WO2023074903A1 - センシングシステムおよび自動車 - Google Patents

センシングシステムおよび自動車 Download PDF

Info

Publication number
WO2023074903A1
WO2023074903A1 PCT/JP2022/040809 JP2022040809W WO2023074903A1 WO 2023074903 A1 WO2023074903 A1 WO 2023074903A1 JP 2022040809 W JP2022040809 W JP 2022040809W WO 2023074903 A1 WO2023074903 A1 WO 2023074903A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing system
processing unit
arithmetic processing
image sensor
stop flag
Prior art date
Application number
PCT/JP2022/040809
Other languages
English (en)
French (fr)
Inventor
健典 和間
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Publication of WO2023074903A1 publication Critical patent/WO2023074903A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Definitions

  • the present disclosure relates to sensing systems for automobiles.
  • An object identification system that senses the position and type of objects around the vehicle is used for automated driving and automatic control of headlamp light distribution.
  • An object identification system includes a sensor and a processor that analyzes the output of the sensor. Sensors are selected from cameras, LiDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging), millimeter-wave radar, ultrasonic sonar, etc., taking into consideration the application, required accuracy, and cost.
  • LiDAR Light Detection and Ranging, Laser Imaging Detection and Ranging
  • millimeter-wave radar ultrasonic sonar
  • a passive sensor detects light emitted by an object or light reflected by an object from ambient light, and the sensor itself does not emit light.
  • an active sensor irradiates an object with illumination light and detects the reflected light.
  • the active sensor mainly includes a projector (illumination) that irradiates light on an object and an optical sensor that detects reflected light from the object.
  • Active sensors have the advantage of being able to increase resistance to disturbances compared to passive sensors by matching the wavelength of illumination light with the sensitivity wavelength range of the sensor.
  • an active sensor As an in-vehicle sensor, there is a possibility that sensing will be impossible due to the effects of heavy rain or thick fog. Therefore, a function to determine whether sensing by the active sensor is functioning normally is desired. For example, it is possible to monitor whether the weather is bad using a raindrop sensor or a fog sensor, and to estimate that the active sensor is incapable of sensing when the weather is bad. Become.
  • the present disclosure has been made in view of such problems, and one exemplary purpose of certain aspects thereof is to provide technology for detecting functional limits of active sensors.
  • a sensing system includes a lighting device that irradiates a field of view with illumination light, an image sensor that captures light reflected by an object that reflects the illumination light, and a calculation that detects an object based on the output of the image sensor. and a processing device.
  • the arithmetic processing unit determines whether the object has been detected successfully for each frame, and based on the determination result, generates a stop flag indicating that sensing is impossible.
  • FIG. 1 is a block diagram of a sensing system according to an embodiment; FIG. It is a figure explaining the success or failure of detection of an object.
  • 2 is a time chart showing the operation of the sensing system of FIG. 1;
  • 1 is a block diagram of a ToF (Time of Flight) camera according to an embodiment;
  • FIG. It is a figure explaining operation
  • FIGS. 6A and 6B are diagrams for explaining images obtained by the ToF camera.
  • 1 is a diagram showing a vehicle lamp incorporating a sensing system;
  • FIG. 1 is a block diagram showing a vehicle lamp with an object identification system;
  • a sensing system includes a lighting device that illuminates a field of view with illumination light, an image sensor that captures reflected light from an object reflecting the illumination light, and arithmetic processing that detects an object based on the output of the image sensor. a device; The arithmetic processing unit determines whether the object has been detected successfully for each frame, and based on the determination result, generates a stop flag indicating that sensing is impossible.
  • the processing unit may assert a stop flag when object detection failure continues for a predetermined time or a predetermined number of frames.
  • the processing unit negates the stop flag based on the determination result of success or failure of object detection at that time. good too.
  • the processing unit may negate the stop flag when the successful detection of the object continues for a predetermined period of time or a predetermined number of frames.
  • the operating frequencies of the lighting device and the image sensor may be lowered during the period in which the stop flag is asserted compared to the period in which the stop flag is negated.
  • the lighting device and the image sensor divide the field of view into multiple ranges in the depth direction, and by changing the time difference between light emission and imaging for each range, multiple images corresponding to multiple ranges can be acquired. It may operate as a ToF (Time of Flight) camera.
  • ToF Time of Flight
  • a vehicle may include the sensing system described above and a host controller that performs control based on the output of the sensing system.
  • the host controller may suspend control while the sensing disabled flag is set.
  • the lighting device and image sensor may be a TOF (Time Of Flight) camera.
  • TOF Time Of Flight
  • the lighting device and image sensor may be LIDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging).
  • FIG. 1 is a block diagram of sensing system 400 according to the embodiment.
  • Sensing system 400 is an active sensor such as a ToF camera or LIDAR, and includes illumination device 410 , image sensor 420 , sensing controller 430 and arithmetic processing device 440 .
  • the illumination device 410 includes a semiconductor light-emitting element such as a laser diode or a light-emitting diode (LED), and irradiates the field of view with illumination light L1.
  • the wavelength of the illumination light L1 is not particularly limited, and may be infrared light, visible light, or white light.
  • the image sensor 420 has sensitivity to the same wavelength as the illumination light L1.
  • Image sensor 420 receives reflected light L2, which is reflected from illumination light L1, from object OBJ within a sensing range (field of view) of sensing system 400, and generates image data IMG.
  • the sensing controller 430 controls the sensing system 400 in an integrated manner. Specifically, the light emission of the illumination device 410 and the sensing by the image sensor 420 are synchronously controlled.
  • the arithmetic processing unit 440 processes the image data IMG generated by the image sensor 420 and detects objects existing in the field of view.
  • the processing unit 440 may include a classifier (discriminator) 442 that includes a trained model generated by machine learning.
  • the output OUT of the arithmetic processing unit 440 is supplied to the control system 500, which is the host controller.
  • the control system 500 is an application, for example, an automatic driving system, a driving support system, an automatic light distribution control system for headlamps, and the like.
  • the output OUT of the processing unit 440 is the output of the classifier 442 and may include, for example, object type, object position, and the like.
  • the output OUT of arithmetic processing unit 440 may include image data IMG. Based on the output of the sensing system 400, the control system 500 performs processing according to its function.
  • the arithmetic processing unit 440 determines whether the object OBJ has been successfully detected for each frame of the image data IMG. Then, a stop flag STOP is generated based on the determination result.
  • the stop flag STOP is asserted when sensing is disabled, that is, when sensing system 400 reaches its functional limit. Sensing system 400 asserts the stop flag STOP and stops its output OUT.
  • the control system 500 assumes that the sensing system 400 has reached its functional limit and stops processing.
  • FIG. 2 is a diagram explaining the success or failure of object detection.
  • Successful detection of object OBJ means that when an object exists in the field of view, the existence of the object can be detected based on image data IMG.
  • the arithmetic processing unit 440 When the arithmetic processing unit 440 is equipped with a classifier (discriminator), there is success or failure in recognition in addition to success or failure in detection.
  • Successful recognition means being able to determine the type of object (category such as pedestrian or car).
  • the three images shown in FIG. 2 are high quality on the left and low quality on the right. In the case of high image quality, there is a high possibility that both detection and recognition will succeed, and in the case of low image quality, there is a high possibility that both detection and recognition will fail. For intermediate image quality, a situation can arise in which detection succeeds but recognition fails.
  • FIG. 3 is a time chart showing the operation of sensing system 400 of FIG. This time chart is divided into a plurality of time slots.
  • One slot corresponds to one sensing.
  • lighting device 410 emits light in each slot, and image data is generated in each slot. Focusing on the period t 0 to t 1 , the number of slots in which detection fails increases as time passes.
  • the main cause of detection failure is the deterioration of the image quality of the image data.
  • the image quality of image data obtained by the image sensor 420 is greatly affected by the weather. That is, in heavy rain or heavy fog, the attenuation of illumination light and reflected light increases, resulting in a darker image. Further, when the illumination device 410 and the image sensor 420 are housed in the headlamp, the image quality deteriorates according to the amount of water droplets adhering to the cover glass or the amount of water flowing over the cover glass. If the image sensor 420 is arranged inside the windshield, water droplets adhering to the windshield or water flowing through the windshield may degrade the image quality.
  • a cover glass or a windshield exists in front of the image sensor 420 .
  • a light rain hardly degrades the image quality, but a strong rain increases the amount of water droplets adhering to the glass or flowing over it, which degrades the image quality.
  • the probability of successful object detection is high when the weather is fine, and the probability of object detection failure increases as the weather deteriorates.
  • the probability of failure in object detection can be grasped as the appearance probability of slots in which object detection fails.
  • the function flag is an internal signal that is referenced for controlling the stop flag STOP.
  • the feature flags include two flags. One is a function limit flag, which is referred to for determining conditions for asserting the stop flag STOP while the stop flag STOP is negated.
  • the functional limit flag is asserted when the detection success/failure flag indicates failure (NG).
  • the function limit flag may be grasped as a flag indicating the state of a counter that counts up for each slot.
  • the arithmetic processing unit 440 asserts the stop flag STOP on condition that a predetermined number of unsuccessful slots (frames) have continued.
  • the stop flag STOP is asserted when detection failure continues for 5 slots.
  • the arithmetic processing unit 440 continues to monitor the function limit flag of the function flags, and asserts the stop flag STOP when the assertion continues for five frames.
  • sensing system 400 When sensing system 400 reaches its functional limit at time t1 , control system 500 stops processing. However, the sensing system 400 continues sensing even after the sensing system 400 reaches its functional limit. Sensing at this time is sensing for determining whether or not the function of sensing system 400 has recovered (recovery determination), and is not used for control by control system 500. Therefore, high-speed sensing is unnecessary. be. Therefore, the sensing slot interval for recovery determination becomes wider than when the sensing system 400 is normal. That is, the sensing frequency can be lowered, thereby reducing power consumption. In the example of FIG. 3, the lighting device 410 emits light once every four slots, and sensing is performed.
  • the processing unit 440 processes the generated image data once every several slots (for example, once every four slots) and determines whether the object has been successfully detected. . Then, based on this determination result, the stop flag STOP is negated.
  • Function flags include a return flag.
  • the return flag is asserted when object detection succeeds during the return determination period, and is negated when object detection fails.
  • Arithmetic processing unit 440 negates stop flag STOP when assertion of the return flag continues for a predetermined number of slots. In the example of FIG. 3, when the stop flag STOP is set for 9 consecutive slots, in other words, when the object detection is successful in three consecutive sensings, the stop flag STOP is negated and normal sensing is resumed (time t2) . ).
  • the functional limit can be quantitatively determined by itself without depending on external information. No additional hardware is required to determine the functional limit, and the system can be implemented simply by changing the software program of the arithmetic processing unit 440, thereby suppressing an increase in system cost.
  • Arithmetic processing unit 440 may assert the stop flag STOP when object detection failure continues for a predetermined period of time during the normal sensing period. Similarly, processing unit 440 may negate the stop flag STOP when the successful detection of the object continues for a predetermined period of time during the restoration determination period.
  • Arithmetic processing unit 440 monitors the occurrence rate of object detection success and failure (probability of success or failure) during a normal sensing period, and asserts a stop flag STOP when the rate of failure exceeds a threshold. may Similarly, the arithmetic processing unit 440 monitors the appearance rate of object detection success and failure (success probability or failure probability) during the return determination period, and when the failure ratio exceeds a threshold value (or the success ratio exceeds the threshold), the stop flag STOP may be negated.
  • sensing system 400 is a ToF camera.
  • FIG. 4 is a block diagram of a ToF camera 20 according to one embodiment.
  • the ToF camera 20 performs imaging by dividing the field of view into a plurality of N (N ⁇ 2) ranges RNG 1 to RNG N in the depth direction.
  • the ToF camera 20 includes an illumination device 22, an image sensor 24, a controller 26, and an image processing section 28.
  • the illumination device 22 corresponds to the illumination device 410 in FIG. 1
  • the image sensor 24 corresponds to the image sensor 420 in FIG. 1
  • the controller 26 corresponds to the sensing controller 430 in FIG.
  • the lighting device 22 emits pulsed illumination light L1 forward of the vehicle in synchronization with the light emission timing signal S1 given from the controller 26 .
  • the illumination light L1 is preferably infrared light, but is not limited to this and may be visible light having a predetermined wavelength.
  • the image sensor 24 is capable of exposure control synchronized with the photographing timing signal S2 given from the controller 26, and is configured to be capable of generating the range image IMG.
  • the image sensor 24 has sensitivity to the same wavelength as the illumination light L1, and captures reflected light (return light) L2 reflected by the object OBJ.
  • the controller 26 holds predetermined light emission timing and exposure timing for each range RNG.
  • the controller 26 When photographing a certain range RNG i , the controller 26 generates a light emission timing signal S1 and a photographing timing signal S2 based on the light emission timing and exposure timing corresponding to that range, and performs photographing.
  • the ToF camera 20 may generate multiple range images IMG 1 -IMG N corresponding to multiple ranges RNG 1 -RNG N.
  • FIG. An object included in the corresponding range RNG i is captured in the i-th range image IMG i .
  • FIG. 5 is a diagram for explaining the operation of the ToF camera 20.
  • FIG. FIG. 5 shows how the i-th range RNG i is measured.
  • the illumination device 22 emits light during a light emission period ⁇ 1 between times t 0 and t 1 in synchronization with the light emission timing signal S1.
  • At the top is a ray diagram with time on the horizontal axis and distance on the vertical axis.
  • dMINi be the distance from the ToF camera 20 to the front boundary of range RNG i
  • dMAXi be the distance to the rear boundary of range RNG i .
  • TMINi 2 ⁇ d MINi /c is.
  • c is the speed of light.
  • T MAXi 2 ⁇ d MAXi /c is.
  • FIG. 6A and 6B are diagrams for explaining images obtained by the ToF camera 20.
  • FIG. 6A an object (pedestrian) OBJ1 exists in the range RNG1
  • an object (vehicle) OBJ3 exists in the range RNG3 .
  • FIG. 6(b) shows a plurality of range images IMG 1 to IMG 3 obtained in the situation of FIG. 6(a).
  • the image sensor is exposed only by reflected light from the range RNG 1 , so the object image OBJ 1 of the pedestrian OBJ 1 appears in the range image IMG 1 .
  • range image IMG 2 When taking range image IMG 2 , the image sensor is exposed by reflected light from range RNG 2 , so range image IMG 2 does not show any object images.
  • the image sensor is exposed by reflected light from the range RNG 3 , so only the object image OBJ 3 appears in the range image IMG 3 .
  • an object can be photographed separately for each range.
  • FIG. 7 is a diagram showing a vehicle lamp 200 incorporating the sensing system 400.
  • the vehicle lamp 200 includes a housing 210 , an outer lens 220 , high-beam and low-beam lamp units 230H/230L, and a sensing system 400 .
  • the lighting units 230H/230L and the sensing system 400 are housed in the housing 210. As shown in FIG.
  • a part of the sensing system 400 may be installed outside the vehicle lamp 200, such as behind the rearview mirror.
  • FIG. 8 is a block diagram showing the vehicle lamp 200 including the sensing system 400.
  • the vehicle lamp 200 constitutes a lamp system 310 together with a vehicle-side ECU 304 .
  • a vehicle lamp 200 includes a light source 202 , a lighting circuit 204 and an optical system 206 . Further, the vehicle lamp 200 is provided with a sensing system 400 .
  • Sensing system 400 includes sensing system 400 and processor 440 .
  • the arithmetic processing unit 440 is configured to be able to identify the type of object based on the image obtained by the sensing system 400 .
  • the arithmetic processing unit 440 can be implemented by combining a processor (hardware) such as a CPU (Central Processing Unit), MPU (Micro Processing Unit), or microcomputer, and a software program executed by the processor (hardware).
  • processor hardware
  • processing unit 440 may be a combination of multiple processors.
  • the arithmetic processing unit 440 may be composed only of hardware.
  • Information regarding the object OBJ detected by the processing unit 440 may be used for light distribution control of the vehicle lamp 200 .
  • the lamp-side ECU 208 generates an appropriate light distribution pattern based on the information about the type and position of the object OBJ generated by the arithmetic processing unit 440 .
  • the lighting circuit 204 and the optical system 206 operate so as to obtain the light distribution pattern generated by the lamp-side ECU 208 .
  • Information regarding the object OBJ detected by the arithmetic processing unit 440 may be transmitted to the vehicle-side ECU 304 .
  • the vehicle-side ECU may perform automatic driving based on this information.
  • the sensing system 400 is not limited to a ToF camera, and may be a LIDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging). Alternatively, sensing system 400 may be a single-pixel imaging device (quantum radar) using correlation calculations.
  • LIDAR Light Detection and Ranging, Laser Imaging Detection and Ranging
  • sensing system 400 may be a single-pixel imaging device (quantum radar) using correlation calculations.
  • Modification 2 In the embodiment, the arithmetic processing unit 440 generates a stop flag indicating the functional limit, but the arithmetic processing unit 440 generates an index having a correlation with the ratio of success and failure of object detection, and controls the control system. 500 may be output. For example, control system 500 can estimate the degree of severe weather based on this indicator.
  • the state of the control system 500 is controlled based on the stop flag STOP generated by the sensing system 400, but this is not the only option. For example, when the stop flag STOP is asserted, the driver may be notified visually or audibly that the sensing system 400 is malfunctioning.
  • the present disclosure relates to sensing systems for automobiles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

センシングシステム400は、照明装置410、イメージセンサ420、センシングコントローラ430、演算処理装置440を備える。演算処理装置440は、イメージセンサ420が生成する画像データを受け、フレーム毎に、物体の検出の成否を判定し、判定結果にもとづいて、センシング不能を示す停止フラグSTOPを生成する。

Description

センシングシステムおよび自動車
 本開示は、自動車用のセンシングシステムに関する。
 自動運転やヘッドランプの配光の自動制御のために、車両の周囲に存在する物体の位置および種類をセンシングする物体識別システムが利用される。物体識別システムは、センサと、センサの出力を解析する演算処理装置を含む。センサは、カメラ、LiDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)、ミリ波レーダ、超音波ソナーなどの中から、用途、要求精度やコストを考慮して選択される。
 センサには、パッシブセンサとアクティブセンサがある。パッシブセンサは、物体が放射した光、あるいは物体が環境光を反射した光を検出するものであり、センサ自体は、光を放射しない。一方、アクティブセンサは、物体に照明光を照射し、その反射光を検出する。アクティブセンサは、主として、物体に光を照射する投光器(照明)と、物体からの反射光を検出する光センサを備える。アクティブセンサは、照明光の波長とセンサの感度波長域を合わせることで、パッシブセンサよりも外乱に対する耐性を高めることができるという利点を有する。
 アクティブセンサを車載センサとして利用する場合、強い雨や濃い霧などの影響で、センシング不能な状況に陥る可能性がある。したがって、アクティブセンサによるセンシングが正常に機能しているかどうかを判定する機能が望まれる。たとえば雨滴センサや霧センサなどによって、悪天候か否かを監視し、悪天候であるときに、アクティブセンサがセンシング不能と推定する方法が考えられるが、この方法では、別のセンサが必要となりコストが高くなる。
 本開示は係る課題に鑑みて成されたものであり、そのある態様の例示的な目的のひとつは、アクティブセンサの機能限界を検出する技術の提供にある。
 本開示のある態様のセンシングシステムは、視野に照明光を照射する照明装置と、物体が照明光を反射した反射光を撮影するイメージセンサと、イメージセンサの出力にもとづいて、物体を検出する演算処理装置と、を備える。演算処理装置は、フレーム毎に、物体の検出の成否を判定し、判定結果にもとづいて、センシング不能を示す停止フラグを生成する。
 なお、以上の構成要素を任意に組み合わせたもの、構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明あるいは本開示の態様として有効である。さらに、この項目(課題を解決するための手段)の記載は、本発明の欠くべからざるすべての特徴を説明するものではなく、したがって、記載されるこれらの特徴のサブコンビネーションも、本発明たり得る。
 本開示のある態様によれば、センシングの機能限界を検出できる。
実施の形態に係るセンシングシステムのブロック図である。 物体の検出の成否を説明する図である。 図1のセンシングシステムの動作を示すタイムチャートである。 一実施例に係るToF(Time of Flight)カメラのブロック図である。 ToFカメラの動作を説明する図である。 図6(a)、(b)は、ToFカメラにより得られる画像を説明する図である。 センシングシステムを内蔵する車両用灯具を示す図である。 物体識別システムを備える車両用灯具を示すブロック図である。
(実施形態の概要)
 本開示のいくつかの例示的な実施形態の概要を説明する。この概要は、後述する詳細な説明の前置きとして、実施形態の基本的な理解を目的として、1つまたは複数の実施形態のいくつかの概念を簡略化して説明するものであり、発明あるいは開示の広さを限定するものではない。またこの概要は、考えられるすべての実施形態の包括的な概要ではなく、実施形態の欠くべからざる構成要素を限定するものではない。便宜上、「一実施形態」は、本明細書に開示するひとつの実施形態(実施例や変形例)または複数の実施形態(実施例や変形例)を指すものとして用いる場合がある。
 一実施形態に係るセンシングシステムは、視野に照明光を照射する照明装置と、物体が照明光を反射した反射光を撮影するイメージセンサと、イメージセンサの出力にもとづいて、物体を検出する演算処理装置と、を備える。演算処理装置は、フレーム毎に、物体の検出の成否を判定し、判定結果にもとづいて、センシング不能を示す停止フラグを生成する。
 この構成によると、物体検出の成否の結果にもとづいて、センシングの不能状態(機能限界ともいう)を判定することができる。
 一実施形態において、演算処理装置は、物体の検出の失敗が、所定時間または所定のフレーム数にわたり継続したときに、停止フラグをアサートしてもよい。
 一実施形態において、停止フラグがアサートされる間、照明装置およびイメージセンサは動作を継続し、演算処理装置は、そのときの物体の検出の成否の判定結果にもとづいて、停止フラグをネゲートしてもよい。
 一実施形態において、演算処理装置は、物体の検出の成功が、所定時間または所定のフレーム数にわたり継続したときに、停止フラグをネゲートしてもよい。
 一実施形態において、停止フラグがアサートされる期間、照明装置およびイメージセンサの動作周波数を、停止フラグがネゲートされる期間に比べて低下させてもよい。
 一実施形態において、照明装置とイメージセンサは、視野を奥行き方向について複数のレンジに区切り、レンジ毎に、発光と撮像の時間差を変化させることにより、複数のレンジに対応する複数の画像を取得可能なToF(Time of Flight)カメラとして動作してもよい。
 一実施形態に係る自動車は、上述のセンシングシステムと、センシングシステムの出力にもとづいた制御を行う上位コントローラと、を備えてもよい。上位コントローラは、センシング不能のフラグが立っている間、制御を停止してもよい。
 一実施形態において、照明装置とイメージセンサは、TOF(Time Of Flight)カメラであってもよい。
 一実施形態において、照明装置とイメージセンサは、LIDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)であってもよい。
(実施形態)
 以下、好適な実施の形態について図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、開示を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも開示の本質的なものであるとは限らない。
 図1は、実施の形態に係るセンシングシステム400のブロック図である。センシングシステム400は、ToFカメラ、LIDARなどのアクティブセンサであり、照明装置410、イメージセンサ420、センシングコントローラ430および演算処理装置440を備える。
 照明装置410は、レーザダイオードや発光ダイオード(LED)などの半導体発光素子を含み、視野に対して、照明光L1を照射する。照明光L1の波長は特に限定されず、赤外光であってもよいし、可視光であってもよいし、白色光であってもよい。
 イメージセンサ420は、照明光L1と同じ波長に感度を有する。イメージセンサ420は、センシングシステム400によるセンシング範囲(視野)内の物体OBJが、照明光L1を反射した反射光L2を受け、画像データIMGを生成する。
 センシングコントローラ430は、センシングシステム400を統合的に制御する。具体的には、照明装置410の発光と、イメージセンサ420によるセンシングを同期制御する。
 演算処理装置440は、イメージセンサ420が生成した画像データIMGを処理し、視野に存在する物体を検出する。演算処理装置440は、機械学習により生成された学習済みモデルを含む分類器(識別器)442を備えてもよい。
 演算処理装置440の出力OUTは、上位コントローラである制御システム500に供給される。制御システム500はアプリケーションであり、たとえば自動運転システムや、運転支援システム、ヘッドランプの自動配光制御システムなどである。演算処理装置440の出力OUTは、分類器442の出力であり、たとえば、物体の種類、物体の位置などを含みうる。演算処理装置440の出力OUTは、画像データIMGを含んでもよい。制御システム500は、センシングシステム400の出力にもとづいて、その機能に応じた処理を行う。
 演算処理装置440は、画像データIMGのフレーム毎に、物体OBJの検出の成否を判定する。そして判定結果にもとづいて、停止フラグSTOPを生成する。停止フラグSTOPは、センシング不能のとき、つまりセンシングシステム400がその機能限界に達したときにアサートされる。センシングシステム400は、停止フラグSTOPをアサートするとともに、その出力OUTを停止する。
 制御システム500は、停止フラグSTOPがアサートされると、センシングシステム400が機能限界に達したものとして、処理を停止する。
 図2は、物体の検出の成否を説明する図である。物体OBJの検出の成功とは、視野に物体が存在する場合に、画像データIMGにもとづいて、当該物体の存在を検出できることをいう。
 演算処理装置440が分類器(識別器)を備える場合には、検知の成否のほかに、認識の成否がある。認識の成功とは、物体の種類(歩行者や自動車などのカテゴリー)を判定できることをいう。図2に示す3つの画像は、左側が高画質、右側が低画質である。高画質の場合、検出、認識ともに成功となる可能性が高く、低画質の場合、検出、認識ともに失敗する可能性が高い。中間的な画質の場合、検出は成功するが、認識は失敗する状況が生じうる。
 以上がセンシングシステム400の構成である。続いてその動作を説明する。図3は、図1のセンシングシステム400の動作を示すタイムチャートである。このタイムチャートは複数のタイムスロットに分割されている。1スロットが1回のセンシングに対応する。時刻t~tの間は、通常のセンシングを行っており、毎スロット、照明装置410は発光し、スロットごとに画像データが生成される。期間t~tに着目すると、時間が経つにつれて、検出が失敗するスロットが増えている。
 検出の失敗は、図2を参照して説明したように、画像データの画質の低下が主要因である。イメージセンサ420によって得られる画像データの画質は、天候の影響を大きく受ける。すなわち強い雨や強い霧の中では、照明光および反射光の減衰が大きくなるため、画像が暗くなる。また、照明装置410やイメージセンサ420がヘッドランプ内に収容される場合には、カバーガラスに付着する水滴の量、あるいはカバーガラスの上を流れる水の量に応じて、画質が劣化する。イメージセンサ420が、フロントガラスの内側に配置される場合、フロントガラスに付着する水滴やフロントガラスを流れる水により画質が劣化しうる。
 悪天候の一例として、雨を考える。イメージセンサ420の前面には、カバーガラスやフロントガラスが存在する。弱い雨では、画質はほとんど劣化しないが、雨が強くなると、ガラスに付着する水滴、あるいはその上を流れる水の量が増えるため、画質が劣化する。車両の走行中に繰り返しセンシングを行う場合、天候が良いときは、物体検出が成功する確率が高く、天候が悪化するほど、物体検出に失敗する確率が高まる。物体検出に失敗する確率は、物体検出に失敗するスロットの出現確率と把握できる。
 つまり天候の良否と、検出失敗のスロット数は相関があるといえ、天候が悪くなるほど、検出失敗のスロット数が増える。
 機能フラグは、停止フラグSTOPの制御のために参照される内部信号である。この例では、機能フラグは、2つのフラグを含む。ひとつは機能限界フラグであり、停止フラグSTOPがネゲートされている間、停止フラグSTOPのアサートの条件判定のために参照される。機能限界フラグは、検出の成否のフラグが失敗(NG)を示すときにアサートされる。機能限界フラグは、スロットごとにカウントアップするカウンタの状態を示すフラグと把握してもよい。
 演算処理装置440は、検出失敗のスロット(フレーム)が、所定数持続したことを条件として、停止フラグSTOPをアサートする。この例では、検出失敗が5スロット連続すると、停止フラグSTOPがアサートされる。たとえば演算処理装置440は、機能フラグの機能限界フラグを監視し続け、アサートが5フレーム連続すると、停止フラグSTOPをアサートする。
 時刻tにセンシングシステム400が機能限界に達すると、制御システム500の処理は停止する。ただし、センシングシステム400が機能限界に達した後も、センシングシステム400はセンシングを継続している。このときのセンシングは、センシングシステム400の機能が回復したか否かを判定(復帰判定)するためのセンシングであり、制御システム500による制御に使用されるものではないため、高速なセンシングは不要である。そこで復帰判定のためのセンシングのスロット間隔は、センシングシステム400が正常であるときよりも広くなる。つまり、センシングの周波数は低下させることができ、これにより消費電力を削減できる。図3の例では、4スロットに1回、照明装置410が発光し、センシングが行われる。
 停止フラグSTOPがアサートされている復帰判定期間において、演算処理装置440は、数スロットに1回(たとえば4スロットに1回)、生成される画像データを処理し、物体の検出の成否を判定する。そして、この判定結果にもとづいて、停止フラグSTOPをネゲートする。
 機能フラグは、復帰フラグを含む。復帰フラグは、復帰判定期間において、物体検出に成功するとアサートされ、物体検出に失敗するとネゲートされる。演算処理装置440は、復帰フラグのアサートが、所定スロット数にわたり連続すると、停止フラグSTOPをネゲートする。図3の例では、停止フラグSTOPが9スロット連続すると、言い換えると、3回のセンシングで連続して、物体検出が成功すると、停止フラグSTOPをネゲートし、通常のセンシングに復帰する(時刻t)。
 以上がセンシングシステム400の動作である。このセンシングシステム400によれば、外部情報によらずに、それ自身が、機能限界を定量的に判定することができる。機能限界の判定のためには、追加のハードウェアは不要であり、演算処理装置440のソフトウェアプログラムの変更だけで実装することができるため、システムのコストアップも抑えることができる。
 センシングシステム400の処理の変形例を説明する。
(変形例1)
 演算処理装置440は、通常のセンシング期間において、物体の検出の失敗が、所定時間にわたり継続したときに、停止フラグSTOPをアサートしてもよい。同様に、演算処理装置440は、復帰判定期間において、物体の検出の成功が、所定時間にわたり継続したときに、停止フラグSTOPをネゲートしてもよい。
(変形例2)
 演算処理装置440は、通常のセンシング期間において、物体の検出の成功と失敗の出現比率(成功確率または失敗確率)を監視し、失敗の比率がしきい値を越えると、停止フラグSTOPをアサートしてもよい。同様に、演算処理装置440は、復帰判定期間において、物体の検出の成功と失敗の出現比率(成功確率または失敗確率)を監視し、失敗の比率がしきい値を越えると(あるいは成功の比率がしきい値を越えると)、停止フラグSTOPをネゲートしてもよい。
 続いてセンシングシステム400の用途を説明する。センシングシステム400の一実施例は、ToFカメラである。
 図4は、一実施例に係るToFカメラ20のブロック図である。ToFカメラ20は、視野を奥行き方向について複数N個(N≧2)のレンジRNG~RNGに区切って撮像を行う。
 ToFカメラ20は、照明装置22、イメージセンサ24、コントローラ26、画像処理部28を備える。照明装置22は図1の照明装置410に対応し、イメージセンサ24は図1のイメージセンサ420に対応し、コントローラ26は図1のセンシングコントローラ430に対応する。
 照明装置22は、コントローラ26から与えられる発光タイミング信号S1と同期して、パルスの照明光L1を車両前方に照射する。照明光L1は赤外光であることが好ましいが、その限りでなく、所定の波長を有する可視光であってもよい。
 イメージセンサ24は、コントローラ26から与えられる撮影タイミング信号S2と同期した露光制御が可能であり、レンジ画像IMGを生成可能に構成される。イメージセンサ24は、照明光L1と同じ波長に感度を有しており、物体OBJが反射した反射光(戻り光)L2を撮影する。
 コントローラ26は、レンジRNGごとに予め定められた発光タイミングと露光タイミングを保持している。コントローラ26は、あるレンジRNGを撮影するとき、そのレンジに対応する発光タイミングと露光タイミングにもとづいて発光タイミング信号S1および撮影タイミング信号S2を生成し、撮影を行う。ToFカメラ20は、複数のレンジRNG~RNGに対応する複数のレンジ画像IMG~IMGを生成することができる。i番目のレンジ画像IMGには、対応するレンジRNGに含まれる物体が写ることとなる。
 図5は、ToFカメラ20の動作を説明する図である。図5にはi番目のレンジRNGを測定するときの様子が示される。照明装置22は、発光タイミング信号S1と同期して、時刻t~tの間の発光期間τの間、発光する。最上段には、横軸に時間、縦軸に距離をとった光線のダイアグラムが示される。ToFカメラ20から、レンジRNGの手前の境界までの距離をdMINi、レンジRNGの奥側の境界までの距離をdMAXiとする。
 ある時刻に照明装置22を出発した光が、距離dMINiに到達してその反射光がイメージセンサ24に戻ってくるまでのラウンドトリップ時間TMINiは、
 TMINi=2×dMINi/c
である。cは光速である。
 同様に、ある時刻に照明装置22を出発した光が、距離dMAXiに到達してその反射光がイメージセンサ24に戻ってくるまでのラウンドトリップ時間TMAXiは、
 TMAXi=2×dMAXi/c
である。
 レンジRNGに含まれる物体OBJを撮影したいとき、コントローラ26は、時刻t=t+TMINiに露光を開始し、時刻t=t+TMAXiに露光を終了するように、撮影タイミング信号S2を生成する。これが1回の露光動作である。
 i番目のレンジRNGを撮影する際には、複数回の発光と露光を繰り返し行い、イメージセンサ24において測定結果を積算する。
 図6(a)、(b)は、ToFカメラ20により得られる画像を説明する図である。図6(a)の例では、レンジRNGに物体(歩行者)OBJが存在し、レンジRNGに物体(車両)OBJが存在している。図6(b)には、図6(a)の状況で得られる複数のレンジ画像IMG~IMGが示される。レンジ画像IMGを撮影するとき、イメージセンサはレンジRNGからの反射光のみにより露光されるため、レンジ画像IMGには、歩行者OBJの物体像OBJが写る。
 レンジ画像IMGを撮影するとき、イメージセンサはレンジRNGからの反射光により露光され、したがってレンジ画像IMGには、いかなる物体像も写らない。
 同様にレンジ画像IMGを撮影するとき、イメージセンサはレンジRNGからの反射光により露光されるため、レンジ画像IMGには、物体像OBJのみが写る。このようにToFカメラ20によれば、レンジ毎に物体を分離して撮影することができる。
 以上がToFカメラ20の動作である。
 図7は、センシングシステム400を内蔵する車両用灯具200を示す図である。車両用灯具200は、筐体210、アウターレンズ220、ハイビームおよびロービームの灯具ユニット230H/230Lおよびセンシングシステム400を備える。灯具ユニット230H/230Lおよびセンシングシステム400は、筐体210に収容されている。
 なお、センシングシステム400の一部、たとえばイメージセンサ420や演算処理装置440は、車両用灯具200の外部、たとえばルームミラーの裏側に設置してもよい。
 図8は、センシングシステム400を備える車両用灯具200を示すブロック図である。車両用灯具200は、車両側ECU304とともに灯具システム310を構成する。車両用灯具200は、光源202、点灯回路204、光学系206を備える。さらに車両用灯具200には、センシングシステム400が設けられる。センシングシステム400は、センシングシステム400および演算処理装置440を含む。
 演算処理装置440は、センシングシステム400によって得られる画像にもとづいて、物体の種類を識別可能に構成される。
 演算処理装置440は、CPU(Central Processing Unit)やMPU(Micro Processing Unit)、マイコンなどのプロセッサ(ハードウェア)と、プロセッサ(ハードウェア)が実行するソフトウェアプログラムの組み合わせで実装することができる。演算処理装置440は、複数のプロセッサの組み合わせであってもよい。あるいは演算処理装置440はハードウェアのみで構成してもよい。
 演算処理装置440が検出した物体OBJに関する情報は、車両用灯具200の配光制御に利用してもよい。具体的には、灯具側ECU208は、演算処理装置440が生成する物体OBJの種類とその位置に関する情報にもとづいて、適切な配光パターンを生成する。点灯回路204および光学系206は、灯具側ECU208が生成した配光パターンが得られるように動作する。
 また演算処理装置440が検出した物体OBJに関する情報は、車両側ECU304に送信してもよい。車両側ECUは、この情報にもとづいて、自動運転を行ってもよい。
 上述した実施形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なことが当業者に理解される。以下、こうした変形例について説明する。
(変形例1)
 センシングシステム400は、ToFカメラに限定されず、LIDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)であってもよい。あるいはセンシングシステム400は、相関計算を利用したシングルピクセルイメージング装置(量子レーダ)であってもよい。
(変形例2)
 実施形態では、演算処理装置440は、機能限界を示す停止フラグを生成することとしたが、演算処理装置440は、物体検出の成功と失敗の比率と相関を有する指標を生成して、制御システム500に出力してもよい。たとえば制御システム500は、この指標にもとづいて、悪天候の度合いを推定することができる。
(変形例3)
 実施形態では、センシングシステム400が生成する停止フラグSTOPにもとづいて、制御システム500の状態を制御したが、その限りでない。たとえば停止フラグSTOPがアサートされると、センシングシステム400が機能不全に陥っていることを、視覚的あるいは聴覚的に、運転者に知らせてもよい。
 実施形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにさまざまな変形例が存在すること、またそうした変形例も本開示または本発明の範囲に含まれることは当業者に理解されるところである。
 本開示は、自動車用のセンシングシステムに関する。
 10 物体識別システム
 OBJ 物体
 20 ToFカメラ
 22 照明装置
 24 イメージセンサ
 26 コントローラ
 S1 発光タイミング信号
 S2 撮影タイミング信号
 40 演算処理装置
 200 車両用灯具
 202 光源
 204 点灯回路
 206 光学系
 310 灯具システム
 304 車両側ECU
 400 センシングシステム
 410 照明装置
 420 イメージセンサ
 430 センシングコントローラ
 440 演算処理装置
 500 制御システム

Claims (10)

  1.  視野に照明光を照射する照明装置と、
     物体が前記照明光を反射した反射光を撮影するイメージセンサと、
     前記イメージセンサの出力にもとづいて、前記物体を検出する演算処理装置と、
     を備え、
     前記演算処理装置は、フレーム毎に、物体の検出の成否を判定し、判定結果にもとづいて、センシング不能を示す停止フラグを生成することを特徴とするセンシングシステム。
  2.  前記演算処理装置は、物体の検出の失敗が、所定時間または所定のフレーム数にわたり継続したときに、前記停止フラグをアサートすることを特徴とする請求項1に記載のセンシングシステム。
  3.  前記演算処理装置は、物体の検出の失敗と成功の比率にもとづいて、前記停止フラグをアサートすることを特徴とする請求項1に記載のセンシングシステム。
  4.  前記停止フラグがアサートされる間、前記照明装置および前記イメージセンサは動作を継続し、そのときの物体の検出の成否の判定結果にもとづいて、前記演算処理装置は、前記停止フラグをネゲートすることを特徴とする請求項1から3のいずれかに記載のセンシングシステム。
  5.  前記演算処理装置は、前記物体の検出の成功が、所定時間または所定のフレーム数にわたり継続したときに、前記停止フラグをネゲートすることを特徴とする請求項4に記載のセンシングシステム。
  6.  前記演算処理装置は、物体の検出の失敗と成功の比率にもとづいて、前記停止フラグをネゲートすることを特徴とする請求項4に記載のセンシングシステム。
  7.  前記停止フラグがアサートされる期間、前記照明装置および前記イメージセンサの動作周波数を、前記停止フラグがネゲートされる期間に比べて低下させることを特徴とする請求項4から6のいずれかに記載のセンシングシステム。
  8.  視野に照明光を照射する照明装置と、
     物体が前記照明光を反射した反射光を撮影するイメージセンサと、
     前記イメージセンサの出力にもとづいて、前記物体を検出する演算処理装置と、
     を備え、
     前記演算処理装置は、フレーム毎に、物体の検出の成否を判定し、成功と失敗の比率と相関を有する指標を生成することを特徴とするセンシングシステム。
  9.  前記照明装置と前記イメージセンサは、視野を奥行き方向について複数のレンジに区切り、レンジ毎に、発光と撮像の時間差を変化させることにより、前記複数のレンジに対応する複数の画像を取得可能な飛行時間カメラとして動作することを特徴とする請求項1から6のいずれかに記載のセンシングシステム。
  10.  請求項1から6のいずれかに記載のセンシングシステムと、
     前記センシングシステムの出力にもとづいた制御を行う上位コントローラと、
     を備え、
     前記上位コントローラは、センシング不能のフラグが立っている間、前記制御を停止することを特徴とする自動車。
PCT/JP2022/040809 2021-11-01 2022-10-31 センシングシステムおよび自動車 WO2023074903A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021178893 2021-11-01
JP2021-178893 2021-11-01

Publications (1)

Publication Number Publication Date
WO2023074903A1 true WO2023074903A1 (ja) 2023-05-04

Family

ID=86159526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040809 WO2023074903A1 (ja) 2021-11-01 2022-10-31 センシングシステムおよび自動車

Country Status (1)

Country Link
WO (1) WO2023074903A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020021914A1 (ja) * 2018-07-23 2020-01-30 パナソニックIpマネジメント株式会社 距離測定装置および信頼性判定方法
WO2020115016A1 (en) * 2018-12-03 2020-06-11 Ams International Ag Three dimensional imaging with intensity information

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020021914A1 (ja) * 2018-07-23 2020-01-30 パナソニックIpマネジメント株式会社 距離測定装置および信頼性判定方法
WO2020115016A1 (en) * 2018-12-03 2020-06-11 Ams International Ag Three dimensional imaging with intensity information

Similar Documents

Publication Publication Date Title
JP5680573B2 (ja) 車両の走行環境認識装置
US9519841B2 (en) Attached matter detector and vehicle equipment control apparatus
US7920250B2 (en) System for the detection by a motor vehicle of a phenomenon that interferes with visibility
JP2005195601A (ja) 自動車のための運転条件を検出するシステムおよび方法
JP2006188224A (ja) 車両用暗視システム、光源操作システム及びその制御方法
US20230179841A1 (en) Gating camera
US20160341848A1 (en) Object detection apparatus, object removement control system, object detection method, and storage medium storing object detection program
JP7436696B2 (ja) 自動車の周囲モニタリングシステム
US11303817B2 (en) Active sensor, object identification system, vehicle and vehicle lamp
WO2023074903A1 (ja) センシングシステムおよび自動車
JP2007240387A (ja) 画像認識装置および画像認識方法
US20220214434A1 (en) Gating camera
US11002419B2 (en) Linearly polarized light emission by a vehicle headlight for use in a camera-based driver assistance system
WO2023085403A1 (ja) センシングシステム
CN116648921A (zh) 车载用传感系统以及门控照相机
US20230311897A1 (en) Automotive sensing system and gating camera
EP2698743B1 (en) Driver assisting system and method for a motor vehicle
WO2021172478A1 (ja) センサ、自動車および周囲環境のセンシング方法
CN116710838A (zh) 车载用感测系统及门控照相机
WO2023013776A1 (ja) ゲーティングカメラ、車両用センシングシステム、車両用灯具
CN112153252B (zh) 车辆用灯具
US20240067094A1 (en) Gating camera, vehicle sensing system, and vehicle lamp
WO2023074902A1 (ja) アクティブセンサ、物体識別システム、車両用灯具
JP2019197008A (ja) 撮像装置
US20230019442A1 (en) Infrared imaging device and infrared imaging system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22887228

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023556707

Country of ref document: JP

Kind code of ref document: A