로부터의 제어메시지를 송수신하여 필요한 동작을 취한다. 여기에는 RRC 메시지 및 MAC CE와 같은 제어 메시지를 처리하는 기능을 포함하고 CBR 측정값의 보고 및 자원 풀과 단말 동작에 대한 RRC 메시지 수신을 포함한다. 상위 계층 처리부(1220, 1225)는 DRB 장치를 의미하며 서비스 별로 구성될 수 있다. FTP(File Transfer Protocol)나 VoIP(Voice over Internet Protocol) 등과 같은 사용자 서비스에서 발생하는 데이터를 처리해서 다중화 및 역다중화부(1215)로 전달하거나 상기 다중화 및 역다중화부(1215)로부터 전달된 데이터를 처리해서 상위 계층의 서비스 어플리케이션으로 전달한다. 제어부(1210)는 송수신부(1205)를 통해 수신된 스케줄링 명령, 예를 들어, 역방향 그랜트들을 확인하여 적절한 시점에 적절한 전송 자원으로 역방향 전송이 수행되도록 송수신부(1205)와 다중화 및 역다중화부(1215)를 제어한다. 한편, 상기에서는 단말이 복수 개의 블록들로 구성되고 각 블록이 서로 다른 기능을 수행하는 것으로 기술되었지만, 이는 일 실시 예에 불과할 뿐 반드시 이에 한정되는 것은 아니다. 예를 들어, 역다중화부(1215)가 수행하는 기능을 제어부(1210) 자체가 수행할 수도 있다.
도 13은 본 개시의 실시 예에 따른 기지국의 블록 구성을 도시한 도면이다.
도 13의 기지국 장치는 송수신부(1305), 제어부(1310), 다중화 및 역다중화부(1320), 제어 메시지 처리부(1335), 각종 상위 계층 처리부(1325, 1330), 스케줄러(1315)를 포함할 수 있다.
송수신부(1305)는 순방향 캐리어로 데이터 및 소정의 제어 신호를 전송하고 역방향 캐리어로 데이터 및 소정의 제어 신호를 수신한다. 다수의 캐리어가 설정된 경우, 송수신부(1305)는 상기 다수의 캐리어로 데이터 송수신 및 제어 신호 송수신을 수행한다. 다중화 및 역다중화부(1320)는 상위 계층 처리부(1325, 1330)나 제어 메시지 처리부(1335)에서 발생한 데이터를 다중화하거나 송수신부(1305)에서 수신된 데이터를 역다중화해서 적절한 상위 계층 처리부(1325, 1330)나 제어 메시지 처리부(1335), 혹은 제어부(1310)로 전달하는 역할을 한다. 제어 메시지 처리부(1335)는 제어부의 지시를 받아, 단말에게 전달할 메시지를 생성해서 하위 계층으로 전달한다. 상위 계층 처리부(1325, 1330)는 단말 별 서비스 별로 구성될 수 있으며, FTP나 VoIP 등과 같은 사용자 서비스에서 발생하는 데이터를 처리해서 다중화 및 역다중화부(1320)로 전달하거나 다중화 및 역다중화부(1320)로부터 전달한 데이터를 처리해서 상위 계층의 서비스 어플리케이션으로 전달한다. 스케줄러(1315)는 단말의 버퍼 상태, 채널 상태 및 단말의 Active Time 등을 고려해서 단말에게 적절한 시점에 전송 자원을 할당하고, 송수신부에게 단말이 전송한 신호를 처리하거나 단말에게 신호를 전송하도록 처리한다.
본 개시에서 제안하는 방법들은 본 개시의 본질을 해치지 않는 범위 내에서 각 실시예에 포함된 내용의 일부 또는 전부가 조합되어 실행될 수도 있다.
상술한 본 개시의 구체적인 실시 예들에서, 발명에 포함되는 구성 요소는 제시된 구체적인 실시 예에 따라 단수 또는 복수로 표현되었다. 그러나, 단수 또는 복수의 표현은 설명의 편의를 위해 제시한 상황에 적합하게 선택된 것으로서, 본 개시가 단수 또는 복수의 구성 요소에 제한되는 것은 아니며, 복수로 표현된 구성 요소라 하더라도 단수로 구성되거나, 단수로 표현된 구성 요소라 하더라도 복수로 구성될 수 있다.
한편, 본 개시의 상세한 설명에서는 구체적인 실시 예에 관해 설명하였으나, 본 개시의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 그러므로 본 개시의 범위는 설명된 실시 예에 국한되어 정해져서는 아니 되며 후술하는 특허청구의 범위뿐만 아니라 이 특허청구의 범위와 균등한 것들에 의해 정해져야 한다.
Claims (15)
- 제1 유심 및 제2 유심을 포함하는 단말의 방법에 있어서,제1 기지국으로 복수 유심 (multi universal subscriber identify module, MUSIM) 동작 지원 여부에 관한 정보를 포함하는 단말 능력 정보 메시지를 송신하는 단계;상기 단말의 능력 정보 메시지에 기반하여, 상기 제1 기지국으로부터, 상기 제1 기지국의 상기 MUSIM 동작 지원 여부에 관한 정보를 포함하는 RRC(radio resource control) 메시지를 수신하는 단계;제2 기지국으로부터 페이징(paging) 메시지를 수신하는 단계; 및상기 페이징 메시지에 기반하여 상기 MUSIM 동작을 수행하는 것을 특징으로 하며,상기 MUSIM 동작은 상기 제1 유심은 상기 제1 기지국과 dual connectivity (DC) 또는 Carrier aggregation(CA) 연결을 유지하면서, 상기 제2 유심은 상기 제2 기지국과 RRC 연결을 수행하는 것을 포함하는 것을 특징으로 하는 방법.
- 제1항에 있어서,상기 MUSIM 동작 지원 여부에 관한 정보는 상기 MUSIM 동작을 수행하는 경우 밴드 조합 별로 상기 단말 능력에 관한 정보를 포함하는 것을 특징으로 하는 방법.
- 제2항에 있어서,상기 기지국으로 상기 MUSIM 동작 수행 여부에 관한 정보를 포함하는 단말 지원 정보 메시지를 전송하는 단계를 더 포함하며,상기 MUSIM 동작 수행 여부에 관한 정보는 적어도 하나의 상기 MUSIM 동작이 수행됨을 지시하는 지시자, 상기 MUSIM 동작이 시작됨을 나타내는 cause value를 포함 하는 것을 특징으로 하는 방법.
- 제1항에 있어서,상기 단말 능력 정보 메시지는 상기 MUSIM을 지원 여부에 관한 지시자를 포함하는 것을 특징으로 하는 방법.
- 제4항에 있어서,상기 기지국으로 상기 MUSIM 동작 수행 여부에 관한 정보를 포함하는 단말 지원 정보 메시지를 전송하는 단계를 더 포함하며,상기 MUSIM 동작 수행 여부에 관한 정보는 밴드, 밴드 조합 정보, 상기 단말의 물리적인 기능 변경에 관한 정보를 포함하는 것을 특징으로 하는 방법.
- 무선 통신 시스템에서 복수 유심(multi universal subscribe identify module, MUSIM) 동작을 지원하는 제1 기지국의 방법에 있어서,단말로부터 상기 단말의 MUSIM 동작 지원 여부에 관한 정보를 포함하는 단말 능력 정보 메시지를 수신하는 단계;상기 상기 단말의 능력 정보 메시지에 기반하여 상기 제1 기지국의 상기 MUSIM 동작 지원 여부에 관한 정보를 포함하는 RRC(radio resource control) 메시지를 생성하는 단계;상기 RRC 메시지를 송신하는 단계를 포함하며,상기 단말은 상기 제1 유심 및 제2 유심을 포함하며,상기 MUSIM 동작은 상기 제1 유심은 상기 제1 기지국과 dual connectivity (DC) 또는 Carrier aggregation(CA) 연결을 유지하면서, 상기 제2 유심은 상기 제2 기지국과 RRC 연결을 수행하는 것을 포함하는 것을 특징으로 하는 방법.
- 제6항에 있어서,상기 MUSIM 동작 지원 여부에 관한 정보는 상기 MUSIM 동작을 수행하는 경우 밴드 조합 별로 상기 단말 능력에 관한 정보 또는 상기 MUSIM을 지원 여부에 관한 지시자 중 어느 하나를 더 포함하는 것을 특징으로 하는 방법.
- 제7항에 있어서,상기 단말로부터 상기 MUSIM 동작 수행 여부에 관한 정보를 포함하는 단말 지원 정보 메시지를 수신하는 단계를 더 포함하며,상기 MUSIM 동작 수행 여부에 관한 정보는 적어도 하나의 상기 MUSIM 동작이 수행됨을 지시하는 지시자, 상기 MUSIM 동작이 시작됨을 나타내는 cause value, 밴드, 밴드 조합 정보, 상기 단말의 물리적인 기능 변경에 관한 정보를 포함 하는 것을 특징으로 하는 방법.
- 제1 유심 및 제2 유심을 포함하는 단말에 있어서,신호를 송수신 하는 송수신부; 및제어부를 포함하며,상기 제어부는 제1 기지국으로 복수 유심 (multi universal subscriber identify module, MUSIM) 동작 지원 여부에 관한 정보를 포함하는 단말 능력 정보 메시지를 송신하고, 상기 단말의 능력 정보 메시지에 기반하여, 상기 제1 기지국으로부터, 상기 제1 기지국의 상기 MUSIM 동작 지원 여부에 관한 정보를 포함하는 RRC(radio resource control) 메시지를 수신하며, 제2 기지국으로부터 페이징(paging) 메시지를 수신하고, 상기 페이징 메시지에 기반하여 상기 MUSIM 동작을 수행하도록 제어하며,상기 MUSIM 동작은 상기 제1 유심은 상기 제1 기지국과 dual connectivity (DC) 또는 Carrier aggregation(CA) 연결을 유지하면서, 상기 제2 유심은 상기 제2 기지국과 RRC 연결을 수행하는 것을 포함하는 것을 특징으로 하는 단말.
- 제9항에 있어서,상기 MUSIM 동작 지원 여부에 관한 정보는 상기 MUSIM 동작을 수행하는 경우 밴드 조합 별로 상기 단말 능력에 관한 정보를 포함하는 것을 특징으로 하는 단말.
- 제10항에 있어서,상기 제어부는 상기 기지국으로 상기 MUSIM 동작 수행 여부에 관한 정보를 포함하는 단말 지원 정보 메시지를 전송하도록 제어하는 것을 특징으로 하며,상기 MUSIM 동작 수행 여부에 관한 정보는 적어도 하나의 상기 MUSIM 동작이 수행됨을 지시하는 지시자, 상기 MUSIM 동작이 시작됨을 나타내는 cause value를 포함 하는 것을 특징으로 하는 단말.
- 제9항에 있어서,상기 제어부는 상기 기지국으로 상기 MUSIM 동작 수행 여부에 관한 정보를 포함하는 단말 지원 정보 메시지를 전송하도록 제어하는 것을 특징으로 하며,상기 단말 능력 정보 메시지는 상기 MUSIM을 지원 여부에 관한 지시자를 포함하고,상기 MUSIM 동작 수행 여부에 관한 정보는 밴드, 밴드 조합 정보, 상기 단말의 물리적인 기능 변경에 관한 정보를 포함하는 것을 특징으로 하는 단말.
- 무선 통신 시스템에서 복수 유심(multi universal subscribe identify module, MUSIM) 동작을 지원하는 제1 기지국에 있어서,신호를 송수신 하는 송수신부; 및제어부를 포함하며,상기 제어부는 단말로부터 상기 단말의 MUSIM 동작 지원 여부에 관한 정보를 포함하는 단말 능력 정보 메시지를 수신하고, 상기 상기 단말의 능력 정보 메시지에 기반하여 상기 제1 기지국의 상기 MUSIM 동작 지원 여부에 관한 정보를 포함하는 RRC(radio resource control) 메시지를 생성하며, 상기 RRC 메시지를 송신하도록 제어하며,상기 단말은 상기 제1 유심 및 제2 유심을 포함하고,상기 MUSIM 동작은 상기 제1 유심은 상기 제1 기지국과 dual connectivity (DC) 또는 Carrier aggregation(CA) 연결을 유지하면서, 상기 제2 유심은 상기 제2 기지국과 RRC 연결을 수행하는 것을 포함하는 것을 특징으로 하는 제1 기지국.
- 제13항에 있어서,상기 MUSIM 동작 지원 여부에 관한 정보는 상기 MUSIM 동작을 수행하는 경우 밴드 조합 별로 상기 단말 능력에 관한 정보 또는 상기 MUSIM을 지원 여부에 관한 지시자 중 어느 하나를 더 포함하는 것을 특징으로 하는 제1 기지국.
- 제13항에 있어서,상기 제어부는 상기 단말로부터 상기 MUSIM 동작 수행 여부에 관한 정보를 포함하는 단말 지원 정보 메시지를 수신하도록 제어하는 것을 특징으로 하며,상기 MUSIM 동작 수행 여부에 관한 정보는 적어도 하나의 상기 MUSIM 동작이 수행됨을 지시하는 지시자, 상기 MUSIM 동작이 시작됨을 나타내는 cause value, 밴드, 밴드 조합 정보, 상기 단말의 물리적인 기능 변경에 관한 정보를 포함 하는 것을 특징으로 하는 제1 기지국.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22887631.4A EP4408119A1 (en) | 2021-10-28 | 2022-10-27 | Method and apparatus for negotiating user equipment capability of user equipment having plurality of usims in next-generation mobile communication system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210145957A KR20230061075A (ko) | 2021-10-28 | 2021-10-28 | 차세대 이동통신 시스템에서 복수의 유심을 가진 단말의 단말 능력 협상을 위한 방법 및 장치 |
KR10-2021-0145957 | 2021-10-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023075436A1 true WO2023075436A1 (ko) | 2023-05-04 |
Family
ID=86158234
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2022/016537 WO2023075436A1 (ko) | 2021-10-28 | 2022-10-27 | 차세대 이동통신 시스템에서 복수의 유심을 가진 단말의 단말 능력 협상을 위한 방법 및 장치 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4408119A1 (ko) |
KR (1) | KR20230061075A (ko) |
WO (1) | WO2023075436A1 (ko) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102177802B1 (ko) * | 2014-05-28 | 2020-11-11 | 삼성전자주식회사 | 멀티 심이 구비된 전자 장치 및 방법 |
WO2021113581A1 (en) * | 2019-12-05 | 2021-06-10 | Convida Wireless, Llc | System information acquisition and paging for user equipment with multiple universal subscriber identity modules |
WO2021147958A1 (en) * | 2020-01-21 | 2021-07-29 | FG Innovation Company Limited | User equipment and method for multi-sim operation |
KR20210098845A (ko) * | 2020-01-31 | 2021-08-11 | 주식회사 케이티 | 복수의 유심을 이용하여 통신을 수행하는 방법 및 그 장치 |
-
2021
- 2021-10-28 KR KR1020210145957A patent/KR20230061075A/ko unknown
-
2022
- 2022-10-27 WO PCT/KR2022/016537 patent/WO2023075436A1/ko active Application Filing
- 2022-10-27 EP EP22887631.4A patent/EP4408119A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102177802B1 (ko) * | 2014-05-28 | 2020-11-11 | 삼성전자주식회사 | 멀티 심이 구비된 전자 장치 및 방법 |
WO2021113581A1 (en) * | 2019-12-05 | 2021-06-10 | Convida Wireless, Llc | System information acquisition and paging for user equipment with multiple universal subscriber identity modules |
WO2021147958A1 (en) * | 2020-01-21 | 2021-07-29 | FG Innovation Company Limited | User equipment and method for multi-sim operation |
KR20210098845A (ko) * | 2020-01-31 | 2021-08-11 | 주식회사 케이티 | 복수의 유심을 이용하여 통신을 수행하는 방법 및 그 장치 |
Non-Patent Citations (1)
Title |
---|
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Radio Resource Control (RRC) protocol specification (Release 16)", 3GPP TS 38.331, no. V16.6.0, 28 September 2021 (2021-09-28), pages 1 - 961, XP052056883 * |
Also Published As
Publication number | Publication date |
---|---|
EP4408119A1 (en) | 2024-07-31 |
KR20230061075A (ko) | 2023-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022235120A1 (ko) | 무선 통신 시스템에서 단말의 네트워크 변경을 지원하기 위한 장치 및 방법 | |
WO2023158234A1 (en) | Method and apparatus for the conditional pscell change in next generation mobile communication system | |
WO2023008917A1 (en) | Method and apparatus for supporting power headroom report for multiple transmission reception points in next generation mobile communication system | |
WO2022240185A1 (en) | Method and apparatus to enhance on quality of experience in the mobile communications | |
WO2022203459A1 (ko) | 차세대 위성 통신 시스템에서 트래킹 영역 업데이트를 관리하는 방법 및 장치 | |
WO2023075436A1 (ko) | 차세대 이동통신 시스템에서 복수의 유심을 가진 단말의 단말 능력 협상을 위한 방법 및 장치 | |
WO2023075494A1 (ko) | 차세대 이동 통신 시스템에서 as 계층에서의 보안을 향상시키는 방법 및 장치 | |
WO2024158193A1 (ko) | 무선 통신 시스템에서, anr(automatic neighbour cell releation)을 지원하기 위한 방법 및 장치 | |
WO2024167257A1 (ko) | 무선 통신 시스템에서 네트워크 제어 리피터의 셀 재선택을 수행하는 방법 | |
WO2023239068A1 (ko) | 차세대 이동통신 시스템에서 이중 활성화 프로토콜 스택을 지원하는 단말이 rlf 정보를 관리하는 방법 및 장치 | |
WO2024205366A1 (ko) | 무선 통신 시스템에서 캐리어 어그리게이션을 위한 추가적인 측정 정보를 제공하는 방법 및 장치 | |
WO2024196189A1 (en) | Apparatus and operating method of network controlled repeater related to beam failure detection in next-generation mobile communication | |
WO2024196125A1 (ko) | 무선 통신 시스템에서 하위 계층 트리거 이동성에 대한 설정 정보를 처리하는 방법 및 장치 | |
WO2024128805A1 (en) | Method and apparatus for managing pscell mobility history information in next-generation mobile communication system | |
WO2024177453A1 (en) | Method and apparatus for handover of a user equipment for network energy saving in next generation mobile communication system | |
WO2024158195A1 (ko) | 차세대 이동 통신 시스템에서 non-anchor network energy saving (nes) cell에 접속하는 방법 및 장치 | |
WO2024096622A1 (ko) | 차세대 이동 통신 시스템에서 조건부 pscell 추가 및 변경을 위한 설정을 동시에 전달하는 방법 및 장치 | |
WO2023219467A1 (ko) | 무선 통신 시스템에서 무인 항공기의 접속을 억제하는 방법 및 장치 | |
WO2024167367A1 (ko) | 차세대 이동통신 시스템에서 무인 항공기 접속을 제어하는 방법 및 장치 | |
WO2024071703A1 (en) | Method and apparatus of performing qoe measurements for mbs broadcast services in next mobile communication system | |
WO2024167378A1 (ko) | 차세대 이동 통신 시스템에서 l1/l2 기반의 이동성 지원을 위한 후보 셀들의 설정 정보를 효율적으로 전달하는 방법 및 장치 | |
WO2024205279A1 (en) | Method and apparatus for nw indication-based packet discard in wireless communication systems | |
WO2023068730A1 (en) | Method and apparatus for managing slice based cell reselection priorities in wireless communication system | |
WO2024112004A1 (ko) | 차세대 이동통신 시스템에서 저계층 이동성을 이용한 rrc 재설립의 개선을 위한 방법 및 장치 | |
WO2024167388A1 (ko) | 통신 시스템에서 rrm 측정 동작을 지원하는 방법 및 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22887631 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18704664 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2022887631 Country of ref document: EP Effective date: 20240424 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |