WO2023075288A1 - 5-할로메틸푸르푸랄의 제조방법 및 그 시스템 - Google Patents

5-할로메틸푸르푸랄의 제조방법 및 그 시스템 Download PDF

Info

Publication number
WO2023075288A1
WO2023075288A1 PCT/KR2022/016002 KR2022016002W WO2023075288A1 WO 2023075288 A1 WO2023075288 A1 WO 2023075288A1 KR 2022016002 W KR2022016002 W KR 2022016002W WO 2023075288 A1 WO2023075288 A1 WO 2023075288A1
Authority
WO
WIPO (PCT)
Prior art keywords
halomethylfurfural
mixed
phase
producing
solution
Prior art date
Application number
PCT/KR2022/016002
Other languages
English (en)
French (fr)
Inventor
황동원
엄인용
황영규
이마음
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2023075288A1 publication Critical patent/WO2023075288A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/46Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom
    • C07D307/48Furfural
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a method and system for producing 5-halomethylfurfural, which is economical by applying a reflux system at atmospheric pressure without using high pressure in a mixed two-phase system of an aqueous phase and an organic phase. It relates to a method for producing 5-halomethylfurfural that can be produced in a safe and environmentally friendly manner.
  • bioethanol is produced by saccharifying crops such as barley and corn, trees containing cellulose, and plants such as rice straw and fermenting them using microorganisms.
  • crops such as barley and corn
  • trees containing cellulose such as rice straw
  • plants such as rice straw
  • microorganisms such as rice straw
  • biodiesel is rapeseed, soybean, etc. It can be produced by extracting oil from crops and then esterifying them.
  • HMF 5-Hydroxymethylfurfural
  • the HMF is an intermediate produced in the process of producing levulinic acid by a dehydration reaction when a component containing a 6-carbon sugar is treated with an acid catalyst.
  • a biological conversion process using microorganisms is required, but commercialization is difficult due to low speed, yield, stability, and the like.
  • US Patent Registration No. 7829732 discloses a technique for obtaining 5-chloromethylfurfural (CMF) by pre-treating and dehydrating biomass including cellulose and hemicellulose. Specifically, an organic solvent as an extraction solvent is introduced into the reaction system to form a two-phase system of an aqueous phase and an organic phase, and then the acid catalyst and chlorine ions in the aqueous phase form a biomass
  • a method for producing 5-chloromethylfurfural (CMF) and recovering the produced 5-chloromethylfurfural (CMF) by transferring it from an aqueous phase to an organic phase is described.
  • the dehydration reaction process of biomass-derived sugar components in an open system can be produced in an atmospheric pressure environment, and thus a method for producing 5-halomethylfurfural with excellent yield under atmospheric pressure conditions without the need to prepare a high-pressure container is intended to provide
  • the present invention provides (a) preparing a mixed aqueous solution of an inorganic salt containing a sugar component, an aqueous sulfuric acid solution, and a halogen in a reactor; (b) injecting toluene as an extraction organic solvent into the mixed aqueous solution to obtain a mixed two-phase solution system; (c) stirring the mixed two-phase solution so that the aqueous phase and the organic phase are uniformly mixed, and refluxing the solvent while inducing a dehydration reaction by raising the temperature of the mixed two-phase solution; and (d) separating the mixed two-phase solution after step (c) into an aqueous phase and an organic phase, and recovering 5-halomethylfurfural from the organic phase.
  • a manufacturing method is provided.
  • the sugar component in step (a) is monosaccharides including glucose, fructose, and galactose; disaccharides including maltose, sucrose and lactose; polysaccharides of starch, cellulose, and hemicellulose, including hexose; It may include one or more of them.
  • the concentration of sulfuric acid in step (a) may be 40 to 70 wt% based on the total weight of the sulfuric acid aqueous solution.
  • the mixed two-phase solution of step (b) may be characterized in that the volume ratio of the organic phase / aqueous phase is 2 to 10.
  • the mixed two-phase solution in step (c) may be characterized in that the temperature is raised to 80 to 111 °C.
  • the sugar component may be characterized in that it is derived from biomass.
  • the present invention provides a method for producing 5-hydroxymethylfurfural (HMF), characterized in that 5-hydroxymethylfurfural (HMF) is obtained using the 5-halomethylfurfural obtained from the above method. to provide.
  • HMF 5-hydroxymethylfurfural
  • the present invention by applying a reflux system to the aqueous phase during the dehydration reaction of biomass-derived sugar components in an open system to form atmospheric conditions in the reaction system, the use of high-pressure equipment can be avoided, thereby achieving an economical process.
  • FIG. 1 is a diagram showing a mechanism in which HMF generated from dehydration of hexose in an aqueous phase is partitioned into an organic phase.
  • FIG. 1 is a diagram showing a mechanism in which HMF generated from dehydration of hexose in an aqueous phase is partitioned into an organic phase.
  • D-glucose is converted into HMF by continuous dehydration.
  • the dehydration reaction of the HMF proceeds further, it is converted into levulinic acid.
  • the hydroxy group (-OH) in HMF is substituted with a halogen atom to convert it to 5-chloromethylfurfural (CMF), and then 5 -
  • CMF 5-chloromethylfurfural
  • the reaction for preparing 5-halomethylfurfural from sugar components such as glucose proceeds through dehydration and chlorination of sugar in concentrated hydrochloric acid aqueous solution (12M, 37wt%).
  • concentrated hydrochloric acid aqueous solution (12M, 37wt%)
  • the HCl concentration of the aqueous solution is 20.2 wt%
  • an azeotrope of HCl/water is formed, so the concentration of hydrochloric acid cannot be increased without using an autoclave reactor, and the yield is low with a general reactor.
  • it was difficult to carry out because there is a problem that the risk of safety accidents including leakage of hydrochloric acid gas always exists.
  • the present applicant introduces sulfuric acid (H 2 SO 4 ) as an acid catalyst that replaces HCl and a halogen-providing inorganic salt for conversion to 5-halomethylfurfural to dehydrate the sugar component to obtain 5-halomethyl
  • sulfuric acid H 2 SO 4
  • a method for producing 5-halomethylfurfural to a high degree without using an autoclave was conceived and the present invention was completed.
  • the method of preparing 5-halomethylfurfural from a sugar component of the present invention comprises the steps of (a) preparing a mixed aqueous solution of a sugar component, an aqueous sulfuric acid solution, and an inorganic salt containing a halogen in a reactor; (b) injecting toluene as an extraction organic solvent into the mixed aqueous solution to obtain a mixed two-phase solution system; (c) stirring the mixed two-phase solution so that the aqueous phase and the organic phase are uniformly mixed, and refluxing the solvent while inducing a dehydration reaction by raising the temperature of the mixed two-phase solution; and (d) separating the mixed two-phase solution after step (c) into an aqueous phase and an organic phase, and recovering 5-halomethylfurfural from the organic phase.
  • the sugar component in step (a) is a raw material component that can be converted into HMF, and may have a concentration in the range of 0.01 to 20 wt%, and examples include monosaccharides including glucose, fructose, and galactose; disaccharides including maltose, sucrose and lactose; polysaccharides including starch, cellulose, and hemicellulose including hexose; It may include at least one of, preferably at least one of glucose and cellulose.
  • the aqueous sulfuric acid solution in step (a) is non-volatile, with almost no sulfuric acid present in the gas phase until the concentration of H 2 SO 4 reaches 70 wt%, and even in the case of 98 wt% concentrated sulfuric acid, Since the concentration of H 2 SO 4 is maintained lower than that in the liquid phase, the reaction of generating 5-halomethylfurfural from sugars can be easily performed without an autoclave facility, and a simple solvent reflux system is provided, thereby providing a special temperature control system. 5-halomethylfurfural can be produced easily and with high yield even with general equipment without
  • the concentration of sulfuric acid is in the range of 10 to 70 wt%, preferably in the range of 40 to 70 wt%, based on the total weight of the sulfuric acid aqueous solution.
  • concentration of sulfuric acid is less than 10 wt%, there is a problem that the dehydration reaction accelerating effect is insufficient as an acid catalyst, and when it exceeds 70 wt%, there is a problem that safety accidents may occur because sulfuric acid may exist in the gas phase. .
  • the inorganic salt containing halogen in step (a) is a halogen source for substituting HMF, and is a component introduced by replacing hydrochloric acid, which is a conventional acid catalyst, with sulfuric acid. It is a configuration that increases the hydrophilicity of the aqueous phase and promotes the distribution of 5-halomethylfurfural into the organic phase to improve the yield.
  • the halogen-containing inorganic salt may include a metal ion, and the metal ion forms a salt with a sulfate ion (SO 4 2- ) to induce a salting-out effect, thereby causing 5-halomethylfurfural has the effect of further promoting the distribution of
  • the volume ratio of the organic phase/aqueous phase may be in the range of 2 to 10.
  • the temperature of the mixed two-phase solution may be raised to a range of 80 to 111 °C.
  • the elevated temperature is less than 80 ° C., the dehydration reaction rate is insignificant, and the reaction temperature may be limited because the temperature is not raised above the boiling point of the solvent (111 ° C. in the case of toluene) under atmospheric reflux conditions.
  • CMF 5-chloromethylfurfural
  • CMF 5-chloromethylfurfural
  • CMF 5-chloromethylfurfural
  • CMF 5-chloromethylfurfural
  • CMF 5-chloromethylfurfural
  • CMF 5-chloromethylfurfural
  • Experimental Example 24 and Experimental Example 25 are experiments using hydrochloric acid instead of sulfuric acid.
  • hydrochloric acid it can be seen that the yield of 5-chloromethylfurfural (CMF) is up to 22.9% even in Experimental Example 25 without using NaCl, so that 5-chloromethyl Advantages can be seen in terms of furfural (CMF) yield.
  • Experimental Example 24 and Experimental Example 25 are cases in which NaCl was added to hydrochloric acid and not. Experimental Example 24 with NaCl was added, compared to Experimental Example 25 in which NaCl was not added, but the glucose conversion rate was slightly lower, but 5-chloro As the selectivity of methylfurfural (CMF) increases, the overall yield of 5-chloromethylfurfural (CMF) increases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Furan Compounds (AREA)

Abstract

본 발명에 따르면, 열린 계내 바이오매스 유래 당 성분의 탈수반응 과정에서 수상(aqueous phase)에 대해 황산 및 무기염 존재하에 환류 시스템을 적용하여 반응계내 상압 조건을 형성시킴으로서 종래 5-할로메틸푸르푸랄 제조공정에서 요구되었던 고압용기를 구비할 필요 없고, 고압용기의 폭발 및 강산 가스 누출을 포함하는 안전사고의 위험성이 없으며, 상기 상압 조건에서 종래 사용된 산촉매를 사용하는 경우 대비하여 수율이 3배 이상 개선되는 현저한 효과가 있다.

Description

5-할로메틸푸르푸랄의 제조방법 및 그 시스템
본 발명은 5-할로메틸푸르푸랄을 제조하는 방법 및 그 시스템에 대한 것으로서, 수상(aqueous phase) 및 유기상(organic phase)의 혼합 2상 시스템에서 고압을 사용하지 않고 상압에서 환류 시스템을 적용시킴으로서 경제적이고, 환경친화적으로 제조가 가능한 5-할로메틸푸르푸랄 제조방법에 관한 것이다.
전세계적으로 연료 및 화학원료 수요의 증가는 이를 생산하기 위한 석탄 및 석유 등의 화석연료 사용량의 급격한 증대로 이어졌고, 화석연료 사용에 따른 이산화탄소의 방출은 지구온난화 및 이상기후 현상을 야기함에 따라 화석연료를 대체할 수 있는 지속가능한 자원(sustainable resources)을 이용하는 기술을 연구개발하고 있다.
제시되고 있는 지속가능한 자원의 일 예로 셀룰로스, 헤미셀룰로스, 리그닌 및 전분을 포함하는 바이오매스를 활용하여 연료 및 화학원료를 제조하려는 시도가 있었다.
바이오매스 유래 연료의 일 예로서 바이오에탄올은 보리, 옥수수 등의 작물이나 섬유소를 포함하는 나무, 볏짚 등의 식물을 당화하고, 미생물을 이용해 발효시킴으로서 생산하고, 다른 일 예인 바이오디젤은 유채, 콩 등의 작물로부터 유분을 추출한 후 에스테르화하여 제조할 수 있다.
그러나, 상기 바이오에탄올에서 전술한 작물은 식용작물로서, 경제성 확보 및 대량의 수요 충족을 위해 사용되는 경우에는 대량 경작을 위한 토지 확보, 기후 변화에 따른 불안정한 작황 등의 문제가 있다. 이에 식량 작물 보다는 수확 후에 남는 볏짚이나 폐목재와 같은 비식량 작물은 상기 문제가 발생하지 않는 풍부한 자원이므로, 이를 활용하려는 기술을 연구개발 중에 있다.
상기 폐목재 유래 고부가가치 화학원료 중 하나인 5-히드록시메틸푸르푸랄(이하 HMF)은 이 자체로는 용도가 많지 않으나, 주요 HMF 유도체인 2,5-퓨란디카르복실산은 폴리에스테르 제조에 사용되는 테레프탈산을 대체할 수 있고, 5-디메틸퓨란은 바이오에탄올보다 에너지량이 높아 바이오연료로 활용될 가능성이 있는 고부가가치 화학원료이다.
상기 HMF는 6탄소의 당을 포함하는 성분에 산 촉매를 처리하면 탈수반응에 의해 레불린산(levulinic acid)이 제조되는 과정에서 생성되는 중간체이다. 그러나, 자일로스를 포함하는 헤미셀룰로오스를 원료로 사용하는 경우에는 미생물을 이용한 생물학적 전환과정이 요구되나 속도, 수율, 안정성 등이 낮아 상업화가 어려운 문제가 있었다.
이에 미국등록특허공보 제7829732호(2010.11.09.등록)는 셀룰로오스 및 헤미셀룰로오스를 포함하는 바이오매스를 전처리 및 탈수시켜 5-클로로메틸푸르푸랄(CMF)를 수득하는 기술을 개시하고 있다. 상세하게는, 추출용매인 유기용매를 반응계에 투입하여 수상(aqueous phase)과 유기상(organic phase)의 2상 시스템(two phase system)를 조성한 후, 수상에서 산 촉매 및 염소이온 등에 의해 바이오매스로부터 5-클로로메틸푸르푸랄(CMF)를 생성시키고, 상기 생성된 5-클로로메틸푸르푸랄(CMF)를 수상으로부터 유기상으로 이동시켜 회수하는 방법이 기재되어 있다. 그러나, 상기 선행문헌의 산촉매로서 실시예에 기재된 염산(HCl)의 경우 고압용기(autoclave) 설비가 요구될 뿐만 아니라 5-할로메틸푸르푸랄의 일종인 5-클로로메틸푸르푸랄(CMF) 제조과정에서 폭발이나 염산 가스의 누출 등의 안전사고 문제가 발생할 수 있다. 원천적으로 고압용기를 사용하지 않고도 종래 사용된 산촉매를 사용하는 경우 대비하여 우수한 수율을 지녀 상업화가 가능한 5-할로메틸푸르푸랄 제조방법이 필요한 실정이다.
본 발명에서 열린 계(open system)내 바이오매스 유래 당 성분의 탈수반응 과정은 상압의 환경에서 제조 가능하여 고압용기를 구비할 필요가 없이 상기 상압 조건에서 우수한 수율의 5-할로메틸푸르푸랄 제조방법을 제공하는 것을 목적으로 한다.
상기 과제를 해결하기 위해서 본 발명은 (a) 반응기내 당 성분, 황산 수용액 및 할로겐을 포함하는 무기염의 혼합 수용액을 준비하는 단계; (b) 상기 혼합 수용액에 추출 유기 용매로서 톨루엔을 투입하여 혼합 2상 용액 시스템을 수득하는 단계; (c) 상기 혼합 2상 용액을 교반하여 수상과 유기상이 균일하게 혼합되도록 하고, 상기 혼합 2상 용액의 온도를 승온시켜 탈수반응을 유도하면서 용매를 환류시키는 단계; 및 (d) 상기 (c) 단계 후 혼합 2상 용액을 정치시켜 수상과 유기상으로 나누고, 유기상으로부터 5-할로메틸푸르푸랄을 회수하는 단계;를 포함하는 것을 특징으로 하는 5-할로메틸푸르푸랄의 제조방법을 제공한다.
본 발명의 일실시예에 있어서, 상기 (a) 단계의 당 성분은 글루코스, 프룩토스, 갈락토스를 포함하는 단당류; 말토스, 수크로스, 락토스를 포함하는 이당류; 육탄당을 포함하는 스타치, 셀룰로스, 헤미셀룰로스의 다당류; 중 하나 이상을 포함하는 것일 수 있다.
본 발명의 일실시예에 있어서, 상기 (a) 단계에서 황산의 농도는 황산 수용액 전체 중량 대비 40 내지 70 wt% 일 수 있다.
본 발명의 일실시예에 있어서, 상기 (b) 단계의 혼합 2상 용액은 유기상/수상의 부피비가 2 내지 10 인 것을 특징으로 할 수 있다.
본 발명의 일실시예에 있어서, 상기 (c) 단계에서 혼합 2상 용액은 80 내지 111 ℃ 로 승온되는 것 특징으로 할 수 있다.
본 발명의 일실시예에 있어서, 상기 당 성분은 바이오매스로부터 유래된 것임을 특징으로 할 수 있다.
또한, 본 발명은 상기 제조방법으로부터 얻어진 5-할로메틸푸르푸랄을 사용하여 5-히드록시메틸푸르푸랄(HMF)를 얻는 것을 특징으로 하는, 5-히드록시메틸푸르푸랄(HMF)의 제조방법을 제공한다.
본 발명에 따르면, 열린 계내 바이오매스 유래 당 성분의 탈수반응 과정에서 수상(aqueous phase)에 대해 환류 시스템을 적용하여 반응계내 상압 조건을 형성시킴으로서, 고압용 설비 사용을 회피할 수 있어 경제적 공정을 이룰 수 있고, 또한, 반응기 폭발 및 강산 가스 누출을 포함하는 안전사고의 위험성을 저감할 수 있으며, 상기 상압 조건에서 종래 사용된 산촉매를 사용하는 경우 대비하여 수율이 3배 이상 개선되는 현저한 효과가 있다.
도 1은 수상내 6탄당(hexose)의 탈수반응으로부터 생성된 HMF가 유기상으로 분배되는 메커니즘을 도시한 도면이다.
도 2는 산촉매의 종류 및 NaCl 포함여부에 따른 시간대별 CMF 수율 그래프이다.
다른 식으로 정의하지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
도 1은 수상내 6탄당(hexose)의 탈수반응으로부터 생성된 HMF가 유기상으로 분배되는 메커니즘을 도시한 도면이다.
상기 도 1에 따르면, D-글루코스는 연속적인 탈수반응에 의해 HMF로 전환된다. 여기서, 상기 HMF의 탈수반응이 더 진행되면 레불린산(levulinic acid)으로 변환되는데, 상기 레불린산보다 HMF의 형태가 산업적으로 더 다양한 용도를 가지고 있어, HMF의 수요가 더 많은 실정이다. 따라서, HMF의 레불린산으로의 전환을 막고 상기 HMF를 선택적으로 수득하기 위한 방법으로서, HMF내 히드록시기(-OH)를 할로겐 원자로 치환하여 5-클로로메틸푸르푸랄(CMF)로 전환시킨 후, 5-클로로메틸푸르푸랄(CMF)를 추출 용매에 분배시켜 간접적으로 수득하는 기술이 공지된 바 있다.
이와 같이 글루코스와 같은 당 성분으로부터 5-할로메틸푸르푸랄을 제조하는 반응은 진한 염산수용액(12M, 37wt%)내에서 당의 탈수반응 및 염소화 반응을 통해 진행되는데, 염산수용액은 온도 108.6 ℃ 및 대기압 환경 하에서 상기 수용액의 HCl 농도가 20.2 wt% 인 조건에서 HCl/물의 공비혼합물(azeotrope)을 형성하므로 오토클레이브(autoclave) 반응기를 사용하지 않고는 염산의 농도를 증가시킬 수 없으며, 일반 반응기로는 낮은 수율 및 염산 가스의 누출을 포함한 안전사고의 위험성이 상존하는 문제가 있어 수행하기 어려웠다. 이를 해결하고자, 본 출원인은 HCl을 대체하는 산촉매로서 황산(H2SO4)과 5-할로메틸푸르푸랄로의 전환을 위한 할로겐 제공 무기염을 투입하여 당 성분의 탈수반응을 통해 5-할로메틸푸르푸랄을 제조하는 방법을 사용함으로써, 오토클레이브를 사용하지 않고도 높은 정도로 5-할로메틸푸르푸랄을 제조할 수 있는 방법을 착안하여 본 발명을 완성하기에 이르렀다.
이하 본 발명의 환류 조건하 황산을 이용한 5-할로메틸푸르푸랄제조방법을 상세하게 설명하기로 한다.
본 발명의 당 성분으로부터 5-할로메틸푸르푸랄을 제조하는 방법은 (a) 반응기내 당 성분, 황산 수용액 및 할로겐을 포함하는 무기염의 혼합 수용액을 준비하는 단계; (b) 상기 혼합 수용액에 추출 유기 용매로서 톨루엔을 투입하여 혼합 2상 용액 시스템을 수득하는 단계; (c) 상기 혼합 2상 용액을 교반하여 수상과 유기상이 균일하게 혼합되도록 하고, 상기 혼합 2상 용액의 온도를 승온시켜 탈수반응을 유도하면서 용매를 환류시키는 단계; 및 (d) 상기 (c) 단계 후 혼합 2상 용액을 정치시켜 수상과 유기상으로 나누고, 유기상으로부터 5-할로메틸푸르푸랄을 회수하는 단계;를 포함하는 것을 특징으로 한다.
상기 (a) 단계의 당 성분은 HMF로 변환될 수 있는 원료 성분으로서, 농도는 0.01 내지 20 wt% 범위일 수 있으며, 일 예로는 글루코스, 프룩토스, 갈락토스를 포함하는 단당류; 말토스, 수크로스, 락토스를 포함하는 이당류; 육탄당을 포함하는 스타치, 셀룰로스, 헤미셀룰로스를 포함하는 다당류; 중 하나 이상을 포함하고, 바람직하게는 글루코스, 셀룰로스 중 하나 이상을 포함할 수 있다.
상기 (a) 단계의 황산수용액은 H2SO4의 농도가 70 wt% 가 될 때까지 기체상에 존재하는 황산이 거의 존재하지 않는 비휘발성이며, 98 wt%의 진한 황산의 경우에도 기상에서의 H2SO4 농도가 액상에서의 농도보다 낮게 유지되므로, 굳이 오토클레이브 설비 없이도 당류로부터 5-할로메틸푸르푸랄의 생성 반응을 쉽게 실시할 수 있으며, 간단한 용매 환류시스템을 구비함으로써, 특별한 온도 조절 시스템 없이 일반 장치로도 5-할로메틸푸르푸랄을 쉽고, 고수율로 생성할 수 있다.
상기 황산의 농도가 황산 수용액 전체 중량 대비 10 내지 70 wt% 범위이고, 바람직하게는 40 내지 70 wt%범위인 것이 사용될 수 있다. 상기 황산의 농도가 10 wt% 미만인 경우에는 산촉매로서 탈수반응 촉진효과가 미진한 문제가 있고, 70 wt%를 초과하는 경우에는 기체상에 황산이 존재할 수 있기 때문에 안전사고가 발생될 수 있는 문제가 있다.
상기 (a) 단계의 할로겐을 포함하는 무기염은 HMF를 치환하기 위한 할로겐 제공원으로서, 종래 산촉매인 염산을 황산으로 대체함에 따라 투입되는 성분이며, 이온성 물질인 무기염은 혼합 2상 용액내 수상의 친수성을 증가시켜 유기상으로의 5-할로메틸푸르푸랄의 분배를 촉진하여 수율을 향상시키는 구성이다. 상기 할로겐을 포함하는 무기염은 금속 이온을 포함할 수 있고, 상기 금속 이온은 황산 이온(SO4 2-)과 염을 형성하여 염석 효과(Salting-out effect)를 유발함으로서 5-할로메틸푸르푸랄의 분배를 더욱 촉진하는 효과가 있다.
상기 할로겐을 포함하는 무기염은 용해되어 할로겐이온(X-=F-,Cl-,Br-,I-)을 제공할 수 있는 것이면 제한없이 사용할 수 있고, 일 예로 금속 양이온과 염소 음이온을 포함하는 것이 사용될 수 있고, 구체적으로 LiCl, KCl, RbCl 및 CsCl 중 하나 이상의 알칼리금속 염화물, MgCl2, CaCl2, SrCl2 및 BaCl2 중 하나 이상의 알칼리토금속 염화물, LiBr, KBr, RbBr 및 CsBr 중 하나 이상의 알칼리금속 브롬화물, MgBr2, CaBr2, SrBr2 및 BaBr2 중 하나 이상의 알칼리토금속 브롬화물, LiI, KI, RbI 및 CsI 중 하나 이상의 알칼리금속 요오드화물, MgI2, CaI2, SrI2 및 BaI2 중 하나 이상의 알칼리토금속 요오드화물, LiF, KF, RbF 및 CsF 중 하나 이상의 알칼리금속 불화물, MgF2, CaF2, SrF2 및 BaF2 중 하나 이상의 알칼리토금속 불화물 중 하나 이상을 사용할 수 있으며, 바람직하게는 LiCl, KCl, RbCl 및 CsCl 중 하나 이상의 알칼리금속 염화물, MgCl2, CaCl2, SrCl2 및 BaCl2 중 하나 이상의 알칼리토금속 염화물 중 하나 이상을 사용할 수 있고, 더욱 바람직하게는 NaCl을 사용할 수 있다.
상기 (b) 단계의 혼합 2상 용액은 유기상/수상의 부피비가 2 내지 10 범위일 수 있다.
상기 (c) 단계에서 혼합 2상 용액은 80 내지 111 ℃ 범위로 승온될 수 있다. 상기 승온된 온도가 80 ℃ 미만인 경우에는 탈수반응 속도가 미미한 문제가 있고, 상압의 환류 조건에서는 용매의 끓는점 이상(톨루엔의 경우 111 ℃) 승온 되지 않기 때문에 반응온도가 한정될 수 있다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 환류 조건하 황산을 이용한 5-할로메틸푸르푸랄 제조방법에 대한 실험예들을 통하여 상세히 설명한다.
<실험예 1>
글루코스(99%, Sigma) 0.60g과 10M 황산 수용액 6 mL (7.80g)에 첨가한 황산의 몰수의 0.6에 해당하는 NaCl(extra pure, DC Chemical) 1.87g을 1구 플라스크에 투입하고, 톨루엔(99%, Samchun) 30 mL을 첨가한 다음, 0℃의 에탄올이 순환하고 있는 콘덴서를 장착하여 환류가 가능하도록 하였다. 이후 상기 플라스크내의 혼합 2상 용액을 1400 rpm으로 교반하면서 상기 플라스크내 온도를 톨루엔의 끓는점인 111 ℃ 까지 승온하고, 상압 하에 탈수반응 및 환류를 실시하였다. 반응시간 300분 경과 후 반응 플라스크를 0 ℃의 냉수조에 넣어 급랭한 후 톨루엔 층을 물층과 분리하였다. 상기 톨루엔 층에 무수 황산마그네슘을 첨가하여 수분을 제거한 후 필터 여과하여 얻은 톨루엔을 감압증류(상온, <50 mmHg)하여 비휘발성 5-클로로메틸푸르푸랄(CMF) 원액을 회수하였고, 회수된 5-클로로메틸푸르푸랄(CMF) 원액의 컬럼 크로마토그래피(silica gel, CH2Cl2:Et2O, 2:1)를 통해 고순도 5-클로로메틸푸르푸랄(CMF)를 최종적으로 회수하였다. 톨루엔 층에 생성된 5-클로로메틸푸르푸랄(CMF)의 정량분석을 위해, 분리된 고순도 5-클로로메틸푸르푸랄(CMF)와 내부표준물질로서 1-heptane 간 측정된 응답인자 이용하여 톨루엔 층에 생성된 5-클로로메틸푸르푸랄(CMF)를 DB-624UI 컬럼과 FID가 장착된 GC 분석을 통해 정량하였다.
분리된 5-클로로메틸푸르푸랄(CMF) 외에도 물층에 용해되어있는 미반응 글루코스의 양은 Aminex HPX-87H 컬럼과 refractive index 검출기가 장착된 HPLC를 이용하여 이동상으로 5 mM 황산수용액(유속 0.6 ml/min) 조건에서 분석하여 1에서 6시간 반응시간 동안 최대 5-클로로메틸푸르푸랄(CMF)수율을 기록한 조건에서의 글루코스의 전환율과 5-클로로메틸푸르푸랄(CMF) 선택도를 아래 표 1에 나타내었다.
<실험예 2 내지 12>
상기 실험예1에서 10M 농도의 황산 대신 1 내지 12 M 농도의 황산수용액을 사용하여, 하기 표에 나타난 황산 몰수가 되도록 한 것을 제외하고는 실험예1과 동일한 방법으로 5-클로로메틸푸르푸랄(CMF)를 제조하였다.
<실험예 13 내지 21>
상기 실험예1에서 NaCl의 몰 수가 하기 표 1에 나타난 것과 같이 되도록 조절한 것을 제외하고는 상기 실험예1과 동일한 방법으로 5-클로로메틸푸르푸랄(CMF)를 제조하였다.
<실험예 22>
상기 실험예 1에서 황산수용액을 사용하지 않은 것을 제외하고는 상기 실험예 1과 동일한 방법으로 5-클로로메틸푸르푸랄(CMF)를 제조하였다.
<실험예 23>
상기 실험예1에서 NaCl을 사용하지 않은 것을 제외하고는 상기 실험예 1과 동일한 방법으로 5-클로로메틸푸르푸랄(CMF)를 제조하였다.
<실험예 24>
상기 실험예 1에서 10M 농도의 황산수용액 대신 12M 농도의 HCl을 사용한 것을 제외화고는 상기 실험예 1과 동일한 방법으로 5-클로로메틸푸르푸랄(CMF)를 제조하였다.
<실험예 25>
상기 실험예 24에서 NaCl을 사용하지 않을 것을 제외하고는 상기 실험예 24와과 동일한 방법으로 5-클로로메틸푸르푸랄(CMF)를 제조하였다.
Figure PCTKR2022016002-appb-img-000001
상기 표 1에는 5-클로로메틸푸르푸랄(CMF)을 제조함에 있어서, 염산, 황산 및 NaCl등의 조합 혹은 양 등을 달리하면서 실험한 결과를 기재하였으며, 도 2에는 황산과 NaCl 혹은 염산과 NaCl, 또는 염산만을 사용한 시간대별의 CMF 수율을 도시하였다.
상기 표 1로부터 실험예1과 실험예22 내지 실험예23을 대비하여 보면, 황산만을 사용한 실험예22나, NaCl만을 사용한 실험예23에서는 5-클로로메틸푸르푸랄(CMF)가 생성되지 않아 5-클로로메틸푸르푸랄(CMF) 생성반응에서는 황산과 NaCl이 모두 필요한 것을 알 수 있다.
또한, 실험예24와 실험예25는 황산 대신에 염산을 사용하여 실험한 경우이다. 염산의 경우, NaCl을 사용하지 않은 실험예25에서도 5-클로로메틸푸르푸랄(CMF)의 수율이 22.9%까지 나타나는 것을 볼 수 있어, NaCl을 사용하지 않고 황산만을 사용한 실험예23보다 5-클로로메틸푸르푸랄(CMF) 수율 측면에서 유리한 것을 볼 수 있다.
실험예24와 실험예25는 염산에 NaCl이 첨가된 경우와 되지 않은 경우인데, NaCl이 첨가된 실험예24는, NaCl이 첨가되지 않은 실험예25와 대비하여 글루코스 전환율은 약간 떨어지나, 5-클로로메틸푸르푸랄(CMF)의 선택도가 증가함으로써, 전체적인 5-클로로메틸푸르푸랄(CMF)의 수율이 증가하는 것을 보여준다.
그러나, 염산만을 사용한 경우나, 염산과 NaCl을 첨가한 경우 모두 5-클로로메틸푸르푸랄(CMF)의 수율이 최대 25.3%에 지나지 않아, 황산과 NaCl을 모두 사용한 실험예1의 59.4%에 비하여 약 0.43배에 지나지 않는다.
따라서, 본원에서와 같이 용매의 환류(reflux)를 행하는 열린계로 바이오매스로부터 CMF를 제조하기 위해서는 황산과 NaCl의 조합을 이용하는 것이 훨씬 높은 수율을 얻을 수 있음을 알 수 있다.
실험예2 내지 실험예21은 황산과 NaCl의 몰수를 조절한 것으로, 이들 몰수에서 적정량이 존재함을 보여준다.
도 2를 참조하면 글루코스를 5-클로로메틸푸르푸랄(CMF)로 전환함에 있어, 황산과 NaCl을 동시에 사용할 경우에는 반응시간이 5시간까지는 반응시간에 따라 CMF의 수율이 증가하다가, 반응시간이 더 길어지게 되면 CMF의 수율은 감소하는 경향을 보이나, 염산과 NaCl만을 사용할 경우에는 반응시간이 증가하더라도 CMF의 수율에 변화가 없으며, 염산만을 사용하는 경우에는 오히려 반응시간의 증가에 따라 오히려 수율이 약간씩 떨어지는 경향을 보이고 있어, CMF의 전환 과정에 있어 사용되는 산의 종류 등에 따라 반응성에 많은 차이가 있음을 보여준다.
본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.

Claims (8)

  1. 당 성분으로부터 5-할로메틸푸르푸랄(CMF)을 제조하는 방법에 있어서,
    (a) 반응기내 당 성분, 황산 수용액 및 할로겐을 포함하는 무기염의 혼합 수용액을 준비하는 단계;
    (b) 상기 혼합 수용액에 추출 유기 용매로서 톨루엔을 투입하여 혼합 2상 용액 시스템을 수득하는 단계;
    (c) 상기 혼합 2상 용액을 교반하여 수상과 유기상이 균일하게 혼합되도록 하고, 상기 혼합 2상 용액의 온도를 승온시켜 탈수반응을 유도하면서 용매를 환류시키는 단계; 및
    (d) 상기 (c) 단계 후 혼합 2상 용액을 정치시켜 수상과 유기상으로 나누고, 유기상으로부터 5-할로메틸푸르푸랄을 회수하는 단계;를 포함하는 것을 특징으로 하는 5-할로메틸푸르푸랄의 제조방법.
  2. 제1항에 있어서,
    상기 (a) 단계의 당 성분은 글루코스, 프룩토스, 갈락토스를 포함하는 단당류; 말토스, 수크로스, 락토스를 포함하는 이당류; 육탄당을 포함하는 스타치, 셀룰로스, 헤미셀룰로스의 다당류; 중 하나 이상을 포함하는 것을 특징으로 하는 5-할로메틸푸르푸랄의 제조방법.
  3. 제1항에 있어서,
    상기 (a) 단계에서 황산의 농도는 황산 수용액 전체 중량 대비 40 내지 70 wt% 인 것을 특징으로 하는 5-할로메틸푸르푸랄의 제조방법.
  4. 제1항에 있어서,
    상기 (a) 단계의 할로겐을 포함하는 무기염은 NaCl, LiCl, KCl, RbCl 및 CsCl 중 하나 이상의 알칼리금속 염화물, MgCl2, CaCl2, SrCl2 및 BaCl2, NaBr, LiBr, KBr, RbBr, CsBr 중 하나 이상의 알칼리금속 브롬화물, MgBr2, CaBr2, SrBr2 및 BaBr2 중 하나 이상의 알카리토금속 브롬화물, NaI, LiI, KI, RbI, CsI 중 하나 이상의 알칼리금속 요오드화물, MgI2, CaI2, SrI2 및 BaI2 중 하나 이상의 알카리토금속 요오드화물, NaF, LiF, KF, RbF, CsF 중 하나 이상의 알칼리금속 불화물, MgF2, CaF2, SrF2 및 BaF2 중 하나 이상의 알카리토금속 불화물 중 하나 이상의 알칼리토금속 염화물 중 하나 이상인 것을 특징으로 하는 5-할로메틸푸르푸랄의 제조방법.
  5. 제1항에 있어서,
    상기 (b) 단계의 혼합 2상 용액은 유기상/수상의 부피비가 2 내지 10 인 것을 특징으로 하는 5-할로메틸푸르푸랄의 제조방법.
  6. 제1항에 있어서,
    상기 (c) 단계에서 혼합 2상 용액은 80 내지 111 ℃ 로 승온되는 것 특징으로 하는 5-할로메틸푸르푸랄의 제조방법.
  7. 제1항에 있어서,
    상기 당 성분은 바이오매스로부터 유래된 것임을 특징으로 하는 5-할로메틸푸르푸랄의 제조방법.
  8. 5-히드록시메틸푸르푸랄(HMF)를 제조하는 방법에 있어서,
    상기 제1항 내지 제7항 중 어느 한 항의 제조방법으로 제조된 5-할로메틸푸르푸랄을 사용하여 5-히드록시메틸푸르푸랄(HMF)를 얻는 것을 특징으로 하는, 5-히드록시메틸푸르푸랄(HMF)의 제조방법.
PCT/KR2022/016002 2021-10-26 2022-10-20 5-할로메틸푸르푸랄의 제조방법 및 그 시스템 WO2023075288A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0143959 2021-10-26
KR1020210143959A KR102653924B1 (ko) 2021-10-26 2021-10-26 5-클로로메틸푸르푸랄의 제조방법 및 그 시스템

Publications (1)

Publication Number Publication Date
WO2023075288A1 true WO2023075288A1 (ko) 2023-05-04

Family

ID=86159552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/016002 WO2023075288A1 (ko) 2021-10-26 2022-10-20 5-할로메틸푸르푸랄의 제조방법 및 그 시스템

Country Status (2)

Country Link
KR (1) KR102653924B1 (ko)
WO (1) WO2023075288A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4424390A (en) * 1981-11-06 1984-01-03 Sumitomo Chemical Company, Limited Process for producing 5-halomethylfurfural
KR20110079484A (ko) * 2009-12-31 2011-07-07 동아대학교 산학협력단 전분 또는 식물 생체 바이오매스로부터 하이드록시메틸푸르푸랄을 생산하는 방법
KR20130091637A (ko) * 2010-04-07 2013-08-19 노보자임스 에이/에스 히드록시메틸푸르푸랄의 제조 방법
KR20150072453A (ko) * 2012-10-26 2015-06-29 마이크로마이다스, 인코포레이티드 5-(할로메틸) 푸르푸랄 생산 방법
KR20180014434A (ko) * 2011-06-09 2018-02-08 마이크로마이다스, 인코포레이티드 치환된 푸란을 제조하기 위한 바이오매스의 변환을 위한 다상 반응기의 이용

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4424390A (en) * 1981-11-06 1984-01-03 Sumitomo Chemical Company, Limited Process for producing 5-halomethylfurfural
KR20110079484A (ko) * 2009-12-31 2011-07-07 동아대학교 산학협력단 전분 또는 식물 생체 바이오매스로부터 하이드록시메틸푸르푸랄을 생산하는 방법
KR20130091637A (ko) * 2010-04-07 2013-08-19 노보자임스 에이/에스 히드록시메틸푸르푸랄의 제조 방법
KR20180014434A (ko) * 2011-06-09 2018-02-08 마이크로마이다스, 인코포레이티드 치환된 푸란을 제조하기 위한 바이오매스의 변환을 위한 다상 반응기의 이용
KR20150072453A (ko) * 2012-10-26 2015-06-29 마이크로마이다스, 인코포레이티드 5-(할로메틸) 푸르푸랄 생산 방법

Also Published As

Publication number Publication date
KR20230059611A (ko) 2023-05-03
KR102653924B1 (ko) 2024-04-03

Similar Documents

Publication Publication Date Title
US8772515B2 (en) Method to convert biomass to 5-(hydroxymethyl)-furfural (HMF) and furfural using lactones, furans, and pyrans as solvents
Zhou et al. One-pot catalytic conversion of carbohydrates into furfural and 5-hydroxymethylfurfural
US9359650B2 (en) Biomass pre-treatment for co-production of high-concentration C5- and C6-carbohydrates and their derivatives
US9617234B1 (en) Method to produce furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF)
Xiao et al. Efficient conversion of cellulose into biofuel precursor 5-hydroxymethylfurfural in dimethyl sulfoxide–ionic liquid mixtures
EP2032723B1 (en) Conversion method
US20110312048A1 (en) Conversion method
WO2013047984A1 (ko) 유기용매 하에서 이온교환수지를 이용한 5-히드록시메틸-2-푸르푸랄 또는 그의 알킬 에테르 유도체의 제조방법
JP5498005B2 (ja) 有機酸を経由したアルコール類の製造方法
WO2023075288A1 (ko) 5-할로메틸푸르푸랄의 제조방법 및 그 시스템
Zhu et al. Sulfonated vermiculite-mediated catalysis of reed (phragmites communis) into furfural for enhancing the biosynthesis of 2-furoic acid with a dehydrogenase biocatalyst in a one-pot manner
CN116529232A (zh) 用于生产乙酰丙酸的方法
Shi et al. Conversion of cellulose into 5-hydroxymethylfurfural in an H2O/tetrahydrofuran/cyclohexane biphasic system with Al2 (SO4) 3 as the catalyst
WO2024071951A1 (ko) 전처리 단계를 수반하는 5-할로메틸푸르푸랄 제조방법
CN106902877B (zh) 一种多酸催化剂及其制备方法和使用方法
CN109180617A (zh) 一种基于糠醛类化合物萃取剂的两相生物质预处理联产化学品方法
Paiva et al. Advancing Lignocellulosic Biomass Fractionation through Molten Salt Hydrates: Catalyst‐Enhanced Pretreatment for Sustainable Biorefineries
US9688845B2 (en) Method to produce biomass-derived compounds using a co-solvent system containing gamma-valerolactone
CN110078689A (zh) 一种5-羟甲基糠醛的制备方法
Cai et al. Innovative biphasic solvent systems for lignocellulosic biorefinery
WO2022230769A1 (ja) 5-ヒドロキシメチルフルフラール(5-hmf)を含むフラン誘導体の製造方法、及びフラン誘導体、該フラン誘導体を含む溶液、及びフランジカルボン酸又はフランジカルボン酸エステルの製造方法
KR20230133784A (ko) 당 성분으로부터의 5-아세톡시메틸푸르푸랄(amf) 제조방법 및 이를 포함하는 2,5-퓨란디카복실산(fdca) 제조 방법
US20200039947A1 (en) Process to produce 5-hydroxymethylfurfural (hmf) from carbohydrates using a solvent system containing water and a polar aprotic solvent
CN118005579A (zh) 一种5-羟甲基糠醛的制备方法
CN110452196A (zh) 一种离子液体催化六碳糖制备5-羟甲基糠醛的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22887484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE