WO2023074774A1 - Anti-glare film, and polarizing plate, surface plate, image display panel, and image display device that use same - Google Patents

Anti-glare film, and polarizing plate, surface plate, image display panel, and image display device that use same Download PDF

Info

Publication number
WO2023074774A1
WO2023074774A1 PCT/JP2022/040049 JP2022040049W WO2023074774A1 WO 2023074774 A1 WO2023074774 A1 WO 2023074774A1 JP 2022040049 W JP2022040049 W JP 2022040049W WO 2023074774 A1 WO2023074774 A1 WO 2023074774A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
antiglare
antiglare film
particles
parts
Prior art date
Application number
PCT/JP2022/040049
Other languages
French (fr)
Japanese (ja)
Inventor
満広 葛原
行光 岩田
淳 辻本
茂樹 村上
玄 古井
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to CN202280071137.9A priority Critical patent/CN118140162A/en
Priority to JP2023556620A priority patent/JPWO2023074774A1/ja
Priority to KR1020247013638A priority patent/KR20240089048A/en
Publication of WO2023074774A1 publication Critical patent/WO2023074774A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8793Arrangements for polarized light emission

Definitions

  • the present disclosure relates to an antiglare film, and a polarizing plate, surface plate, image display panel, and image display device using the same.
  • An anti-glare film may be installed on the surface of image display devices such as televisions, notebook PCs, desktop PC monitors, etc. to suppress the reflection of backgrounds such as lighting and people.
  • An anti-glare film has a basic structure of having an anti-glare layer with an uneven surface on a transparent substrate.
  • Patent Documents 1 to 4 and the like have been proposed.
  • Conventional anti-glare films such as those disclosed in Patent Documents 1 to 4 provide anti-glare properties to the extent that reflected images are blurred. It was something. On the other hand, by increasing the degree of roughness of the surface unevenness of the antiglare layer, the glare can be sufficiently suppressed, so that the antiglare property can be enhanced. However, simply increasing the degree of roughness of the surface unevenness increases the intensity of reflected and scattered light, resulting in a problem of impairing the contrast of the image display device. Furthermore, conventional antiglare films such as those disclosed in Patent Documents 1 to 4 may not have sufficient scratch resistance.
  • An object of the present disclosure is to provide an antiglare film that has excellent antiglare properties and scratch resistance and that can suppress reflected scattered light.
  • the present disclosure provides the following antiglare films [1] to [2], as well as polarizing plates, surface plates, image display panels and display devices using the same.
  • the antiglare film according to [6] or [7] which contains 10 parts by mass or more and 200 parts by mass or less of the particles with respect to 100 parts by mass of the binder resin.
  • the binder resin contains a cured product of an ionizing radiation-curable resin composition and a thermoplastic resin.
  • a polarizing plate having a polarizer, a first transparent protective plate arranged on one side of the polarizer, and a second transparent protective plate arranged on the other side of the polarizer.
  • At least one of the first transparent protective plate and the second transparent protective plate is the antiglare film according to any one of [1] to [12], and is opposite to the uneven surface of the antiglare film.
  • a surface plate for an image display device comprising a resin plate or a glass plate and a protective film laminated thereon, wherein the protective film is the antiglare film according to any one of [1] to [12]
  • a surface plate for an image display device wherein the surface of the antiglare film opposite to the uneven surface and the resin plate or the glass plate are arranged to face each other.
  • An image display panel having a display element and an optical film disposed on the light emitting surface side of the display element, wherein the optical film is the antiglare according to any one of [1] to [12].
  • An image display panel comprising a film, wherein the antiglare film is arranged such that the uneven surface side of the antiglare film faces the side opposite to the display element.
  • An image display device comprising the image display panel according to [15] and having the antiglare film disposed on the outermost surface.
  • the antiglare film of the present disclosure and the polarizing plate, surface plate, image display panel, and image display device using the same have excellent antiglare properties and scratch resistance, and can suppress reflected scattered light.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of an antiglare film of the present disclosure
  • FIG. It is a schematic diagram for demonstrating the behavior of the light which injected into the anti-glare layer.
  • 1 is a cross-sectional view showing an embodiment of an image display panel of the present disclosure
  • FIG. It is a figure for demonstrating the calculation method of the amplitude spectrum of the altitude of an uneven
  • 2 is a diagram showing the relationship between spatial frequency and amplitude of the antiglare film of Example 1.
  • FIG. FIG. 10 is a diagram showing the relationship between the spatial frequency and the amplitude of the antiglare film of Example 2;
  • FIG. 10 is a diagram showing the relationship between the spatial frequency and the amplitude of the antiglare film of Example 3;
  • FIG. 10 is a diagram showing the relationship between the spatial frequency and the amplitude of the antiglare film of Example 4;
  • FIG. 10 is a diagram showing the relationship between the spatial frequency and the amplitude of the antiglare film of Example 5;
  • FIG. 10 is a diagram showing the relationship between the spatial frequency and the amplitude of the antiglare film of Example 6;
  • FIG. 10 is a diagram showing the relationship between the spatial frequency and the amplitude of the antiglare film of Example 7;
  • 3 is a diagram showing the relationship between spatial frequency and amplitude of the antiglare film of Comparative Example 1.
  • FIG. 10 is a diagram showing the relationship between the spatial frequency and the amplitude of the antiglare film of Comparative Example 2; 10 is a diagram showing the relationship between the spatial frequency and the amplitude of the antiglare film of Comparative Example 3.
  • FIG. 10 is a diagram showing the relationship between the spatial frequency and the amplitude of the antiglare film of Comparative Example 4;
  • the antiglare film of the present disclosure is an antiglare film having an antiglare layer, the antiglare film has an uneven surface, and the amplitude spectrum of the altitude of the uneven surface has a spatial frequency of 0.005 ⁇ m ⁇ 1 , 0.010 ⁇ m ⁇ 1 , and 0.015 ⁇ m ⁇ 1 , and AM1 is defined as the amplitude at the spatial frequency of 0.300 ⁇ m ⁇ 1 , and AM1 is more than 0.4000 ⁇ m and 1.0000 ⁇ m or less. , AM2 is 0.0050 ⁇ m or more and 0.0500 ⁇ m or less.
  • AM1 is the sum of the amplitudes of the three spatial frequencies and is represented by the following equation.
  • AM1 amplitude at spatial frequency 0.005 ⁇ m ⁇ 1 + amplitude at spatial frequency 0.010 ⁇ m ⁇ 1 + amplitude at spatial frequency 0.015 ⁇ m ⁇ 1
  • the spatial frequency becomes a discrete value depending on the length of one side, spatial frequencies matching 0.005 ⁇ m ⁇ 1 , 0.010 ⁇ m ⁇ 1 , 0.015 ⁇ m ⁇ 1 and 0.300 ⁇ m ⁇ 1 are obtained. sometimes not. In this specification, if there is no spatial frequency that matches said value, the amplitude of the spatial frequency closest to said value shall be extracted.
  • FIG. 1 is a schematic cross-sectional view of the cross-sectional shape of an antiglare film 100 of the present disclosure.
  • the antiglare film 100 of FIG. 1 includes an antiglare layer 20 and has an uneven surface.
  • the surface of the antiglare layer 20 is the uneven surface of the antiglare film.
  • the antiglare film 100 of FIG. 1 has an antiglare layer 20 on a transparent substrate 10 .
  • Antiglare layer 20 in FIG. 1 has binder resin 21 and particles 22 .
  • FIG. 1 is a schematic cross-sectional view. That is, the scale of each layer constituting the antiglare film 100, the scale of each material, and the scale of the surface unevenness are schematic for ease of illustration, and are different from the actual scale. 2 to 4 are the same.
  • the antiglare film of the present disclosure includes an antiglare layer having an uneven surface in which AM1 is more than 0.4000 ⁇ m and 1.0000 ⁇ m or less and AM2 is 0.0050 ⁇ m or more and 0.0500 ⁇ m or less, is not limited to the stacking configuration of
  • the antiglare film may have a single layer structure of an antiglare layer, or may have a layer other than a transparent substrate and an antiglare layer. Layers other than the transparent substrate and the antiglare layer include an antireflection layer and an antifouling layer. When another layer is provided on the antiglare layer, the surface of the other layer may be the uneven surface of the antiglare film.
  • a preferred embodiment of the antiglare film has an antiglare layer on a transparent substrate, and the surface of the antiglare layer opposite to the transparent substrate is an uneven surface.
  • the antiglare film preferably has a transparent substrate in order to facilitate the production of the antiglare film and improve the handleability of the antiglare film.
  • transparent base material one having light transmittance, smoothness, heat resistance, and excellent mechanical strength is preferable.
  • transparent substrates include polyester, triacetyl cellulose (TAC), cellulose diacetate, cellulose acetate butyrate, polyamide, polyimide, polyethersulfone, polysulfone, polypropylene, polymethylpentene, polyvinyl chloride, and polyvinyl acetal. , polyether ketone, polymethyl methacrylate, polycarbonate, polyurethane and amorphous olefin (Cyclo-Olefin-Polymer: COP).
  • the transparent substrate may be a laminate of two or more plastic films.
  • polyester films a stretched polyester film is preferable, and a biaxially stretched polyester film is more preferable, because of mechanical strength and dimensional stability.
  • polyester film examples include polyethylene terephthalate film and polyethylene naphthalate film.
  • a TAC film and an acrylic film are suitable because they tend to have good light transmittance and optical isotropy.
  • COP films and polyester films are suitable because of their excellent weather resistance.
  • the thickness of the transparent substrate is preferably 5 ⁇ m or more and 300 ⁇ m or less, more preferably 20 ⁇ m or more and 200 ⁇ m or less, and even more preferably 30 ⁇ m or more and 120 ⁇ m or less.
  • the preferred upper limit of the thickness of the transparent substrate is 60 ⁇ m or less, and the more preferred upper limit is 50 ⁇ m or less.
  • the transparent substrate is a low-moisture-permeable substrate such as polyester, COP, acrylic, etc.
  • the upper limit of the thickness of the transparent substrate is preferably 40 ⁇ m or less, more preferably 20 ⁇ m or less.
  • the thickness of the transparent substrate can be measured with a Digimatic standard outside micrometer (Mitutoyo Co., Ltd., product number "MDC-25SX") or the like.
  • the average value obtained by measuring arbitrary 10 points should be the above numerical value.
  • Preferred embodiments of the thickness of the transparent substrate include 5 ⁇ m to 300 ⁇ m, 5 ⁇ m to 200 ⁇ m, 5 ⁇ m to 120 ⁇ m, 5 ⁇ m to 60 ⁇ m, 5 ⁇ m to 50 ⁇ m, 5 ⁇ m to 40 ⁇ m, 5 ⁇ m to 20 ⁇ m, and 20 ⁇ m.
  • the surface of the transparent substrate may be subjected to physical treatment such as corona discharge treatment or chemical treatment, or may be formed with an easy-adhesion layer in order to improve adhesion.
  • An antiglare film is required to have an uneven surface.
  • the AM1 is more than 0.4000 ⁇ m and 1.0000 ⁇ m or less
  • the AM2 is 0.0050 ⁇ m or more and 0.0500 ⁇ m or less.
  • the surface of the antiglare layer may satisfy the above conditions for the uneven surface.
  • the surface of the other layer should satisfy the above conditions for the uneven surface.
  • the "elevation of the uneven surface” refers to an arbitrary point P on the uneven surface and a virtual plane M having an average height of the uneven surface in the direction of the normal line V of the antiglare film.
  • Straight line distance is meant (see Figure 4).
  • the elevation of the virtual plane M is set to 0 ⁇ m as a reference.
  • the direction of the normal V is the normal direction of the virtual plane M. If the altitude of any point P is higher than the average height, the altitude is positive, and if the altitude of any point P is lower than the average height, the altitude is negative.
  • words including “elevation” mean elevations based on the above average height, unless otherwise specified.
  • the spatial frequency and amplitude can be obtained by Fourier transforming the three-dimensional coordinate data of the uneven surface.
  • the method of calculating the spatial frequency and amplitude from the three-dimensional coordinate data of the uneven surface in this specification will be described later.
  • the spatial frequency roughly correlates with "the reciprocal of the interval between the convexes" and the amplitude roughly correlates with "the amount of change in the elevation of the convexes with a predetermined interval".
  • a spatial frequency of 0.005 ⁇ m ⁇ 1 indicates that the interval is about 200 ⁇ m
  • a spatial frequency of 0.010 ⁇ m ⁇ 1 indicates that the interval is about 100 ⁇ m
  • a spatial frequency of 0.015 ⁇ m ⁇ 1 indicates that the interval is 67 ⁇ m.
  • a spatial frequency of 0.300 ⁇ m ⁇ 1 indicates that the spacing is about 3 ⁇ m.
  • Amount of change in altitude of convex portions with a predetermined interval is roughly proportional to the absolute value of the height of each convex portion with a predetermined interval. Therefore, it is indirectly defined that an uneven surface having an AM1 of more than 0.4000 ⁇ m and 1.0000 ⁇ m or less and an AM2 of 0.0050 ⁇ m or more and 0.0500 ⁇ m or less is provided with the following protrusion groups i and ii. It can be said that there is Since AM2 is sufficiently smaller than AM1, the absolute value of the height of the convex portion ii can be said to be less than the absolute value of the height of the convex portion i.
  • ⁇ Convex group of i> A plurality of protrusions i are arranged at intervals of about 67 ⁇ m or more and 200 ⁇ m or less, and the absolute value of the height of the protrusions i is within a predetermined range.
  • ⁇ Convex group of ii> A plurality of protrusions ii are arranged at intervals of about 3 ⁇ m, and the absolute value of the height of the protrusions ii is within a predetermined range.
  • the uneven surface provided with the groups of protrusions i and ii above exhibits excellent antiglare properties and can suppress reflected and scattered light, mainly for the following reasons (x1) to (x5). be done.
  • a description will be given below with reference to FIG.
  • the convex portion with a large interval between the concave and convex portions indicates the convex portion i.
  • a convex portion with a small gap between convex portions i and a convex portion with a small gap between convex portions and convex portions on both left and right sides of FIG. 2 indicates convex portion ii.
  • the outer edge of the projection having a large absolute value of height is schematically drawn with a smooth line, but the outer edge may have fine unevenness.
  • the antiglare films of the examples are considered to have fine irregularities on the outer edges of the convex portions with a large absolute value of height.
  • the angular distribution of the reflected light reflected by the area is not biased to a predetermined angle, and becomes a substantially uniform angular distribution.
  • the reflected light of the light incident on the gentle slope of the convex portion i travels toward the observer 200 (an image of the dashed-dotted line in FIG. 2). Since the angular distribution of the gentle slope of the convex portion i is uniform, the angular distribution of the reflected light is also uniform without being biased to a specific angle.
  • the anti-glare property can be improved at a predetermined level because the reflected scattered light can be suppressed. Furthermore, from the above (x4) and (x5), even if a small amount of reflected scattered light is generated, the angular distribution of the reflected scattered light can be made uniform. Even if the amount of reflected scattered light is very small, it will be recognized as reflected light if the angular distribution of the reflected scattered light is biased toward a specific angle. Therefore, the antiglare property can be made extremely good from the above (x4) and (x5).
  • the reflected scattered light can be hardly felt by the observer, so the antiglare film can be given a jet-black feeling, and furthermore, the image display device can be given a high-class feeling. can be granted.
  • AM1 is more than 0.4000 ⁇ m and 1.0000 ⁇ m or less and AM2 is 0.0050 ⁇ m or more and 0.0500 ⁇ m or less, the above (x1)-(x5) effects are likely to occur, so antiglare properties are improved. In addition, by suppressing reflected and scattered light, it is possible to easily impart a feeling of jet blackness. If AM1 is less than 0.4000 ⁇ m, the uneven surface of the anti-glare film is likely to come into contact with the rubbed object, so that the scratch resistance cannot be improved. When AM2 exceeds 0.0500 ⁇ m, when the uneven surface of the antiglare film is scratched, the scratch is likely to be conspicuous, and thus the scratch resistance cannot be improved.
  • AM1 is preferably 0.4050 ⁇ m or more and 0.8000 ⁇ m or less, and 0.4800 ⁇ m or more and 0.7600 ⁇ m, in order to facilitate the effects of (x1) to (x5) described above and to improve scratch resistance. It is more preferably 0.5200 ⁇ m or more and 0.7200 ⁇ m or less. If AM1 is too small, the antiglare property tends to be particularly insufficient. Furthermore, if AM1 is too small, the uneven surface of the antiglare film is likely to come into contact with rubbing objects, and the scratch resistance tends to decrease. On the other hand, if AM1 becomes too large, the resolution of the video tends to decrease.
  • AM1 when AM1 becomes too large, the proportion of light totally reflected by the uneven surface increases, so the transmittance of light such as image light entering from the opposite side of the uneven surface tends to decrease. Also, if AM1 is too large, the proportion of light reflected to the observer side increases due to the increase in the number of convex portions having a large absolute value of height, and thus the reflected scattered light may become conspicuous. Therefore, not making AM1 too large is suitable for suppressing deterioration in resolution and transmittance, and for suppressing reflected scattered light.
  • AM2 is preferably 0.0060 ⁇ m or more and 0.0450 ⁇ m or less, and 0.0070 ⁇ m or more and 0.0400 ⁇ m, in order to facilitate the effects of (x1) to (x5) described above and to improve scratch resistance. It is more preferably 0.0080 ⁇ m or more and 0.0300 ⁇ m or less, even more preferably 0.0090 ⁇ m or more and 0.0200 ⁇ m or less. If AM2 becomes too large, the resolution of the video tends to decrease. Therefore, not making AM2 too large is also suitable for suppressing deterioration in resolution.
  • the numerical value It can be a range of embodiments.
  • AM1 more than 0.4000 ⁇ m and 1.0000 ⁇ m or less, more than 0.4000 ⁇ m and 0.8000 ⁇ m or less, more than 0.4000 ⁇ m and 0.7600 ⁇ m or less, more than 0.4000 ⁇ m and 0.7200 ⁇ m or less, 0.4050 ⁇ m or more and 1.0000 ⁇ m or less , 0.4050 ⁇ m or more and 0.8000 ⁇ m or less, 0.4050 ⁇ m or more and 0.7600 ⁇ m or less, 0.4050 ⁇ m or more and 0.7200 ⁇ m or less, 0.4800 ⁇ m or more and 1.0000 ⁇ m or less, 0.4800 ⁇ m or more and 0.8000 ⁇ m or less, 0.4800 ⁇ m or more 0.7600 ⁇ m or less, 0.4800 ⁇ m or more 0.7600 ⁇ m or less,
  • Embodiments include: In the case of AM2, 0.0050 ⁇ m or more and 0.0500 ⁇ m or less, 0.0050 ⁇ m or more and 0.0450 ⁇ m or less, 0.0050 ⁇ m or more and 0.0400 ⁇ m or less, 0.0050 ⁇ m or more and 0.0300 ⁇ m or less, 0.0050 ⁇ m or more and 0.0200 ⁇ m or less, 0 0.0060 ⁇ m or more and 0.0500 ⁇ m or less, 0.0060 ⁇ m or more and 0.0450 ⁇ m or less, 0.0060 ⁇ m or more and 0.0400 ⁇ m or less, 0.0060 ⁇ m or more and 0.0300 ⁇ m or less, 0.0060 ⁇ m or more and 0.0200 ⁇ m or less, 0.0070 ⁇ m or more and 0.0500 ⁇ m or less 0500 ⁇ m or less, 0.0070 ⁇ m or more and 0.0450 ⁇ m or less, 0.0070 ⁇ m or more and 0.0400 ⁇ m or
  • numerical values related to altitude amplitude spectrum such as AM1 and AM2
  • numerical values related to optical properties such as haze and total light transmittance
  • numerical values related to surface shape such as ⁇ q and ⁇ q are the average values of 16 measured values.
  • the 16 measurement points are the intersection points when a line that divides the area inside the margin into 5 equal parts in the vertical direction and the horizontal direction is drawn with a margin of 1 cm from the outer edge of the measurement sample. 16 points are preferably used as the center of the measurement. For example, when the measurement sample is a rectangle, a region of 0.5 cm from the outer edge of the rectangle is used as a margin, and the region inside the margin is vertically and horizontally divided into five equal 16 points of intersection of dotted lines.
  • the parameter is preferable to calculate the parameter with the average value. If the sample to be measured has a shape other than a rectangle, such as a circle, an ellipse, a triangle, or a pentagon, it is preferable to draw a rectangle inscribed in the shape and measure 16 points on the rectangle by the method described above.
  • various parameters such as numerical values regarding the amplitude spectrum of altitude such as AM1 and AM2, numerical values regarding optical properties such as haze and total light transmittance, numerical values regarding surface shape such as ⁇ q and ⁇ q, etc. As long as it is measured at a temperature of 23 ⁇ 5°C and a relative humidity of 40% or more and 65% or less.
  • the target sample is exposed to the atmosphere for 30 minutes or more and 60 minutes or less, and then the measurement is performed.
  • AM1 is the sum of amplitudes of three spatial frequencies. That is, in this specification, AM1 considers three intervals as the intervals of the convex portions. As described above, in the present specification, AM1 takes into consideration a plurality of intervals, so by setting AM1 to a predetermined value, it is possible to easily suppress an increase in reflected light due to uniform intervals of the convex portions.
  • AM1ave when AM1ave is defined as the average amplitude corresponding to spatial frequencies of 0.005 ⁇ m ⁇ 1 , 0.010 ⁇ m ⁇ 1 , and 0.015 ⁇ m ⁇ 1 , AM1ave is 0.1300 ⁇ m or more and 0.3300 ⁇ m or less. is preferably 0.1350 ⁇ m or more and 0.2700 ⁇ m or less, more preferably 0.1600 ⁇ m or more and 0.2500 ⁇ m or less, and even more preferably 0.1700 ⁇ m or more and 0.2400 ⁇ m or less preferable.
  • Preferred ranges of AM1ave are 0.1300 ⁇ m or more and 0.3300 ⁇ m or less, 0.1300 ⁇ m or more and 0.2700 ⁇ m or less, 0.1300 ⁇ m or more and 0.2500 ⁇ m or less, 0.1300 ⁇ m or more and 0.2400 ⁇ m or less, 0.1350 ⁇ m or more.
  • 0.1350 ⁇ m or more and 0.2700 ⁇ m or less 0.1350 ⁇ m or more and 0.2500 ⁇ m or less
  • 0.1350 ⁇ m or more and 0.2400 ⁇ m or less 0.1600 ⁇ m or more and 0.3300 ⁇ m or less, 0.1600 ⁇ m or more and 0.2700 ⁇ m or less, 0.1600 ⁇ m or more and 0.2500 ⁇ m or less, 0.1600 ⁇ m or more and 0.2400 ⁇ m or less, 0.1700 ⁇ m or more and 0.3300 ⁇ m or less, 0.1700 ⁇ m or more and 0.2700 ⁇ m or less, 0.1700 ⁇ m or more and 0.2500 ⁇ m or less, 0.1700 ⁇ m or more and 0.1700 ⁇ m or less .2400 ⁇ m or less.
  • AM1ave (amplitude at spatial frequency 0.005 ⁇ m ⁇ 1 + amplitude at spatial frequency 0.010 ⁇ m ⁇ 1 + amplitude at spatial frequency 0.015 ⁇ m ⁇ 1 )/3
  • the amplitude corresponding to the spatial frequency of 0.005 ⁇ m ⁇ 1 is AM1-1
  • the amplitude corresponding to the spatial frequency of 0.010 ⁇ m ⁇ 1 is AM1-2
  • the amplitude corresponding to the spatial frequency of 0.015 ⁇ m ⁇ 1 is AM1-
  • AM1-1, AM1-2, and AM1-3 preferably fall within the following ranges.
  • AM1-1 is preferably 0.1300 ⁇ m or more and 0.3900 ⁇ m or less, more preferably 0.1500 ⁇ m or more and 0.3300 ⁇ m or less, further preferably 0.1600 ⁇ m or more and 0.3000 ⁇ m or less. It is even more preferable to be 0.1700 ⁇ m or more and 0.2700 ⁇ m or less.
  • Preferred embodiments of AM1-1 include: 0.1300 ⁇ m to 0.3900 ⁇ m, 0.1300 ⁇ m to 0.3300 ⁇ m, 0.1300 ⁇ m to 0.3000 ⁇ m, 0.1300 ⁇ m to 0.2700 ⁇ m, 0.1300 ⁇ m to 0.3300 ⁇ m, 0.1300 ⁇ m to 0.2700 ⁇ m 1500 ⁇ m or more and 0.3900 ⁇ m or less, 0.1500 ⁇ m or more and 0.3300 ⁇ m or less, 0.1500 ⁇ m or more and 0.3000 ⁇ m or less, 0.1500 ⁇ m or more and 0.2700 ⁇ m or less, 0.1600 ⁇ m or more and 0.3900 ⁇ m or less, 0.1600 ⁇ m or more and 0.3300 ⁇ m or less 0.1600 ⁇ m or more and 0.3000 ⁇ m or less, 0.1600 ⁇ m or more and 0.2700 ⁇ m or less, 0.1700 ⁇ m or more and 0.3900 ⁇ m or less, 0.1700
  • AM1-2 is preferably 0.1300 ⁇ m or more and 0.3300 ⁇ m or less, more preferably 0.1500 ⁇ m or more and 0.2700 ⁇ m or less, further preferably 0.1600 ⁇ m or more and 0.2500 ⁇ m or less. It is even more preferable to be 0.1700 ⁇ m or more and 0.2400 ⁇ m or less.
  • Preferred embodiments of AM1-2 include: 0.1300 ⁇ m to 0.3300 ⁇ m, 0.1300 ⁇ m to 0.2700 ⁇ m, 0.1300 ⁇ m to 0.2500 ⁇ m, 0.1300 ⁇ m to 0.2400 ⁇ m, 0.1300 ⁇ m to 0.2400 ⁇ m.
  • AM1-3 is preferably 0.1300 ⁇ m or more and 0.3300 ⁇ m or less, more preferably 0.1500 ⁇ m or more and 0.2700 ⁇ m or less, further preferably 0.1600 ⁇ m or more and 0.2500 ⁇ m or less. It is even more preferable to be 0.1700 ⁇ m or more and 0.2400 ⁇ m or less.
  • Preferred embodiments of AM1-3 include: 0.1300 ⁇ m to 0.3300 ⁇ m, 0.1300 ⁇ m to 0.2700 ⁇ m, 0.1300 ⁇ m to 0.2500 ⁇ m, 0.1300 ⁇ m to 0.2400 ⁇ m, 0.1300 ⁇ m to 0.2700 ⁇ m.
  • AM1/AM2 is 1.0 or more and 90.0 or less in order to improve the balance of convex portions with different periods and facilitate the above (x1)-(x5) effects. is preferably 3.0 or more and 80.0 or less, more preferably 10.0 or more and 70.0 or less, 15.0 or more and 60.0 or less, 50.0 or more and 60.0 The following are even more preferable. Examples of preferred ranges of AM1/AM2 include 1.0 to 90.0, 1.0 to 80.0, 1.0 to 70.0, 1.0 to 60.0, 3.
  • AM1 means the sum of amplitudes corresponding to spatial frequencies of 0.005 ⁇ m ⁇ 1 , 0.010 ⁇ m ⁇ 1 , 0.015 ⁇ m ⁇ 1 , respectively, with respect to the amplitude spectrum of the elevation of the uneven surface.
  • AM2 means amplitude at spatial frequency 0.300 ⁇ m ⁇ 1 with respect to said amplitude spectrum.
  • the "elevation of the uneven surface” means an arbitrary point P on the uneven surface and a virtual plane M having an average height of the uneven surface
  • the antiglare film means the straight-line distance in the direction of the normal V of (see FIG. 4).
  • the elevation of the virtual plane M is set to 0 ⁇ m as a reference.
  • the direction of the normal V is the normal direction of the virtual plane M.
  • the altitude of the uneven surface of the antiglare film can be expressed as a two-dimensional function h(x, y) of the coordinates (x, y). can.
  • the elevation of the uneven surface is preferably measured using an interference microscope.
  • interference microscopes include Zygo's "New View" series.
  • the horizontal resolution required for the measuring instrument is at least 5 ⁇ m or less, preferably 1 ⁇ m or less, and the vertical resolution is at least 0.01 ⁇ m or less, preferably 0.001 ⁇ m or less.
  • the spatial frequency resolution is 0.0050 ⁇ m ⁇ 1
  • the altitude measurement area is preferably an area of at least 200 ⁇ m ⁇ 200 ⁇ m.
  • the amplitude spectrum Hx(fx) in the x direction and the amplitude spectrum Hy(fy) in the y direction are obtained by Fourier transform defined by the following equations (1a) and (1b). demand.
  • fx and fy are the frequencies in the x and y directions, respectively, and have the dimension of the reciprocal length.
  • ⁇ in equations (1a) and (1b) is the pi and i is the imaginary unit.
  • the amplitude spectrum H(f) can be obtained by averaging the amplitude spectrum Hx(fx) in the x direction and the amplitude spectrum Hy(fy) in the y direction. This amplitude spectrum H(f) represents the spatial frequency distribution of the uneven surface of the antiglare film.
  • FIG. 5 is a schematic diagram showing how the function h(x, y) representing altitude is discretely obtained. As shown in FIG.
  • the in-plane orthogonal coordinates of the antiglare layer are represented by (x, y), and the lines divided by ⁇ x in the x-axis direction and the lines divided by ⁇ y in the y-axis direction on the projection plane Sp
  • the elevation of the uneven surface is obtained as a discrete elevation value at each intersection point of each broken line on the projection plane Sp.
  • the altitude of the point P on the uneven surface corresponding to the point of interest A is h(j ⁇ x, k ⁇ y).
  • j is 0 or more and M ⁇ 1 or less
  • k is 0 or more and N ⁇ 1 or less.
  • the measurement intervals ⁇ x and ⁇ y depend on the horizontal resolution of the measuring instrument, and in order to accurately evaluate the fine uneven surface, as described above, both ⁇ x and ⁇ y are preferably 5 ⁇ m or less, and 2 ⁇ m or less. is more preferred. Both the measurement ranges X and Y are preferably 200 ⁇ m or more, as described above.
  • the function representing the elevation of the uneven surface is obtained as a discrete function h(x, y) with M ⁇ N values.
  • N discrete functions Hx(fx) are obtained by subjecting the discrete function h(x,y) obtained by the measurement to the discrete Fourier transform defined by the following equations (2a) and (2b) in the x direction and the y direction respectively.
  • ⁇ fx and ⁇ fy are frequency intervals in the x and y directions, respectively, and are defined by the following equations (3) and (4).
  • the discrete function H(f) of the amplitude spectrum calculated as described above represents the spatial frequency distribution of the uneven surface of the antiglare film.
  • FIG. 6-16 shows the discrete function H(f) of the amplitude spectrum of the elevation of the uneven surface of Examples 1-7 and Comparative Example 1-4.
  • the horizontal axis indicates spatial frequency (unit: ⁇ m ⁇ 1 )
  • the vertical axis indicates amplitude (unit: ⁇ m).
  • ⁇ q ⁇ q ⁇ q>>>
  • ⁇ q is 0.250 ⁇ m/ ⁇ m or more
  • ⁇ q is preferably 17.000 ⁇ m or less.
  • ⁇ q correlates with the tilt angle of the uneven surface. More specifically, a larger ⁇ q means a larger inclination angle of the uneven surface. Since ⁇ q is a square parameter, it is likely to be affected by an inclination angle larger than the average inclination angle. Therefore, ⁇ q is a parameter different from the average tilt angle, which is a parameter obtained by simply averaging all tilts.
  • ⁇ q correlates with the spacing of the irregularities on the irregular surface. More specifically, it means that the smaller the ⁇ q, the narrower the interval between the irregularities on the irregular surface.
  • ⁇ q is a parameter calculated from square parameters ⁇ q and Rq, as shown in formula (A) described later. Therefore, ⁇ q is a parameter that strongly reflects the interval between unevennesses having a large height difference and a large inclination angle among unevennesses. Therefore, ⁇ q is a parameter different from RSm of JIS, which is a parameter obtained by averaging the intervals of all unevenness.
  • an uneven surface with ⁇ q of 0.250 ⁇ m/ ⁇ m or more and ⁇ q of 17.000 ⁇ m or less means that unevenness with a large inclination angle exists at narrow intervals.
  • the unevenness having a large inclination angle exists at narrow intervals, so that AM1 and AM2 can be easily set within the ranges described above.
  • by reducing ⁇ q it is possible to easily impart a feeling of jet blackness to the antiglare film.
  • ⁇ q is more preferably 0.300 ⁇ m/ ⁇ m or more, still more preferably 0.325 ⁇ m/ ⁇ m or more, and even more preferably 0.350 ⁇ m/ ⁇ m or more. If ⁇ q is too large, image light tends to scatter when passing through the antiglare film, and the darkroom contrast tends to decrease. On the other hand, if ⁇ q is too large, the reflectance of image light increases, and the transmittance of image light tends to decrease. Therefore, ⁇ q is preferably 0.800 ⁇ m/ ⁇ m or less, more preferably 0.700 ⁇ m/ ⁇ m or less, and even more preferably 0.600 ⁇ m/ ⁇ m or less.
  • Preferred ranges of ⁇ q include 0.250 ⁇ m/ ⁇ m or more and 0.800 ⁇ m/ ⁇ m or less, 0.250 ⁇ m/ ⁇ m or more and 0.700 ⁇ m/ ⁇ m or less, 0.250 ⁇ m/ ⁇ m or more and 0.600 ⁇ m/ ⁇ m or less, 0 .300 ⁇ m/ ⁇ m or more and 0.800 ⁇ m/ ⁇ m or less, 0.300 ⁇ m/ ⁇ m or more and 0.700 ⁇ m/ ⁇ m or less, 0.300 ⁇ m/ ⁇ m or more and 0.600 ⁇ m/ ⁇ m or less, 0.325 ⁇ m/ ⁇ m or more and 0.800 ⁇ m/ ⁇ m or less , 0.325 ⁇ m/ ⁇ m or more and 0.700 ⁇ m/ ⁇ m or less, 0.325 ⁇ m/ ⁇ m or more and 0.600 ⁇ m/ ⁇ m or less, 0.350 ⁇ m/ ⁇ m or more and 0.800 ⁇ m/ ⁇ m or less, 0.350 ⁇ m/ ⁇ m or more and 0.800 ⁇ m/ ⁇
  • ⁇ q is more preferably 16.000 ⁇ m or less, more preferably 15.000 ⁇ m or less, more preferably 14.500 ⁇ m or less, more preferably 13.500 ⁇ m or less, and 12.000 ⁇ m The following are more preferable. If ⁇ q is too small, image light tends to scatter when passing through the antiglare film, and the darkroom contrast tends to decrease. Therefore, ⁇ q is preferably 3.000 ⁇ m or more, more preferably 5.000 ⁇ m or more, and even more preferably 7.000 ⁇ m or more.
  • Preferred ranges of ⁇ q are 3.000 ⁇ m or more and 17.000 ⁇ m or less, 3.000 ⁇ m or more and 16.000 ⁇ m or less, 3.000 ⁇ m or more and 15.000 ⁇ m or less, 3.000 ⁇ m or more and 14.500 ⁇ m or less, or 3.000 ⁇ m or more.
  • the antiglare film of the present disclosure preferably has an Rq of 0.300 ⁇ m or more, more preferably 0.350 ⁇ m or more, and further preferably 0.400 ⁇ m or more in order to improve antiglare properties. preferable. If Rq is too large, AM1 and/or AM2 may become too large. Therefore, Rq is preferably 1.100 ⁇ m or less, more preferably 1.000 ⁇ m or less, and even more preferably 0.900 ⁇ m or less.
  • Preferred ranges of Rq include: 0.300 ⁇ m or more and 1.100 ⁇ m or less, 0.300 ⁇ m or more and 1.000 ⁇ m or less, 0.300 ⁇ m or more and 0.900 ⁇ m or less, 0.350 ⁇ m or more and 1.100 ⁇ m or less, 0.350 ⁇ m or more 1.000 ⁇ m or less, 0.350 ⁇ m or more and 0.900 ⁇ m or less, 0.400 ⁇ m or more and 1.100 ⁇ m or less, 0.400 ⁇ m or more and 1.000 ⁇ m or less, and 0.400 ⁇ m or more and 0.900 ⁇ m or less.
  • ⁇ q means a three-dimensional extension of the “root-mean-square slope R ⁇ q of roughness curve” defined in JIS B0601:2001.
  • Rq means a three-dimensional extension of the "root-mean-square height of roughness curve Rq" defined in JIS B0601:2001.
  • ⁇ q, Rq and ⁇ q are preferably measured using an interference microscope.
  • an interference microscope for example, Zygo's product name "New View” series and the like can be used.
  • ⁇ q, Rq and ⁇ q can be easily calculated by using the measurement/analysis application software “MetroPro” attached to the “New View” series.
  • the measurement conditions for measuring ⁇ q, Rq and ⁇ q using the "New View” series described above preferably follow the conditions described in Examples.
  • Filter Low Wavelen (corresponding to ⁇ c of JIS B0601) is preferably 800 ⁇ m.
  • Camera Res (resolution) is preferably 0.3 ⁇ m or more and 0.5 ⁇ m or less.
  • the antiglare layer is a layer that plays a central role in suppression of reflected scattered light and antiglare properties.
  • the antiglare layer can be formed, for example, by (A) a method using an embossing roll, (B) etching treatment, (C) molding using a mold, and (D) forming a coating film by coating.
  • (C) molding with a mold is preferable in order to easily obtain a stable surface shape
  • (D) coating to form a coating film is preferable in order to improve productivity and support a wide variety of products. preferred.
  • an arbitrary resin and compatibility with the resin (d2) is a means for forming unevenness by applying a coating liquid containing a resin having poor adhesion to phase-separate the resin.
  • (d1) is preferable to (d2) because it is easier to achieve a good balance between AM1 and AM2.
  • (d1) is more preferable than (d2) in that ⁇ q, ⁇ q and Rq are easily suppressed.
  • the thickness T of the antiglare layer is preferably 2 ⁇ m or more and 10 ⁇ m or less, more preferably 4 ⁇ m or more and 8 ⁇ m or less, in order to achieve a good balance of curl suppression, mechanical strength, hardness and toughness.
  • the thickness of the antiglare layer can be calculated, for example, by selecting 20 arbitrary points in a cross-sectional photograph of the antiglare film taken by a scanning transmission electron microscope (STEM) and calculating the average value thereof. It is preferable that the acceleration voltage of STEM is 10 kV or more and 30 kV or less, and the magnification of STEM is 1000 times or more and 7000 times or less.
  • Preferred embodiments of the thickness of the antiglare layer include 2 ⁇ m to 10 ⁇ m, 2 ⁇ m to 8 ⁇ m, 4 ⁇ m to 10 ⁇ m, and 4 ⁇ m to 8 ⁇ m.
  • the antiglare layer mainly contains a resin component, and if necessary, particles such as organic particles and inorganic fine particles, a refractive index adjuster, an antistatic agent, an antifouling agent, an ultraviolet absorber, a light stabilizer, an antioxidant, Additives such as viscosity modifiers and thermal polymerization initiators are included.
  • the antiglare layer preferably contains a binder resin and particles.
  • Particles include organic particles and inorganic particles, with inorganic particles being preferred. That is, the antiglare layer more preferably contains a binder resin and inorganic particles. More preferably, the antiglare layer contains a binder resin, inorganic particles and organic particles.
  • -particle- Particles include organic particles and inorganic particles.
  • organic particles include particles made of polymethyl methacrylate, polyacrylic-styrene copolymer, melamine resin, polycarbonate, polystyrene, polyvinyl chloride, benzoguanamine-melamine-formaldehyde condensate, silicone, fluorine-based resin, polyester-based resin, and the like. mentioned.
  • inorganic particles include silica, alumina, zirconia and titania, with silica being preferred. Among the inorganic particles, amorphous inorganic particles are preferred, and amorphous silica is more preferred.
  • amorphous inorganic particles such as amorphous silica
  • amorphous inorganic particles such as amorphous silica
  • the shape becomes as if the irregular inorganic particles are spread all over, making it easier to reduce ⁇ q.
  • ⁇ q and ⁇ q can be easily set within the above ranges.
  • the mass ratio of amorphous inorganic particles and organic particles is preferably 5:1-1:1, more preferably 4:1-2:1.
  • the antiglare layer preferably contains inorganic fine particles, which will be described later, so that AM1 and AM2 are easily within the above range.
  • the average particle diameter D of particles such as organic particles and inorganic particles is preferably 1.0 ⁇ m or more and 10.0 ⁇ m or less, more preferably 1.5 ⁇ m or more and 8.0 ⁇ m or less, and 1.7 ⁇ m or more6. It is more preferably 0 ⁇ m or less.
  • AM1 and Rq can be easily increased.
  • amorphous inorganic particles tend to increase AM1, ⁇ q and Rq.
  • AM2 and ⁇ q can be easily reduced, and AM1, ⁇ q and Rq can be easily suppressed from becoming too large.
  • Preferred embodiments of the average particle diameter of the particles are 1.0 ⁇ m to 10.0 ⁇ m, 1.0 ⁇ m to 8.0 ⁇ m, 1.0 ⁇ m to 6.0 ⁇ m, 1.5 ⁇ m to 10.0 ⁇ m, 1.5 ⁇ m or more and 8.0 ⁇ m or less, 1.5 ⁇ m or more and 6.0 ⁇ m or less, 1.7 ⁇ m or more and 10.0 ⁇ m or less, 1.7 ⁇ m or more and 8.0 ⁇ m or less, and 1.7 ⁇ m or more and 6.0 ⁇ m or less.
  • the average particle size of particles such as organic particles and inorganic particles can be calculated by the following operations (A1) to (A3).
  • A1 Take a transmission observation image of the antiglare film with an optical microscope. The magnification is preferably 500 times or more and 2000 times or less.
  • A2) Extract arbitrary 10 particles from the observation image and calculate the particle diameter of each particle. The particle diameter is measured as the distance between two straight lines that maximizes the distance between the two straight lines when the cross section of the particle is sandwiched between the two straight lines.
  • A3 Perform the same operation 5 times on different screen observation images of the same sample, and take the value obtained from the number average of the particle diameters for a total of 50 particles as the average particle diameter of the particles.
  • D/T which is the ratio of the thickness T of the antiglare layer to the average particle diameter D of the particles
  • D/T is preferably 0.20 or more and 0.96 or less, and more preferably 0.25 or more and 0.90 or less. It is more preferably 0.30 or more and 0.80 or less, and even more preferably 0.35 or more and 0.70 or less.
  • Preferred ranges of D/T include 0.20 to 0.96, 0.20 to 0.90, 0.20 to 0.80, 0.20 to 0.70, and 0.20 to 0.90. 25 to 0.96, 0.25 to 0.90, 0.25 to 0.80, 0.25 to 0.70, 0.30 to 0.96, 0.30 to 0.90 0.30 or more and 0.80 or less, 0.30 or more and 0.70 or less, 0.35 or more and 0.96 or less, 0.35 or more and 0.90 or less, 0.35 or more and 0.80 or less, 0.35 0.70 or less.
  • the content of particles such as organic particles and inorganic particles is preferably 10 parts by mass or more and 200 parts by mass or less, more preferably 15 parts by mass or more and 170 parts by mass or less with respect to 100 parts by mass of the binder resin. , more preferably 20 parts by mass or more and 150 parts by mass or less.
  • AM1, AM2, ⁇ q and Rq can be easily increased, and ⁇ q can be easily decreased.
  • the content of the particles is compared within the above range in order to facilitate the expression of "particle laying" and “particle stacking". It is preferable to use a relatively large amount.
  • the content of the particles is preferably relatively small within the above range in order to prevent AM1 from becoming too large.
  • Preferred embodiments of the content of the particles with respect to 100 parts by mass of the binder resin include 10 parts by mass to 200 parts by mass, 10 parts by mass to 170 parts by mass, 10 parts by mass to 150 parts by mass, and 15 parts by mass or more. 200 parts by mass or less, 15 to 170 parts by mass, 15 to 150 parts by mass, 20 to 200 parts by mass, 20 to 170 parts by mass, 20 to 150 parts by mass mentioned.
  • the antiglare layer preferably contains inorganic fine particles in addition to the binder resin and particles.
  • the inorganic fine particles and the particles described above can be distinguished by their average particle diameter.
  • the viscosity of the antiglare layer coating liquid can be increased, so that the particles are less likely to sink.
  • the antiglare layer contains the inorganic fine particles, fine unevenness is easily formed between peaks on the uneven surface. Therefore, when the antiglare layer contains inorganic fine particles, AM1, AM2, ⁇ q, ⁇ q, and Rq can be easily set within the ranges described above.
  • the particles are preferably organic particles. By including the inorganic fine particles in the antiglare layer, the difference between the refractive index of the particles and the refractive index of the composition other than the particles of the antiglare layer is reduced, making it easier to reduce the internal haze.
  • inorganic fine particles examples include fine particles made of silica, alumina, zirconia, titania, and the like. Among these, silica is preferable since it easily suppresses the generation of internal haze.
  • the average particle diameter of the inorganic fine particles is preferably 1 nm or more and 200 nm or less, more preferably 2 nm or more and 100 nm or less, and even more preferably 5 nm or more and 50 nm or less.
  • Preferred embodiments of the average particle size of the inorganic fine particles include 1 nm to 200 nm, 1 nm to 100 nm, 1 nm to 50 nm, 2 nm to 200 nm, 2 nm to 100 nm, 2 nm to 50 nm, 5 nm to 200 nm, 5 nm or more and 100 nm or less and 5 nm or more and 50 nm or less are mentioned.
  • the average particle size of the inorganic fine particles can be calculated by the following operations (B1)-(B3).
  • B1 A cross-section of the antiglare film is imaged with a TEM or STEM. It is preferable that the acceleration voltage of the TEM or STEM is 10 kV or more and 30 kV or less, and the magnification is 50,000 times or more and 300,000 times or less.
  • B2 Any 10 inorganic fine particles are extracted from the observation image, and the particle diameter of each inorganic fine particle is calculated. The particle diameter is measured as the distance between two arbitrary parallel straight lines sandwiching the cross section of the inorganic fine particles and the combination of the two straight lines so that the distance between the two straight lines is maximum.
  • B3) Perform the same operation 5 times on observation images of the same sample on different screens, and take the average particle diameter of the inorganic fine particles as the value obtained from the number average of the particle diameters of a total of 50 particles.
  • the content of the inorganic fine particles is preferably 10 parts by mass or more and 200 parts by mass or less, more preferably 15 parts by mass or more and 150 parts by mass or less, and 20 parts by mass or more and 80 parts by mass with respect to 100 parts by mass of the binder resin. It is more preferably not more than parts by mass.
  • the content of the inorganic fine particles is preferably 10 parts by mass or more and 200 parts by mass or less, more preferably 15 parts by mass or more and 150 parts by mass or less, and 20 parts by mass or more and 80 parts by mass with respect to 100 parts by mass of the binder resin. It is more preferably not more than parts by mass.
  • Preferred embodiments of the content of the inorganic fine particles with respect to 100 parts by mass of the binder resin include 10 parts by mass to 200 parts by mass, 10 parts by mass to 150 parts by mass, 10 parts by mass to 80 parts by mass, and 15 parts by mass. 15 to 150 parts by mass, 15 to 80 parts by mass, 20 to 200 parts by mass, 20 to 150 parts by mass, 20 to 80 parts by mass are mentioned.
  • the binder resin preferably contains a cured product of a curable resin such as a cured product of a thermosetting resin composition or a cured product of an ionizing radiation-curable resin composition. It is more preferable to contain a cured product of a flexible resin composition.
  • thermosetting resin composition is a composition containing at least a thermosetting resin, and is a resin composition that is cured by heating.
  • Thermosetting resins include acrylic resins, urethane resins, phenol resins, urea melamine resins, epoxy resins, unsaturated polyester resins, silicone resins, and the like. If necessary, a curing agent is added to these curable resins in the thermosetting resin composition.
  • An ionizing radiation-curable resin composition is a composition containing a compound having an ionizing radiation-curable functional group (hereinafter also referred to as an "ionizing radiation-curable compound").
  • ionizing radiation-curable functional groups include ethylenically unsaturated bond groups such as (meth)acryloyl groups, vinyl groups, and allyl groups, epoxy groups, and oxetanyl groups.
  • a compound having an ethylenically unsaturated bond group is preferable, and a compound having two or more ethylenically unsaturated bond groups is more preferable.
  • Polyfunctional (meth)acrylate compounds are more preferred.
  • Ionizing radiation refers to electromagnetic waves or charged particle beams that have energy quanta capable of polymerizing or cross-linking molecules, and usually ultraviolet (UV) or electron beam (EB) is used. Electromagnetic waves such as ⁇ rays, ⁇ rays, and charged particle beams such as ion beams can also be used.
  • bifunctional (meth)acrylate monomers include ethylene glycol di(meth)acrylate, bisphenol A tetraethoxy diacrylate, bisphenol A tetrapropoxy diacrylate, 1,6-hexane. diol diacrylate and the like.
  • Trifunctional or higher (meth)acrylate monomers include, for example, trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, di Examples include pentaerythritol tetra(meth)acrylate and isocyanuric acid-modified tri(meth)acrylate.
  • the (meth)acrylate monomer may have a partially modified molecular skeleton.
  • the (meth)acrylate-based monomer may be partially modified with ethylene oxide, propylene oxide, caprolactone, isocyanuric acid, alkyl, cyclic alkyl, aromatic, bisphenol, or the like.
  • Polyfunctional (meth)acrylate oligomers include acrylate polymers such as urethane (meth)acrylate, epoxy (meth)acrylate, polyester (meth)acrylate, and polyether (meth)acrylate.
  • Urethane (meth)acrylates are obtained, for example, by reacting polyhydric alcohols and organic diisocyanates with hydroxy (meth)acrylates.
  • Preferred epoxy (meth)acrylates include (meth)acrylates obtained by reacting tri- or more functional aromatic epoxy resins, alicyclic epoxy resins, aliphatic epoxy resins, etc. with (meth)acrylic acid; (Meth)acrylates obtained by reacting aromatic epoxy resins, alicyclic epoxy resins, aliphatic epoxy resins, etc.
  • a monofunctional (meth)acrylate may be used in combination as the ionizing radiation-curable compound.
  • Monofunctional (meth)acrylates include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate, and cyclohexyl (meth)acrylate. , 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate, stearyl (meth)acrylate and isobornyl (meth)acrylate.
  • the above ionizing radiation-curable compounds may be used singly or in combination of two or more.
  • the ionizing radiation-curable composition preferably contains additives such as a photopolymerization initiator and a photopolymerization accelerator.
  • a photopolymerization initiator include one or more selected from acetophenone, benzophenone, ⁇ -hydroxyalkylphenone, Michler's ketone, benzoin, benzyldimethylketal, benzoylbenzoate, ⁇ -acyloxime ester, thioxanthones and the like.
  • the photopolymerization accelerator can reduce polymerization inhibition caused by air during curing and increase the curing speed. Accelerators include p-dimethylaminobenzoic acid isoamyl ester, p-dimethylaminobenzoic acid ethyl ester, and the like.
  • the binder resin contains a cured product of an ionizing radiation-curable resin composition, it preferably has the following configuration (C1) or (C2).
  • the binder resin contains a thermoplastic resin in addition to the cured product of the ionizing radiation-curable resin composition.
  • the binder resin substantially contains only the cured product of the ionizing radiation-curable resin composition, and the ionizing radiation-curable compound contained in the ionizing radiation-curable resin composition contains 70% by mass or more of the monomer component.
  • the thermoplastic resin increases the viscosity of the antiglare layer coating liquid, so that the particles are less likely to sink, and the binder resin is less likely to flow down between the peaks. Therefore, in the case of the embodiment of C1, AM1, AM2 and ⁇ q can be easily increased, and ⁇ q can be easily decreased.
  • the antiglare layer contains inorganic fine particles because the inorganic fine particles can increase the viscosity of the antiglare layer coating liquid.
  • the above embodiment of C1 preferably uses organic particles as the particles and contains inorganic fine particles.
  • Thermoplastic resins include polystyrene-based resins, polyolefin-based resins, ABS resins (including heat-resistant ABS resins), AS resins, AN resins, polyphenylene oxide-based resins, polycarbonate-based resins, polyacetal-based resins, acrylic-based resins, and polyethylene terephthalate-based resins.
  • examples include resins, polybutylene terephthalate-based resins, polysulfone-based resins, and polyphenylene sulfide-based resins, and acrylic resins are preferred in order to improve transparency.
  • the weight average molecular weight of the thermoplastic resin is preferably from 20,000 to 200,000, more preferably from 30,000 to 150,000, and even more preferably from 50,000 to 100,000.
  • the weight average molecular weight is the average molecular weight measured by GPC analysis and converted to standard polystyrene.
  • Preferred embodiments of the weight average molecular weight of the thermoplastic resin include 20,000 to 200,000, 20,000 to 150,000, 20,000 to 100,000, 30,000 to 200,000, and 30,000 to 150,000. , 30,000 to 100,000, 50,000 to 200,000, 50,000 to 150,000, and 50,000 to 100,000.
  • the mass ratio of the cured product of the ionizing radiation-curable resin composition and the thermoplastic resin is preferably 60:40-90:10, and 70:30-80:20. is more preferred.
  • the number of thermoplastic resins is preferably 10 or more relative to the cured product 90 of the ionizing radiation-curable resin composition, the effect of increasing the viscosity of the antiglare layer coating liquid can be easily exhibited.
  • the proportion of the thermoplastic resin to 40 or less with respect to the cured product 60 of the ionizing radiation-curable resin composition, it is possible to easily suppress the decrease in the mechanical strength of the antiglare layer.
  • the particles are spread on the bottom of the antiglare layer, and the particles are stacked in a part of the region, and the particles are covered with a thin skin-like binder resin.
  • AM1 and ⁇ q can be easily increased by stacked particles, and AM2 and ⁇ q can be easily decreased by spread particles.
  • the particles are preferably inorganic particles, more preferably amorphous inorganic particles, and even more preferably amorphous silica.
  • Embodiments of C2 above preferably include organic particles in addition to inorganic particles.
  • the ratio of the cured product of the ionizing radiation-curable resin composition to the total amount of the binder resin is preferably 90% by mass or more, more preferably 95% by mass or more, and 100% by mass. More preferred.
  • the ratio of the monomer component to the total amount of the ionizing radiation-curable compound is preferably 90% by mass or more, more preferably 95% by mass or more, and even more preferably 100% by mass.
  • the monomer component is preferably a polyfunctional (meth)acrylate compound.
  • the antiglare layer coating liquid preferably contains a solvent in order to adjust the viscosity and to dissolve or disperse each component. Since the surface shape of the antiglare layer after coating and drying differs depending on the type of solvent, it is preferable to select the solvent in consideration of the saturated vapor pressure of the solvent, the permeability of the solvent to the transparent substrate, and the like.
  • solvents examples include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ethers such as dioxane and tetrahydrofuran; aliphatic hydrocarbons such as hexane; alicyclic hydrocarbons such as cyclohexane; aromatic hydrocarbons; halogenated carbons such as dichloromethane and dichloroethane; esters such as methyl acetate, ethyl acetate and butyl acetate; alcohols such as isopropanol, butanol and cyclohexanol; cellosolves such as methyl cellosolve and ethyl cellosolve; glycol ethers such as propylene glycol monomethyl ether acetate; cellosolve acetates; sulfoxides such as dimethylsulfoxide; amides such as dimethylformamide and dimethylacetamide;
  • the solvent in the antiglare layer coating liquid preferably contains a solvent having a high evaporation rate as a main component.
  • a solvent having a high evaporation rate as a main component.
  • the main component means 50% by mass or more, preferably 70% by mass or more, and more preferably 80% by mass or more of the total amount of the solvent.
  • a solvent with a high evaporation rate means a solvent with an evaporation rate of 100 or more when the evaporation rate of butyl acetate is set to 100.
  • the evaporation rate of the solvent having a high evaporation rate is more preferably 120 or more and 300 or less, more preferably 150 or more and 220 or less.
  • Examples of solvents with high evaporation rates include methyl isobutyl ketone with an evaporation rate of 160, toluene with an evaporation rate of 200, and methyl ethyl ketone with an evaporation rate of 370.
  • the solvent in the antiglare layer coating liquid preferably contains a small amount of a solvent with a slow evaporation rate in addition to the solvent with a high evaporation rate.
  • a solvent with a slow evaporation rate By containing a small amount of a solvent having a slow evaporation rate, particles can be aggregated, and AM1, ⁇ q and Rq can be easily increased.
  • the mass ratio of the fast evaporating solvent and the slow evaporating solvent is preferably 99:1-80:20, more preferably 98:2-85:15.
  • a solvent with a slow evaporation rate means a solvent with an evaporation rate of less than 100 when the evaporation rate of butyl acetate is defined as 100.
  • the evaporation rate of the solvent having a slow evaporation rate is more preferably 20 or more and 60 or less, and more preferably 25 or more and 40 or less.
  • Examples of solvents with a slow evaporation rate include cyclohexanone with an evaporation rate of 32 and propylene glycol monomethyl ether acetate with an evaporation rate of 44.
  • drying conditions can be controlled by drying temperature and air speed in the dryer.
  • the drying temperature is preferably 30° C. or higher and 120° C. or lower, and the drying wind speed is preferably 0.2 m/s or higher and 50 m/s or lower.
  • the antiglare film preferably has a total light transmittance of 70% or more, more preferably 80% or more, and even more preferably 85% or more according to JIS K7361-1:1997.
  • the light incident surface for measuring the total light transmittance and haze, which will be described later, is the side opposite to the uneven surface.
  • the antiglare film preferably has a JIS K7136:2000 haze of 40% or more and 98% or less, more preferably 50% or more and 80% or less, and even more preferably 55% or more and 70% or less.
  • a JIS K7136:2000 haze 40% or more and 98% or less, more preferably 50% or more and 80% or less, and even more preferably 55% or more and 70% or less.
  • the antiglare film preferably has an internal haze of 20% or less, more preferably 15% or less, and even more preferably 10% or less, in order to easily improve image resolution and contrast.
  • the internal haze can be measured by a general-purpose method. For example, it can be measured by flattening the unevenness of the uneven surface by attaching a transparent sheet to the uneven surface with a transparent adhesive layer interposed therebetween.
  • C 0.125 is the transmission image clarity with an optical comb width of 0.125 mm
  • C 0.125 is the transmission image clarity with an optical comb width of 0.25 mm
  • C 0.25 is the transmitted image sharpness with an optical comb width of 0.5 mm
  • C 0.5 is the transmitted image sharpness with an optical comb width of 1.0 mm
  • C 1.0 is the transmitted image sharpness with an optical comb width of 2.0 mm.
  • the sharpness is defined as C2.0
  • the values of C0.125 , C0.25 , C0.5 , C1.0 and C2.0 are preferably within the following ranges.
  • C 0.125 is preferably 50% or less, more preferably 40% or less, more preferably 30% or less, and more preferably 20% or less, in order to improve antiglare properties.
  • C 0.125 is preferably 1.0% or more in order to improve resolution.
  • the range of C 0.125 includes 1.0% to 50%, 1.0% to 40%, 1.0% to 30%, and 1.0% to 20%.
  • C 0.25 is preferably 50% or less, more preferably 40% or less, more preferably 30% or less, and more preferably 20% or less, in order to improve antiglare properties.
  • C 0.25 is preferably 1.0% or more in order to improve resolution.
  • the range of C 0.25 includes 1.0% to 50%, 1.0% to 40%, 1.0% to 30%, and 1.0% to 20%.
  • C 0.5 is preferably 50% or less, more preferably 40% or less, more preferably 30% or less, and more preferably 20% or less, in order to improve antiglare properties.
  • C 0.5 is preferably 1.0% or more in order to improve resolution.
  • the range of C 0.5 includes 1.0% to 50%, 1.0% to 40%, 1.0% to 30%, and 1.0% to 20%.
  • C 1.0 is preferably 50% or less, more preferably 40% or less, more preferably 30% or less, and more preferably 20% or less, in order to improve antiglare properties.
  • C 1.0 is preferably 1.0% or more in order to improve resolution.
  • the range of C 1.0 includes 1.0% to 50%, 1.0% to 40%, 1.0% to 30%, and 1.0% to 20%.
  • C 2.0 is preferably 50% or less, more preferably 40% or less, more preferably 30% or less, and more preferably 25% or less, in order to improve antiglare properties.
  • C 2.0 is preferably 5.0% or more in order to improve resolution.
  • the range of C 2.0 includes 5.0% to 50%, 5.0% to 40%, 5.0% to 30%, and 5.0% to 25%.
  • the total of C 0.125 , C 0.5 , C 1.0 and C 2.0 is preferably 200% or less, more preferably 150% or less, more preferably 100% or less, and 80%. % or less is more preferable.
  • the total is preferably 10.0% or more in order to improve the resolution. Examples of the range of the total include 10.0% to 200%, 10.0% to 150%, 10.0% to 100%, and 10.0% to 80%.
  • the antiglare film preferably has a 20-degree specular gloss measured from the uneven surface side of 6.0 or less, more preferably 3.0 or less, and 1.0. It is more preferably 0.5 or less, and even more preferably 0.5 or less. If the 20-degree specular glossiness of the antiglare film is too low, image light tends to scatter when passing through the antiglare film, and the darkroom contrast tends to decrease. Therefore, the 20-degree specular glossiness of the antiglare film is preferably 0.01 or more, more preferably 0.02 or more, and even more preferably 0.04 or more.
  • the preferred range of the 20-degree specular glossiness of the antiglare film is 0.01 to 6.0, 0.01 to 3.0, 0.01 to 1.0, and 0.01 to 0.5. , 0.02 to 6.0, 0.02 to 3.0, 0.02 to 1.0, 0.02 to 0.5, 0.04 to 6.0, 0.04 or more 3.0 or less, 0.04 or more and 1.0 or less, or 0.04 or more and 0.5 or less.
  • the antiglare film may have other layers other than the antiglare layer and the transparent substrate described above.
  • Other layers include an antireflection layer, an antifouling layer, an antistatic layer, and the like.
  • a preferred embodiment having other layers includes an embodiment in which an antireflection layer is provided on the uneven surface of the antiglare layer, and the surface of the antireflection layer is the uneven surface. More preferably, the antireflection layer has antifouling properties. That is, an embodiment in which an antifouling antireflection layer is provided on the antiglare layer and the surface of the antifouling antireflection layer is the uneven surface is more preferable.
  • the antireflection layer examples include a single layer structure of a low refractive index layer; a two layer structure of a high refractive index layer and a low refractive index layer; and a multilayer structure of three or more layers.
  • the low refractive index layer and the high refractive index layer can be formed by a general-purpose wet method, dry method, or the like. In the case of the wet method, the single-layer structure or the two-layer structure is preferred, and in the case of the dry method, the multi-layer structure is preferred.
  • the low refractive index layer is preferably arranged on the outermost surface of the antiglare film.
  • the low refractive index layer preferably contains an antifouling agent such as a silicone-based compound and a fluorine-based compound.
  • the lower limit of the refractive index of the low refractive index layer is preferably 1.10 or more, more preferably 1.20 or more, more preferably 1.26 or more, more preferably 1.28 or more, and more preferably 1.30 or more.
  • the upper limit is preferably 1.48 or less, more preferably 1.45 or less, more preferably 1.40 or less, more preferably 1.38 or less, and more preferably 1.32 or less.
  • Preferred embodiments of the refractive index of the low refractive index layer are 1.10 to 1.48, 1.10 to 1.45, 1.10 to 1.40, and 1.10 to 1.38.
  • the lower limit of the thickness of the low refractive index layer is preferably 80 nm or more, more preferably 85 nm or more, more preferably 90 nm or more, and the upper limit is preferably 150 nm or less, more preferably 110 nm or less, and more preferably 105 nm or less.
  • Preferred embodiments of the thickness of the low refractive index layer include: 80 nm or more and 150 nm or less; 80 nm or more and 110 nm or less; 80 nm or more and 105 nm or less; 85 nm or more and 150 nm or less; 90 nm or more and 110 nm or less and 90 nm or more and 105 nm or less are mentioned.
  • the high refractive index layer is preferably arranged closer to the antiglare layer than the low refractive index layer.
  • the lower limit of the refractive index of the high refractive index layer is preferably 1.53 or more, more preferably 1.54 or more, more preferably 1.55 or more, more preferably 1.56 or more, and the upper limit is 1.85 or less. is preferred, 1.80 or less is more preferred, 1.75 or less is more preferred, and 1.70 or less is more preferred.
  • Preferred embodiments of the refractive index of the high refractive index layer are 1.53 to 1.85, 1.53 to 1.80, 1.53 to 1.75, and 1.53 to 1.70.
  • the upper limit of the thickness of the high refractive index layer is preferably 200 nm or less, more preferably 180 nm or less, still more preferably 150 nm or less, and the lower limit is preferably 50 nm or more, more preferably 70 nm or more.
  • Preferred ranges of the thickness of the high refractive index layer include embodiments of 50 nm to 200 nm, 50 nm to 180 nm, 50 nm to 150 nm, 70 nm to 200 nm, 70 nm to 180 nm, and 70 nm to 150 nm.
  • a multilayer structure preferably formed by a dry method is a structure in which high refractive index layers and low refractive index layers are alternately laminated to form a total of three or more layers. Also in the multilayer structure, the low refractive index layer is preferably arranged on the outermost surface of the antiglare film.
  • the high refractive index layer preferably has a thickness of 10 nm or more and 200 nm or less, and a refractive index of 2.10 or more and 2.40 or less. More preferably, the thickness of the high refractive index layer is 20 nm or more and 70 nm or less.
  • the low refractive index layer preferably has a thickness of 5 nm or more and 200 nm or less, and a refractive index of 1.33 or more and 1.53 or less. More preferably, the thickness of the low refractive index layer is 20 nm or more and 120 nm or less.
  • the antiglare film may be in the form of a leaf cut into a predetermined size, or may be in the form of a roll obtained by winding a long sheet.
  • the size of the sheet is not particularly limited, but the maximum diameter is about 2 inches or more and 500 inches or less.
  • the “maximum diameter” refers to the maximum length of the antiglare film when two arbitrary points are connected. For example, when the antiglare film is rectangular, the diagonal line of the rectangle is the maximum diameter. When the antiglare film is circular, the diameter of the circle is the maximum diameter.
  • the width and length of the roll are not particularly limited, but generally the width is about 500 mm or more and 3000 mm or less, and the length is about 500 m or more and 5000 m or less.
  • the roll-shaped anti-glare film can be cut into pieces according to the size of the image display device or the like. When cutting, it is preferable to exclude the roll ends whose physical properties are not stable.
  • the shape of the surface of the antiglare film on the side opposite to the uneven surface is not particularly limited, but it is preferably substantially smooth.
  • substantially smooth means that the arithmetic mean roughness Ra of JIS B0601:1994 at a cutoff value of 0.8 mm is less than 0.03 ⁇ m, preferably 0.02 ⁇ m or less.
  • the polarizing plate of the present disclosure has a polarizer, a first transparent protective plate arranged on one side of the polarizer, and a second transparent protective plate arranged on the other side of the polarizer.
  • a polarizing plate, At least one of the first transparent protective plate and the second transparent protective plate is the above-described antiglare film of the present disclosure, and the surface of the antiglare film opposite to the uneven surface and the polarizer are arranged facing each other.
  • a polarizer for example, a sheet-type polarizer such as a polyvinyl alcohol film, polyvinyl formal film, polyvinyl acetal film, ethylene-vinyl acetate copolymer system saponified film dyed with iodine or the like and stretched; wire grid type polarizers made of metal wires, coating type polarizers coated with lyotropic liquid crystals or dichroic guest-host materials, multilayer thin film type polarizers, and the like. These polarizers may be reflective polarizers having the function of reflecting non-transmissive polarized light components.
  • a first transparent protective plate is arranged on one side of the polarizer, and a second transparent protective plate is arranged on the other side. At least one of the first transparent protective plate and the second transparent protective plate is the antiglare film of the present disclosure described above.
  • one of the first transparent protective plate and the second transparent protective plate may be the antiglare film of the present disclosure described above, or the first transparent protective plate and the second transparent protective plate may be the antiglare film of the present disclosure. Both of the plates may be antiglare films of the present disclosure as described above.
  • the transparent protective plate that is not the antiglare film of the present disclosure, a general-purpose plastic film, glass, or the like can be used.
  • the polarizer and the transparent protective plate are preferably pasted together with an adhesive.
  • a general-purpose adhesive can be used as the adhesive, and a PVA-based adhesive is preferable.
  • the surface plate for an image display device of the present disclosure is a surface plate for an image display device in which a protective film is laminated on a resin plate or a glass plate, and the protective film is the above-described antiglare film of the present disclosure. , the surface of the anti-glare film opposite to the uneven surface and the resin plate or the glass plate are arranged so as to face each other.
  • the resin plate or glass plate a resin plate or glass plate that is commonly used as a surface plate of an image display device can be used.
  • the thickness of the resin plate or glass plate is preferably 10 ⁇ m or more in order to improve the strength.
  • the upper limit of the thickness of the resin plate or glass plate is usually 5000 ⁇ m or less.
  • the upper limit of the thickness of the resin plate or glass plate is preferably 1000 ⁇ m or less, more preferably 500 ⁇ m or less, and even more preferably 100 ⁇ m or less.
  • Examples of the thickness range of the resin plate or glass plate include 10 ⁇ m to 5000 ⁇ m, 10 ⁇ m to 1000 ⁇ m, 10 ⁇ m to 500 ⁇ m, and 10 ⁇ m to 100 ⁇ m.
  • An image display panel of the present disclosure is an image display panel having a display element and an optical film disposed on the light emitting surface side of the display element, and includes the antiglare film of the present disclosure as the optical film. , the surface of the anti-glare film on the uneven surface side faces the opposite side of the display element (see FIG. 3).
  • the antiglare film of the present disclosure is preferably arranged on the outermost surface of the display element on the light exit surface side.
  • Examples of display elements include liquid crystal display elements, EL display elements (organic EL display elements and inorganic EL display elements), plasma display elements, and the like, and LED display elements such as micro LED display elements. These display elements may have a touch panel function inside the display element.
  • the liquid crystal display method of the liquid crystal display element includes an IPS method, a VA method, a multi-domain method, an OCB method, an STN method, a TSTN method, and the like.
  • the image display panel of the present disclosure may be an image display panel with a touch panel having a touch panel between the display element and the antiglare film.
  • the size of the image display panel is not particularly limited, but the maximum diameter is about 2 inches or more and 500 inches or less.
  • the maximum diameter means the maximum length when arbitrary two points in the plane of the image display panel are connected.
  • the image display device of the present disclosure includes the image display panel of the present disclosure.
  • the image display device of the present disclosure is not particularly limited as long as it includes the image display panel of the present disclosure.
  • the image display device of the present disclosure preferably includes the image display panel of the present disclosure, a drive control unit electrically connected to the image display panel, and a housing that accommodates them.
  • the display element is a liquid crystal display element
  • the image display device of the present disclosure requires a backlight.
  • the backlight is arranged on the opposite side of the liquid crystal display element from the light emitting surface side.
  • the size of the image display device is not particularly limited, but the maximum diameter of the effective display area is about 2 inches or more and 500 inches or less.
  • the effective display area of an image display device is an area in which an image can be displayed. For example, when the image display device has a housing that surrounds the display element, the area inside the housing becomes the effective image area.
  • the maximum diameter of the effective image area is defined as the maximum length obtained by connecting any two points within the effective image area. For example, if the effective image area is rectangular, the diagonal of the rectangle is the maximum diameter. When the effective image area is circular, the diameter of the circle is the maximum diameter.
  • the antiglare films of Examples and Comparative Examples were measured and evaluated as follows. The atmosphere during each measurement and evaluation was set at a temperature of 23 ⁇ 5° C. and a relative humidity of 40% or more and 65% or less. In addition, before starting each measurement and evaluation, the target sample was exposed to the atmosphere for 30 minutes or more and 60 minutes or less, and then the measurement and evaluation were performed. The results are shown in Table 1 or Table 2.
  • FIG. 6-16 shows the discrete function H(f) of the altitude amplitude spectrum of the uneven surface of the antiglare films of Examples 1-7 and Comparative Examples 1-4.
  • the horizontal axis indicates spatial frequency (unit: ⁇ m ⁇ 1 )
  • the vertical axis indicates amplitude (unit: ⁇ m).
  • Tt Total light transmittance
  • Hz haze
  • the antiglare films of Examples and Comparative Examples were cut into 10 cm squares. After visually confirming that there were no abnormalities such as dust or scratches, the cutting sites were selected at random. Using a haze meter (HM-150, manufactured by Murakami Color Research Laboratory), the total light transmittance of each sample according to JIS K7361-1:1997 and the haze according to JIS K7136:2000 were measured. After turning on the power switch of the device in advance so that the light source stabilizes, wait for 15 minutes or more, perform calibration without setting anything in the entrance opening, and then set a measurement sample in the entrance opening and measure. The light incident surface was on the side of the transparent substrate.
  • Anti-glare 1 (anti-glare in specular direction)
  • the antiglare films of Examples and Comparative Examples were cut into pieces of 10 cm ⁇ 10 cm. After visually confirming that there were no abnormalities such as dust or scratches, the cutting sites were selected at random.
  • the transparent base material side of the cut anti-glare film was passed through an optically transparent adhesive sheet from Panac (trade name: Panaclean PD-S1, thickness 25 ⁇ m), and a black plate measuring 10 cm long by 10 cm wide (Kuraray Co., Ltd., Product name: Comoglass DFA2CG 502K (black) type, thickness 2 mm) was bonded to Sample 2.
  • Anti-glare 2 (anti-glare at various angles) Reflection of illumination light on the uneven surface in the same manner as in 1-3, except that the sample 2 prepared in 1-3 was held with both hands and the evaluation point was changed while changing the height and angle of the sample 2. evaluated. The change of the angle described above was performed within a range in which the incident angle of the light emitted from the center of the illumination with respect to the sample 2 was 10 degrees or more and 70 degrees or less.
  • Sample 2 prepared in 1-3 was placed on a horizontal table with a height of 70 cm with the uneven surface facing upward. The position of the sample 2 with respect to the illumination was adjusted so that the light with the strongest output angle out of the lights emitted from the illumination was barely incident on the sample 2 . Due to the adjustment described above, the positions of the samples relative to the observer are placed further away from the observer than the positions of the samples 1-3. Sample 2 was placed at the position described above, and the degree of reflected scattered light was evaluated according to the following evaluation criteria. The observer's line of sight was about 160 cm from the floor. Observers were 20 healthy people with a visual acuity of 0.7 or more.
  • the 20 people were selected from each age group of 20s to 50s. ⁇ Evaluation Criteria> A: 14 or more people felt that the jet-black feeling was good B: 7 or more people and 13 or less people felt that the jet-black feeling was good C: 6 or less people felt that the jet-black feeling was good
  • Scratches were visually observed from the uneven surface side of the scratch evaluation sample under the illumination of a three-wavelength fluorescent tube.
  • the center 50 mm excluding the left and right ends was defined as the effective area.
  • the scratches generated in the effective area were evaluated according to the following criteria. Wounds with a length of 5 mm or more were counted, and those with a length of less than 5 mm were not counted. In addition, only the presence or absence of scratches was evaluated, and scratches were not included in the evaluation.
  • a scratch is a linear mark with a thickness of less than 1 mm. The depth of the scratch is deeper than the depth of the abrasion.
  • a scratch mark is a strip-like thin mark with a width of about 1 cm, which is observed corresponding to the area where the steel wool is rubbed.
  • C Scratches are observed when the pressing pressure of steel wool is 300 g/cm 2 .
  • Low wavelength corresponds to the "cutoff value ⁇ c" in the roughness parameter.
  • Antiglare layer coating liquid 1 having the following formulation was applied onto a transparent substrate (80 ⁇ m thick triacetyl cellulose resin film (TAC), Fuji Film Co., Ltd., TD80UL) and dried at 70° C. for 30 seconds at a wind speed of 5 m/s. After that, an antiglare layer was formed by irradiating ultraviolet rays in a nitrogen atmosphere with an oxygen concentration of 200ppm or less so that the integrated amount of light was 100mJ/cm 2 , and an antiglare film of Example 1 was obtained. The thickness of the antiglare layer was 5.0 ⁇ m. Ra on the side opposite to the antiglare layer of the antiglare film was 0.012 ⁇ m.
  • ⁇ Anti-glare layer coating solution 1 (coating solution for Example 1)> ⁇ Pentaerythritol triacrylate 80 parts (Nippon Kayaku, trade name: KAYARAD-PET-30) ⁇ Urethane acrylate oligomer 20 parts (DIC, trade name: V-4000BA) ⁇ 30 parts of silica particles (average particle size: 4.1 ⁇ m) (manufactured by Fuji Silysia Chemical Co., Ltd., gel method amorphous silica) - Photopolymerization initiator 3 parts (IGM Resins B.V., trade name: Omnirad 184) - Photopolymerization initiator 2 parts (IGM Resins B.V., trade name: Omnirad 907) - Silicone leveling agent 0.2 parts (Momentive Performance Materials, trade name: TSF4460) ⁇ 233.0 parts of solvent (toluene) ⁇ 27.1 parts of solvent (cyclohexanone)
  • Example 1 [Examples 2, 5, 6], [Comparative Example 1-3] Examples 2, 5, 6, and Comparative Example 1-3 were prepared in the same manner as in Example 1, except that the antiglare layer coating solution 1 was changed to the following antiglare layer coating solutions 2 and 5-9. An antiglare film was obtained.
  • Example 3 was prepared in the same manner as in Example 1, except that the antiglare layer coating solution 1 was changed to the following antiglare layer coating solutions 3, 4, and 10, and the thickness of the antiglare layer was changed to 6.5 ⁇ m. , 4 and Comparative Example 4 were obtained.
  • Example 7 On the antiglare layer of the antiglare film of Example 3, a low refractive index layer coating solution 1 having the following formulation was applied and dried at 70°C at a wind speed of 5m/s for 30 seconds, and then exposed to ultraviolet rays in a nitrogen atmosphere (oxygen concentration 200ppm). Below), the integrated light amount was 100 mJ/cm 2 to form a low refractive index layer, and an antiglare film of Example 7 was obtained.
  • the low refractive index layer had a thickness of 0.10 ⁇ m and a refractive index of 1.32.
  • ⁇ Anti-glare layer coating solution 2 (coating solution for Example 2)> ⁇ Pentaerythritol triacrylate 51.4 parts (Nippon Kayaku, trade name: KAYARAD-PET-30) ⁇ Urethane acrylate oligomer 23.7 parts (DIC, trade name: V-4000BA) - Thermoplastic resin 24.9 parts (acrylic polymer, Mitsubishi Rayon Co., molecular weight 75,000) ⁇ Organic particles 43.3 parts (Sekisui Kasei Co., Ltd., spherical polyacrylic-styrene copolymer) (Average particle size 2.5 ⁇ m, refractive index 1.515) (The ratio of particles with a particle size of 2.3-2.7 ⁇ m is 90% or more) Inorganic fine particle dispersion 182 parts (Nissan Chemical Co., Ltd., silica with a reactive functional group introduced on the surface, solvent: MIBK, solid content: 35.5%) (Average particle size 12 nm
  • ⁇ Anti-glare layer coating liquid 3 (coating liquid for Examples 3 and 7)> ⁇ Pentaerythritol triacrylate 80 parts (Nippon Kayaku, trade name: KAYARAD-PET-30) ⁇ Urethane acrylate oligomer 20 parts (DIC, trade name: V-4000BA) ⁇ 20 parts of silica particles (average particle size: 6.0 ⁇ m) (manufactured by Fuji Silysia Chemical Co., Ltd., gel method amorphous silica) ⁇ Organic particles 10 parts (Sekisui Plastics Co., Ltd., spherical polyacrylic-styrene copolymer) (Average particle size 3.5 ⁇ m, refractive index 1.515) (The ratio of particles with a particle size of 3.3-3.7 ⁇ m is 90% or more) - Photopolymerization initiator 3 parts (IGM Resins B.V., trade name: Omnirad 184) - Photopolymerization initiator 2 parts
  • ⁇ Anti-glare layer coating solution 4 (coating solution for Example 4)> ⁇ Pentaerythritol triacrylate 80 parts (Nippon Kayaku, trade name: KAYARAD-PET-30) ⁇ Urethane acrylate oligomer 20 parts (DIC, trade name: V-4000BA) ⁇ 27 parts of silica particles (average particle size: 6.0 ⁇ m) (manufactured by Fuji Silysia Chemical Co., Ltd., gel method amorphous silica) ⁇ Organic particles 10 parts (Sekisui Plastics Co., Ltd., spherical polyacrylic-styrene copolymer) (Average particle size 3.5 ⁇ m, refractive index 1.515) (The ratio of particles with a particle size of 3.3-3.7 ⁇ m is 90% or more) - Photopolymerization initiator 3 parts (IGM Resins B.V., trade name: Omnirad 184) - Photopolymerization initiator 2 parts (I
  • ⁇ Anti-glare layer coating solution 5 (coating solution for Example 5)> ⁇ Pentaerythritol triacrylate 80 parts (Nippon Kayaku, trade name: KAYARAD-PET-30) ⁇ Urethane acrylate oligomer 20 parts (DIC, trade name: V-4000BA) ⁇ 60 parts of silica particles (average particle size: 4.1 ⁇ m) (manufactured by Fuji Silysia Chemical Co., Ltd., gel method amorphous silica) - Photopolymerization initiator 3 parts (IGM Resins B.V., trade name: Omnirad 184) - Photopolymerization initiator 2 parts (IGM Resins B.V., trade name: Omnirad 907) - Silicone leveling agent 0.2 parts (Momentive Performance Materials, trade name: TSF4460) ⁇ 233.0 parts of solvent (toluene) ⁇ 27.1 parts of solvent (cyclohexanone)
  • ⁇ Anti-glare layer coating solution 6 (coating solution for Example 6)> ⁇ Pentaerythritol triacrylate 80 parts (Nippon Kayaku, trade name: KAYARAD-PET-30) ⁇ Urethane acrylate oligomer 20 parts (DIC, trade name: V-4000BA) ⁇ 20 parts of silica particles (average particle size: 4.1 ⁇ m) (manufactured by Fuji Silysia Chemical Co., Ltd., gel method amorphous silica) ⁇ Organic particles 10 parts (Sekisui Plastics Co., Ltd., spherical polyacrylic-styrene copolymer) (Average particle size 2.0 ⁇ m, refractive index 1.515) (The ratio of particles with a particle size of 1.8-2.2 ⁇ m is 90% or more) - Photopolymerization initiator 3 parts (IGM Resins B.V., trade name: Omnirad 184) - Photopolymerization initiator 2 parts (IGM
  • ⁇ Anti-glare layer coating liquid 7 (coating liquid for Comparative example 1)> ⁇ Pentaerythritol triacrylate 58.2 parts (Nippon Kayaku, trade name: KAYARAD-PET-30) ⁇ Urethane acrylate oligomer 18.2 parts (DIC, trade name: V-4000BA) - Thermoplastic resin 23.6 parts (acrylic polymer, Mitsubishi Rayon Co., molecular weight 75,000) ⁇ Organic particles 63.6 parts (Sekisui Plastics Co., Ltd., spherical polyacrylic-styrene copolymer) (Average particle size 4.0 ⁇ m, refractive index 1.515) (The ratio of particles with a particle size of 3.8-4.2 ⁇ m is 90% or more) ⁇ 230 parts of inorganic fine particle dispersion (Nissan Chemical Co., Ltd., silica with a reactive functional group introduced on the surface, solvent: MIBK, solid content: 35.5%) (Aver
  • ⁇ Anti-glare layer coating solution 8 (coating solution for Comparative Example 2)> ⁇ Pentaerythritol triacrylate 100 parts (Nippon Kayaku, trade name: KAYARAD-PET-30) ⁇ 14 parts of silica particles (average particle size: 4.1 ⁇ m) (manufactured by Fuji Silysia Chemical Co., Ltd., gel method amorphous silica) - Photopolymerization initiator 5 parts (IGM Resins B.V., trade name: Omnirad184) - Silicone leveling agent 0.2 parts (Momentive Performance Materials, trade name: TSF4460) ⁇ Solvent (toluene) 150 parts ⁇ Solvent (MIBK) 35 parts ⁇ Solvent (ethyl acetate) 5.2 parts
  • ⁇ Anti-glare layer coating liquid 9 (coating liquid for Comparative example 3)> ⁇ Pentaerythritol triacrylate 100 parts (Nippon Kayaku, trade name: KAYARAD-PET-30) ⁇ Organic particles 300.0 parts (Sekisui Plastics Co., Ltd., spherical polyacrylic-styrene copolymer) (Average particle size 2.0 ⁇ m, refractive index 1.515) (The proportion of particles with a particle size of 1.8-2.2 ⁇ m is 90% or more) - Photopolymerization initiator 6.4 parts (IGM Resins B.V., trade name: Omnirad184) - Photopolymerization initiator 1.0 parts (IGM Resins B.V., trade name: Omnirad 907) ⁇ Silicone leveling agent 0.1 part (Momentive Performance Materials, trade name: TSF4460) ⁇ Solvent (toluene) 498.4 parts ⁇ Solvent (cyclohexanone)
  • ⁇ Anti-glare layer coating solution 10 (coating solution for Comparative Example 4)> ⁇ Pentaerythritol triacrylate 80 parts (Nippon Kayaku, trade name: KAYARAD-PET-30) ⁇ Urethane acrylate oligomer 20 parts (DIC, trade name: V-4000BA) ⁇ 30 parts of silica particles (average particle size: 6.0 ⁇ m) (manufactured by Fuji Silysia Chemical Co., Ltd., gel method amorphous silica) ⁇ Organic particles 15 parts (Sekisui Plastics Co., Ltd., spherical polyacrylic-styrene copolymer) (Average particle size 3.5 ⁇ m, refractive index 1.515) (The ratio of particles with a particle size of 3.3-3.7 ⁇ m is 90% or more) - Photopolymerization initiator 3 parts (IGM Resins B.V., trade name: Omnirad 184) - Photopolymerization initiator 2 parts
  • ⁇ Low refractive index coating liquid 1 (coating liquid for Example 7)> - Polyfunctional acrylate composition 100 parts by mass (Daiichi Kogyo Seiyaku Co., Ltd., trade name "New Frontier MF-001") ⁇ 200 parts by mass of hollow silica particles (average primary particle diameter 75 nm, particles surface-treated with a silane coupling agent having a methacryloyl group) - Solid silica particles 110 parts by mass (particles surface-treated with a silane coupling agent having an average primary particle diameter of 12.5 nm and a methacryloyl group) ⁇ Silicone leveling agent 13 parts by mass (Shin-Etsu Chemical Co., Ltd., trade name “X-22-164E”) - Photopolymerization initiator 4.3 parts by mass (IGM Resins, trade name "Omnirad 127”) ⁇ Solvent 14,867 parts by mass (mixed solvent of methyl isobutyl ketone and 1-methoxy
  • the antiglare films of Examples are excellent in antiglare properties and scratch resistance, suppress reflected scattered light, and are excellent in jet-black feeling.
  • the main reason for the small AM1 in Comparative Example 1 is considered to be that the flow of the organic particles was inhibited due to the large content of the inorganic fine particles.
  • the main reason for the small AM2 in Comparative Example 2 is considered to be that the amount of amorphous silica was small, which widened the distance between the protrusions.
  • the main reason for the large AM2 in Comparative Example 3 is considered to be that the spaces between the convex portions became narrow due to the spread of a large amount of organic particles.
  • the main reason why AM1 is large in Comparative Example 4 is considered to be that the amount of amorphous silica, which tends to increase AM1, is large.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Polarising Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is an anti-glare film that has excellent anti-glare properties and scratch resistance, and can reduce reflected scattered light. An anti-glare film including an anti-glare layer, wherein the anti-glare film has an uneven surface, and for amplitude spectra of the uneven surface elevation, when the sum of amplitudes corresponding to spatial frequencies of 0.005 μm-1, 0.010 μm-1, 0.015 μm-1 is defined as AM1, and the amplitude at a spatial frequency of 0.300 μm-1 is defined as AM2, AM1 is greater than 0.0400 μm and at most 1.0000 μm, and AM2 is 0.0050 μm to 0.0500 μm, inclusive.

Description

防眩フィルム、並びに、それを用いた偏光板、表面板、画像表示パネル及び画像表示装置Antiglare film, and polarizing plate, surface plate, image display panel and image display device using the same
 本開示は、防眩フィルム、並びに、それを用いた偏光板、表面板、画像表示パネル及び画像表示装置に関する。 The present disclosure relates to an antiglare film, and a polarizing plate, surface plate, image display panel, and image display device using the same.
 テレビ、ノートPC、デスクトップPCのモニター等の画像表示装置の表面には、照明及び人物等の背景の映り込みを抑制するための防眩フィルムが設置される場合がある。 An anti-glare film may be installed on the surface of image display devices such as televisions, notebook PCs, desktop PC monitors, etc. to suppress the reflection of backgrounds such as lighting and people.
 防眩フィルムは、透明基材上に表面が凹凸形状である防眩層を有する基本構成からなる。このような防眩フィルムとしては、例えば、特許文献1-4等が提案されている。 An anti-glare film has a basic structure of having an anti-glare layer with an uneven surface on a transparent substrate. As such an antiglare film, for example, Patent Documents 1 to 4 and the like have been proposed.
特開2005-234554号公報JP-A-2005-234554 特開2009-86410号公報JP-A-2009-86410 特開2009-265500号公報JP 2009-265500 A 国際公開番号WO2013/015039International publication number WO2013/015039
 特許文献1-4のような従来の防眩フィルムは、反射像がぼやける程度の防眩性を付与するものであるため、照明及び人物等の背景の映り込みを十分に抑制することが困難なものであった。
 一方、防眩層の表面凹凸の粗さの程度を大きくすることにより、映り込みを十分に抑制されるため、防眩性を高めることができる。しかし、単に表面凹凸の粗さの程度を大きくすると、反射散乱光が強くなるため、画像表示装置のコントラストが損なわれるという問題があった。
 さらに、特許文献1-4のような従来の防眩フィルムは、耐擦傷性が十分ではない場合があった。
Conventional anti-glare films such as those disclosed in Patent Documents 1 to 4 provide anti-glare properties to the extent that reflected images are blurred. It was something.
On the other hand, by increasing the degree of roughness of the surface unevenness of the antiglare layer, the glare can be sufficiently suppressed, so that the antiglare property can be enhanced. However, simply increasing the degree of roughness of the surface unevenness increases the intensity of reflected and scattered light, resulting in a problem of impairing the contrast of the image display device.
Furthermore, conventional antiglare films such as those disclosed in Patent Documents 1 to 4 may not have sufficient scratch resistance.
 本開示は、防眩性及び耐擦傷性に優れ、かつ、反射散乱光を抑制し得る防眩フィルムを提供することを課題とする。 An object of the present disclosure is to provide an antiglare film that has excellent antiglare properties and scratch resistance and that can suppress reflected scattered light.
 本開示は、以下の[1]-[2]の防眩フィルム、並びに、それを用いた偏光板、表面板、画像表示パネル及び表示装置を提供する。
[1] 防眩層を有する防眩フィルムであって、前記防眩フィルムは凹凸表面を有し、
 前記凹凸表面の標高の振幅スペクトルに関して、空間周波数がそれぞれ0.005μm-1、0.010μm-1、0.015μm-1に対応する振幅の合計をAM1、空間周波数0.300μm-1における振幅をAM2と定義した際に、AM1が0.4000μm超1.0000μm以下であり、AM2が0.0050μm以上0.0500μm以下である、防眩フィルム。
[2] AM1/AM2が1.0以上90.0以下である、[1]に記載の防眩フィルム。
[3] 前記凹凸表面の二乗平均平方根傾斜をΔqと定義し、前記凹凸表面の二乗平均平方根波長をλqと定義した際に、Δqが0.250μm/μm以上であり、λqが17.000μm以下である、[1]又は[2]に記載の防眩フィルム。
[4] 前記凹凸表面の二乗平均粗さをRqと定義した際に、Rqが0.300μm以上である、[1]-[3]の何れかに記載の防眩フィルム。
[5] JIS K7136:2000のヘイズが40%以上98%以下である[1]-[4]の何れかに記載の防眩フィルム。
[6] 前記防眩層が、バインダー樹脂及び粒子を含む、[1]-[5]の何れかに記載の防眩フィルム。
[7] 前記防眩層の厚みをT、前記粒子の平均粒子径をDと定義した際に、D/Tが0.20以上0.96以下である、[6]に記載の防眩フィルム。
[8] 前記バインダー樹脂100質量部に対して、前記粒子を10質量部以上200質量部以下含む、[6]又は[7]に記載の防眩フィルム。
[9] 前記粒子が無機粒子である、[6]-[8]の何れかに記載の防眩フィルム。
[10] 前記防眩層が、さらに有機粒子を含む、[9]に記載の防眩フィルム。
[11] 前記バインダー樹脂が、電離放射線硬化性樹脂組成物の硬化物及び熱可塑性樹脂を含む、[6]-[10]の何れかに記載の防眩フィルム。
[12] 前記防眩層上にさらに反射防止層を有し、前記反射防止層の表面が前記凹凸表面である、[1]-[11]の何れかに記載の防眩フィルム。
[13] 偏光子と、前記偏光子の一方の側に配置された第一の透明保護板と、前記偏光子の他方の側に配置された第二の透明保護板とを有する偏光板であって、
 前記第一の透明保護板及び前記第二の透明保護板の少なくとも一方が、[1]-[12]の何れかに記載の防眩フィルムであり、前記防眩フィルムの前記凹凸表面とは反対側の面と前記偏光子とが対向して配置された、偏光板。
[14] 樹脂板又はガラス板上に保護フィルムを貼り合わせた画像表示装置用の表面板であって、前記保護フィルムが[1]-[12]の何れかに記載の防眩フィルムであり、前記防眩フィルムの前記凹凸表面とは反対側の面と前記樹脂板又は前記ガラス板とが対向して配置された、画像表示装置用の表面板。
[15] 表示素子と、前記表示素子の光出射面側に配置された光学フィルムとを有する画像表示パネルであって、前記光学フィルムとして[1]-[12]の何れかに記載の防眩フィルムを含み、前記防眩フィルムの前記凹凸表面側の面が前記表示素子とは反対側を向くように配置してなる、画像表示パネル。
[16] [15]に記載の画像表示パネルを含み、かつ前記防眩フィルムを最表面に配置してなる画像表示装置。
The present disclosure provides the following antiglare films [1] to [2], as well as polarizing plates, surface plates, image display panels and display devices using the same.
[1] An antiglare film having an antiglare layer, the antiglare film having an uneven surface,
Regarding the amplitude spectrum of the elevation of the uneven surface, AM1 is the sum of the amplitudes corresponding to spatial frequencies of 0.005 μm −1 , 0.010 μm −1 , and 0.015 μm −1 , and the amplitude at the spatial frequency of 0.300 μm −1 is An antiglare film having an AM1 of more than 0.4000 μm and 1.0000 μm or less and an AM2 of 0.0050 μm or more and 0.0500 μm or less when defined as AM2.
[2] The antiglare film according to [1], wherein AM1/AM2 is 1.0 or more and 90.0 or less.
[3] Δq is 0.250 μm/μm or more and λq is 17.000 μm or less, where the root-mean-square inclination of the uneven surface is defined as Δq, and the root-mean-square wavelength of the uneven surface is defined as λq. The antiglare film according to [1] or [2].
[4] The antiglare film according to any one of [1] to [3], wherein Rq is 0.300 μm or more, where Rq is the root-mean-square roughness of the uneven surface.
[5] The antiglare film according to any one of [1] to [4], which has a haze of 40% or more and 98% or less according to JIS K7136:2000.
[6] The antiglare film according to any one of [1] to [5], wherein the antiglare layer contains a binder resin and particles.
[7] The antiglare film according to [6], wherein D/T is 0.20 or more and 0.96 or less, where T is the thickness of the antiglare layer and D is the average particle diameter of the particles. .
[8] The antiglare film according to [6] or [7], which contains 10 parts by mass or more and 200 parts by mass or less of the particles with respect to 100 parts by mass of the binder resin.
[9] The antiglare film according to any one of [6] to [8], wherein the particles are inorganic particles.
[10] The antiglare film of [9], wherein the antiglare layer further contains organic particles.
[11] The antiglare film according to any one of [6] to [10], wherein the binder resin contains a cured product of an ionizing radiation-curable resin composition and a thermoplastic resin.
[12] The antiglare film according to any one of [1] to [11], further comprising an antireflection layer on the antireflection layer, the surface of the antireflection layer being the uneven surface.
[13] A polarizing plate having a polarizer, a first transparent protective plate arranged on one side of the polarizer, and a second transparent protective plate arranged on the other side of the polarizer. hand,
At least one of the first transparent protective plate and the second transparent protective plate is the antiglare film according to any one of [1] to [12], and is opposite to the uneven surface of the antiglare film. A polarizing plate in which the side surface and the polarizer are arranged to face each other.
[14] A surface plate for an image display device comprising a resin plate or a glass plate and a protective film laminated thereon, wherein the protective film is the antiglare film according to any one of [1] to [12], A surface plate for an image display device, wherein the surface of the antiglare film opposite to the uneven surface and the resin plate or the glass plate are arranged to face each other.
[15] An image display panel having a display element and an optical film disposed on the light emitting surface side of the display element, wherein the optical film is the antiglare according to any one of [1] to [12]. An image display panel comprising a film, wherein the antiglare film is arranged such that the uneven surface side of the antiglare film faces the side opposite to the display element.
[16] An image display device comprising the image display panel according to [15] and having the antiglare film disposed on the outermost surface.
 本開示の防眩フィルム、並びに、それを用いた偏光板、表面板、画像表示パネル及び画像表示装置は、防眩性及び耐擦傷性に優れ、かつ、反射散乱光を抑制することができる。 The antiglare film of the present disclosure, and the polarizing plate, surface plate, image display panel, and image display device using the same have excellent antiglare properties and scratch resistance, and can suppress reflected scattered light.
本開示の防眩フィルムの一実施形態を示す概略断面図である。1 is a schematic cross-sectional view showing one embodiment of an antiglare film of the present disclosure; FIG. 防眩層に入射した光の挙動を説明するための模式図である。It is a schematic diagram for demonstrating the behavior of the light which injected into the anti-glare layer. 本開示の画像表示パネルの一実施形態を示す断面図である。1 is a cross-sectional view showing an embodiment of an image display panel of the present disclosure; FIG. 凹凸表面の標高の振幅スペクトルの算出手法を説明するための図である。It is a figure for demonstrating the calculation method of the amplitude spectrum of the altitude of an uneven|corrugated surface. 凹凸表面の標高の振幅スペクトルの算出手法を説明するための図である。It is a figure for demonstrating the calculation method of the amplitude spectrum of the altitude of an uneven|corrugated surface. 実施例1の防眩フィルムの空間周波数と振幅との関係を示す図である。2 is a diagram showing the relationship between spatial frequency and amplitude of the antiglare film of Example 1. FIG. 実施例2の防眩フィルムの空間周波数と振幅との関係を示す図である。FIG. 10 is a diagram showing the relationship between the spatial frequency and the amplitude of the antiglare film of Example 2; 実施例3の防眩フィルムの空間周波数と振幅との関係を示す図である。FIG. 10 is a diagram showing the relationship between the spatial frequency and the amplitude of the antiglare film of Example 3; 実施例4の防眩フィルムの空間周波数と振幅との関係を示す図である。FIG. 10 is a diagram showing the relationship between the spatial frequency and the amplitude of the antiglare film of Example 4; 実施例5の防眩フィルムの空間周波数と振幅との関係を示す図である。FIG. 10 is a diagram showing the relationship between the spatial frequency and the amplitude of the antiglare film of Example 5; 実施例6の防眩フィルムの空間周波数と振幅との関係を示す図である。FIG. 10 is a diagram showing the relationship between the spatial frequency and the amplitude of the antiglare film of Example 6; 実施例7の防眩フィルムの空間周波数と振幅との関係を示す図である。FIG. 10 is a diagram showing the relationship between the spatial frequency and the amplitude of the antiglare film of Example 7; 比較例1の防眩フィルムの空間周波数と振幅との関係を示す図である。3 is a diagram showing the relationship between spatial frequency and amplitude of the antiglare film of Comparative Example 1. FIG. 比較例2の防眩フィルムの空間周波数と振幅との関係を示す図である。FIG. 10 is a diagram showing the relationship between the spatial frequency and the amplitude of the antiglare film of Comparative Example 2; 比較例3の防眩フィルムの空間周波数と振幅との関係を示す図である。10 is a diagram showing the relationship between the spatial frequency and the amplitude of the antiglare film of Comparative Example 3. FIG. 比較例4の防眩フィルムの空間周波数と振幅との関係を示す図である。FIG. 10 is a diagram showing the relationship between the spatial frequency and the amplitude of the antiglare film of Comparative Example 4;
 以下、本開示の実施形態を説明する。
[防眩フィルム]
 本開示の防眩フィルムは、防眩層を有する防眩フィルムであって、前記防眩フィルムは凹凸表面を有し、前記凹凸表面の標高の振幅スペクトルに関して、空間周波数がそれぞれ0.005μm-1、0.010μm-1、0.015μm-1に対応する振幅の合計をAM1、空間周波数0.300μm-1における振幅をAM2と定義した際に、AM1が0.4000μm超1.0000μm以下であり、AM2が0.0050μm以上0.0500μm以下である、ものである。
Embodiments of the present disclosure will be described below.
[Anti-glare film]
The antiglare film of the present disclosure is an antiglare film having an antiglare layer, the antiglare film has an uneven surface, and the amplitude spectrum of the altitude of the uneven surface has a spatial frequency of 0.005 μm −1 , 0.010 μm −1 , and 0.015 μm −1 , and AM1 is defined as the amplitude at the spatial frequency of 0.300 μm −1 , and AM1 is more than 0.4000 μm and 1.0000 μm or less. , AM2 is 0.0050 μm or more and 0.0500 μm or less.
 本明細書において、AM1は、3つの空間周波数の振幅の合計であり、下記の式で表される。
 AM1=空間周波数0.005μm-1における振幅+空間周波数0.010μm-1における振幅+空間周波数0.015μm-1における振幅
As used herein, AM1 is the sum of the amplitudes of the three spatial frequencies and is represented by the following equation.
AM1 = amplitude at spatial frequency 0.005 μm −1 + amplitude at spatial frequency 0.010 μm −1 + amplitude at spatial frequency 0.015 μm −1
 空間周波数は一辺の長さに依存した離散的な値になるため、0.005μm-1、0.010μm-1、0.015μm-1、及び0.300μm-1に一致した空間周波数が得られない場合がある。本明細書において、前記値に一致する空間周波数がない場合は、前記値に最も値が近い空間周波数の振幅を抽出するものとする。 Since the spatial frequency becomes a discrete value depending on the length of one side, spatial frequencies matching 0.005 μm −1 , 0.010 μm −1 , 0.015 μm −1 and 0.300 μm −1 are obtained. sometimes not. In this specification, if there is no spatial frequency that matches said value, the amplitude of the spatial frequency closest to said value shall be extracted.
 図1は、本開示の防眩フィルム100の断面形状の概略断面図である。
 図1の防眩フィルム100は、防眩層20を備え、凹凸表面を有している。図1では、防眩層20の表面が防眩フィルムの凹凸表面である。図1の防眩フィルム100は、透明基材10上に防眩層20を有している。図1の防眩層20は、バインダー樹脂21及び粒子22を有している。
 図1は模式的な断面図である。すなわち、防眩フィルム100を構成する各層の縮尺、各材料の縮尺、及び表面凹凸の縮尺は、図示しやすくするために模式化したものであり、実際の縮尺とは相違している。図2-図4も同様である。
FIG. 1 is a schematic cross-sectional view of the cross-sectional shape of an antiglare film 100 of the present disclosure.
The antiglare film 100 of FIG. 1 includes an antiglare layer 20 and has an uneven surface. In FIG. 1, the surface of the antiglare layer 20 is the uneven surface of the antiglare film. The antiglare film 100 of FIG. 1 has an antiglare layer 20 on a transparent substrate 10 . Antiglare layer 20 in FIG. 1 has binder resin 21 and particles 22 .
FIG. 1 is a schematic cross-sectional view. That is, the scale of each layer constituting the antiglare film 100, the scale of each material, and the scale of the surface unevenness are schematic for ease of illustration, and are different from the actual scale. 2 to 4 are the same.
 本開示の防眩フィルムは、AM1が0.4000μm超1.0000μm以下であり、AM2が0.0050μm以上0.0500μm以下である凹凸表面を有する防眩層を備えたものであれば、図1の積層構成に限定されない。例えば、防眩フィルムは、防眩層の単層構造であってもよいし、透明基材及び防眩層以外の層を有するものであってもよい。透明基材及び防眩層以外の層としては、反射防止層及び防汚層等が挙げられる。防眩層上に他の層を有する場合、他の層の表面が防眩フィルムの凹凸表面となっていればよい。
 防眩フィルムの好ましい実施形態は、透明基材上に防眩層を有し、防眩層の透明基材とは反対側の表面が凹凸表面であるものである。
If the antiglare film of the present disclosure includes an antiglare layer having an uneven surface in which AM1 is more than 0.4000 μm and 1.0000 μm or less and AM2 is 0.0050 μm or more and 0.0500 μm or less, is not limited to the stacking configuration of For example, the antiglare film may have a single layer structure of an antiglare layer, or may have a layer other than a transparent substrate and an antiglare layer. Layers other than the transparent substrate and the antiglare layer include an antireflection layer and an antifouling layer. When another layer is provided on the antiglare layer, the surface of the other layer may be the uneven surface of the antiglare film.
A preferred embodiment of the antiglare film has an antiglare layer on a transparent substrate, and the surface of the antiglare layer opposite to the transparent substrate is an uneven surface.
<透明基材>
 防眩フィルムは、防眩フィルムの製造の容易性、及び、防眩フィルムの取り扱い性を高めるため、透明基材を有することが好ましい。
<Transparent substrate>
The antiglare film preferably has a transparent substrate in order to facilitate the production of the antiglare film and improve the handleability of the antiglare film.
 透明基材としては、光透過性、平滑性及び耐熱性を備え、さらに機械的強度に優れたものが好ましい。このような透明基材としては、ポリエステル、トリアセチルセルロース(TAC)、セルロースジアセテート、セルロースアセテートブチレート、ポリアミド、ポリイミド、ポリエーテルスルフォン、ポリスルフォン、ポリプロピレン、ポリメチルペンテン、ポリ塩化ビニル、ポリビニルアセタール、ポリエーテルケトン、ポリメタクリル酸メチル、ポリカーボネート、ポリウレタン及び非晶質オレフィン(Cyclo-Olefin-Polymer:COP)等のプラスチックフィルムが挙げられる。透明基材は、2枚以上のプラスチックフィルムを貼り合わせたものであってもよい。
 プラスチックフィルムの中でも、機械的強度及び寸法安定性のため、延伸加工されたポリエステルフィルムが好ましく、二軸延伸加工されたポリエステルフィルムがより好ましい。ポリエステルフィルムとしては、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム等が挙げられる。TACフィルム、アクリルフィルムは、光透過性及び光学的等方性を良好にしやすいため好適である。COPフィルム、ポリエステルフィルムは耐候性に優れるため好適である。
As the transparent base material, one having light transmittance, smoothness, heat resistance, and excellent mechanical strength is preferable. Such transparent substrates include polyester, triacetyl cellulose (TAC), cellulose diacetate, cellulose acetate butyrate, polyamide, polyimide, polyethersulfone, polysulfone, polypropylene, polymethylpentene, polyvinyl chloride, and polyvinyl acetal. , polyether ketone, polymethyl methacrylate, polycarbonate, polyurethane and amorphous olefin (Cyclo-Olefin-Polymer: COP). The transparent substrate may be a laminate of two or more plastic films.
Among plastic films, a stretched polyester film is preferable, and a biaxially stretched polyester film is more preferable, because of mechanical strength and dimensional stability. Examples of the polyester film include polyethylene terephthalate film and polyethylene naphthalate film. A TAC film and an acrylic film are suitable because they tend to have good light transmittance and optical isotropy. COP films and polyester films are suitable because of their excellent weather resistance.
 透明基材の厚みは、5μm以上300μm以下であることが好ましく、20μm以上200μm以下であることがより好ましく、30μm以上120μm以下であることがさらに好ましい。
 防眩フィルムを薄膜化したい場合は、透明基材の厚さの好ましい上限は60μm以下であり、より好ましい上限は50μm以下である。透明基材がポリエステル、COP、アクリル等の低透湿性基材の場合には、薄膜化のための透明基材の厚さの好ましい上限は40μm以下であり、より好ましい上限は20μm以下である。大画面の場合であっても、透明基材の厚みの上限が前述した範囲であれば、歪みを生じにくくさせることができる点でも好適である。
 透明基材の厚みは、デジマチック標準外側マイクロメーター(ミツトヨ社、品番「MDC-25SX」)などで測定できる。透明基材の厚みは、任意の10点を測定した平均値が上記数値であればよい。
 透明基材の厚みの好ましい範囲の実施形態としては、5μm以上300μm以下、5μm以上200μm以下、5μm以上120μm以下、5μm以上60μm以下、5μm以上50μm以下、5μm以上40μm以下、5μm以上20μm以下、20μm以上300μm以下、20μm以上200μm以下、20μm以上120μm以下、20μm以上60μm以下、20μm以上50μm以下、20μm以上40μm以下、30μm以上300μm以下、30μm以上200μm以下、30μm以上120μm以下、30μm以上60μm以下、30μm以上50μm以下、30μm以上40μm以下が挙げられる。
The thickness of the transparent substrate is preferably 5 μm or more and 300 μm or less, more preferably 20 μm or more and 200 μm or less, and even more preferably 30 μm or more and 120 μm or less.
When it is desired to make the antiglare film thinner, the preferred upper limit of the thickness of the transparent substrate is 60 µm or less, and the more preferred upper limit is 50 µm or less. When the transparent substrate is a low-moisture-permeable substrate such as polyester, COP, acrylic, etc., the upper limit of the thickness of the transparent substrate is preferably 40 μm or less, more preferably 20 μm or less. Even in the case of a large screen, if the upper limit of the thickness of the transparent base material is within the range described above, it is preferable in that distortion can be prevented from occurring.
The thickness of the transparent substrate can be measured with a Digimatic standard outside micrometer (Mitutoyo Co., Ltd., product number "MDC-25SX") or the like. As for the thickness of the transparent base material, the average value obtained by measuring arbitrary 10 points should be the above numerical value.
Preferred embodiments of the thickness of the transparent substrate include 5 μm to 300 μm, 5 μm to 200 μm, 5 μm to 120 μm, 5 μm to 60 μm, 5 μm to 50 μm, 5 μm to 40 μm, 5 μm to 20 μm, and 20 μm. 20 μm or more and 200 μm or less, 20 μm or more and 120 μm or less, 20 μm or more and 60 μm or less, 20 μm or more and 50 μm or less, 20 μm or more and 40 μm or less, 30 μm or more and 300 μm or less, 30 μm or more and 200 μm or less, 30 μm or more and 120 μm or less, 30 μm or more and 60 μm or less, 30 μm 50 μm or less, 30 μm or more and 40 μm or less.
 透明基材の表面には、接着性向上のために、コロナ放電処理等の物理的な処理や化学的な処理を施したり、易接着層を形成したりしてもよい。 The surface of the transparent substrate may be subjected to physical treatment such as corona discharge treatment or chemical treatment, or may be formed with an easy-adhesion layer in order to improve adhesion.
<凹凸表面>
 防眩フィルムは凹凸表面を有することを要する。
 防眩フィルムは、凹凸表面の標高の振幅スペクトルに関して、AM1が0.4000μm超1.0000μm以下であり、AM2が0.0050μm以上0.0500μm以下であることを要する。
 防眩層上に他の層を有さない場合は、防眩層の表面が前記凹凸表面の前記条件を満たせばよい。防眩層上に他の層を有する場合には、前記他の層の表面が前記凹凸表面の前記条件を満たせばよい。
<Uneven surface>
An antiglare film is required to have an uneven surface.
Regarding the amplitude spectrum of the elevation of the uneven surface of the antiglare film, the AM1 is more than 0.4000 μm and 1.0000 μm or less, and the AM2 is 0.0050 μm or more and 0.0500 μm or less.
When there is no other layer on the antiglare layer, the surface of the antiglare layer may satisfy the above conditions for the uneven surface. When another layer is provided on the antiglare layer, the surface of the other layer should satisfy the above conditions for the uneven surface.
 本明細書において、「凹凸表面の標高」とは、凹凸表面上の任意の点Pと、凹凸表面の平均高さを有する仮想的な平面Mとの、防眩フィルムの法線Vの方向における直線距離を意味する(図4参照)。仮想的な平面Mの標高は、基準として0μmとする。前記法線Vの方向は、前記仮想的な平面Mにおける法線方向とする。任意の点Pの標高が平均高さよりも高い場合には、標高はプラスとなり、任意の点Pの標高が平均高さよりも低い場合には、標高はマイナスとなる。
 本明細書において、「標高」を含む文言は、特に断りがない限り、上記平均高さを基準とした標高を意味するものとする。
In this specification, the "elevation of the uneven surface" refers to an arbitrary point P on the uneven surface and a virtual plane M having an average height of the uneven surface in the direction of the normal line V of the antiglare film. Straight line distance is meant (see Figure 4). The elevation of the virtual plane M is set to 0 μm as a reference. The direction of the normal V is the normal direction of the virtual plane M. If the altitude of any point P is higher than the average height, the altitude is positive, and if the altitude of any point P is lower than the average height, the altitude is negative.
In this specification, words including "elevation" mean elevations based on the above average height, unless otherwise specified.
 空間周波数及び振幅は、凹凸表面の三次元座標データをフーリエ変換して得ることができる。本明細書における、凹凸表面の三次元座標データからの空間周波数及び振幅を算出する手法は、後述する。 The spatial frequency and amplitude can be obtained by Fourier transforming the three-dimensional coordinate data of the uneven surface. The method of calculating the spatial frequency and amplitude from the three-dimensional coordinate data of the uneven surface in this specification will be described later.
《AM1、AM2》
 凹凸表面の標高の振幅スペクトルに関して、空間周波数は「凸部と凸部との間隔の逆数」、振幅は「所定の間隔を備えた凸部の標高の変化量」に概ね相関するといえる。空間周波数0.005μm-1は、間隔が200μm程度であることを示し、空間周波数0.010μm-1は、間隔が100μm程度であることを示し、空間周波数0.015μm-1は、間隔が67μm程度であることを示し、空間周波数0.300μm-1は、間隔が3μm程度であることを示している。「所定の間隔を備えた凸部の標高の変化量」は、概ね、所定の間隔を備えた凸部の個々の高さの絶対値に比例するといえる。
 よって、AM1が0.4000μm超1.0000μm以下であり、AM2が0.0050μm以上0.0500μm以下である凹凸表面は、下記のi及びiiの凸部群を備えることが間接的に規定されているといえる。なお、AM2はAM1よりも値が十分に小さいため、凸部iiの高さの絶対値は、凸部iの高さの絶対値未満といえる。
<iの凸部群>
 複数の凸部iが間隔67μm以上200μm以下程度に配置され、凸部iの高さの絶対値が所定の範囲であるもの。
<iiの凸部群>
 複数の凸部iiが間隔3μm程度に配置され、凸部iiの高さの絶対値が所定の範囲であるもの。
《AM1, AM2》
Regarding the amplitude spectrum of the elevation of the uneven surface, it can be said that the spatial frequency roughly correlates with "the reciprocal of the interval between the convexes" and the amplitude roughly correlates with "the amount of change in the elevation of the convexes with a predetermined interval". A spatial frequency of 0.005 μm −1 indicates that the interval is about 200 μm, a spatial frequency of 0.010 μm −1 indicates that the interval is about 100 μm, and a spatial frequency of 0.015 μm −1 indicates that the interval is 67 μm. A spatial frequency of 0.300 μm −1 indicates that the spacing is about 3 μm. It can be said that "amount of change in altitude of convex portions with a predetermined interval" is roughly proportional to the absolute value of the height of each convex portion with a predetermined interval.
Therefore, it is indirectly defined that an uneven surface having an AM1 of more than 0.4000 μm and 1.0000 μm or less and an AM2 of 0.0050 μm or more and 0.0500 μm or less is provided with the following protrusion groups i and ii. It can be said that there is Since AM2 is sufficiently smaller than AM1, the absolute value of the height of the convex portion ii can be said to be less than the absolute value of the height of the convex portion i.
<Convex group of i>
A plurality of protrusions i are arranged at intervals of about 67 μm or more and 200 μm or less, and the absolute value of the height of the protrusions i is within a predetermined range.
<Convex group of ii>
A plurality of protrusions ii are arranged at intervals of about 3 μm, and the absolute value of the height of the protrusions ii is within a predetermined range.
 上記のi及びiiの凸部群を備えた凹凸表面は、主に下記(x1)-(x5)の理由により、優れた防眩性を示すとともに、反射散乱光を抑制することができると考えられる。以下、図2を用いて説明する。図2中、凹凸の間隔が大きい凸部が凸部iを示す。図2中、凸部iと凸部iとの間に存在する凹凸の間隔が小さい凸部、及び、図2の左右両端に存在する凹凸の間隔が小さい凸部が凸部iiを示す。図2では、高さの絶対値の大きい凸部の外縁を模式的に滑らかな線で描いているが、前記外縁は細かい凹凸を有していてもよい。例えば、実施例の防眩フィルムは、高さの絶対値の大きい凸部の外縁に細かい凹凸を有していると考えられる。 It is believed that the uneven surface provided with the groups of protrusions i and ii above exhibits excellent antiglare properties and can suppress reflected and scattered light, mainly for the following reasons (x1) to (x5). be done. A description will be given below with reference to FIG. In FIG. 2, the convex portion with a large interval between the concave and convex portions indicates the convex portion i. In FIG. 2, a convex portion with a small gap between convex portions i and a convex portion with a small gap between convex portions and convex portions on both left and right sides of FIG. 2 indicates convex portion ii. In FIG. 2, the outer edge of the projection having a large absolute value of height is schematically drawn with a smooth line, but the outer edge may have fine unevenness. For example, the antiglare films of the examples are considered to have fine irregularities on the outer edges of the convex portions with a large absolute value of height.
(x1)iの凸部群は、隣接する凸部iの間隔が長すぎず、かつ凸部iが所定の高さを有している。よって、任意の凸部iの表面で反射した反射光の多くは、隣接する凸部iに入射する。そして、隣接する凸部iの内部で全反射を繰り返して、最終的に、観測者200とは反対側に進行する(図2の実線のイメージ)。
(x2)任意の凸部iの急斜面に入射した光の反射光は、隣接する凸部iに関わらず、観測者200とは反対側に進行する(図2の破線のイメージ)。
(x3)通常、凸部iと凸部iとの間の領域は、正反射光を生じる略平坦部が形成されやすい。しかし、本開示の防眩フィルムでは、凸部iと凸部iとの間の領域には、iiの凸部群が形成されやすいため、前記領域で反射した反射光に占める正反射光の割合を軽減できる。
(x4)凸部iと凸部iとの間の領域で反射した反射光は、隣接する山にぶつかりやすい。本開示の防眩フィルムは、AM2はAM1よりも値が十分に小さいため、凸部iと凸部iとの間の領域で反射した反射光は、隣接する山によりぶつかりやすくなる。このため、前記領域で反射した反射光の角度分布は、所定の角度に偏らず、略均等な角度分布となる。
(x5)凸部iの緩い斜面に入射した光の反射光は、観測者200側に進行する(図2の一点鎖線のイメージ)。凸部iの緩い斜面の角度分布は均等であるため、前記反射光の角度分布も特定の角度に偏らずに均等となる。
In the group of (x1)i protrusions, the interval between adjacent protrusions i is not too long, and the protrusions i have a predetermined height. Therefore, most of the reflected light reflected by the surface of an arbitrary convex portion i is incident on the adjacent convex portion i. Then, the light repeats total reflection inside the adjacent convex portion i, and finally travels to the opposite side of the observer 200 (solid line image in FIG. 2).
(x2) Reflected light incident on a steep slope of an arbitrary convex portion i travels in the opposite direction to the observer 200 regardless of the adjacent convex portion i (image of broken line in FIG. 2).
(x3) Normally, a substantially flat portion that causes specular reflection is likely to be formed in the region between the convex portions i. However, in the antiglare film of the present disclosure, since the group of convex portions ii is likely to be formed in the region between the convex portions i and i, the ratio of the specularly reflected light to the reflected light reflected in the region can be reduced.
(x4) The reflected light reflected in the region between the convex portions i is likely to collide with the adjacent mountain. In the anti-glare film of the present disclosure, the value of AM2 is sufficiently smaller than AM1, so the reflected light reflected in the region between the convex portions i is more likely to collide with the adjacent mountains. Therefore, the angular distribution of the reflected light reflected by the area is not biased to a predetermined angle, and becomes a substantially uniform angular distribution.
(x5) The reflected light of the light incident on the gentle slope of the convex portion i travels toward the observer 200 (an image of the dashed-dotted line in FIG. 2). Since the angular distribution of the gentle slope of the convex portion i is uniform, the angular distribution of the reflected light is also uniform without being biased to a specific angle.
 まず、上記(x1)-(x3)より、反射散乱光を抑制できるため、所定のレベルで防眩性を良好にし得ると考えられる。
 さらに、上記(x4)及び(x5)より、微量な反射散乱光が生じたとしても、反射散乱光の角度分布を均等にすることができる。反射散乱光が微量であっても、反射散乱光の角度分布が特定の角度に偏っていると、反射光として認識されてしまう。このため、上記(x4)及び(x5)より、防眩性を極めて良好にすることができる。
 さらに、上記(x1)-(x5)より、観測者に反射散乱光をほとんど感じなくすることができるため、防眩フィルムに漆黒感を付与することができ、さらには画像表示装置に高級感を付与することができる。
First, from the above (x1) to (x3), it is considered that the anti-glare property can be improved at a predetermined level because the reflected scattered light can be suppressed.
Furthermore, from the above (x4) and (x5), even if a small amount of reflected scattered light is generated, the angular distribution of the reflected scattered light can be made uniform. Even if the amount of reflected scattered light is very small, it will be recognized as reflected light if the angular distribution of the reflected scattered light is biased toward a specific angle. Therefore, the antiglare property can be made extremely good from the above (x4) and (x5).
Furthermore, from the above (x1) to (x5), the reflected scattered light can be hardly felt by the observer, so the antiglare film can be given a jet-black feeling, and furthermore, the image display device can be given a high-class feeling. can be granted.
 AM1が0.4000μm超1.0000μm以下であり、かつ、AM2が0.0050μm以上0.0500μm以下であることにより、上記(x1)-(x5)の作用が生じやすくなるため、防眩性を良好にすることができ、かつ、反射散乱光の抑制によって漆黒感を付与しやすくできる。
 AM1が0.4000μm未満の場合、防眩フィルムの凹凸表面に擦過物が接触しやすくなるため、耐擦傷性を良好にすることができない。AM2が0.0500μmを超える場合、防眩フィルムの凹凸表面が傷ついた際に、傷が目立ちやすくなるため、耐擦傷性を良好にすることができない。
When AM1 is more than 0.4000 μm and 1.0000 μm or less and AM2 is 0.0050 μm or more and 0.0500 μm or less, the above (x1)-(x5) effects are likely to occur, so antiglare properties are improved. In addition, by suppressing reflected and scattered light, it is possible to easily impart a feeling of jet blackness.
If AM1 is less than 0.4000 μm, the uneven surface of the anti-glare film is likely to come into contact with the rubbed object, so that the scratch resistance cannot be improved. When AM2 exceeds 0.0500 μm, when the uneven surface of the antiglare film is scratched, the scratch is likely to be conspicuous, and thus the scratch resistance cannot be improved.
 AM1は、上記(x1)-(x5)の作用を生じやすくするとともに、耐擦傷性を良好にしやすくするため、0.4050μm以上0.8000μm以下であることが好ましく、0.4800μm以上0.7600μm以下であることがより好ましく、0.5200μm以上0.7200μm以下であることがさらに好ましい。
 AM1が小さすぎると、特に防眩性が不足しやすい。さらに、AM1が小さすぎると、防眩フィルムの凹凸表面に擦過物が接触しやすくなるため、耐擦傷性が低下しやすい。
 一方、AM1が大きくなりすぎると、映像の解像度が低下する傾向がある。また、AM1が大きくなりすぎると、凹凸表面で全反射する光の割合が増加するため、凹凸表面とは反対側から入射する映像光等の光の透過率が低下する傾向がある。また、AM1が大きくなりすぎると、高さの絶対値の大きい凸部が増加することにより、観測者側に反射する光の割合が増加するため、反射散乱光が目立ちやすくなる場合がある。よって、AM1を大きくし過ぎないことは、解像度及び透過率の低下を抑制するため、及び反射散乱光をより抑制するために好適である。
AM1 is preferably 0.4050 μm or more and 0.8000 μm or less, and 0.4800 μm or more and 0.7600 μm, in order to facilitate the effects of (x1) to (x5) described above and to improve scratch resistance. It is more preferably 0.5200 μm or more and 0.7200 μm or less.
If AM1 is too small, the antiglare property tends to be particularly insufficient. Furthermore, if AM1 is too small, the uneven surface of the antiglare film is likely to come into contact with rubbing objects, and the scratch resistance tends to decrease.
On the other hand, if AM1 becomes too large, the resolution of the video tends to decrease. Further, when AM1 becomes too large, the proportion of light totally reflected by the uneven surface increases, so the transmittance of light such as image light entering from the opposite side of the uneven surface tends to decrease. Also, if AM1 is too large, the proportion of light reflected to the observer side increases due to the increase in the number of convex portions having a large absolute value of height, and thus the reflected scattered light may become conspicuous. Therefore, not making AM1 too large is suitable for suppressing deterioration in resolution and transmittance, and for suppressing reflected scattered light.
 AM2は、上記(x1)-(x5)の作用が生じやすくするとともに、耐擦傷性を良好にしやすくするため、0.0060μm以上0.0450μm以下であることが好ましく、0.0070μm以上0.0400μm以下であることがより好ましく、0.0080μm以上0.0300μm以下であることがさらに好ましく、0.0090μm以上0.0200μm以下であることがよりさらに好ましい。
 AM2が大きくなりすぎると、映像の解像度が低下する傾向がある。よって、AM2を大きくし過ぎないことは、解像度の低下を抑制するためにも好適である。
AM2 is preferably 0.0060 μm or more and 0.0450 μm or less, and 0.0070 μm or more and 0.0400 μm, in order to facilitate the effects of (x1) to (x5) described above and to improve scratch resistance. It is more preferably 0.0080 μm or more and 0.0300 μm or less, even more preferably 0.0090 μm or more and 0.0200 μm or less.
If AM2 becomes too large, the resolution of the video tends to decrease. Therefore, not making AM2 too large is also suitable for suppressing deterioration in resolution.
 本明細書で示す構成要件において、数値の上限の選択肢及び下限の選択肢がそれぞれ複数示されている場合には、上限の選択肢から選ばれる一つと、下限の選択肢から選ばれる一つとを組み合わせ、数値範囲の実施形態とすることができる。
 例えば、AM1の場合、0.4000μm超1.0000μm以下、0.4000μm超0.8000μm以下、0.4000μm超0.7600μm以下、0.4000μm超0.7200μm以下、0.4050μm以上1.0000μm以下、0.4050μm以上0.8000μm以下、0.4050μm以上0.7600μm以下、0.4050μm以上0.7200μm以下、0.4800μm以上1.0000μm以下、0.4800μm以上0.8000μm以下、0.4800μm以上0.7600μm以下、0.4800μm以上0.7200μm以下、0.5200μm以上1.0000μm以下、0.5200μm以上0.8000μm以下、0.5200μm以上0.7600μm以下、0.5200μm以上0.7200μm以下等の実施形態が挙げられる。
 AM2の場合、0.0050μm以上0.0500μm以下、0.0050μm以上0.0450μm以下、0.0050μm以上0.0400μm以下、0.0050μm以上0.0300μm以下、0.0050μm以上0.0200μm以下、0.0060μm以上0.0500μm以下、0.0060μm以上0.0450μm以下、0.0060μm以上0.0400μm以下、0.0060μm以上0.0300μm以下、0.0060μm以上0.0200μm以下、0.0070μm以上0.0500μm以下、0.0070μm以上0.0450μm以下、0.0070μm以上0.0400μm以下、0.0070μm以上0.0300μm以下、0.0070μm以上0.0200μm以下、0.0080μm以上0.0500μm以下、0.0080μm以上0.0450μm以下、0.0080μm以上0.0400μm以下、0.0080μm以上0.0300μm以下、0.0080μm以上0.0200μm以下、0.0090μm以上0.0500μm以下、0.0090μm以上0.0450μm以下、0.0090μm以上0.0400μm以下、0.0090μm以上0.0300μm以下、0.0090μm以上0.0200μm以下等の実施形態が挙げられる。
In the configuration requirements shown in this specification, if multiple upper limit options and lower limit options are indicated, one selected from the upper limit options and one selected from the lower limit options are combined, and the numerical value It can be a range of embodiments.
For example, in the case of AM1, more than 0.4000 μm and 1.0000 μm or less, more than 0.4000 μm and 0.8000 μm or less, more than 0.4000 μm and 0.7600 μm or less, more than 0.4000 μm and 0.7200 μm or less, 0.4050 μm or more and 1.0000 μm or less , 0.4050 μm or more and 0.8000 μm or less, 0.4050 μm or more and 0.7600 μm or less, 0.4050 μm or more and 0.7200 μm or less, 0.4800 μm or more and 1.0000 μm or less, 0.4800 μm or more and 0.8000 μm or less, 0.4800 μm or more 0.7600 μm or less, 0.4800 μm or more and 0.7200 μm or less, 0.5200 μm or more and 1.0000 μm or less, 0.5200 μm or more and 0.8000 μm or less, 0.5200 μm or more and 0.7600 μm or less, 0.5200 μm or more and 0.7200 μm or less, etc. Embodiments include:
In the case of AM2, 0.0050 μm or more and 0.0500 μm or less, 0.0050 μm or more and 0.0450 μm or less, 0.0050 μm or more and 0.0400 μm or less, 0.0050 μm or more and 0.0300 μm or less, 0.0050 μm or more and 0.0200 μm or less, 0 0.0060 μm or more and 0.0500 μm or less, 0.0060 μm or more and 0.0450 μm or less, 0.0060 μm or more and 0.0400 μm or less, 0.0060 μm or more and 0.0300 μm or less, 0.0060 μm or more and 0.0200 μm or less, 0.0070 μm or more and 0.0500 μm or less 0500 μm or less, 0.0070 μm or more and 0.0450 μm or less, 0.0070 μm or more and 0.0400 μm or less, 0.0070 μm or more and 0.0300 μm or less, 0.0070 μm or more and 0.0200 μm or less, 0.0080 μm or more and 0.0500 μm or less, 0. 0080 μm or more and 0.0450 μm or less, 0.0080 μm or more and 0.0400 μm or less, 0.0080 μm or more and 0.0300 μm or less, 0.0080 μm or more and 0.0200 μm or less, 0.0090 μm or more and 0.0500 μm or less, 0.0090 μm or more and 0.0450 μm or less Embodiments of 0.0090 μm or more and 0.0400 μm or less, 0.0090 μm or more and 0.0300 μm or less, 0.0090 μm or more and 0.0200 μm or less, and the like are mentioned below.
 本明細書において、AM1及びAM2等の標高の振幅スペクトルに関する数値、ヘイズ及び全光線透過率等の光学物性に関する数値、Δq及びλq等の表面形状に関する数値は、16箇所の測定値の平均値を意味する。
 本明細書において、16の測定箇所は、測定サンプルの外縁から1cmの領域を余白として、前記余白よりも内側の領域に関して、縦方向及び横方向を5等分する線を引いた際の、交点の16箇所を測定の中心とすることが好ましい。例えば、測定サンプルが長方形の場合、長方形の外縁から0.5cmの領域を余白として、前記余白よりも内側の領域を縦方向及び横方向に5等分した点線の交点の16箇所を中心として測定を行い、その平均値でパラメータを算出することが好ましい。測定サンプルが円形、楕円形、三角形、五角形等の長方形以外の形状の場合、これらの形状に内接する長方形を描き、前記長方形に関して、上記手法により16箇所の測定を行うことが好ましい。
In the present specification, numerical values related to altitude amplitude spectrum such as AM1 and AM2, numerical values related to optical properties such as haze and total light transmittance, numerical values related to surface shape such as Δq and λq are the average values of 16 measured values. means.
In this specification, the 16 measurement points are the intersection points when a line that divides the area inside the margin into 5 equal parts in the vertical direction and the horizontal direction is drawn with a margin of 1 cm from the outer edge of the measurement sample. 16 points are preferably used as the center of the measurement. For example, when the measurement sample is a rectangle, a region of 0.5 cm from the outer edge of the rectangle is used as a margin, and the region inside the margin is vertically and horizontally divided into five equal 16 points of intersection of dotted lines. It is preferable to calculate the parameter with the average value. If the sample to be measured has a shape other than a rectangle, such as a circle, an ellipse, a triangle, or a pentagon, it is preferable to draw a rectangle inscribed in the shape and measure 16 points on the rectangle by the method described above.
 本明細書において、AM1及びAM2等の標高の振幅スペクトルに関する数値、ヘイズ及び全光線透過率等の光学物性に関する数値、Δq及びλq等の表面形状に関する数値等の各種のパラメータは、特に断りのない限り、温度23±5℃、相対湿度40%以上65%以下で測定したものとする。また、各測定の開始前に、対象サンプルを前記雰囲気に30分以上60分以下晒してから測定を行うものとする。 In the present specification, various parameters such as numerical values regarding the amplitude spectrum of altitude such as AM1 and AM2, numerical values regarding optical properties such as haze and total light transmittance, numerical values regarding surface shape such as Δq and λq, etc. As long as it is measured at a temperature of 23±5°C and a relative humidity of 40% or more and 65% or less. In addition, before starting each measurement, the target sample is exposed to the atmosphere for 30 minutes or more and 60 minutes or less, and then the measurement is performed.
 本明細書においては、AM1を、3つの空間周波数の振幅の合計としている。すなわち、本明細書においては、AM1は、凸部の間隔として、3つの間隔を考慮している。このように、本明細書において、AM1は複数の間隔を考慮しているため、AM1を所定の値とすることにより、凸部の間隔が揃うことによる反射光の増加を抑制しやすくできる。 In this specification, AM1 is the sum of amplitudes of three spatial frequencies. That is, in this specification, AM1 considers three intervals as the intervals of the convex portions. As described above, in the present specification, AM1 takes into consideration a plurality of intervals, so by setting AM1 to a predetermined value, it is possible to easily suppress an increase in reflected light due to uniform intervals of the convex portions.
 本開示では、空間周波数がそれぞれ0.005μm-1、0.010μm-1、0.015μm-1に対応する振幅の平均をAM1aveと定義した際に、AM1aveが、0.1300μm以上0.3300μm以下であることが好ましく、0.1350μm以上0.2700μm以下であることがより好ましく、0.1600μm以上0.2500μm以下であることがさらに好ましく、0.1700μm以上0.2400μm以下であることがよりさらに好ましい。
 AM1aveの好ましい範囲の実施形態としては、0.1300μm以上0.3300μm以下、0.1300μm以上0.2700μm以下、0.1300μm以上0.2500μm以下、0.1300μm以上0.2400μm以下、0.1350μm以上0.3300μm以下、0.1350μm以上0.2700μm以下、0.1350μm以上0.2500μm以下、0.1350μm以上0.2400μm以下、0.1600μm以上0.3300μm以下、0.1600μm以上0.2700μm以下、0.1600μm以上0.2500μm以下、0.1600μm以上0.2400μm以下、0.1700μm以上0.3300μm以下、0.1700μm以上0.2700μm以下、0.1700μm以上0.2500μm以下、0.1700μm以上0.2400μm以下が挙げられる。
 AM1aveは、下記式で表すことができる。
 AM1ave=(空間周波数0.005μm-1における振幅+空間周波数0.010μm-1における振幅+空間周波数0.015μm-1における振幅)/3
In the present disclosure, when AM1ave is defined as the average amplitude corresponding to spatial frequencies of 0.005 μm −1 , 0.010 μm −1 , and 0.015 μm −1 , AM1ave is 0.1300 μm or more and 0.3300 μm or less. is preferably 0.1350 μm or more and 0.2700 μm or less, more preferably 0.1600 μm or more and 0.2500 μm or less, and even more preferably 0.1700 μm or more and 0.2400 μm or less preferable.
Preferred ranges of AM1ave are 0.1300 μm or more and 0.3300 μm or less, 0.1300 μm or more and 0.2700 μm or less, 0.1300 μm or more and 0.2500 μm or less, 0.1300 μm or more and 0.2400 μm or less, 0.1350 μm or more. 0.3300 μm or less, 0.1350 μm or more and 0.2700 μm or less, 0.1350 μm or more and 0.2500 μm or less, 0.1350 μm or more and 0.2400 μm or less, 0.1600 μm or more and 0.3300 μm or less, 0.1600 μm or more and 0.2700 μm or less, 0.1600 μm or more and 0.2500 μm or less, 0.1600 μm or more and 0.2400 μm or less, 0.1700 μm or more and 0.3300 μm or less, 0.1700 μm or more and 0.2700 μm or less, 0.1700 μm or more and 0.2500 μm or less, 0.1700 μm or more and 0.1700 μm or less .2400 μm or less.
AM1ave can be represented by the following formula.
AM1ave = (amplitude at spatial frequency 0.005 μm −1 + amplitude at spatial frequency 0.010 μm −1 + amplitude at spatial frequency 0.015 μm −1 )/3
 本開示では、空間周波数0.005μm-1に対応する振幅をAM1-1、空間周波数0.010μm-1に対応する振幅をAM1-2、空間周波数0.015μm-1に対応する振幅をAM1-3と定義した際に、AM1-1、AM1-2、AM1-3が下記の範囲であることが好ましい。AM1-1、AM1-2、AM1-3を下記の範囲とすることにより、凸部の間隔が揃うことが抑制されやすくなるため、反射光の増加を抑制しやすくできる。 In the present disclosure, the amplitude corresponding to the spatial frequency of 0.005 μm −1 is AM1-1, the amplitude corresponding to the spatial frequency of 0.010 μm −1 is AM1-2, and the amplitude corresponding to the spatial frequency of 0.015 μm −1 is AM1- When defined as 3, AM1-1, AM1-2, and AM1-3 preferably fall within the following ranges. By setting AM1-1, AM1-2, and AM1-3 within the following ranges, it becomes easier to suppress the uniformity of the intervals of the convex portions, so it is easier to suppress an increase in reflected light.
 AM1-1は、0.1300μm以上0.3900μm以下であることが好ましく、0.1500μm以上0.3300μm以下であることがより好ましく、0.1600μm以上0.3000μm以下であることがさらに好ましく、0.1700μm以上0.2700μm以下であることがよりさらに好ましい。
 AM1-1の好ましい範囲の実施形態としては、0.1300μm以上0.3900μm以下、0.1300μm以上0.3300μm以下、0.1300μm以上0.3000μm以下、0.1300μm以上0.2700μm以下、0.1500μm以上0.3900μm以下、0.1500μm以上0.3300μm以下、0.1500μm以上0.3000μm以下、0.1500μm以上0.2700μm以下、0.1600μm以上0.3900μm以下、0.1600μm以上0.3300μm以下、0.1600μm以上0.3000μm以下、0.1600μm以上0.2700μm以下、0.1700μm以上0.3900μm以下、0.1700μm以上0.3300μm以下、0.1700μm以上0.3000μm以下、0.1700μm以上0.2700μm以下が挙げられる。
AM1-1 is preferably 0.1300 μm or more and 0.3900 μm or less, more preferably 0.1500 μm or more and 0.3300 μm or less, further preferably 0.1600 μm or more and 0.3000 μm or less. It is even more preferable to be 0.1700 μm or more and 0.2700 μm or less.
Preferred embodiments of AM1-1 include: 0.1300 μm to 0.3900 μm, 0.1300 μm to 0.3300 μm, 0.1300 μm to 0.3000 μm, 0.1300 μm to 0.2700 μm, 0.1300 μm to 0.3300 μm, 0.1300 μm to 0.2700 μm 1500 μm or more and 0.3900 μm or less, 0.1500 μm or more and 0.3300 μm or less, 0.1500 μm or more and 0.3000 μm or less, 0.1500 μm or more and 0.2700 μm or less, 0.1600 μm or more and 0.3900 μm or less, 0.1600 μm or more and 0.3300 μm or less 0.1600 μm or more and 0.3000 μm or less, 0.1600 μm or more and 0.2700 μm or less, 0.1700 μm or more and 0.3900 μm or less, 0.1700 μm or more and 0.3300 μm or less, 0.1700 μm or more and 0.3000 μm or less, 0.1700 μm or less 0.2700 μm or less.
 AM1-2は、0.1300μm以上0.3300μm以下であることが好ましく、0.1500μm以上0.2700μm以下であることがより好ましく、0.1600μm以上0.2500μm以下であることがさらに好ましく、0.1700μm以上0.2400μm以下であることがよりさらに好ましい。
 AM1-2の好ましい範囲の実施形態としては、0.1300μm以上0.3300μm以下、0.1300μm以上0.2700μm以下、0.1300μm以上0.2500μm以下、0.1300μm以上0.2400μm以下、0.1500μm以上0.3300μm以下、0.1500μm以上0.2700μm以下、0.1500μm以上0.2500μm以下、0.1500μm以上0.2400μm以下、0.1600μm以上0.3300μm以下、0.1600μm以上0.2700μm以下、0.1600μm以上0.2500μm以下、0.1600μm以上0.2400μm以下、0.1700μm以上0.3300μm以下、0.1700μm以上0.2700μm以下、0.1700μm以上0.2500μm以下、0.1700μm以上0.2400μm以下が挙げられる。
AM1-2 is preferably 0.1300 μm or more and 0.3300 μm or less, more preferably 0.1500 μm or more and 0.2700 μm or less, further preferably 0.1600 μm or more and 0.2500 μm or less. It is even more preferable to be 0.1700 μm or more and 0.2400 μm or less.
Preferred embodiments of AM1-2 include: 0.1300 μm to 0.3300 μm, 0.1300 μm to 0.2700 μm, 0.1300 μm to 0.2500 μm, 0.1300 μm to 0.2400 μm, 0.1300 μm to 0.2400 μm. 1500 μm to 0.3300 μm, 0.1500 μm to 0.2700 μm, 0.1500 μm to 0.2500 μm, 0.1500 μm to 0.2400 μm, 0.1600 μm to 0.3300 μm, 0.1600 μm to 0.2700 μm 0.1600 μm or more and 0.2500 μm or less, 0.1600 μm or more and 0.2400 μm or less, 0.1700 μm or more and 0.3300 μm or less, 0.1700 μm or more and 0.2700 μm or less, 0.1700 μm or more and 0.2500 μm or less, 0.1700 μm 0.2400 μm or less.
 AM1-3は、0.1300μm以上0.3300μm以下であることが好ましく、0.1500μm以上0.2700μm以下であることがより好ましく、0.1600μm以上0.2500μm以下であることがさらに好ましく、0.1700μm以上0.2400μm以下であることがよりさらに好ましい。
 AM1-3の好ましい範囲の実施形態としては、0.1300μm以上0.3300μm以下、0.1300μm以上0.2700μm以下、0.1300μm以上0.2500μm以下、0.1300μm以上0.2400μm以下、0.1500μm以上0.3300μm以下、0.1500μm以上0.2700μm以下、0.1500μm以上0.2500μm以下、0.1500μm以上0.2400μm以下、0.1600μm以上0.3300μm以下、0.1600μm以上0.2700μm以下、0.1600μm以上0.2500μm以下、0.1600μm以上0.2400μm以下、0.1700μm以上0.3300μm以下、0.1700μm以上0.2700μm以下、0.1700μm以上0.2500μm以下、0.1700μm以上0.2400μm以下が挙げられる。
AM1-3 is preferably 0.1300 μm or more and 0.3300 μm or less, more preferably 0.1500 μm or more and 0.2700 μm or less, further preferably 0.1600 μm or more and 0.2500 μm or less. It is even more preferable to be 0.1700 μm or more and 0.2400 μm or less.
Preferred embodiments of AM1-3 include: 0.1300 μm to 0.3300 μm, 0.1300 μm to 0.2700 μm, 0.1300 μm to 0.2500 μm, 0.1300 μm to 0.2400 μm, 0.1300 μm to 0.2700 μm. 1500 μm to 0.3300 μm, 0.1500 μm to 0.2700 μm, 0.1500 μm to 0.2500 μm, 0.1500 μm to 0.2400 μm, 0.1600 μm to 0.3300 μm, 0.1600 μm to 0.2700 μm 0.1600 μm or more and 0.2500 μm or less, 0.1600 μm or more and 0.2400 μm or less, 0.1700 μm or more and 0.3300 μm or less, 0.1700 μm or more and 0.2700 μm or less, 0.1700 μm or more and 0.2500 μm or less, 0.1700 μm or less More than 0.2400 μm or less can be mentioned.
 本開示の防眩フィルムは、周期の異なる凸部のバランスを良好にして、上記(x1)-(x5)の作用を生じやすくするため、AM1/AM2が1.0以上90.0以下であることが好ましく、3.0以上80.0以下であることがより好ましく、10.0以上70.0以下であることがさらに好ましく、15.0以上60.0以下、50.0以上60.0以下であることがよりさらに好ましい。
 AM1/AM2の好ましい範囲の実施形態としては、1.0以上90.0以下、1.0以上80.0以下、1.0以上70.0以下、1.0以上60.0以下、3.0以上90.0以下、3.0以上80.0以下、3.0以上70.0以下、3.0以上60.0以下、10.0以上90.0以下、10.0以上80.0以下、10.0以上70.0以下、10.0以上60.0以下、15.0以上90.0以下、15.0以上80.0以下、15.0以上70.0以下、15.0以上60.0以下、50.0以上90.0以下、50.0以上80.0以下、50.0以上70.0以下、50.0以上60.0以下が挙げられる。
In the antiglare film of the present disclosure, AM1/AM2 is 1.0 or more and 90.0 or less in order to improve the balance of convex portions with different periods and facilitate the above (x1)-(x5) effects. is preferably 3.0 or more and 80.0 or less, more preferably 10.0 or more and 70.0 or less, 15.0 or more and 60.0 or less, 50.0 or more and 60.0 The following are even more preferable.
Examples of preferred ranges of AM1/AM2 include 1.0 to 90.0, 1.0 to 80.0, 1.0 to 70.0, 1.0 to 60.0, 3. 0 to 90.0, 3.0 to 80.0, 3.0 to 70.0, 3.0 to 60.0, 10.0 to 90.0, 10.0 to 80.0 10.0 or more and 70.0 or less, 10.0 or more and 60.0 or less, 15.0 or more and 90.0 or less, 15.0 or more and 80.0 or less, 15.0 or more and 70.0 or less, 15.0 60.0 or less, 50.0 or more and 90.0 or less, 50.0 or more and 80.0 or less, 50.0 or more and 70.0 or less, 50.0 or more and 60.0 or less.
-AM1及びAM2の算出手法-
 本明細書において、AM1は、凹凸表面の標高の振幅スペクトルに関して、空間周波数がそれぞれ0.005μm-1、0.010μm-1、0.015μm-1に対応する振幅の合計を意味する。本明細書において、AM2は、前記振幅スペクトルに関して、空間周波数0.300μm-1における振幅を意味する。以下、本明細書におけるAM1及びAM2の算出手法を説明する。
- Calculation method for AM1 and AM2 -
In this specification, AM1 means the sum of amplitudes corresponding to spatial frequencies of 0.005 μm −1 , 0.010 μm −1 , 0.015 μm −1 , respectively, with respect to the amplitude spectrum of the elevation of the uneven surface. In this specification, AM2 means amplitude at spatial frequency 0.300 μm −1 with respect to said amplitude spectrum. A method of calculating AM1 and AM2 in the present specification will be described below.
 まず、上述したように、本明細書において、「凹凸表面の標高」とは、凹凸表面上の任意の点Pと、凹凸表面の平均高さを有する仮想的な平面Mとの、防眩フィルムの法線Vの方向における直線距離を意味する(図4参照)。仮想的な平面Mの標高は、基準として0μmとする。前記法線Vの方向は、前記仮想的な平面Mにおける法線方向とする。 First, as described above, in this specification, the "elevation of the uneven surface" means an arbitrary point P on the uneven surface and a virtual plane M having an average height of the uneven surface, the antiglare film means the straight-line distance in the direction of the normal V of (see FIG. 4). The elevation of the virtual plane M is set to 0 μm as a reference. The direction of the normal V is the normal direction of the virtual plane M.
 防眩フィルムの凹凸表面内の直交座標を(x,y)で表示すると、防眩フィルムの凹凸表面の標高は、座標(x,y)の二次元関数h(x,y)と表すことができる。 When the orthogonal coordinates in the uneven surface of the antiglare film are represented by (x, y), the altitude of the uneven surface of the antiglare film can be expressed as a two-dimensional function h(x, y) of the coordinates (x, y). can.
 凹凸表面の標高は、干渉顕微鏡を用いて測定することが好ましい。干渉顕微鏡としては、Zygo社の「New View」シリーズ等が挙げられる。
 測定機に要求される水平分解能は、少なくとも5μm以下、好ましくは1μm以下であり、垂直分解能は、少なくとも0.01μm以下、好ましくは0.001μm以下である。
 標高の測定面積は、空間周波数の分解能が0.0050μm-1であることを考慮すると、少なくとも200μm×200μmの領域以上の面積とするのが好ましい。
The elevation of the uneven surface is preferably measured using an interference microscope. Examples of interference microscopes include Zygo's "New View" series.
The horizontal resolution required for the measuring instrument is at least 5 μm or less, preferably 1 μm or less, and the vertical resolution is at least 0.01 μm or less, preferably 0.001 μm or less.
Considering that the spatial frequency resolution is 0.0050 μm −1 , the altitude measurement area is preferably an area of at least 200 μm×200 μm.
  次に、二次元関数h(x,y)より標高の振幅スペクトルを求める方法について説明する。まず、二次元関数h(x,y)より、下記式(1a)及び(1b)で定義されるフーリエ変換によってx方向の振幅スペクトルHx(fx)、およびy方向の振幅スペクトルHy(fy)を求める。   Next, a method for obtaining the altitude amplitude spectrum from the two-dimensional function h(x, y) will be described. First, from the two-dimensional function h(x, y), the amplitude spectrum Hx(fx) in the x direction and the amplitude spectrum Hy(fy) in the y direction are obtained by Fourier transform defined by the following equations (1a) and (1b). demand.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここでfx及びfyはそれぞれx方向およびy方向の周波数であり、長さの逆数の次元を持つ。式(1a)及び(1b)中のπは円周率、iは虚数単位である。得られたx方向の振幅スペクトルHx(fx)、およびy方向の振幅スペクトルHy(fy)を平均することによって、振幅スペクトルH(f)を求めることができる。この振幅スペクトルH(f)は防眩フィルムの凹凸表面の空間周波数分布を表している。 where fx and fy are the frequencies in the x and y directions, respectively, and have the dimension of the reciprocal length. π in equations (1a) and (1b) is the pi and i is the imaginary unit. The amplitude spectrum H(f) can be obtained by averaging the amplitude spectrum Hx(fx) in the x direction and the amplitude spectrum Hy(fy) in the y direction. This amplitude spectrum H(f) represents the spatial frequency distribution of the uneven surface of the antiglare film.
 以下、防眩フィルムの凹凸表面の標高の振幅スペクトルH(f)を求める方法をさらに具体的に説明する。上記の干渉顕微鏡によって実際に測定される表面形状の三次元情報は、一般的に離散的な値として得られる。すなわち、上記の干渉顕微鏡によって実際に測定される表面形状の三次元情報は、多数の測定点に対応する標高として得られる。
 図5は、標高を表す関数h(x,y)が離散的に得られる状態を示す模式図である。図5に示すように、防眩層の面内の直交座標を(x,y)で表示し、投影面Sp上にx軸方向にΔx毎に分割した線およびy軸方向にΔy毎に分割した線を破線で示すと、実際の測定では凹凸表面の標高は投影面Sp上の各破線の交点毎の離散的な標高値として得られる。
Hereinafter, a method for obtaining the amplitude spectrum H(f) of the elevation of the uneven surface of the antiglare film will be described more specifically. The three-dimensional information of the surface shape actually measured by the above interference microscope is generally obtained as discrete values. That is, the three-dimensional information of the surface shape actually measured by the above interference microscope is obtained as elevations corresponding to a large number of measurement points.
FIG. 5 is a schematic diagram showing how the function h(x, y) representing altitude is discretely obtained. As shown in FIG. 5, the in-plane orthogonal coordinates of the antiglare layer are represented by (x, y), and the lines divided by Δx in the x-axis direction and the lines divided by Δy in the y-axis direction on the projection plane Sp In actual measurement, the elevation of the uneven surface is obtained as a discrete elevation value at each intersection point of each broken line on the projection plane Sp.
  得られる標高値の数は測定範囲と、Δx及びΔyによって決まる。図5に示すように、x軸方向の測定範囲をX=(M-1)Δxとし、y軸方向の測定範囲をY=(N-1)Δyとすると、得られる標高値の数はM×N個である。 The number of elevation values obtained is determined by the measurement range and Δx and Δy. As shown in FIG. 5, if the measurement range in the x-axis direction is X=(M−1)Δx and the measurement range in the y-axis direction is Y=(N−1)Δy, the number of obtained altitude values is M xN pieces.
  図5に示すように、投影面Sp上の着目点Aの座標を(jΔx,kΔy)とすると、着目点Aに対応する凹凸表面上の点Pの標高は、h(jΔx,kΔy)と表すことができる。ここで、jは0以上M-1以下であり、kは0以上N-1以下である。 As shown in FIG. 5, if the coordinates of the point of interest A on the projection plane Sp are (jΔx, kΔy), the altitude of the point P on the uneven surface corresponding to the point of interest A is h(jΔx, kΔy). be able to. Here, j is 0 or more and M−1 or less, and k is 0 or more and N−1 or less.
  ここで、測定間隔ΔxおよびΔyは測定機器の水平分解能に依存し、精度良く微細凹凸表面を評価するためには、上述したとおりΔxおよびΔyともに5μm以下であることが好ましく、2μm以下であることがより好ましい。測定範囲XおよびYは上述したとおり、ともに200μm以上が好ましい。 Here, the measurement intervals Δx and Δy depend on the horizontal resolution of the measuring instrument, and in order to accurately evaluate the fine uneven surface, as described above, both Δx and Δy are preferably 5 μm or less, and 2 μm or less. is more preferred. Both the measurement ranges X and Y are preferably 200 μm or more, as described above.
  このように実際の測定では、凹凸表面の標高を表す関数は、M×N個の値を持つ離散関数h(x,y)として得られる。測定によって得られた離散関数h(x,y)をx方向、y方向それぞれに、下記式(2a)、(2b)で定義される離散フーリエ変換することによってN個の離散関数Hx(fx)、M個の離散関数Hy(fy)が求まり、下記式(2c)により、それらの絶対値(=振幅)を求めた上で全てを平均することによって振幅スペクトルH(f)が求められる。本明細書においては、M=NかつΔx=Δyである。下記式(2a)-(2c)において、「l」は-M/2以上M/2以下の整数であり、「m」は-N/2以上N/2以下の整数である。ΔfxおよびΔfyは、それぞれx方向およびy方向の周波数間隔であり、下記の式(3)及び式(4)で定義される。 In this way, in actual measurements, the function representing the elevation of the uneven surface is obtained as a discrete function h(x, y) with M×N values. N discrete functions Hx(fx) are obtained by subjecting the discrete function h(x,y) obtained by the measurement to the discrete Fourier transform defined by the following equations (2a) and (2b) in the x direction and the y direction respectively. , M discrete functions Hy(fy) are obtained, and the amplitude spectrum H(f) is obtained by obtaining the absolute values (=amplitudes) and averaging all of them according to the following equation (2c). Here, M=N and Δx=Δy. In the following formulas (2a) to (2c), "l" is an integer of -M/2 or more and M/2 or less, and "m" is an integer of -N/2 or more and N/2 or less. Δfx and Δfy are frequency intervals in the x and y directions, respectively, and are defined by the following equations (3) and (4).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 上記のように算出した振幅スペクトルの離散関数H(f)は、防眩フィルムの凹凸表面の空間周波数分布を表している。図6-16に、実施例1-7及び比較例1-4の凹凸表面の標高の振幅スペクトルの離散関数H(f)を示す。図中、横軸は空間周波数(単位は「μm-1」)、縦軸は振幅(単位は「μm」)を示す。 The discrete function H(f) of the amplitude spectrum calculated as described above represents the spatial frequency distribution of the uneven surface of the antiglare film. FIG. 6-16 shows the discrete function H(f) of the amplitude spectrum of the elevation of the uneven surface of Examples 1-7 and Comparative Example 1-4. In the figure, the horizontal axis indicates spatial frequency (unit: μm −1 ), and the vertical axis indicates amplitude (unit: μm).
《Δq、λq》
 本開示の防眩フィルムは、前記凹凸表面の二乗平均平方根傾斜をΔqと定義し、前記凹凸表面の二乗平均平方根波長をλqと定義した際に、Δqが0.250μm/μm以上であり、λqが17.000μm以下であることが好ましい。
 Δqは凹凸表面の傾斜角に相関する。より具体的には、Δqが大きいほど凹凸表面の傾斜角が大きいことを意味する。Δqは、2乗のパラメータであるため、平均傾斜角よりも大きな角度の傾斜角の影響が反映されやすい。したがって、Δqは、全ての傾斜を単に平均化したパラメータである平均傾斜角とは異なるパラメータである。
 λqは凹凸表面の凹凸の間隔に相関する。より具体的には、λqが小さいほど凹凸表面の凹凸の間隔が狭いことを意味する。λqは、後述する式(A)に示すように、2乗のパラメータであるΔq及びRqから算出されるパラメータである。このため、λqは、凹凸の中でも高低差が大きくて傾斜角が大きい凹凸の間隔が強く反映されたパラメータである。したがって、λqは、全ての凹凸の間隔を平均化したパラメータであるJISのRSmとは異なるパラメータである。
 したがって、Δqが0.250μm/μm以上であり、かつ、λqが17.000μm以下である凹凸表面は、傾斜角の大きい凹凸が狭い間隔で存在していることを意味している。このように、傾斜角の大きい凹凸が狭い間隔で存在することにより、AM1及びAM2を上述した範囲にしやすくできる。特に、λqを小さくすることにより、防眩フィルムに漆黒感を付与しやすくできる。
<<Δq, λq>>
In the antiglare film of the present disclosure, where the root-mean-square slope of the uneven surface is defined as Δq, and the root-mean-square wavelength of the uneven surface is defined as λq, Δq is 0.250 μm/μm or more, and λq is preferably 17.000 μm or less.
Δq correlates with the tilt angle of the uneven surface. More specifically, a larger Δq means a larger inclination angle of the uneven surface. Since Δq is a square parameter, it is likely to be affected by an inclination angle larger than the average inclination angle. Therefore, Δq is a parameter different from the average tilt angle, which is a parameter obtained by simply averaging all tilts.
λq correlates with the spacing of the irregularities on the irregular surface. More specifically, it means that the smaller the λq, the narrower the interval between the irregularities on the irregular surface. λq is a parameter calculated from square parameters Δq and Rq, as shown in formula (A) described later. Therefore, λq is a parameter that strongly reflects the interval between unevennesses having a large height difference and a large inclination angle among unevennesses. Therefore, λq is a parameter different from RSm of JIS, which is a parameter obtained by averaging the intervals of all unevenness.
Therefore, an uneven surface with Δq of 0.250 μm/μm or more and λq of 17.000 μm or less means that unevenness with a large inclination angle exists at narrow intervals. In this way, the unevenness having a large inclination angle exists at narrow intervals, so that AM1 and AM2 can be easily set within the ranges described above. In particular, by reducing λq, it is possible to easily impart a feeling of jet blackness to the antiglare film.
 Δqは、0.300μm/μm以上であることがより好ましく、0.325μm/μm以上であることがさらに好ましく、0.350μm/μm以上であることがよりさらに好ましい。
 Δqが大き過ぎると、映像光が防眩フィルムを透過する際に散乱しやすくなり、暗室コントラストが低下しやすくなる。また、Δqが大き過ぎると、映像光の反射率が高くなり、映像光の透過率が低下しやすくなる。このため、Δqは0.800μm/μm以下であることが好ましく、0.700μm/μm以下であることがより好ましく、0.600μm/μm以下であることがさらに好ましい。
 Δqの好ましい範囲の実施形態としては、0.250μm/μm以上0.800μm/μm以下、0.250μm/μm以上0.700μm/μm以下、0.250μm/μm以上0.600μm/μm以下、0.300μm/μm以上0.800μm/μm以下、0.300μm/μm以上0.700μm/μm以下、0.300μm/μm以上0.600μm/μm以下、0.325μm/μm以上0.800μm/μm以下、0.325μm/μm以上0.700μm/μm以下、0.325μm/μm以上0.600μm/μm以下、0.350μm/μm以上0.800μm/μm以下、0.350μm/μm以上0.700μm/μm以下、0.350μm/μm以上0.600μm/μm以下が挙げられる。
Δq is more preferably 0.300 μm/μm or more, still more preferably 0.325 μm/μm or more, and even more preferably 0.350 μm/μm or more.
If Δq is too large, image light tends to scatter when passing through the antiglare film, and the darkroom contrast tends to decrease. On the other hand, if Δq is too large, the reflectance of image light increases, and the transmittance of image light tends to decrease. Therefore, Δq is preferably 0.800 μm/μm or less, more preferably 0.700 μm/μm or less, and even more preferably 0.600 μm/μm or less.
Preferred ranges of Δq include 0.250 μm/μm or more and 0.800 μm/μm or less, 0.250 μm/μm or more and 0.700 μm/μm or less, 0.250 μm/μm or more and 0.600 μm/μm or less, 0 .300 μm/μm or more and 0.800 μm/μm or less, 0.300 μm/μm or more and 0.700 μm/μm or less, 0.300 μm/μm or more and 0.600 μm/μm or less, 0.325 μm/μm or more and 0.800 μm/μm or less , 0.325 μm/μm or more and 0.700 μm/μm or less, 0.325 μm/μm or more and 0.600 μm/μm or less, 0.350 μm/μm or more and 0.800 μm/μm or less, 0.350 μm/μm or more and 0.700 μm/μm or more μm or less, 0.350 μm/μm or more and 0.600 μm/μm or less.
 λqは、16.000μm以下であることがより好ましく、15.000μm以下であることがより好ましく、14.500μm以下であることがより好ましく、13.500μm以下であることがより好ましく、12.000μm以下であることがより好ましい。
 λqが小さ過ぎると、映像光が防眩フィルムを透過する際に散乱しやすくなり、暗室コントラストが低下しやすくなる。このため、λqは3.000μm以上であることが好ましく、5.000μm以上であることがより好ましく、7.000μm以上であることがさらに好ましい。
 λqの好ましい範囲の実施形態としては、3.000μm以上17.000μm以下、3.000μm以上16.000μm以下、3.000μm以上15.000μm以下、3.000μm以上14.500μm以下、3.000μm以上13.500μm以下、3.000μm以上12.000μm以下、5.000μm以上17.000μm以下、5.000μm以上16.000μm以下、5.000μm以上15.000μm以下、5.000μm以上14.500μm以下、5.000μm以上13.500μm以下、5.000μm以上12.000μm以下、7.000μm以上17.000μm以下、7.000μm以上16.000μm以下、7.000μm以上15.000μm以下、7.000μm以上14.500μm以下、7.000μm以上13.500μm以下、7.000μm以上12.000μm以下が挙げられる。
λq is more preferably 16.000 μm or less, more preferably 15.000 μm or less, more preferably 14.500 μm or less, more preferably 13.500 μm or less, and 12.000 μm The following are more preferable.
If λq is too small, image light tends to scatter when passing through the antiglare film, and the darkroom contrast tends to decrease. Therefore, λq is preferably 3.000 μm or more, more preferably 5.000 μm or more, and even more preferably 7.000 μm or more.
Preferred ranges of λq are 3.000 μm or more and 17.000 μm or less, 3.000 μm or more and 16.000 μm or less, 3.000 μm or more and 15.000 μm or less, 3.000 μm or more and 14.500 μm or less, or 3.000 μm or more. 13.500 μm or less, 3.000 μm or more and 12.000 μm or less, 5.000 μm or more and 17.000 μm or less, 5.000 μm or more and 16.000 μm or less, 5.000 μm or more and 15.000 μm or less, 5.000 μm or more and 14.500 μm or less, 5.000 μm or more and 13.500 μm or less, 5.000 μm or more and 12.000 μm or less, 7.000 μm or more and 17.000 μm or less, 7.000 μm or more and 16.000 μm or less, 7.000 μm or more and 15.000 μm or less, 7.000 μm or more and 14 0.500 μm or less, 7.000 μm or more and 13.500 μm or less, or 7.000 μm or more and 12.000 μm or less.
《Rq》
 本開示の防眩フィルムは、防眩性を良好にするために、Rqが0.300μm以上であることが好ましく、0.350μm以上であることがより好ましく、0.400μm以上であることがさらに好ましい。
 Rqが大きすぎる場合、AM1及び/又はAM2が大きくなりすぎる場合がある。このため、Rqは1.100μm以下であることが好ましく、1.000μm以下であることがより好ましく、0.900μm以下であることがさらに好ましい。
 Rqの好ましい範囲の実施形態としては、0.300μm以上1.100μm以下、0.300μm以上1.000μm以下、0.300μm以上0.900μm以下、0.350μm以上1.100μm以下、0.350μm以上1.000μm以下、0.350μm以上0.900μm以下、0.400μm以上1.100μm以下、0.400μm以上1.000μm以下、0.400μm以上0.900μm以下が挙げられる。
《Rq》
The antiglare film of the present disclosure preferably has an Rq of 0.300 μm or more, more preferably 0.350 μm or more, and further preferably 0.400 μm or more in order to improve antiglare properties. preferable.
If Rq is too large, AM1 and/or AM2 may become too large. Therefore, Rq is preferably 1.100 μm or less, more preferably 1.000 μm or less, and even more preferably 0.900 μm or less.
Preferred ranges of Rq include: 0.300 μm or more and 1.100 μm or less, 0.300 μm or more and 1.000 μm or less, 0.300 μm or more and 0.900 μm or less, 0.350 μm or more and 1.100 μm or less, 0.350 μm or more 1.000 μm or less, 0.350 μm or more and 0.900 μm or less, 0.400 μm or more and 1.100 μm or less, 0.400 μm or more and 1.000 μm or less, and 0.400 μm or more and 0.900 μm or less.
 本明細書において、Δqは、JIS B0601:2001に規定される「粗さ曲線の二乗平均平方根傾斜RΔq」を三次元に拡張したものを意味する。
 本明細書において、Rqは、JIS B0601:2001に規定される「粗さ曲線の二乗平均平方根高さRq」を三次元に拡張したものを意味する。
 本明細書において、λqは、ΔqとRqとから、下記式(A)で表されるものを意味する。
 λq=21.5π(Rq/Δq) ・・・(A)
In the present specification, Δq means a three-dimensional extension of the “root-mean-square slope RΔq of roughness curve” defined in JIS B0601:2001.
In the present specification, Rq means a three-dimensional extension of the "root-mean-square height of roughness curve Rq" defined in JIS B0601:2001.
In this specification, λq means what is represented by the following formula (A) from Δq and Rq.
λq=2 1.5 π(Rq/Δq) (A)
 Δq、Rq及びλqは、干渉顕微鏡を用いて測定することが好ましい。干渉顕微鏡としては、例えば、Zygo社の商品名「New View」シリーズ等が挙げられる。前述の「New View」シリーズに付属の測定・解析アプリケーションソフト「MetroPro」を用いることにより、Δq、Rq及びλqを簡易に算出することができる。
 前述の「New View」シリーズを用いて、Δq、Rq及びλqを測定する場合の測定条件は、実施例に記載の条件に従うことが好ましい。例えば、Filter Low Wavelen(JIS B0601のλcに相当)は800μmとすることが好ましい。Camera Res(解像度)は0.3μm以上0.5μm以下であることが好ましい。
Δq, Rq and λq are preferably measured using an interference microscope. As an interference microscope, for example, Zygo's product name "New View" series and the like can be used. Δq, Rq and λq can be easily calculated by using the measurement/analysis application software “MetroPro” attached to the “New View” series.
The measurement conditions for measuring Δq, Rq and λq using the "New View" series described above preferably follow the conditions described in Examples. For example, Filter Low Wavelen (corresponding to λc of JIS B0601) is preferably 800 μm. Camera Res (resolution) is preferably 0.3 μm or more and 0.5 μm or less.
<防眩層>
 防眩層は、反射散乱光の抑制、及び防眩性の中心を担う層である。
<Anti-glare layer>
The antiglare layer is a layer that plays a central role in suppression of reflected scattered light and antiglare properties.
《防眩層の形成手法》
 防眩層は、例えば、(A)エンボスロールを用いた方法、(B)エッチング処理、(C)型による成型、(D)塗布による塗膜の形成等により形成できる。これら方法の中では、安定した表面形状を得やすくするためには(C)の型による成型が好適であり、生産性及び多品種対応のためには(D)の塗布による塗膜の形成が好適である。
 (D)により防眩層を形成する場合、例えば、バインダー樹脂及び粒子を含む塗布液を塗布して、粒子により凹凸を形成する手段である(d1)、任意の樹脂と、前記樹脂と相溶性の悪い樹脂を含む塗布液を塗布して、樹脂を相分離させて凹凸を形成する手段である(d2)、が挙げられる。(d1)は、(d2)よりもAM1とAM2とのバランスを良好にしやすい点で好ましい。また、(d1)は、(d2)よりもΔq、λq及びRqを抑制しやすい点で好ましい。
<<Formation method of antiglare layer>>
The antiglare layer can be formed, for example, by (A) a method using an embossing roll, (B) etching treatment, (C) molding using a mold, and (D) forming a coating film by coating. Among these methods, (C) molding with a mold is preferable in order to easily obtain a stable surface shape, and (D) coating to form a coating film is preferable in order to improve productivity and support a wide variety of products. preferred.
When forming an antiglare layer by (D), for example, a means of applying a coating liquid containing a binder resin and particles to form unevenness with particles (d1), an arbitrary resin and compatibility with the resin (d2) is a means for forming unevenness by applying a coating liquid containing a resin having poor adhesion to phase-separate the resin. (d1) is preferable to (d2) because it is easier to achieve a good balance between AM1 and AM2. In addition, (d1) is more preferable than (d2) in that Δq, λq and Rq are easily suppressed.
《厚み》
 防眩層の厚みTは、カール抑制、機械的強度、硬度及び靭性のバランスを良好にするため、2μm以上10μm以下であることが好ましく、4μm以上8μm以下であることがより好ましい。
 防眩層の厚みは、例えば、走査型透過電子顕微鏡(STEM)による防眩フィルムの断面写真の任意の箇所を20点選び、その平均値により算出できる。STEMの加速電圧は10kv以上30kV以下、STEMの倍率は1000倍以上7000倍以下とすることが好ましい。
 防眩層の厚みの好ましい範囲の実施形態としては、2μm以上10μm以下、2μm以上8μm以下、4μm以上10μm以下、4μm以上8μm以下が挙げられる。
《Thickness》
The thickness T of the antiglare layer is preferably 2 μm or more and 10 μm or less, more preferably 4 μm or more and 8 μm or less, in order to achieve a good balance of curl suppression, mechanical strength, hardness and toughness.
The thickness of the antiglare layer can be calculated, for example, by selecting 20 arbitrary points in a cross-sectional photograph of the antiglare film taken by a scanning transmission electron microscope (STEM) and calculating the average value thereof. It is preferable that the acceleration voltage of STEM is 10 kV or more and 30 kV or less, and the magnification of STEM is 1000 times or more and 7000 times or less.
Preferred embodiments of the thickness of the antiglare layer include 2 μm to 10 μm, 2 μm to 8 μm, 4 μm to 10 μm, and 4 μm to 8 μm.
《成分》
 防眩層は、主として樹脂成分を含み、必要に応じて、有機粒子及び無機微粒子等の粒子、屈折率調整剤、帯電防止剤、防汚剤、紫外線吸収剤、光安定剤、酸化防止剤、粘度調整剤及び熱重合開始剤等の添加剤を含む。
"component"
The antiglare layer mainly contains a resin component, and if necessary, particles such as organic particles and inorganic fine particles, a refractive index adjuster, an antistatic agent, an antifouling agent, an ultraviolet absorber, a light stabilizer, an antioxidant, Additives such as viscosity modifiers and thermal polymerization initiators are included.
 防眩層は、バインダー樹脂及び粒子を含むことが好ましい。粒子は有機粒子及び無機粒子が挙げられ、無機粒子が好ましい。すなわち、防眩層は、バインダー樹脂及び無機粒子を含むことがより好ましい。防眩層は、バインダー樹脂、無機粒子及び有機粒子を含むことがさらに好ましい。 The antiglare layer preferably contains a binder resin and particles. Particles include organic particles and inorganic particles, with inorganic particles being preferred. That is, the antiglare layer more preferably contains a binder resin and inorganic particles. More preferably, the antiglare layer contains a binder resin, inorganic particles and organic particles.
―粒子―
 粒子としては、有機粒子及び無機粒子が挙げられる。
 有機粒子としては、ポリメチルメタクリレート、ポリアクリル-スチレン共重合体、メラミン樹脂、ポリカーボネート、ポリスチレン、ポリ塩化ビニル、ベンゾグアナミン-メラミン-ホルムアルデヒド縮合物、シリコーン、フッ素系樹脂及びポリエステル系樹脂等からなる粒子が挙げられる。
 無機粒子としては、シリカ、アルミナ、ジルコニア及びチタニア等が挙げられ、シリカが好ましい。無機粒子の中でも不定形無機粒子が好ましく、不定形シリカがより好ましい。
-particle-
Particles include organic particles and inorganic particles.
Examples of organic particles include particles made of polymethyl methacrylate, polyacrylic-styrene copolymer, melamine resin, polycarbonate, polystyrene, polyvinyl chloride, benzoguanamine-melamine-formaldehyde condensate, silicone, fluorine-based resin, polyester-based resin, and the like. mentioned.
Examples of inorganic particles include silica, alumina, zirconia and titania, with silica being preferred. Among the inorganic particles, amorphous inorganic particles are preferred, and amorphous silica is more preferred.
 粒子として不定形シリカ等の不定形無機粒子を用いることにより、急峻な凹凸を形成しやすくなるため、Δqを大きくしやすくできる。
 粒子として不定形シリカ等の不定形無機粒子を用いる場合、Δq及びλqを上述した範囲としやすくするためには、防眩層中の不定形無機粒子の含有割合を高くすることが好ましい。防眩層中の不定形無機粒子の含有割合を高くすることにより、不定形無機粒子が一面に敷き詰められたような形状となってλqを小さくしやすくなる。さらに、不定形無機粒子に加えて有機粒子を添加することで、不定形無機粒子の極端な凝集が抑えられ、狭い凹凸間隔を保つことができるためλqを小さくすることができる。Δq及びλqを上述した範囲とすることにより、AM1及びAM2を上記範囲にしやすくできる。不定形無機粒子と有機粒子との質量比は、5:1-1:1が好ましく、4:1-2:1がより好ましい。
By using amorphous inorganic particles such as amorphous silica as the particles, it becomes easy to form steep unevenness, so that Δq can be easily increased.
When amorphous inorganic particles such as amorphous silica are used as the particles, it is preferable to increase the content of the amorphous inorganic particles in the antiglare layer in order to make Δq and λq easily within the above ranges. By increasing the content ratio of the amorphous inorganic particles in the antiglare layer, the shape becomes as if the irregular inorganic particles are spread all over, making it easier to reduce λq. Furthermore, by adding organic particles in addition to amorphous inorganic particles, extreme agglomeration of amorphous inorganic particles can be suppressed, and narrow intervals between protrusions and recesses can be maintained, so that λq can be reduced. By setting Δq and λq within the above ranges, AM1 and AM2 can be easily set within the above ranges. The mass ratio of amorphous inorganic particles and organic particles is preferably 5:1-1:1, more preferably 4:1-2:1.
 粒子として有機粒子を用いる場合、AM1及びAM2を上記範囲にしやすくするためには、防眩層は、後述する無機微粒子を含むことが好ましい。 When organic particles are used as the particles, the antiglare layer preferably contains inorganic fine particles, which will be described later, so that AM1 and AM2 are easily within the above range.
 有機粒子及び無機粒子等の粒子の平均粒子径Dは、1.0μm以上10.0μm以下であることが好ましく、1.5μm以上8.0μm以下であることがより好ましく、1.7μm以上6.0μm以下であることがさらに好ましい。
 平均粒子径Dを1.0μm以上とすることにより、AM1及びRqを大きくしやすくできる。粒子の中でも不定形無機粒子は、AM1、Δq及びRqを大きくしやすい。平均粒子径Dを10.0μm以下とすることにより、AM2及びλqを小さくしやすくできるとともに、AM1、Δq及びRqが大きくなり過ぎることを抑制しやすくできる。
 粒子の平均粒子径の好ましい範囲の実施形態としては、1.0μm以上10.0μm以下、1.0μm以上8.0μm以下、1.0μm以上6.0μm以下、1.5μm以上10.0μm以下、1.5μm以上8.0μm以下、1.5μm以上6.0μm以下、1.7μm以上10.0μm以下、1.7μm以上8.0μm以下、1.7μm以上6.0μm以下が挙げられる。
The average particle diameter D of particles such as organic particles and inorganic particles is preferably 1.0 μm or more and 10.0 μm or less, more preferably 1.5 μm or more and 8.0 μm or less, and 1.7 μm or more6. It is more preferably 0 μm or less.
By setting the average particle diameter D to 1.0 μm or more, AM1 and Rq can be easily increased. Among particles, amorphous inorganic particles tend to increase AM1, Δq and Rq. By setting the average particle diameter D to 10.0 μm or less, AM2 and λq can be easily reduced, and AM1, Δq and Rq can be easily suppressed from becoming too large.
Preferred embodiments of the average particle diameter of the particles are 1.0 μm to 10.0 μm, 1.0 μm to 8.0 μm, 1.0 μm to 6.0 μm, 1.5 μm to 10.0 μm, 1.5 μm or more and 8.0 μm or less, 1.5 μm or more and 6.0 μm or less, 1.7 μm or more and 10.0 μm or less, 1.7 μm or more and 8.0 μm or less, and 1.7 μm or more and 6.0 μm or less.
 有機粒子及び無機粒子等の粒子の平均粒子径は、以下の(A1)-(A3)の作業により算出できる。
(A1)防眩フィルムを光学顕微鏡にて透過観察画像を撮像する。倍率は500倍以上2000倍以下が好ましい。
(A2)観察画像から任意の10個の粒子を抽出し、個々の粒子の粒子径を算出する。粒子径は、粒子の断面を任意の平行な2本の直線で挟んだとき、前記2本の直線間距離が最大となるような2本の直線の組み合わせにおける直線間距離として測定される。
(A3)同じサンプルの別画面の観察画像において同様の作業を5回行って、合計50個分の粒子径の数平均から得られる値を粒子の平均粒子径とする。
The average particle size of particles such as organic particles and inorganic particles can be calculated by the following operations (A1) to (A3).
(A1) Take a transmission observation image of the antiglare film with an optical microscope. The magnification is preferably 500 times or more and 2000 times or less.
(A2) Extract arbitrary 10 particles from the observation image and calculate the particle diameter of each particle. The particle diameter is measured as the distance between two straight lines that maximizes the distance between the two straight lines when the cross section of the particle is sandwiched between the two straight lines.
(A3) Perform the same operation 5 times on different screen observation images of the same sample, and take the value obtained from the number average of the particle diameters for a total of 50 particles as the average particle diameter of the particles.
 防眩層の厚みTと、粒子の平均粒子径Dとの比であるD/Tは、0.20以上0.96以下であることが好ましく、0.25以上0.90以下であることがより好ましく、0.30以上0.80以下であることがさらに好ましく、0.35以上0.70以下であることがよりさらに好ましい。D/Tを前記範囲とすることにより、凹凸表面の山の高さ及び山の間隔を適切な範囲にしやすくできるため、AM1、AM2、Δq、λq及びRqを上述した範囲にしやすくできる。D/Tを0.96以下とすることにより、AM1及びRqが大きくなり過ぎることを抑制しやすくできる。
 D/Tの好ましい範囲の実施形態としては、0.20以上0.96以下、0.20以上0.90以下、0.20以上0.80以下、0.20以上0.70以下、0.25以上0.96以下、0.25以上0.90以下、0.25以上0.80以下、0.25以上0.70以下、0.30以上0.96以下、0.30以上0.90以下、0.30以上0.80以下、0.30以上0.70以下、0.35以上0.96以下、0.35以上0.90以下、0.35以上0.80以下、0.35以上0.70以下が挙げられる。
D/T, which is the ratio of the thickness T of the antiglare layer to the average particle diameter D of the particles, is preferably 0.20 or more and 0.96 or less, and more preferably 0.25 or more and 0.90 or less. It is more preferably 0.30 or more and 0.80 or less, and even more preferably 0.35 or more and 0.70 or less. By setting D/T within the above range, the height and spacing of the peaks of the uneven surface can be easily set within the appropriate range, so that AM1, AM2, Δq, λq, and Rq can be easily set within the above ranges. By setting D/T to 0.96 or less, it is possible to easily suppress AM1 and Rq from becoming too large.
Preferred ranges of D/T include 0.20 to 0.96, 0.20 to 0.90, 0.20 to 0.80, 0.20 to 0.70, and 0.20 to 0.90. 25 to 0.96, 0.25 to 0.90, 0.25 to 0.80, 0.25 to 0.70, 0.30 to 0.96, 0.30 to 0.90 0.30 or more and 0.80 or less, 0.30 or more and 0.70 or less, 0.35 or more and 0.96 or less, 0.35 or more and 0.90 or less, 0.35 or more and 0.80 or less, 0.35 0.70 or less.
 有機粒子及び無機粒子等の粒子の含有量は、バインダー樹脂100質量部に対して、10質量部以上200質量部以下であることが好ましく、15質量部以上170質量部以下であることがより好ましく、20質量部以上150質量部以下であることがさらに好ましい。
 粒子の含有量を10質量部以上とすることにより、AM1、AM2、Δq及びRqを大きくしやすくできるとともに、λqを小さくしやすくできる。粒子の含有量を200質量部以下とすることにより、AM1及びAM2が大きくなりすぎることを抑制しやすくできるとともに、防眩層からの粒子の脱落を抑制しやすくできる。
 粒子として、有機粒子を用いて、かつ、不定形無機粒子を用いない場合、「粒子の敷詰め」及び「粒子の段積み」を発現しやすくするため、粒子の含有量は、上記範囲において比較的多い量とすることが好ましい。粒子として不定形無機粒子を用いる場合、AM1が大きくなりすぎることを抑制するため、粒子の含有量は、上記範囲において比較的少ない量とすることが好ましい。
 バインダー樹脂100質量部に対する粒子の含有量の好ましい範囲の実施形態としては、10質量部以上200質量部以下、10質量部以上170質量部以下、10質量部以上150質量部以下、15質量部以上200質量部以下、15質量部以上170質量部以下、15質量部以上150質量部以下、20質量部以上200質量部以下、20質量部以上170質量部以下、20質量部以上150質量部以下が挙げられる。
The content of particles such as organic particles and inorganic particles is preferably 10 parts by mass or more and 200 parts by mass or less, more preferably 15 parts by mass or more and 170 parts by mass or less with respect to 100 parts by mass of the binder resin. , more preferably 20 parts by mass or more and 150 parts by mass or less.
By setting the content of the particles to 10 parts by mass or more, AM1, AM2, Δq and Rq can be easily increased, and λq can be easily decreased. By setting the content of the particles to 200 parts by mass or less, it is possible to easily prevent AM1 and AM2 from becoming too large, and it is possible to easily prevent the particles from falling off from the antiglare layer.
When organic particles are used as the particles and amorphous inorganic particles are not used, the content of the particles is compared within the above range in order to facilitate the expression of "particle laying" and "particle stacking". It is preferable to use a relatively large amount. When amorphous inorganic particles are used as the particles, the content of the particles is preferably relatively small within the above range in order to prevent AM1 from becoming too large.
Preferred embodiments of the content of the particles with respect to 100 parts by mass of the binder resin include 10 parts by mass to 200 parts by mass, 10 parts by mass to 170 parts by mass, 10 parts by mass to 150 parts by mass, and 15 parts by mass or more. 200 parts by mass or less, 15 to 170 parts by mass, 15 to 150 parts by mass, 20 to 200 parts by mass, 20 to 170 parts by mass, 20 to 150 parts by mass mentioned.
―無機微粒子―
 防眩層は、バインダー樹脂及び粒子に加えて、さらに無機微粒子を含むことが好ましい。本明細書において、無機微粒子と上述した粒子とは、平均粒子径で区別できる。
 防眩層が無機微粒子を含む場合、防眩層塗布液の粘度を高くできるため、粒子が沈みにくくなる。さらに、防眩層が無機微粒子を含むことにより、凹凸表面の山と山との間に微細な凹凸が形成されやすくなる。このため、防眩層が無機微粒子を含む場合、AM1、AM2、Δq、λq及びRqを上述した範囲にしやすくできる。防眩層が無機微粒子を含む場合、粒子は有機粒子であることが好ましい。
 防眩層が無機微粒子を含むことにより、粒子の屈折率と、防眩層の粒子以外の組成物の屈折率との差が小さくなり、内部ヘイズを小さくしやすくできる。
―Inorganic Fine Particles―
The antiglare layer preferably contains inorganic fine particles in addition to the binder resin and particles. In this specification, the inorganic fine particles and the particles described above can be distinguished by their average particle diameter.
When the antiglare layer contains inorganic fine particles, the viscosity of the antiglare layer coating liquid can be increased, so that the particles are less likely to sink. Further, since the antiglare layer contains the inorganic fine particles, fine unevenness is easily formed between peaks on the uneven surface. Therefore, when the antiglare layer contains inorganic fine particles, AM1, AM2, Δq, λq, and Rq can be easily set within the ranges described above. When the antiglare layer contains inorganic fine particles, the particles are preferably organic particles.
By including the inorganic fine particles in the antiglare layer, the difference between the refractive index of the particles and the refractive index of the composition other than the particles of the antiglare layer is reduced, making it easier to reduce the internal haze.
 無機微粒子としては、シリカ、アルミナ、ジルコニア及びチタニア等からなる微粒子が挙げられる。これらの中でも、内部ヘイズの発生を抑制しやすいシリカが好適である。 Examples of inorganic fine particles include fine particles made of silica, alumina, zirconia, titania, and the like. Among these, silica is preferable since it easily suppresses the generation of internal haze.
 無機微粒子の平均粒子径は、1nm以上200nm以下であることが好ましく、2nm以上100nm以下であることがより好ましく、5nm以上50nm以下であることがさらに好ましい。
 無機微粒子の平均粒子径の好ましい範囲の実施形態としては、1nm以上200nm以下、1nm以上100nm以下、1nm以上50nm以下、2nm以上200nm以下、2nm以上100nm以下、2nm以上50nm以下、5nm以上200nm以下、5nm以上100nm以下、5nm以上50nm以下が挙げられる。
The average particle diameter of the inorganic fine particles is preferably 1 nm or more and 200 nm or less, more preferably 2 nm or more and 100 nm or less, and even more preferably 5 nm or more and 50 nm or less.
Preferred embodiments of the average particle size of the inorganic fine particles include 1 nm to 200 nm, 1 nm to 100 nm, 1 nm to 50 nm, 2 nm to 200 nm, 2 nm to 100 nm, 2 nm to 50 nm, 5 nm to 200 nm, 5 nm or more and 100 nm or less and 5 nm or more and 50 nm or less are mentioned.
 無機微粒子の平均粒子径は、以下の(B1)-(B3)の作業により算出できる。
(B1)防眩フィルムの断面をTEM又はSTEMで撮像する。TEM又はSTEMの加速電圧は10kv以上30kV以下、倍率は5万倍以上30万倍以下とすることが好ましい。
(B2)観察画像から任意の10個の無機微粒子を抽出し、個々の無機微粒子の粒子径を算出する。粒子径は、無機微粒子の断面を任意の平行な2本の直線で挟んだとき、前記2本の直線間距離が最大となるような2本の直線の組み合わせにおける直線間距離として測定される。
(B3)同じサンプルの別画面の観察画像において同様の作業を5回行って、合計50個分の粒子径の数平均から得られる値を無機微粒子の平均粒子径とする。
The average particle size of the inorganic fine particles can be calculated by the following operations (B1)-(B3).
(B1) A cross-section of the antiglare film is imaged with a TEM or STEM. It is preferable that the acceleration voltage of the TEM or STEM is 10 kV or more and 30 kV or less, and the magnification is 50,000 times or more and 300,000 times or less.
(B2) Any 10 inorganic fine particles are extracted from the observation image, and the particle diameter of each inorganic fine particle is calculated. The particle diameter is measured as the distance between two arbitrary parallel straight lines sandwiching the cross section of the inorganic fine particles and the combination of the two straight lines so that the distance between the two straight lines is maximum.
(B3) Perform the same operation 5 times on observation images of the same sample on different screens, and take the average particle diameter of the inorganic fine particles as the value obtained from the number average of the particle diameters of a total of 50 particles.
 無機微粒子の含有量は、バインダー樹脂100質量部に対して、10質量部以上200質量部以下であることが好ましく、15質量部以上150質量部以下であることがより好ましく、20質量部以上80質量部以下であることがさらに好ましい。
 無機微粒子の含有量を10質量部以上とすることにより、上述した無機微粒子に基づく効果を得やすくすることができる。無機微粒子の含有量を200質量部以下とすることにより、防眩層の塗膜強度の低下を抑制しやすくできるとともに、粒子の流動性が阻害されることを抑制し、AM1及びAM2を上述した範囲にしやすくできる。
 バインダー樹脂100質量部に対する無機微粒子の含有量の好ましい範囲の実施形態としては、10質量部以上200質量部以下、10質量部以上150質量部以下、10質量部以上80質量部以下、15質量部以上200質量部以下、15質量部以上150質量部以下、15質量部以上80質量部以下、20質量部以上200質量部以下、20質量部以上150質量部以下、20質量部以上80質量部以下が挙げられる。
The content of the inorganic fine particles is preferably 10 parts by mass or more and 200 parts by mass or less, more preferably 15 parts by mass or more and 150 parts by mass or less, and 20 parts by mass or more and 80 parts by mass with respect to 100 parts by mass of the binder resin. It is more preferably not more than parts by mass.
By setting the content of the inorganic fine particles to 10 parts by mass or more, it is possible to easily obtain the effects based on the inorganic fine particles described above. By setting the content of the inorganic fine particles to 200 parts by mass or less, it is possible to easily suppress a decrease in the coating strength of the antiglare layer and to suppress the inhibition of particle flowability, and AM1 and AM2 are as described above. Easy to range.
Preferred embodiments of the content of the inorganic fine particles with respect to 100 parts by mass of the binder resin include 10 parts by mass to 200 parts by mass, 10 parts by mass to 150 parts by mass, 10 parts by mass to 80 parts by mass, and 15 parts by mass. 15 to 150 parts by mass, 15 to 80 parts by mass, 20 to 200 parts by mass, 20 to 150 parts by mass, 20 to 80 parts by mass are mentioned.
―バインダー樹脂―
 バインダー樹脂は、機械的強度をより良くするため、熱硬化性樹脂組成物の硬化物又は電離放射線硬化性樹脂組成物の硬化物等の硬化性樹脂の硬化物を含むことが好ましく、電離放射線硬化性樹脂組成物の硬化物を含むことがより好ましい。
―Binder Resin―
In order to improve mechanical strength, the binder resin preferably contains a cured product of a curable resin such as a cured product of a thermosetting resin composition or a cured product of an ionizing radiation-curable resin composition. It is more preferable to contain a cured product of a flexible resin composition.
 熱硬化性樹脂組成物は、少なくとも熱硬化性樹脂を含む組成物であり、加熱により、硬化する樹脂組成物である。
 熱硬化性樹脂としては、アクリル樹脂、ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコーン樹脂等が挙げられる。熱硬化性樹脂組成物には、これら硬化性樹脂に、必要に応じて硬化剤が添加される。
A thermosetting resin composition is a composition containing at least a thermosetting resin, and is a resin composition that is cured by heating.
Thermosetting resins include acrylic resins, urethane resins, phenol resins, urea melamine resins, epoxy resins, unsaturated polyester resins, silicone resins, and the like. If necessary, a curing agent is added to these curable resins in the thermosetting resin composition.
 電離放射線硬化性樹脂組成物は、電離放射線硬化性官能基を有する化合物(以下、「電離放射線硬化性化合物」ともいう)を含む組成物である。電離放射線硬化性官能基としては、(メタ)アクリロイル基、ビニル基、アリル基等のエチレン性不飽和結合基、及びエポキシ基、オキセタニル基等が挙げられる。電離放射線硬化性化合物としては、エチレン性不飽和結合基を有する化合物が好ましく、エチレン性不飽和結合基を2つ以上有する化合物がより好ましく、中でも、エチレン性不飽和結合基を2つ以上有する、多官能性(メタ)アクリレート系化合物が更に好ましい。多官能性(メタ)アクリレート系化合物としては、モノマー及びオリゴマーのいずれも用いることができる。
 電離放射線とは、電磁波又は荷電粒子線のうち、分子を重合あるいは架橋し得るエネルギー量子を有するものを意味し、通常、紫外線(UV)又は電子線(EB)が用いられるが、その他、X線、γ線などの電磁波、α線、イオン線などの荷電粒子線も使用可能である。
An ionizing radiation-curable resin composition is a composition containing a compound having an ionizing radiation-curable functional group (hereinafter also referred to as an "ionizing radiation-curable compound"). Examples of ionizing radiation-curable functional groups include ethylenically unsaturated bond groups such as (meth)acryloyl groups, vinyl groups, and allyl groups, epoxy groups, and oxetanyl groups. As the ionizing radiation-curable compound, a compound having an ethylenically unsaturated bond group is preferable, and a compound having two or more ethylenically unsaturated bond groups is more preferable. Polyfunctional (meth)acrylate compounds are more preferred. Both monomers and oligomers can be used as polyfunctional (meth)acrylate compounds.
Ionizing radiation refers to electromagnetic waves or charged particle beams that have energy quanta capable of polymerizing or cross-linking molecules, and usually ultraviolet (UV) or electron beam (EB) is used. Electromagnetic waves such as γ rays, α rays, and charged particle beams such as ion beams can also be used.
 多官能性(メタ)アクリレート系化合物のうち、2官能(メタ)アクリレート系モノマーとしては、エチレングリコールジ(メタ)アクリレート、ビスフェノールAテトラエトキシジアクリレート、ビスフェノールAテトラプロポキシジアクリレート、1,6-ヘキサンジオールジアクリレート等が挙げられる。
 3官能以上の(メタ)アクリレート系モノマーとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、イソシアヌル酸変性トリ(メタ)アクリレート等が挙げられる。
 上記(メタ)アクリレート系モノマーは、分子骨格の一部を変性しているものでもよい。例えば、上記(メタ)アクリレート系モノマーは、エチレンオキサイド、プロピレンオキサイド、カプロラクトン、イソシアヌル酸、アルキル、環状アルキル、芳香族、ビスフェノール等により、分子骨格の一部を変性したものも使用することができる。
Among polyfunctional (meth)acrylate compounds, bifunctional (meth)acrylate monomers include ethylene glycol di(meth)acrylate, bisphenol A tetraethoxy diacrylate, bisphenol A tetrapropoxy diacrylate, 1,6-hexane. diol diacrylate and the like.
Trifunctional or higher (meth)acrylate monomers include, for example, trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, di Examples include pentaerythritol tetra(meth)acrylate and isocyanuric acid-modified tri(meth)acrylate.
The (meth)acrylate monomer may have a partially modified molecular skeleton. For example, the (meth)acrylate-based monomer may be partially modified with ethylene oxide, propylene oxide, caprolactone, isocyanuric acid, alkyl, cyclic alkyl, aromatic, bisphenol, or the like.
 多官能性(メタ)アクリレート系オリゴマーとしては、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート等のアクリレート系重合体等が挙げられる。
 ウレタン(メタ)アクリレートは、例えば、多価アルコール及び有機ジイソシアネートとヒドロキシ(メタ)アクリレートとの反応によって得られる。
 好ましいエポキシ(メタ)アクリレートは、3官能以上の芳香族エポキシ樹脂、脂環族エポキシ樹脂、脂肪族エポキシ樹脂等と(メタ)アクリル酸とを反応させて得られる(メタ)アクリレート、2官能以上の芳香族エポキシ樹脂、脂環族エポキシ樹脂、脂肪族エポキシ樹脂等と多塩基酸と(メタ)アクリル酸とを反応させて得られる(メタ)アクリレート、及び2官能以上の芳香族エポキシ樹脂、脂環族エポキシ樹脂、脂肪族エポキシ樹脂等とフェノール類と(メタ)アクリル酸とを反応させて得られる(メタ)アクリレートである。
Polyfunctional (meth)acrylate oligomers include acrylate polymers such as urethane (meth)acrylate, epoxy (meth)acrylate, polyester (meth)acrylate, and polyether (meth)acrylate.
Urethane (meth)acrylates are obtained, for example, by reacting polyhydric alcohols and organic diisocyanates with hydroxy (meth)acrylates.
Preferred epoxy (meth)acrylates include (meth)acrylates obtained by reacting tri- or more functional aromatic epoxy resins, alicyclic epoxy resins, aliphatic epoxy resins, etc. with (meth)acrylic acid; (Meth)acrylates obtained by reacting aromatic epoxy resins, alicyclic epoxy resins, aliphatic epoxy resins, etc. with polybasic acids and (meth)acrylic acid, and bifunctional or higher aromatic epoxy resins, alicyclic It is a (meth)acrylate obtained by reacting a group epoxy resin, an aliphatic epoxy resin, or the like with a phenol and (meth)acrylic acid.
 防眩層塗布液の粘度を調整するなどの目的で、電離放射線硬化性化合物として、単官能(メタ)アクリレートを併用してもよい。単官能(メタ)アクリレートとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート及びイソボルニル(メタ)アクリレート等が挙げられる。
 上記電離放射線硬化性化合物は1種を単独で、又は2種以上を組み合わせて用いることができる。
For the purpose of adjusting the viscosity of the antiglare layer coating liquid, a monofunctional (meth)acrylate may be used in combination as the ionizing radiation-curable compound. Monofunctional (meth)acrylates include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate, and cyclohexyl (meth)acrylate. , 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate, stearyl (meth)acrylate and isobornyl (meth)acrylate.
The above ionizing radiation-curable compounds may be used singly or in combination of two or more.
 電離放射線硬化性化合物が紫外線硬化性化合物である場合には、電離放射線硬化性組成物は、光重合開始剤や光重合促進剤等の添加剤を含むことが好ましい。
 光重合開始剤としては、アセトフェノン、ベンゾフェノン、α-ヒドロキシアルキルフェノン、ミヒラーケトン、ベンゾイン、ベンジルジメチルケタール、ベンゾイルベンゾエート、α-アシルオキシムエステル、チオキサントン類等から選ばれる1種以上が挙げられる。
 光重合促進剤は、硬化時の空気による重合阻害を軽減させ硬化速度を速めることができるものである。促進剤としては、p-ジメチルアミノ安息香酸イソアミルエステル、p-ジメチルアミノ安息香酸エチルエステル等が挙げられる。
When the ionizing radiation-curable compound is an ultraviolet-curable compound, the ionizing radiation-curable composition preferably contains additives such as a photopolymerization initiator and a photopolymerization accelerator.
Examples of the photopolymerization initiator include one or more selected from acetophenone, benzophenone, α-hydroxyalkylphenone, Michler's ketone, benzoin, benzyldimethylketal, benzoylbenzoate, α-acyloxime ester, thioxanthones and the like.
The photopolymerization accelerator can reduce polymerization inhibition caused by air during curing and increase the curing speed. Accelerators include p-dimethylaminobenzoic acid isoamyl ester, p-dimethylaminobenzoic acid ethyl ester, and the like.
 バインダー樹脂が電離放射線硬化性樹脂組成物の硬化物を含む場合、下記(C1)又は(C2)の構成であることが好ましい。 When the binder resin contains a cured product of an ionizing radiation-curable resin composition, it preferably has the following configuration (C1) or (C2).
(C1)バインダー樹脂として、電離放射線硬化性樹脂組成物の硬化物に加えて、熱可塑性樹脂を含む。
(C2)バインダー樹脂として、実質的に電離放射線硬化性樹脂組成物の硬化物のみを含み、かつ、電離放射線硬化性樹脂組成物に含まれる電離放射線硬化性化合物として、モノマー成分を70質量%以上含む。
(C1) The binder resin contains a thermoplastic resin in addition to the cured product of the ionizing radiation-curable resin composition.
(C2) The binder resin substantially contains only the cured product of the ionizing radiation-curable resin composition, and the ionizing radiation-curable compound contained in the ionizing radiation-curable resin composition contains 70% by mass or more of the monomer component. include.
 上記C1の実施形態の場合、熱可塑性樹脂によって防眩層塗布液の粘度が高くなるため、粒子が沈みにくくなり、さらには、山と山との間にバインダー樹脂が流れ落ちにくくなる。このため、上記C1の実施形態の場合、AM1、AM2及びΔqを大きくしやすくできるとともに、λqを小さくしやすくできる。上記C1の実施形態において、防眩層が無機微粒子を含む場合には、無機微粒子によって防眩層塗布液の粘度をより高くすることができるため好ましい。上記C1の実施形態は、粒子として有機粒子を用い、かつ、無機微粒子を含むことが好ましい。 In the case of the above embodiment C1, the thermoplastic resin increases the viscosity of the antiglare layer coating liquid, so that the particles are less likely to sink, and the binder resin is less likely to flow down between the peaks. Therefore, in the case of the embodiment of C1, AM1, AM2 and Δq can be easily increased, and λq can be easily decreased. In the above embodiment C1, it is preferable that the antiglare layer contains inorganic fine particles because the inorganic fine particles can increase the viscosity of the antiglare layer coating liquid. The above embodiment of C1 preferably uses organic particles as the particles and contains inorganic fine particles.
 熱可塑性樹脂としては、ポリスチレン系樹脂、ポリオレフィン系樹脂、ABS樹脂(耐熱ABS樹脂を含む)、AS樹脂、AN樹脂、ポリフェニレンオキサイド系樹脂、ポリカーボネート系樹脂、ポリアセタール系樹脂、アクリル系樹脂、ポリエチレンテレフタレート系樹脂、ポリブチレンテレフタレート系樹脂、ポリスルホン系樹脂、およびポリフェニレンサルファイド系樹脂等が挙げられ、透明性を良好にするためアクリル系樹脂が好ましい。 Thermoplastic resins include polystyrene-based resins, polyolefin-based resins, ABS resins (including heat-resistant ABS resins), AS resins, AN resins, polyphenylene oxide-based resins, polycarbonate-based resins, polyacetal-based resins, acrylic-based resins, and polyethylene terephthalate-based resins. Examples include resins, polybutylene terephthalate-based resins, polysulfone-based resins, and polyphenylene sulfide-based resins, and acrylic resins are preferred in order to improve transparency.
 熱可塑性樹脂の重量平均分子量は、2万以上20万以下であることが好ましく、3万以上15万以下であることがより好ましく、5万以上10万以下であることがさらに好ましい。
 本明細書において、重量平均分子量は、GPC分析によって測定され、かつ標準ポリスチレンで換算された平均分子量である。
 熱可塑性樹脂の重量平均分子量の好ましい範囲の実施形態としては、2万以上20万以下、2万以上15万以下、2万以上10万以下、3万以上20万以下、3万以上15万以下、3万以上10万以下、5万以上20万以下、5万以上15万以下、5万以上10万以下が挙げられる。
The weight average molecular weight of the thermoplastic resin is preferably from 20,000 to 200,000, more preferably from 30,000 to 150,000, and even more preferably from 50,000 to 100,000.
As used herein, the weight average molecular weight is the average molecular weight measured by GPC analysis and converted to standard polystyrene.
Preferred embodiments of the weight average molecular weight of the thermoplastic resin include 20,000 to 200,000, 20,000 to 150,000, 20,000 to 100,000, 30,000 to 200,000, and 30,000 to 150,000. , 30,000 to 100,000, 50,000 to 200,000, 50,000 to 150,000, and 50,000 to 100,000.
 上記C1の実施形態において、電離放射線硬化性樹脂組成物の硬化物と熱可塑性樹脂との質量比は、60:40-90:10であることが好ましく、70:30-80:20であることがより好ましい。
 電離放射線硬化性樹脂組成物の硬化物90に対して熱可塑性樹脂を10以上とすることにより、上述した防眩層塗布液の粘度が上がることによる効果を発揮しやすくできる。電離放射線硬化性樹脂組成物の硬化物60に対して熱可塑性樹脂を40以下とすることにより、防眩層の機械的強度が低下することを抑制しやすくできる。
In the embodiment of C1 above, the mass ratio of the cured product of the ionizing radiation-curable resin composition and the thermoplastic resin is preferably 60:40-90:10, and 70:30-80:20. is more preferred.
By setting the number of thermoplastic resins to 10 or more relative to the cured product 90 of the ionizing radiation-curable resin composition, the effect of increasing the viscosity of the antiglare layer coating liquid can be easily exhibited. By setting the proportion of the thermoplastic resin to 40 or less with respect to the cured product 60 of the ionizing radiation-curable resin composition, it is possible to easily suppress the decrease in the mechanical strength of the antiglare layer.
 上記C2の実施形態の場合、防眩層の底部に粒子が敷き詰められ、かつ、一部の領域では粒子が段積みされた状態となり、これらの粒子を薄皮状のバインダー樹脂が覆ったような形状となる傾向がある。このため、上記C2の実施形態の場合、段積みされた粒子によってAM1及びΔqを大きくしやすくでき、敷き詰められた粒子によってAM2及びλqを小さくしやすくできる。上記C2の実施形態では、粒子は無機粒子が好ましく、不定形無機粒子がより好ましく、不定形シリカがさらに好ましい。上記C2の実施形態では、無機粒子に加えて、有機粒子を含むことが好ましい。 In the case of the above embodiment C2, the particles are spread on the bottom of the antiglare layer, and the particles are stacked in a part of the region, and the particles are covered with a thin skin-like binder resin. tends to be Therefore, in the case of the above embodiment C2, AM1 and Δq can be easily increased by stacked particles, and AM2 and λq can be easily decreased by spread particles. In the above embodiment of C2, the particles are preferably inorganic particles, more preferably amorphous inorganic particles, and even more preferably amorphous silica. Embodiments of C2 above preferably include organic particles in addition to inorganic particles.
 上記C2において、バインダー樹脂の全量に対する電離放射線硬化性樹脂組成物の硬化物の割合は90質量%以上であることが好ましく、95質量%以上であることがより好ましく、100質量%であることがさらに好ましい。
 上記C2において、電離放射線硬化性化合物の全量に対するモノマー成分の割合は、90質量%以上であることが好ましく、95質量%以上であることがより好ましく、100質量%であることがさらに好ましい。前記モノマー成分は、多官能性(メタ)アクリレート系化合物であることが好ましい。
In C2 above, the ratio of the cured product of the ionizing radiation-curable resin composition to the total amount of the binder resin is preferably 90% by mass or more, more preferably 95% by mass or more, and 100% by mass. More preferred.
In C2 above, the ratio of the monomer component to the total amount of the ionizing radiation-curable compound is preferably 90% by mass or more, more preferably 95% by mass or more, and even more preferably 100% by mass. The monomer component is preferably a polyfunctional (meth)acrylate compound.
 防眩層塗布液は、粘度を調節したり、各成分を溶解または分散可能としたりするために溶剤を含むことが好ましい。溶剤の種類によって、塗布、乾燥した後の防眩層の表面形状が異なるため、溶剤の飽和蒸気圧、透明基材への溶剤の浸透性等を考慮して溶剤を選定することが好ましい。
 溶剤としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;ジオキサン、テトラヒドロフラン等のエーテル類;ヘキサン等の脂肪族炭化水素類;シクロヘキサン等の脂環式炭化水素類;トルエン、キシレン等の芳香族炭化水素類;ジクロロメタン、ジクロロエタン等のハロゲン化炭素類;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類;イソプロパノール、ブタノール、シクロヘキサノール等のアルコール類;メチルセロソルブ、エチルセロソルブ等のセロソルブ類;プロピレングリコールモノメチルエーテルアセタート等のグリコールエーテル類;セロソルブアセテート類;ジメチルスルホキシド等のスルホキシド類;ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;等が挙げられ、これらの混合物であってもよい。
The antiglare layer coating liquid preferably contains a solvent in order to adjust the viscosity and to dissolve or disperse each component. Since the surface shape of the antiglare layer after coating and drying differs depending on the type of solvent, it is preferable to select the solvent in consideration of the saturated vapor pressure of the solvent, the permeability of the solvent to the transparent substrate, and the like.
Examples of solvents include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ethers such as dioxane and tetrahydrofuran; aliphatic hydrocarbons such as hexane; alicyclic hydrocarbons such as cyclohexane; aromatic hydrocarbons; halogenated carbons such as dichloromethane and dichloroethane; esters such as methyl acetate, ethyl acetate and butyl acetate; alcohols such as isopropanol, butanol and cyclohexanol; cellosolves such as methyl cellosolve and ethyl cellosolve; glycol ethers such as propylene glycol monomethyl ether acetate; cellosolve acetates; sulfoxides such as dimethylsulfoxide; amides such as dimethylformamide and dimethylacetamide;
 防眩層塗布液中の溶剤は、蒸発速度が速い溶剤を主成分とすることが好ましい。溶剤の蒸発速度を速くすることにより、粒子が防眩層の下部に沈降することを抑制し、さらには、山と山との間にバインダー樹脂が流れ落ちにくくなる。このため、AM1、AM2及びΔqを大きくしやすくできるとともに、λqを小さくしやすくできる。
 主成分とは、溶剤の全量の50質量%以上であることを意味し、好ましくは70質量%以上、より好ましくは80質量%以上である。
The solvent in the antiglare layer coating liquid preferably contains a solvent having a high evaporation rate as a main component. By increasing the evaporation rate of the solvent, the particles are prevented from settling to the bottom of the antiglare layer, and the binder resin is less likely to flow down between the peaks. Therefore, AM1, AM2 and Δq can be easily increased, and λq can be easily decreased.
The main component means 50% by mass or more, preferably 70% by mass or more, and more preferably 80% by mass or more of the total amount of the solvent.
 本明細書において、蒸発速度が速い溶剤は、酢酸ブチルの蒸発速度を100とした際に、蒸発速度が100以上の溶剤を意味する。蒸発速度が速い溶剤の蒸発速度は、120以上300以下であることがより好ましく、150以上220以下であることがさらに好ましい。
 蒸発速度が速い溶剤としては、例えば、蒸発速度160のメチルイソブチルケトン、蒸発速度200のトルエン、蒸発速度370のメチルエチルケトンが挙げられる。
In the present specification, a solvent with a high evaporation rate means a solvent with an evaporation rate of 100 or more when the evaporation rate of butyl acetate is set to 100. The evaporation rate of the solvent having a high evaporation rate is more preferably 120 or more and 300 or less, more preferably 150 or more and 220 or less.
Examples of solvents with high evaporation rates include methyl isobutyl ketone with an evaporation rate of 160, toluene with an evaporation rate of 200, and methyl ethyl ketone with an evaporation rate of 370.
 防眩層塗布液中の溶剤は、蒸発速度が速い溶剤に加えて、少量の蒸発速度が遅い溶剤を含むことも好ましい。蒸発速度が遅い溶剤を少量含むことにより、粒子を凝集させ、AM1、Δq及びRqを大きくしやすくできる。但し、AM1及びRqが大きくなり過ぎることを抑制するため、蒸発速度が遅い溶剤の含有量は少量とすることが肝要である。
 蒸発速度が速い溶剤と、蒸発速度が遅い溶剤との質量比は、99:1-80:20であることが好ましく、98:2-85:15であることがより好ましい。
The solvent in the antiglare layer coating liquid preferably contains a small amount of a solvent with a slow evaporation rate in addition to the solvent with a high evaporation rate. By containing a small amount of a solvent having a slow evaporation rate, particles can be aggregated, and AM1, Δq and Rq can be easily increased. However, in order to prevent AM1 and Rq from becoming too large, it is important to limit the content of the solvent having a slow evaporation rate to a small amount.
The mass ratio of the fast evaporating solvent and the slow evaporating solvent is preferably 99:1-80:20, more preferably 98:2-85:15.
 本明細書において、蒸発速度が遅い溶剤は、酢酸ブチルの蒸発速度を100とした際に、蒸発速度が100未満の溶剤を意味する。蒸発速度が遅い溶剤の蒸発速度は、20以上60以下であることがより好ましく、25以上40以下であることがさらに好ましい。
 蒸発速度が遅い溶剤としては、例えば、蒸発速度32のシクロヘキサノン、蒸発速度44のプロピレングリコールモノメチルエーテルアセテートが挙げられる。
In the present specification, a solvent with a slow evaporation rate means a solvent with an evaporation rate of less than 100 when the evaporation rate of butyl acetate is defined as 100. The evaporation rate of the solvent having a slow evaporation rate is more preferably 20 or more and 60 or less, and more preferably 25 or more and 40 or less.
Examples of solvents with a slow evaporation rate include cyclohexanone with an evaporation rate of 32 and propylene glycol monomethyl ether acetate with an evaporation rate of 44.
 防眩層塗布液から防眩層を形成する際には、乾燥条件を制御することが好ましい。
 乾燥条件は、乾燥温度及び乾燥機内の風速により制御することができる。乾燥温度は30℃以上120℃以下が好ましく、乾燥風速は0.2m/s以上50m/s以下が好ましい。乾燥により防眩層の表面形状を制御するために、電離放射線の照射は塗布液の乾燥後に行うことが好適である。
When forming the antiglare layer from the antiglare layer coating liquid, it is preferable to control the drying conditions.
Drying conditions can be controlled by drying temperature and air speed in the dryer. The drying temperature is preferably 30° C. or higher and 120° C. or lower, and the drying wind speed is preferably 0.2 m/s or higher and 50 m/s or lower. In order to control the surface shape of the antiglare layer by drying, it is preferable to irradiate ionizing radiation after drying the coating liquid.
<光学特性>
 防眩フィルムは、JIS K7361-1:1997の全光線透過率が70%以上であることが好ましく、80%以上であることがより好ましく、85%以上であることがさらに好ましい。
 全光線透過率、及び、後述するヘイズを測定する際の光入射面は、凹凸表面とは反対側とする。
<Optical properties>
The antiglare film preferably has a total light transmittance of 70% or more, more preferably 80% or more, and even more preferably 85% or more according to JIS K7361-1:1997.
The light incident surface for measuring the total light transmittance and haze, which will be described later, is the side opposite to the uneven surface.
 防眩フィルムは、JIS K7136:2000のヘイズが40%以上98%以下であることが好ましく、50%以上80%以下であることがより好ましく、55%以上70%以下であることがさらに好ましい。
 ヘイズを40%以上とすることにより、防眩性を良好にしやすくできる。ヘイズを98%以下とすることにより、映像の解像度の低下を抑制しやすくできる。
 ヘイズの好ましい範囲の実施形態としては、40%以上98%以下、40%以上80%以下、40%以上70%以下、50%以上98%以下、50%以上80%以下、50%以上70%以下、55%以上98%以下、55%以上80%以下、55%以上70%以下が挙げられる。
The antiglare film preferably has a JIS K7136:2000 haze of 40% or more and 98% or less, more preferably 50% or more and 80% or less, and even more preferably 55% or more and 70% or less.
By setting the haze to 40% or more, the antiglare property can be easily improved. By setting the haze to 98% or less, it is possible to easily suppress deterioration in image resolution.
Preferred haze ranges include 40% to 98%, 40% to 80%, 40% to 70%, 50% to 98%, 50% to 80%, 50% to 70%. Below, 55% or more and 98% or less, 55% or more and 80% or less, and 55% or more and 70% or less are mentioned.
 防眩フィルムは、映像の解像度及びコントラストを良好にしやすくするために、内部ヘイズが20%以下であることが好ましく、15%以下であることがより好ましく、10%以下であることがさらに好ましい。
 内部ヘイズは汎用の手法で測定することができ、例えば、凹凸表面上に透明粘着剤層を介して透明シートを貼り合わせるなどして、凹凸表面の凹凸を潰すことにより測定することができる。
The antiglare film preferably has an internal haze of 20% or less, more preferably 15% or less, and even more preferably 10% or less, in order to easily improve image resolution and contrast.
The internal haze can be measured by a general-purpose method. For example, it can be measured by flattening the unevenness of the uneven surface by attaching a transparent sheet to the uneven surface with a transparent adhesive layer interposed therebetween.
 防眩フィルムは、JIS K7374:2007に準拠して測定した透過像鮮明度に関して、光学櫛の幅が0.125mmの透過像鮮明度をC0.125、光学櫛の幅が0.25mmの透過像鮮明度をC0.25、光学櫛の幅が0.5mmの透過像鮮明度をC0.5、光学櫛の幅が1.0mmの透過像鮮明度をC1.0、光学櫛の幅が2.0mmの透過像鮮明度をC2.0と定義した際に、C0.125、C0.25、C0.5、C1.0及びC2.0の値が下記の範囲であることが好ましい。
 C0.125は、防眩性を良好にするため、50%以下が好ましく、40%以下がより好ましく、30%以下がより好ましく、20%以下がより好ましい。C0.125は、解像度を良好にするため、1.0%以上が好ましい。C0.125の範囲としては、1.0%以上50%以下、1.0%以上40%以下、1.0%以上30%以下、1.0%以上20%以下が挙げられる。
 C0.25は、防眩性を良好にするため、50%以下が好ましく、40%以下がより好ましく、30%以下がより好ましく、20%以下がより好ましい。C0.25は、解像度を良好にするため、1.0%以上が好ましい。C0.25の範囲としては、1.0%以上50%以下、1.0%以上40%以下、1.0%以上30%以下、1.0%以上20%以下が挙げられる。
 C0.5は、防眩性を良好にするため、50%以下が好ましく、40%以下がより好ましく、30%以下がより好ましく、20%以下がより好ましい。C0.5は、解像度を良好にするため、1.0%以上が好ましい。C0.5の範囲としては、1.0%以上50%以下、1.0%以上40%以下、1.0%以上30%以下、1.0%以上20%以下が挙げられる。
 C1.0は、防眩性を良好にするため、50%以下が好ましく、40%以下がより好ましく、30%以下がより好ましく、20%以下がより好ましい。C1.0は、解像度を良好にするため、1.0%以上が好ましい。C1.0の範囲としては、1.0%以上50%以下、1.0%以上40%以下、1.0%以上30%以下、1.0%以上20%以下が挙げられる。
 C2.0は、防眩性を良好にするため、50%以下が好ましく、40%以下がより好ましく、30%以下がより好ましく、25%以下がより好ましい。C2.0は、解像度を良好にするため、5.0%以上が好ましい。C2.0の範囲としては、5.0%以上50%以下、5.0%以上40%以下、5.0%以上30%以下、5.0%以上25%以下が挙げられる。
Regarding the transmission image clarity of the anti-glare film measured in accordance with JIS K7374:2007, C 0.125 is the transmission image clarity with an optical comb width of 0.125 mm, and C 0.125 is the transmission image clarity with an optical comb width of 0.25 mm. C 0.25 is the transmitted image sharpness with an optical comb width of 0.5 mm, C 0.5 is the transmitted image sharpness with an optical comb width of 1.0 mm, C 1.0 is the transmitted image sharpness with an optical comb width of 2.0 mm. When the sharpness is defined as C2.0 , the values of C0.125 , C0.25 , C0.5 , C1.0 and C2.0 are preferably within the following ranges.
C 0.125 is preferably 50% or less, more preferably 40% or less, more preferably 30% or less, and more preferably 20% or less, in order to improve antiglare properties. C 0.125 is preferably 1.0% or more in order to improve resolution. The range of C 0.125 includes 1.0% to 50%, 1.0% to 40%, 1.0% to 30%, and 1.0% to 20%.
C 0.25 is preferably 50% or less, more preferably 40% or less, more preferably 30% or less, and more preferably 20% or less, in order to improve antiglare properties. C 0.25 is preferably 1.0% or more in order to improve resolution. The range of C 0.25 includes 1.0% to 50%, 1.0% to 40%, 1.0% to 30%, and 1.0% to 20%.
C 0.5 is preferably 50% or less, more preferably 40% or less, more preferably 30% or less, and more preferably 20% or less, in order to improve antiglare properties. C 0.5 is preferably 1.0% or more in order to improve resolution. The range of C 0.5 includes 1.0% to 50%, 1.0% to 40%, 1.0% to 30%, and 1.0% to 20%.
C 1.0 is preferably 50% or less, more preferably 40% or less, more preferably 30% or less, and more preferably 20% or less, in order to improve antiglare properties. C 1.0 is preferably 1.0% or more in order to improve resolution. The range of C 1.0 includes 1.0% to 50%, 1.0% to 40%, 1.0% to 30%, and 1.0% to 20%.
C 2.0 is preferably 50% or less, more preferably 40% or less, more preferably 30% or less, and more preferably 25% or less, in order to improve antiglare properties. C 2.0 is preferably 5.0% or more in order to improve resolution. The range of C 2.0 includes 5.0% to 50%, 5.0% to 40%, 5.0% to 30%, and 5.0% to 25%.
 防眩フィルムは、防眩性を良好にするため、C0.125、C0.5、C1.0及びC2.0の合計が、200%以下が好ましく、150%以下がより好ましく、100%以下がより好ましく、80%以下がより好ましい。前記合計は、解像度を良好にするため、10.0%以上が好ましい。前記合計の範囲としては、10.0%以上200%以下、10.0%以上150%以下、10.0%以上100%以下、10.0%以上80%以下が挙げられる。 In order to improve the antiglare property of the antiglare film, the total of C 0.125 , C 0.5 , C 1.0 and C 2.0 is preferably 200% or less, more preferably 150% or less, more preferably 100% or less, and 80%. % or less is more preferable. The total is preferably 10.0% or more in order to improve the resolution. Examples of the range of the total include 10.0% to 200%, 10.0% to 150%, 10.0% to 100%, and 10.0% to 80%.
 防眩フィルムは、防眩性を良好にするため、凹凸表面側から測定した20度鏡面光沢度が6.0以下であることが好ましく、3.0以下であることがより好ましく、1.0以下であることがさらに好ましく、0.5以下であることがよりさらに好ましい。
 防眩フィルムの20度鏡面光沢度が低すぎると、映像光が防眩フィルムを透過する際に散乱しやすくなり、暗室コントラストが低下しやすくなる。このため、防眩フィルムの20度鏡面光沢度は、0.01以上であることが好ましく、0.02以上であることがより好ましく、0.04以上であることがさらに好ましい。
 防眩フィルムの20度鏡面光沢度の好ましい範囲としては、0.01以上6.0以下、0.01以上3.0以下、0.01以上1.0以下、0.01以上0.5以下、0.02以上6.0以下、0.02以上3.0以下、0.02以上1.0以下、0.02以上0.5以下、0.04以上6.0以下、0.04以上3.0以下、0.04以上1.0以下、0.04以上0.5以下が挙げられる。
In order to improve antiglare properties, the antiglare film preferably has a 20-degree specular gloss measured from the uneven surface side of 6.0 or less, more preferably 3.0 or less, and 1.0. It is more preferably 0.5 or less, and even more preferably 0.5 or less.
If the 20-degree specular glossiness of the antiglare film is too low, image light tends to scatter when passing through the antiglare film, and the darkroom contrast tends to decrease. Therefore, the 20-degree specular glossiness of the antiglare film is preferably 0.01 or more, more preferably 0.02 or more, and even more preferably 0.04 or more.
The preferred range of the 20-degree specular glossiness of the antiglare film is 0.01 to 6.0, 0.01 to 3.0, 0.01 to 1.0, and 0.01 to 0.5. , 0.02 to 6.0, 0.02 to 3.0, 0.02 to 1.0, 0.02 to 0.5, 0.04 to 6.0, 0.04 or more 3.0 or less, 0.04 or more and 1.0 or less, or 0.04 or more and 0.5 or less.
<その他の層>
 防眩フィルムは、上述した防眩層及び透明基材以外の層であるその他の層を有していてもよい。その他の層としては、反射防止層、防汚層及び帯電防止層等が挙げられる。
 その他の層を有する好適な実施形態としては、防眩層の凹凸表面上に反射防止層を有し、反射防止層の表面が前記凹凸表面である実施形態が挙げられる。前記反射防止層は防汚性を備えることがより好ましい。すなわち、防眩層上に防汚性反射防止層を有し、防汚性反射防止層の表面が前記凹凸表面である実施形態がより好ましい。
<Other layers>
The antiglare film may have other layers other than the antiglare layer and the transparent substrate described above. Other layers include an antireflection layer, an antifouling layer, an antistatic layer, and the like.
A preferred embodiment having other layers includes an embodiment in which an antireflection layer is provided on the uneven surface of the antiglare layer, and the surface of the antireflection layer is the uneven surface. More preferably, the antireflection layer has antifouling properties. That is, an embodiment in which an antifouling antireflection layer is provided on the antiglare layer and the surface of the antifouling antireflection layer is the uneven surface is more preferable.
《反射防止層》
 反射防止層は、例えば、低屈折率層の単層構造;高屈折率層と低屈折率層の2層構造;3層構造以上の多層構造;が挙げられる。低屈折率層及び高屈折率層は、汎用のウェット法又はドライ法等により形成することができる。ウェット法の場合は前記単層構造又は2層構造が好ましく、ドライ法の場合は前記多層構造が好ましい。
《Anti-reflection layer》
Examples of the antireflection layer include a single layer structure of a low refractive index layer; a two layer structure of a high refractive index layer and a low refractive index layer; and a multilayer structure of three or more layers. The low refractive index layer and the high refractive index layer can be formed by a general-purpose wet method, dry method, or the like. In the case of the wet method, the single-layer structure or the two-layer structure is preferred, and in the case of the dry method, the multi-layer structure is preferred.
―単層構造又は2層構造の場合―
 単層構造又は2層構造は、ウェット法により好ましく形成される。
 低屈折率層は、防眩フィルムの最表面に配置することが好ましい。反射防止層に防汚性を付与する場合、低屈折率層中に、シリコーン系化合物及びフッ素系化合物等の防汚剤を含ませることが好ましい。
-Single-layer structure or two-layer structure-
A single-layer structure or a two-layer structure is preferably formed by a wet method.
The low refractive index layer is preferably arranged on the outermost surface of the antiglare film. When imparting antifouling properties to the antireflection layer, the low refractive index layer preferably contains an antifouling agent such as a silicone-based compound and a fluorine-based compound.
 低屈折率層の屈折率は、下限は、1.10以上が好ましく、1.20以上がより好ましく、1.26以上がより好ましく、1.28以上がより好ましく、1.30以上がより好ましく、上限は、1.48以下が好ましく、1.45以下がより好ましく、1.40以下がより好ましく、1.38以下がより好ましく、1.32以下がより好ましい。
 低屈折率層の屈折率の好ましい範囲の実施形態としては、1.10以上1.48以下、1.10以上1.45以下、1.10以上1.40以下、1.10以上1.38以下、1.10以上1.32以下、1.20以上1.48以下、1.20以上1.45以下、1.20以上1.40以下、1.20以上1.38以下、1.20以上1.32以下、1.26以上1.48以下、1.26以上1.45以下、1.26以上1.40以下、1.26以上1.38以下、1.26以上1.32以下、1.28以上1.48以下、1.28以上1.45以下、1.28以上1.40以下、1.28以上1.38以下、1.28以上1.32以下、1.30以上1.48以下、1.30以上1.45以下、1.30以上1.40以下、1.30以上1.38以下、1.30以上1.32以下が挙げられる。
The lower limit of the refractive index of the low refractive index layer is preferably 1.10 or more, more preferably 1.20 or more, more preferably 1.26 or more, more preferably 1.28 or more, and more preferably 1.30 or more. , the upper limit is preferably 1.48 or less, more preferably 1.45 or less, more preferably 1.40 or less, more preferably 1.38 or less, and more preferably 1.32 or less.
Preferred embodiments of the refractive index of the low refractive index layer are 1.10 to 1.48, 1.10 to 1.45, 1.10 to 1.40, and 1.10 to 1.38. 1.10 or more and 1.32 or less, 1.20 or more and 1.48 or less, 1.20 or more and 1.45 or less, 1.20 or more and 1.40 or less, 1.20 or more and 1.38 or less, 1.20 1.26 or more and 1.48 or less, 1.26 or more and 1.45 or less, 1.26 or more and 1.40 or less, 1.26 or more and 1.38 or less, 1.26 or more and 1.32 or less , 1.28 to 1.48, 1.28 to 1.45, 1.28 to 1.40, 1.28 to 1.38, 1.28 to 1.32, 1.30 or more 1.48 or less, 1.30 or more and 1.45 or less, 1.30 or more and 1.40 or less, 1.30 or more and 1.38 or less, 1.30 or more and 1.32 or less.
 低屈折率層の厚みは、下限は、80nm以上が好ましく、85nm以上がより好ましく、90nm以上がより好ましく、上限は、150nm以下が好ましく、110nm以下がより好ましく、105nm以下がより好ましい。
 低屈折率層の厚みの好ましい範囲の実施形態としては、80nm以上150nm以下、80nm以上110nm以下、80nm以上105nm以下、85nm以上150nm以下、85nm以上110nm以下、85nm以上105nm以下、90nm以上150nm以下、90nm以上110nm以下、90nm以上105nm以下が挙げられる。
The lower limit of the thickness of the low refractive index layer is preferably 80 nm or more, more preferably 85 nm or more, more preferably 90 nm or more, and the upper limit is preferably 150 nm or less, more preferably 110 nm or less, and more preferably 105 nm or less.
Preferred embodiments of the thickness of the low refractive index layer include: 80 nm or more and 150 nm or less; 80 nm or more and 110 nm or less; 80 nm or more and 105 nm or less; 85 nm or more and 150 nm or less; 90 nm or more and 110 nm or less and 90 nm or more and 105 nm or less are mentioned.
 高屈折率層は、低屈折率層よりも防眩層側に配置することが好ましい。
 高屈折率層の屈折率は、下限は、1.53以上が好ましく、1.54以上がより好ましく、1.55以上がより好ましく、1.56以上がより好ましく、上限は、1.85以下が好ましく、1.80以下がより好ましく、1.75以下がより好ましく、1.70以下がより好ましい。
 高屈折率層の屈折率の好ましい範囲の実施形態としては、1.53以上1.85以下、1.53以上1.80以下、1.53以上1.75以下、1.53以上1.70以下、1.54以上1.85以下、1.54以上1.80以下、1.54以上1.75以下、1.54以上1.70以下、1.55以上1.85以下、1.55以上1.80以下、1.55以上1.75以下、1.55以上1.70以下、1.56以上1.85以下、1.56以上1.80以下、1.56以上1.75以下、1.56以上1.70以下が挙げられる。
The high refractive index layer is preferably arranged closer to the antiglare layer than the low refractive index layer.
The lower limit of the refractive index of the high refractive index layer is preferably 1.53 or more, more preferably 1.54 or more, more preferably 1.55 or more, more preferably 1.56 or more, and the upper limit is 1.85 or less. is preferred, 1.80 or less is more preferred, 1.75 or less is more preferred, and 1.70 or less is more preferred.
Preferred embodiments of the refractive index of the high refractive index layer are 1.53 to 1.85, 1.53 to 1.80, 1.53 to 1.75, and 1.53 to 1.70. 1.54 or more and 1.85 or less, 1.54 or more and 1.80 or less, 1.54 or more and 1.75 or less, 1.54 or more and 1.70 or less, 1.55 or more and 1.85 or less, 1.55 1.55 to 1.75, 1.55 to 1.70, 1.56 to 1.85, 1.56 to 1.80, 1.56 to 1.75 , from 1.56 to 1.70.
 高屈折率層の厚みは、上限は、200nm以下が好ましく、180nm以下がより好ましく、150nm以下がさらに好ましく、下限は、50nm以上が好ましく、70nm以上がより好ましい。
 高屈折率層の厚みの好ましい範囲の実施形態としては、50nm以上200nm以下、50nm以上180nm以下、50nm以上150nm以下、70nm以上200nm以下、70nm以上180nm以下、70nm以上150nm以下が挙げられる。
The upper limit of the thickness of the high refractive index layer is preferably 200 nm or less, more preferably 180 nm or less, still more preferably 150 nm or less, and the lower limit is preferably 50 nm or more, more preferably 70 nm or more.
Preferred ranges of the thickness of the high refractive index layer include embodiments of 50 nm to 200 nm, 50 nm to 180 nm, 50 nm to 150 nm, 70 nm to 200 nm, 70 nm to 180 nm, and 70 nm to 150 nm.
―3層構造以上の多層構造の場合―
 ドライ法により好ましく形成される多層構造は、高屈折率層と低屈折率層とを交互に合計3層以上積層された構成である。多層構造においても、低屈折率層は、防眩フィルムの最表面に配置することが好ましい。
-In the case of a multi-layered structure with three or more layers-
A multilayer structure preferably formed by a dry method is a structure in which high refractive index layers and low refractive index layers are alternately laminated to form a total of three or more layers. Also in the multilayer structure, the low refractive index layer is preferably arranged on the outermost surface of the antiglare film.
 高屈折率層は、厚みは10nm以上200nm以下であることが好ましく、屈折率は2.10以上2.40以下であることが好ましい。高屈折率層の厚みは20nm以上70nm以下であることがより好ましい。
 低屈折率層は、厚みは5nm以上200nm以下であることが好ましく、屈折率は1.33以上1.53以下であることが好ましい。低屈折率層の厚みは20nm以上120nm以下であることがより好ましい。
The high refractive index layer preferably has a thickness of 10 nm or more and 200 nm or less, and a refractive index of 2.10 or more and 2.40 or less. More preferably, the thickness of the high refractive index layer is 20 nm or more and 70 nm or less.
The low refractive index layer preferably has a thickness of 5 nm or more and 200 nm or less, and a refractive index of 1.33 or more and 1.53 or less. More preferably, the thickness of the low refractive index layer is 20 nm or more and 120 nm or less.
<大きさ、形状等>
 防眩フィルムは、所定の大きさにカットした枚葉状の形態でもよいし、長尺シートをロール状に巻き取ったロール状の形態であってもよい。枚葉の大きさは特に限定されないが、最大径が2インチ以上500インチ以下程度である。「最大径」とは、防眩フィルムの任意の2点を結んだ際の最大長さをいうものとする。例えば、防眩フィルムが長方形の場合は、長方形の対角線が最大径となる。防眩フィルムが円形の場合は、円の直径が最大径となる。
 ロール状の幅及び長さは特に限定されないが、一般的には、幅は500mm以上3000mm以下、長さは500m以上5000m以下程度である。ロール状の形態の防眩フィルムは、画像表示装置等の大きさに合わせて、枚葉状にカットして用いることができる。カットする際、物性が安定しないロール端部は除外することが好ましい。
 枚葉の形状も特に限定されず、例えば、三角形、四角形、五角形等の多角形、円形、ランダムな不定形等の形状が挙げられる。より具体的には、防眩フィルムが四角形状である場合には、縦横比は表示画面として問題がなければ特に限定されない。例えば、横:縦=1:1、4:3、16:10、16:9、2:1等が挙げられるが、デザイン性に富む車載用途やデジタルサイネージにおいては、このような縦横比に限定されない。
<Size, shape, etc.>
The antiglare film may be in the form of a leaf cut into a predetermined size, or may be in the form of a roll obtained by winding a long sheet. The size of the sheet is not particularly limited, but the maximum diameter is about 2 inches or more and 500 inches or less. The “maximum diameter” refers to the maximum length of the antiglare film when two arbitrary points are connected. For example, when the antiglare film is rectangular, the diagonal line of the rectangle is the maximum diameter. When the antiglare film is circular, the diameter of the circle is the maximum diameter.
The width and length of the roll are not particularly limited, but generally the width is about 500 mm or more and 3000 mm or less, and the length is about 500 m or more and 5000 m or less. The roll-shaped anti-glare film can be cut into pieces according to the size of the image display device or the like. When cutting, it is preferable to exclude the roll ends whose physical properties are not stable.
The shape of the sheet is also not particularly limited, and examples thereof include polygonal shapes such as triangles, quadrilaterals, and pentagons, circles, random irregular shapes, and the like. More specifically, when the antiglare film has a square shape, the aspect ratio is not particularly limited as long as there is no problem as a display screen. For example, width:height = 1:1, 4:3, 16:10, 16:9, 2:1, etc. However, for in-vehicle applications and digital signage that are rich in design, this aspect ratio is limited. not.
 防眩フィルムの凹凸表面とは反対側の表面形状は特に限定されないが、略平滑であることが好ましい。略平滑とは、カットオフ値0.8mmにおける、JIS B0601:1994の算術平均粗さRaが0.03μm未満であることを意味し、好ましくは0.02μm以下である。 The shape of the surface of the antiglare film on the side opposite to the uneven surface is not particularly limited, but it is preferably substantially smooth. Substantially smooth means that the arithmetic mean roughness Ra of JIS B0601:1994 at a cutoff value of 0.8 mm is less than 0.03 μm, preferably 0.02 μm or less.
[偏光板]
 本開示の偏光板は、偏光子と、前記偏光子の一方の側に配置された第一の透明保護板と、前記偏光子の他方の側に配置された第二の透明保護板とを有する偏光板であって、
 前記第一の透明保護板及び前記第二の透明保護板の少なくとも一方が、上述した本開示の防眩フィルムであり、前記防眩フィルムの前記凹凸表面とは反対側の面と前記偏光子とが対向して配置されたものである。
[Polarizer]
The polarizing plate of the present disclosure has a polarizer, a first transparent protective plate arranged on one side of the polarizer, and a second transparent protective plate arranged on the other side of the polarizer. A polarizing plate,
At least one of the first transparent protective plate and the second transparent protective plate is the above-described antiglare film of the present disclosure, and the surface of the antiglare film opposite to the uneven surface and the polarizer are arranged facing each other.
<偏光子>
 偏光子としては、例えば、ヨウ素等により染色し、延伸したポリビニルアルコールフィルム、ポリビニルホルマールフィルム、ポリビニルアセタールフィルム、エチレン-酢酸ビニル共重合体系ケン化フィルム等のシート型偏光子、平行に並べられた多数の金属ワイヤからなるワイヤーグリッド型偏光子、リオトロピック液晶や二色性ゲスト-ホスト材料を塗布した塗布型偏光子、多層薄膜型偏光子等が挙げられる。これらの偏光子は、透過しない偏光成分を反射する機能を備えた反射型偏光子であってもよい。
<Polarizer>
As a polarizer, for example, a sheet-type polarizer such as a polyvinyl alcohol film, polyvinyl formal film, polyvinyl acetal film, ethylene-vinyl acetate copolymer system saponified film dyed with iodine or the like and stretched; wire grid type polarizers made of metal wires, coating type polarizers coated with lyotropic liquid crystals or dichroic guest-host materials, multilayer thin film type polarizers, and the like. These polarizers may be reflective polarizers having the function of reflecting non-transmissive polarized light components.
<透明保護板>
 偏光子の一方の側には第一の透明保護板、他方の側には第二の透明保護板が配置される。第一の透明保護板及び第二の透明保護板の少なくとも一方は、上述した本開示の防眩フィルムである。
 本開示の偏光板は、第一の透明保護板及び第二の透明保護板の一方が上述した本開示の防眩フィルムであってもよいし、第一の透明保護板及び第二の透明保護板の両方が上述した本開示の防眩フィルムであってもよい。
<Transparent protective plate>
A first transparent protective plate is arranged on one side of the polarizer, and a second transparent protective plate is arranged on the other side. At least one of the first transparent protective plate and the second transparent protective plate is the antiglare film of the present disclosure described above.
In the polarizing plate of the present disclosure, one of the first transparent protective plate and the second transparent protective plate may be the antiglare film of the present disclosure described above, or the first transparent protective plate and the second transparent protective plate may be the antiglare film of the present disclosure. Both of the plates may be antiglare films of the present disclosure as described above.
 第一の透明保護板及び第二の透明保護板のうち、本開示の防眩フィルムではない透明保護板としては、汎用のプラスチックフィルム及びガラス等を用いることができる。 Of the first transparent protective plate and the second transparent protective plate, as the transparent protective plate that is not the antiglare film of the present disclosure, a general-purpose plastic film, glass, or the like can be used.
 偏光子と透明保護板とは、接着剤を介して貼り合わせることが好ましい。接着剤は汎用の接着剤を用いることができ、PVA系接着剤が好ましい。 The polarizer and the transparent protective plate are preferably pasted together with an adhesive. A general-purpose adhesive can be used as the adhesive, and a PVA-based adhesive is preferable.
[画像表示装置用の表面板]
 本開示の画像表示装置用の表面板は、樹脂板又はガラス板上に保護フィルムを貼り合わせた画像表示装置用の表面板であって、前記保護フィルムが上述した本開示の防眩フィルムであり、前記防眩フィルムの前記凹凸表面とは反対側の面と前記樹脂板又は前記ガラス板とが対向して配置されたものである。
[Surface plate for image display device]
The surface plate for an image display device of the present disclosure is a surface plate for an image display device in which a protective film is laminated on a resin plate or a glass plate, and the protective film is the above-described antiglare film of the present disclosure. , the surface of the anti-glare film opposite to the uneven surface and the resin plate or the glass plate are arranged so as to face each other.
 樹脂板又はガラス板としては、画像表示装置の表面板として汎用的に使用されている樹脂板又はガラス板を用いることができる。 As the resin plate or glass plate, a resin plate or glass plate that is commonly used as a surface plate of an image display device can be used.
 樹脂板又はガラス板の厚みは、強度を良好にするため、10μm以上であることが好ましい。樹脂板又はガラス板の厚みの上限は、通常は5000μm以下である。薄型化のためには、樹脂板又はガラス板の厚みの上限は、1000μm以下であることが好ましく、500μm以下であることがより好ましく、100μm以下であることがさらに好ましい。
 樹脂板又はガラス板の厚みの範囲の実施形態は、10μm以上5000μm以下、10μm以上1000μm以下、10μm以上500μm以下、10μm以上100μm以下が挙げられる。
The thickness of the resin plate or glass plate is preferably 10 μm or more in order to improve the strength. The upper limit of the thickness of the resin plate or glass plate is usually 5000 μm or less. For thinning, the upper limit of the thickness of the resin plate or glass plate is preferably 1000 μm or less, more preferably 500 μm or less, and even more preferably 100 μm or less.
Examples of the thickness range of the resin plate or glass plate include 10 μm to 5000 μm, 10 μm to 1000 μm, 10 μm to 500 μm, and 10 μm to 100 μm.
[画像表示パネル]
 本開示の画像表示パネルは、表示素子と、前記表示素子の光出射面側に配置された光学フィルムとを有する画像表示パネルであって、前記光学フィルムとして上述した本開示の防眩フィルムを含み、前記防眩フィルムの前記凹凸表面側の面が前記表示素子とは反対側を向くように配置してなるものである(図3参照)。
[Image display panel]
An image display panel of the present disclosure is an image display panel having a display element and an optical film disposed on the light emitting surface side of the display element, and includes the antiglare film of the present disclosure as the optical film. , the surface of the anti-glare film on the uneven surface side faces the opposite side of the display element (see FIG. 3).
 画像表示パネル内において、本開示の防眩フィルムは、表示素子の光出射面側の最表面に配置することが好ましい。 Within the image display panel, the antiglare film of the present disclosure is preferably arranged on the outermost surface of the display element on the light exit surface side.
 表示素子としては、液晶表示素子、EL表示素子(有機EL表示素子、無機EL表示素子)、プラズマ表示素子等が挙げられ、さらには、マイクロLED表示素子等のLED表示素子が挙げられる。これら表示素子は、表示素子の内部にタッチパネル機能を有していてもよい。
 液晶表示素子の液晶の表示方式としては、IPS方式、VA方式、マルチドメイン方式、OCB方式、STN方式、TSTN方式等が挙げられる。
Examples of display elements include liquid crystal display elements, EL display elements (organic EL display elements and inorganic EL display elements), plasma display elements, and the like, and LED display elements such as micro LED display elements. These display elements may have a touch panel function inside the display element.
The liquid crystal display method of the liquid crystal display element includes an IPS method, a VA method, a multi-domain method, an OCB method, an STN method, a TSTN method, and the like.
 また、本開示の画像表示パネルは、表示素子と防眩フィルムとの間にタッチパネルを有するタッチパネル付きの画像表示パネルであってもよい。 Further, the image display panel of the present disclosure may be an image display panel with a touch panel having a touch panel between the display element and the antiglare film.
 画像表示パネルの大きさは特に限定されないが、最大径が2インチ以上500インチ以下程度である。最大径とは、画像表示パネルの面内の任意の2点を結んだ際の最大長さを意味する。 The size of the image display panel is not particularly limited, but the maximum diameter is about 2 inches or more and 500 inches or less. The maximum diameter means the maximum length when arbitrary two points in the plane of the image display panel are connected.
[画像表示装置]
 本開示の画像表示装置は、本開示の画像表示パネルを含むものである。
[Image display device]
The image display device of the present disclosure includes the image display panel of the present disclosure.
 本開示の画像表示装置は、本開示の画像表示パネルを含むものであれば特に限定されない。本開示の画像表示装置は、本開示の画像表示パネルと、前記画像表示パネルに電気的に接続された駆動制御部と、これらを収容する筐体とを備えることが好ましい。
 表示素子が液晶表示素子である場合、本開示の画像表示装置にはバックライトが必要である。バックライトは、液晶表示素子の光出射面側とは反対側に配置される。
The image display device of the present disclosure is not particularly limited as long as it includes the image display panel of the present disclosure. The image display device of the present disclosure preferably includes the image display panel of the present disclosure, a drive control unit electrically connected to the image display panel, and a housing that accommodates them.
When the display element is a liquid crystal display element, the image display device of the present disclosure requires a backlight. The backlight is arranged on the opposite side of the liquid crystal display element from the light emitting surface side.
 画像表示装置の大きさは特に限定されないが、有効表示領域の最大径が2インチ以上500インチ以下程度である。
 画像表示装置の有効表示領域とは、画像を表示し得る領域である。例えば、画像表示装置が表示素子を囲う筐体を有する場合、筐体の内側の領域が有効画像領域となる。
 有効画像領域の最大径とは、有効画像領域内の任意の2点を結んだ際の最大長さをいうものとする。例えば、有効画像領域が長方形の場合は、長方形の対角線が最大径となる。有効画像領域が円形の場合は、円の直径が最大径となる。
The size of the image display device is not particularly limited, but the maximum diameter of the effective display area is about 2 inches or more and 500 inches or less.
The effective display area of an image display device is an area in which an image can be displayed. For example, when the image display device has a housing that surrounds the display element, the area inside the housing becomes the effective image area.
The maximum diameter of the effective image area is defined as the maximum length obtained by connecting any two points within the effective image area. For example, if the effective image area is rectangular, the diagonal of the rectangle is the maximum diameter. When the effective image area is circular, the diameter of the circle is the maximum diameter.
 次に、本開示を実施例により更に詳細に説明するが、本開示はこれらの例によってなんら限定されるものではない。「部」及び「%」は特に断りのない限り質量基準とする。 Next, the present disclosure will be described in more detail with examples, but the present disclosure is not limited by these examples. "Parts" and "%" are based on mass unless otherwise specified.
1.測定及び評価
 以下のように、実施例及び比較例の防眩フィルムの測定及び評価を行った。各測定及び評価時の雰囲気は、温度23±5℃、相対湿度40%以上65%以下とした。また、各測定及び評価の開始前に、対象サンプルを前記雰囲気に30分以上60分以下晒してから測定及び評価を行った。結果を表1又は表2に示す。
1. Measurement and Evaluation The antiglare films of Examples and Comparative Examples were measured and evaluated as follows. The atmosphere during each measurement and evaluation was set at a temperature of 23±5° C. and a relative humidity of 40% or more and 65% or less. In addition, before starting each measurement and evaluation, the target sample was exposed to the atmosphere for 30 minutes or more and 60 minutes or less, and then the measurement and evaluation were performed. The results are shown in Table 1 or Table 2.
1-1.AM1及びAM2の測定
 実施例及び比較例の防眩フィルムを10cm×10cmに切断した。切断箇所は、目視でゴミや傷などの異常点がない事を確認の上、ランダムな部位から選択した。切断した防眩フィルムの透明基材側をパナック社の光学透明粘着シート(商品名:パナクリーンPD-S1、厚み25μm)を介して、縦10cm×横10cmの大きさのガラス板(厚み2.0mm)に貼り合わせたサンプル1を作製した。
 白色干渉顕微鏡(New View7300、Zygo社)を用いて、計測ステージにサンプル1が固定かつ密着した状態となるようにセットしたのち、以下の測定条件1及び解析条件1にて、防眩フィルムの凹凸表面の標高を測定及び解析することにより、AM1及びAM2を算出した。測定・解析ソフトにはMetroPro ver9.0.10のMicroscope Applicationを用いた。
1-1. Measurement of AM1 and AM2 The antiglare films of Examples and Comparative Examples were cut into pieces of 10 cm x 10 cm. After visually confirming that there were no abnormalities such as dust or scratches, the cutting sites were selected at random. The transparent substrate side of the cut anti-glare film was passed through an optically transparent adhesive sheet from Panac Corporation (trade name: Panaclean PD-S1, thickness 25 μm), and a glass plate (length 10 cm×width 10 cm) (thickness 2.0 cm) was placed. 0 mm) was prepared.
Using a white interference microscope (New View 7300, Zygo), after setting the sample 1 on the measurement stage so that it is fixed and in close contact, the unevenness of the antiglare film is measured under the following measurement conditions 1 and analysis conditions 1. AM1 and AM2 were calculated by measuring and analyzing the elevation of the surface. Microscope Application of MetroPro ver 9.0.10 was used as measurement/analysis software.
(測定条件1)
対物レンズ:50倍
ImageZoom:1倍
測定領域:218μm×218μm
解像度(1点当たりの間隔):0.22μm
・Instrument:NewView7000 Id 0 SN 073395
・Acquisition Mode:Scan
・Scan Type:Bipolar
・Camera Mode:992x992 48 Hz
・Subtract Sys Err:Off
・Sys Err File:SysErr.dat
・AGC:Off
・Phase Res:High
・Connection Order:Location
・Discon Action:Filter
・Min Mod(%):0.01
・Min Area Size:7
・Remove Fringes:Off
・Number of Averages:0
・FDA Noise Threshold:10
・Scan Length:15um bipolar (6 sec)
・Extended Scan Length:1000 μm
・FDA Res:High 2G
(Measurement condition 1)
Objective lens: 50 times ImageZoom: 1 time Measurement area: 218 μm × 218 μm
Resolution (spacing per point): 0.22 μm
・Instrument: NewView 7000 Id 0 SN 073395
・Acquisition Mode: Scan
・Scan Type: Bipolar
・Camera Mode: 992x992 48Hz
・Subtract Sys Err: Off
- SysErr File: SysErr. dat
・AGC: Off
・Phase Res: High
・Connection Order: Location
- Disc Action: Filter
・Min Mod (%): 0.01
・Min Area Size: 7
・Remove Fringes: Off
・Number of Averages: 0
・FDA Noise Threshold: 10
・Scan Length: 15um bipolar (6 sec)
・Extended Scan Length: 1000 μm
・FDA Res: High 2G
(解析条件1)
・Removed:None
・Data Fill:On
・Data Fill Max:10000
・Filter:HighPass
・FilterType:GaussSpline
・Filter Window Size:3
・Filter Trim:Off
・Filter Low wavelength:800μm
・Min Area Size:0
・Remove spikes: On
・Spike Height(xRMS):2.5
 Low wavelengthは粗さパラメータにおけるカットオフ値λcに相当する。
(Analysis condition 1)
・Removed: None
・Data Fill: On
・Data Fill Max: 10000
・Filter: High Pass
・FilterType: Gauss Spline
・Filter Window Size: 3
・Filter Trim: Off
・Filter Low wave length: 800 μm
・Min Area Size: 0
・Remove spikes: On
・Spike Height (xRMS): 2.5
Low wavelength corresponds to the cutoff value λc in the roughness parameter.
(AM1及びAM2の算出手順)
 Surface Map画面上に「Save Data」ボタンを表示させ、解析後の3次元曲面粗さデータを「XYZ File(*.xyz)」形式で保存した。次に、Microsoft社のExcel(登録商標)に書き出しを行い、標高の二次元関数h(x,y)を得た。データに欠損がある座標は、該当する座標の標高を0として書き出しを行った。得られる生データの数は縦992行×横992列=984064点で一辺の長さ(MΔxもしくはNΔy)が218μmであるが、外周データの削除を41回繰り返し実施することにより、縦910行×横910列=828100点で前記一辺の長さが200μmのデータを得た。次に統計解析ソフトR(ver3.6.3)を用いて、標高の二次元関数(縦910行×横910列)における、各行および各列の標高の一次元振幅スペクトルHx’(fx)、Hy’(fy)をそれぞれ計算し、各々の空間周波数の値に対応する振幅の値を平均することで標高の一次元振幅スペクトルH”(f)を得た。各サンプルにつき16箇所の表面に対して標高の一次元関数H”(f)を測定し、各々の空間周波数の値に対応する振幅の値を平均した結果を標高の一次元振幅スペクトルH(f)とした。
 次いで、得られたデータから、AM2を抽出するとともに、AM1を計算した。空間周波数0.005μm-1に対応する振幅であるAM1-1、空間周波数0.010μm-1に対応する振幅であるAM1-2、空間周波数0.015μm-1に対応する振幅であるAM1-3の値を表1に示す。
 図6-16に、実施例1-7及び比較例1-4の防眩フィルムの凹凸表面の標高の振幅スペクトルの離散関数H(f)を示す。図中、横軸は空間周波数(単位は「μm-1」)、縦軸は振幅(単位は「μm」)を示す。
(Calculation procedure for AM1 and AM2)
A "Save Data" button was displayed on the Surface Map screen, and the analyzed three-dimensional curved surface roughness data was saved in the "XYZ File (*.xyz)" format. Next, exporting was performed to Microsoft's Excel (registered trademark) to obtain a two-dimensional function h(x,y) of altitude. Coordinates with missing data were written with the altitude of the corresponding coordinates set to 0. The number of raw data obtained is 992 rows×992 columns=984064 points, and the length of one side (MΔx or NΔy) is 218 μm. Data with a side length of 200 μm was obtained from 910 horizontal rows=828,100 points. Next, using statistical analysis software R (ver3.6.3), a one-dimensional amplitude spectrum Hx '(fx) of the elevation of each row and each column in the two-dimensional function of elevation (910 rows × 910 columns), Hy′(fy) was calculated for each, and the amplitude values corresponding to each spatial frequency value were averaged to obtain a one-dimensional amplitude spectrum H″(f) of elevation. A one-dimensional function H″(f) of altitude was measured, and the result of averaging amplitude values corresponding to respective spatial frequency values was defined as a one-dimensional amplitude spectrum H(f) of altitude.
Then, from the obtained data, AM2 was extracted and AM1 was calculated. AM1-1 which is the amplitude corresponding to the spatial frequency of 0.005 μm −1 , AM1-2 which is the amplitude corresponding to the spatial frequency of 0.010 μm −1 , and AM1-3 which is the amplitude corresponding to the spatial frequency of 0.015 μm −1 are shown in Table 1.
FIG. 6-16 shows the discrete function H(f) of the altitude amplitude spectrum of the uneven surface of the antiglare films of Examples 1-7 and Comparative Examples 1-4. In the figure, the horizontal axis indicates spatial frequency (unit: μm −1 ), and the vertical axis indicates amplitude (unit: μm).
1-2.全光線透過率(Tt)及びヘイズ(Hz)
 実施例及び比較例の防眩フィルムを10cm四方に切断した。切断箇所は、目視でゴミや傷などの異常点がない事を確認の上、ランダムな部位から選択した。ヘイズメーター(HM-150、村上色彩技術研究所製)を用いて、各サンプルのJIS K7361-1:1997の全光線透過率、及びJIS K7136:2000のヘイズを測定した。
 光源が安定するよう事前に装置の電源スイッチをONにしてから15分以上待ち、入口開口に何もセットせずに校正を行い、その後に入口開口に測定サンプルをセットして測定した。光入射面は透明基材側とした。
1-2. Total light transmittance (Tt) and haze (Hz)
The antiglare films of Examples and Comparative Examples were cut into 10 cm squares. After visually confirming that there were no abnormalities such as dust or scratches, the cutting sites were selected at random. Using a haze meter (HM-150, manufactured by Murakami Color Research Laboratory), the total light transmittance of each sample according to JIS K7361-1:1997 and the haze according to JIS K7136:2000 were measured.
After turning on the power switch of the device in advance so that the light source stabilizes, wait for 15 minutes or more, perform calibration without setting anything in the entrance opening, and then set a measurement sample in the entrance opening and measure. The light incident surface was on the side of the transparent substrate.
1-3.防眩性1(正反射方向の防眩性)
 実施例及び比較例の防眩フィルムを10cm×10cmに切断した。切断箇所は、目視でゴミや傷などの異常点がない事を確認の上、ランダムな部位から選択した。切断した防眩フィルムの透明基材側をパナック社の光学透明粘着シート(商品名:パナクリーンPD-S1、厚み25μm)を介して、縦10cm×横10cmの大きさの黒色板(クラレ社、商品名:コモグラス DFA2CG 502K(黒)系、厚み2mm)に貼り合わせたサンプル2を作製した。
 サンプル2を高さ70cmの水平な台に凹凸表面が上になるように設置し、明室環境下で、照明光の正反射方向となる角度から、下記の評価基準で凹凸表面への照明光の映り込みを評価した。評価の際は、照明の中央から出射する光のサンプル2に対する入射角が10度となるように、照明に対するサンプル2の位置を調整した。照明は、Hf32形の直管三波長形昼白色蛍光灯を用い、照明の位置は水平台から鉛直方向2m上方の高さとした。評価は、サンプルの凹凸表面上の照度が500lux以上1000lux以下となる範囲で実施した。観測者の目の位置は床から160cm前後とした。観測者は、視力0.7以上の健康な30歳台の人とした。
<評価基準>
A:照明の輪郭がなく、位置も分からない
B:照明の輪郭はないが、位置がぼんやりと分かる
C:照明の輪郭と位置がぼんやりと分かる
D:照明の輪郭のぼやけが弱く、位置もはっきりと分かる
1-3. Anti-glare 1 (anti-glare in specular direction)
The antiglare films of Examples and Comparative Examples were cut into pieces of 10 cm×10 cm. After visually confirming that there were no abnormalities such as dust or scratches, the cutting sites were selected at random. The transparent base material side of the cut anti-glare film was passed through an optically transparent adhesive sheet from Panac (trade name: Panaclean PD-S1, thickness 25 μm), and a black plate measuring 10 cm long by 10 cm wide (Kuraray Co., Ltd., Product name: Comoglass DFA2CG 502K (black) type, thickness 2 mm) was bonded to Sample 2.
Place sample 2 on a horizontal table with a height of 70 cm so that the uneven surface faces upward, and in a bright room environment, from the angle that is the regular reflection direction of the illumination light, the illumination light to the uneven surface according to the following evaluation criteria. was evaluated. During the evaluation, the position of the sample 2 with respect to the illumination was adjusted so that the incident angle of the light emitted from the center of the illumination with respect to the sample 2 was 10 degrees. A Hf32 type straight three-wavelength neutral white fluorescent lamp was used as lighting, and the position of the lighting was 2 m above the horizontal table in the vertical direction. The evaluation was performed in a range where the illuminance on the uneven surface of the sample was 500 lux or more and 1000 lux or less. The position of the observer's eyes was about 160 cm from the floor. Observers were healthy people in their thirties with visual acuity of 0.7 or better.
<Evaluation Criteria>
A: There is no contour of the lighting, and the position is not known. B: There is no contour of the lighting, but the position can be vaguely recognized. C: The contour and position of the lighting are vaguely recognized. I understand
1-4.防眩性2(様々な角度の防眩性)
 1-3で作製したサンプル2を両手で持ち、サンプル2の高さ及び角度を変更しながら評価する点を変更した以外は、1-3と同様にして、凹凸表面への照明光の映り込みを評価した。前述した角度の変更は、照明の中央から出射する光のサンプル2に対する入射角が10度以上70度以下となる範囲で実施した。
1-4. Anti-glare 2 (anti-glare at various angles)
Reflection of illumination light on the uneven surface in the same manner as in 1-3, except that the sample 2 prepared in 1-3 was held with both hands and the evaluation point was changed while changing the height and angle of the sample 2. evaluated. The change of the angle described above was performed within a range in which the incident angle of the light emitted from the center of the illumination with respect to the sample 2 was 10 degrees or more and 70 degrees or less.
1-5.反射散乱光(≒漆黒感)
 1-3で作製したサンプル2を高さ70cmの水平な台に凹凸表面が上になるように設置した。照明からの出射光のうち、最も強い出射角の光がサンプル2にギリギリ入射しないように、照明に対するサンプル2の位置を調整した。前述した調整により、観測者を基準としたサンプルの位置は、1-3のサンプルの位置よりも観測者より遠い側に配置されている。
 上記の位置にサンプル2を配置し、下記の評価基準で反射散乱光の程度を評価した。観測者の目線は床から160cm前後とした。観測者は、視力0.7以上の健康な20人とした。前記20人は、20歳台-50歳台の各年代から5人ずつ選んだ。
<評価基準>
A:漆黒感が良好と感じた人が14人以上
B:漆黒感が良好と感じた人が7人以上13人以下
C:漆黒感が良好と感じた人が6人以下
1-5. Reflected scattered light (≒ jet black feeling)
Sample 2 prepared in 1-3 was placed on a horizontal table with a height of 70 cm with the uneven surface facing upward. The position of the sample 2 with respect to the illumination was adjusted so that the light with the strongest output angle out of the lights emitted from the illumination was barely incident on the sample 2 . Due to the adjustment described above, the positions of the samples relative to the observer are placed further away from the observer than the positions of the samples 1-3.
Sample 2 was placed at the position described above, and the degree of reflected scattered light was evaluated according to the following evaluation criteria. The observer's line of sight was about 160 cm from the floor. Observers were 20 healthy people with a visual acuity of 0.7 or more. The 20 people were selected from each age group of 20s to 50s.
<Evaluation Criteria>
A: 14 or more people felt that the jet-black feeling was good B: 7 or more people and 13 or less people felt that the jet-black feeling was good C: 6 or less people felt that the jet-black feeling was good
1-6.耐擦傷性
 1-1で作製したサンプル1の防眩フィルムの凹凸表面に、スチールウール#0000(日本スチールウール(株)製、商品名「ボンスター B-204」)を所定の荷重で押し当て、90mm/s以上100mm/s以下の速度で、70mm以上80mm以下の試験長さを10往復する試験を実施した。荷重をかける面積は、1cm×1cmとした。前記試験後のサンプル1の凹凸表面とは反対側の面に、黒色のテープ(ヤマト社製、商品名「ヤマトビニールテープNo.200」)を貼り合わせた傷評価用サンプルを作製した。傷評価用サンプルの凹凸表面側から、3波長蛍光管の照明下において目視で傷を観察した。70mm以上80mm以下の試験長さのうち、左右の端部を除いた中心の50mmを有効領域とした。そして、前記有効領域に生じた傷に関して、下記基準で評価した。傷は長さ5mm以上のものをカウントし、長さ5mm未満のものはカウントしなかった。また、傷の有無のみを評価し、擦り跡については評価に含めなかった。傷は、太さが1mm未満の線状の跡である。傷の深さは擦り跡の深さよりも深い。擦り跡は、スチールウールを擦った範囲に対応して観察される、幅約1cmの帯状の薄い跡である。
<評価基準>
A:スチールウールの押し圧が500g/cmで傷が観察されないもの。
B:スチールウールの押し圧がg/cmでは傷が観察されるが、押し圧が300g/cmでは傷が観察されないもの。
C:スチールウールの押し圧が300g/cmで傷が観察されるもの。
1-6. Scratch resistance Steel wool #0000 (manufactured by Japan Steel Wool Co., Ltd., trade name "Bonstar B-204") was pressed with a predetermined load on the uneven surface of the antiglare film of sample 1 prepared in 1-1, A test was conducted in which the test length of 70 mm or more and 80 mm or less was reciprocated 10 times at a speed of 90 mm/s or more and 100 mm/s or less. The area on which the load was applied was 1 cm×1 cm. A scratch evaluation sample was prepared by pasting a black tape (manufactured by Yamato Co., Ltd., trade name "Yamato Vinyl Tape No. 200") on the surface of Sample 1 after the test opposite to the uneven surface. Scratches were visually observed from the uneven surface side of the scratch evaluation sample under the illumination of a three-wavelength fluorescent tube. Of the test length of 70 mm or more and 80 mm or less, the center 50 mm excluding the left and right ends was defined as the effective area. Then, the scratches generated in the effective area were evaluated according to the following criteria. Wounds with a length of 5 mm or more were counted, and those with a length of less than 5 mm were not counted. In addition, only the presence or absence of scratches was evaluated, and scratches were not included in the evaluation. A scratch is a linear mark with a thickness of less than 1 mm. The depth of the scratch is deeper than the depth of the abrasion. A scratch mark is a strip-like thin mark with a width of about 1 cm, which is observed corresponding to the area where the steel wool is rubbed.
<Evaluation Criteria>
A: No scratches were observed when the pressing pressure of steel wool was 500 g/cm 2 .
B: Scratches were observed when the pressing pressure of the steel wool was g/cm 2 , but no scratches were observed when the pressing pressure was 300 g/cm 2 .
C: Scratches are observed when the pressing pressure of steel wool is 300 g/cm 2 .
1-7.表面形状の測定
 白色干渉顕微鏡(Zygo社、商品名「New View7300」)を用いて、計測ステージに1-1で作製したサンプルが固定かつ密着した状態となるようにセットしたのち、以下の条件にて、防眩フィルムの表面形状の測定及び解析を行った。測定ソフトとして、Zygo社の商品名「MetroPro ver9.0.10(64-bit)のMicroscope Stitching Application」を用いて複数画像を自動的につなぎあわせて測定した。解析にはMetroPro ver9.0.10(64-bit)のMicroscope Applicationを用いた。
1-7. Measurement of surface shape Using a white interference microscope (Zygo, trade name “New View 7300”), the sample prepared in 1-1 was set on the measurement stage so that it was fixed and in close contact, and then under the following conditions. Then, the surface profile of the antiglare film was measured and analyzed. As the measurement software, Zygo's product name "MetroPro ver 9.0.10 (64-bit) Microscope Stitching Application" was used to automatically stitch a plurality of images for measurement. Microscope Application of MetroPro ver 9.0.10 (64-bit) was used for the analysis.
(測定条件)
対物レンズ:50倍
ImageZoom:1倍
Stitch Controls
 Type:Column&Row
 N Cols:3
 N Rows:3
 Overlap(%):10
測定領域:611μm×611μm
・Camera Res(解像度):0.44μm
・Instrument:NewView7000 Id 0 SN 073395
・Acquisition Mode:Scan
・Scan Lemgth:10μm bipolar(2sec)
・Camera Mode:496x496 70 Hz
・Subtract Sys Err:Off
・Sys Err File:SysErr.dat
・AGC:Off
・Phase Res:High
・Connection Order:Location
・Discon Action:Filter
・Min Mod(%):0.01
・Min Area Size:7
・Remove Fringes:Off
・Number of Averages:0
・FDA Noise Threshold:10
・Scan Length:10um bipolar (3 sec)
・Extended Scan Length:1000 μm
・FDA Res:High 2G
(Measurement condition)
Objective lens: 50x ImageZoom: 1x Stitch Controls
Type: Column & Row
N Cols: 3
N Rows: 3
Overlap (%): 10
Measurement area: 611 μm×611 μm
・Camera Res (resolution): 0.44 μm
・Instrument: NewView 7000 Id 0 SN 073395
・Acquisition Mode: Scan
・Scan Legth: 10 μm bipolar (2 sec)
・Camera Mode: 496x496 70Hz
・Subtract Sys Err: Off
- SysErr File: SysErr. dat
・AGC: Off
・Phase Res: High
・Connection Order: Location
- Disc Action: Filter
・Min Mod (%): 0.01
・Min Area Size: 7
・Remove Fringes: Off
・Number of Averages: 0
・FDA Noise Threshold: 10
・Scan length: 10um bipolar (3 sec)
・Extended Scan Length: 1000 μm
・FDA Res: High 2G
(解析条件)
・Removed:None
・Data Fill:On
・Data Fill Max:10000
・Filter:HighPass
・FilterType:GaussSpline
・Filter Window Size:3
・Filter Trim:Off
・Filter Low wavelength:800μm
・Min Area Size:0
・Remove spikes: On
・Spike Height(xRMS):2.5
(analysis conditions)
・Removed: None
・Data Fill: On
・Data Fill Max: 10000
・Filter: High Pass
・FilterType: Gauss Spline
・Filter Window Size: 3
・Filter Trim: Off
・Filter Low wave length: 800 μm
・Min Area Size: 0
・Remove spikes: On
・Spike Height (xRMS): 2.5
 「Low wavelength」は粗さパラメータにおける「カットオフ値λc」に相当する。 "Low wavelength" corresponds to the "cutoff value λc" in the roughness parameter.
 Surface Map画面上に「rms」を表示させ、その数値を測定領域の「Rq」とした。また、Slope Mag Map画面上に「rms」を表示させ、その数値を測定領域の「Δq」とした。さらに、RqおよびΔqの数値を上記式(A)に代入し、「λq」を算出した。 "rms" was displayed on the Surface Map screen, and the numerical value was taken as the "Rq" of the measurement area. In addition, "rms" was displayed on the Slope Mag Map screen, and the numerical value was taken as "Δq" of the measurement area. Further, the numerical values of Rq and Δq were substituted into the above formula (A) to calculate "λq".
1-8.透過像鮮明度
 実施例及び比較例の防眩フィルムを10cm四方に切断した。切断箇所は、目視でゴミや傷などの異常点がない事を確認の上、ランダムな部位から選択した。スガ試験機社製の写像性測定器(商品名:ICM-1T)を用いて、JIS K7374:2007に準拠して、サンプルの透過像鮮明度を測定した。光学櫛の幅は0.125mm、0.25mm、0.5mm、1.0mm、2.0mmの5つとした。測定時の光入射面は透明基材側とした。C0.125、C0.25、C0.5、C1.0及びC2.0の値と、C0.125、C0.5、C1.0及びC2.0の合計値を表2に示す(注:合計値は、C0.25を除いた値である。)。
1-8. Clarity of Transmitted Image The antiglare films of Examples and Comparative Examples were cut into 10 cm squares. After visually confirming that there were no abnormalities such as dust or scratches, the cutting sites were selected at random. Using an image clarity measuring instrument (trade name: ICM-1T) manufactured by Suga Test Instruments Co., Ltd., the transmitted image definition of the sample was measured according to JIS K7374:2007. The width of the optical comb was 0.125 mm, 0.25 mm, 0.5 mm, 1.0 mm, and 2.0 mm. The light incident surface during measurement was on the side of the transparent substrate. Table 2 shows the values of C 0.125 , C 0.25 , C 0.5 , C 1.0 and C 2.0 and the total values of C 0.125 , C 0.5 , C 1.0 and C 2.0 (Note: the total value excludes C 0.25 is.).
2.防眩フィルムの作製
[実施例1]
 透明基材(厚み80μmのトリアセチルセルロース樹脂フィルム(TAC)、富士フイルム社、TD80UL)上に、下記処方の防眩層塗布液1を塗布し、70℃、風速5m/sで30秒間乾燥した後、酸素濃度200ppm以下の窒素雰囲気下にて積算光量が100mJ/cmになるように紫外線を照射して、防眩層を形成し、実施例1の防眩フィルムを得た。防眩層の厚みは5.0μmであった。防眩フィルムの防眩層とは反対側のRaは0.012μmであった。
2. Preparation of antiglare film [Example 1]
Antiglare layer coating liquid 1 having the following formulation was applied onto a transparent substrate (80 μm thick triacetyl cellulose resin film (TAC), Fuji Film Co., Ltd., TD80UL) and dried at 70° C. for 30 seconds at a wind speed of 5 m/s. After that, an antiglare layer was formed by irradiating ultraviolet rays in a nitrogen atmosphere with an oxygen concentration of 200ppm or less so that the integrated amount of light was 100mJ/cm 2 , and an antiglare film of Example 1 was obtained. The thickness of the antiglare layer was 5.0 μm. Ra on the side opposite to the antiglare layer of the antiglare film was 0.012 μm.
<防眩層塗布液1(実施例1用の塗布液)>
・ペンタエリスリトールトリアクリレート 80部
(日本化薬社、商品名:KAYARAD-PET-30)
・ウレタンアクリレートオリゴマー 20部
(DIC社、商品名:V-4000BA)
・シリカ粒子 30部
(平均粒子径:4.1μm)
(富士シリシア化学社製、ゲル法不定形シリカ)
・光重合開始剤 3部
(IGM Resins B.V.社、商品名:Omnirad184)
・光重合開始剤 2部
(IGM Resins B.V.社、商品名:Omnirad907)
・シリコーン系レベリング剤 0.2部
(モメンティブ・パフォーマンス・マテリアルズ社、商品名:TSF4460)
・溶剤(トルエン) 233.0部
・溶剤(シクロヘキサノン) 27.1部
<Anti-glare layer coating solution 1 (coating solution for Example 1)>
・ Pentaerythritol triacrylate 80 parts (Nippon Kayaku, trade name: KAYARAD-PET-30)
Urethane acrylate oligomer 20 parts (DIC, trade name: V-4000BA)
・ 30 parts of silica particles (average particle size: 4.1 μm)
(manufactured by Fuji Silysia Chemical Co., Ltd., gel method amorphous silica)
- Photopolymerization initiator 3 parts (IGM Resins B.V., trade name: Omnirad 184)
- Photopolymerization initiator 2 parts (IGM Resins B.V., trade name: Omnirad 907)
- Silicone leveling agent 0.2 parts (Momentive Performance Materials, trade name: TSF4460)
・233.0 parts of solvent (toluene) ・27.1 parts of solvent (cyclohexanone)
[実施例2、5、6]、[比較例1-3]
 防眩層塗布液1を、下記の防眩層塗布液2及び5-9に変更した以外は、実施例1と同様にして、実施例2、5、6、及び、比較例1-3の防眩フィルムを得た。
[Examples 2, 5, 6], [Comparative Example 1-3]
Examples 2, 5, 6, and Comparative Example 1-3 were prepared in the same manner as in Example 1, except that the antiglare layer coating solution 1 was changed to the following antiglare layer coating solutions 2 and 5-9. An antiglare film was obtained.
[実施例3、4]、[比較例4]
 防眩層塗布液1を、下記の防眩層塗布液3、4、10に変更し、防眩層の厚みを6.5μmに変更した以外は、実施例1と同様にして、実施例3、4及び比較例4の防眩フィルムを得た。
[Examples 3 and 4], [Comparative Example 4]
Example 3 was prepared in the same manner as in Example 1, except that the antiglare layer coating solution 1 was changed to the following antiglare layer coating solutions 3, 4, and 10, and the thickness of the antiglare layer was changed to 6.5 μm. , 4 and Comparative Example 4 were obtained.
[実施例7]
 実施例3の防眩フィルムの防眩層上に、下記処方の低屈折率層塗布液1を塗布し、70℃、風速5m/sで30秒間乾燥した後、紫外線を窒素雰囲気(酸素濃度200ppm以下)下にて積算光量が100mJ/cmになるように照射して、低屈折率層を形成し、実施例7の防眩フィルムを得た。低屈折率層の厚みは0.10μmであり、屈折率は1.32であった。
[Example 7]
On the antiglare layer of the antiglare film of Example 3, a low refractive index layer coating solution 1 having the following formulation was applied and dried at 70°C at a wind speed of 5m/s for 30 seconds, and then exposed to ultraviolet rays in a nitrogen atmosphere (oxygen concentration 200ppm). Below), the integrated light amount was 100 mJ/cm 2 to form a low refractive index layer, and an antiglare film of Example 7 was obtained. The low refractive index layer had a thickness of 0.10 μm and a refractive index of 1.32.
<防眩層塗布液2(実施例2用の塗布液)>
・ペンタエリスリトールトリアクリレート 51.4部
(日本化薬社、商品名:KAYARAD-PET-30)
・ウレタンアクリレートオリゴマー 23.7部
(DIC社、商品名:V-4000BA)
・熱可塑性樹脂 24.9部
(アクリルポリマー、三菱レイヨン社、分子量75,000)
・有機粒子 43.3部
(積水化成品社、球状ポリアクリル-スチレン共重合体)
(平均粒子径2.5μm、屈折率1.515)
(粒子径2.3-2.7μmの粒子の割合が90%以上)
・無機微粒子分散液 182部
(日産化学社、表面に反応性官能基が導入されたシリカ、溶剤:MIBK、固形分:35.5%)
(平均粒子径12nm)
(無機微粒子の有効成分:64.6部)
・光重合開始剤 1.5部
(IGM Resins B.V.社、商品名:Omnirad184)
・光重合開始剤 4.8部
(IGM Resins B.V.社、商品名:Omnirad907)
・シリコーン系レベリング剤 0.2部
(モメンティブ・パフォーマンス・マテリアルズ社、商品名:TSF4460)
・溶剤(トルエン) 317.6部
・溶剤(シクロヘキサノン) 15.0部・溶剤(メチルイソブチルケトン) 121.1部
<Anti-glare layer coating solution 2 (coating solution for Example 2)>
・ Pentaerythritol triacrylate 51.4 parts (Nippon Kayaku, trade name: KAYARAD-PET-30)
・ Urethane acrylate oligomer 23.7 parts (DIC, trade name: V-4000BA)
- Thermoplastic resin 24.9 parts (acrylic polymer, Mitsubishi Rayon Co., molecular weight 75,000)
・ Organic particles 43.3 parts (Sekisui Kasei Co., Ltd., spherical polyacrylic-styrene copolymer)
(Average particle size 2.5 μm, refractive index 1.515)
(The ratio of particles with a particle size of 2.3-2.7 μm is 90% or more)
Inorganic fine particle dispersion 182 parts (Nissan Chemical Co., Ltd., silica with a reactive functional group introduced on the surface, solvent: MIBK, solid content: 35.5%)
(Average particle size 12 nm)
(Active ingredient of inorganic fine particles: 64.6 parts)
- Photopolymerization initiator 1.5 parts (IGM Resins B.V., trade name: Omnirad184)
- Photopolymerization initiator 4.8 parts (IGM Resins B.V., trade name: Omnirad 907)
- Silicone leveling agent 0.2 parts (Momentive Performance Materials, trade name: TSF4460)
・317.6 parts of solvent (toluene) ・15.0 parts of solvent (cyclohexanone) ・121.1 parts of solvent (methyl isobutyl ketone)
<防眩層塗布液3(実施例3及び7用の塗布液)>
・ペンタエリスリトールトリアクリレート 80部
(日本化薬社、商品名:KAYARAD-PET-30)
・ウレタンアクリレートオリゴマー 20部
(DIC社、商品名:V-4000BA)
・シリカ粒子 20部
(平均粒子径:6.0μm)
(富士シリシア化学社製、ゲル法不定形シリカ)
・有機粒子 10部
(積水化成品社、球状ポリアクリル-スチレン共重合体)
(平均粒子径3.5μm、屈折率1.515)
(粒子径3.3-3.7μmの粒子の割合が90%以上)
・光重合開始剤 3部
(IGM Resins B.V.社、商品名:Omnirad184)
・光重合開始剤 2部
(IGM Resins B.V.社、商品名:Omnirad907)
・シリコーン系レベリング剤 0.2部
(モメンティブ・パフォーマンス・マテリアルズ社、商品名:TSF4460)
・溶剤(トルエン) 233.0部
・溶剤(シクロヘキサノン) 27.1部
<Anti-glare layer coating liquid 3 (coating liquid for Examples 3 and 7)>
・ Pentaerythritol triacrylate 80 parts (Nippon Kayaku, trade name: KAYARAD-PET-30)
Urethane acrylate oligomer 20 parts (DIC, trade name: V-4000BA)
・ 20 parts of silica particles (average particle size: 6.0 μm)
(manufactured by Fuji Silysia Chemical Co., Ltd., gel method amorphous silica)
Organic particles 10 parts (Sekisui Plastics Co., Ltd., spherical polyacrylic-styrene copolymer)
(Average particle size 3.5 μm, refractive index 1.515)
(The ratio of particles with a particle size of 3.3-3.7 μm is 90% or more)
- Photopolymerization initiator 3 parts (IGM Resins B.V., trade name: Omnirad 184)
- Photopolymerization initiator 2 parts (IGM Resins B.V., trade name: Omnirad 907)
- Silicone leveling agent 0.2 parts (Momentive Performance Materials, trade name: TSF4460)
・233.0 parts of solvent (toluene) ・27.1 parts of solvent (cyclohexanone)
<防眩層塗布液4(実施例4用の塗布液)>
・ペンタエリスリトールトリアクリレート 80部
(日本化薬社、商品名:KAYARAD-PET-30)
・ウレタンアクリレートオリゴマー 20部
(DIC社、商品名:V-4000BA)
・シリカ粒子 27部
(平均粒子径:6.0μm)
(富士シリシア化学社製、ゲル法不定形シリカ)
・有機粒子 10部
(積水化成品社、球状ポリアクリル-スチレン共重合体)
(平均粒子径3.5μm、屈折率1.515)
(粒子径3.3-3.7μmの粒子の割合が90%以上)
・光重合開始剤 3部
(IGM Resins B.V.社、商品名:Omnirad184)
・光重合開始剤 2部
(IGM Resins B.V.社、商品名:Omnirad907)
・シリコーン系レベリング剤 0.2部
(モメンティブ・パフォーマンス・マテリアルズ社、商品名:TSF4460)
・溶剤(トルエン) 233.0部
・溶剤(シクロヘキサノン) 27.1部
<Anti-glare layer coating solution 4 (coating solution for Example 4)>
・ Pentaerythritol triacrylate 80 parts (Nippon Kayaku, trade name: KAYARAD-PET-30)
Urethane acrylate oligomer 20 parts (DIC, trade name: V-4000BA)
・ 27 parts of silica particles (average particle size: 6.0 μm)
(manufactured by Fuji Silysia Chemical Co., Ltd., gel method amorphous silica)
Organic particles 10 parts (Sekisui Plastics Co., Ltd., spherical polyacrylic-styrene copolymer)
(Average particle size 3.5 μm, refractive index 1.515)
(The ratio of particles with a particle size of 3.3-3.7 μm is 90% or more)
- Photopolymerization initiator 3 parts (IGM Resins B.V., trade name: Omnirad 184)
- Photopolymerization initiator 2 parts (IGM Resins B.V., trade name: Omnirad 907)
- Silicone leveling agent 0.2 parts (Momentive Performance Materials, trade name: TSF4460)
・233.0 parts of solvent (toluene) ・27.1 parts of solvent (cyclohexanone)
<防眩層塗布液5(実施例5用の塗布液)>
・ペンタエリスリトールトリアクリレート 80部
(日本化薬社、商品名:KAYARAD-PET-30)
・ウレタンアクリレートオリゴマー 20部
(DIC社、商品名:V-4000BA)
・シリカ粒子 60部
(平均粒子径:4.1μm)
(富士シリシア化学社製、ゲル法不定形シリカ)
・光重合開始剤 3部
(IGM Resins B.V.社、商品名:Omnirad184)
・光重合開始剤 2部
(IGM Resins B.V.社、商品名:Omnirad907)
・シリコーン系レベリング剤 0.2部
(モメンティブ・パフォーマンス・マテリアルズ社、商品名:TSF4460)
・溶剤(トルエン) 233.0部
・溶剤(シクロヘキサノン) 27.1部
<Anti-glare layer coating solution 5 (coating solution for Example 5)>
・ Pentaerythritol triacrylate 80 parts (Nippon Kayaku, trade name: KAYARAD-PET-30)
Urethane acrylate oligomer 20 parts (DIC, trade name: V-4000BA)
・ 60 parts of silica particles (average particle size: 4.1 μm)
(manufactured by Fuji Silysia Chemical Co., Ltd., gel method amorphous silica)
- Photopolymerization initiator 3 parts (IGM Resins B.V., trade name: Omnirad 184)
- Photopolymerization initiator 2 parts (IGM Resins B.V., trade name: Omnirad 907)
- Silicone leveling agent 0.2 parts (Momentive Performance Materials, trade name: TSF4460)
・233.0 parts of solvent (toluene) ・27.1 parts of solvent (cyclohexanone)
<防眩層塗布液6(実施例6用の塗布液)>
・ペンタエリスリトールトリアクリレート 80部
(日本化薬社、商品名:KAYARAD-PET-30)
・ウレタンアクリレートオリゴマー 20部
(DIC社、商品名:V-4000BA)
・シリカ粒子 20部
(平均粒子径:4.1μm)
(富士シリシア化学社製、ゲル法不定形シリカ)
・有機粒子 10部
(積水化成品社、球状ポリアクリル-スチレン共重合体)
(平均粒子径2.0μm、屈折率1.515)
(粒子径1.8-2.2μmの粒子の割合が90%以上)
・光重合開始剤 3部
(IGM Resins B.V.社、商品名:Omnirad184)
・光重合開始剤 2部
(IGM Resins B.V.社、商品名:Omnirad907)
・シリコーン系レベリング剤 0.2部
(モメンティブ・パフォーマンス・マテリアルズ社、商品名:TSF4460)
・溶剤(トルエン) 233.0部
・溶剤(シクロヘキサノン) 27.1部
<Anti-glare layer coating solution 6 (coating solution for Example 6)>
・ Pentaerythritol triacrylate 80 parts (Nippon Kayaku, trade name: KAYARAD-PET-30)
Urethane acrylate oligomer 20 parts (DIC, trade name: V-4000BA)
・ 20 parts of silica particles (average particle size: 4.1 μm)
(manufactured by Fuji Silysia Chemical Co., Ltd., gel method amorphous silica)
Organic particles 10 parts (Sekisui Plastics Co., Ltd., spherical polyacrylic-styrene copolymer)
(Average particle size 2.0 μm, refractive index 1.515)
(The ratio of particles with a particle size of 1.8-2.2 μm is 90% or more)
- Photopolymerization initiator 3 parts (IGM Resins B.V., trade name: Omnirad 184)
- Photopolymerization initiator 2 parts (IGM Resins B.V., trade name: Omnirad 907)
- Silicone leveling agent 0.2 parts (Momentive Performance Materials, trade name: TSF4460)
・233.0 parts of solvent (toluene) ・27.1 parts of solvent (cyclohexanone)
<防眩層塗布液7(比較例1用の塗布液)>
・ペンタエリスリトールトリアクリレート 58.2部
(日本化薬社、商品名:KAYARAD-PET-30)
・ウレタンアクリレートオリゴマー 18.2部
(DIC社、商品名:V-4000BA)
・熱可塑性樹脂 23.6部
(アクリルポリマー、三菱レイヨン社、分子量75,000)
・有機粒子 63.6部
(積水化成品社、球状ポリアクリル-スチレン共重合体)
(平均粒子径4.0μm、屈折率1.515)
(粒子径3.8-4.2μmの粒子の割合が90%以上)
・無機微粒子分散液 230部
(日産化学社、表面に反応性官能基が導入されたシリカ、溶剤:MIBK、固形分:35.5%)
(平均粒子径12nm)
(無機微粒子の有効成分:81.9部)
・光重合開始剤 5.5部
(IGM Resins B.V.社、商品名:Omnirad184)
・光重合開始剤 1.8部
(IGM Resins B.V.社、商品名:Omnirad907)
・シリコーン系レベリング剤 0.2部
(モメンティブ・パフォーマンス・マテリアルズ社、商品名:TSF4460)
・溶剤(トルエン) 346.8部
・溶剤(シクロヘキサノン) 17.9部
<Anti-glare layer coating liquid 7 (coating liquid for Comparative example 1)>
・ Pentaerythritol triacrylate 58.2 parts (Nippon Kayaku, trade name: KAYARAD-PET-30)
・ Urethane acrylate oligomer 18.2 parts (DIC, trade name: V-4000BA)
- Thermoplastic resin 23.6 parts (acrylic polymer, Mitsubishi Rayon Co., molecular weight 75,000)
・ Organic particles 63.6 parts (Sekisui Plastics Co., Ltd., spherical polyacrylic-styrene copolymer)
(Average particle size 4.0 μm, refractive index 1.515)
(The ratio of particles with a particle size of 3.8-4.2 μm is 90% or more)
・ 230 parts of inorganic fine particle dispersion (Nissan Chemical Co., Ltd., silica with a reactive functional group introduced on the surface, solvent: MIBK, solid content: 35.5%)
(Average particle size 12 nm)
(Active ingredient of inorganic fine particles: 81.9 parts)
- Photopolymerization initiator 5.5 parts (IGM Resins B.V., trade name: Omnirad 184)
- Photopolymerization initiator 1.8 parts (IGM Resins B.V., trade name: Omnirad 907)
- Silicone leveling agent 0.2 parts (Momentive Performance Materials, trade name: TSF4460)
・346.8 parts of solvent (toluene) ・17.9 parts of solvent (cyclohexanone)
<防眩層塗布液8(比較例2用の塗布液)>
・ペンタエリスリトールトリアクリレート 100部
(日本化薬社、商品名:KAYARAD-PET-30)
・シリカ粒子 14部
(平均粒子径:4.1μm)
(富士シリシア化学社製、ゲル法不定形シリカ)
・光重合開始剤 5部
(IGM Resins B.V.社、商品名:Omnirad184)
・シリコーン系レベリング剤 0.2部
(モメンティブ・パフォーマンス・マテリアルズ社、商品名:TSF4460)
・溶剤(トルエン) 150部
・溶剤(MIBK) 35部
・溶剤(酢酸エチル) 5.2部
<Anti-glare layer coating solution 8 (coating solution for Comparative Example 2)>
・ Pentaerythritol triacrylate 100 parts (Nippon Kayaku, trade name: KAYARAD-PET-30)
・ 14 parts of silica particles (average particle size: 4.1 μm)
(manufactured by Fuji Silysia Chemical Co., Ltd., gel method amorphous silica)
- Photopolymerization initiator 5 parts (IGM Resins B.V., trade name: Omnirad184)
- Silicone leveling agent 0.2 parts (Momentive Performance Materials, trade name: TSF4460)
・Solvent (toluene) 150 parts ・Solvent (MIBK) 35 parts ・Solvent (ethyl acetate) 5.2 parts
<防眩層塗布液9(比較例3用の塗布液)>
・ペンタエリスリトールトリアクリレート 100部
(日本化薬社、商品名:KAYARAD-PET-30)
・有機粒子 300.0部
(積水化成品社、球状ポリアクリル-スチレン共重合体)
(平均粒子径2.0μm、屈折率1.515)
(粒子径1.8-2.2μmの粒子の割合が90%以上)
・光重合開始剤 6.4部
(IGM Resins B.V.社、商品名:Omnirad184)
・光重合開始剤 1.0部
(IGM Resins B.V.社、商品名:Omnirad907)
・シリコーン系レベリング剤 0.1部
(モメンティブ・パフォーマンス・マテリアルズ社、商品名:TSF4460)
・溶剤(トルエン) 498.4部
・溶剤(シクロヘキサノン) 55.4部
<Anti-glare layer coating liquid 9 (coating liquid for Comparative example 3)>
・ Pentaerythritol triacrylate 100 parts (Nippon Kayaku, trade name: KAYARAD-PET-30)
・ Organic particles 300.0 parts (Sekisui Plastics Co., Ltd., spherical polyacrylic-styrene copolymer)
(Average particle size 2.0 μm, refractive index 1.515)
(The proportion of particles with a particle size of 1.8-2.2 μm is 90% or more)
- Photopolymerization initiator 6.4 parts (IGM Resins B.V., trade name: Omnirad184)
- Photopolymerization initiator 1.0 parts (IGM Resins B.V., trade name: Omnirad 907)
・ Silicone leveling agent 0.1 part (Momentive Performance Materials, trade name: TSF4460)
・Solvent (toluene) 498.4 parts ・Solvent (cyclohexanone) 55.4 parts
<防眩層塗布液10(比較例4用の塗布液)>
・ペンタエリスリトールトリアクリレート 80部
(日本化薬社、商品名:KAYARAD-PET-30)
・ウレタンアクリレートオリゴマー 20部
(DIC社、商品名:V-4000BA)
・シリカ粒子 30部
(平均粒子径:6.0μm)
(富士シリシア化学社製、ゲル法不定形シリカ)
・有機粒子 15部
(積水化成品社、球状ポリアクリル-スチレン共重合体)
(平均粒子径3.5μm、屈折率1.515)
(粒子径3.3-3.7μmの粒子の割合が90%以上)
・光重合開始剤 3部
(IGM Resins B.V.社、商品名:Omnirad184)
・光重合開始剤 2部
(IGM Resins B.V.社、商品名:Omnirad907)
・シリコーン系レベリング剤 0.2部
(モメンティブ・パフォーマンス・マテリアルズ社、商品名:TSF4460)
・溶剤(トルエン) 233.0部
・溶剤(シクロヘキサノン) 27.1部
<Anti-glare layer coating solution 10 (coating solution for Comparative Example 4)>
・ Pentaerythritol triacrylate 80 parts (Nippon Kayaku, trade name: KAYARAD-PET-30)
Urethane acrylate oligomer 20 parts (DIC, trade name: V-4000BA)
・ 30 parts of silica particles (average particle size: 6.0 μm)
(manufactured by Fuji Silysia Chemical Co., Ltd., gel method amorphous silica)
・ Organic particles 15 parts (Sekisui Plastics Co., Ltd., spherical polyacrylic-styrene copolymer)
(Average particle size 3.5 μm, refractive index 1.515)
(The ratio of particles with a particle size of 3.3-3.7 μm is 90% or more)
- Photopolymerization initiator 3 parts (IGM Resins B.V., trade name: Omnirad 184)
- Photopolymerization initiator 2 parts (IGM Resins B.V., trade name: Omnirad 907)
- Silicone leveling agent 0.2 parts (Momentive Performance Materials, trade name: TSF4460)
・233.0 parts of solvent (toluene) ・27.1 parts of solvent (cyclohexanone)
<低屈折率塗布液1(実施例7用の塗布液)>
・多官能アクリル酸エステル組成物 100質量部
(第一工業製薬株式会社製、商品名「ニューフロンティア MF-001」)
・中空シリカ粒子 200質量部
(平均一次粒子径75nm、メタクリロイル基を有するシランカップリング剤で表面処理されてなる粒子)
・中実シリカ粒子 110質量部
(平均一次粒子径12.5nm、メタクリロイル基を有するシランカップリング剤で表面処理されてなる粒子)
・シリコーン系レベリング剤 13質量部
(信越化学社、商品名「X-22‐164E」)
・光重合開始剤 4.3質量部
(IGM Resins社、商品名「Omnirad127」)
・溶剤 14,867質量部
(メチルイソブチルケトンと1-メトキシ-2-プロピルアセテートとの混合溶剤。質量比=68/32)
<Low refractive index coating liquid 1 (coating liquid for Example 7)>
- Polyfunctional acrylate composition 100 parts by mass (Daiichi Kogyo Seiyaku Co., Ltd., trade name "New Frontier MF-001")
・ 200 parts by mass of hollow silica particles (average primary particle diameter 75 nm, particles surface-treated with a silane coupling agent having a methacryloyl group)
- Solid silica particles 110 parts by mass (particles surface-treated with a silane coupling agent having an average primary particle diameter of 12.5 nm and a methacryloyl group)
・ Silicone leveling agent 13 parts by mass (Shin-Etsu Chemical Co., Ltd., trade name “X-22-164E”)
- Photopolymerization initiator 4.3 parts by mass (IGM Resins, trade name "Omnirad 127")
・ Solvent 14,867 parts by mass (mixed solvent of methyl isobutyl ketone and 1-methoxy-2-propyl acetate. Mass ratio = 68/32)
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006

(注:透過像鮮明度の合計値は、C0.25を除いた値である。)
Figure JPOXMLDOC01-appb-T000006

(Note: The total value of transmission image clarity is the value excluding C 0.25 .)
 表1の結果から、実施例の防眩フィルムは、防眩性及び耐擦傷性に優れ、かつ、反射散乱光を抑制し、漆黒感に優れることが確認できる。
 比較例1のAM1が小さい主な原因は、無機微粒子の含有量が多いことにより、有機粒子の流動が阻害されたためと考えられる。比較例2のAM2が小さい主な原因は、不定形シリカの量が少ないことにより、凸部の間隔が広くなったためと考えられる。比較例3のAM2が大きい主な原因は、多量の有機粒子が敷き詰められることにより、凸部の間隔が狭くなったためと考えられる。比較例4のAM1が大きい主な原因は、AM1を大きくしやすい不定形シリカの量が多いためと考えられる。
From the results in Table 1, it can be confirmed that the antiglare films of Examples are excellent in antiglare properties and scratch resistance, suppress reflected scattered light, and are excellent in jet-black feeling.
The main reason for the small AM1 in Comparative Example 1 is considered to be that the flow of the organic particles was inhibited due to the large content of the inorganic fine particles. The main reason for the small AM2 in Comparative Example 2 is considered to be that the amount of amorphous silica was small, which widened the distance between the protrusions. The main reason for the large AM2 in Comparative Example 3 is considered to be that the spaces between the convex portions became narrow due to the spread of a large amount of organic particles. The main reason why AM1 is large in Comparative Example 4 is considered to be that the amount of amorphous silica, which tends to increase AM1, is large.
 10:透明基材
 20:防眩層
 21:バインダー樹脂
 22:粒子
100:防眩フィルム
110:表示素子
120:画像パネル
200:観測者
10: Transparent substrate 20: Antiglare layer 21: Binder resin 22: Particles 100: Antiglare film 110: Display element 120: Image panel 200: Observer

Claims (16)

  1.  防眩層を有する防眩フィルムであって、前記防眩フィルムは凹凸表面を有し、
     前記凹凸表面の標高の振幅スペクトルに関して、空間周波数がそれぞれ0.005μm-1、0.010μm-1、0.015μm-1に対応する振幅の合計をAM1、空間周波数0.300μm-1における振幅をAM2と定義した際に、AM1が0.4000μm超1.0000μm以下であり、AM2が0.0050μm以上0.0500μm以下である、防眩フィルム。
    An antiglare film having an antiglare layer, the antiglare film having an uneven surface,
    Regarding the amplitude spectrum of the elevation of the uneven surface, AM1 is the sum of the amplitudes corresponding to spatial frequencies of 0.005 μm −1 , 0.010 μm −1 , and 0.015 μm −1 , and the amplitude at the spatial frequency of 0.300 μm −1 is An antiglare film having an AM1 of more than 0.4000 μm and 1.0000 μm or less and an AM2 of 0.0050 μm or more and 0.0500 μm or less when defined as AM2.
  2.  AM1/AM2が1.0以上90.0以下である、請求項1に記載の防眩フィルム。 The antiglare film according to claim 1, wherein AM1/AM2 is 1.0 or more and 90.0 or less.
  3.  前記凹凸表面の二乗平均平方根傾斜をΔqと定義し、前記凹凸表面の二乗平均平方根波長をλqと定義した際に、Δqが0.250μm/μm以上であり、λqが17.000μm以下である、請求項1に記載の防眩フィルム。 When the root-mean-square slope of the uneven surface is defined as Δq, and the root-mean-square wavelength of the uneven surface is defined as λq, Δq is 0.250 μm/μm or more and λq is 17.000 μm or less. The antiglare film according to claim 1.
  4.  前記凹凸表面の二乗平均粗さをRqと定義した際に、Rqが0.300μm以上である、請求項1に記載の防眩フィルム。 The antiglare film according to claim 1, wherein Rq is 0.300 µm or more when the root-mean-square roughness of the uneven surface is defined as Rq.
  5.  JIS K7136:2000のヘイズが40%以上98%以下である、請求項1に記載の防眩フィルム。 The antiglare film according to claim 1, which has a haze of 40% or more and 98% or less according to JIS K7136:2000.
  6.  前記防眩層が、バインダー樹脂及び粒子を含む、請求項1に記載の防眩フィルム。 The antiglare film according to claim 1, wherein the antiglare layer contains a binder resin and particles.
  7.  前記防眩層の厚みをT、前記粒子の平均粒子径をDと定義した際に、D/Tが0.20以上0.96以下である、請求項6に記載の防眩フィルム。 The antiglare film according to claim 6, wherein D/T is 0.20 or more and 0.96 or less, where T is the thickness of the antiglare layer and D is the average particle diameter of the particles.
  8.  前記バインダー樹脂100質量部に対して、前記粒子を10質量部以上200質量部以下含む、請求項6に記載の防眩フィルム。 The antiglare film according to claim 6, containing 10 parts by mass or more and 200 parts by mass or less of the particles with respect to 100 parts by mass of the binder resin.
  9.  前記粒子が無機粒子である、請求項6に記載の防眩フィルム。 The antiglare film according to claim 6, wherein the particles are inorganic particles.
  10.  前記防眩層が、さらに有機粒子を含む、請求項9に記載の防眩フィルム。 The antiglare film according to claim 9, wherein the antiglare layer further contains organic particles.
  11.  前記バインダー樹脂が、電離放射線硬化性樹脂組成物の硬化物及び熱可塑性樹脂を含む、請求項6に記載の防眩フィルム。 The antiglare film according to claim 6, wherein the binder resin contains a cured product of an ionizing radiation-curable resin composition and a thermoplastic resin.
  12.  前記防眩層上にさらに反射防止層を有し、前記反射防止層の表面が前記凹凸表面である、請求項1に記載の防眩フィルム。 The antiglare film according to claim 1, further comprising an antireflection layer on the antiglare layer, the surface of the antireflection layer being the uneven surface.
  13.  偏光子と、前記偏光子の一方の側に配置された第一の透明保護板と、前記偏光子の他方の側に配置された第二の透明保護板とを有する偏光板であって、
     前記第一の透明保護板及び前記第二の透明保護板の少なくとも一方が、請求項1に記載の防眩フィルムであり、前記防眩フィルムの前記凹凸表面とは反対側の面と前記偏光子とが対向して配置された、偏光板。
    A polarizing plate having a polarizer, a first transparent protective plate arranged on one side of the polarizer, and a second transparent protective plate arranged on the other side of the polarizer,
    At least one of the first transparent protective plate and the second transparent protective plate is the antiglare film according to claim 1, and the surface of the antiglare film opposite to the uneven surface and the polarizer and a polarizing plate arranged opposite to each other.
  14.  樹脂板又はガラス板上に保護フィルムを貼り合わせた画像表示装置用の表面板であって、前記保護フィルムが請求項1に記載の防眩フィルムであり、前記防眩フィルムの前記凹凸表面とは反対側の面と前記樹脂板又は前記ガラス板とが対向して配置された、画像表示装置用の表面板。 A surface plate for an image display device in which a protective film is laminated on a resin plate or a glass plate, wherein the protective film is the antiglare film according to claim 1, and the uneven surface of the antiglare film is A surface plate for an image display device, wherein the opposite surface and the resin plate or the glass plate are arranged to face each other.
  15.  表示素子と、前記表示素子の光出射面側に配置された光学フィルムとを有する画像表示パネルであって、前記光学フィルムとして請求項1に記載の防眩フィルムを含み、前記防眩フィルムの前記凹凸表面側の面が前記表示素子とは反対側を向くように配置してなる、画像表示パネル。 An image display panel having a display element and an optical film disposed on a light-emitting surface side of the display element, wherein the optical film comprises the antiglare film according to claim 1, and the antiglare film comprises An image display panel arranged so that the uneven surface side faces the opposite side to the display element.
  16.  請求項15に記載の画像表示パネルを含み、かつ前記防眩フィルムを最表面に配置してなる画像表示装置。 An image display device comprising the image display panel according to claim 15 and having the antiglare film disposed on the outermost surface.
PCT/JP2022/040049 2021-10-28 2022-10-27 Anti-glare film, and polarizing plate, surface plate, image display panel, and image display device that use same WO2023074774A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280071137.9A CN118140162A (en) 2021-10-28 2022-10-27 Antiglare film, and polarizing plate, surface plate, image display panel and image display device using the antiglare film
JP2023556620A JPWO2023074774A1 (en) 2021-10-28 2022-10-27
KR1020247013638A KR20240089048A (en) 2021-10-28 2022-10-27 Anti-glare film, and polarizers, surface plates, image display panels, and image display devices using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-176743 2021-10-28
JP2021176743 2021-10-28

Publications (1)

Publication Number Publication Date
WO2023074774A1 true WO2023074774A1 (en) 2023-05-04

Family

ID=86158091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040049 WO2023074774A1 (en) 2021-10-28 2022-10-27 Anti-glare film, and polarizing plate, surface plate, image display panel, and image display device that use same

Country Status (5)

Country Link
JP (1) JPWO2023074774A1 (en)
KR (1) KR20240089048A (en)
CN (1) CN118140162A (en)
TW (1) TW202328708A (en)
WO (1) WO2023074774A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008203836A (en) * 2007-01-22 2008-09-04 Dainippon Printing Co Ltd Optical laminate, its manufacturing method, polarizing plate and image display apparatus
JP2009288655A (en) * 2008-05-30 2009-12-10 Nitto Denko Corp Antiglare hard coat film, polarizing plate and image display apparatus using the same, method for evaluating the same and method for producing the same
JP2010160398A (en) * 2009-01-09 2010-07-22 Nippon Shokubai Co Ltd Antiglare laminate
JP2011107297A (en) * 2009-11-16 2011-06-02 Sony Corp Anti-glare film and display device
JP2013134358A (en) * 2011-12-26 2013-07-08 Dainippon Printing Co Ltd Composition for antidazzle layer, preparation method of composition for antidazzle layer, and manufacturing method of antidazzle film
JP2015106039A (en) * 2013-11-29 2015-06-08 住友化学株式会社 Antiglare film
JP2018185769A (en) * 2017-04-27 2018-11-22 大日本印刷株式会社 Surface member for touch panel, touch panel, display device, and selection method of surface member for touch panel
JP2019002971A (en) * 2017-06-13 2019-01-10 リンテック株式会社 Anti-glare hard coat film and method for producing anti-glare hard coat film
WO2019026466A1 (en) * 2017-08-04 2019-02-07 株式会社ダイセル Anti-glare film
JP2019020728A (en) * 2017-07-14 2019-02-07 大日本印刷株式会社 Antiglare film and display unit
WO2019026468A1 (en) * 2017-08-04 2019-02-07 株式会社ダイセル Antiglare film
JP2021513109A (en) * 2018-05-11 2021-05-20 エルジー・ケム・リミテッド Anti-glare film and display device
WO2021230337A1 (en) * 2020-05-15 2021-11-18 大日本印刷株式会社 Anti-glare film and image display device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4740603B2 (en) 2004-01-23 2011-08-03 富士フイルム株式会社 Method for producing antireflection film
JP4924344B2 (en) 2007-10-01 2012-04-25 コニカミノルタオプト株式会社 Antiglare film, production apparatus thereof, antiglare antireflection film, polarizing plate, and display device
JP5014240B2 (en) 2008-04-28 2012-08-29 日東電工株式会社 Flat panel display and antiglare film for flat panel display
US20140146454A1 (en) 2011-07-26 2014-05-29 Kimoto Co., Ltd. Electrostatic Capacitance Type Touch Panel and Anti-Glare Film

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008203836A (en) * 2007-01-22 2008-09-04 Dainippon Printing Co Ltd Optical laminate, its manufacturing method, polarizing plate and image display apparatus
JP2009288655A (en) * 2008-05-30 2009-12-10 Nitto Denko Corp Antiglare hard coat film, polarizing plate and image display apparatus using the same, method for evaluating the same and method for producing the same
JP2010160398A (en) * 2009-01-09 2010-07-22 Nippon Shokubai Co Ltd Antiglare laminate
JP2011107297A (en) * 2009-11-16 2011-06-02 Sony Corp Anti-glare film and display device
JP2013134358A (en) * 2011-12-26 2013-07-08 Dainippon Printing Co Ltd Composition for antidazzle layer, preparation method of composition for antidazzle layer, and manufacturing method of antidazzle film
JP2015106039A (en) * 2013-11-29 2015-06-08 住友化学株式会社 Antiglare film
JP2018185769A (en) * 2017-04-27 2018-11-22 大日本印刷株式会社 Surface member for touch panel, touch panel, display device, and selection method of surface member for touch panel
JP2019002971A (en) * 2017-06-13 2019-01-10 リンテック株式会社 Anti-glare hard coat film and method for producing anti-glare hard coat film
JP2019020728A (en) * 2017-07-14 2019-02-07 大日本印刷株式会社 Antiglare film and display unit
WO2019026466A1 (en) * 2017-08-04 2019-02-07 株式会社ダイセル Anti-glare film
WO2019026468A1 (en) * 2017-08-04 2019-02-07 株式会社ダイセル Antiglare film
JP2021513109A (en) * 2018-05-11 2021-05-20 エルジー・ケム・リミテッド Anti-glare film and display device
WO2021230337A1 (en) * 2020-05-15 2021-11-18 大日本印刷株式会社 Anti-glare film and image display device

Also Published As

Publication number Publication date
JPWO2023074774A1 (en) 2023-05-04
KR20240089048A (en) 2024-06-20
CN118140162A (en) 2024-06-04
TW202328708A (en) 2023-07-16

Similar Documents

Publication Publication Date Title
JP7511523B2 (en) Anti-glare film and image display device
KR20150106345A (en) Touch panel, display device, optical sheet, method for selecting optical sheet, and method for manufacturing optical sheet
JP7468600B2 (en) Anti-glare film and image display device
WO2021230337A1 (en) Anti-glare film and image display device
JP2024052839A (en) Anti-glare film and image display device
JP6565096B2 (en) Touch panel, display device, optical sheet, optical sheet sorting method, and optical sheet manufacturing method
WO2023074774A1 (en) Anti-glare film, and polarizing plate, surface plate, image display panel, and image display device that use same
WO2023074779A1 (en) Anti-glare film, and polarizing plate, surface plate, image display panel, and image display device that use same
JP7326734B2 (en) OPTICAL LAMINATED BODY, METHOD FOR MANUFACTURING OPTICAL LAMINATED BODY, LAMINATED MEMBER, AND DISPLAY DEVICE
JP7409575B1 (en) Optical films, image display panels and image display devices
WO2023210621A1 (en) Optical film, image display panel, and image display device
WO2024181533A1 (en) Optical laminate and polarizing plate, surface plate, image display panel, and image display device using said optical laminate
WO2022014560A1 (en) Antireflective member, and polarizing plate, image display device, and antireflective article in which said antireflective member is used, as well as method for selecting antireflective member
JP7380960B1 (en) Optical films, image display panels and image display devices
CN118159879A (en) Antiglare film, and polarizing plate, surface plate, image display panel and image display device using the antiglare film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22887099

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023556620

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18701546

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280071137.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247013638

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE