WO2023074806A1 - Drive transmission device for vehicle - Google Patents

Drive transmission device for vehicle Download PDF

Info

Publication number
WO2023074806A1
WO2023074806A1 PCT/JP2022/040192 JP2022040192W WO2023074806A1 WO 2023074806 A1 WO2023074806 A1 WO 2023074806A1 JP 2022040192 W JP2022040192 W JP 2022040192W WO 2023074806 A1 WO2023074806 A1 WO 2023074806A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
sun gear
pinion gear
pinion
axial direction
Prior art date
Application number
PCT/JP2022/040192
Other languages
French (fr)
Japanese (ja)
Inventor
辻本勝弘
磯野宏
野中典昭
山口真矢
藤川実香
Original Assignee
株式会社アイシン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイシン filed Critical 株式会社アイシン
Publication of WO2023074806A1 publication Critical patent/WO2023074806A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/46Systems consisting of a plurality of gear trains each with orbital gears, i.e. systems having three or more central gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/08General details of gearing of gearings with members having orbital motion

Definitions

  • the present invention relates to a vehicle drive transmission device that includes a differential gear mechanism that distributes driving force from a driving force source and a speed reducer that reduces the output from the differential gear mechanism.
  • a bevel gear type differential gear mechanism (211) is provided radially inside a hollow rotor shaft (207) of a motor as a driving force source. and a planetary gear mechanism (603) that constitutes a speed reducer coaxially with a rotor shaft (207) and a differential gear mechanism (211).
  • the numbers inside are those of the referenced literature.).
  • the sun gear and pinion gear of the planetary gear mechanism (603) are helical gears, and this sun gear is connected to the output gear of the differential gear mechanism (211).
  • the so-called thrust force is generated in the direction along the rotation axis (the rotation axis of the sun gear) due to the reaction force of the engagement between the sun gear and the pinion gear.
  • a shaft member that connects the sun gear and the output gear of the differential gear mechanism is generally supported by a thrust bearing, thrust washer, or the like.
  • a vehicle drive transmission device includes an input member drivingly connected to a driving force source, a first output member drivingly connected to a first wheel, and a second output member drivingly connected to a second wheel. , an input element connected to rotate integrally with the input member, a first output element, and a second output element, wherein torque transmitted from the input member to the input element is transmitted to the first output element and the second output element; a first reduction gear that reduces the rotation of the first output element and transmits it to the first output member; and reduces the rotation of the second output element. and a second speed reducer for transmitting power to the second output member, wherein the first speed reducer rotatably supports a first sun gear and a plurality of first pinion gears.
  • a planetary gear mechanism comprising a first carrier and a first ring gear, wherein the first sun gear, the plurality of first pinion gears, and the first ring gear are helical gears, and the second reduction gear:
  • a planetary gear mechanism comprising a second sun gear, a second carrier that rotatably supports a plurality of second pinion gears, and a second ring gear, wherein the second sun gear, the plurality of second pinion gears, and the second ring gear is a helical gear, the first output element and the first sun gear are coaxially arranged and connected by a first connection mechanism, and the second output element and the second sun gear are They are coaxially arranged and connected by a second connection mechanism, and the first connection mechanism is adapted to connect the first sun gear and the first sun gear according to the torque transmitted between the first output element and the first sun gear.
  • a first thrust force generator that generates a thrust force in a direction opposite to a thrust force acting on the first sun gear by meshing with the plurality of first pinion gears
  • the second coupling mechanism includes the second output element and the In accordance with the torque transmitted between the second sun gear and the second sun gear, meshing between the second sun gear and the plurality of second pinion gears generates a thrust force in the direction opposite to the thrust force acting on the second sun gear. 2 thrust force generators.
  • the thrust force acting on the first sun gear due to the meshing between the first sun gear and the plurality of first pinion gears can be reduced by the thrust force generated by the first thrust force generating section
  • the second Thrust force acting on the second sun gear due to meshing between the sun gear and the plurality of second pinion gears can be reduced by the thrust force generated by the second thrust force generator. Therefore, bearings, washers, etc. for supporting the first sun gear and the second sun gear in the axial direction can be eliminated or simplified.
  • Axial sectional view showing an example of a vehicle drive system Axial enlarged cross-sectional view of vehicle drive system Skeleton diagram of a vehicle drive system Exploded perspective view of differential gear mechanism
  • Axial front view of the differential gear mechanism viewed from the first side in the axial direction Axial front view of the differential gear mechanism viewed from the axial second side
  • Axial front view of reducer The figure which shows the effect
  • Velocity diagram of vehicle drive system Axial front view showing a configuration example of a second differential gear mechanism Axial sectional view showing a configuration example of the second differential gear mechanism Axial front view showing a configuration example of a third differential gear mechanism Axial sectional view showing a configuration example of the third differential gear mechanism
  • the vehicle drive transmission device 100 includes a differential gear mechanism 3 having an input element E30, a first output element E31, and a second output element E32.
  • An axial direction L is defined as a direction along the rotation axis X of the first output element E31 and the second output element E32.
  • One side in the axial direction L is defined as a first axial side L1
  • the other side in the axial direction L is defined as a second axial side L2
  • a direction orthogonal to the axial direction L is defined as a radial direction R.
  • the side of the rotation axis X is called the radial inner side R1
  • the opposite side is called the radial outer side R2.
  • the phrase “overlapping in a particular direction view” means that when a virtual straight line parallel to the viewing direction is moved in each direction orthogonal to the virtual straight line, It means that there is at least a part of the area where the virtual straight line intersects both of the two members.
  • the phrase “the arrangement regions in the axial direction overlap” means that the arrangement region of one member in the axial direction includes at least the arrangement region of the other member in the axial direction. It means that part is included.
  • the term “driving connection” refers to a state in which two rotating elements are connected so as to be able to transmit a driving force (synonymous with torque), and the two rotating elements rotate integrally. It includes a state in which the two rotating elements are connected, or a state in which the two rotating elements are connected so as to be able to transmit driving force via one or more transmission members (shafts, gears, etc.).
  • the transmission member may include an engagement device (for example, a friction engagement device, a mesh type engagement device, etc.) that selectively transmits rotation and driving force.
  • the term "diameter” when used for gears, splines, etc., it means the diameter of the root circle, which is the diameter of the circle connecting the roots of the teeth, and the diameter of the circle connecting the tips of the teeth, which is the tip diameter.
  • the pitch circle diameter reference circle diameter
  • the diameter of the circle connecting the pitch points is shown instead of the circle diameter.
  • a first speed reducer 51 that decelerates the rotation from the differential gear mechanism 3 and transmits it to the first output member 91
  • a second speed reducer that decelerates the rotation from the differential gear mechanism 3 and transmits it to the second output member 92 .
  • 2 speed reducer 52 is provided.
  • the differential gear mechanism 3 includes an input element E30, a first output element E31, and a second output element E32 that are connected to rotate integrally with the input member 1.
  • the input member 1 to the input element E30 is distributed to the first output element E31 and the second output element E32.
  • the first speed reducer 51 reduces the speed of rotation of the first output element E31 and transmits it to the first output member 91 .
  • the second reduction gear 52 reduces the speed of rotation of the second output element E32 and transmits it to the second output member 92 .
  • the driving force source 8 is a rotating electric machine 80 having a rotor 81, and the input member 1 is a rotor shaft 10 that rotates integrally with the rotor 81.
  • the driving force source 8 may be of another form such as an internal combustion engine, and the input member 1 may also be a rotating member drivingly connected to the internal combustion engine.
  • the input element E30 of the differential gear mechanism 3 is coupled to rotate integrally with the rotor shaft 10 .
  • the first reduction gear 51 and the second reduction gear 52 have the same configuration, and will be simply referred to as the reduction gear 5 when they are not distinguished from each other.
  • the first output member 91 and the second output member 92 are not distinguished, they are collectively called the output member 9, and when the first wheel W1 and the second wheel W2 are not distinguished, they are collectively called the wheel W.
  • the vehicle drive transmission device 100 in which the power transmission path is formed in the order of the input member 1, the differential gear mechanism 3, the speed reducer 5, and the output member 9 will be described as an example.
  • a speed reducer may be provided between the output member 9 and the wheel W separately from the vehicle drive transmission device 100 .
  • the differential gear mechanism 3 includes an input element E30 connected to rotate integrally with the rotor shaft 10, a first output element E31 drivingly connected to the first output member 91, and a second output member 92. may be provided with a second output element E32 drivingly connected to the rotor shaft 10 to distribute the torque transmitted from the rotor shaft 10 to the input element E30 to the first output element E31 and the second output element E32.
  • the "driving connection” is not limited to the state in which the two rotating elements are connected so as to rotate integrally, and the two rotating elements are connected to one or more transmission members (shafts). , gears, etc.). Therefore, of course, the first output member 91 and the first output element E31 may be connected via the first speed reducer 51 instead of being connected so as to rotate integrally. Moreover, the second output member 92 and the second output element E32 may be connected via the second speed reducer 52 instead of being connected so as to rotate integrally.
  • the driving force source 8 is the rotating electric machine 80 in this embodiment.
  • the rotating electric machine 80 is an inner rotor type rotating electric machine, and has a stator 82 fixed to the case 6 as a non-rotating member, and a rotor 81 rotatably supported radially inside R1 of the stator 82 .
  • the stator 82 includes a stator core and a stator coil wound around the stator core, and the rotor 81 includes a rotor core and permanent magnets arranged on the rotor core.
  • the rotor 81 is connected to a rotor shaft 10 (input member 1) that always rotates integrally with the rotor 81 . As shown in FIG.
  • the rotor shaft 10 is formed in a hollow tubular shape, and the rotor shaft 10 is connected to the rotor 81 in a state where the outer peripheral surface 1b of the rotor shaft 10 is in contact with the rotor 81 (rotor core).
  • the input member 1 is a tubular rotor shaft 10 that is coupled to rotate integrally with the rotor 81 .
  • the rotor shaft 10 is rotatably supported by a support member 63 arranged inside the case 6 via a pair of rotor bearings B1 (support bearing, first bearing).
  • the rotor shaft 10 is supported from the radially inner side R1 by a pair of rotor bearings B1.
  • the differential gear mechanism 3 is arranged at the radially inner side R1 with respect to the hollow cylindrical rotor shaft 10 and overlaps the rotor 81 when viewed in the radial direction. It is easy to reduce the axial dimension of 100 .
  • the case 6 includes a cylindrical case main body 61 that accommodates the rotary electric machine 80, the differential gear mechanism 3, the first reduction gear 51, and the second reduction gear 52, and the case main body 61 that accommodates them in the first axial direction.
  • a pair of case cover portions 62 as cover members that cover from the side L1 and the second axial side L2, and a pair of support members 63 fixed to the case body portion 61 are provided.
  • the support member 63 is formed to extend in the radial direction R and the circumferential direction inside the case main body portion 61 and extends between the rotating electric machine 80 and the differential gear mechanism 3 and the first reduction gear 51 in the axial direction L.
  • Each support member 63 is bent toward the rotor shaft 10 side in the axial direction L at the radially inner side R1 of the rotor shaft 10, and supports the rotor bearing B1 on the outer peripheral surface of this bent portion.
  • the differential gear mechanism 3 is arranged radially inward R1 with respect to the rotor shaft 10 and overlapping the rotor 81 when viewed in the radial direction R.
  • the first reduction gear 51 is arranged on the first side L1 in the axial direction with respect to the rotor 81 and the rotor shaft 10
  • the second reduction gear 52 is arranged on the second side L2 in the axial direction with respect to the rotor 81 and the rotor shaft 10. are placed in
  • the differential gear mechanism 3 includes a first rotary element E1, a second rotary element E2, and a third rotary element E3, and the rotational speeds of the first rotary element E1, the second rotary element E2, and the third rotary element E3 are It is a planetary gear mechanism configured so that the order is the order of description (see the velocity diagram in FIG. 9).
  • the differential gear mechanism 3 has an input element E30, a first output element E31 and a second output element E32.
  • the first rotary element E1 is the first output element E31
  • the second rotary element E2 is the input element E30
  • the third rotary element E3 is the second output element E32.
  • one of the first rotating element E1, the second rotating element E2, and the third rotating element E3 is a sun gear (first differential sun gear S31, which will be described later), and one is a carrier (a differential gear, which will be described later). carrier C3), and the remaining one is a sun gear (second differential sun gear S32 described later) different from the sun gear (first differential sun gear S31) described above. That is, the differential gear mechanism 3 configured by the planetary gear mechanism does not have a ring gear as a rotating element.
  • one of the first rotating element E1, the second rotating element E2, and the third rotating element E3 is a sun gear
  • one is a carrier
  • the other one is the aforementioned carrier. It may be a different carrier.
  • the differential gear mechanism 3 can be configured by a planetary gear mechanism that does not have a ring gear as a rotating element. That is, among the first rotating element E1, the second rotating element E2, and the third rotating element E3 in the differential gear mechanism 3, one is a sun gear, one is a carrier, and the other is a sun gear different from the above-mentioned sun gear. or a carrier different from the carrier described above.
  • the differential gear mechanism 3 is a planetary gear mechanism that does not include a ring gear, so it is configured to be easily miniaturized in the radial direction R as well. Therefore, it is easy to arrange the differential gear mechanism 3 radially inward R ⁇ b>1 with respect to the hollow cylindrical rotor shaft 10 .
  • the first rotating element E1 is a first differential sun gear S31 (first sun gear)
  • the second rotating element E2 is a differential carrier C3 (carrier)
  • the third rotating element E3 is the differential second sun gear S32 (second sun gear).
  • the differential carrier C3 rotatably supports a differential first pinion gear P31 (first pinion gear) and a differential second pinion gear P32 (second pinion gear).
  • the first differential pinion gear P31 meshes with the first differential sun gear S31 and the second differential pinion gear P32
  • the second differential pinion gear P32 meshes with the first differential pinion gear P31 and the second differential sun gear S32.
  • the differential gear mechanism 3 can be appropriately configured using a planetary gear mechanism without providing a ring gear. Since the ring gear is not provided, it is easy to keep the size of the differential gear mechanism 3 in the radial direction R small. A differential gear mechanism 3 can be accommodated.
  • the differential carrier C3 is fixed to the rotor shaft 10 so as to protrude from the inner peripheral surface 1a of the rotor shaft 10 to the radially inner side R1.
  • the differential carrier C3 as the second rotating element E2 can be appropriately connected to the rotor shaft 10 so as to rotate integrally therewith. Since the differential carrier C3 is fixed to the radially inner side R1 of the rotor shaft 10, the size of the differential gear mechanism 3 can be easily reduced.
  • the differential carrier C3 does not protrude from the inner peripheral surface 1a of the rotor shaft 10 to the radially inner side R1, and is formed in a cylindrical shape having a wall thickness that allows the rotor shaft 10 to accommodate the pinion gear. It does not prevent the form integrally formed with the rotor shaft 10 on the radially inner side R1 of 10 .
  • the differential first pinion gear P31 has a first gear portion P31a and a second gear portion P31b.
  • the first gear portion P31a meshes with the differential first sun gear S31
  • the second gear portion P31b meshes with the differential second pinion gear P32. Therefore, the differential first pinion gear P31 having the first gear portion P31a and the second gear portion P31b meshes with the differential first sun gear S31 and the differential second pinion gear P32.
  • the differential second pinion gear P32 meshes with the differential second sun gear S32.
  • the second differential pinion gear P32 functions as an idler gear that reverses the direction of rotation between the first differential pinion gear P31 and the second differential sun gear S32.
  • a partition member 73 is arranged between the first differential sun gear S31 and the second differential sun gear S32 in the axial direction L. As shown in FIGS.
  • the first gear portion P31a of the differential first pinion gear P31 is housed in the first gear housing portion 31 formed in the carrier member 30 forming the differential carrier C3.
  • the second gear portion P31b of the differential first pinion gear P31 is housed in a second gear housing portion 32 formed in the carrier member 30.
  • the first gear portion P31a and the second gear portion P31b rotate together as a differential first pinion gear P31.
  • the outer peripheral surface of the first gear portion P31a slides against the inner peripheral surface 31a of the first gear housing portion 31, and the outer peripheral surface of the second gear portion P31b slides against the second gear housing portion 32.
  • the differential second pinion gear P32 is housed in a differential second pinion gear housing portion 33 formed in the carrier member 30 .
  • the second differential pinion gear P32 is supported by the carrier member 30 (differential carrier C3) such that its outer peripheral surface slides against the inner peripheral surface 33a of the second differential pinion gear housing 33. As shown in FIG.
  • the first differential pinion gear P31 and the second differential pinion gear P32 are supported by the differential carrier C3 in a state of sliding against the inner peripheral surface of the differential carrier C3, thereby forming a differential gear mechanism.
  • 3 can obtain an effect as a limited slip differential (a differential gear mechanism with a limited differential function). That is, even if one wheel W out of the first wheel W1 and the second wheel W2 slips or nearly slips while the vehicle is turning or traveling on a rough road, the differential The driving force can be transmitted to the other wheel W while maintaining the function.
  • the differential sun gear S1 (first differential sun gear S31, second differential sun gear S32) is arranged radially inward R1 of the carrier member 30 .
  • the differential sun gear S1 has a gap with the inner peripheral surface 30a of the carrier member 30 so that it can rotate without contacting the inner peripheral surface 30a.
  • the rotor shaft 10 is supported from the radially inner side R1 by a pair of rotor bearings B1 (support bearings). Thereby, the rotor shaft 10 is rotatable with respect to the case 6 .
  • the pair of rotor bearings B ⁇ b>1 are arranged separately on both sides in the axial direction L with respect to the differential gear mechanism 3 . In this way, by arranging the rotor bearings B1 on both sides of the differential gear mechanism 3 in the axial direction L, even if the differential gear mechanism 3 is arranged radially inward R1 with respect to the rotor shaft 10, , the rotor shaft 10 and the differential gear mechanism 3 can be rotatably supported.
  • the rotor bearing B1 supports the rotor shaft 10 from the radially inner side R1 of the rotor shaft 10, it is not necessary to increase the axial dimension for arranging the bearing, and the shaft of the drive transmission device 100 for a vehicle does not need to be increased. It is easy to shorten the dimension in the direction L.
  • the rotor shaft 10 may be supported by bearings at positions different from those described above.
  • the rotor shaft 10 may be supported from the radially outer side R2 by a pair of rotor bearings B1 (support bearings).
  • the vehicle drive transmission device 100 includes the first speed reducer 51 that decelerates the rotation of the first output element E31 and transmits it to the first output member 91, and the second output element E32 that decelerates the rotation. and a second reduction gear 52 that transmits to the second output member 92 .
  • the first reduction gear 51 is arranged on the first side L1 in the axial direction with respect to the rotor 81 and the rotor shaft 10
  • the second reduction gear 52 is arranged on the second side L2 in the axial direction with respect to the rotor 81 and the rotor shaft 10.
  • a configuration including a planetary gear type speed reducer 5 is exemplified.
  • the speed reducer 5 may have another structure such as a parallel gear type speed reducer. Further, even when the planetary gear type speed reducer 5 is provided, it is not limited to the double pinion type as exemplified below, and may be a planetary gear mechanism of other configuration such as a single pinion type.
  • the torque of the rotating electric machine 80 is distributed to the first axial side L1 and the second axial side L2 in the differential gear mechanism 3 arranged at a position overlapping the rotor 81 when viewed in the radial direction. Since the distributed rotation is reduced by the first reduction gear 51 or the second reduction gear 52, respectively, the torque amplified by these reduction gears 5 can be appropriately transmitted to each of the pair of output members 9. can be done. Therefore, a drive transmission device for an electric vehicle is realized in which the dimensions in the axial direction L and the radial direction R are kept small by using a relatively small rotating electrical machine 80 while being configured to transmit necessary torque to the wheels W. be able to.
  • the first reduction gear 51 is a planetary gear mechanism including a reduction first sun gear S51 (first sun gear), a reduction first carrier C51 (first carrier), and a reduction first ring gear R51 (first ring gear).
  • the reduction first sun gear S51 is coupled to rotate integrally with the first output element E31.
  • the first reduction carrier C51 is connected to rotate integrally with the first output member 91, and the first reduction ring gear R51 is connected to the case 6 as a non-rotating member.
  • the first reduction ring gear R51 may be connected to the first output member 91 so as to rotate integrally, and the first reduction carrier C51 may be connected to the case 6 .
  • one of the first reduction carrier C51 and the first reduction ring gear R51 is connected to rotate integrally with the first output member 91, and the first reduction carrier C51 and the first reduction ring gear R51 are connected to each other.
  • Either one of the 1 ring gears R51 may be connected to the case 6 as a non-rotating member.
  • the second reduction gear 52 is a planetary gear mechanism including a reduction second sun gear S52 (second sun gear), a reduction second carrier C52 (second carrier), and a reduction second ring gear R52 (second ring gear).
  • the reduction second sun gear S52 is coupled to rotate integrally with the second output element E32.
  • the second reduction carrier C52 is connected to rotate integrally with the second output member 92, and the second reduction ring gear R52 is connected to the case 6 as a non-rotating member.
  • the second reduction ring gear R52 may be connected to rotate integrally with the second output member 92, and the second reduction carrier C52 may be connected to the case 6.
  • the second speed reducer 52 has one of the reduction second carrier C52 and the reduction second ring gear R52 connected to rotate integrally with the second output member 92, and the reduction second carrier C52 and the reduction second Either one of the two ring gears R52 may be connected to the case 6 as a non-rotating member.
  • the first reduction sun gear S51, the plurality of first reduction pinion gears P51, the first reduction ring gear R51, the second reduction sun gear S52, the second reduction pinion gears P52, and the second reduction ring gear R52 are arranged obliquely.
  • the characteristics of the vehicle drive transmission device 100 may be described by exemplifying the case of a toothed gear.
  • the single structure of the speed reducer 5 is not limited to helical gears, and may be spur gears, for example.
  • the first reduction carrier C51 is connected to rotate integrally with the first output member 91, and the first reduction ring gear R51 is connected to the case 6.
  • a reduction second carrier C52 is connected to the second output member 92 so as to rotate integrally, and a reduction second ring gear R52 is connected to the case 6 .
  • the first deceleration carrier C51 is supported by a pair of first output bearings B51 (bearings) arranged separately on both sides in the axial direction L with respect to the first pinion gear set P51c.
  • the second deceleration carrier C52 is supported by a pair of second output bearings B52 (third bearing, bearing) arranged separately on both sides in the axial direction L with respect to the second pinion gear set P52c.
  • the first deceleration carrier C51 and the second deceleration carrier C52 which are rotating elements connected to the output member 9, are appropriately rotatably supported by a pair of bearings (output bearing B5). Therefore, it is possible to realize the vehicle drive transmission device 100 that appropriately supports the rotating element while achieving a reduction in size.
  • the support structure of the first reduction carrier C51 such as the first output bearing B51 that supports the first reduction carrier C51, is arranged on one side in the axial direction L with respect to the first pinion gear set P51c. It is not limited.
  • the second output bearing B52 that supports the second reduction carrier C52 is disposed on one side of the second pinion gear set P52c in the axial direction L. is not limited to
  • the reduction gear 5 is a planetary gear mechanism including a reduction sun gear S5, a reduction carrier C5, and a reduction ring gear R5.
  • the reduction sun gear S5 is connected to the output element (first output element E31 or second output element E32) of the differential gear mechanism 3 so as to rotate integrally.
  • the reduction carrier C5 is connected to rotate integrally with the output member 9, and the reduction ring gear R5 is connected to the case 6 as a non-rotating member.
  • either one of the reduction carrier C5 and the reduction ring gear R5 is connected to rotate integrally with the output member 9, and the other of the reduction carrier C5 and the reduction ring gear R5 is connected to It may be connected to the case 6 as a non-rotating member.
  • the output member 9 is connected to the speed reduction carrier C5 of the speed reducer 5 as an example.
  • the reduction carrier C5 may be fixed to a non-rotating member such as the case 6, and the output member 9 may be connected to the reduction ring gear R5.
  • the first reduction gear 51 and the second reduction gear 52 have the same configuration in this embodiment, the reduction gears 5 may have different configurations.
  • the speed reduction carrier C5 supports a plurality of pinion gear sets P5c consisting of inner pinion gears P5a and outer pinion gears P5b.
  • the inner pinion gear P5a meshes with the reduction sun gear S5 and the outer pinion gear P5b
  • the outer pinion gear P5b meshes with the inner pinion gear P5a and the reduction ring gear R5.
  • the rotation axis of the inner pinion gear P5a and the rotation axis of the outer pinion gear P5b are arranged along the radial direction R.
  • the first reduction carrier C51 supports a plurality of first pinion gear sets P51c consisting of first inner pinion gears P51a and first outer pinion gears P51b.
  • the first inner pinion gear P51a meshes with the reduction first sun gear S51 and the first outer pinion gear P51b
  • the first outer pinion gear P51b meshes with the first inner pinion gear P51a and the reduction first ring gear R51.
  • the rotation axis of the first inner pinion gear P51a and the rotation axis of the first outer pinion gear P51b are arranged along the radial direction R.
  • the reduction second carrier C52 supports a plurality of second pinion gear sets P52c consisting of second inner pinion gears P52a and second outer pinion gears P52b.
  • the second inner pinion gear P52a meshes with the second reduction sun gear S52 and the second outer pinion gear P52b
  • the second outer pinion gear P52b meshes with the second inner pinion gear P52a and the second reduction ring gear R52.
  • the rotation axis of the second inner pinion gear P52a and the rotation axis of the second outer pinion gear P52b are arranged along the radial direction R.
  • the first reduction gear 51 and the second reduction gear 52 are configured by a double pinion type planetary gear mechanism, the sun gear (reduction It is easy to increase the diameter difference between the sun gear S5) and the ring gear (reduction ring gear R5), and it is easy to increase the gear ratio between the sun gear and the ring gear. Therefore, it is easy to increase the reduction ratios of the first reduction gear 51 and the second reduction gear 52 .
  • the diameter of the pinion gear would increase, so the weight of the speed reducer 5 would likely increase, and interference would easily occur between adjacent pinion gears.
  • the tooth ratio between the sun gear and the ring gear can be set large within a range in which adjacent pinion gear sets do not interfere with each other.
  • such a speed reducer 5 is not limited to a mode in which it is drivingly connected to the input member 1 via the double pinion type planetary gear type differential gear mechanism 3 as in the present embodiment.
  • the differential gear mechanism 3 may be a single pinion type planetary gear mechanism or, for example, a bevel gear mechanism.
  • the rotor shaft 10 is exemplified as the input member 1, but the driving force source 8 of the vehicle drive transmission device 100 including the speed reducer 5 having such a structure is not limited to the rotating electric machine 80. It may be an institution or the like.
  • the input member 1 is not limited to the rotor shaft 10, and may be a member connected to the driving force source 8 via various gear mechanisms, transmissions, and the like.
  • the driving force source 8 does not have to be arranged coaxially with the input member 1 as in the present embodiment.
  • the driving force source 8 and the input member 1 may be drivingly connected via a transmission member such as a gear or a chain.
  • the differential gear mechanism 3 is arranged radially inside R1 of the hollow cylindrical rotor shaft 10. you don't have to be
  • the rotation axis of the inner pinion gear P5a, the rotation axis of the outer pinion gear P5b, and the rotation axis of the reduction sun gear S5 in each of the plurality of pinion gear sets P5c are: , are arranged on a straight line along the radial direction R.
  • the first reduction gear 51 and the second reduction gear 52 have the same configuration.
  • the rotational axis of the first inner pinion gear P51a and the rotational axis of the first outer pinion gear P51b in each of the plurality of first pinion gear sets P51c are The rotational axis of the first reduction sun gear S51 is arranged on a straight line along the radial direction R.
  • the rotational axis of the second inner pinion gear P52a, the rotational axis of the second outer pinion gear P52b, and the reduction second sun gear S52 in each of the plurality of second pinion gear sets P52c. are arranged on a straight line along the radial direction R.
  • the distance between the sun gear (reduction sun gear S5) and the ring gear (reduction ring gear R5) is greater than the diameters of the inner pinion gear P5a and the outer pinion gear P5b.
  • the gear ratio can be maximized. Therefore, it is easy to configure the speed reducer 5 having a larger reduction ratio while suppressing an increase in the weight of the speed reducer 5 .
  • the rotation axis of the inner pinion gear P5a, the rotation axis of the outer pinion gear P5b, and the rotation axis of the reduction sun gear S5 are arranged on a straight line along the radial direction R.
  • the center of each gear may be arranged within a range defined by a sector of approximately 5 to 10 degrees around the rotation axis X.
  • the diameter ⁇ 50 of the reduction sun gear S5 is smaller than the diameter ⁇ 5a of the inner pinion gear P5a. Therefore, it is possible to set a larger gear ratio between the sun gear (reduction sun gear S5) and the ring gear (reduction ring gear R5).
  • the first reduction gear 51 and the second reduction gear 52 have the same configuration. Therefore, the diameter ⁇ 51 of the reduction first sun gear S51 is smaller than the diameter ⁇ 51a of the first inner pinion gear P51a.
  • the diameter ⁇ 52 of the reduction second sun gear S52 is smaller than the diameter ⁇ 52a of the second inner pinion gear P52a.
  • the diameter ⁇ 5b of the outer pinion gear P5b and the diameter ⁇ 5a of the inner pinion gear P5a are equal in each of the plurality of pinion gear sets P5c. That is, in the first speed reducer 51, the diameter ⁇ 51b of the first outer pinion gear P51b is equal to the diameter ⁇ 51a of the first inner pinion gear P51a in each of the plurality of first pinion gear sets P51c. In the second speed reducer 52, the diameter ⁇ 52b of the second outer pinion gear P52b and the diameter ⁇ 52a of the second inner pinion gear P52a are equal in each of the plurality of second pinion gear sets P52c.
  • the diameter ⁇ 50 of the reduction sun gear S5 is smaller than the diameter ⁇ 5a of the inner pinion gear P5a.
  • the diameter ⁇ 50 of the reduction sun gear S5 may be equal to or larger than the diameter ⁇ 5a of the inner pinion gear P5a and larger than the diameter ⁇ 5b of the outer pinion gear P5b.
  • the diameter ⁇ 50 of the reduction sun gear S5 is equal to or larger than the diameter ⁇ 5a of the inner pinion gear P5a and equal to or smaller than the diameter ⁇ 5b of the outer pinion gear P5b.
  • the diameter ⁇ 5b of the outer pinion gear P5b and the diameter ⁇ 5a of the inner pinion gear P5a are equal in each of the plurality of pinion gear sets P5c. Since gears having the same structure can be used as the outer pinion gear P5b and the inner pinion gear P5a, the cost of the reduction gear 5 and the vehicle drive transmission device 100 can be reduced.
  • the diameter ⁇ 5b of the outer pinion gear P5b is larger than the diameter ⁇ 5a of the inner pinion gear P5a in each of the plurality of pinion gear sets P5c. That is, in the first speed reducer 51, it is also preferable that the diameter ⁇ 51b of the first outer pinion gear P51b is larger than the diameter ⁇ 51a of the first inner pinion gear P51a in each of the plurality of first pinion gear sets P51c. Similarly, in the second speed reducer 52, in each of the plurality of second pinion gear sets P52c, the diameter ⁇ 52b of the second outer pinion gear P52b is preferably larger than the diameter ⁇ 52a of the second inner pinion gear P52a.
  • the inner pinion gear P5a and the outer pinion gear P5b are formed. Even when three or more pinion gear sets P5c are provided, the gear ratio between the sun gear (reduction sun gear S5) and the ring gear (reduction ring gear R5) is set large within a range in which adjacent pinion gear sets do not interfere with each other. be able to. Therefore, it is easy to configure the speed reducer 5 having a larger speed reduction ratio.
  • the reduction carrier C5 supports a plurality of pinion gear sets P5c that mesh with the reduction sun gear S5 and the reduction ring gear R5. That is, a mode in which the speed reducer 5 is configured by a double pinion planetary gear mechanism is exemplified.
  • the speed reducer 5 may be configured by a single pinion planetary gear mechanism.
  • the reduction carrier C5 may support a plurality of pinion gears meshing with the reduction sun gear S5 and the reduction ring gear R5.
  • the inner pinion gear P5a and the outer pinion gear P5b, which form the pinion gear set P5c are also one pinion gear.
  • the speed reducer 5 is a planetary gear mechanism including a reduction sun gear S5, a reduction carrier C5 that rotatably supports a plurality of pinion gears, and a reduction ring gear R5. It can be said that there is
  • the first reduction gear 51 is a planetary gear including a first reduction sun gear S51, a first reduction carrier C51 that rotatably supports a plurality of first reduction pinion gears P51 (first pinion gears), and a first reduction ring gear R51. It can be called a mechanism.
  • the second reduction gear 52 includes a planetary gear including a reduction second sun gear S52, a reduction second carrier C52 that rotatably supports a plurality of reduction second pinion gears P52 (second pinion gears), and a reduction second ring gear R52. It can be called a mechanism.
  • the first reduction sun gear S51, the plurality of first reduction pinion gears P51, and the first reduction ring gear R51 are helical gears.
  • the second reduction sun gear S52, the plurality of second reduction pinion gears P52, and the second reduction ring gear R52 are also helical gears.
  • the first output element E31 and the reduction first sun gear S51 are coaxially arranged and connected by the first connecting mechanism 41.
  • the second output element E32 and the second reduction sun gear S52 are coaxially arranged and connected by a second connecting mechanism .
  • the first coupling mechanism 41 rotates the first reduction sun gear S51 and the plurality of first reduction pinion gears P51 according to the torque transmitted between the first output element E31 and the first reduction sun gear S51.
  • a first thrust force generator 43 generates a thrust force in the opposite direction to the thrust force acting on the reduction first sun gear S51 by meshing with the first sun gear S51.
  • the second coupling mechanism 42 is configured by meshing the reduction second sun gear S52 and the plurality of reduction second pinion gears P52 according to the torque transmitted between the second output element E32 and the reduction second sun gear S52.
  • a second thrust force generator 44 is provided to generate a thrust force in the direction opposite to the thrust force acting on the second reduction sun gear S52.
  • the first coupling mechanism 41 is configured so that the first output element E31 and the reduction first sun gear S51, which are coaxially arranged, rotate integrally. They are linked. Further, the second connecting mechanism 42 connects the coaxially arranged second output element E32 and the reduction second sun gear S52 so that they rotate integrally. Since the first output element E31 and the reduction first sun gear S51 are arranged coaxially, the thrust force can be reduced coaxially. Similarly, since the second output element E32 and the reduction second sun gear S52 are arranged coaxially, the thrust force can be reduced coaxially.
  • the thrust acting on the first reduction sun gear S51 is generated by the engagement between the first reduction sun gear S51 and the first reduction pinion gear P51.
  • the force can be offset by the thrust force generated by the first thrust force generator 43 .
  • the second thrust force generator 44 the thrust force acting on the second reduction sun gear S52 due to meshing between the second reduction sun gear S52 and the plurality of second reduction pinion gears P52 is generated by the second thrust force generation unit 44.
  • the thrust bearings, thrust washers, etc. for supporting the first reduction sun gear S51 and the second reduction sun gear S52 in the axial direction L can be eliminated or simplified.
  • the rotor shaft 10 is exemplified as the input member 1.
  • the present invention is for a vehicle to which a configuration for reducing the thrust force between the differential gear mechanism 3 and the speed reducer 5 is applied.
  • the driving force source 8 of the drive transmission device 100 is not limited to the rotary electric machine 80, and may be an internal combustion engine or the like.
  • the input member 1 is not limited to the rotor shaft 10, and may be a member connected to the driving force source 8 via various gear mechanisms, transmissions, and the like.
  • the driving force source 8 does not have to be arranged coaxially with the input member 1 as in the present embodiment.
  • the driving force source 8 and the input member 1 may be drivingly connected via a transmission member such as a gear or a chain.
  • the differential gear mechanism 3 is arranged radially inside R1 of the hollow cylindrical rotor shaft 10.
  • the structure of the differential gear mechanism 3 is not limited to the double pinion type planetary gear mechanism.
  • the differential gear mechanism 3 may be a single pinion type planetary gear mechanism or, for example, a bevel gear mechanism.
  • a rotating electrical machine 80 is provided as the driving force source 8, and the differential gear mechanism 3 is located radially inward R1 with respect to the rotor shaft 10, and is positioned radially inward R1 along the radial direction R. are placed in overlapping positions.
  • the first reduction gear 51 is arranged on the first side L1 in the axial direction with respect to the rotor 81 and the rotor shaft 10
  • the second reduction gear 52 is arranged on the second side L2 in the axial direction with respect to the rotor 81 and the rotor shaft 10. are placed in That is, the present embodiment exemplifies a form capable of realizing a more compact vehicle drive transmission device 100 for an electric vehicle that uses the rotating electric machine 80 as a driving force source.
  • the structure and location of the differential gear mechanism 3 and the type of the driving force source 8 are not limited to this form.
  • the speed reducer 5 has a structure capable of setting a relatively large speed reduction ratio. Increasing the speed reduction ratio of the speed reducer in this manner tends to increase the thrust force. However, if the thrust force can be reduced as in the present embodiment, it becomes easier to set a large reduction ratio in the speed reducer 5, and the size of the vehicle drive transmission device 100 can be easily reduced.
  • the first coupling mechanism 41 includes a first member 11 integrally formed with the first output element E31 and a second member integrally formed with the reduction first sun gear S51. 12.
  • the first member 11 includes a first engagement portion 21 formed of a spiral engagement groove around an axis along the axial direction L.
  • the second member 12 includes a second engaging portion 22 formed of a spiral engagement groove around an axis along the axial direction L.
  • the first engaging portion 21 and the second engaging portion 22 are meshingly engaged.
  • the reduction first sun gear S51 is a helical gear.
  • the twist directions of the first engaging portion 21 and the second engaging portion 22 that mesh and engage are set as follows.
  • the first engagement portion 21 and the first engagement portion 21 are arranged so that the direction of the force is opposite to the direction of the thrust force acting on the first reduction sun gear S51 due to the engagement between the first reduction sun gear S51 and the plurality of first reduction pinion gears P51.
  • the direction of twist of the second engaging portion 22 is set.
  • the second coupling mechanism 42 also includes a third member 13 integrally formed with the second output element E32 and a fourth member 14 integrally formed with the second reduction sun gear S52.
  • the third member 13 has a third engagement portion 23 formed of a spiral engagement groove around an axis along the axial direction L.
  • the fourth member 14 has a fourth engagement portion 24 formed of a spiral engagement groove around an axis along the axial direction L.
  • the reduction second sun gear S52 is a helical gear.
  • the twisting directions of the third engaging portion 23 and the fourth engaging portion 24 that engage with each other are set as follows.
  • the thrust force acting on the fourth member 14 due to the engagement between the third engaging portion 23 and the fourth engaging portion 24 is reduced.
  • the third engaging portion 23 and the fourth engaging portion 23 are arranged so that the direction of the thrust force acting on the second reduction sun gear S52 due to the engagement between the second reduction sun gear S52 and the plurality of second reduction pinion gears P52 is opposite to the direction of the thrust force.
  • the twist direction of the joining portion 24 is set.
  • the spiral engagement groove described above indicates a configuration in which spiral grooves and ridges are alternately arranged in the circumferential direction.
  • it is a meshing groove formed in a helical spline or a helical gear (helical gear).
  • the first member 11 has a first tubular portion 15 formed in a tubular shape.
  • a first engaging portion 21 is formed on the inner peripheral surface 15 a of the first tubular portion 15 .
  • a differential first sun gear S31 is formed on the outer peripheral surface 15b of the first cylindrical portion 15.
  • the second member 12 has a first shaft-shaped portion 16 formed in the shape of a shaft.
  • a second engaging portion 22 is formed on the outer peripheral surface 16 b of the first shaft-shaped portion 16 .
  • the first reduction sun gear S ⁇ b>51 is provided at a different position in the axial direction L from the second engaging portion 22 on the outer peripheral surface 16 b of the first shaft-shaped portion 16 .
  • the diameter ⁇ 22 of the second engaging portion 22 is the same as the diameter ⁇ 51 of the first reduction sun gear S51, and has the same helix angle as the helical gear that constitutes the first reduction sun gear S51.
  • the third member 13 has a second tubular portion 17 formed in a tubular shape.
  • a third engaging portion 23 is formed on the inner peripheral surface 17a of the second cylindrical portion 17.
  • a differential second sun gear S32 is formed on the outer peripheral surface 17b of the second tubular portion 17.
  • the fourth member 14 has a second shaft-shaped portion 18 formed in a shaft shape.
  • a fourth engaging portion 24 is formed on the outer peripheral surface 18 b of the second shaft-shaped portion 18 .
  • the second reduction sun gear S ⁇ b>52 is provided at a different position in the axial direction L from the fourth engaging portion 24 on the outer peripheral surface 18 b of the second shaft-shaped portion 18 .
  • the diameter ⁇ 24 of the fourth engaging portion 24 is the same as the diameter ⁇ 52 of the second reduction sun gear S52, and has the same helix angle as the helical gear that constitutes the second reduction sun gear S52.
  • the second engaging portion 22 and the fourth engaging portion 24 also have the same structure.
  • the first shaft-shaped portion 16 and the second shaft-shaped portion 18 have the same structure.
  • the diameter ⁇ 24 of the fourth engaging portion 24 on the outer peripheral surface 18b is the same diameter ( ⁇ 20).
  • the thrust force acting on the second member 12 due to the engagement between the first engaging portion 21 and the second engaging portion 22 is the thrust force generated by the first thrust force generating portion 43, and the third engaging portion 23
  • the thrust force acting on the fourth member 14 due to the engagement between the and the fourth engaging portion 24 is the thrust force generated by the second thrust force generating portion 44 . Therefore, the thrust force acting on the reduction first sun gear S51 due to the meshing of the reduction first sun gear S51 and the plurality of reduction first pinion gears P51 and the thrust force generated by the first thrust force generation section 43 should be equal. can be done. Thus, the thrust force acting on the reduction first sun gear S51 can be offset appropriately.
  • the thrust force acting on the second reduction sun gear S52 due to the engagement between the second reduction sun gear S52 and the plurality of second reduction pinion gears P52 is made equal to the thrust force generated by the second thrust force generator 44. be able to.
  • the thrust force acting on the reduction second sun gear S52 can be offset appropriately.
  • first engaging portion 21 formed on the inner peripheral surface 15a of the first cylindrical portion 15 is arranged radially outward R2, and the first engaging portion 21 formed on the outer peripheral surface 16b of the first shaft-shaped portion 16 is arranged radially outward R2.
  • the second engaging portion 22 is arranged on the radially inner side R1, and the first engaging portion 21 and the second engaging portion 22 mesh and engage with each other.
  • the third engaging portion 23 formed on the inner peripheral surface 17a of the second cylindrical portion 17 is arranged radially outward R2, and the fourth engaging portion 23 formed on the outer peripheral surface 18b of the second shaft-shaped portion 18 is arranged.
  • the third engaging portion 23 and the fourth engaging portion 24 mesh and engage with each other with the portion 24 disposed radially inward R1.
  • the inside/outside relationship in the radial direction R between the first engaging portion 21 and the second engaging portion 22 may be reversed.
  • the first engagement portion 21 is formed on the first side L1 in the axial direction of the first differential sun gear S31 on the outer peripheral surface 15b of the first cylindrical portion 15, It is preferable that the end portion on the axial second side L2 is formed in a tubular shape, and the second engaging portion 22 is formed on the inner peripheral surface thereof.
  • the inside/outside relationship in the radial direction R between the third engaging portion 23 and the fourth engaging portion 24 may be reversed.
  • the third engaging portion 23 is formed on the second axial side L2 of the second differential sun gear S32 on the outer peripheral surface 17b of the second cylindrical portion 17, and the second axial portion 18 has at least It is preferable that the end portion on the axial direction first side L1 is formed in a tubular shape, and the fourth engaging portion 24 is formed on the inner peripheral surface thereof.
  • the rotor shaft 10 as the input member 1 is supported in the axial direction L and the radial direction R by the rotor bearing B1 (first bearing). Further, the first deceleration carrier C51 is supported in the axial direction L and the radial direction R by a first output bearing B51 (second bearing). Further, the second deceleration carrier C52 is supported in the axial direction L and the radial direction R by the second output bearing B52.
  • bearings for supporting the first reduction sun gear S51 and the second member 12 in the axial direction L and the radial direction R are not provided. Similarly, bearings that support the second reduction sun gear S52 and the fourth member 14 in the axial direction L and the radial direction R are not provided.
  • first reduction sun gear S51 and the second reduction sun gear S52 are arranged in a so-called floating state. In this way, since bearings for supporting the first reduction sun gear S51 and the second reduction sun gear S52 in the axial direction L and the radial direction R are not provided, the support structure for these can be simplified.
  • bearings that support the first reduction sun gear S51 and the second member 12 in the axial direction L and the radial direction R not provided, but also the first output element E31 of the differential gear mechanism 3 (
  • bearings for supporting the differential first sun gear S31) and the first member 11 in the axial direction L and the radial direction R are also not provided.
  • the second reduction sun gear S52 and the fourth member 14 in the axial direction L and the radial direction R not only are there no bearings supporting the second reduction sun gear S52 and the fourth member 14 in the axial direction L and the radial direction R, but also the second output element E32 of the differential gear mechanism 3 (here, the differential Bearings that support the second sun gear S32) and the second member 12 in the axial direction L and the radial direction R are also not provided. That is, the first differential sun gear S31 and the second differential sun gear S32 of the differential gear mechanism 3 are arranged in a so-called floating state.
  • the first member 11 and the second member 12 are provided on the first connecting member 71
  • the third member 13 and the fourth member 14 are provided on the second connecting member 72 . Therefore, no bearings are provided to support the first connecting member 71 and the second connecting member 72 in the axial direction L and the radial direction R, and the first connecting member 71 and the second connecting member 72 are arranged in a so-called floating state.
  • the first connecting member 71 and the second connecting member 72 are core members of the first connecting mechanism 41 and the second connecting mechanism 42, respectively, and act as the first thrust force generator 43 and the second thrust force generator 44, respectively. Configure. By configuring the first thrust force generation section 43 and the second thrust force generation section 44 using members that are arranged in such a floating state, the thrust forces can be offset appropriately.
  • the first thrust force generation section 43 and the second thrust force generation section 44 are configured using members that are arranged in a floating state.
  • the members that realize the first thrust force generation section 43 and the second thrust force generation section 44 may be supported by at least one bearing without being limited to the arrangement in the floating state.
  • such a bearing should only support the member that realizes the first thrust force generating portion 43 and the second thrust force generating portion 44 in the radial direction R, and should not support the member in the axial direction L.
  • the first rotating element E1 is the first differential sun gear S31
  • the second rotating element E2 is the differential carrier C3
  • the third rotating element The differential gear mechanism 3 in which E3 is the second differential sun gear S32 and the differential carrier C3 rotatably supports the first differential pinion gear P31 and the second differential pinion gear P32 has been described as an example.
  • there is no ring gear the first differential pinion gear P31 meshes with the first differential sun gear S31 and the second differential pinion gear P32
  • the second differential pinion gear P32 meshes with the first differential pinion gear P31 and the second differential pinion gear P31. It meshes with the dynamic second sun gear S32.
  • the planetary gear type differential gear mechanism 3 that does not have a ring gear is not limited to this configuration.
  • the differential gear mechanism 3 may be configured like a second differential gear mechanism 3B shown in FIGS. 10 and 11, for example.
  • the first rotating element E1 is the first differential sun gear S31
  • the second rotating element E2 is the differential carrier C3
  • the third rotating element E3 is the second differential sun gear S32.
  • a differential carrier C3 rotatably supports the first differential pinion gear P31 and the second differential pinion gear P32.
  • the two pinion gears do not mesh with each other, and the two pinion gears mesh with different sun gears.
  • first differential pinion gear P31 meshes with the first differential sun gear S31
  • second differential pinion gear P32 meshes with the second differential sun gear S32.
  • the first differential pinion gear P31 and the second differential pinion gear P32 have the same diameter and the same number of teeth
  • the first differential sun gear S31 and the second differential sun gear S32 have the same diameter and the same number of teeth.
  • the planetary gear type differential gear mechanism 3 may be configured to include a ring gear.
  • a configuration like the third differential gear mechanism 3C shown in FIGS. 12 and 13 can be used.
  • the first rotating element E1 is the differential sun gear S3
  • the second rotating element E2 is the differential ring gear R3
  • the third rotating element E3 is the differential carrier C3
  • the differential A carrier C3 rotatably supports the first differential pinion gear P31 and the second differential pinion gear P32.
  • the differential first pinion gear P31 and the differential second pinion gear P32 have the same diameter and the same number of teeth, and mesh with each other.
  • the differential first pinion gear P31 meshes with the differential sun gear S3, and the differential second pinion gear P32 meshes with the differential ring gear R3.
  • the vehicle drive transmission device (100) includes: an input member (1) drivingly connected to a driving force source (8); a first output member (91) drivingly connected to the first wheel (W1); a second output member (92) drivingly connected to the second wheel (W2); An input element (E30), a first output element (E31), and a second output element (E32) connected to rotate integrally with the input member (1), and from the input member (1) a differential gear mechanism (3) that distributes the torque transmitted to the input element (E30) to the first output element (E31) and the second output element (E32); a first speed reducer (51) that reduces rotation of the first output element (E31) and transmits it to the first output member (91);
  • a drive transmission device (100) for a vehicle comprising: a second speed reducer (52) that decelerates the rotation of the second output element (E32) and transmits the speed to the second output member (92),
  • the first speed reducer (51) includes a first sun gear (S51), a first carrier (C
  • the first sun gear (S51), the plurality of first pinion gears (P51), and the first ring gear (R51) are helical gears
  • the second reduction gear (52) includes a second sun gear (S52), a second carrier (C52) rotatably supporting a plurality of second pinion gears (P52), and a planetary gear provided with a second ring gear (R52).
  • the second sun gear (S52), the plurality of second pinion gears (P52), and the second ring gear (R52) are helical gears
  • the first output element (E31) and the first sun gear (S51) are coaxially arranged and connected by a first connecting mechanism (41)
  • the second output element (E32) and the second sun gear (S52) are coaxially arranged and connected by a second connecting mechanism (42);
  • the first coupling mechanism (41) is adapted to connect the first sun gear (S51) and the plurality of first sun gears (S51) according to the torque transmitted between the first output element (E31) and the first sun gear (S51).
  • a first thrust force generator (43) that generates a thrust force in the opposite direction to the thrust force acting on the first sun gear (S51) by meshing with the 1 pinion gear (P51),
  • the second coupling mechanism (42) is adapted to connect the second sun gear (S52) and the plurality of second sun gears (S52) according to the torque transmitted between the second output element (E32) and the second sun gear (S52).
  • a second thrust force generator (44) is provided that generates a thrust force in the opposite direction to the thrust force acting on the second sun gear (S52) by meshing with the two-pinion gear (P52).
  • the thrust force acting on the first sun gear (S51) is generated by the first thrust force generator (43) due to the engagement between the first sun gear (S51) and the plurality of first pinion gears (P51).
  • the thrust force can be reduced by the thrust force, and the thrust force acting on the second sun gear (S52) due to the meshing between the second sun gear (S52) and the plurality of second pinion gears (P52) is generated by the second thrust force generator (44).
  • the thrust force generated by Therefore, bearings, washers, etc. for supporting the first sun gear (S51) and the second sun gear (S52) in the axial direction (L) can be eliminated or simplified.
  • a vehicle drive transmission device (100) capable of reducing the thrust force generated in a planetary gear type speed reducer having a helical sun gear with a simple configuration. can be done.
  • the first coupling mechanism (41) includes a first member (11) integrally formed with the first output element (E31) and a second member integrally formed with the first sun gear (S51).
  • the first member (11) has a first engaging portion (21) formed of a spiral engagement groove around an axis along the axial direction (L)
  • the second member (12) has a second engagement portion (22) formed of a spiral engagement groove around an axis along the axial direction (L)
  • the first engaging portion (21) and the second engaging portion (22) mesh and engage,
  • the first engagement portion (41) and the second engagement portion (42) are meshed according to the torque transmitted between the first output element (E31) and the first sun gear (S51).
  • the direction of the thrust force acting on the second member (12) is changed by the thrust force acting on the first sun gear (S51) due to the engagement between the first sun gear (S51) and the plurality of first pinion gears (P51).
  • the twist direction of the first engaging portion (21) and the second engaging portion (22) is set so as to be opposite to the direction of
  • the second connection mechanism (42) includes a third member (13) integrally formed with the second output element (E32) and a fourth member integrally formed with the second sun gear (S52).
  • the third member (13) has a third engaging portion (23) formed of a spiral engagement groove around an axis along the axial direction (L),
  • the fourth member (24) has a fourth engagement portion (24) formed of a spiral engagement groove around an axis along the axial direction (L),
  • the third engaging portion (23) and the fourth engaging portion (24) mesh and engage, The engagement between the third engagement portion (23) and the fourth engagement portion (24) according to the torque transmitted between the second output element (E32) and the second sun gear (S52)
  • the direction of the thrust force acting on the fourth member (14) is changed by the thrust force acting on the second sun gear (S52) due to the engagement between the second sun gear (S52) and the plurality of second pinion gears (P52).
  • the twisting directions of the third engaging portion (23) and the fourth engaging portion (24) are set so as to be opposite to the direction of .
  • the first thrust force generation section (43) and the second thrust force generation section (44) can be realized with a relatively simple configuration.
  • the first member (11) has a first tubular portion (15) formed in a tubular shape, and the first engaging portion (21) is attached to the inner peripheral surface (15a) of the first tubular portion (15). ) is formed,
  • the second member (12) has a first shaft-shaped portion (16) formed in the shape of a shaft, and the second engaging portion (22) is provided on the outer peripheral surface (16b) of the first shaft-shaped portion (16). is formed and
  • the first sun gear (S51) is provided at a different position in the axial direction (L) from the second engaging portion (22) on the outer peripheral surface (16b) of the first shaft-shaped portion (16).
  • the second engaging portion (22) has the same diameter as the first sun gear (S51) and the same helix angle as the helical gear that constitutes the first sun gear (S51),
  • the third member (13) has a second tubular portion (17) formed in a tubular shape, and the third engaging portion (23) is attached to the inner peripheral surface (17a) of the second tubular portion (17). ) is formed,
  • the fourth member (14) has a second shaft-shaped portion (18) formed in the shape of a shaft. is formed and The second sun gear (S52) is provided at a different position in the axial direction (L) from the fourth engaging portion (24) on the outer peripheral surface (18b) of the second shaft-shaped portion (18). , It is preferable that the fourth engaging portion (24) has the same diameter as the second sun gear (S52) and the same helix angle as the helical gear that constitutes the second sun gear (S52).
  • the thrust force acting on the second member (12) due to the engagement between the first engaging portion (21) and the second engaging portion (22) is the thrust force generated by the first thrust force generating portion (43).
  • the thrust force acting on the fourth member (14) due to the engagement of the third engaging portion (23) and the fourth engaging portion (24) is the thrust force generated by the second thrust force generating portion (44). Power. Therefore, the thrust force acting on the first sun gear (S51) due to the engagement between the first sun gear (S51) and the plurality of first pinion gears (P51) and the thrust force generated by the first thrust force generation section (43) can be equated. And thereby, the thrust force which acts on the 1st sun gear (S51) can be offset appropriately.
  • the thrust force acting on the second sun gear (S52) due to the engagement between the second sun gear (S52) and the plurality of second pinion gears (P52) and the thrust force generated by the second thrust force generator (44) can be equated with And thereby, the thrust force which acts on the 2nd sun gear (S52) can be offset appropriately.
  • the vehicle drive transmission device (100) With the direction orthogonal to the axial direction (L) as the radial direction (R), A first bearing (B1) supporting the input member (1) in the axial direction (L) and the radial direction (R), and a first carrier (C51) supporting the axial direction (L) and the radial direction (R). R), and a third bearing (B52) that supports the second carrier (C52) in the axial direction (L) and the radial direction (R), The first sun gear (S51) and the second member (12), and the second sun gear (S52) and the fourth member (14) are respectively arranged in the axial direction (L) and the radial direction (R).
  • it does not have bearings that support it.
  • the first sun gear (S51) and the second sun gear (S52) are arranged in a so-called floating state. According to this configuration, bearings for supporting the first sun gear (S51) and the second sun gear (S52) in the axial direction (L) and the radial direction (R) are not provided. The structure can be simplified.
  • the direction along the rotation axis (X) of the first output element (E31) and the second output element (E32) is defined as the axial direction (L), and one side of the axial direction (L) is the first axial side.
  • the driving force source (8) is a rotating electric machine (80) having a rotor (81),
  • the input member (1) is a cylindrical rotor shaft (10) connected to rotate integrally with the rotor (81),
  • the differential gear mechanism (3) is located inside (R1) in the radial direction (R) with respect to the rotor shaft (10), and is located radially in the radial direction (R).
  • the first speed reducer (51) is arranged on the axial first side (L1) with respect to the rotor (81) and the rotor shaft (10),
  • the second speed reducer (52) is preferably arranged on the axial second side (L2) with respect to the rotor (81) and the rotor shaft (10).
  • the reduction gear (5) has a structure in which a relatively large reduction ratio can be set. Increasing the speed reduction ratio of the speed reducer (5) in this way tends to increase the thrust force. However, if the thrust force can be reduced as in this configuration, it becomes easy to set a large reduction ratio in the speed reducer (5), and it is easy to reduce the size of the vehicle drive transmission device (100).
  • the vehicle drive transmission device (100) Either one of the first carrier (C51) and the first ring gear (R51) is connected to rotate integrally with the first output member (91), The other of the first carrier (C51) and the first ring gear (R51) is connected to a non-rotating member (6), Either one of the second carrier (C52) and the second ring gear (R52) is connected to rotate integrally with the second output member (92), The other of the second carrier (C52) and the second ring gear (R52) is connected to a non-rotating member (6), A direction along the rotation axis (X) of the first output element (E31) and the second output element (E32) is defined as an axial direction (L), and a direction orthogonal to the axial direction (L) is defined as a radial direction (R ) as
  • the first pinion gear (P51) includes a first inner pinion gear (P51a) and a first outer pinion gear (P51b),
  • the second pinion gear (P52) includes a second inner pinion gear (P52a) and a second outer pinion gear (P52b),
  • the second carrier (C52) supports a plurality of second pinion gear sets (P52c) consisting of the second inner pinion gear (P52a) and the second outer pinion gear (P52b),
  • the second inner pinion gear (P52a) meshes with the second sun gear (S52) and the second outer pinion gear (P52b), and the second outer pinion gear (P52b) meshes with the second inner pinion gear (P51a) and the second ring gear.
  • the rotational axis of the second inner pinion gear (P52a) and the rotational axis of the second outer pinion gear (P52b) are aligned along the radial direction (R). It is preferable that they are arranged side by side.
  • the diameter ( ⁇ 51) of the first sun gear (S51) is smaller than the diameter ( ⁇ P51a) of the first inner pinion gear (P51a).
  • the gear ratio between the sun gear and the ring gear can be set larger.
  • the vehicle drive transmission device (100) When viewed in the axial direction along the axial direction (L), the rotation axis of the first inner pinion gear (P51a) and the rotation axis of the first outer pinion gear (P51b) in each of the plurality of first pinion gear sets (P51c) the center and the rotation axis of the first sun gear (S51) are arranged on a straight line along the radial direction (R), When viewed in the axial direction, the rotational axis of the second inner pinion gear (P52a), the rotational axis of the second outer pinion gear (P52b), and the second sun gear (P52b) in each of the plurality of second pinion gear sets (P52c) S52) is preferably arranged on a straight line along the radial direction (R).
  • the diameter ( ⁇ 51b) of the first outer pinion gear (P51b) is preferably larger than the diameter ( ⁇ 51b) of the first inner pinion gear (P51a).
  • each pinion gear set (P5c (first pinion gear set (P51c) and second pinion gear set (P52c)) the diameter of the outer pinion gear (P5b (first outer pinion gear (P51b) and second outer pinion gear (P52b))) If ⁇ 5b ( ⁇ 51b, ⁇ 52b)) is larger than the diameter ( ⁇ 5a ( ⁇ 51a, ⁇ 52a)) of the inner pinion gear (P5a (the first inner pinion gear (P51a) and the second inner pinion gear (P52a)), the inner pinion gear (P5a)
  • three or more pinion gear sets (P5c) consisting of an inner pinion gear (P5a) and an outer pinion gear (P5b) are provided compared to the case where the diameter ( ⁇ 5a) of the outer pinion gear (P5b) and the diameter ( ⁇ 5b) of the outer pinion gear (P5b) are the same
  • the vehicle drive transmission device (100) The first carrier (C51) is coupled to rotate integrally with the first output member (91), The first ring gear (R51) is connected to the non-rotating member (6), the second carrier (C51) is coupled to rotate integrally with the second output member (92); The second ring gear (R52) is connected to the non-rotating member (6),
  • the first carrier (C52) is supported by a pair of bearings (B51) arranged separately on both sides in the axial direction (L) with respect to the first pinion gear set (P51c), It is preferable that the second carrier is supported by a pair of bearings (B52) arranged separately on both sides in the axial direction with respect to the second pinion gear set.
  • the first carrier (C51) and the second carrier (C52), which are rotating elements connected to the output member (9), are appropriately rotatably supported by the pair of bearings (B51, B52). be. Therefore, it is possible to realize a vehicle drive transmission device (100) that appropriately supports a rotating element while achieving size reduction.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)

Abstract

According to the present invention, a first sun gear (S51), a first pinion gear (P51), and a first ring gear, of a first speed reducer (51), and a second sun gear (S52), a second pinion gear (P52), and a second ring gear, of a second speed reducer (52), are helical gears. A first output element (E31) of a differential gear mechanism (3) and the first sun gear (S51) are linked by a first linking mechanism (41), and a second output element (E32) of the differential gear mechanism (3) and the second sun gear (S52) are linked by a second linking mechanism (42). The first linking mechanism (41) includes a first thrust force generating unit (43), and the second linking mechanism (42) includes a second thrust force generating unit (44).

Description

車両用駆動伝達装置Vehicle drive transmission device
 本発明は、駆動力源からの駆動力を分配する差動歯車機構と、差動歯車機構からの出力を減速する減速機とを備えた車両用駆動伝達装置に関する。 The present invention relates to a vehicle drive transmission device that includes a differential gear mechanism that distributes driving force from a driving force source and a speed reducer that reduces the output from the differential gear mechanism.
 米国特許出願公開第2020/0127532号明細書(特許文献1)には、駆動力源としてのモータの中空のロータシャフト(207)の径方向内側に傘歯車式の差動歯車機構(211)を備え、ロータシャフト(207)及び差動歯車機構(211)と同軸に減速装置を構成する遊星歯車機構(603)を備えた車両用駆動伝達装置(200)が開示されている(背景技術において括弧内の符号は参照する文献のもの。)。遊星歯車機構(603)のサンギヤ及びピニオンギヤは、斜歯歯車であり、このサンギヤは差動歯車機構(211)の出力ギヤに連結されている。 In US Patent Application Publication No. 2020/0127532 (Patent Document 1), a bevel gear type differential gear mechanism (211) is provided radially inside a hollow rotor shaft (207) of a motor as a driving force source. and a planetary gear mechanism (603) that constitutes a speed reducer coaxially with a rotor shaft (207) and a differential gear mechanism (211). The numbers inside are those of the referenced literature.). The sun gear and pinion gear of the planetary gear mechanism (603) are helical gears, and this sun gear is connected to the output gear of the differential gear mechanism (211).
米国特許出願公開第2020/0127532号明細書U.S. Patent Application Publication No. 2020/0127532
 このように遊星歯車機構のサンギヤが斜歯歯車の場合、サンギヤとピニオンギヤとの噛み合いの反力により、回転軸(サンギヤの回転軸)に沿った方向にいわゆるスラスト力が生じる。このスラスト力による摩擦ロスを低減するために、サンギヤと差動歯車機構の出力ギヤとを連結する軸部材は、一般的にスラスト軸受やスラストワッシャ等により支持される。このため、車両用駆動伝達装置が大型化したり、部品数が多くなってコストが上昇したりし易い。 In this way, when the sun gear of the planetary gear mechanism is a helical gear, the so-called thrust force is generated in the direction along the rotation axis (the rotation axis of the sun gear) due to the reaction force of the engagement between the sun gear and the pinion gear. In order to reduce friction loss due to this thrust force, a shaft member that connects the sun gear and the output gear of the differential gear mechanism is generally supported by a thrust bearing, thrust washer, or the like. As a result, the drive transmission device for a vehicle tends to be large, and the number of parts tends to increase, leading to an increase in cost.
 そこで、斜歯歯車のサンギヤを有した遊星歯車式の減速機において生じるスラスト力を簡易な構成で低減することができる車両用駆動伝達装置の提供が望まれる。 Therefore, it is desired to provide a vehicle drive transmission device that can reduce the thrust force generated in a planetary gear type speed reducer having a helical sun gear with a simple configuration.
 上記に鑑みた車両用駆動伝達装置は、駆動力源に駆動連結される入力部材と、第1車輪に駆動連結される第1出力部材と、第2車輪に駆動連結される第2出力部材と、前記入力部材と一体的に回転するように連結された入力要素、第1出力要素、及び、第2出力要素を備え、前記入力部材から前記入力要素に伝達されたトルクを前記第1出力要素と前記第2出力要素とに分配する差動歯車機構と、前記第1出力要素の回転を減速して前記第1出力部材に伝達する第1減速機と、前記第2出力要素の回転を減速して前記第2出力部材に伝達する第2減速機と、を備えた車両用駆動伝達装置であって、前記第1減速機は、第1サンギヤ、複数の第1ピニオンギヤを回転自在に支持する第1キャリヤ、及び第1リングギヤを備えた遊星歯車機構であり、前記第1サンギヤ、複数の前記第1ピニオンギヤ、及び、前記第1リングギヤは、斜歯歯車であり、前記第2減速機は、第2サンギヤ、複数の第2ピニオンギヤを回転自在に支持する第2キャリヤ、及び第2リングギヤを備えた遊星歯車機構であり、前記第2サンギヤ、複数の前記第2ピニオンギヤ、及び、前記第2リングギヤは、斜歯歯車であり、前記第1出力要素と前記第1サンギヤとが、同軸上に配置されていると共に第1連結機構により連結され、前記第2出力要素と前記第2サンギヤとが、同軸上に配置されていると共に第2連結機構により連結され、前記第1連結機構は、前記第1出力要素と前記第1サンギヤとの間で伝達されるトルクに応じて、前記第1サンギヤと複数の前記第1ピニオンギヤとの噛み合いにより前記第1サンギヤに作用するスラスト力と反対向きのスラスト力を生じさせる第1スラスト力生成部を備え、前記第2連結機構は、前記第2出力要素と前記第2サンギヤとの間で伝達されるトルクに応じて、前記第2サンギヤと複数の前記第2ピニオンギヤとの噛み合いにより前記第2サンギヤに作用するスラスト力と反対向きのスラスト力を生じさせる第2スラスト力生成部を備える。 In view of the above, a vehicle drive transmission device includes an input member drivingly connected to a driving force source, a first output member drivingly connected to a first wheel, and a second output member drivingly connected to a second wheel. , an input element connected to rotate integrally with the input member, a first output element, and a second output element, wherein torque transmitted from the input member to the input element is transmitted to the first output element and the second output element; a first reduction gear that reduces the rotation of the first output element and transmits it to the first output member; and reduces the rotation of the second output element. and a second speed reducer for transmitting power to the second output member, wherein the first speed reducer rotatably supports a first sun gear and a plurality of first pinion gears. A planetary gear mechanism comprising a first carrier and a first ring gear, wherein the first sun gear, the plurality of first pinion gears, and the first ring gear are helical gears, and the second reduction gear: A planetary gear mechanism comprising a second sun gear, a second carrier that rotatably supports a plurality of second pinion gears, and a second ring gear, wherein the second sun gear, the plurality of second pinion gears, and the second ring gear is a helical gear, the first output element and the first sun gear are coaxially arranged and connected by a first connection mechanism, and the second output element and the second sun gear are They are coaxially arranged and connected by a second connection mechanism, and the first connection mechanism is adapted to connect the first sun gear and the first sun gear according to the torque transmitted between the first output element and the first sun gear. A first thrust force generator that generates a thrust force in a direction opposite to a thrust force acting on the first sun gear by meshing with the plurality of first pinion gears, and the second coupling mechanism includes the second output element and the In accordance with the torque transmitted between the second sun gear and the second sun gear, meshing between the second sun gear and the plurality of second pinion gears generates a thrust force in the direction opposite to the thrust force acting on the second sun gear. 2 thrust force generators.
 本構成によれば、第1サンギヤと複数の第1ピニオンギヤとの噛み合いにより第1サンギヤに作用するスラスト力を第1スラスト力生成部により生成されるスラスト力によって減殺することができると共に、第2サンギヤと複数の第2ピニオンギヤとの噛み合いにより第2サンギヤに作用するスラスト力を第2スラスト力生成部により生成されるスラスト力によって減殺することができる。よって、第1サンギヤ及び第2サンギヤを軸方向に支持するための軸受やワッシャ等を無くしたり、簡略化したりすることができる。このように、本構成によれば、斜歯歯車のサンギヤを有した遊星歯車式の減速機において生じるスラスト力を簡易な構成で低減することができる車両用駆動伝達装置を提供できる。 According to this configuration, the thrust force acting on the first sun gear due to the meshing between the first sun gear and the plurality of first pinion gears can be reduced by the thrust force generated by the first thrust force generating section, and the second Thrust force acting on the second sun gear due to meshing between the sun gear and the plurality of second pinion gears can be reduced by the thrust force generated by the second thrust force generator. Therefore, bearings, washers, etc. for supporting the first sun gear and the second sun gear in the axial direction can be eliminated or simplified. Thus, according to this configuration, it is possible to provide a vehicle drive transmission device that can reduce the thrust force generated in a planetary gear type speed reducer having a helical sun gear with a simple configuration.
 車両用駆動伝達装置のさらなる特徴と利点は、図面を参照して説明する例示的且つ非限定的な実施形態についての以下の記載から明確となる。 Further features and advantages of the vehicle drive transmission device will become clear from the following description of exemplary and non-limiting embodiments, which are described with reference to the drawings.
車両用駆動装置の一例を示す軸方向断面図Axial sectional view showing an example of a vehicle drive system 車両用駆動装置の軸方向拡大断面図Axial enlarged cross-sectional view of vehicle drive system 車両用駆動装置のスケルトン図Skeleton diagram of a vehicle drive system 差動歯車機構の分解斜視図Exploded perspective view of differential gear mechanism 差動歯車機構を軸方向第1側から見た軸方向正面図Axial front view of the differential gear mechanism viewed from the first side in the axial direction 差動歯車機構を軸方向第2側から見た軸方向正面図Axial front view of the differential gear mechanism viewed from the axial second side 減速機の軸方向正面図Axial front view of reducer 連結部材におけるスラスト力生成部の作用を示す図The figure which shows the effect|action of the thrust force production|generation part in a connection member. 車両用駆動装置の速度線図Velocity diagram of vehicle drive system 第2差動歯車機構の構成例を示す軸方向正面図Axial front view showing a configuration example of a second differential gear mechanism 第2差動歯車機構の構成例を示す軸方向断面図Axial sectional view showing a configuration example of the second differential gear mechanism 第3差動歯車機構の構成例を示す軸方向正面図Axial front view showing a configuration example of a third differential gear mechanism 第3差動歯車機構の構成例を示す軸方向断面図Axial sectional view showing a configuration example of the third differential gear mechanism
 以下、車両用駆動伝達装置の実施形態を図面に基づいて説明する。以下の説明における各部材についての方向は、車両用駆動伝達装置100が車両に組み付けられた状態(車両搭載状態)での方向を表す。また、各部材についての寸法、配置方向、配置位置等に関する用語は、誤差(製造上許容され得る程度の誤差)による差異を有する状態を含む概念である。車両用駆動伝達装置100の構造については後述するが、車両用駆動伝達装置100は入力要素E30、第1出力要素E31及び前記第2出力要素E32を有する差動歯車機構3を備えており、第1出力要素E31及び第2出力要素E32の回転軸心Xに沿う方向を軸方向Lとする。そして、軸方向Lの一方側を軸方向第1側L1とし、軸方向Lの他方側を軸方向第2側L2とし、軸方向Lに直交する方向を径方向Rとする。さらに、径方向Rにおいて回転軸心Xの側を径方向内側R1、その反対側を径方向外側R2と称する。 An embodiment of a vehicle drive transmission device will be described below with reference to the drawings. The direction of each member in the following description represents the direction when the vehicle drive transmission device 100 is installed in the vehicle (vehicle mounted state). Terms relating to the dimensions, arrangement direction, arrangement position, etc. of each member are concepts that include the state of having differences due to errors (errors to the extent allowable in manufacturing). Although the structure of the vehicle drive transmission device 100 will be described later, the vehicle drive transmission device 100 includes a differential gear mechanism 3 having an input element E30, a first output element E31, and a second output element E32. An axial direction L is defined as a direction along the rotation axis X of the first output element E31 and the second output element E32. One side in the axial direction L is defined as a first axial side L1, the other side in the axial direction L is defined as a second axial side L2, and a direction orthogonal to the axial direction L is defined as a radial direction R. Furthermore, in the radial direction R, the side of the rotation axis X is called the radial inner side R1, and the opposite side is called the radial outer side R2.
 また、本明細書では、2つの部材の配置に関して、「特定方向視で重複する」とは、その視線方向に平行な仮想直線を当該仮想直線に直交する各方向に移動させた場合に、当該仮想直線が2つの部材の双方に交わる領域が少なくとも一部に存在することを意味する。また、本明細書では、2つの部材の配置に関して、「軸方向における配置領域が重複する」とは、一方の部材の軸方向における配置領域内に、他方の部材の軸方向における配置領域の少なくとも一部が含まれることを意味する。 Further, in this specification, regarding the arrangement of two members, "overlapping in a particular direction view" means that when a virtual straight line parallel to the viewing direction is moved in each direction orthogonal to the virtual straight line, It means that there is at least a part of the area where the virtual straight line intersects both of the two members. Further, in this specification, with respect to the arrangement of two members, the phrase “the arrangement regions in the axial direction overlap” means that the arrangement region of one member in the axial direction includes at least the arrangement region of the other member in the axial direction. It means that part is included.
 また、本明細書では、「駆動連結」とは、2つの回転要素が駆動力(トルクと同義)を伝達可能に連結された状態を指し、当該2つの回転要素が一体的に回転するように連結された状態、或いは当該2つの回転要素が1つ又は2つ以上の伝動部材(軸、ギヤなど)を介して駆動力を伝達可能に連結された状態を含む。尚、伝導部材には、回転及び駆動力を選択的に伝達する係合装置(例えば、摩擦係合装置、噛み合い式係合装置等)が含まれていてもよい。 In this specification, the term “driving connection” refers to a state in which two rotating elements are connected so as to be able to transmit a driving force (synonymous with torque), and the two rotating elements rotate integrally. It includes a state in which the two rotating elements are connected, or a state in which the two rotating elements are connected so as to be able to transmit driving force via one or more transmission members (shafts, gears, etc.). Incidentally, the transmission member may include an engagement device (for example, a friction engagement device, a mesh type engagement device, etc.) that selectively transmits rotation and driving force.
 また、以下の説明において、ギヤやスプライン等において「直径」という場合には、歯の根元を結んだ円の直径である歯底円直径や、歯の先端を結んだ円の直径である歯先円直径ではなく、ピッチ点を結んだ円の直径であるピッチ円直径(基準円直径)を示している。 In the following explanation, when the term "diameter" is used for gears, splines, etc., it means the diameter of the root circle, which is the diameter of the circle connecting the roots of the teeth, and the diameter of the circle connecting the tips of the teeth, which is the tip diameter. The pitch circle diameter (reference circle diameter), which is the diameter of the circle connecting the pitch points, is shown instead of the circle diameter.
 図1の軸方向断面図、図3のスケルトン図に示すように、車両用駆動伝達装置100は、駆動力源8に駆動連結される入力部材1と、第1車輪W1に駆動連結される第1出力部材91と、第2車輪W2に駆動連結される第2出力部材92と、駆動力源8からのトルクを第1出力部材91及び第2出力部材92へと分配する差動歯車機構3と、差動歯車機構3からの回転を減速して第1出力部材91に伝達する第1減速機51と、差動歯車機構3からの回転を減速して第2出力部材92に伝達する第2減速機52とを備えている。差動歯車機構3は、入力部材1と一体的に回転するように連結された入力要素E30、第1出力要素E31、及び、第2出力要素E32を備えており、入力部材1から入力要素E30に伝達されたトルクを第1出力要素E31と第2出力要素E32とに分配する。第1減速機51は、第1出力要素E31の回転を減速して第1出力部材91に伝達する。第2減速機52は、第2出力要素E32の回転を減速して第2出力部材92に伝達する。 As shown in the axial cross-sectional view of FIG. 1 and the skeleton diagram of FIG. A first output member 91, a second output member 92 drivingly connected to the second wheel W2, and a differential gear mechanism 3 that distributes torque from the driving force source 8 to the first output member 91 and the second output member 92. , a first speed reducer 51 that decelerates the rotation from the differential gear mechanism 3 and transmits it to the first output member 91 , and a second speed reducer that decelerates the rotation from the differential gear mechanism 3 and transmits it to the second output member 92 . 2 speed reducer 52 is provided. The differential gear mechanism 3 includes an input element E30, a first output element E31, and a second output element E32 that are connected to rotate integrally with the input member 1. The input member 1 to the input element E30 is distributed to the first output element E31 and the second output element E32. The first speed reducer 51 reduces the speed of rotation of the first output element E31 and transmits it to the first output member 91 . The second reduction gear 52 reduces the speed of rotation of the second output element E32 and transmits it to the second output member 92 .
 尚、本実施形態では、駆動力源8がロータ81を備える回転電機80であり、入力部材1がロータ81と一体的に回転するロータ軸10である形態を例として説明する。しかし、駆動力源8は内燃機関など他の形態であってもよく、入力部材1も内燃機関に駆動連結された回転部材であってもよい。本実施形態では、差動歯車機構3の入力要素E30は、ロータ軸10と一体的に回転するように連結されている。また、後述するように、本実施形態では、第1減速機51及び第2減速機52は同一構成であり、両者を区別しない場合には、単に減速機5と称して説明する。同様に、第1出力部材91及び第2出力部材92を区別しない場合には出力部材9と総称し、第1車輪W1と第2車輪W2とを区別しない場合には車輪Wと総称する。 In the present embodiment, the driving force source 8 is a rotating electric machine 80 having a rotor 81, and the input member 1 is a rotor shaft 10 that rotates integrally with the rotor 81. However, the driving force source 8 may be of another form such as an internal combustion engine, and the input member 1 may also be a rotating member drivingly connected to the internal combustion engine. In this embodiment, the input element E30 of the differential gear mechanism 3 is coupled to rotate integrally with the rotor shaft 10 . Further, as will be described later, in the present embodiment, the first reduction gear 51 and the second reduction gear 52 have the same configuration, and will be simply referred to as the reduction gear 5 when they are not distinguished from each other. Similarly, when the first output member 91 and the second output member 92 are not distinguished, they are collectively called the output member 9, and when the first wheel W1 and the second wheel W2 are not distinguished, they are collectively called the wheel W.
 また、本実施形態では、入力部材1、差動歯車機構3、減速機5、出力部材9の順に動力伝達経路が形成されている車両用駆動伝達装置100を例示して説明する。しかし、減速機5を備えることなく、車両用駆動伝達装置100が構成されていることを妨げるものではない。例えば、出力部材9と車輪Wとの間に車両用駆動伝達装置100とは別に減速機が設けられていてもよい。即ち、差動歯車機構3は、ロータ軸10と一体的に回転するように連結された入力要素E30、第1出力部材91に駆動連結される第1出力要素E31、及び、第2出力部材92に駆動連結される第2出力要素E32を備え、ロータ軸10から入力要素E30に伝達されたトルクを第1出力要素E31と第2出力要素E32とに分配するものであってもよい。 Further, in this embodiment, the vehicle drive transmission device 100 in which the power transmission path is formed in the order of the input member 1, the differential gear mechanism 3, the speed reducer 5, and the output member 9 will be described as an example. However, this does not prevent the vehicle drive transmission device 100 from being configured without the speed reducer 5 . For example, a speed reducer may be provided between the output member 9 and the wheel W separately from the vehicle drive transmission device 100 . That is, the differential gear mechanism 3 includes an input element E30 connected to rotate integrally with the rotor shaft 10, a first output element E31 drivingly connected to the first output member 91, and a second output member 92. may be provided with a second output element E32 drivingly connected to the rotor shaft 10 to distribute the torque transmitted from the rotor shaft 10 to the input element E30 to the first output element E31 and the second output element E32.
 尚、上述したように、「駆動連結」は、2つの回転要素が一体的に回転するように連結された状態に限らず、当該2つの回転要素が1つ又は2つ以上の伝動部材(軸、ギヤなど)を介して駆動力を伝達可能に連結された状態を含む。従って、当然ながら、第1出力部材91と第1出力要素E31とは、一体的に回転するように連結された状態に限らず、第1減速機51を介して連結されていてもよい。また、第2出力部材92と第2出力要素E32とは、一体的に回転するように連結された状態に限らず、第2減速機52を介して連結されていてもよい。 As described above, the "driving connection" is not limited to the state in which the two rotating elements are connected so as to rotate integrally, and the two rotating elements are connected to one or more transmission members (shafts). , gears, etc.). Therefore, of course, the first output member 91 and the first output element E31 may be connected via the first speed reducer 51 instead of being connected so as to rotate integrally. Moreover, the second output member 92 and the second output element E32 may be connected via the second speed reducer 52 instead of being connected so as to rotate integrally.
 上述したように、本実施形態において駆動力源8は回転電機80である。回転電機80は、インナーロータ型の回転電機であり、非回転部材としてのケース6に固定されたステータ82と、ステータ82の径方向内側R1に回転可能に支持されたロータ81とを有する。ステータ82は、ステータコアとステータコアに巻き回されたステータコイルとを含み、ロータ81は、ロータコアとロータコアに配置された永久磁石とを含む。ロータ81は、ロータ81と常時一体的に回転するロータ軸10(入力部材1)に連結されている。図1に示すように、ロータ軸10は、中空筒状に形成されており、ロータ軸10の外周面1bがロータ81(ロータコア)に当接する状態で、ロータ軸10はロータ81に連結されている。即ち、本実施形態において、入力部材1は、ロータ81と一体的に回転するように連結された筒状のロータ軸10である。ロータ軸10は、一対のロータ軸受B1(支持軸受、第1軸受)を介してケース6の内側に配置された支持部材63に回転可能に支持されている。本実施形態では、ロータ軸10は、一対のロータ軸受B1により径方向内側R1から支持されている。 As described above, the driving force source 8 is the rotating electric machine 80 in this embodiment. The rotating electric machine 80 is an inner rotor type rotating electric machine, and has a stator 82 fixed to the case 6 as a non-rotating member, and a rotor 81 rotatably supported radially inside R1 of the stator 82 . The stator 82 includes a stator core and a stator coil wound around the stator core, and the rotor 81 includes a rotor core and permanent magnets arranged on the rotor core. The rotor 81 is connected to a rotor shaft 10 (input member 1) that always rotates integrally with the rotor 81 . As shown in FIG. 1, the rotor shaft 10 is formed in a hollow tubular shape, and the rotor shaft 10 is connected to the rotor 81 in a state where the outer peripheral surface 1b of the rotor shaft 10 is in contact with the rotor 81 (rotor core). there is That is, in the present embodiment, the input member 1 is a tubular rotor shaft 10 that is coupled to rotate integrally with the rotor 81 . The rotor shaft 10 is rotatably supported by a support member 63 arranged inside the case 6 via a pair of rotor bearings B1 (support bearing, first bearing). In this embodiment, the rotor shaft 10 is supported from the radially inner side R1 by a pair of rotor bearings B1.
 このように、中空筒状のロータ軸10に対して径方向内側R1であって径方向視でロータ81と重複する位置に差動歯車機構3を配置していることで、車両用駆動伝達装置100の軸方向寸法を小型化し易い。 In this manner, the differential gear mechanism 3 is arranged at the radially inner side R1 with respect to the hollow cylindrical rotor shaft 10 and overlaps the rotor 81 when viewed in the radial direction. It is easy to reduce the axial dimension of 100 .
 ケース6は、回転電機80、差動歯車機構3、第1減速機51、第2減速機52を収容する円筒状のケース本体部61と、これらを収容したケース本体部61を軸方向第1側L1及び軸方向第2側L2から覆うカバー部材としての一対のケースカバー部62と、ケース本体部61に固定された一対の支持部材63とを備えている。支持部材63は、ケース本体部61の内側において、径方向R及び周方向に延在するように形成され、回転電機80及び差動歯車機構3と第1減速機51との軸方向Lの間、及び、回転電機80及び差動歯車機構3と第2減速機52との軸方向Lの間をそれぞれ区画するように設けられている。それぞれの支持部材63は、ロータ軸10よりも径方向内側R1において、軸方向Lにロータ軸10の側へ向けて屈曲しており、この屈曲した部分の外周面においてロータ軸受B1を支持している。 The case 6 includes a cylindrical case main body 61 that accommodates the rotary electric machine 80, the differential gear mechanism 3, the first reduction gear 51, and the second reduction gear 52, and the case main body 61 that accommodates them in the first axial direction. A pair of case cover portions 62 as cover members that cover from the side L1 and the second axial side L2, and a pair of support members 63 fixed to the case body portion 61 are provided. The support member 63 is formed to extend in the radial direction R and the circumferential direction inside the case main body portion 61 and extends between the rotating electric machine 80 and the differential gear mechanism 3 and the first reduction gear 51 in the axial direction L. , and between the rotary electric machine 80 and the differential gear mechanism 3 and the second reduction gear 52 in the axial direction L, respectively. Each support member 63 is bent toward the rotor shaft 10 side in the axial direction L at the radially inner side R1 of the rotor shaft 10, and supports the rotor bearing B1 on the outer peripheral surface of this bent portion. there is
 本実施形態では、差動歯車機構3は、ロータ軸10に対して径方向内側R1であって、径方向Rに沿う径方向視でロータ81と重複する位置に配置されている。また、第1減速機51は、ロータ81及びロータ軸10に対して軸方向第1側L1に配置され、第2減速機52は、ロータ81及びロータ軸10に対して軸方向第2側L2に配置されている。 In the present embodiment, the differential gear mechanism 3 is arranged radially inward R1 with respect to the rotor shaft 10 and overlapping the rotor 81 when viewed in the radial direction R. The first reduction gear 51 is arranged on the first side L1 in the axial direction with respect to the rotor 81 and the rotor shaft 10, and the second reduction gear 52 is arranged on the second side L2 in the axial direction with respect to the rotor 81 and the rotor shaft 10. are placed in
 差動歯車機構3は、第1回転要素E1、第2回転要素E2、及び第3回転要素E3を備え、第1回転要素E1、第2回転要素E2、及び第3回転要素E3の回転速度の順が記載の順となるように構成された遊星歯車機構である(図9の速度線図参照)。上述したように、差動歯車機構3は、入力要素E30、第1出力要素E31、及び第2出力要素E32を備えている。ここで、第1回転要素E1が第1出力要素E31であり、第2回転要素E2が入力要素E30であり、第3回転要素E3が第2出力要素E32である。 The differential gear mechanism 3 includes a first rotary element E1, a second rotary element E2, and a third rotary element E3, and the rotational speeds of the first rotary element E1, the second rotary element E2, and the third rotary element E3 are It is a planetary gear mechanism configured so that the order is the order of description (see the velocity diagram in FIG. 9). As described above, the differential gear mechanism 3 has an input element E30, a first output element E31 and a second output element E32. Here, the first rotary element E1 is the first output element E31, the second rotary element E2 is the input element E30, and the third rotary element E3 is the second output element E32.
 本実施形態では、第1回転要素E1、第2回転要素E2、及び第3回転要素E3のうち、1つはサンギヤ(後述する差動第1サンギヤS31)、1つはキャリヤ(後述する差動キャリヤC3)、残り1つは前述のサンギヤ(差動第1サンギヤS31)とは別のサンギヤ(後述する差動第2サンギヤS32)である。即ち、遊星歯車機構により構成された差動歯車機構3は、回転要素としてリングギヤを有していない。尚、図示及び詳細な説明は省略するが、第1回転要素E1、第2回転要素E2、及び第3回転要素E3のうち、1つはサンギヤ、1つはキャリヤ、残り1つは前述のキャリヤとは別のキャリヤであってもよい。この場合も、回転要素としてリングギヤを有していない遊星歯車機構により差動歯車機構3を構成することができる。即ち、差動歯車機構3における、第1回転要素E1、第2回転要素E2、及び第3回転要素E3のうち、1つはサンギヤ、1つはキャリヤ、残り1つは前述のサンギヤとは別のサンギヤ又は前述のキャリヤとは別のキャリヤであるとよい。 In this embodiment, one of the first rotating element E1, the second rotating element E2, and the third rotating element E3 is a sun gear (first differential sun gear S31, which will be described later), and one is a carrier (a differential gear, which will be described later). carrier C3), and the remaining one is a sun gear (second differential sun gear S32 described later) different from the sun gear (first differential sun gear S31) described above. That is, the differential gear mechanism 3 configured by the planetary gear mechanism does not have a ring gear as a rotating element. Although illustration and detailed description are omitted, one of the first rotating element E1, the second rotating element E2, and the third rotating element E3 is a sun gear, one is a carrier, and the other one is the aforementioned carrier. It may be a different carrier. Also in this case, the differential gear mechanism 3 can be configured by a planetary gear mechanism that does not have a ring gear as a rotating element. That is, among the first rotating element E1, the second rotating element E2, and the third rotating element E3 in the differential gear mechanism 3, one is a sun gear, one is a carrier, and the other is a sun gear different from the above-mentioned sun gear. or a carrier different from the carrier described above.
 このように、差動歯車機構3は、リングギヤを備えない遊星歯車機構であるため、径方向Rにも小型化し易い構成である。よって、差動歯車機構3を、中空筒状のロータ軸10に対して径方向内側R1に配置し易い。 As described above, the differential gear mechanism 3 is a planetary gear mechanism that does not include a ring gear, so it is configured to be easily miniaturized in the radial direction R as well. Therefore, it is easy to arrange the differential gear mechanism 3 radially inward R<b>1 with respect to the hollow cylindrical rotor shaft 10 .
 本実施形態では、図1から図3等に示すように、第1回転要素E1が差動第1サンギヤS31(第1サンギヤ)であり、第2回転要素E2が差動キャリヤC3(キャリヤ)であり、第3回転要素E3が差動第2サンギヤS32(第2サンギヤ)である。そして、さらに図3から図6に示すように、差動キャリヤC3は、差動第1ピニオンギヤP31(第1ピニオンギヤ)及び差動第2ピニオンギヤP32(第2ピニオンギヤ)をそれぞれ回転自在に支持している。差動第1ピニオンギヤP31は、差動第1サンギヤS31及び差動第2ピニオンギヤP32に噛み合っており、差動第2ピニオンギヤP32は、差動第1ピニオンギヤP31及び差動第2サンギヤS32に噛み合っている。 In this embodiment, as shown in FIGS. 1 to 3 and the like, the first rotating element E1 is a first differential sun gear S31 (first sun gear), and the second rotating element E2 is a differential carrier C3 (carrier). and the third rotating element E3 is the differential second sun gear S32 (second sun gear). Further, as shown in FIGS. 3 to 6, the differential carrier C3 rotatably supports a differential first pinion gear P31 (first pinion gear) and a differential second pinion gear P32 (second pinion gear). there is The first differential pinion gear P31 meshes with the first differential sun gear S31 and the second differential pinion gear P32, and the second differential pinion gear P32 meshes with the first differential pinion gear P31 and the second differential sun gear S32. there is
 このように、本実施形態では、リングギヤを備えることなく、遊星歯車機構による差動歯車機構3を適切に構成することができる。リングギヤを備えないため、差動歯車機構3の径方向Rの寸法を小さく抑えやすく、車両用駆動伝達装置100の小型化を図れると共に、中空筒状のロータ軸10の径方向内側R1に適切に差動歯車機構3を収納することができる。 As described above, in the present embodiment, the differential gear mechanism 3 can be appropriately configured using a planetary gear mechanism without providing a ring gear. Since the ring gear is not provided, it is easy to keep the size of the differential gear mechanism 3 in the radial direction R small. A differential gear mechanism 3 can be accommodated.
 また、本実施形態では、差動キャリヤC3は、ロータ軸10の内周面1aから径方向内側R1に突出するように、ロータ軸10に固定されている。このように構成することで、第2回転要素E2としての差動キャリヤC3をロータ軸10と一体的に回転するように適切に連結することができる。差動キャリヤC3がロータ軸10の径方向内側R1に固定されるため、差動歯車機構3を小型化し易い。尚、差動キャリヤC3は、ロータ軸10の内周面1aから径方向内側R1に突出することなく、例えばロータ軸10がピニオンギヤを収容可能な肉厚を有した筒状に形成され、ロータ軸10の径方向内側R1にロータ軸10と一体的に形成されている形態を妨げるものではない。 Further, in this embodiment, the differential carrier C3 is fixed to the rotor shaft 10 so as to protrude from the inner peripheral surface 1a of the rotor shaft 10 to the radially inner side R1. By configuring in this way, the differential carrier C3 as the second rotating element E2 can be appropriately connected to the rotor shaft 10 so as to rotate integrally therewith. Since the differential carrier C3 is fixed to the radially inner side R1 of the rotor shaft 10, the size of the differential gear mechanism 3 can be easily reduced. The differential carrier C3 does not protrude from the inner peripheral surface 1a of the rotor shaft 10 to the radially inner side R1, and is formed in a cylindrical shape having a wall thickness that allows the rotor shaft 10 to accommodate the pinion gear. It does not prevent the form integrally formed with the rotor shaft 10 on the radially inner side R1 of 10 .
 図1及び図2に示すように、差動第1ピニオンギヤP31は、第1ギヤ部P31aと第2ギヤ部P31bとを有している。そして、図3から図6に示すように、第1ギヤ部P31aは、差動第1サンギヤS31に噛み合っており、第2ギヤ部P31bは、差動第2ピニオンギヤP32に噛み合っている。従って、第1ギヤ部P31aと第2ギヤ部P31bとを有する差動第1ピニオンギヤP31は、差動第1サンギヤS31及び差動第2ピニオンギヤP32に噛み合っている。差動第2ピニオンギヤP32は、差動第2サンギヤS32に噛み合っている。差動第2ピニオンギヤP32は、差動第1ピニオンギヤP31と差動第2サンギヤS32との間において回転方向を反転させるアイドラギヤとして機能している。図1、図2、図4等に示すように、軸方向Lにおける差動第1サンギヤS31と差動第2サンギヤS32との間には、仕切り部材73が配置されている。 As shown in FIGS. 1 and 2, the differential first pinion gear P31 has a first gear portion P31a and a second gear portion P31b. As shown in FIGS. 3 to 6, the first gear portion P31a meshes with the differential first sun gear S31, and the second gear portion P31b meshes with the differential second pinion gear P32. Therefore, the differential first pinion gear P31 having the first gear portion P31a and the second gear portion P31b meshes with the differential first sun gear S31 and the differential second pinion gear P32. The differential second pinion gear P32 meshes with the differential second sun gear S32. The second differential pinion gear P32 functions as an idler gear that reverses the direction of rotation between the first differential pinion gear P31 and the second differential sun gear S32. As shown in FIGS. 1, 2, 4, etc., a partition member 73 is arranged between the first differential sun gear S31 and the second differential sun gear S32 in the axial direction L. As shown in FIGS.
 図5及び図6に示すように、差動第1ピニオンギヤP31の第1ギヤ部P31aは、差動キャリヤC3を形成するキャリヤ部材30に形成された第1ギヤ収納部31に収納されている。また、差動第1ピニオンギヤP31の第2ギヤ部P31bは、キャリヤ部材30に形成された第2ギヤ収納部32に収納されている。第1ギヤ部P31a及び第2ギヤ部P31bは、差動第1ピニオンギヤP31として一体的に回転する。差動第1ピニオンギヤP31は、第1ギヤ部P31aの外周面が第1ギヤ収納部31の内周面31aに対して摺動し、第2ギヤ部P31bの外周面が第2ギヤ収納部32の内周面32aに対して摺動する状態でキャリヤ部材30(差動キャリヤC3)に支持されている。また、差動第2ピニオンギヤP32は、キャリヤ部材30に形成された差動第2ピニオンギヤ収納部33に収納されている。そして、差動第2ピニオンギヤP32は、その外周面が差動第2ピニオンギヤ収納部33の内周面33aに対して摺動する状態でキャリヤ部材30(差動キャリヤC3)に支持されている。 As shown in FIGS. 5 and 6, the first gear portion P31a of the differential first pinion gear P31 is housed in the first gear housing portion 31 formed in the carrier member 30 forming the differential carrier C3. Further, the second gear portion P31b of the differential first pinion gear P31 is housed in a second gear housing portion 32 formed in the carrier member 30. As shown in FIG. The first gear portion P31a and the second gear portion P31b rotate together as a differential first pinion gear P31. In the differential first pinion gear P31, the outer peripheral surface of the first gear portion P31a slides against the inner peripheral surface 31a of the first gear housing portion 31, and the outer peripheral surface of the second gear portion P31b slides against the second gear housing portion 32. is supported by the carrier member 30 (differential carrier C3) so as to slide against the inner peripheral surface 32a of the. Further, the differential second pinion gear P32 is housed in a differential second pinion gear housing portion 33 formed in the carrier member 30 . The second differential pinion gear P32 is supported by the carrier member 30 (differential carrier C3) such that its outer peripheral surface slides against the inner peripheral surface 33a of the second differential pinion gear housing 33. As shown in FIG.
 このように、差動第1ピニオンギヤP31及び差動第2ピニオンギヤP32が、差動キャリヤC3の内周面に対して摺動する状態で差動キャリヤC3に支持されることで、差動歯車機構3はリミテッド・スリップ・デファレンシャル(差動制限機能付きの差動歯車機構)としての効果を得ることができる。即ち、車両の旋回中や悪路を走行中等の場面において、第1車輪W1及び第2車輪W2の内の一方の車輪Wが空転或いは空転に近い状態になった場合であっても、差動機能を残しつつ、他方の車輪Wに駆動力を伝達することができる。 In this way, the first differential pinion gear P31 and the second differential pinion gear P32 are supported by the differential carrier C3 in a state of sliding against the inner peripheral surface of the differential carrier C3, thereby forming a differential gear mechanism. 3 can obtain an effect as a limited slip differential (a differential gear mechanism with a limited differential function). That is, even if one wheel W out of the first wheel W1 and the second wheel W2 slips or nearly slips while the vehicle is turning or traveling on a rough road, the differential The driving force can be transmitted to the other wheel W while maintaining the function.
 差動サンギヤS1(差動第1サンギヤS31、差動第2サンギヤS32)は、キャリヤ部材30の径方向内側R1に配置されている。差動第1ピニオンギヤP31及び差動第2ピニオンギヤP32とは異なり、差動サンギヤS1は、キャリヤ部材30の内周面30aに接することなく回転可能なように、当該内周面30aと隙間を有して配置されている。 The differential sun gear S1 (first differential sun gear S31, second differential sun gear S32) is arranged radially inward R1 of the carrier member 30 . Unlike the differential first pinion gear P31 and the differential second pinion gear P32, the differential sun gear S1 has a gap with the inner peripheral surface 30a of the carrier member 30 so that it can rotate without contacting the inner peripheral surface 30a. are arranged as follows.
 上述したように、ロータ軸10は、一対のロータ軸受B1(支持軸受)により径方向内側R1から支持されている。これにより、ロータ軸10は、ケース6に対して回転可能となっている。一対のロータ軸受B1は、差動歯車機構3に対して軸方向Lの両側に分かれて配置されている。このように、ロータ軸受B1が差動歯車機構3に対して軸方向Lの両側に配置されることで、ロータ軸10に対して径方向内側R1に差動歯車機構3が配置されていても、ロータ軸10及び差動歯車機構3を回転可能に支持することができる。また、ロータ軸受B1は、ロータ軸10の径方向内側R1からロータ軸10を支持しているため、軸受を配置するために軸方向寸法を長くする必要がなく、車両用駆動伝達装置100の軸方向Lの寸法を短くし易い。当然ながら、ロータ軸10は上記とは異なる位置で軸受によって支持されていてもよい。例えば、ロータ軸10は、一対のロータ軸受B1(支持軸受)により径方向外側R2から支持されていても良い。 As described above, the rotor shaft 10 is supported from the radially inner side R1 by a pair of rotor bearings B1 (support bearings). Thereby, the rotor shaft 10 is rotatable with respect to the case 6 . The pair of rotor bearings B<b>1 are arranged separately on both sides in the axial direction L with respect to the differential gear mechanism 3 . In this way, by arranging the rotor bearings B1 on both sides of the differential gear mechanism 3 in the axial direction L, even if the differential gear mechanism 3 is arranged radially inward R1 with respect to the rotor shaft 10, , the rotor shaft 10 and the differential gear mechanism 3 can be rotatably supported. In addition, since the rotor bearing B1 supports the rotor shaft 10 from the radially inner side R1 of the rotor shaft 10, it is not necessary to increase the axial dimension for arranging the bearing, and the shaft of the drive transmission device 100 for a vehicle does not need to be increased. It is easy to shorten the dimension in the direction L. Of course, the rotor shaft 10 may be supported by bearings at positions different from those described above. For example, the rotor shaft 10 may be supported from the radially outer side R2 by a pair of rotor bearings B1 (support bearings).
 上述したように、車両用駆動伝達装置100は、第1出力要素E31の回転を減速して第1出力部材91に伝達する第1減速機51と、第2出力要素E32の回転を減速して第2出力部材92に伝達する第2減速機52とを備えている。第1減速機51は、ロータ81及びロータ軸10に対して軸方向第1側L1に配置され、第2減速機52は、ロータ81及びロータ軸10に対して軸方向第2側L2に配置されている。尚、本実施形態では、下記において詳細に説明するように、遊星歯車式の減速機5を備える構成を例示している。しかし、例えば平行歯車式の減速機など、他の構造の減速機5であってもよい。また、遊星歯車式の減速機5を備える場合であっても、下記にて例示するようなダブルピニオン式に限らず、シングルピニオン式など他の構成の遊星歯車機構であってもよい。 As described above, the vehicle drive transmission device 100 includes the first speed reducer 51 that decelerates the rotation of the first output element E31 and transmits it to the first output member 91, and the second output element E32 that decelerates the rotation. and a second reduction gear 52 that transmits to the second output member 92 . The first reduction gear 51 is arranged on the first side L1 in the axial direction with respect to the rotor 81 and the rotor shaft 10, and the second reduction gear 52 is arranged on the second side L2 in the axial direction with respect to the rotor 81 and the rotor shaft 10. It is In addition, in this embodiment, as will be described in detail below, a configuration including a planetary gear type speed reducer 5 is exemplified. However, the speed reducer 5 may have another structure such as a parallel gear type speed reducer. Further, even when the planetary gear type speed reducer 5 is provided, it is not limited to the double pinion type as exemplified below, and may be a planetary gear mechanism of other configuration such as a single pinion type.
 径方向視でロータ81と重複する位置に配置された差動歯車機構3において回転電機80のトルクが軸方向第1側L1と軸方向第2側L2とに分配される。そして、分配された回転が、それぞれ第1減速機51又は第2減速機52により減速されるので、これらの減速機5によって増幅されたトルクを一対の出力部材の9それぞれに適切に伝達することができる。従って、必要なトルクを車輪Wに伝達できるように構成しつつ、比較的小型の回転電機80を用いて軸方向L及び径方向Rの寸法を小さく抑えた電動車両用の駆動伝達装置を実現することができる。 The torque of the rotating electric machine 80 is distributed to the first axial side L1 and the second axial side L2 in the differential gear mechanism 3 arranged at a position overlapping the rotor 81 when viewed in the radial direction. Since the distributed rotation is reduced by the first reduction gear 51 or the second reduction gear 52, respectively, the torque amplified by these reduction gears 5 can be appropriately transmitted to each of the pair of output members 9. can be done. Therefore, a drive transmission device for an electric vehicle is realized in which the dimensions in the axial direction L and the radial direction R are kept small by using a relatively small rotating electrical machine 80 while being configured to transmit necessary torque to the wheels W. be able to.
 以下、本実施形態の減速機5について説明する。第1減速機51は、減速第1サンギヤS51(第1サンギヤ)、減速第1キャリヤC51(第1キャリヤ)、及び減速第1リングギヤR51(第1リングギヤ)を備えた遊星歯車機構である。減速第1サンギヤS51は、第1出力要素E31と一体的に回転するように連結されている。そして、本実施形態では、減速第1キャリヤC51が、第1出力部材91と一体的に回転するように連結され、減速第1リングギヤR51が、非回転部材としてのケース6に連結されている。尚、減速第1リングギヤR51が、第1出力部材91と一体的に回転するように連結され、減速第1キャリヤC51が、ケース6に連結されていてもよい。即ち、第1減速機51は、減速第1キャリヤC51及び減速第1リングギヤR51のいずれか一方が、第1出力部材91と一体的に回転するように連結され、減速第1キャリヤC51及び減速第1リングギヤR51のいずれか他方が、非回転部材としてのケース6に連結されていれば良い。 The speed reducer 5 of this embodiment will be described below. The first reduction gear 51 is a planetary gear mechanism including a reduction first sun gear S51 (first sun gear), a reduction first carrier C51 (first carrier), and a reduction first ring gear R51 (first ring gear). The reduction first sun gear S51 is coupled to rotate integrally with the first output element E31. In this embodiment, the first reduction carrier C51 is connected to rotate integrally with the first output member 91, and the first reduction ring gear R51 is connected to the case 6 as a non-rotating member. The first reduction ring gear R51 may be connected to the first output member 91 so as to rotate integrally, and the first reduction carrier C51 may be connected to the case 6 . That is, in the first reduction gear 51, one of the first reduction carrier C51 and the first reduction ring gear R51 is connected to rotate integrally with the first output member 91, and the first reduction carrier C51 and the first reduction ring gear R51 are connected to each other. Either one of the 1 ring gears R51 may be connected to the case 6 as a non-rotating member.
 第2減速機52は、減速第2サンギヤS52(第2サンギヤ)、減速第2キャリヤC52(第2キャリヤ)、及び減速第2リングギヤR52(第2リングギヤ)を備えた遊星歯車機構である。減速第2サンギヤS52は、第2出力要素E32と一体的に回転するように連結されている。そして、本実施形態では、減速第2キャリヤC52が、第2出力部材92と一体的に回転するように連結され、減速第2リングギヤR52が、非回転部材としてのケース6に連結されている。尚、減速第2リングギヤR52が、第2出力部材92と一体的に回転するように連結され、減速第2キャリヤC52が、ケース6に連結されていてもよい。即ち、第2減速機52は、減速第2キャリヤC52及び減速第2リングギヤR52のいずれか一方が、第2出力部材92と一体的に回転するように連結され、減速第2キャリヤC52及び減速第2リングギヤR52のいずれか他方が、非回転部材としてのケース6に連結されていれば良い。 The second reduction gear 52 is a planetary gear mechanism including a reduction second sun gear S52 (second sun gear), a reduction second carrier C52 (second carrier), and a reduction second ring gear R52 (second ring gear). The reduction second sun gear S52 is coupled to rotate integrally with the second output element E32. In this embodiment, the second reduction carrier C52 is connected to rotate integrally with the second output member 92, and the second reduction ring gear R52 is connected to the case 6 as a non-rotating member. The second reduction ring gear R52 may be connected to rotate integrally with the second output member 92, and the second reduction carrier C52 may be connected to the case 6. That is, the second speed reducer 52 has one of the reduction second carrier C52 and the reduction second ring gear R52 connected to rotate integrally with the second output member 92, and the reduction second carrier C52 and the reduction second Either one of the two ring gears R52 may be connected to the case 6 as a non-rotating member.
 尚、以下においては、減速第1サンギヤS51、複数の減速第1ピニオンギヤP51、減速第1リングギヤR51、減速第2サンギヤS52、複数の減速第2ピニオンギヤP52、及び、減速第2リングギヤR52が、斜歯歯車である場合を例示して、車両用駆動伝達装置100における特徴を説明する場合がある。しかし、減速機5の単体構造については、これらが斜歯歯車であることには限定されず、これらが例えば平歯車であっても良い。 In the following description, the first reduction sun gear S51, the plurality of first reduction pinion gears P51, the first reduction ring gear R51, the second reduction sun gear S52, the second reduction pinion gears P52, and the second reduction ring gear R52 are arranged obliquely. The characteristics of the vehicle drive transmission device 100 may be described by exemplifying the case of a toothed gear. However, the single structure of the speed reducer 5 is not limited to helical gears, and may be spur gears, for example.
 本実施形態では、減速第1キャリヤC51が、第1出力部材91と一体的に回転するように連結され、減速第1リングギヤR51が、ケース6に連結されている。また、減速第2キャリヤC52が、第2出力部材92と一体的に回転するように連結され、減速第2リングギヤR52が、ケース6に連結されている。減速第1キャリヤC51は、第1ピニオンギヤ組P51cに対して軸方向Lの両側に分かれて配置された一対の第1出力軸受B51(軸受)によって支持されている。また、減速第2キャリヤC52は、第2ピニオンギヤ組P52cに対して軸方向Lの両側に分かれて配置された一対の第2出力軸受B52(第3軸受、軸受)によって支持されている。即ち、出力部材9に連結された回転要素である減速第1キャリヤC51及び減速第2キャリヤC52が、一対の軸受(出力軸受B5)によって適切に回転可能に支持される。従って、小型化を図りつつ、回転要素を適切に支持した車両用駆動伝達装置100を実現することができる。 In this embodiment, the first reduction carrier C51 is connected to rotate integrally with the first output member 91, and the first reduction ring gear R51 is connected to the case 6. A reduction second carrier C52 is connected to the second output member 92 so as to rotate integrally, and a reduction second ring gear R52 is connected to the case 6 . The first deceleration carrier C51 is supported by a pair of first output bearings B51 (bearings) arranged separately on both sides in the axial direction L with respect to the first pinion gear set P51c. Further, the second deceleration carrier C52 is supported by a pair of second output bearings B52 (third bearing, bearing) arranged separately on both sides in the axial direction L with respect to the second pinion gear set P52c. That is, the first deceleration carrier C51 and the second deceleration carrier C52, which are rotating elements connected to the output member 9, are appropriately rotatably supported by a pair of bearings (output bearing B5). Therefore, it is possible to realize the vehicle drive transmission device 100 that appropriately supports the rotating element while achieving a reduction in size.
 尚、減速第1キャリヤC51を支持する第1出力軸受B51が、第1ピニオンギヤ組P51cに対して軸方向Lの片側に配置されるなど、減速第1キャリヤC51の支持構造は、本実施形態に限定されるものではない。同様に、減速第2キャリヤC52を支持する第2出力軸受B52が、第2ピニオンギヤ組P52cに対して軸方向Lの片側に配置されるなど、減速第2キャリヤC52の支持構造も、本実施形態に限定されるものではない。 The support structure of the first reduction carrier C51, such as the first output bearing B51 that supports the first reduction carrier C51, is arranged on one side in the axial direction L with respect to the first pinion gear set P51c. It is not limited. Similarly, the second output bearing B52 that supports the second reduction carrier C52 is disposed on one side of the second pinion gear set P52c in the axial direction L. is not limited to
 第1減速機51及び第2減速機52を区別せず、減速機5と総称する場合、減速機5は、減速サンギヤS5、減速キャリヤC5、及び減速リングギヤR5を備えた遊星歯車機構である。減速サンギヤS5は、差動歯車機構3の出力要素(第1出力要素E31又は第2出力要素E32)と一体的に回転するように連結されている。そして、本実施形態では、減速キャリヤC5が、出力部材9と一体的に回転するように連結され、減速リングギヤR5が、非回転部材としてのケース6に連結されている。上述したように、減速機5は、減速キャリヤC5及び減速リングギヤR5のいずれか一方が、出力部材9と一体的に回転するように連結され、減速キャリヤC5及び減速リングギヤR5のいずれか他方が、非回転部材としてのケース6に連結されていればよい。 When the first reduction gear 51 and the second reduction gear 52 are not distinguished and are collectively referred to as the reduction gear 5, the reduction gear 5 is a planetary gear mechanism including a reduction sun gear S5, a reduction carrier C5, and a reduction ring gear R5. The reduction sun gear S5 is connected to the output element (first output element E31 or second output element E32) of the differential gear mechanism 3 so as to rotate integrally. In this embodiment, the reduction carrier C5 is connected to rotate integrally with the output member 9, and the reduction ring gear R5 is connected to the case 6 as a non-rotating member. As described above, in the reduction gear 5, either one of the reduction carrier C5 and the reduction ring gear R5 is connected to rotate integrally with the output member 9, and the other of the reduction carrier C5 and the reduction ring gear R5 is connected to It may be connected to the case 6 as a non-rotating member.
 尚、本実施形態では、出力部材9が減速機5の減速キャリヤC5に連結されている形態を例示している。しかし、減速キャリヤC5がケース6等の非回転部材に固定され、出力部材9は、減速リングギヤR5に連結されていてもよい。また、本実施形態では、第1減速機51と第2減速機52とが同一構成である形態を例示しているが、両者は異なる構成の減速機5であってもよい。 In this embodiment, the output member 9 is connected to the speed reduction carrier C5 of the speed reducer 5 as an example. However, the reduction carrier C5 may be fixed to a non-rotating member such as the case 6, and the output member 9 may be connected to the reduction ring gear R5. Further, although the first reduction gear 51 and the second reduction gear 52 have the same configuration in this embodiment, the reduction gears 5 may have different configurations.
 詳細は後述するが、図7に示すように、減速キャリヤC5は、内側ピニオンギヤP5a及び外側ピニオンギヤP5bからなるピニオンギヤ組P5cを複数組支持している。内側ピニオンギヤP5aは減速サンギヤS5及び外側ピニオンギヤP5bに噛み合い、外側ピニオンギヤP5bは内側ピニオンギヤP5a及び減速リングギヤR5に噛み合っている。複数のピニオンギヤ組P5cのそれぞれにおいて、内側ピニオンギヤP5aの回転軸心と外側ピニオンギヤP5bの回転軸心とは、径方向Rに沿って並ぶように配置されている。 Although the details will be described later, as shown in FIG. 7, the speed reduction carrier C5 supports a plurality of pinion gear sets P5c consisting of inner pinion gears P5a and outer pinion gears P5b. The inner pinion gear P5a meshes with the reduction sun gear S5 and the outer pinion gear P5b, and the outer pinion gear P5b meshes with the inner pinion gear P5a and the reduction ring gear R5. In each of the plurality of pinion gear sets P5c, the rotation axis of the inner pinion gear P5a and the rotation axis of the outer pinion gear P5b are arranged along the radial direction R.
 即ち、第1減速機51においては、減速第1キャリヤC51は、第1内側ピニオンギヤP51a及び第1外側ピニオンギヤP51bからなる第1ピニオンギヤ組P51cを複数組支持している。第1内側ピニオンギヤP51aは減速第1サンギヤS51及び第1外側ピニオンギヤP51bに噛み合い、第1外側ピニオンギヤP51bは第1内側ピニオンギヤP51a及び減速第1リングギヤR51に噛み合っている。複数の第1ピニオンギヤ組P51cのそれぞれにおいて、第1内側ピニオンギヤP51aの回転軸心と第1外側ピニオンギヤP51bの回転軸心とは、径方向Rに沿って並ぶように配置されている。 That is, in the first speed reducer 51, the first reduction carrier C51 supports a plurality of first pinion gear sets P51c consisting of first inner pinion gears P51a and first outer pinion gears P51b. The first inner pinion gear P51a meshes with the reduction first sun gear S51 and the first outer pinion gear P51b, and the first outer pinion gear P51b meshes with the first inner pinion gear P51a and the reduction first ring gear R51. In each of the plurality of first pinion gear sets P51c, the rotation axis of the first inner pinion gear P51a and the rotation axis of the first outer pinion gear P51b are arranged along the radial direction R.
 同様に、第2減速機52においては、減速第2キャリヤC52は、第2内側ピニオンギヤP52a及び第2外側ピニオンギヤP52bからなる第2ピニオンギヤ組P52cを複数組支持している。第2内側ピニオンギヤP52aは減速第2サンギヤS52及び第2外側ピニオンギヤP52bに噛み合い、第2外側ピニオンギヤP52bは第2内側ピニオンギヤP52a及び減速第2リングギヤR52に噛み合っている。複数の第2ピニオンギヤ組P52cのそれぞれにおいて、第2内側ピニオンギヤP52aの回転軸心と第2外側ピニオンギヤP52bの回転軸心とは、径方向Rに沿って並ぶように配置されている。 Similarly, in the second speed reducer 52, the reduction second carrier C52 supports a plurality of second pinion gear sets P52c consisting of second inner pinion gears P52a and second outer pinion gears P52b. The second inner pinion gear P52a meshes with the second reduction sun gear S52 and the second outer pinion gear P52b, and the second outer pinion gear P52b meshes with the second inner pinion gear P52a and the second reduction ring gear R52. In each of the plurality of second pinion gear sets P52c, the rotation axis of the second inner pinion gear P52a and the rotation axis of the second outer pinion gear P52b are arranged along the radial direction R.
 シングルピニオン式の遊星歯車機構では、サンギヤとリングギヤとの径の差を大きくすること、そのためにピニオンギヤの径を大きくすることに限界があり、サンギヤとリングギヤとの歯数比を大きくすることが困難である。本実施形態では、第1減速機51及び第2減速機52がダブルピニオン式の遊星歯車機構によって構成されているため、ピニオンギヤ(内側ピニオンギヤP5a及び外側ピニオンギヤP5b)の径に対して、サンギヤ(減速サンギヤS5)とリングギヤ(減速リングギヤR5)との径の差を大きくし易く、サンギヤとリングギヤとの歯数比を大きくし易い。よって、第1減速機51及び第2減速機52の減速比も大きくし易い。 In a single-pinion planetary gear mechanism, there is a limit to increasing the diameter difference between the sun gear and the ring gear, which limits the size of the pinion gear, making it difficult to increase the tooth ratio between the sun gear and the ring gear. is. In this embodiment, since the first reduction gear 51 and the second reduction gear 52 are configured by a double pinion type planetary gear mechanism, the sun gear (reduction It is easy to increase the diameter difference between the sun gear S5) and the ring gear (reduction ring gear R5), and it is easy to increase the gear ratio between the sun gear and the ring gear. Therefore, it is easy to increase the reduction ratios of the first reduction gear 51 and the second reduction gear 52 .
 仮に、シングルピニオン型の遊星歯車機構によって同じ歯数比を得ようとすると、ピニオンギヤの径が大きくなるため、減速機5の重量が大きくなり易く、また、隣接するピニオンギヤ同士の干渉も生じやすい。しかし、図7に例示する本実施形態のように、減速サンギヤS5を径方向Rに適切に支持するために、内側ピニオンギヤP5a及び外側ピニオンギヤP5bからなるピニオンギヤ組P5cを3組以上備える場合であっても、隣接するピニオンギヤ組同士が干渉することのない範囲で、サンギヤとリングギヤとの歯数比を大きく設定することができる。また、ピニオンギヤ組P5cを3組以上備える構成とし易いため、各ピニオンギヤに作用する荷重も小さく抑え易く、各ピニオンギヤの支持構造を簡略化し易い。よって、減速機5並びに車両用駆動伝達装置100の軽量化も図り易い。 If it were attempted to obtain the same gear ratio with a single pinion type planetary gear mechanism, the diameter of the pinion gear would increase, so the weight of the speed reducer 5 would likely increase, and interference would easily occur between adjacent pinion gears. However, as in the present embodiment illustrated in FIG. 7, in order to appropriately support the reduction sun gear S5 in the radial direction R, even if three or more pinion gear sets P5c consisting of inner pinion gears P5a and outer pinion gears P5b are provided, Also, the tooth ratio between the sun gear and the ring gear can be set large within a range in which adjacent pinion gear sets do not interfere with each other. In addition, since it is easy to employ a configuration in which three or more pinion gear sets P5c are provided, the load acting on each pinion gear can be easily suppressed, and the support structure for each pinion gear can be easily simplified. Therefore, it is easy to reduce the weight of the speed reducer 5 and the vehicle drive transmission device 100 .
 尚、このような減速機5は、本実施形態のようにダブルピニオン型遊星歯車式の差動歯車機構3を介して入力部材1に駆動連結される形態には限らない。差動歯車機構3は、シングルピニオン型の遊星歯車機構であってもよいし、例えば傘歯車式であってもよい。また、本実施形態では、入力部材1としてロータ軸10を例示しているが、このような構造の減速機5を備える車両用駆動伝達装置100の駆動力源8は回転電機80に限らず内燃機関等でもよい。そして、入力部材1は、ロータ軸10に限られず、各種ギヤ機構や変速機等を介して駆動力源8に連結される部材であってよい。当然ながら、本実施形態のように、駆動力源8は入力部材1と同軸配置されていなくてもよい。例えば、ギヤやチェーン等の伝動部材を介して駆動力源8と入力部材1とが駆動連結されていてもよい。また、駆動力源8が回転電機80であり、入力部材1がロータ軸10である場合であっても、差動歯車機構3が中空筒状のロータ軸10の径方向内側R1に配置されている必要はない。 It should be noted that such a speed reducer 5 is not limited to a mode in which it is drivingly connected to the input member 1 via the double pinion type planetary gear type differential gear mechanism 3 as in the present embodiment. The differential gear mechanism 3 may be a single pinion type planetary gear mechanism or, for example, a bevel gear mechanism. Further, in the present embodiment, the rotor shaft 10 is exemplified as the input member 1, but the driving force source 8 of the vehicle drive transmission device 100 including the speed reducer 5 having such a structure is not limited to the rotating electric machine 80. It may be an institution or the like. The input member 1 is not limited to the rotor shaft 10, and may be a member connected to the driving force source 8 via various gear mechanisms, transmissions, and the like. Of course, the driving force source 8 does not have to be arranged coaxially with the input member 1 as in the present embodiment. For example, the driving force source 8 and the input member 1 may be drivingly connected via a transmission member such as a gear or a chain. Further, even when the driving force source 8 is the rotating electrical machine 80 and the input member 1 is the rotor shaft 10, the differential gear mechanism 3 is arranged radially inside R1 of the hollow cylindrical rotor shaft 10. you don't have to be
 図7に示すように、軸方向Lに沿う軸方向視で、複数のピニオンギヤ組P5cのそれぞれにおける内側ピニオンギヤP5aの回転軸心と外側ピニオンギヤP5bの回転軸心と減速サンギヤS5の回転軸心とは、径方向Rに沿う直線上に配置されている。本実施形態では、第1減速機51及び第2減速機52は同一構成である。従って、第1減速機51においては、軸方向Lに沿う軸方向視で、複数の第1ピニオンギヤ組P51cのそれぞれにおける第1内側ピニオンギヤP51aの回転軸心と第1外側ピニオンギヤP51bの回転軸心と減速第1サンギヤS51の回転軸心とが、径方向Rに沿う直線上に配置されている。また、第2減速機52においては、軸方向視で、複数の第2ピニオンギヤ組P52cのそれぞれにおける第2内側ピニオンギヤP52aの回転軸心と第2外側ピニオンギヤP52bの回転軸心と減速第2サンギヤS52の回転軸心とが、径方向Rに沿う直線上に配置されている。 As shown in FIG. 7, in an axial view along the axial direction L, the rotation axis of the inner pinion gear P5a, the rotation axis of the outer pinion gear P5b, and the rotation axis of the reduction sun gear S5 in each of the plurality of pinion gear sets P5c are: , are arranged on a straight line along the radial direction R. In this embodiment, the first reduction gear 51 and the second reduction gear 52 have the same configuration. Therefore, in the first speed reducer 51, when viewed in the axial direction L, the rotational axis of the first inner pinion gear P51a and the rotational axis of the first outer pinion gear P51b in each of the plurality of first pinion gear sets P51c are The rotational axis of the first reduction sun gear S51 is arranged on a straight line along the radial direction R. Further, in the second speed reducer 52, when viewed in the axial direction, the rotational axis of the second inner pinion gear P52a, the rotational axis of the second outer pinion gear P52b, and the reduction second sun gear S52 in each of the plurality of second pinion gear sets P52c. are arranged on a straight line along the radial direction R.
 内側ピニオンギヤP5aと外側ピニオンギヤP5bと減速サンギヤS5とが、このように配置されると、内側ピニオンギヤP5a及び外側ピニオンギヤP5bの径に対して、サンギヤ(減速サンギヤS5)とリングギヤ(減速リングギヤR5)との歯数比を最も大きくすることができる。従って、減速機5の重量増加を抑制しつつ、より大きな減速比を有する減速機5を構成し易い。 When the inner pinion gear P5a, the outer pinion gear P5b, and the reduction sun gear S5 are arranged in this manner, the distance between the sun gear (reduction sun gear S5) and the ring gear (reduction ring gear R5) is greater than the diameters of the inner pinion gear P5a and the outer pinion gear P5b. The gear ratio can be maximized. Therefore, it is easy to configure the speed reducer 5 having a larger reduction ratio while suppressing an increase in the weight of the speed reducer 5 .
 尚、本実施形態では、内側ピニオンギヤP5aの回転軸心と外側ピニオンギヤP5bの回転軸心と減速サンギヤS5の回転軸心とが、径方向Rに沿う直線上に配置されている形態を例示している。しかし、これらが、同一直線状に配置されていない形態を妨げるものではない。例えば、概ね回転軸心Xを中心とした5~10度程度の扇型で規定される範囲内に、それぞれのギヤの中心が配置されているような形態であってもよい。 In this embodiment, the rotation axis of the inner pinion gear P5a, the rotation axis of the outer pinion gear P5b, and the rotation axis of the reduction sun gear S5 are arranged on a straight line along the radial direction R. there is However, these do not preclude configurations that are not collinear. For example, the center of each gear may be arranged within a range defined by a sector of approximately 5 to 10 degrees around the rotation axis X. FIG.
 ここで、減速サンギヤS5の直径φ50は、内側ピニオンギヤP5aの直径φ5aよりも小さい。このため、サンギヤ(減速サンギヤS5)とリングギヤ(減速リングギヤR5)との歯数比を、より大きく設定することができている。本実施形態では、第1減速機51及び第2減速機52は同一構成である。従って、減速第1サンギヤS51の直径φ51は、第1内側ピニオンギヤP51aの直径φ51aより小さい。同様に、減速第2サンギヤS52の直径φ52は、第2内側ピニオンギヤP52aの直径φ52aより小さい。 Here, the diameter φ50 of the reduction sun gear S5 is smaller than the diameter φ5a of the inner pinion gear P5a. Therefore, it is possible to set a larger gear ratio between the sun gear (reduction sun gear S5) and the ring gear (reduction ring gear R5). In this embodiment, the first reduction gear 51 and the second reduction gear 52 have the same configuration. Therefore, the diameter φ51 of the reduction first sun gear S51 is smaller than the diameter φ51a of the first inner pinion gear P51a. Similarly, the diameter φ52 of the reduction second sun gear S52 is smaller than the diameter φ52a of the second inner pinion gear P52a.
 尚、本実施形態では、複数のピニオンギヤ組P5cのそれぞれにおいて、外側ピニオンギヤP5bの直径φ5bと、内側ピニオンギヤP5aの直径φ5aとが等しい。即ち、第1減速機51においては、複数の第1ピニオンギヤ組P51cのそれぞれにおいて、第1外側ピニオンギヤP51bの直径φ51bと、第1内側ピニオンギヤP51aの直径φ51aとが等しい。また、第2減速機52においては、複数の第2ピニオンギヤ組P52cのそれぞれにおいて、第2外側ピニオンギヤP52bの直径φ52bと、第2内側ピニオンギヤP52aの直径φ52aとが等しい。 In this embodiment, the diameter φ5b of the outer pinion gear P5b and the diameter φ5a of the inner pinion gear P5a are equal in each of the plurality of pinion gear sets P5c. That is, in the first speed reducer 51, the diameter φ51b of the first outer pinion gear P51b is equal to the diameter φ51a of the first inner pinion gear P51a in each of the plurality of first pinion gear sets P51c. In the second speed reducer 52, the diameter φ52b of the second outer pinion gear P52b and the diameter φ52a of the second inner pinion gear P52a are equal in each of the plurality of second pinion gear sets P52c.
 本実施形態では、このように減速サンギヤS5の直径φ50が、内側ピニオンギヤP5aの直径φ5aよりも小さい形態を例示している。しかし、これには限定されず、減速サンギヤS5の直径φ50が、内側ピニオンギヤP5aの直径φ5a以上、且つ、外側ピニオンギヤP5bの直径φ5b以上であってもよい。また、後述するように、外側ピニオンギヤP5bの直径φ5bが内側ピニオンギヤP5aの直径φ5aよりも大きい場合には、減速サンギヤS5の直径φ50が、内側ピニオンギヤP5aの直径φ5a以上、外側ピニオンギヤP5bの直径φ5b以下であってもよい。 In this embodiment, the diameter φ50 of the reduction sun gear S5 is smaller than the diameter φ5a of the inner pinion gear P5a. However, it is not limited to this, and the diameter φ50 of the reduction sun gear S5 may be equal to or larger than the diameter φ5a of the inner pinion gear P5a and larger than the diameter φ5b of the outer pinion gear P5b. Further, as will be described later, when the diameter φ5b of the outer pinion gear P5b is larger than the diameter φ5a of the inner pinion gear P5a, the diameter φ50 of the reduction sun gear S5 is equal to or larger than the diameter φ5a of the inner pinion gear P5a and equal to or smaller than the diameter φ5b of the outer pinion gear P5b. may be
 また、本実施形態では、複数のピニオンギヤ組P5cのそれぞれにおいて、外側ピニオンギヤP5bの直径φ5bと内側ピニオンギヤP5aの直径φ5aとが等しい。同じ構造のギヤを外側ピニオンギヤP5b及び内側ピニオンギヤP5aとして用いることができるため、減速機5並びに車両用駆動伝達装置100のコストを低減することができる。 Also, in this embodiment, the diameter φ5b of the outer pinion gear P5b and the diameter φ5a of the inner pinion gear P5a are equal in each of the plurality of pinion gear sets P5c. Since gears having the same structure can be used as the outer pinion gear P5b and the inner pinion gear P5a, the cost of the reduction gear 5 and the vehicle drive transmission device 100 can be reduced.
 しかし、複数のピニオンギヤ組P5cのそれぞれにおいて、外側ピニオンギヤP5bの直径φ5bが内側ピニオンギヤP5aの直径φ5aよりも大きい構成とすることも好適である。即ち、第1減速機51においては、複数の第1ピニオンギヤ組P51cのそれぞれにおいて、第1外側ピニオンギヤP51bの直径φ51bが、第1内側ピニオンギヤP51aの直径φ51aより大きいことも好適である。同様に、第2減速機52においては、複数の第2ピニオンギヤ組P52cのそれぞれにおいて、第2外側ピニオンギヤP52bの直径φ52bが、第2内側ピニオンギヤP52aの直径φ52aより大きいことも好適である。 However, it is also preferable that the diameter φ5b of the outer pinion gear P5b is larger than the diameter φ5a of the inner pinion gear P5a in each of the plurality of pinion gear sets P5c. That is, in the first speed reducer 51, it is also preferable that the diameter φ51b of the first outer pinion gear P51b is larger than the diameter φ51a of the first inner pinion gear P51a in each of the plurality of first pinion gear sets P51c. Similarly, in the second speed reducer 52, in each of the plurality of second pinion gear sets P52c, the diameter φ52b of the second outer pinion gear P52b is preferably larger than the diameter φ52a of the second inner pinion gear P52a.
 外側ピニオンギヤP5bの直径φ5bが内側ピニオンギヤP5aの直径φ5aよりも大きいと、内側ピニオンギヤP5aの直径φ5aと外側ピニオンギヤP5bの直径φ5bとが同じである場合に比べて、内側ピニオンギヤP5a及び外側ピニオンギヤP5bからなるピニオンギヤ組P5cを3組以上備える場合であっても、隣接するピニオンギヤ組同士が干渉することのない範囲で、サンギヤ(減速サンギヤS5)とリングギヤ(減速リングギヤR5)との歯数比を大きく設定することができる。従って、より大きな減速比を有する減速機5を構成し易い。 When the diameter φ5b of the outer pinion gear P5b is larger than the diameter φ5a of the inner pinion gear P5a, compared to the case where the diameter φ5a of the inner pinion gear P5a and the diameter φ5b of the outer pinion gear P5b are the same, the inner pinion gear P5a and the outer pinion gear P5b are formed. Even when three or more pinion gear sets P5c are provided, the gear ratio between the sun gear (reduction sun gear S5) and the ring gear (reduction ring gear R5) is set large within a range in which adjacent pinion gear sets do not interfere with each other. be able to. Therefore, it is easy to configure the speed reducer 5 having a larger speed reduction ratio.
 ところで、上述したように、本実施形態では、減速キャリヤC5が、減速サンギヤS5及び減速リングギヤR5に噛み合うピニオンギヤ組P5cを複数組支持している。即ち、減速機5がダブルピニオン式の遊星歯車機構により構成されている形態を例示している。しかし、減速機5はシングルピニオン式の遊星歯車機構により構成されていてもよい。つまり、減速キャリヤC5は、減速サンギヤS5及び減速リングギヤR5に噛み合うピニオンギヤを複数個支持している形態であってもよい。ダブルピニオン式の遊星歯車機構においてピニオンギヤ組P5cを構成する内側ピニオンギヤP5a及び外側ピニオンギヤP5bのそれぞれも1つのピニオンギヤであるため、ダブルピニオン式であってもシングルピニオン式であっても、減速キャリヤC5は、減速サンギヤS5及び減速リングギヤR5に噛み合うピニオンギヤを複数個支持しているということができる。ダブルピニオン式であるか、シングルピニオン式であるかに拘わらず、減速機5は、減速サンギヤS5、複数のピニオンギヤを回転自在に支持する減速キャリヤC5、及び減速リングギヤR5を備えた遊星歯車機構であるということができる。 By the way, as described above, in this embodiment, the reduction carrier C5 supports a plurality of pinion gear sets P5c that mesh with the reduction sun gear S5 and the reduction ring gear R5. That is, a mode in which the speed reducer 5 is configured by a double pinion planetary gear mechanism is exemplified. However, the speed reducer 5 may be configured by a single pinion planetary gear mechanism. In other words, the reduction carrier C5 may support a plurality of pinion gears meshing with the reduction sun gear S5 and the reduction ring gear R5. In the double-pinion planetary gear mechanism, the inner pinion gear P5a and the outer pinion gear P5b, which form the pinion gear set P5c, are also one pinion gear. , a plurality of pinion gears meshing with the reduction sun gear S5 and the reduction ring gear R5. Regardless of whether it is a double pinion type or a single pinion type, the speed reducer 5 is a planetary gear mechanism including a reduction sun gear S5, a reduction carrier C5 that rotatably supports a plurality of pinion gears, and a reduction ring gear R5. It can be said that there is
 即ち、第1減速機51は、減速第1サンギヤS51、複数の減速第1ピニオンギヤP51(第1ピニオンギヤ)を回転自在に支持する減速第1キャリヤC51、及び減速第1リングギヤR51を備えた遊星歯車機構ということができる。また、第2減速機52は、減速第2サンギヤS52、複数の減速第2ピニオンギヤP52(第2ピニオンギヤ)を回転自在に支持する減速第2キャリヤC52、及び減速第2リングギヤR52を備えた遊星歯車機構ということができる。そして、減速第1サンギヤS51、複数の減速第1ピニオンギヤP51、及び、減速第1リングギヤR51は、斜歯歯車である。また、減速第2サンギヤS52、複数の減速第2ピニオンギヤP52、及び、減速第2リングギヤR52も、斜歯歯車である。 That is, the first reduction gear 51 is a planetary gear including a first reduction sun gear S51, a first reduction carrier C51 that rotatably supports a plurality of first reduction pinion gears P51 (first pinion gears), and a first reduction ring gear R51. It can be called a mechanism. The second reduction gear 52 includes a planetary gear including a reduction second sun gear S52, a reduction second carrier C52 that rotatably supports a plurality of reduction second pinion gears P52 (second pinion gears), and a reduction second ring gear R52. It can be called a mechanism. The first reduction sun gear S51, the plurality of first reduction pinion gears P51, and the first reduction ring gear R51 are helical gears. Further, the second reduction sun gear S52, the plurality of second reduction pinion gears P52, and the second reduction ring gear R52 are also helical gears.
 図1、図2、図8等に示すように、第1出力要素E31と減速第1サンギヤS51とは、同軸上に配置されていると共に第1連結機構41により連結されている。また、第2出力要素E32と減速第2サンギヤS52とは、同軸上に配置されていると共に第2連結機構42により連結されている。詳細は、後述するが、第1連結機構41は、第1出力要素E31と減速第1サンギヤS51との間で伝達されるトルクに応じて、減速第1サンギヤS51と複数の減速第1ピニオンギヤP51との噛み合いにより減速第1サンギヤS51に作用するスラスト力と反対向きのスラスト力を生じさせる第1スラスト力生成部43を備えている。同様に、第2連結機構42は、第2出力要素E32と減速第2サンギヤS52との間で伝達されるトルクに応じて、減速第2サンギヤS52と複数の減速第2ピニオンギヤP52との噛み合いにより減速第2サンギヤS52に作用するスラスト力と反対向きのスラスト力を生じさせる第2スラスト力生成部44を備えている。 As shown in FIGS. 1, 2, 8, etc., the first output element E31 and the reduction first sun gear S51 are coaxially arranged and connected by the first connecting mechanism 41. As shown in FIG. The second output element E32 and the second reduction sun gear S52 are coaxially arranged and connected by a second connecting mechanism . Although the details will be described later, the first coupling mechanism 41 rotates the first reduction sun gear S51 and the plurality of first reduction pinion gears P51 according to the torque transmitted between the first output element E31 and the first reduction sun gear S51. A first thrust force generator 43 generates a thrust force in the opposite direction to the thrust force acting on the reduction first sun gear S51 by meshing with the first sun gear S51. Similarly, the second coupling mechanism 42 is configured by meshing the reduction second sun gear S52 and the plurality of reduction second pinion gears P52 according to the torque transmitted between the second output element E32 and the reduction second sun gear S52. A second thrust force generator 44 is provided to generate a thrust force in the direction opposite to the thrust force acting on the second reduction sun gear S52.
 具体的な構造は、後述するが、本実施形態では、第1連結機構41は、同軸上に配置されている第1出力要素E31と減速第1サンギヤS51とが一体的に回転するように、これらを連結している。また、第2連結機構42は、同軸上に配置されている第2出力要素E32と減速第2サンギヤS52とが一体的に回転するように、これらを連結している。第1出力要素E31と減速第1サンギヤS51とが同軸上に配置されていることにより、同軸上でスラスト力を減殺させることができる。同様に、第2出力要素E32と減速第2サンギヤS52とが同軸上に配置されていることにより、同軸上でスラスト力を減殺させることができる。 Although the specific structure will be described later, in the present embodiment, the first coupling mechanism 41 is configured so that the first output element E31 and the reduction first sun gear S51, which are coaxially arranged, rotate integrally. They are linked. Further, the second connecting mechanism 42 connects the coaxially arranged second output element E32 and the reduction second sun gear S52 so that they rotate integrally. Since the first output element E31 and the reduction first sun gear S51 are arranged coaxially, the thrust force can be reduced coaxially. Similarly, since the second output element E32 and the reduction second sun gear S52 are arranged coaxially, the thrust force can be reduced coaxially.
 原理については図8等を参照して後述するが、第1スラスト力生成部43を備えることによって、減速第1サンギヤS51と減速第1ピニオンギヤP51との噛み合いにより減速第1サンギヤS51に作用するスラスト力を第1スラスト力生成部43により生成されるスラスト力によって減殺することができる。同様に、第2スラスト力生成部44を備えることによって、減速第2サンギヤS52と複数の減速第2ピニオンギヤP52との噛み合いにより減速第2サンギヤS52に作用するスラスト力を第2スラスト力生成部44により生成されるスラスト力によって減殺することができる。このため、減速第1サンギヤS51及び減速第2サンギヤS52を軸方向Lに支持するためのスラスト軸受やスラストワッシャ等を無くしたり、簡略化したりすることができる。 The principle will be described later with reference to FIG. 8 and the like, but by providing the first thrust force generating section 43, the thrust acting on the first reduction sun gear S51 is generated by the engagement between the first reduction sun gear S51 and the first reduction pinion gear P51. The force can be offset by the thrust force generated by the first thrust force generator 43 . Similarly, by providing the second thrust force generator 44, the thrust force acting on the second reduction sun gear S52 due to meshing between the second reduction sun gear S52 and the plurality of second reduction pinion gears P52 is generated by the second thrust force generation unit 44. can be offset by the thrust force generated by Therefore, the thrust bearings, thrust washers, etc. for supporting the first reduction sun gear S51 and the second reduction sun gear S52 in the axial direction L can be eliminated or simplified.
 尚、本実施形態では、入力部材1としてロータ軸10を例示しているが、このように差動歯車機構3と減速機5との間でのスラスト力を減殺する構成が適用される車両用駆動伝達装置100の駆動力源8は回転電機80に限らず内燃機関等でもよい。そして、入力部材1は、ロータ軸10に限られず、各種ギヤ機構や変速機等を介して駆動力源8に連結される部材であってよい。当然ながら、本実施形態のように、駆動力源8は入力部材1と同軸配置されていなくてもよい。例えば、ギヤやチェーン等の伝動部材を介して駆動力源8と入力部材1とが駆動連結されていてもよい。また、駆動力源8が回転電機80であり、入力部材1がロータ軸10である場合であっても、差動歯車機構3が中空筒状のロータ軸10の径方向内側R1に配置されている必要はなく、差動歯車機構3の構造もダブルピニオン型の遊星歯車機構には限定されない。差動歯車機構3は、シングルピニオン型の遊星歯車機構であってもよいし、例えば傘歯車式であってもよい。 In the present embodiment, the rotor shaft 10 is exemplified as the input member 1. However, the present invention is for a vehicle to which a configuration for reducing the thrust force between the differential gear mechanism 3 and the speed reducer 5 is applied. The driving force source 8 of the drive transmission device 100 is not limited to the rotary electric machine 80, and may be an internal combustion engine or the like. The input member 1 is not limited to the rotor shaft 10, and may be a member connected to the driving force source 8 via various gear mechanisms, transmissions, and the like. Of course, the driving force source 8 does not have to be arranged coaxially with the input member 1 as in the present embodiment. For example, the driving force source 8 and the input member 1 may be drivingly connected via a transmission member such as a gear or a chain. Further, even when the driving force source 8 is the rotating electrical machine 80 and the input member 1 is the rotor shaft 10, the differential gear mechanism 3 is arranged radially inside R1 of the hollow cylindrical rotor shaft 10. The structure of the differential gear mechanism 3 is not limited to the double pinion type planetary gear mechanism. The differential gear mechanism 3 may be a single pinion type planetary gear mechanism or, for example, a bevel gear mechanism.
 また、本実施形態では、駆動力源8として回転電機80を備え、差動歯車機構3は、ロータ軸10に対して径方向内側R1であって、径方向Rに沿う径方向視でロータ81と重複する位置に配置されている。また、第1減速機51は、ロータ81及びロータ軸10に対して軸方向第1側L1に配置され、第2減速機52は、ロータ81及びロータ軸10に対して軸方向第2側L2に配置されている。即ち、本実施形態では、駆動力源として回転電機80を用いる電動車両の車両用駆動伝達装置100を、より小型に実現することができる形態を例示している。しかし、上述したように、差動歯車機構3の構造や配置場所、駆動力源8の種類についてはこの形態に限定されるものではない。上述したように、本実施形態では、減速機5が比較的大きな減速比を設定可能な構造を備えている。このように減速機の減速比を大きくすると、スラスト力が大きくなる傾向がある。しかし、本実施形態のようにスラスト力を減殺することができると、減速機5に大きな減速比を設定し易くなり、車両用駆動伝達装置100を小型化し易い。 Further, in the present embodiment, a rotating electrical machine 80 is provided as the driving force source 8, and the differential gear mechanism 3 is located radially inward R1 with respect to the rotor shaft 10, and is positioned radially inward R1 along the radial direction R. are placed in overlapping positions. The first reduction gear 51 is arranged on the first side L1 in the axial direction with respect to the rotor 81 and the rotor shaft 10, and the second reduction gear 52 is arranged on the second side L2 in the axial direction with respect to the rotor 81 and the rotor shaft 10. are placed in That is, the present embodiment exemplifies a form capable of realizing a more compact vehicle drive transmission device 100 for an electric vehicle that uses the rotating electric machine 80 as a driving force source. However, as described above, the structure and location of the differential gear mechanism 3 and the type of the driving force source 8 are not limited to this form. As described above, in this embodiment, the speed reducer 5 has a structure capable of setting a relatively large speed reduction ratio. Increasing the speed reduction ratio of the speed reducer in this manner tends to increase the thrust force. However, if the thrust force can be reduced as in the present embodiment, it becomes easier to set a large reduction ratio in the speed reducer 5, and the size of the vehicle drive transmission device 100 can be easily reduced.
 図2及び図8に示すように、第1連結機構41は、第1出力要素E31と一体的に形成された第1部材11と、減速第1サンギヤS51と一体的に形成された第2部材12とを備えている。そして、第1部材11は、軸方向Lに沿う軸心周りの螺旋状の噛み合い溝で構成された第1係合部21を備えている。また、第2部材12は、軸方向Lに沿う軸心周りの螺旋状の噛み合い溝で構成された第2係合部22を備えている。これら第1係合部21と第2係合部22とは噛み合い係合している。上述したように、減速第1サンギヤS51は斜歯歯車である。噛み合い係合する第1係合部21及び第2係合部22のねじれの向きは、下記のように設定されている。即ち、第1出力要素E31と減速第1サンギヤS51との間で伝達されるトルクに応じて、第1係合部21と第2係合部22との噛み合いにより第2部材12に作用するスラスト力の向きが、減速第1サンギヤS51と複数の減速第1ピニオンギヤP51との噛み合いにより減速第1サンギヤS51に作用するスラスト力の向きと反対向きとなるように、第1係合部21及び第2係合部22のねじれの向きが設定されている。 As shown in FIGS. 2 and 8, the first coupling mechanism 41 includes a first member 11 integrally formed with the first output element E31 and a second member integrally formed with the reduction first sun gear S51. 12. The first member 11 includes a first engagement portion 21 formed of a spiral engagement groove around an axis along the axial direction L. As shown in FIG. In addition, the second member 12 includes a second engaging portion 22 formed of a spiral engagement groove around an axis along the axial direction L. As shown in FIG. The first engaging portion 21 and the second engaging portion 22 are meshingly engaged. As described above, the reduction first sun gear S51 is a helical gear. The twist directions of the first engaging portion 21 and the second engaging portion 22 that mesh and engage are set as follows. That is, according to the torque transmitted between the first output element E31 and the reduction first sun gear S51, the thrust acting on the second member 12 due to the engagement between the first engaging portion 21 and the second engaging portion 22 The first engagement portion 21 and the first engagement portion 21 are arranged so that the direction of the force is opposite to the direction of the thrust force acting on the first reduction sun gear S51 due to the engagement between the first reduction sun gear S51 and the plurality of first reduction pinion gears P51. The direction of twist of the second engaging portion 22 is set.
 また、第2連結機構42は、第2出力要素E32と一体的に形成された第3部材13と、減速第2サンギヤS52と一体的に形成された第4部材14とを備えている。そして、第3部材13は、軸方向Lに沿う軸心周りの螺旋状の噛み合い溝で構成された第3係合部23を備えている。また、第4部材14は、軸方向Lに沿う軸心周りの螺旋状の噛み合い溝で構成された第4係合部24を備えている。第1係合部21及び第2係合部22と同様に、これら第3係合部23と第4係合部24とは、噛み合い係合している。上述したように、減速第2サンギヤS52は斜歯歯車である。噛み合い係合する第3係合部23及び第4係合部24のねじれの向きは、下記のように設定されている。第2出力要素E32と減速第2サンギヤS52との間で伝達されるトルクに応じて、第3係合部23と第4係合部24との噛み合いにより第4部材14に作用するスラスト力の向きが、減速第2サンギヤS52と複数の減速第2ピニオンギヤP52との噛み合いにより減速第2サンギヤS52に作用するスラスト力の向きと反対向きとなるように、第3係合部23及び第4係合部24のねじれの向きが設定されている。詳細な構造は、後述するが、このように、本実施形態では、第1スラスト力生成部43及び第2スラスト力生成部44を比較的簡易な構成により実現することができる。 The second coupling mechanism 42 also includes a third member 13 integrally formed with the second output element E32 and a fourth member 14 integrally formed with the second reduction sun gear S52. The third member 13 has a third engagement portion 23 formed of a spiral engagement groove around an axis along the axial direction L. As shown in FIG. Further, the fourth member 14 has a fourth engagement portion 24 formed of a spiral engagement groove around an axis along the axial direction L. As shown in FIG. Similar to the first engaging portion 21 and the second engaging portion 22, the third engaging portion 23 and the fourth engaging portion 24 are meshingly engaged. As described above, the reduction second sun gear S52 is a helical gear. The twisting directions of the third engaging portion 23 and the fourth engaging portion 24 that engage with each other are set as follows. Depending on the torque transmitted between the second output element E32 and the reduction second sun gear S52, the thrust force acting on the fourth member 14 due to the engagement between the third engaging portion 23 and the fourth engaging portion 24 is reduced. The third engaging portion 23 and the fourth engaging portion 23 are arranged so that the direction of the thrust force acting on the second reduction sun gear S52 due to the engagement between the second reduction sun gear S52 and the plurality of second reduction pinion gears P52 is opposite to the direction of the thrust force. The twist direction of the joining portion 24 is set. Although the detailed structure will be described later, in this way, in this embodiment, the first thrust force generator 43 and the second thrust force generator 44 can be realized with a relatively simple configuration.
 尚、上述した螺旋状の噛み合い溝とは、螺旋状の凹溝と凸条とが周方向に交互に配置された構成を示す。例えば、ヘリカルスプラインやヘリカルギヤ(斜歯歯車)に形成された噛み合い溝である。 The spiral engagement groove described above indicates a configuration in which spiral grooves and ridges are alternately arranged in the circumferential direction. For example, it is a meshing groove formed in a helical spline or a helical gear (helical gear).
 また、第1部材11は筒状に形成された第1筒状部15を備えている。そして、第1筒状部15の内周面15aには第1係合部21が形成されている。尚、第1筒状部15の外周面15bには、差動第1サンギヤS31が形成されている。また、第2部材12は軸状に形成された第1軸状部16を備えている。そして、第1軸状部16の外周面16bには第2係合部22が形成されている。減速第1サンギヤS51は、第1軸状部16の外周面16bにおける、第2係合部22とは軸方向Lの異なる位置に設けられている。そして、第2係合部22は、その直径φ22が減速第1サンギヤS51の直径φ51と同じであって、減速第1サンギヤS51を構成する斜歯歯車と同じねじれ角である。 In addition, the first member 11 has a first tubular portion 15 formed in a tubular shape. A first engaging portion 21 is formed on the inner peripheral surface 15 a of the first tubular portion 15 . A differential first sun gear S31 is formed on the outer peripheral surface 15b of the first cylindrical portion 15. As shown in FIG. In addition, the second member 12 has a first shaft-shaped portion 16 formed in the shape of a shaft. A second engaging portion 22 is formed on the outer peripheral surface 16 b of the first shaft-shaped portion 16 . The first reduction sun gear S<b>51 is provided at a different position in the axial direction L from the second engaging portion 22 on the outer peripheral surface 16 b of the first shaft-shaped portion 16 . The diameter φ22 of the second engaging portion 22 is the same as the diameter φ51 of the first reduction sun gear S51, and has the same helix angle as the helical gear that constitutes the first reduction sun gear S51.
 また、第3部材13は筒状に形成された第2筒状部17を備えている。そして、第2筒状部17の内周面17aには第3係合部23が形成されている。尚、第2筒状部17の外周面17bには、差動第2サンギヤS32が形成されている。また、第4部材14は軸状に形成された第2軸状部18を備えている。そして、第2軸状部18の外周面18bには第4係合部24が形成されている。減速第2サンギヤS52は、第2軸状部18の外周面18bにおける、第4係合部24とは軸方向Lの異なる位置に設けられている。そして、第4係合部24は、その直径φ24が減速第2サンギヤS52の直径φ52と同じであって、減速第2サンギヤS52を構成する斜歯歯車と同じねじれ角である。 In addition, the third member 13 has a second tubular portion 17 formed in a tubular shape. A third engaging portion 23 is formed on the inner peripheral surface 17a of the second cylindrical portion 17. As shown in FIG. A differential second sun gear S32 is formed on the outer peripheral surface 17b of the second tubular portion 17. As shown in FIG. Further, the fourth member 14 has a second shaft-shaped portion 18 formed in a shaft shape. A fourth engaging portion 24 is formed on the outer peripheral surface 18 b of the second shaft-shaped portion 18 . The second reduction sun gear S<b>52 is provided at a different position in the axial direction L from the fourth engaging portion 24 on the outer peripheral surface 18 b of the second shaft-shaped portion 18 . The diameter φ24 of the fourth engaging portion 24 is the same as the diameter φ52 of the second reduction sun gear S52, and has the same helix angle as the helical gear that constitutes the second reduction sun gear S52.
 尚、差動歯車機構3の出力要素(第1出力要素E31、第2出力要素E32)における第1係合部21及び第3係合部23が同一の構造である場合、第2係合部22及び第4係合部24も同一の構造となる。この場合、第1軸状部16及び第2軸状部18は同一の構造となり、第1軸状部16の外周面16bにおける第2係合部22の直径φ22と、第2軸状部18の外周面18bにおける第4係合部24の直径φ24とは、同一径(φ20)となる。 When the first engaging portion 21 and the third engaging portion 23 in the output elements (the first output element E31 and the second output element E32) of the differential gear mechanism 3 have the same structure, the second engaging portion 22 and the fourth engaging portion 24 also have the same structure. In this case, the first shaft-shaped portion 16 and the second shaft-shaped portion 18 have the same structure. The diameter φ24 of the fourth engaging portion 24 on the outer peripheral surface 18b is the same diameter (φ20).
 第1係合部21と第2係合部22との噛み合いにより第2部材12に作用するスラスト力は、第1スラスト力生成部43により生成されるスラスト力であり、第3係合部23と第4係合部24との噛み合いにより第4部材14に作用するスラスト力は、第2スラスト力生成部44により生成されるスラスト力である。従って、減速第1サンギヤS51と複数の減速第1ピニオンギヤP51との噛み合いにより減速第1サンギヤS51に作用するスラスト力と、第1スラスト力生成部43により生成されるスラスト力とを同等にすることができる。そして、これにより、減速第1サンギヤS51に作用するスラスト力を適切に相殺することができる。同様に、減速第2サンギヤS52と複数の減速第2ピニオンギヤP52との噛み合いにより減速第2サンギヤS52に作用するスラスト力と、第2スラスト力生成部44により生成されるスラスト力とを同等にすることができる。そして、これにより、減速第2サンギヤS52に作用するスラスト力を適切に相殺することができる。 The thrust force acting on the second member 12 due to the engagement between the first engaging portion 21 and the second engaging portion 22 is the thrust force generated by the first thrust force generating portion 43, and the third engaging portion 23 The thrust force acting on the fourth member 14 due to the engagement between the and the fourth engaging portion 24 is the thrust force generated by the second thrust force generating portion 44 . Therefore, the thrust force acting on the reduction first sun gear S51 due to the meshing of the reduction first sun gear S51 and the plurality of reduction first pinion gears P51 and the thrust force generated by the first thrust force generation section 43 should be equal. can be done. Thus, the thrust force acting on the reduction first sun gear S51 can be offset appropriately. Similarly, the thrust force acting on the second reduction sun gear S52 due to the engagement between the second reduction sun gear S52 and the plurality of second reduction pinion gears P52 is made equal to the thrust force generated by the second thrust force generator 44. be able to. Thus, the thrust force acting on the reduction second sun gear S52 can be offset appropriately.
 尚、ここでは、第1筒状部15の内周面15aに形成された第1係合部21が径方向外側R2に配置され、第1軸状部16の外周面16bに形成された第2係合部22が径方向内側R1に配置されて、第1係合部21と第2係合部22とが噛み合い係合する形態を示した。また、第2筒状部17の内周面17aに形成された第3係合部23が径方向外側R2に配置され、第2軸状部18の外周面18bに形成された第4係合部24が径方向内側R1に配置されて、第3係合部23と第4係合部24とが噛み合い係合する形態を示した。しかし、第1係合部21と第2係合部22との径方向Rにおける内外の関係はこれとは逆であってもよい。その場合、例えば、第1筒状部15の外周面15bにおける、差動第1サンギヤS31よりも軸方向第1側L1に第1係合部21が形成され、第1軸状部16における少なくとも軸方向第2側L2の端部が筒状に形成され、その内周面に第2係合部22が形成されると良い。同様に、第3係合部23と第4係合部24との径方向Rにおける内外の関係もこれとは逆であってもよい。その場合、例えば、第2筒状部17の外周面17bにおける、差動第2サンギヤS32よりも軸方向第2側L2に第3係合部23が形成され、第2軸状部18における少なくとも軸方向第1側L1の端部が筒状に形成され、その内周面に第4係合部24が形成されると良い。 Here, the first engaging portion 21 formed on the inner peripheral surface 15a of the first cylindrical portion 15 is arranged radially outward R2, and the first engaging portion 21 formed on the outer peripheral surface 16b of the first shaft-shaped portion 16 is arranged radially outward R2. The second engaging portion 22 is arranged on the radially inner side R1, and the first engaging portion 21 and the second engaging portion 22 mesh and engage with each other. Further, the third engaging portion 23 formed on the inner peripheral surface 17a of the second cylindrical portion 17 is arranged radially outward R2, and the fourth engaging portion 23 formed on the outer peripheral surface 18b of the second shaft-shaped portion 18 is arranged. The third engaging portion 23 and the fourth engaging portion 24 mesh and engage with each other with the portion 24 disposed radially inward R1. However, the inside/outside relationship in the radial direction R between the first engaging portion 21 and the second engaging portion 22 may be reversed. In that case, for example, the first engagement portion 21 is formed on the first side L1 in the axial direction of the first differential sun gear S31 on the outer peripheral surface 15b of the first cylindrical portion 15, It is preferable that the end portion on the axial second side L2 is formed in a tubular shape, and the second engaging portion 22 is formed on the inner peripheral surface thereof. Similarly, the inside/outside relationship in the radial direction R between the third engaging portion 23 and the fourth engaging portion 24 may be reversed. In that case, for example, the third engaging portion 23 is formed on the second axial side L2 of the second differential sun gear S32 on the outer peripheral surface 17b of the second cylindrical portion 17, and the second axial portion 18 has at least It is preferable that the end portion on the axial direction first side L1 is formed in a tubular shape, and the fourth engaging portion 24 is formed on the inner peripheral surface thereof.
 上述したように、入力部材1としてのロータ軸10は、ロータ軸受B1(第1軸受)によって、軸方向L及び径方向Rに支持されている。また、減速第1キャリヤC51は、第1出力軸受B51(第2軸受)によって、軸方向L及び径方向Rに支持されている。また、減速第2キャリヤC52は、第2出力軸受B52によって、軸方向L及び径方向Rに支持されている。しかし、本実施形態では、減速第1サンギヤS51及び第2部材12を軸方向L及び径方向Rに支持する軸受が設けられていない。同様に、減速第2サンギヤS52及び第4部材14を軸方向L及び径方向Rに支持する軸受も設けられていない。即ち、減速第1サンギヤS51及び減速第2サンギヤS52はいわゆるフローティング状態で配置されている。このように、減速第1サンギヤS51及び減速第2サンギヤS52を軸方向L及び径方向Rに支持するための軸受を備えていないため、これらの支持構造を簡略化することができる。 As described above, the rotor shaft 10 as the input member 1 is supported in the axial direction L and the radial direction R by the rotor bearing B1 (first bearing). Further, the first deceleration carrier C51 is supported in the axial direction L and the radial direction R by a first output bearing B51 (second bearing). Further, the second deceleration carrier C52 is supported in the axial direction L and the radial direction R by the second output bearing B52. However, in this embodiment, bearings for supporting the first reduction sun gear S51 and the second member 12 in the axial direction L and the radial direction R are not provided. Similarly, bearings that support the second reduction sun gear S52 and the fourth member 14 in the axial direction L and the radial direction R are not provided. That is, the first reduction sun gear S51 and the second reduction sun gear S52 are arranged in a so-called floating state. In this way, since bearings for supporting the first reduction sun gear S51 and the second reduction sun gear S52 in the axial direction L and the radial direction R are not provided, the support structure for these can be simplified.
 尚、本実施形態では、減速第1サンギヤS51及び第2部材12を軸方向L及び径方向Rに支持する軸受が設けられていないだけではなく、差動歯車機構3の第1出力要素E31(ここでは差動第1サンギヤS31)及び第1部材11を軸方向L及び径方向Rに支持する軸受も設けられていない。同様に、減速第2サンギヤS52及び第4部材14を軸方向L及び径方向Rに支持する軸受が設けられていないだけではなく、差動歯車機構3の第2出力要素E32(ここでは差動第2サンギヤS32)及び第2部材12を軸方向L及び径方向Rに支持する軸受も設けられていない。即ち、差動歯車機構3の差動第1サンギヤS31及び差動第2サンギヤS32は、いわゆるフローティング状態で配置されている。 In addition, in this embodiment, not only are bearings that support the first reduction sun gear S51 and the second member 12 in the axial direction L and the radial direction R not provided, but also the first output element E31 of the differential gear mechanism 3 ( Here, bearings for supporting the differential first sun gear S31) and the first member 11 in the axial direction L and the radial direction R are also not provided. Similarly, not only are there no bearings supporting the second reduction sun gear S52 and the fourth member 14 in the axial direction L and the radial direction R, but also the second output element E32 of the differential gear mechanism 3 (here, the differential Bearings that support the second sun gear S32) and the second member 12 in the axial direction L and the radial direction R are also not provided. That is, the first differential sun gear S31 and the second differential sun gear S32 of the differential gear mechanism 3 are arranged in a so-called floating state.
 第1部材11及び第2部材12は、第1連結部材71に設けられ、第3部材13及び第4部材14は、第2連結部材72に設けられている。従って、第1連結部材71及び第2連結部材72を軸方向L及び径方向Rに支持する軸受は設けられておらず、第1連結部材71及び第2連結部材72は、いわゆるフローティング状態で配置されている。第1連結部材71及び第2連結部材72は、それぞれ第1連結機構41及び第2連結機構42の中核となる部材であり、それぞれ第1スラスト力生成部43及び第2スラスト力生成部44を構成している。第1スラスト力生成部43及び第2スラスト力生成部44がこのようにフローティング状態で配置される部材を用いて構成されていることで、適切にスラスト力を相殺させることができる。 The first member 11 and the second member 12 are provided on the first connecting member 71 , and the third member 13 and the fourth member 14 are provided on the second connecting member 72 . Therefore, no bearings are provided to support the first connecting member 71 and the second connecting member 72 in the axial direction L and the radial direction R, and the first connecting member 71 and the second connecting member 72 are arranged in a so-called floating state. It is The first connecting member 71 and the second connecting member 72 are core members of the first connecting mechanism 41 and the second connecting mechanism 42, respectively, and act as the first thrust force generator 43 and the second thrust force generator 44, respectively. Configure. By configuring the first thrust force generation section 43 and the second thrust force generation section 44 using members that are arranged in such a floating state, the thrust forces can be offset appropriately.
 尚、本実施形態では、このように第1スラスト力生成部43及び第2スラスト力生成部44がフローティング状態で配置される部材を用いて構成されている形態を例示した。しかし、当然ながら、フローティング状態での配置に限らず、第1スラスト力生成部43及び第2スラスト力生成部44を実現する部材が、少なくとも1つの軸受により支持されていても良い。但し、このような軸受は、第1スラスト力生成部43及び第2スラスト力生成部44を実現する部材を径方向Rに支持するのみであって、軸方向Lには支持しないものとする必要がある。 In this embodiment, the first thrust force generation section 43 and the second thrust force generation section 44 are configured using members that are arranged in a floating state. However, it goes without saying that the members that realize the first thrust force generation section 43 and the second thrust force generation section 44 may be supported by at least one bearing without being limited to the arrangement in the floating state. However, such a bearing should only support the member that realizes the first thrust force generating portion 43 and the second thrust force generating portion 44 in the radial direction R, and should not support the member in the axial direction L. There is
〔その他の実施形態〕
 以下、その他の実施形態について説明する。尚、以下に説明する各実施形態の構成は、それぞれ単独で適用されるものに限られず、矛盾が生じない限り、他の実施形態の構成と組み合わせて適用することも可能である。
[Other embodiments]
Other embodiments will be described below. The configuration of each embodiment described below is not limited to being applied alone, and can be applied in combination with the configuration of other embodiments as long as there is no contradiction.
 上記においては、図1から図3、図6等を参照して、第1回転要素E1が差動第1サンギヤS31であり、第2回転要素E2が差動キャリヤC3であり、第3回転要素E3が差動第2サンギヤS32であり、差動キャリヤC3が、差動第1ピニオンギヤP31及び差動第2ピニオンギヤP32をそれぞれ回転自在に支持している差動歯車機構3を例示して説明した。この形態では、リングギヤを有さず、差動第1ピニオンギヤP31が、差動第1サンギヤS31及び差動第2ピニオンギヤP32に噛み合い、差動第2ピニオンギヤP32が、差動第1ピニオンギヤP31及び差動第2サンギヤS32に噛み合っている。 In the above description, referring to FIGS. 1 to 3, 6, etc., the first rotating element E1 is the first differential sun gear S31, the second rotating element E2 is the differential carrier C3, and the third rotating element The differential gear mechanism 3 in which E3 is the second differential sun gear S32 and the differential carrier C3 rotatably supports the first differential pinion gear P31 and the second differential pinion gear P32 has been described as an example. . In this embodiment, there is no ring gear, the first differential pinion gear P31 meshes with the first differential sun gear S31 and the second differential pinion gear P32, and the second differential pinion gear P32 meshes with the first differential pinion gear P31 and the second differential pinion gear P31. It meshes with the dynamic second sun gear S32.
 しかし、リングギヤを有さない遊星歯車式の差動歯車機構3は、この構成には限られない。差動歯車機構3は、例えば、図10及び図11に示す第2差動歯車機構3Bのように構成されていてもよい。この差動歯車機構3においても、第1回転要素E1が差動第1サンギヤS31であり、第2回転要素E2が差動キャリヤC3であり、第3回転要素E3が差動第2サンギヤS32であり、差動キャリヤC3が、差動第1ピニオンギヤP31及び差動第2ピニオンギヤP32をそれぞれ回転自在に支持している。但し、この形態では、2つのピニオンギヤは互いに噛み合わず、2つのピニオンギヤがそれぞれ異なるサンギヤが噛み合っている。具体的には、差動第1ピニオンギヤP31は、差動第1サンギヤS31に噛み合い、差動第2ピニオンギヤP32は、差動第2サンギヤS32に噛み合っている。差動第1ピニオンギヤP31及び差動第2ピニオンギヤP32は、同径、同歯数のギヤであり、差動第1サンギヤS31及び差動第2サンギヤS32は、同径、同歯数のギヤである。 However, the planetary gear type differential gear mechanism 3 that does not have a ring gear is not limited to this configuration. The differential gear mechanism 3 may be configured like a second differential gear mechanism 3B shown in FIGS. 10 and 11, for example. Also in this differential gear mechanism 3, the first rotating element E1 is the first differential sun gear S31, the second rotating element E2 is the differential carrier C3, and the third rotating element E3 is the second differential sun gear S32. A differential carrier C3 rotatably supports the first differential pinion gear P31 and the second differential pinion gear P32. However, in this form, the two pinion gears do not mesh with each other, and the two pinion gears mesh with different sun gears. Specifically, the first differential pinion gear P31 meshes with the first differential sun gear S31, and the second differential pinion gear P32 meshes with the second differential sun gear S32. The first differential pinion gear P31 and the second differential pinion gear P32 have the same diameter and the same number of teeth, and the first differential sun gear S31 and the second differential sun gear S32 have the same diameter and the same number of teeth. be.
 また、遊星歯車式の差動歯車機構3として、リングギヤを備えた構成としても良い。例えば、図12及び図13に示す第3差動歯車機構3Cのような構成とすることができる。第3差動歯車機構3Cでは、第1回転要素E1が差動サンギヤS3であり、第2回転要素E2が差動リングギヤR3であり、第3回転要素E3が差動キャリヤC3であり、差動キャリヤC3が、差動第1ピニオンギヤP31及び差動第2ピニオンギヤP32をそれぞれ回転自在に支持している。差動第1ピニオンギヤP31と差動第2ピニオンギヤP32とは同径、同歯数のギヤであり、互いに噛み合っている。そして、差動第1ピニオンギヤP31は、差動サンギヤS3に噛み合い、差動第2ピニオンギヤP32は、差動リングギヤR3に噛み合っている。 Further, the planetary gear type differential gear mechanism 3 may be configured to include a ring gear. For example, a configuration like the third differential gear mechanism 3C shown in FIGS. 12 and 13 can be used. In the third differential gear mechanism 3C, the first rotating element E1 is the differential sun gear S3, the second rotating element E2 is the differential ring gear R3, the third rotating element E3 is the differential carrier C3, and the differential A carrier C3 rotatably supports the first differential pinion gear P31 and the second differential pinion gear P32. The differential first pinion gear P31 and the differential second pinion gear P32 have the same diameter and the same number of teeth, and mesh with each other. The differential first pinion gear P31 meshes with the differential sun gear S3, and the differential second pinion gear P32 meshes with the differential ring gear R3.
〔実施形態の概要〕
 以下、上記において説明した車両用駆動伝達装置(100)の概要について簡単に説明する。
[Outline of embodiment]
An overview of the vehicle drive transmission device (100) described above will be briefly described below.
 1つの態様として、車両用駆動伝達装置(100)は、
 駆動力源(8)に駆動連結される入力部材(1)と、
 第1車輪(W1)に駆動連結される第1出力部材(91)と、
 第2車輪(W2)に駆動連結される第2出力部材(92)と、
 前記入力部材(1)と一体的に回転するように連結された入力要素(E30)、第1出力要素(E31)、及び、第2出力要素(E32)を備え、前記入力部材(1)から前記入力要素(E30)に伝達されたトルクを前記第1出力要素(E31)と前記第2出力要素(E32)とに分配する差動歯車機構(3)と、
 前記第1出力要素(E31)の回転を減速して前記第1出力部材(91)に伝達する第1減速機(51)と、
 前記第2出力要素(E32)の回転を減速して前記第2出力部材(92)に伝達する第2減速機(52)と、を備えた車両用駆動伝達装置(100)であって、
 前記第1減速機(51)は、第1サンギヤ(S51)、複数の第1ピニオンギヤ(P51)を回転自在に支持する第1キャリヤ(C51)、及び第1リングギヤ(R51)を備えた遊星歯車機構であり、
 前記第1サンギヤ(S51)、複数の前記第1ピニオンギヤ(P51)、及び、前記第1リングギヤ(R51)は、斜歯歯車であり、
 前記第2減速機(52)は、第2サンギヤ(S52)、複数の第2ピニオンギヤ(P52)を回転自在に支持する第2キャリヤ(C52)、及び第2リングギヤ(R52)を備えた遊星歯車機構であり、
 前記第2サンギヤ(S52)、複数の前記第2ピニオンギヤ(P52)、及び、前記第2リングギヤ(R52)は、斜歯歯車であり、
 前記第1出力要素(E31)と前記第1サンギヤ(S51)とが、同軸上に配置されていると共に第1連結機構(41)により連結され、
 前記第2出力要素(E32)と前記第2サンギヤ(S52)とが、同軸上に配置されていると共に第2連結機構(42)により連結され、
 前記第1連結機構(41)は、前記第1出力要素(E31)と前記第1サンギヤ(S51)との間で伝達されるトルクに応じて、前記第1サンギヤ(S51)と複数の前記第1ピニオンギヤ(P51)との噛み合いにより前記第1サンギヤ(S51)に作用するスラスト力と反対向きのスラスト力を生じさせる第1スラスト力生成部(43)を備え、
 前記第2連結機構(42)は、前記第2出力要素(E32)と前記第2サンギヤ(S52)との間で伝達されるトルクに応じて、前記第2サンギヤ(S52)と複数の前記第2ピニオンギヤ(P52)との噛み合いにより前記第2サンギヤ(S52)に作用するスラスト力と反対向きのスラスト力を生じさせる第2スラスト力生成部(44)を備える。
As one aspect, the vehicle drive transmission device (100) includes:
an input member (1) drivingly connected to a driving force source (8);
a first output member (91) drivingly connected to the first wheel (W1);
a second output member (92) drivingly connected to the second wheel (W2);
An input element (E30), a first output element (E31), and a second output element (E32) connected to rotate integrally with the input member (1), and from the input member (1) a differential gear mechanism (3) that distributes the torque transmitted to the input element (E30) to the first output element (E31) and the second output element (E32);
a first speed reducer (51) that reduces rotation of the first output element (E31) and transmits it to the first output member (91);
A drive transmission device (100) for a vehicle, comprising: a second speed reducer (52) that decelerates the rotation of the second output element (E32) and transmits the speed to the second output member (92),
The first speed reducer (51) includes a first sun gear (S51), a first carrier (C51) rotatably supporting a plurality of first pinion gears (P51), and a planetary gear provided with a first ring gear (R51). is a mechanism,
The first sun gear (S51), the plurality of first pinion gears (P51), and the first ring gear (R51) are helical gears,
The second reduction gear (52) includes a second sun gear (S52), a second carrier (C52) rotatably supporting a plurality of second pinion gears (P52), and a planetary gear provided with a second ring gear (R52). is a mechanism,
The second sun gear (S52), the plurality of second pinion gears (P52), and the second ring gear (R52) are helical gears,
The first output element (E31) and the first sun gear (S51) are coaxially arranged and connected by a first connecting mechanism (41),
the second output element (E32) and the second sun gear (S52) are coaxially arranged and connected by a second connecting mechanism (42);
The first coupling mechanism (41) is adapted to connect the first sun gear (S51) and the plurality of first sun gears (S51) according to the torque transmitted between the first output element (E31) and the first sun gear (S51). A first thrust force generator (43) that generates a thrust force in the opposite direction to the thrust force acting on the first sun gear (S51) by meshing with the 1 pinion gear (P51),
The second coupling mechanism (42) is adapted to connect the second sun gear (S52) and the plurality of second sun gears (S52) according to the torque transmitted between the second output element (E32) and the second sun gear (S52). A second thrust force generator (44) is provided that generates a thrust force in the opposite direction to the thrust force acting on the second sun gear (S52) by meshing with the two-pinion gear (P52).
 本構成によれば、第1サンギヤ(S51)と複数の第1ピニオンギヤ(P51)との噛み合いにより第1サンギヤ(S51)に作用するスラスト力を第1スラスト力生成部(43)により生成されるスラスト力によって減殺することができると共に、第2サンギヤ(S52)と複数の第2ピニオンギヤ(P52)との噛み合いにより第2サンギヤ(S52)に作用するスラスト力を第2スラスト力生成部(44)により生成されるスラスト力によって減殺することができる。よって、第1サンギヤ(S51)及び第2サンギヤ(S52)を軸方向(L)に支持するための軸受やワッシャ等を無くしたり、簡略化したりすることができる。このように、本構成によれば、斜歯歯車のサンギヤを有した遊星歯車式の減速機において生じるスラスト力を簡易な構成で低減することができる車両用駆動伝達装置(100)を提供することができる。 According to this configuration, the thrust force acting on the first sun gear (S51) is generated by the first thrust force generator (43) due to the engagement between the first sun gear (S51) and the plurality of first pinion gears (P51). The thrust force can be reduced by the thrust force, and the thrust force acting on the second sun gear (S52) due to the meshing between the second sun gear (S52) and the plurality of second pinion gears (P52) is generated by the second thrust force generator (44). can be offset by the thrust force generated by Therefore, bearings, washers, etc. for supporting the first sun gear (S51) and the second sun gear (S52) in the axial direction (L) can be eliminated or simplified. Thus, according to this configuration, it is possible to provide a vehicle drive transmission device (100) capable of reducing the thrust force generated in a planetary gear type speed reducer having a helical sun gear with a simple configuration. can be done.
 また、車両用駆動伝達装置(100)は、
 前記第1出力要素(E31)及び前記第2出力要素(E32)の回転軸心に沿う方向を軸方向(L)として、
 前記第1連結機構(41)は、前記第1出力要素(E31)と一体的に形成された第1部材(11)と、前記第1サンギヤ(S51)と一体的に形成された第2部材(12)とを備え、
 前記第1部材(11)は、前記軸方向(L)に沿う軸心周りの螺旋状の噛み合い溝で構成された第1係合部(21)を備え、
 前記第2部材(12)は、前記軸方向(L)に沿う軸心周りの螺旋状の噛み合い溝で構成された第2係合部(22)を備え、
 前記第1係合部(21)と前記第2係合部(22)とが噛み合い係合し、
 前記第1出力要素(E31)と前記第1サンギヤ(S51)との間で伝達されるトルクに応じて、前記第1係合部(41)と前記第2係合部(42)との噛み合いにより前記第2部材(12)に作用するスラスト力の向きが、前記第1サンギヤ(S51)と複数の前記第1ピニオンギヤ(P51)との噛み合いにより前記第1サンギヤ(S51)に作用するスラスト力の向きと反対向きとなるように、前記第1係合部(21)及び前記第2係合部(22)のねじれの向きが設定され、
 前記第2連結機構(42)は、前記第2出力要素(E32)と一体的に形成された第3部材(13)と、前記第2サンギヤ(S52)と一体的に形成された第4部材(14)とを備え、
 前記第3部材(13)は、前記軸方向(L)に沿う軸心周りの螺旋状の噛み合い溝で構成された第3係合部(23)を備え、
 前記第4部材(24)は、前記軸方向(L)に沿う軸心周りの螺旋状の噛み合い溝で構成された第4係合部(24)を備え、
 前記第3係合部(23)と前記第4係合部(24)とが噛み合い係合し、
 前記第2出力要素(E32)と前記第2サンギヤ(S52)との間で伝達されるトルクに応じて、前記第3係合部(23)と前記第4係合部(24)との噛み合いにより前記第4部材(14)に作用するスラスト力の向きが、前記第2サンギヤ(S52)と複数の前記第2ピニオンギヤ(P52)との噛み合いにより前記第2サンギヤ(S52)に作用するスラスト力の向きと反対向きとなるように、前記第3係合部(23)及び前記第4係合部(24)のねじれの向きが設定されていると好適である。
Further, the vehicle drive transmission device (100)
With the direction along the rotation axis of the first output element (E31) and the second output element (E32) as an axial direction (L),
The first coupling mechanism (41) includes a first member (11) integrally formed with the first output element (E31) and a second member integrally formed with the first sun gear (S51). (12) and
The first member (11) has a first engaging portion (21) formed of a spiral engagement groove around an axis along the axial direction (L),
The second member (12) has a second engagement portion (22) formed of a spiral engagement groove around an axis along the axial direction (L),
The first engaging portion (21) and the second engaging portion (22) mesh and engage,
The first engagement portion (41) and the second engagement portion (42) are meshed according to the torque transmitted between the first output element (E31) and the first sun gear (S51). The direction of the thrust force acting on the second member (12) is changed by the thrust force acting on the first sun gear (S51) due to the engagement between the first sun gear (S51) and the plurality of first pinion gears (P51). The twist direction of the first engaging portion (21) and the second engaging portion (22) is set so as to be opposite to the direction of
The second connection mechanism (42) includes a third member (13) integrally formed with the second output element (E32) and a fourth member integrally formed with the second sun gear (S52). (14) and
The third member (13) has a third engaging portion (23) formed of a spiral engagement groove around an axis along the axial direction (L),
The fourth member (24) has a fourth engagement portion (24) formed of a spiral engagement groove around an axis along the axial direction (L),
The third engaging portion (23) and the fourth engaging portion (24) mesh and engage,
The engagement between the third engagement portion (23) and the fourth engagement portion (24) according to the torque transmitted between the second output element (E32) and the second sun gear (S52) The direction of the thrust force acting on the fourth member (14) is changed by the thrust force acting on the second sun gear (S52) due to the engagement between the second sun gear (S52) and the plurality of second pinion gears (P52). It is preferable that the twisting directions of the third engaging portion (23) and the fourth engaging portion (24) are set so as to be opposite to the direction of .
 本構成によれば、第1スラスト力生成部(43)及び第2スラスト力生成部(44)を比較的簡易な構成により実現することができる。 According to this configuration, the first thrust force generation section (43) and the second thrust force generation section (44) can be realized with a relatively simple configuration.
 また、車両用駆動伝達装置(100)は、
 前記第1部材(11)は筒状に形成された第1筒状部(15)を備え、前記第1筒状部(15)の内周面(15a)に前記第1係合部(21)が形成され、
 前記第2部材(12)は軸状に形成された第1軸状部(16)を備え、前記第1軸状部(16)の外周面(16b)に前記第2係合部(22)が形成され、
 前記第1サンギヤ(S51)は、前記第1軸状部(16)の前記外周面(16b)における、前記第2係合部(22)とは前記軸方向(L)の異なる位置に設けられ、
 前記第2係合部(22)は、前記第1サンギヤ(S51)と同じ直径であって、前記第1サンギヤ(S51)を構成する斜歯歯車と同じねじれ角であり、
 前記第3部材(13)は筒状に形成された第2筒状部(17)を備え、前記第2筒状部(17)の内周面(17a)に前記第3係合部(23)が形成され、
 前記第4部材(14)は軸状に形成された第2軸状部(18)を備え、前記第2軸状部(18)の外周面(18b)に前記第4係合部(24)が形成され、
 前記第2サンギヤ(S52)は、前記第2軸状部(18)の前記外周面(18b)における、前記第4係合部(24)とは前記軸方向(L)の異なる位置に設けられ、
 前記第4係合部(24)は、前記第2サンギヤ(S52)と同じ直径であって、前記第2サンギヤ(S52)を構成する斜歯歯車と同じねじれ角であると好適である。
Further, the vehicle drive transmission device (100)
The first member (11) has a first tubular portion (15) formed in a tubular shape, and the first engaging portion (21) is attached to the inner peripheral surface (15a) of the first tubular portion (15). ) is formed,
The second member (12) has a first shaft-shaped portion (16) formed in the shape of a shaft, and the second engaging portion (22) is provided on the outer peripheral surface (16b) of the first shaft-shaped portion (16). is formed and
The first sun gear (S51) is provided at a different position in the axial direction (L) from the second engaging portion (22) on the outer peripheral surface (16b) of the first shaft-shaped portion (16). ,
The second engaging portion (22) has the same diameter as the first sun gear (S51) and the same helix angle as the helical gear that constitutes the first sun gear (S51),
The third member (13) has a second tubular portion (17) formed in a tubular shape, and the third engaging portion (23) is attached to the inner peripheral surface (17a) of the second tubular portion (17). ) is formed,
The fourth member (14) has a second shaft-shaped portion (18) formed in the shape of a shaft. is formed and
The second sun gear (S52) is provided at a different position in the axial direction (L) from the fourth engaging portion (24) on the outer peripheral surface (18b) of the second shaft-shaped portion (18). ,
It is preferable that the fourth engaging portion (24) has the same diameter as the second sun gear (S52) and the same helix angle as the helical gear that constitutes the second sun gear (S52).
 第1係合部(21)と第2係合部(22)との噛み合いにより第2部材(12)に作用するスラスト力は、第1スラスト力生成部(43)により生成されるスラスト力であり、第3係合部(23)と第4係合部(24)との噛み合いにより第4部材(14)に作用するスラスト力は、第2スラスト力生成部(44)により生成されるスラスト力である。従って、第1サンギヤ(S51)と複数の第1ピニオンギヤ(P51)との噛み合いにより第1サンギヤ(S51)に作用するスラスト力と、第1スラスト力生成部(43)により生成されるスラスト力とを同等にすることができる。そして、これにより、第1サンギヤ(S51)に作用するスラスト力を適切に相殺することができる。同様に、第2サンギヤ(S52)と複数の第2ピニオンギヤ(P52)との噛み合いにより第2サンギヤ(S52)に作用するスラスト力と、第2スラスト力生成部(44)により生成されるスラスト力とを同等にすることができる。そして、これにより、第2サンギヤ(S52)に作用するスラスト力を適切に相殺することができる。 The thrust force acting on the second member (12) due to the engagement between the first engaging portion (21) and the second engaging portion (22) is the thrust force generated by the first thrust force generating portion (43). The thrust force acting on the fourth member (14) due to the engagement of the third engaging portion (23) and the fourth engaging portion (24) is the thrust force generated by the second thrust force generating portion (44). Power. Therefore, the thrust force acting on the first sun gear (S51) due to the engagement between the first sun gear (S51) and the plurality of first pinion gears (P51) and the thrust force generated by the first thrust force generation section (43) can be equated. And thereby, the thrust force which acts on the 1st sun gear (S51) can be offset appropriately. Similarly, the thrust force acting on the second sun gear (S52) due to the engagement between the second sun gear (S52) and the plurality of second pinion gears (P52) and the thrust force generated by the second thrust force generator (44) can be equated with And thereby, the thrust force which acts on the 2nd sun gear (S52) can be offset appropriately.
 また、車両用駆動伝達装置(100)は、
 前記軸方向(L)に直交する方向を径方向(R)として、
 前記入力部材(1)を前記軸方向(L)及び前記径方向(R)に支持する第1軸受(B1)と、前記第1キャリヤ(C51)を前記軸方向(L)及び前記径方向(R)に支持する第2軸受(B51)と、前記第2キャリヤ(C52)を前記軸方向(L)及び前記径方向(R)に支持する第3軸受(B52)と、を備え、
 前記第1サンギヤ(S51)及び前記第2部材(12)、並びに、前記第2サンギヤ(S52)及び前記第4部材(14)のそれぞれを、前記軸方向(L)及び前記径方向(R)に支持する軸受を備えていないと好適である。
Further, the vehicle drive transmission device (100)
With the direction orthogonal to the axial direction (L) as the radial direction (R),
A first bearing (B1) supporting the input member (1) in the axial direction (L) and the radial direction (R), and a first carrier (C51) supporting the axial direction (L) and the radial direction (R). R), and a third bearing (B52) that supports the second carrier (C52) in the axial direction (L) and the radial direction (R),
The first sun gear (S51) and the second member (12), and the second sun gear (S52) and the fourth member (14) are respectively arranged in the axial direction (L) and the radial direction (R). Advantageously, it does not have bearings that support it.
 この構成によれば、第1サンギヤ(S51)及び第2サンギヤ(S52)はいわゆるフローティング状態で配置されている。本構成によれば、このように、第1サンギヤ(S51)及び第2サンギヤ(S52)を軸方向(L)及び径方向(R)に支持するための軸受を備えていないため、これらの支持構造を簡略化することができる。 According to this configuration, the first sun gear (S51) and the second sun gear (S52) are arranged in a so-called floating state. According to this configuration, bearings for supporting the first sun gear (S51) and the second sun gear (S52) in the axial direction (L) and the radial direction (R) are not provided. The structure can be simplified.
 また、車両用駆動伝達装置(100)は、
 前記第1出力要素(E31)及び前記第2出力要素(E32)の回転軸心(X)に沿う方向を軸方向(L)とし、前記軸方向(L)の一方側を軸方向第1側(L1)とし、前記軸方向(L)の他方側を軸方向第2側(L2)とし、前記軸方向(L)に直交する方向を径方向(R)として、
 前記駆動力源(8)は、ロータ(81)を備えた回転電機(80)であり、
 前記入力部材(1)は、前記ロータ(81)と一体的に回転するように連結された筒状のロータ軸(10)であり、
 前記差動歯車機構(3)は、前記ロータ軸(10)に対して前記径方向(R)の内側(R1)であって、前記径方向(R)に沿う径方向視で前記ロータ(81)と重複する位置に配置され、
 前記第1減速機(51)は、前記ロータ(81)及び前記ロータ軸(10)に対して前記軸方向第1側(L1)に配置され、
 前記第2減速機(52)は、前記ロータ(81)及び前記ロータ軸(10)に対して前記軸方向第2側(L2)に配置されていると好適である。
Further, the vehicle drive transmission device (100)
The direction along the rotation axis (X) of the first output element (E31) and the second output element (E32) is defined as the axial direction (L), and one side of the axial direction (L) is the first axial side. (L1), the other side of the axial direction (L) is the second axial side (L2), and the direction orthogonal to the axial direction (L) is the radial direction (R),
The driving force source (8) is a rotating electric machine (80) having a rotor (81),
The input member (1) is a cylindrical rotor shaft (10) connected to rotate integrally with the rotor (81),
The differential gear mechanism (3) is located inside (R1) in the radial direction (R) with respect to the rotor shaft (10), and is located radially in the radial direction (R). ) and overlapped with
The first speed reducer (51) is arranged on the axial first side (L1) with respect to the rotor (81) and the rotor shaft (10),
The second speed reducer (52) is preferably arranged on the axial second side (L2) with respect to the rotor (81) and the rotor shaft (10).
 上述したように、本構成の車両用駆動伝達装置(100)では、減速機(5)が比較的大きな減速比を設定可能な構造を備えている。このように減速機(5)の減速比を大きくすると、スラスト力が大きくなる傾向がある。しかし、本構成のようにスラスト力を減殺することができると、減速機(5)に大きな減速比を設定し易くなり、車両用駆動伝達装置(100)を小型化し易い。 As described above, in the vehicle drive transmission device (100) of this configuration, the reduction gear (5) has a structure in which a relatively large reduction ratio can be set. Increasing the speed reduction ratio of the speed reducer (5) in this way tends to increase the thrust force. However, if the thrust force can be reduced as in this configuration, it becomes easy to set a large reduction ratio in the speed reducer (5), and it is easy to reduce the size of the vehicle drive transmission device (100).
 また、車両用駆動伝達装置(100)は、
 前記第1キャリヤ(C51)及び前記第1リングギヤ(R51)の何れか一方が、前記第1出力部材(91)と一体的に回転するように連結され、
 前記第1キャリヤ(C51)及び前記第1リングギヤ(R51)の何れか他方が、非回転部材(6)に連結され、
 前記第2キャリヤ(C52)及び前記第2リングギヤ(R52)の何れか一方が、前記第2出力部材(92)と一体的に回転するように連結され、
 前記第2キャリヤ(C52)及び前記第2リングギヤ(R52)の何れか他方が、非回転部材(6)に連結され、
 前記第1出力要素(E31)及び前記第2出力要素(E32)の回転軸心(X)に沿う方向を軸方向(L)とし、前記軸方向(L)に直交する方向を径方向(R)として、
 前記第1ピニオンギヤ(P51)は、第1内側ピニオンギヤ(P51a)及び第1外側ピニオンギヤ(P51b)を含み、
 前記第1キャリヤ(C51)は、前記第1内側ピニオンギヤ(P51a)及び前記第1外側ピニオンギヤ(P52b)からなる第1ピニオンギヤ組(P51c)を複数組支持し、
 前記第1内側ピニオンギヤ(P51a)は前記第1サンギヤ(S51)及び前記第1外側ピニオンギヤ(P51b)に噛み合い、前記第1外側ピニオンギヤ(P51b)は前記第1内側ピニオンギヤ(P51a)及び前記第1リングギヤ(R51)に噛み合い、
 複数の前記第1ピニオンギヤ組(P51c)のそれぞれにおいて、前記第1内側ピニオンギヤ(P51a)の回転軸心と前記第1外側ピニオンギヤ(P51b)の回転軸心とが前記径方向(R)に沿って並ぶように配置され、
 前記第2ピニオンギヤ(P52)は、第2内側ピニオンギヤ(P52a)及び第2外側ピニオンギヤ(P52b)を含み、
 前記第2キャリヤ(C52)は、前記第2内側ピニオンギヤ(P52a)及び前記第2外側ピニオンギヤ(P52b)からなる第2ピニオンギヤ組(P52c)を複数組支持し、
 前記第2内側ピニオンギヤ(P52a)は前記第2サンギヤ(S52)及び前記第2外側ピニオンギヤ(P52b)に噛み合い、前記第2外側ピニオンギヤ(P52b)は前記第2内側ピニオンギヤ(P51a)及び前記第2リングギヤ(R52)に噛み合い、
 複数の前記第2ピニオンギヤ組(P52c)のそれぞれにおいて、前記第2内側ピニオンギヤ(P52a)の回転軸心と前記第2外側ピニオンギヤ(P52b)の回転軸心とが前記径方向(R)に沿って並ぶように配置されていると好適である。
Further, the vehicle drive transmission device (100)
Either one of the first carrier (C51) and the first ring gear (R51) is connected to rotate integrally with the first output member (91),
The other of the first carrier (C51) and the first ring gear (R51) is connected to a non-rotating member (6),
Either one of the second carrier (C52) and the second ring gear (R52) is connected to rotate integrally with the second output member (92),
The other of the second carrier (C52) and the second ring gear (R52) is connected to a non-rotating member (6),
A direction along the rotation axis (X) of the first output element (E31) and the second output element (E32) is defined as an axial direction (L), and a direction orthogonal to the axial direction (L) is defined as a radial direction (R ) as
The first pinion gear (P51) includes a first inner pinion gear (P51a) and a first outer pinion gear (P51b),
The first carrier (C51) supports a plurality of first pinion gear sets (P51c) consisting of the first inner pinion gear (P51a) and the first outer pinion gear (P52b),
The first inner pinion gear (P51a) meshes with the first sun gear (S51) and the first outer pinion gear (P51b), and the first outer pinion gear (P51b) meshes with the first inner pinion gear (P51a) and the first ring gear. meshing with (R51),
In each of the plurality of first pinion gear sets (P51c), the rotational axis of the first inner pinion gear (P51a) and the rotational axis of the first outer pinion gear (P51b) are aligned along the radial direction (R). arranged side by side,
The second pinion gear (P52) includes a second inner pinion gear (P52a) and a second outer pinion gear (P52b),
The second carrier (C52) supports a plurality of second pinion gear sets (P52c) consisting of the second inner pinion gear (P52a) and the second outer pinion gear (P52b),
The second inner pinion gear (P52a) meshes with the second sun gear (S52) and the second outer pinion gear (P52b), and the second outer pinion gear (P52b) meshes with the second inner pinion gear (P51a) and the second ring gear. meshing with (R52),
In each of the plurality of second pinion gear sets (P52c), the rotational axis of the second inner pinion gear (P52a) and the rotational axis of the second outer pinion gear (P52b) are aligned along the radial direction (R). It is preferable that they are arranged side by side.
 シングルピニオン式の遊星歯車機構では、サンギヤとリングギヤとの径の差を大きくすること、そのためにピニオンギヤの径を大きくすることに限界があり、サンギヤとリングギヤとの歯数比を大きくすることが困難である。本構成によれば、第1減速機(51)及び第2減速機(52)がダブルピニオン式の遊星歯車機構によって構成されているため、ピニオンギヤの径に対して、サンギヤとリングギヤとの径の差を大きくし易く、サンギヤとリングギヤとの歯数比を大きくし易い。よって、第1減速機(51)及び第2減速機(52)の減速比も大きくし易い。仮に、シングルピニオン型の遊星歯車機構によって同じ歯数比を得ようとすると、ピニオンギヤの径が大きくなるため、重量が大きくなり易く、また、隣接するピニオンギヤ同士の干渉も生じやすい。しかし、本構成によれば、例えば、サンギヤを径方向に適切に支持するために、内側ピニオンギヤ(P51a,P52a)及び外側ピニオンギヤ(P51b、P52b))からなるピニオンギヤ組(P51c,P52c)を3組以上備える場合であっても、隣接するピニオンギヤ組同士が干渉することのない範囲で、サンギヤとリングギヤとの歯数比を大きく設定することができる。また、ピニオンギヤ組を3組以上備える構成とし易いため、各ピニオンギヤに作用する荷重も小さく抑え易く、各ピニオンギヤの支持構造を簡略化し易い。よって、軽量化も図り易い。このように、本構成によれば、駆動力源の回転を適切に減速する減速比を確保しつつ、より小型に車両用駆動伝達装置を構成することができる。 In a single-pinion planetary gear mechanism, there is a limit to increasing the diameter difference between the sun gear and the ring gear, which limits the size of the pinion gear, making it difficult to increase the tooth ratio between the sun gear and the ring gear. is. According to this configuration, since the first reduction gear (51) and the second reduction gear (52) are configured by the double pinion type planetary gear mechanism, the diameter of the sun gear and the ring gear is larger than the diameter of the pinion gear. It is easy to increase the difference, and it is easy to increase the gear ratio between the sun gear and the ring gear. Therefore, it is easy to increase the speed reduction ratios of the first speed reducer (51) and the second speed reducer (52). If a single pinion type planetary gear mechanism were to obtain the same gear ratio, the diameter of the pinion gear would be large, which would likely result in an increase in weight, and the adjacent pinion gears would easily interfere with each other. However, according to this configuration, for example, three pinion gear sets (P51c, P52c) consisting of inner pinion gears (P51a, P52a) and outer pinion gears (P51b, P52b) are provided in order to appropriately support the sun gear in the radial direction. Even in the above case, the gear ratio between the sun gear and the ring gear can be set large within a range in which adjacent pinion gear sets do not interfere with each other. Further, since it is easy to employ a configuration in which three or more pinion gear sets are provided, it is easy to keep the load acting on each pinion gear small, and it is easy to simplify the support structure of each pinion gear. Therefore, it is easy to achieve weight reduction. Thus, according to this configuration, it is possible to configure a more compact vehicle drive transmission device while ensuring a reduction ratio that appropriately reduces the rotation of the driving force source.
 ここで、前記第1サンギヤ(S51)の直径(φ51)が、前記第1内側ピニオンギヤ(P51a)の直径(φP51a)より小さいと好適である。 Here, it is preferable that the diameter (φ51) of the first sun gear (S51) is smaller than the diameter (φP51a) of the first inner pinion gear (P51a).
 この構成によれば、サンギヤとリングギヤとの歯数比を、より大きく設定することができる。 According to this configuration, the gear ratio between the sun gear and the ring gear can be set larger.
 また、車両用駆動伝達装置(100)は、
 前記軸方向(L)に沿う軸方向視で、複数の前記第1ピニオンギヤ組(P51c)のそれぞれにおける前記第1内側ピニオンギヤ(P51a)の回転軸心と前記第1外側ピニオンギヤ(P51b)の回転軸心と前記第1サンギヤ(S51)の回転軸心とが、前記径方向(R)に沿う直線上に配置され、
 前記軸方向視で、複数の前記第2ピニオンギヤ組(P52c)のそれぞれにおける前記第2内側ピニオンギヤ(P52a)の回転軸心と前記第2外側ピニオンギヤ(P52b)の回転軸心と前記第2サンギヤ(S52)の回転軸心とが、前記径方向(R)に沿う直線上に配置されていると好適である。
Further, the vehicle drive transmission device (100)
When viewed in the axial direction along the axial direction (L), the rotation axis of the first inner pinion gear (P51a) and the rotation axis of the first outer pinion gear (P51b) in each of the plurality of first pinion gear sets (P51c) the center and the rotation axis of the first sun gear (S51) are arranged on a straight line along the radial direction (R),
When viewed in the axial direction, the rotational axis of the second inner pinion gear (P52a), the rotational axis of the second outer pinion gear (P52b), and the second sun gear (P52b) in each of the plurality of second pinion gear sets (P52c) S52) is preferably arranged on a straight line along the radial direction (R).
 内側ピニオンギヤ(P5a)と外側ピニオンギヤ(P5b)とサンギヤ(S51、S52)とが、このように配置されると、内側ピニオンギヤ(P5a)及び外側ピニオンギヤ(P5b)の径に対して、サンギヤ(S51、S52)とリングギヤ(R51、R52)との歯数比を最も大きくすることができる。従って、減速機(5)の重量増加を抑制しつつ、より大きな減速比を有する減速機(5)を構成し易い。 When the inner pinion gear (P5a), the outer pinion gear (P5b) and the sun gear (S51, S52) are arranged in this manner, the sun gear (S51, S52) and the ring gear (R51, R52) can be maximized. Therefore, it is easy to configure a speed reducer (5) having a larger reduction ratio while suppressing an increase in the weight of the speed reducer (5).
 また、複数の前記第1ピニオンギヤ組(P51c)のそれぞれにおいて、前記第1外側ピニオンギヤ(P51b)の直径(φ51b)は、前記第1内側ピニオンギヤ(P51a)の直径(φ51b)より大きいと好適である。 Further, in each of the plurality of first pinion gear sets (P51c), the diameter (φ51b) of the first outer pinion gear (P51b) is preferably larger than the diameter (φ51b) of the first inner pinion gear (P51a). .
 それぞれのピニオンギヤ組(P5c(第1ピニオンギヤ組(P51c)及び第2ピニオンギヤ組(P52c))において、外側ピニオンギヤ(P5b(第1外側ピニオンギヤ(P51b)及び第2外側ピニオンギヤ(P52b)))の直径(φ5b(φ51b、φ52b))が内側ピニオンギヤ(P5a(第1内側ピニオンギヤ(P51a)及び第2内側ピニオンギヤ(P52a)))の直径(φ5a(φ51a、φ52a))よりも大きいと、内側ピニオンギヤ(P5a)の直径(φ5a)と外側ピニオンギヤ(P5b)の直径(φ5b)とが同じである場合に比べて、内側ピニオンギヤ(P5a)及び外側ピニオンギヤ(P5b)からなるピニオンギヤ組(P5c)を3組以上備える場合であっても、隣接するピニオンギヤ組同士が干渉することのない範囲で、サンギヤ(S51、S52)とリングギヤ(R51、R52)との歯数比を大きく設定することができる。従って、より大きな減速比を有する減速機(5)を構成し易い。 In each pinion gear set (P5c (first pinion gear set (P51c) and second pinion gear set (P52c)), the diameter of the outer pinion gear (P5b (first outer pinion gear (P51b) and second outer pinion gear (P52b))) If φ5b (φ51b, φ52b)) is larger than the diameter (φ5a (φ51a, φ52a)) of the inner pinion gear (P5a (the first inner pinion gear (P51a) and the second inner pinion gear (P52a)), the inner pinion gear (P5a) When three or more pinion gear sets (P5c) consisting of an inner pinion gear (P5a) and an outer pinion gear (P5b) are provided compared to the case where the diameter (φ5a) of the outer pinion gear (P5b) and the diameter (φ5b) of the outer pinion gear (P5b) are the same However, the tooth ratio between the sun gear (S51, S52) and the ring gear (R51, R52) can be set large within a range where the adjacent pinion gear sets do not interfere with each other. It is easy to construct a speed reducer (5) having a ratio.
 また、車両用駆動伝達装置(100)は、
 前記第1キャリヤ(C51)が、前記第1出力部材(91)と一体的に回転するように連結され、
 前記第1リングギヤ(R51)が、非回転部材(6)に連結され、
 前記第2キャリヤ(C51)が、前記第2出力部材(92)と一体的に回転するように連結され、
 前記第2リングギヤ(R52)が、非回転部材(6)に連結され、
 前記第1キャリヤ(C52)が、前記第1ピニオンギヤ組(P51c)に対して前記軸方向(L)の両側に分かれて配置された一対の軸受(B51)によって支持され、
 前記第2キャリヤが、前記第2ピニオンギヤ組に対して前記軸方向両側に分かれて配置された一対の軸受(B52)によって支持されていると好適である。
Further, the vehicle drive transmission device (100)
The first carrier (C51) is coupled to rotate integrally with the first output member (91),
The first ring gear (R51) is connected to the non-rotating member (6),
the second carrier (C51) is coupled to rotate integrally with the second output member (92);
The second ring gear (R52) is connected to the non-rotating member (6),
The first carrier (C52) is supported by a pair of bearings (B51) arranged separately on both sides in the axial direction (L) with respect to the first pinion gear set (P51c),
It is preferable that the second carrier is supported by a pair of bearings (B52) arranged separately on both sides in the axial direction with respect to the second pinion gear set.
 本構成によれば、出力部材(9)に連結された回転要素である第1キャリヤ(C51)及び第2キャリヤ(C52)が、一対の軸受(B51,B52)によって適切に回転可能に支持される。従って、小型化を図りつつ、回転要素を適切に支持した車両用駆動伝達装置(100)を実現することができる。 According to this configuration, the first carrier (C51) and the second carrier (C52), which are rotating elements connected to the output member (9), are appropriately rotatably supported by the pair of bearings (B51, B52). be. Therefore, it is possible to realize a vehicle drive transmission device (100) that appropriately supports a rotating element while achieving size reduction.
1:入力部材、3:差動歯車機構、6:ケース(非回転部材)、8:駆動力源、9:出力部材、10:ロータ軸、11:第1部材、12:第2部材、13:第3部材、14:第4部材、15:第1筒状部、15a:第1筒状部の内周面、16:第1軸状部、16b:第1軸状部の外周面、17:第2筒状部、17a:第2筒状部の内周面、18:第2軸状部、18b:第2軸状部の外周面、21:第1係合部、22:第2係合部、23:第3係合部、24:第4係合部、30a:内周面、41:第1連結機構、42:第2連結機構、43:第1スラスト力生成部、44:第2スラスト力生成部、51:第1減速機、52:第2減速機、80:回転電機、81:ロータ、91:第1出力部材、92:第2出力部材、100:車両用駆動伝達装置、B1:ロータ軸受(第1軸受)、B51:第1出力軸受(第2軸受、第1ピニオンギヤ組に対して軸方向両側に分かれて配置された軸受)、B52:第2出力軸受(第3軸受、第2ピニオンギヤ組に対して軸方向両側に分かれて配置された軸受)、C51:減速第1キャリヤ(第1キャリヤ)、C52:減速第2キャリヤ(第2キャリヤ)、E30:入力要素、E31:第1出力要素、E32:第2出力要素、L:軸方向、L1:軸方向第1側、L2:軸方向第2側、P51:減速第1ピニオンギヤ(第1ピニオンギヤ)、P51a:第1内側ピニオンギヤ、P51b:第1外側ピニオンギヤ、P51c:第1ピニオンギヤ組、P52:減速第2ピニオンギヤ(第2ピニオンギヤ)、P52a:第2内側ピニオンギヤ、P52b:第2外側ピニオンギヤ、P52c:第2ピニオンギヤ組、P5a:内側ピニオンギヤ、P5b:外側ピニオンギヤ、P5c:ピニオンギヤ組、R:径方向、R1:径方向内側(径方向の内側)、R51:減速第1リングギヤ(第1リングギヤ)、R52:減速第2リングギヤ(第2リングギヤ)、S51:減速第1サンギヤ(第1サンギヤ)、S52:減速第2サンギヤ(第2サンギヤ)、W1:第1車輪、W2:第2車輪、X:回転軸心、φ22:第2係合部の直径、φ24:第4係合部の直径、φ51:減速第1サンギヤの直径(第1サンギヤの直径)、φ51a:第1内側ピニオンギヤの直径、φ51b:第1外側ピニオンギヤの直径、φ52:減速第2サンギヤの直径(第2サンギヤの直径)
 
1: input member, 3: differential gear mechanism, 6: case (non-rotating member), 8: driving force source, 9: output member, 10: rotor shaft, 11: first member, 12: second member, 13 : third member 14: fourth member 15: first tubular portion 15a: inner peripheral surface of the first tubular portion 16: first shaft-shaped portion 16b: outer peripheral surface of the first shaft-shaped portion 17: second tubular portion 17a: inner peripheral surface of the second tubular portion 18: second shaft-shaped portion 18b: outer peripheral surface of the second shaft-shaped portion 21: first engaging portion 22: second 2 engaging portion, 23: third engaging portion, 24: fourth engaging portion, 30a: inner peripheral surface, 41: first connecting mechanism, 42: second connecting mechanism, 43: first thrust force generating portion, 44: Second thrust force generator, 51: First reduction gear, 52: Second reduction gear, 80: Rotating electrical machine, 81: Rotor, 91: First output member, 92: Second output member, 100: Vehicle Drive Transmission Device B1: Rotor Bearing (First Bearing) B51: First Output Bearing (Second Bearing, Bearing Divided on Both Sides in the Axial Direction with respect to the First Pinion Gear Group) B52: Second Output Bearing (Third bearing, bearing arranged separately on both sides in the axial direction with respect to the second pinion gear set), C51: first reduction carrier (first carrier), C52: second reduction carrier (second carrier), E30: input element, E31: first output element, E32: second output element, L: axial direction, L1: axial direction first side, L2: axial direction second side, P51: reduction first pinion gear (first pinion gear), P51a: first inner pinion gear, P51b: first outer pinion gear, P51c: first pinion gear group, P52: second reduction pinion gear (second pinion gear), P52a: second inner pinion gear, P52b: second outer pinion gear, P52c: second pinion gear 2 pinion gear set, P5a: inner pinion gear, P5b: outer pinion gear, P5c: pinion gear set, R: radial direction, R1: radial inner side (radial inner side), R51: reduction first ring gear (first ring gear), R52: Second reduction ring gear (second ring gear), S51: First reduction sun gear (first sun gear), S52: Second reduction sun gear (second sun gear), W1: First wheel, W2: Second wheel, X: Rotation shaft φ22: diameter of the second engaging portion, φ24: diameter of the fourth engaging portion, φ51: diameter of the first reduction sun gear (diameter of the first sun gear), φ51a: diameter of the first inner pinion gear, φ51b: diameter of the second 1 Diameter of outer pinion gear, φ52: Diameter of second reduction sun gear (diameter of second sun gear)

Claims (10)

  1.  駆動力源に駆動連結される入力部材と、
     第1車輪に駆動連結される第1出力部材と、
     第2車輪に駆動連結される第2出力部材と、
     前記入力部材と一体的に回転するように連結された入力要素、第1出力要素、及び、第2出力要素を備え、前記入力部材から前記入力要素に伝達されたトルクを前記第1出力要素と前記第2出力要素とに分配する差動歯車機構と、
     前記第1出力要素の回転を減速して前記第1出力部材に伝達する第1減速機と、
     前記第2出力要素の回転を減速して前記第2出力部材に伝達する第2減速機と、を備えた車両用駆動伝達装置であって、
     前記第1減速機は、第1サンギヤ、複数の第1ピニオンギヤを回転自在に支持する第1キャリヤ、及び第1リングギヤを備えた遊星歯車機構であり、
     前記第1サンギヤ、複数の前記第1ピニオンギヤ、及び、前記第1リングギヤは、斜歯歯車であり、
     前記第2減速機は、第2サンギヤ、複数の第2ピニオンギヤを回転自在に支持する第2キャリヤ、及び第2リングギヤを備えた遊星歯車機構であり、
     前記第2サンギヤ、複数の前記第2ピニオンギヤ、及び、前記第2リングギヤは、斜歯歯車であり、
     前記第1出力要素と前記第1サンギヤとが、同軸上に配置されていると共に第1連結機構により連結され、
     前記第2出力要素と前記第2サンギヤとが、同軸上に配置されていると共に第2連結機構により連結され、
     前記第1連結機構は、前記第1出力要素と前記第1サンギヤとの間で伝達されるトルクに応じて、前記第1サンギヤと複数の前記第1ピニオンギヤとの噛み合いにより前記第1サンギヤに作用するスラスト力と反対向きのスラスト力を生じさせる第1スラスト力生成部を備え、
     前記第2連結機構は、前記第2出力要素と前記第2サンギヤとの間で伝達されるトルクに応じて、前記第2サンギヤと複数の前記第2ピニオンギヤとの噛み合いにより前記第2サンギヤに作用するスラスト力と反対向きのスラスト力を生じさせる第2スラスト力生成部を備える、車両用駆動伝達装置。
    an input member drivingly connected to a driving force source;
    a first output member drivingly connected to the first wheel;
    a second output member drivingly connected to the second wheel;
    An input element, a first output element, and a second output element coupled to rotate integrally with the input member, wherein torque transmitted from the input member to the input element is transmitted to the first output element a differential gear mechanism that distributes to the second output element;
    a first reduction gear that reduces rotation of the first output element and transmits it to the first output member;
    a second reduction gear that reduces rotation of the second output element and transmits the rotation to the second output member,
    The first reduction gear is a planetary gear mechanism including a first sun gear, a first carrier that rotatably supports a plurality of first pinion gears, and a first ring gear,
    The first sun gear, the plurality of first pinion gears, and the first ring gear are helical gears,
    The second speed reducer is a planetary gear mechanism including a second sun gear, a second carrier that rotatably supports a plurality of second pinion gears, and a second ring gear,
    The second sun gear, the plurality of second pinion gears, and the second ring gear are helical gears,
    the first output element and the first sun gear are coaxially arranged and connected by a first connecting mechanism;
    the second output element and the second sun gear are coaxially arranged and connected by a second connecting mechanism;
    The first coupling mechanism acts on the first sun gear by meshing the first sun gear and the plurality of first pinion gears according to torque transmitted between the first output element and the first sun gear. A first thrust force generator that generates a thrust force in the opposite direction to the thrust force that
    The second coupling mechanism acts on the second sun gear by meshing the second sun gear and the plurality of second pinion gears according to the torque transmitted between the second output element and the second sun gear. A drive transmission device for a vehicle, comprising a second thrust force generator that generates a thrust force in a direction opposite to the thrust force that is directed toward the vehicle.
  2.  前記第1出力要素及び前記第2出力要素の回転軸心に沿う方向を軸方向として、
     前記第1連結機構は、前記第1出力要素と一体的に形成された第1部材と、前記第1サンギヤと一体的に形成された第2部材とを備え、
     前記第1部材は、前記軸方向に沿う軸心周りの螺旋状の噛み合い溝で構成された第1係合部を備え、
     前記第2部材は、前記軸方向に沿う軸心周りの螺旋状の噛み合い溝で構成された第2係合部を備え、
     前記第1係合部と前記第2係合部とが噛み合い係合し、
     前記第1出力要素と前記第1サンギヤとの間で伝達されるトルクに応じて、前記第1係合部と前記第2係合部との噛み合いにより前記第2部材に作用するスラスト力の向きが、前記第1サンギヤと複数の前記第1ピニオンギヤとの噛み合いにより前記第1サンギヤに作用するスラスト力の向きと反対向きとなるように、前記第1係合部及び前記第2係合部のねじれの向きが設定され、
     前記第2連結機構は、前記第2出力要素と一体的に形成された第3部材と、前記第2サンギヤと一体的に形成された第4部材とを備え、
     前記第3部材は、前記軸方向に沿う軸心周りの螺旋状の噛み合い溝で構成された第3係合部を備え、
     前記第4部材は、前記軸方向に沿う軸心周りの螺旋状の噛み合い溝で構成された第4係合部を備え、
     前記第3係合部と前記第4係合部とが噛み合い係合し、
     前記第2出力要素と前記第2サンギヤとの間で伝達されるトルクに応じて、前記第3係合部と前記第4係合部との噛み合いにより前記第4部材に作用するスラスト力の向きが、前記第2サンギヤと複数の前記第2ピニオンギヤとの噛み合いにより前記第2サンギヤに作用するスラスト力の向きと反対向きとなるように、前記第3係合部及び前記第4係合部のねじれの向きが設定されている、請求項1に記載の車両用駆動伝達装置。
    With the direction along the rotation axis of the first output element and the second output element as the axial direction,
    The first coupling mechanism includes a first member integrally formed with the first output element and a second member integrally formed with the first sun gear,
    The first member includes a first engagement portion configured by a spiral engagement groove around an axis along the axial direction,
    The second member includes a second engagement portion configured by a spiral engagement groove around an axis along the axial direction,
    The first engaging portion and the second engaging portion mesh and engage,
    The direction of the thrust force acting on the second member due to the engagement between the first engaging portion and the second engaging portion according to the torque transmitted between the first output element and the first sun gear. is opposite to the thrust force acting on the first sun gear due to the meshing of the first sun gear and the plurality of first pinion gears. The twist direction is set and
    The second coupling mechanism includes a third member integrally formed with the second output element and a fourth member integrally formed with the second sun gear,
    The third member includes a third engagement portion configured by a spiral engagement groove around an axis along the axial direction,
    The fourth member includes a fourth engagement portion configured by a spiral engagement groove around an axis along the axial direction,
    The third engaging portion and the fourth engaging portion mesh and engage,
    Direction of thrust force acting on the fourth member due to engagement between the third engaging portion and the fourth engaging portion according to the torque transmitted between the second output element and the second sun gear is opposite to the direction of the thrust force acting on the second sun gear due to the meshing of the second sun gear and the plurality of second pinion gears. 2. The drive transmission device for a vehicle according to claim 1, wherein the direction of twist is set.
  3.  前記第1部材は筒状に形成された第1筒状部を備え、前記第1筒状部の内周面に前記第1係合部が形成され、
     前記第2部材は軸状に形成された第1軸状部を備え、前記第1軸状部の外周面に前記第2係合部が形成され、
     前記第1サンギヤは、前記第1軸状部の前記外周面における、前記第2係合部とは前記軸方向の異なる位置に設けられ、
     前記第2係合部は、前記第1サンギヤと同じ直径であって、前記第1サンギヤを構成する斜歯歯車と同じねじれ角であり、
     前記第3部材は筒状に形成された第2筒状部を備え、前記第2筒状部の内周面に前記第3係合部が形成され、
     前記第4部材は軸状に形成された第2軸状部を備え、前記第2軸状部の外周面に前記第4係合部が形成され、
     前記第2サンギヤは、前記第2軸状部の前記外周面における、前記第4係合部とは前記軸方向の異なる位置に設けられ、
     前記第4係合部は、前記第2サンギヤと同じ直径であって、前記第2サンギヤを構成する斜歯歯車と同じねじれ角である、請求項2に記載の車両用駆動伝達装置。
    The first member includes a first tubular portion formed in a tubular shape, the first engaging portion is formed on an inner peripheral surface of the first tubular portion,
    the second member includes a first shaft-shaped portion formed in the shape of a shaft, and the second engaging portion is formed on an outer peripheral surface of the first shaft-shaped portion;
    The first sun gear is provided on the outer peripheral surface of the first shaft-shaped portion at a position different in the axial direction from the second engaging portion,
    The second engaging portion has the same diameter as the first sun gear and the same helix angle as the helical gear that constitutes the first sun gear,
    The third member includes a second cylindrical portion formed in a cylindrical shape, the third engaging portion is formed on the inner peripheral surface of the second cylindrical portion,
    The fourth member includes a second shaft-shaped portion formed in a shaft shape, and the fourth engaging portion is formed on an outer peripheral surface of the second shaft-shaped portion,
    The second sun gear is provided on the outer peripheral surface of the second shaft-shaped portion at a position different in the axial direction from the fourth engaging portion,
    3. The drive transmission device for a vehicle according to claim 2, wherein said fourth engaging portion has the same diameter as said second sun gear and has the same helix angle as a helical gear constituting said second sun gear.
  4.  前記軸方向に直交する方向を径方向として、
     前記入力部材を前記軸方向及び前記径方向に支持する第1軸受と、前記第1キャリヤを前記軸方向及び前記径方向に支持する第2軸受と、前記第2キャリヤを前記軸方向及び前記径方向に支持する第3軸受と、を備え、
     前記第1サンギヤ及び前記第2部材、並びに、前記第2サンギヤ及び前記第4部材のそれぞれを、前記軸方向及び前記径方向に支持する軸受を備えていない、請求項2又は3に記載の車両用駆動伝達装置。
    With the direction orthogonal to the axial direction as the radial direction,
    a first bearing that supports the input member in the axial direction and the radial direction; a second bearing that supports the first carrier in the axial direction and the radial direction; a third bearing that supports in the direction of
    4. The vehicle according to claim 2, wherein no bearings are provided for supporting said first sun gear and said second member, and said second sun gear and said fourth member in said axial direction and said radial direction. drive transmission device.
  5.  前記第1出力要素及び前記第2出力要素の回転軸心に沿う方向を軸方向とし、前記軸方向の一方側を軸方向第1側とし、前記軸方向の他方側を軸方向第2側とし、前記軸方向に直交する方向を径方向として、
     前記駆動力源は、ロータを備えた回転電機であり、
     前記入力部材は、前記ロータと一体的に回転するように連結された筒状のロータ軸であり、
     前記差動歯車機構は、前記ロータ軸に対して前記径方向の内側であって、前記径方向に沿う径方向視で前記ロータと重複する位置に配置され、
     前記第1減速機は、前記ロータ及び前記ロータ軸に対して前記軸方向第1側に配置され、
     前記第2減速機は、前記ロータ及び前記ロータ軸に対して前記軸方向第2側に配置されている、請求項1から4の何れか一項に記載の車両用駆動伝達装置。
    A direction along the rotation axis of the first output element and the second output element is defined as an axial direction, one side in the axial direction is defined as a first side in the axial direction, and the other side in the axial direction is defined as a second side in the axial direction. , with the direction perpendicular to the axial direction as the radial direction,
    The driving force source is a rotating electric machine having a rotor,
    the input member is a cylindrical rotor shaft coupled to rotate integrally with the rotor;
    The differential gear mechanism is disposed inside the rotor shaft in the radial direction and overlaps the rotor when viewed in a radial direction along the radial direction,
    The first reduction gear is arranged on the first side in the axial direction with respect to the rotor and the rotor shaft,
    The drive transmission device for a vehicle according to any one of claims 1 to 4, wherein the second speed reducer is arranged on the second side in the axial direction with respect to the rotor and the rotor shaft.
  6.  前記第1キャリヤ及び前記第1リングギヤの何れか一方が、前記第1出力部材と一体的に回転するように連結され、
     前記第1キャリヤ及び前記第1リングギヤの何れか他方が、非回転部材に連結され、
     前記第2キャリヤ及び前記第2リングギヤの何れか一方が、前記第2出力部材と一体的に回転するように連結され、
     前記第2キャリヤ及び前記第2リングギヤの何れか他方が、非回転部材に連結され、
     前記第1出力要素及び前記第2出力要素の回転軸心に沿う方向を軸方向とし、前記軸方向に直交する方向を径方向として、
     前記第1ピニオンギヤは、第1内側ピニオンギヤ及び第1外側ピニオンギヤを含み、
     前記第1キャリヤは、前記第1内側ピニオンギヤ及び前記第1外側ピニオンギヤからなる第1ピニオンギヤ組を複数組支持し、
     前記第1内側ピニオンギヤは前記第1サンギヤ及び前記第1外側ピニオンギヤに噛み合い、前記第1外側ピニオンギヤは前記第1内側ピニオンギヤ及び前記第1リングギヤに噛み合い、
     複数の前記第1ピニオンギヤ組のそれぞれにおいて、前記第1内側ピニオンギヤの回転軸心と前記第1外側ピニオンギヤの回転軸心とが前記径方向に沿って並ぶように配置され、
     前記第2ピニオンギヤは、第2内側ピニオンギヤ及び第2外側ピニオンギヤを含み、
     前記第2キャリヤは、前記第2内側ピニオンギヤ及び前記第2外側ピニオンギヤからなる第2ピニオンギヤ組を複数組支持し、
     前記第2内側ピニオンギヤは前記第2サンギヤ及び前記第2外側ピニオンギヤに噛み合い、前記第2外側ピニオンギヤは前記第2内側ピニオンギヤ及び前記第2リングギヤに噛み合い、
     複数の前記第2ピニオンギヤ組のそれぞれにおいて、前記第2内側ピニオンギヤの回転軸心と前記第2外側ピニオンギヤの回転軸心とが前記径方向に沿って並ぶように配置されている、請求項1に記載の車両用駆動伝達装置。
    either one of the first carrier and the first ring gear is coupled to rotate integrally with the first output member;
    the other of the first carrier and the first ring gear is connected to a non-rotating member;
    either one of the second carrier and the second ring gear is coupled to rotate integrally with the second output member;
    the other of the second carrier and the second ring gear is connected to a non-rotating member;
    A direction along the rotation axis of the first output element and the second output element is defined as an axial direction, and a direction orthogonal to the axial direction is defined as a radial direction,
    The first pinion gear includes a first inner pinion gear and a first outer pinion gear,
    The first carrier supports a plurality of sets of first pinion gear sets each including the first inner pinion gear and the first outer pinion gear,
    The first inner pinion gear meshes with the first sun gear and the first outer pinion gear, the first outer pinion gear meshes with the first inner pinion gear and the first ring gear,
    In each of the plurality of first pinion gear sets, the rotation axis of the first inner pinion gear and the rotation axis of the first outer pinion gear are arranged along the radial direction,
    The second pinion gear includes a second inner pinion gear and a second outer pinion gear,
    The second carrier supports a plurality of sets of second pinion gear sets each including the second inner pinion gear and the second outer pinion gear,
    The second inner pinion gear meshes with the second sun gear and the second outer pinion gear, the second outer pinion gear meshes with the second inner pinion gear and the second ring gear,
    In each of the plurality of second pinion gear sets, the rotation axis of the second inner pinion gear and the rotation axis of the second outer pinion gear are arranged so as to line up along the radial direction. A drive transmission device for a vehicle as described.
  7.  前記第1サンギヤの直径は、前記第1内側ピニオンギヤの直径より小さい、請求項6に記載の車両用駆動伝達装置。 The drive transmission device for a vehicle according to claim 6, wherein the diameter of the first sun gear is smaller than the diameter of the first inner pinion gear.
  8.  前記軸方向に沿う軸方向視で、複数の前記第1ピニオンギヤ組のそれぞれにおける前記第1内側ピニオンギヤの回転軸心と前記第1外側ピニオンギヤの回転軸心と前記第1サンギヤの回転軸心とが、前記径方向に沿う直線上に配置され、
     前記軸方向視で、複数の前記第2ピニオンギヤ組のそれぞれにおける前記第2内側ピニオンギヤの回転軸心と前記第2外側ピニオンギヤの回転軸心と前記第2サンギヤの回転軸心とが、前記径方向に沿う直線上に配置されている、請求項6又は7に記載の車両用駆動伝達装置。
    When viewed in the axial direction along the axial direction, the rotation axis of the first inner pinion gear, the rotation axis of the first outer pinion gear, and the rotation axis of the first sun gear in each of the plurality of first pinion gear sets are aligned. , arranged on a straight line along the radial direction,
    When viewed in the axial direction, the rotation axis of the second inner pinion gear, the rotation axis of the second outer pinion gear, and the rotation axis of the second sun gear in each of the plurality of second pinion gear sets are aligned in the radial direction. 8. The drive transmission device for a vehicle according to claim 6, arranged on a straight line along the .
  9.  複数の前記第1ピニオンギヤ組のそれぞれにおいて、前記第1外側ピニオンギヤの直径は、前記第1内側ピニオンギヤの直径より大きい、請求項6から8の何れか一項に記載の車両用駆動伝達装置。 The drive transmission device for a vehicle according to any one of claims 6 to 8, wherein in each of the plurality of first pinion gear sets, the diameter of the first outer pinion gear is larger than the diameter of the first inner pinion gear.
  10.  前記第1キャリヤが、前記第1出力部材と一体的に回転するように連結され、
     前記第1リングギヤが、非回転部材に連結され、
     前記第2キャリヤが、前記第2出力部材と一体的に回転するように連結され、
     前記第2リングギヤが、非回転部材に連結され、
     前記第1キャリヤが、前記第1ピニオンギヤ組に対して前記軸方向両側に分かれて配置された一対の軸受によって支持され、
     前記第2キャリヤが、前記第2ピニオンギヤ組に対して前記軸方向両側に分かれて配置された一対の軸受によって支持されている、請求項6から9の何れか一項に記載の車両用駆動伝達装置。
     
    said first carrier being coupled for unitary rotation with said first output member;
    the first ring gear is coupled to a non-rotating member;
    the second carrier is coupled to rotate integrally with the second output member;
    the second ring gear is coupled to a non-rotating member;
    The first carrier is supported by a pair of bearings arranged separately on both sides in the axial direction with respect to the first pinion gear set,
    10. The drive transmission for a vehicle according to any one of claims 6 to 9, wherein said second carrier is supported by a pair of bearings arranged separately on both sides in said axial direction with respect to said second pinion gear set. Device.
PCT/JP2022/040192 2021-10-29 2022-10-27 Drive transmission device for vehicle WO2023074806A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021177730 2021-10-29
JP2021177731 2021-10-29
JP2021-177730 2021-10-29
JP2021-177731 2021-10-29

Publications (1)

Publication Number Publication Date
WO2023074806A1 true WO2023074806A1 (en) 2023-05-04

Family

ID=86159993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040192 WO2023074806A1 (en) 2021-10-29 2022-10-27 Drive transmission device for vehicle

Country Status (1)

Country Link
WO (1) WO2023074806A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018189193A (en) * 2017-05-09 2018-11-29 アイシン・エィ・ダブリュ株式会社 Power transmission device
WO2019074120A1 (en) * 2017-10-13 2019-04-18 アイシン・エィ・ダブリュ株式会社 Drive device for vehicle
JP2020066426A (en) * 2018-10-23 2020-04-30 アティエヴァ、インコーポレイテッド High torque and power density drive system with shortened overall width
WO2021144079A1 (en) * 2020-01-15 2021-07-22 Daimler Ag Drive device for electrically driving a motor vehicle, in particular a passenger vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018189193A (en) * 2017-05-09 2018-11-29 アイシン・エィ・ダブリュ株式会社 Power transmission device
WO2019074120A1 (en) * 2017-10-13 2019-04-18 アイシン・エィ・ダブリュ株式会社 Drive device for vehicle
JP2020066426A (en) * 2018-10-23 2020-04-30 アティエヴァ、インコーポレイテッド High torque and power density drive system with shortened overall width
WO2021144079A1 (en) * 2020-01-15 2021-07-22 Daimler Ag Drive device for electrically driving a motor vehicle, in particular a passenger vehicle

Similar Documents

Publication Publication Date Title
JP7437406B2 (en) Vehicle drive system
JPH08240254A (en) Power transmission device for electric vehicle
JP6156135B2 (en) Drive device for hybrid vehicle
JP2011102639A (en) Reduction gear for electric motor
US11015683B2 (en) Vehicle driving device
US11241947B2 (en) Vehicle driving device
JP2015205624A (en) Drive device for vehicle
JP2021008248A (en) In-wheel motor type vehicle driving device
JP2014084000A (en) Vehicular drive device
WO2023074806A1 (en) Drive transmission device for vehicle
US11027616B2 (en) Vehicle driving device
JP2016222118A (en) Drive unit for vehicle
JP2023066884A (en) Drive transmission device for vehicle
US11460097B2 (en) Complex planetary gear unit
JP2005337442A (en) Differential limiting device
JP2012233511A (en) Vehicle driving device
JP2021162052A (en) Vehicular drive transmission device
JP2014024412A (en) Vehicle drive device
WO2023095821A1 (en) Drive device for vehicle
WO2022070912A1 (en) Vehicle drive device
WO2023238400A1 (en) Planetary gear reducer
JP2013060161A (en) Electrically-driven device
JP6954114B2 (en) Vehicle drive
JP6819463B2 (en) How to set the Hasuba gear structure of Sungear in the power transmission device
JP2023019128A (en) Vehicular drive transmission device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22887131

Country of ref document: EP

Kind code of ref document: A1