WO2023074952A1 - 다중센서 융합을 위한 센서 인터페이스 및 synthetic 신호처리 방법 - Google Patents

다중센서 융합을 위한 센서 인터페이스 및 synthetic 신호처리 방법 Download PDF

Info

Publication number
WO2023074952A1
WO2023074952A1 PCT/KR2021/015353 KR2021015353W WO2023074952A1 WO 2023074952 A1 WO2023074952 A1 WO 2023074952A1 KR 2021015353 W KR2021015353 W KR 2021015353W WO 2023074952 A1 WO2023074952 A1 WO 2023074952A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
vehicle
signal processing
processing method
synthetic signal
Prior art date
Application number
PCT/KR2021/015353
Other languages
English (en)
French (fr)
Inventor
신후상
유성민
이규남
이상열
정재호
Original Assignee
황성공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 황성공업 주식회사 filed Critical 황성공업 주식회사
Priority to PCT/KR2021/015353 priority Critical patent/WO2023074952A1/ko
Publication of WO2023074952A1 publication Critical patent/WO2023074952A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures

Definitions

  • the present invention relates to a sensor interface for multi-sensor convergence and a SYNTHETIC signal processing method, and more particularly, to a sensor interface for multi-sensor convergence and a SYNTHETIC signal processing method for diagnosing a vehicle by receiving data from multiple sensors installed in a vehicle.
  • the tire air pressure detection system is a safety device sensor that measures tire air pressure and temperature in real time and informs the driver of any abnormalities.
  • the tire pressure sensing system has been mandatory as a safety regulation in Korea since 2015, but there is a problem that it is difficult to expand and apply it to applications that require various diagnostics, such as control arms, with a simple function that only senses pressure and temperature.
  • Tire air pressure sensing systems are owned by many global companies overseas, but like Korean technology, they have only a simple function of sensing pressure and temperature, so there is a problem that it is impossible to commercialize an artificial intelligence sensor platform through multiple cross-sensing.
  • the technical problem to be solved by the present invention is to measure the state of vehicle driving safety parts that seriously affect the driver's safety and vehicle operation during normal driving of the vehicle in real time, and deliver fault diagnosis and preemptive prediction information related to the durability of the parts. and control, it is to improve the safety of the vehicle, secure a safety solution, and extend the life of related parts.
  • One aspect of the present invention is to sense a plurality of pieces of information by multiple sensors installed on the parts of a vehicle, and comprehensively analyze a plurality of data sensed from the multi-sensing module to diagnose whether or not a component has failed or to extend its life.
  • a sensor interface and SYNTHETIC signal processing method for predictive, multi-sensor fusion are provided.
  • 1 is a platform for implementing a sensor interface and a SYNTHETIC signal processing method for multi-sensor fusion according to an embodiment of the present invention.
  • FIG. 2 is an artificial intelligence sensor platform for implementing a sensor interface and a SYNTHETIC signal processing method for multi-sensor fusion according to an embodiment of the present invention.
  • FIG. 3 illustrates a method for securing reliability through testing and debugging verification of an ECU included in a platform for implementing a sensor interface for multi-sensor fusion and a SYNTHETIC signal processing method according to an embodiment of the present invention.
  • 4A to 4C are examples of configurations of self-correction and self-diagnosis functions for responding to fault prediction.
  • FIG. 5 is a diagram illustrating support for data analysis using a proving ground with KATECH special for prediction of remaining life.
  • FIG. 6 is an exemplary view of ASIL Decomposition of Block Diagram on ECU/SW Architecture Level.
  • FIG. 7 is a diagram illustrating multiple linear regression and multiple polynomial regression analysis methods for predicting remaining life.
  • FIG. 8 is an exemplary data diagram of an FPGA board for multi-sensor input.
  • FIG. 9 is a form of a platform for implementing a sensor interface and a SYNTHETIC signal processing method for multi-sensor fusion according to an embodiment of the present invention.
  • 11 is a simulation block diagram.
  • 13 is a diagram illustrating real-time sensor data, actual load data, and actual vehicle data.
  • FIG. 14 is a diagram showing a detailed image of a multi-algorithm acquisition process.
  • 15 is a diagram illustrating multiple on-device process detailed images.
  • 16 is a diagram illustrating detailed images of support beams.
  • 17 is a diagram illustrating a control arm for mounting multiple sensors and a mounting state thereof.
  • 18 is an example image of a control arm simulation for mounting multiple sensors.
  • 19 is a view showing part of the contents of a control arm test report for mounting multiple sensors.
  • 1 is a platform for implementing a sensor interface and a SYNTHETIC signal processing method for multi-sensor fusion according to an embodiment of the present invention.
  • a platform for implementing the sensor interface and SYNTHETIC signal processing method for multi-sensor convergence attaches a multi-sensor module to a control arm, collects sensing data for the control arm through the multi-sensor module, and transfers the collected sensing data to a server. It can be sent to build big data for life prediction learning.
  • the server learns a lifespan model through a deep neural network (DNN) using the big data, and builds an optimal lifespan prediction inference model through optimal relocation (Hardware/Software). there is.
  • DNN deep neural network
  • a platform for implementing sensor interfaces and SYNTHETIC signal processing methods for multi-sensor fusion can be driven through life prediction AI and inference engines.
  • a platform in which a multi-sensor module is attached to a control arm of a vehicle is taken as an example, but it is of course possible to attach a multi-sensor module to various parts attached to a vehicle.
  • FIG. 2 is an artificial intelligence sensor platform for implementing a sensor interface and a SYNTHETIC signal processing method for multi-sensor fusion according to an embodiment of the present invention.
  • the platform disclosed in FIG. 2 is a platform that comes from verifying the multi-sensor signal processing SoC mounting and reliability, and is a platform that can be realized by verifying life prediction AI operation verification and functional safety response failure prediction function.
  • an artificial intelligence sensor platform and software development kit that extracts an optimal inference engine from sensor data can be used.
  • FIG. 3 illustrates a method for securing reliability through testing and debugging verification of an ECU included in a platform for implementing a sensor interface for multi-sensor fusion and a SYNTHETIC signal processing method according to an embodiment of the present invention.
  • electromagnetic compatibility test evaluation in performing the reliability evaluation of the multi-sensor module and parts, electromagnetic compatibility test evaluation, operation performance reliability evaluation, environment resistance reliability evaluation, reliability verification evaluation for securing ECU stability are performed, and hardware level It may include measures to secure stress-resistance environment for communication interface, electromagnetic compatibility countermeasure technology to secure system semiconductor reliability, and development of functional safety countermeasure technology through system semiconductor IVN Fault Injection Test.
  • 4A to 4C are examples of configurations of self-correction and self-diagnosis functions for responding to fault prediction.
  • FIGS. 4A to 4C show an example for responding to the failure prevention diagnosis, and can be changed in various ways according to the timing, purpose, and method of self-correction.
  • FIG. 5 is a diagram illustrating data analysis support using a proving ground using KATECH special for remaining life prediction
  • FIG. 6 is an example of ASIL Decomposition of Block Diagram on ECU/SW Architecture Level.
  • the interface structure for the multi-sensor SoC is designed, and the learning data-based harsh vector inference algorithm and deep learning algorithm for remaining life prediction are applied.
  • a learning data-based harsh vector inference algorithm for multi-prediction an interface structure design for multiple platforms, and a deep learning algorithm learning technology for performing remaining life prediction can be applied.
  • FIG. 7 is a diagram illustrating multiple linear regression and multiple polynomial regression analysis methods for predicting remaining life
  • FIG. 8 is an example of FPGA board data for multiple sensor inputs.
  • model and logic design technology for remaining life prediction is applied, and sensor fusion information extraction logic through filtering or DAQ cycles and deep learning application technology such as multiple linear regression and multiple polynomial regression for remaining life prediction are applied. applied, and level correlation between reference data and real-time sensor fusion data is analyzed to predict remaining life.
  • FIG. 9 is a form of a platform for implementing a sensor interface and a SYNTHETIC signal processing method for multi-sensor fusion according to an embodiment of the present invention.
  • multi-sensors and controllers are used, and multi-sensors can be implemented as standardized modules. Multiple sensors may be attached to various parts of the vehicle, but a safety sensor integrated into a control arm may be used as one embodiment.
  • a multi-sensing application algorithm may be applied and operated, and a platform for each sensor application may be separately implemented.
  • FIG. 10 is an implementation of VEHICLE BICYCLE MODEL
  • FIG. 11 is a simulation block diagram
  • FIG. 12 is a flowchart according to an embodiment of the present invention.
  • logic design can be configured by configuring three types of data for each sensor/load/vehicle, and decision logic is used to prevent continuous operation of modulation in case of severe movement within a relatively small data size range.
  • 13 is a diagram illustrating real-time sensor data, actual load data, and actual vehicle data.
  • Real-Time Sensor Data ⁇ Real-Road Data (vs. Proving Ground) ⁇ Real-Vehicle Data process is passed.
  • FIG. 14 is a diagram showing a detailed image of a multi-algorithm acquisition process.
  • 15 is a diagram illustrating multiple on-device process detailed images.
  • FIG. 16 is a diagram illustrating a detailed image of a support beam
  • FIG. 17 is a diagram illustrating a control arm for mounting multiple sensors and a mounting state
  • FIG. 18 is an example image of a control arm simulation for mounting multiple sensors
  • FIG. It is a drawing showing part of the contents of the control arm test report for sensor mounting.
  • a method for stabilizing the sensor output signal of the deviation for each control arm attachment position and vehicle environment condition must be applied, and a simulation technique that verifies the attachment position and vehicle environment condition in combination can be used.
  • the optimal location may be applied first.
  • one location can be set as the master point, and the optimal location can be changed in the Trial & Error method through a comparison test.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)

Abstract

다중센서를 서스펜션용 부품인 컨트롤 암과 같은 차량의 중요부품에 탑재하여 차량부품 결함에 의한 잔존 수명 예측을 하고 이를 기반으로 차량사고를 원천적으로 예방할 수 있는 다중센서 융합을 위한 센서 인터페이스 및 SYNTHETIC 신호처리 방법에 관한 것으로, 차량 중요부품에 개별적으로 다중센서를 탑재하여 일반 주행은 물론 자율주행처럼 사람과의 물리적 교감이 불가한 주행에서도 사고를 예방할 수 있다. [대표도] 도 1

Description

다중센서 융합을 위한 센서 인터페이스 및 SYNTHETIC 신호처리 방법
본 발명은 다중센서 융합을 위한 센서 인터페이스 및 SYNTHETIC 신호처리 방법에 관한 것으로서, 차량에 설치된 다중센서로부터 데이터를 입력 받아 차량을 진단하는 다중센서 융합을 위한 센서 인터페이스 및 SYNTHETIC 신호처리 방법에 관한 것이다.
타이어 공기압 감지 시스템은 타이어 공기압과 온도를 실시간 측정해 이상 여부를 운전자에게 알려주는 안전장치 센서이다.
타이어 공기압 감지 시스템은 한국에서 2015년도부터 안전법규로 의무장착이 되고 있으나, 압력과 온도만을 센싱하는 단순 기능만으로는 컨트롤 암처럼 다양한 진단이 필요한 어플리케이션으로 확대 적용하기 어렵다는 문제가 있다.
타이어 공기압 감지 시스템은 해외에서 다수의 글로벌 기업들이 보유하고 있으나, 한국 기술과 마찬가지로 압력과 온도만을 센싱하는 단순 기능만을 가지고 있어 다중 크로스 센싱을 통한 인공지능 센서플랫폼을 상용화할 수 없다는 문제가 있다.
본 발명이 해결하고자 하는 기술적 과제는 차량의 일반 주행 중에 운전자의 안전과 차량 운행에 심각한 영향을 주는 차량 주행 안전 부품의 상태를 실시간으로 측정하여 부품의 내구 수명 관련 고장 진단과 선제적 예지 정보를 전달 및 관제함으로써, 차량의 안전도 향상 및 안전 솔루션 확보, 관련 부품의 수명 연장을 제공하는데 있다.
본 발명의 일측면은, 차량의 부품에 설치된 다중 센서에 의해 복수 개의 정보를 상기 부품에서 센싱하고, 상기 다중 센싱 모듈로부터 센싱되는 복수의 데이터를 종합 해석하여 상기 부품의 고장 여부를 진단하거나 수명을 예측하는, 다중센서 융합을 위한 센서 인터페이스 및 SYNTHETIC 신호처리 방법을 제공한다.
본 발명의 일측면에 의하면, 차량 중요부품에 개별적으로 다중센서를 탑재하여 일반 주행은 물론 자율주행처럼 사람과의 물리적 교감이 불가한 주행에서도 사고를 예방할 수 있다.
도1은 본 발명의 일 실시예에 따른 다중센서 융합을 위한 센서 인터페이스 및 SYNTHETIC 신호처리 방법을 구현하기 위한 플랫폼이다.
도 2는 본 발명의 일 실시예에 따른 다중센서 융합을 위한 센서 인터페이스 및 SYNTHETIC 신호처리 방법을 구현하기 위한 인공 지능 센서 플랫폼이다.
도 3은 본 발명의 일 실시예에 따른 다중센서 융합을 위한 센서 인터페이스 및 SYNTHETIC 신호처리 방법을 구현하기 위한 플랫폼에 포함되는 ECU의 테스트 및 디버깅 검증을 통한 신뢰성 확보방안을 도시한 것이다.
도 4a 내지 도 4c는 고장예지진단 대응을 위한 자가보정 및 자기진단 기능 구성에 대한 예시이다.
도 5는 잔존수명예측을 KATECH 특수로 주행시험장 활용 데이터 분석 지원을 예시한 도면이다.
도 6은 ASIL Decomposition of Block Diagram on ECU/SW Architecture Level 예시도이다.
도 7은 잔존 수명 예측을 위한 다중선형회귀 및 다중다항회귀 분석 방법을 예시한 도면이다.
도 8은 다중 센서 입력을 위한 FPGA 보드의 데이터 예시도이다.
도 9는 본 발명의 일 실시예에 따른 다중센서 융합을 위한 센서 인터페이스 및 SYNTHETIC 신호처리 방법을 구현하기 위한 플랫폼의 일형태이다.
도 10은 VEHICLE BICYCLE MODEL을 구현한 것이다.
도 11은 시뮬레이션 블록 다이아그램이다.
도 12는 본 발명의 일실시예에 의한 플로우차트이다.
도 13은 실시간 센서 데이터와, 실로드 데이터와 실차량 데이터를 도시한 도면이다.
도 14는 다중알고리즘 획득 프로세스 상세 이미지를 도시한 도면이다.
도 15는 다중 On-Device 프로세스 상세 이미지를 도시한 도면이다.
도 16은 서포트 빔의 상세 이미지를 예시한 도면이다.
도 17은 다중 센서 탑재용 컨트롤 암 및 장착 상태를 예시한 도면이다.
도 18은 다중 센서 탑재용 컨트롤 암 시뮬레이션 예시 이미지이다.
도 19는 다중센서 탑재용 컨트롤 암 시험보고서의 내용 일부는 나타내는 도면이다.
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예와 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭한다.
이하, 도면들을 참조하여 본 발명의 바람직한 실시예들을 보다 상세하게 설명하기로 한다.
도1은 본 발명의 일 실시예에 따른 다중센서 융합을 위한 센서 인터페이스 및 SYNTHETIC 신호처리 방법을 구현하기 위한 플랫폼이다.
다중센서 융합을 위한 센서 인터페이스 및 SYNTHETIC 신호처리 방법을 구현하기 위한 플랫폼은 컨트롤암에 다중센서모듈을 부착하고, 다중센서모듈을 통해 컨트롤암에 대한 센싱 데이터를 수집하며, 수집된 센싱 데이터를 서버로 보내 수명 예측 학습을 위한 빅데이터를 구축할 수 있다.
서버는 수명 예측 학습을 위한 빅데이터가 수집되면, 빅데이터를 이용하여 심층 뉴럴네트웍(DNN)을 통한 수명 모델을 학습하고, 최적재배치(Hardware/Sofrware)를 통해 최적 수명 예측 추론 모델을 구축할 수 있다.
다중센서 융합을 위한 센서 인터페이스 및 SYNTHETIC 신호처리 방법을 구현하기 위한 플랫폼은 수명 예측 AI 및 추론 엔진을 통해 구동될 수 있다.
그리고, 본 실시예에서는 차량의 컨트롤암에 다중센서모듈을 부착한 플랫폼을 예시로 들었지만, 차량에 부착되는 다양한 부품에 다중센서모듈을 부착할 수 있음은 물론이다.
도 2는 본 발명의 일 실시예에 따른 다중센서 융합을 위한 센서 인터페이스 및 SYNTHETIC 신호처리 방법을 구현하기 위한 인공 지능 센서 플랫폼이다.
도 2에 개시된 플랫폼은 다중 센서 신호 처리 SoC 실장 및 신뢰성을 검증해서 나오는 플랫폼이며, 수명 예측 AI 동작 검증과 기능안전 대응 고장예지진단 기능이 검증되어 실현될 수 있는 플랫폼이다.
이에 따라, 센서 데이터로부터 최적 추론 엔진을 추출하는 인공지능 센서 플랫폼 및 소프트웨어 개발 키트가 사용될 수 있다.
도 3은 본 발명의 일 실시예에 따른 다중센서 융합을 위한 센서 인터페이스 및 SYNTHETIC 신호처리 방법을 구현하기 위한 플랫폼에 포함되는 ECU의 테스트 및 디버깅 검증을 통한 신뢰성 확보방안을 도시한 것이다.
도 3을 참고하면, 다중센서 모듈 및 부품의 신뢰성 평가를 수행함에 있어서, 전자파 적합성 시험 평가, 동작 성능 신뢰성 평가, 내환경 신뢰성 평가, ECU 안정성 확보를 위한 신뢰성 검증 평가를 수행하게 되며, 하드웨어 레벨의 통신 인터페이스에 대한 스트레스 내환경 확보방안과, 시스템반도체 신뢰성 확보를 위한 전자기 적합성 대책기술과, 시스템반도체 IVN Fault Injection Test를 통한 기능안전 대응기술 개발 사항이 포함될 수 있다.
도 4a 내지 도 4c는 고장예지진단 대응을 위한 자가보정 및 자기진단 기능 구성에 대한 예시이다.
도 4a 내지 도 4c에 도시된 표는 고장예지진단 대응을 위한 일예를 도시한 것이며, 자가보정의 시기, 목적, 방법에 따라 다양한 방식으로 변경될 수 있음은 물론이다.
도 5는 잔존수명예측을 KATECH 특수로 주행시험장 활용 데이터 분석 지원을 예시한 도면이며, 도 6은 ASIL Decomposition of Block Diagram on ECU/SW Architecture Level 예시도이다.
잔존 수명 예측을 위한 알고리즘 설계 시, 다중센서 SoC를 위한 인터페이스 구조가 설계되며, 학습데이터 기반 가혹벡터 추론 알고리즘과, 잔존 수명 예측 수행을 위한 딥러닝 알고리즘으로 학습 진행하는 기술이 적용된다. 또한, 다중 예측을 위한 학습데이터 기반 가혹벡터 추론 알고리즘과, 다중 플랫폼을 위한 인터페이스 구조 설계와, 잔존 수명 예측 수행을 위한 딥러닝 알고리즘 학습 진행하는 기술이 적용될 수 있다.
도 7은 잔존 수명 예측을 위한 다중선형회귀 및 다중다항회귀 분석 방법을 예시한 도면이며, 도 8은 다중 센서 입력을 위한 FPGA 보드의 데이터 예시이다.
도 7에서는, 잔존 수명 예측을 위한 모델 및 로직 설계기술이 적용되며, 필터링이나 DAQ주기를 통한 센서 융합 정보 추출 로직과, 잔존 수명 예측을 위한 다중선형회귀 및 다중다항회귀와 같은 딥러닝 적용기술이 적용되고, 레퍼런스 데이터와 실시간 센서 융합데이터 간의 레벨 상관관계가 분석되어 잔존 수명 예측이 가능하다.
도 9는 본 발명의 일 실시예에 따른 다중센서 융합을 위한 센서 인터페이스 및 SYNTHETIC 신호처리 방법을 구현하기 위한 플랫폼의 일형태이다.
도 9에 도시된 플랫폼에서는 고도화된 다중센서 및 컨트롤러가 사용되며, 다중센서는 표준화된 모듈로 구현될 수 있다. 차량의 여러 부위에 다중센서가 부착될 수 있지만, 컨트롤 암에 일체화된 안전센서가 일실시예로 사용될 수 있다. 또한, 다중센싱 어플리케이션 알고리즘이 적용되어 작동할 수 있으며, 센서 어플리케이션별 플랫폼이 별도로 구현될 수 있음은 물론이다.
도 10은 VEHICLE BICYCLE MODEL을 구현한 것이며, 도 11은 시뮬레이션 블록 다이아그램이며, 도 12는 본 발명의 일실시예에 의한 플로우차트이다.
본 발명의 일실시예에 의한 플랫폼에 데이터 처리 및 Filing 기법 도입을 위해서는 우선, 차량 모델링(BYCYCLE MODEL)을 적용하여 다양한 주행 조건별로 시뮬레이션을 수행함으로써, 실제 센서 신호와 유사한 신호들을 도출한다. 이는 자동 레벨링 로직 설계 시 사용될 센서 신호의 컨디셔닝을 위해 필요한 적절한 필터의 설계가 필요하며, 컷 오프 주파수 정밀 디파인 결정이 필요할 수 있다.
이 때, 3종의 데이터를 센서/로드/차량 별로 구성하여 로직 설계를 구성할 수 있으며, 데이터 크기가 비교적 작은 범위 내에서 심한 움직임을 할 경우에 대비하여 모듈레이션에 대한 지속적인 동작 방지를 위해 판정 로직을 디자인하게 된다.
도 13은 실시간 센서 데이터와, 실로드 데이터와 실차량 데이터를 도시한 도면이다.
다중센서DB를 구축하기 위해서는 Real-Time Sensor Data → Real-Road Data(vs. Proving Ground) → Real-Vehicle Data 프로세스를 거치게 된다.
도 14는 다중알고리즘 획득 프로세스 상세 이미지를 도시한 도면이다.
다중 알고리즘을 개발하기 위해서는 Sensor Training Data → Coefficient of Determination by Regression Model → Regression Analysis based on AI (ML/DL) → Multiple Regression Analysis → Prognostics of Remaining Useful Life의 프로세스를 거치게 된다.
도 15는 다중 On-Device 프로세스 상세 이미지를 도시한 도면이다.
다중 On-Device를 개발하기 위해서는 상기의 획득 데이터와 센싱 모듈을 One-System화한 해당 결과물을 획득하여 하며, 이러한 과정을 도 15에 도시하였다.
도 16은 서포트 빔의 상세 이미지를 예시한 도면이며, 도 17은 다중 센서 탑재용 컨트롤 암 및 장착 상태를 예시한 도면이며, 도 18은 다중 센서 탑재용 컨트롤 암 시뮬레이션 예시 이미지이며, 도 19는 다중센서 탑재용 컨트롤 암 시험보고서의 내용 일부는 나타내는 도면이다.
컨트롤 암 부착 위치 및 차량 환경 상태별 편차의 센서 출력신호 안정화 방안이 적용되어야 하며, 부착 위치와 차량 환경 상태를 복합하여 검증하고 있는 시뮬레이션 기법이 사용될 수 있다. 또한, 시뮬레이션 결과에 기초하여 최적의 위치를 최우선적으로 적용할 수 있다. 또한, 하나의 위치를 마스터 포인트로 정하고, 비교 테스트를 통해 Trial & Error 방식으로 최적의 위치를 변경시킬 수 있다.
이상에서는 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (1)

  1. 차량의 부품에 설치된 다중 센서에 의해 복수 개의 정보를 상기 부품에서 센싱하고,
    상기 다중 센싱 모듈로부터 센싱되는 복수의 데이터를 종합 해석하여 상기 부품의 고장 여부를 진단하거나 수명을 예측하는, 다중센서 융합을 위한 센서 인터페이스 및 SYNTHETIC 신호처리 방법.
PCT/KR2021/015353 2021-10-28 2021-10-28 다중센서 융합을 위한 센서 인터페이스 및 synthetic 신호처리 방법 WO2023074952A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2021/015353 WO2023074952A1 (ko) 2021-10-28 2021-10-28 다중센서 융합을 위한 센서 인터페이스 및 synthetic 신호처리 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2021/015353 WO2023074952A1 (ko) 2021-10-28 2021-10-28 다중센서 융합을 위한 센서 인터페이스 및 synthetic 신호처리 방법

Publications (1)

Publication Number Publication Date
WO2023074952A1 true WO2023074952A1 (ko) 2023-05-04

Family

ID=86158177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/015353 WO2023074952A1 (ko) 2021-10-28 2021-10-28 다중센서 융합을 위한 센서 인터페이스 및 synthetic 신호처리 방법

Country Status (1)

Country Link
WO (1) WO2023074952A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116382179A (zh) * 2023-06-06 2023-07-04 上海临滴科技有限公司 一种调制器集成电路卡及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101045114B1 (ko) * 2010-10-04 2011-06-30 권혁 자가진단 기능이 구비된 네비게이션을 이용한 차량 고장 진단 시스템 및 방법
KR20190002510A (ko) * 2016-05-06 2019-01-08 다나 이탈리아 에스.알.엘 차량 액슬을 모니터링하고 복수의 액슬 고장 모드들을 구별하기 위한 센서 시스템
KR20200138562A (ko) * 2019-05-31 2020-12-10 한국자동차연구원 차량 고장 진단 방법 및 이를 포함하는 차량
KR20210082596A (ko) * 2019-12-26 2021-07-06 주식회사 모트롤 감속 장치의 고장진단 장치 및 방법
JP2021108110A (ja) * 2019-11-19 2021-07-29 ディー.エス.レイダー エルティーディーD.S.Raider Ltd 車両の損傷の監視及び予測を行うためのシステム並びに方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101045114B1 (ko) * 2010-10-04 2011-06-30 권혁 자가진단 기능이 구비된 네비게이션을 이용한 차량 고장 진단 시스템 및 방법
KR20190002510A (ko) * 2016-05-06 2019-01-08 다나 이탈리아 에스.알.엘 차량 액슬을 모니터링하고 복수의 액슬 고장 모드들을 구별하기 위한 센서 시스템
KR20200138562A (ko) * 2019-05-31 2020-12-10 한국자동차연구원 차량 고장 진단 방법 및 이를 포함하는 차량
JP2021108110A (ja) * 2019-11-19 2021-07-29 ディー.エス.レイダー エルティーディーD.S.Raider Ltd 車両の損傷の監視及び予測を行うためのシステム並びに方法
KR20210082596A (ko) * 2019-12-26 2021-07-06 주식회사 모트롤 감속 장치의 고장진단 장치 및 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116382179A (zh) * 2023-06-06 2023-07-04 上海临滴科技有限公司 一种调制器集成电路卡及其控制方法
CN116382179B (zh) * 2023-06-06 2023-08-08 上海临滴科技有限公司 一种调制器集成电路卡及其控制方法

Similar Documents

Publication Publication Date Title
CN100476666C (zh) 用于基于模型的车载诊断的装置和方法
KR102026300B1 (ko) 인공지능 시스템을 이용하여 자동차 비정상신호를 감지하는 방법
US6539337B1 (en) Embedded diagnostic system and method
CN110704801B (zh) 桥梁集群结构运营安全智能监测与快速检测成套方法
WO2023074952A1 (ko) 다중센서 융합을 위한 센서 인터페이스 및 synthetic 신호처리 방법
WO2007133600A2 (en) Integration and supervision for modeled and mechanical vehicle testing and simulation
US6687585B1 (en) Fault detection and isolation system and method
JP2004340151A (ja) 吸気流を診断するための方法及び装置
US11801823B2 (en) Computer-based system for testing a server-based vehicle function
CN108431572A (zh) 用于车辆的带有试验模式的控制单元以及用于执行试验件的台架试验的方法和试验台
CN108427400A (zh) 一种基于神经网络解析冗余的飞机空速管故障诊断方法
Ayerdi et al. Performance-driven metamorphic testing of cyber-physical systems
Sanseverino et al. Model-based diagnosis for automotive repair
Roebuck et al. A systems approach to controlled heavy vehicle suspensions
Marko Neural network application to diagnostics and control of vehicle control systems
CN113778891B (zh) 嵌入式软件接口失效模式自动识别与分析方法
CN1780750A (zh) 用于车辆的中央车载诊断的设备和方法
Struss et al. Case studies in model-based diagnosis and fault analysis of carsubsystems
CN115270902A (zh) 用于测试产品的方法
Muldoon et al. Vehicle fault diagnostics using a sensor fusion approach
Wagner Failure mode testing tool set for automotive electronic controllers
CN111273633A (zh) 测量、模拟、标记和评估车辆的部件和系统的设备和方法
KR102534450B1 (ko) 임베디드 시스템 내에서 신호 무결성의 사용
Li Fault Diagnosis for Functional Safety in Electrified and Automated Vehicles
Duan et al. Study on fault-tolerant filter algorithm for integrated navigation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962576

Country of ref document: EP

Kind code of ref document: A1