WO2023074762A1 - Vibration actuator - Google Patents

Vibration actuator Download PDF

Info

Publication number
WO2023074762A1
WO2023074762A1 PCT/JP2022/040012 JP2022040012W WO2023074762A1 WO 2023074762 A1 WO2023074762 A1 WO 2023074762A1 JP 2022040012 W JP2022040012 W JP 2022040012W WO 2023074762 A1 WO2023074762 A1 WO 2023074762A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
yoke
mover
vibration
case
Prior art date
Application number
PCT/JP2022/040012
Other languages
French (fr)
Japanese (ja)
Inventor
雄太 種村
Original Assignee
フォスター電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フォスター電機株式会社 filed Critical フォスター電機株式会社
Publication of WO2023074762A1 publication Critical patent/WO2023074762A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/04Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/16Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system

Definitions

  • the present disclosure relates to vibration actuators.
  • a yoke and a coil are fixed to the inner periphery of a cylindrical case to form a case-side drive unit (stator), and a mover made up of magnets, pole pieces, and masses is arranged in the case.
  • a vibration actuator is disclosed that is elastically supported on a body. In this vibration actuator, AC power is applied to the coil to generate magnetic repulsion and magnetic attraction with the magnetic circuit of the mover, thereby vibrating the mover.
  • an object of the present disclosure is to provide a vibration actuator capable of reducing the gap between the magnet and the yoke by preventing the shift of the axis of the mover.
  • a vibration actuator includes a cylindrical case, a coil provided in the case, elastic members provided at one end and the other end in the axial direction of the case, a magnet, and a yoke. a mover that constitutes a magnetic driving unit together with the coil and vibrates along the axial direction of the case while being supported by the case via the elastic member; The vibration actuator, wherein the yoke is provided at the center of the mover.
  • the coil provided in the cylindrical case constitutes the magnetic drive unit, and the movable actuator vibrates along the axial direction of the case while being supported by the case via the elastic member. have a child.
  • the mover includes a magnet and a yoke.
  • the yoke is provided at the center of the mover and vibrates integrally with the magnet. Therefore, the position of the magnet is not displaced with respect to the yoke. As a result, it is possible to prevent the axial center of the mover from shifting due to the magnetic force of the magnet, and to reduce the gap between the magnet and the yoke.
  • a vibration actuator is the mover according to the first aspect, wherein the magnets are arranged at intervals in the vibration direction and arranged on one side of the yoke in the vibration direction. It has a first magnet and a second magnet arranged on the other side of the yoke in the vibration direction.
  • the magnets are composed of the first magnet arranged on one side of the yoke in the vibration direction and the second magnet arranged on the other side of the yoke, and are spaced apart in the vibration direction.
  • a vibration actuator is the mover configured according to the second aspect, wherein the first magnet and the second magnet are magnetized in the same direction along the vibration direction.
  • the magnetization directions of the first magnet and the second magnet are the same in the axial direction.
  • a strong magnetic adsorption force acts on the As a result, the magnet and the yoke can be strongly connected using the magnetic attraction force, and the bonding strength between the members can be easily ensured.
  • a vibration actuator is the mover according to any one of the first to third aspects, wherein the yoke has a central portion passing through the center of the magnet in the vibration direction. and side portions extending from the outer edge of the central portion to one side and the other side in the vibration direction and covering the outer periphery of the magnet.
  • the side portions extend on one side and the other side in the vibration direction with respect to the central portion of the yoke passing through the center of the magnet in the vibration direction, and cover the outer periphery of the magnet.
  • two magnetic gaps can be formed on both sides in the vibration direction across the center of the yoke.
  • Conventional vibration actuators have a structure in which two coils are arranged spaced apart in the direction of vibration and each is arranged in two magnetic gaps in a case.
  • these generally form a magnetic gap by arranging one magnet at the center of the vibration direction it is difficult to adjust the position of the magnetic gap in consideration of the vibration mass.
  • the plate thickness of the center of the yoke can be changed to reduce the vibration mass and the magnetic gap. Adjustment of the position can be easily performed.
  • a vibration actuator is the configuration according to any one aspect of the fourth aspect, wherein the mover further includes a pole piece arranged outside in the vibration direction with respect to the magnet. wherein the coil is arranged between the pole piece and the yoke on the outer peripheral side of the magnet, and a first region arranged in a magnetic gap formed between the pole piece and the yoke; , and a second region exposed from the magnetic gap in the direction of vibration.
  • the pole piece is arranged outside the magnet in the vibration direction, and the coil is arranged in the magnetic gap formed between the pole piece and the yoke.
  • the coil has a first region located within the magnetic gap and a second region exposed from the magnetic gap in the direction of vibration.
  • a vibration actuator in the configuration described in the fifth aspect, includes a cylindrical bobbin that is provided in the case and covers an outer circumference of the pole piece, and the coil is configured to cover the bobbin. wrapped around the circumference.
  • the outer circumference of the pole piece is covered with a cylindrical bobbin provided in the case, and the coil is wound around the outer circumference of the bobbin. That is, the bobbin is arranged between the pole piece that constitutes the mover and the coil that constitutes the stator. This ensures insulation between the pole piece and the bobbin even when a strong external impact is applied to the case.
  • a vibration actuator according to a seventh aspect of the present disclosure is the configuration according to any one of the first to sixth aspects, wherein the mover is a connection arranged along the axial center of the case. It is supported by the elastic member via a member.
  • the mover that vibrates in the axial direction of the case is supported by the elastic members provided at one end and the other end in the axial direction of the case via the connecting member.
  • the mover does not need to have a complicated shape for joining with the elastic member provided on the case side, so that the cost of the parts can be reduced.
  • a vibration actuator is the configuration according to the seventh aspect, wherein the case has a cylindrical extension portion arranged with a gap from the inner circumference, The connecting member is arranged inside the extending portion, and the outermost peripheral portion thereof is arranged to face the inner periphery of the extending portion in close proximity.
  • the case has the cylindrical extension portion arranged with a gap from the inner circumference, and the connection member is arranged inside the extension portion. be done.
  • the outermost peripheral portion of the connecting member is arranged to face the extending portion in close proximity, the outermost peripheral portion of the connecting member extends even when a strong external impact is applied to the case. It is possible to suppress the contact of the movable part with the coil by contacting the part.
  • a vibration actuator is configured according to the seventh aspect or the eighth aspect, wherein a tip portion of the connection member is inserted through a through hole formed through the elastic member. In addition, it is joined to the elastic member in a crushed and crimped state.
  • the connecting member is joined to the elastic member by crushing and crimping the distal end portion. Therefore, since additional parts such as screws for joining are not required to join the connection member and the elastic member, the cost of the parts can be reduced.
  • a vibration actuator is the configuration according to any one of the first to ninth aspects, wherein in the mover, the magnet and the yoke are bonded via an adhesive. At least one of the bonding surfaces facing each other is formed with a recess recessed in the bonding direction, and the recess extends along the outer periphery of the bonding surface and is configured to be able to accommodate a portion of the adhesive. .
  • the magnet and the yoke that constitute the mover are joined with an adhesive. At least one of the opposing bonding surfaces of the magnet and the yoke is formed with a concave portion recessed in the bonding direction.
  • the recess extends along the outer periphery of the adhesive surface and is configured to accommodate a portion of the adhesive.
  • a vibration actuator includes a cylindrical case, a coil provided in the case, elastic members provided at one end and the other end in the axial direction of the case, a magnet, and a yoke. and a mover that constitutes a magnetic driving unit together with the coil and vibrates along the axial direction of the case while being supported by the case via the elastic member, wherein the magnet vibrates in the vibration direction
  • the yoke has a first magnet and a second magnet spaced apart from each other, and the yoke is partly sandwiched between the first magnet and the second magnet. Bonded in the direction of vibration.
  • the coil provided in the cylindrical case constitutes the magnetic drive unit, and the movable actuator vibrates along the axial direction of the case while being supported by the case via the elastic member. have a child.
  • the mover includes a magnet and a yoke, and the magnet has a first magnet and a second magnet spaced apart in the vibration direction.
  • the yoke is joined to the first magnet and the second magnet in the vibration direction so that a part of the yoke is sandwiched between the first magnet and the second magnet.
  • the yoke constitutes a part of the mover and vibrates integrally with the magnet, so that the position of the magnet does not change with respect to the yoke.
  • the vibration actuator according to the present disclosure has the excellent effect of preventing the shift of the axis of the mover and reducing the gap between the magnet and the yoke.
  • FIG. 2 is a partial cross-sectional perspective view of the vibration actuator according to the present embodiment, a part of which is cut along the axial centerline of the case. It is an exploded perspective view of a mover concerning this embodiment.
  • FIG. 2 is a cross-sectional view of the vibration actuator according to the present embodiment cut along the axial centerline of the case;
  • 4A and 4B are schematic diagrams for explaining the operation of the vibration actuator according to the present embodiment;
  • FIG. 4 is a cross-sectional view corresponding to FIG. 3 showing an example of usage of the vibration actuator according to the present embodiment;
  • FIG. It is a figure which shows the frequency of the vibration actuator which concerns on an Example, and the relationship of a displacement.
  • FIG. 4 is a cross-sectional view corresponding to FIG. 3 showing a first modification of the vibration actuator of the present embodiment
  • FIG. 4 is a cross-sectional view corresponding to FIG. 3 showing a second modification of the vibration actuator of the present embodiment
  • FIG. 8 is a cross-sectional view corresponding to FIG. 3 showing a third modification of the vibration actuator of the present embodiment
  • FIG. 11 is a cross-sectional view corresponding to FIG. 3 showing a fourth modification of the vibration actuator of the present embodiment
  • FIG. 4 is a cross-sectional view corresponding to FIG. 3 showing a first modification of the vibration actuator of the present embodiment
  • FIG. 4 is a cross-sectional view corresponding to FIG. 3 showing a second modification of the vibration actuator of the present embodiment
  • FIG. 8 is a cross-sectional view corresponding to FIG. 3 showing a third modification of the vibration actuator of the present embodiment
  • FIG. 11 is a cross-sectional view corresponding to FIG. 3 showing a fourth modification of the vibration actuator of the present embodiment
  • FIG. 11 is a cross-sectional view corresponding to FIG. 3 showing a fifth modification of the vibration actuator of the present embodiment
  • FIG. 11 is a cross-sectional view corresponding to FIG. 3 showing a sixth modification of the vibration actuator of the present embodiment
  • FIG. 10 is a schematic diagram corresponding to FIG. 4 showing the magnetization direction of a magnet, showing a seventh modification of the vibration actuator of the present embodiment
  • FIG. 1 to 4 indicate the center line of the vibration actuator 1 in the vibration direction (axial direction).
  • the vibration actuator 1 of the present embodiment has a plane of symmetry S (see FIG. 3) perpendicular to the center line O at a half of the vibration direction (the center of the vibration direction).
  • a member having the same shape is provided as a boundary. Accordingly, with respect to the configuration of each member, only one symmetrical configuration will be described, and the description of the other members will be omitted by denoting the same reference numerals unless there is a particular need.
  • the term "center of the mover” refers to the center side of the mover in the vibration direction, and the inside and outside directions with the center line O as the axis are expressed as the inner circumference or the outer circumference with the center line O as the reference. do.
  • the vibration actuator 1 mainly includes a cylindrical case 10 forming an outer shell, a stator 20 provided inside the case 10, a mover 30 capable of vibrating by the stator 20, and a vibration axis of the mover 30.
  • a plate spring 2 is provided to elastically support both ends in the direction with respect to the case 10 .
  • the case 10 includes a cylindrical case body 12 whose axial direction is the vibration direction of the vibration actuator 1, a cover case (not shown) that closes openings at both ends of the case body 12, and an inner peripheral portion near the opening of the case body 12.
  • a coil frame 14 is provided.
  • the case main body 12, the cover case, and the coil frame 14 are each made of a resin material such as ABS, but the material is not limited to the resin material.
  • a terminal (not shown) to which a lead wire is connected is formed on the outer surface of the case body 12 .
  • the coil frame 14 has an annular frame portion 14A provided along the opening of the case body 12.
  • the frame portion 14A has a plurality of boss portions 16 protruding from the inner peripheral portion. In this embodiment, three boss portions 16 are provided at regular intervals along the circumferential direction of the frame portion 14A.
  • the outer peripheral portion of the leaf spring 2 is arranged on the upper side of the frame portion 14A, and the leaf spring 2 is fixed to the coil frame 14 using a pin 18 crimped to the boss portion 16 .
  • the case main body 12 and the frame portion 14A of the coil frame 14 may be joined by screws, adhesion, or welding.
  • the coil frame 14 has an extension portion 14C formed through the stepped portion 14B inside the frame portion 14A.
  • the extending portion 14C has a substantially cylindrical shape extending from the inner edge of the stepped portion 14B toward the center in the vibration direction, and has an outer diameter smaller than that of the frame portion 14A.
  • the extending portion 14 ⁇ /b>C is arranged radially inward from the inner peripheral surface of the case body 12 with a gap therebetween, and supports the stator 20 on the outer peripheral side facing the inner periphery of the case body 12 .
  • the vibration actuator 1 includes a stator 20 provided inside the case 10 and a mover 30 that can be vibrated by the stator 20 to form an electromagnetic drive section.
  • the stator 20 has a bobbin 22 made of paper and a coil 24 fixed to the bobbin 22 .
  • the bobbin 22 is fixed to the outer periphery of the extending portion 14C of the coil frame 14 using an adhesive, and has a substantially cylindrical shape extending from the extending portion 14C toward the center in the vibration direction.
  • the coil 24 is wound along the outer periphery of the bobbin 22 and fixed to the bobbin 22 using an adhesive.
  • the coil 24 is arranged within the case 10 with a gap provided between it and the inner circumference of the case body 12 . Also, the coil 24 is arranged in a magnetic gap G between a yoke 32 and a pole piece 36, which will be described later.
  • the bobbin 22 is supported by the coil frame 14 so as to cover the surface (outer circumference) of the pole piece 36 so that the inner circumference of the bobbin 22 and the pole piece are separated.
  • a gap is provided between the outer circumference of 36 .
  • a lead wire of the coil 24 is connected to a terminal (not shown) on the outer surface side of the case body 12 so that a magnetic field can be generated by energization from the terminal.
  • the mover 30 is arranged in the case body 12 so as to vibrate along the center line O direction, which is the axial direction of the cylindrical case 10 .
  • the mover 30 includes a yoke 32 , a magnet 34 , a pole piece 36 and a connection member 40 .
  • the magnet 34 , the pole piece 36 and the connection member 40 are arranged in this order inside the case body 12 from the center in the vibration direction toward the outside.
  • the yoke 32 and the pole piece 36 are made of a metallic soft magnetic material
  • the connection member 40 is made of a resin material such as ABS.
  • the yoke 32 is formed in a bottomed cylindrical shape that opens outward in the vibration direction, and includes a central portion 321 and side portions 322 .
  • the central portion 321 has a disc shape and is arranged at the center of the case body 12 in the vibration direction.
  • the side portion 322 has a cylindrical shape extending outward in the vibration direction from the outer edge of the central portion 321 .
  • This yoke 32 and the yoke 32 on the other side arranged symmetrically with respect to the plane of symmetry S perpendicular to the direction of the center line O (vibration direction) are integrated by bonding their respective center portions 321 together.
  • the inside of the case body 12 has a substantially cross section along the vibration direction.
  • An H-shaped yoke 32 is arranged.
  • the magnet 34 has a substantially disk shape and is arranged outside the central portion 321 of the yoke 32 in the vibration direction. Further, a disk-shaped pole piece 36 is arranged outside the magnet 34 in the vibration direction.
  • the side portion 322 of the yoke 32 described above covers the outer periphery of the magnet 34 and the pole piece 36 and is arranged with a gap between the outer periphery of the magnet 34 and pole piece 36 and the inner periphery of the side portion 322 .
  • a coil 24 of the stator 20 is arranged in a magnetic gap G formed between the pole piece 36 and the yoke 32 .
  • the coil 24 has a region (first region) arranged in the magnetic gap G and a region (second region) exposed from the magnetic gap G in the vibration direction. Therefore, in a vibrating state in which the mover 30 is relatively displaced with respect to the coil 24, it is possible to secure the area of the coil arranged in the magnetic gap G and stabilize the magnetic flux penetrating the coil 24. can.
  • the magnetic gap G referred to here is a region where the outer circumference of the pole piece 36 and the inner circumference of the side portion 322 of the yoke 32 face each other.
  • pole piece 36 is connected to the center of leaf spring 2 via connecting member 40 .
  • the connection member 40 has a cylindrical shape whose axial direction is the vibration direction, and is arranged along the axial center of the case body 12 .
  • the connecting member 40 is arranged coaxially with through holes 361 and 21 formed through the pole piece 36 and the leaf spring 2 at the openings at both ends thereof.
  • the pole piece 36 and the connection member 40 are fixed by inserting the first fixing pin 42 into the through hole 361 of the pole piece 36 and the opening of the connection member 40 from the center side in the vibration direction.
  • the connection member 40 and the leaf spring 2 are fixed by inserting a second fixing pin 44 through the through hole 21 of the leaf spring 2 and the opening of the connection member 40 from the outside in the vibration direction.
  • the mover 30 arranged on one side with respect to the center of the vibration direction of the case 10 is referred to as a first mover 30A
  • the yoke 32 constituting the first mover 30A is referred to as a first mover 30A
  • the magnet 34 and the pole piece 36 will be referred to as a yoke 32A
  • a first magnet 34A and a first pole piece 36A respectively.
  • the mover 30 arranged on the other side with respect to the center of the vibration direction of the case 10 is referred to as a second mover 30B.
  • These will be referred to as two yokes 32B, second magnets 34B, and second pole pieces 36B.
  • the coil 24 arranged in the magnetic gap G of the first armature 30A will be referred to as the first coil 24A
  • the coil 24 arranged in the magnetic gap G of the second armature 30B will be referred to as the second coil 24B.
  • the vibration actuator 1 of this embodiment has a first mover 30A arranged on one side of the case 10 in the vibration direction and a second mover 30B arranged on the other side.
  • the first movable element 30A and the second movable element 30B are arranged so as to form a symmetrical structure with respect to a plane of symmetry S perpendicular to the vibration direction, thereby forming a first magnet 34A of the first movable element 30A and a second movable element 30A.
  • the second magnet 34B of the child 30B is arranged with an interval in the vibration direction.
  • the center portions 321 of the yoke 32A and the second yoke 32B are joined to the first magnet 34A and the second magnet 34B in the vibrating direction so as to be sandwiched between the first magnet 34A and the second magnet 34B. That is, the yokes (yoke 32A, second yoke 32B) of the present embodiment are partially arranged so as to pass through the center of the magnet 34 (first magnet 34A, second magnet 34B) in the vibration direction. As a result, the first magnet 34A and the second magnet 34B, which constitute the magnetic drive section, are configured to vibrate in a state in which the relative positional relationship with the yoke 32A and the second yoke 32B is not displaced.
  • the magnetization directions of the first magnet 34A and the second magnet 34B are the same along the vibration direction. Therefore, as indicated by arrows in FIG. 4, in the first mover 30A and the second mover 30B of the present embodiment, the magnetic lines of force of the second magnet 34B pass through the central portions 321 of the yokes 32A and 32B. A magnetic circuit is formed that reaches the first magnet 34A, passes through the magnetic gap G, the side portion 322 of the yoke 32A, the side portion 322 of the second yoke 32B, and passes through the magnetic gap G. Therefore, each member arranged along the vibration direction is strongly connected by the magnetic adsorption force.
  • magnetization can be performed after the first mover 30A and the second mover 30B are assembled.
  • the vibration actuator 1 has a first leaf spring 2A attached to one axial end of the case 10 and a second leaf spring 2B attached to the other axial end.
  • the first armature 30A and the second armature 30B are respectively supported by the first leaf spring 2A and the second leaf spring 2B via a connection member 40 arranged along the axial center (center line O) of the case 10. ing.
  • connection member 40 may be made of a lightweight resin material such as ABS.
  • a mass formed of a relatively heavy non-magnetic material such as metal or resin for adjusting the load mass between the first and second movers 30A and 30B and the first and second plate springs 2A and 2B. may be configured as
  • the first leaf spring 2A and the second leaf spring 2B are composed of one or more metal leaf springs.
  • a thin stainless steel plate is used.
  • the material of the first leaf spring 2A and the second leaf spring 2B is not limited to metal, and may be a composite material containing resin or fiber.
  • the material of the first leaf spring 2A and the second leaf spring 2B may be any material that is excellent in durability and flexibility, and may be, for example, a coil spring.
  • the first leaf spring 2A and the second leaf spring 2B correspond to the "elastic member" in the present disclosure.
  • Each of the first leaf spring 2 ⁇ /b>A and the second leaf spring 2 ⁇ /b>B has three arms 23 spirally extending from the central portion in the outer peripheral direction.
  • the portion 14A and the boss portion 16 of the case body 12 are connected and supported.
  • the first leaf spring 2A and the second leaf spring 2B are provided symmetrically with the plane of symmetry S as a boundary.
  • the spiral directions of the arms 23 of these two leaf springs are opposite to each other.
  • the first leaf spring 2A and the second leaf spring 2B configured in this manner are elastically deformable within a predetermined range in the direction of vibration (the direction of the center line O) and in the plane direction of the plane of symmetry S orthogonal to the direction of vibration.
  • This predetermined range corresponds to the amplitude range of the first mover 30A and the second mover 30B when the vibration actuator 1 is normally used. Therefore, the predetermined range is a range in which at least the first leaf spring 2A and the second leaf spring 2B do not contact the case 10, and a range in which the elastic deformation of the first leaf spring 2A and the second leaf spring 2B does not exceed the limit. .
  • the first and second movers 30A and 30B as shown in FIG. and the center of the second coils 24A and 24B.
  • the first and second movers 30A and 30B generate a thrust toward the other vibration direction side (downward in FIG. 4) indicated by a solid arrow A
  • the first and second movers 30A and 30B generate a thrust toward one vibration direction (upward in FIG. 4) indicated by the dotted arrow B.
  • the first and second movers 30A and 30B are biased by the first and second plate springs 2A and 2B from both sides. It vibrates along the direction of the center line O while receiving it.
  • the thrust generated in the first and second movable elements 30A and 30B basically conforms to the thrust given based on Fleming's left-hand rule.
  • the first and second movers 30A and 30B to which the first and second magnets 34A and 34B are attached are connected to the first and second movers 30A and 30B.
  • Thrust is generated as a reaction force of the forces generated in the first and second coils 24A and 24B. Therefore, the horizontal component of the magnetic flux of the first and second magnets 34A and 34B (the component in the plane direction of the plane of symmetry S) contributes to the thrust.
  • first and second yokes 32A, 32B increase the horizontal component of the magnetic flux of the first and second magnets 34A, 34B, the first and second magnets 34A, 34B and the first and second yokes 34A, 34B Magnetic forces that attract each other act between the yokes 32A and 32B.
  • first and second yokes 32A, 32B constitute a stator fixed to the case 10 side
  • the first and second magnets 34A, 34B and the first and second yokes 32A, 32B If the gap between them becomes too small, there is a possibility that the axial center of the mover 30 will shift due to the action of magnetic forces that attract each other. Therefore, in order to increase the thrust of the first and second movers 30A, 30B, it is possible to reduce the gap between the first and second magnets 34A, 34B and the first and second yokes 32A, 32B. become difficult.
  • the yoke 32 composed of the first and second yokes 32A and 32B is partially aligned with the center of the vibration direction of the magnet 34 composed of the first and second magnets 34A and 34B. As shown, it is joined to the magnet 34 in the vibration direction. Therefore, since the yoke 32 constitutes a part of the mover 30 and vibrates together with the magnet 34 , the position of the magnet 34 is not displaced with respect to the yoke 32 . As a result, the magnetic force of the magnet 34 prevents the axial center of the mover 30 from deviating, and the gap between the magnet 34 and the yoke 32 can be reduced.
  • the magnet 34 is composed of the first magnet 34A arranged on one side in the vibration direction with respect to the central portion 321 of the yoke 32 and the second magnet 34B arranged on the other side, By disposing a part of the yoke between two magnets spaced apart in the vibration direction, the magnet 34 is connected through the yoke 32 to the center of the vibration direction. As a result, the magnet 34 and the yoke 32 can be easily connected without requiring a complicated structure for passing the yoke through the center of the vibration direction of the magnet 34 .
  • the first magnet 34A and the second magnet 34B are the same in the axial direction, the first magnet 34A is positioned across the center portion 321 of the yoke 32 passing through the center. and the second magnet 34B. As a result, the magnet 34 and the yoke 32 can be firmly connected using the magnetic attraction force, and the bonding strength between the members can be easily ensured.
  • the yoke 32A and the second yoke 32B are connected and integrated to form one yoke 32 having an H-shaped cross section along the vibration direction. Therefore, the side portions 322 extend on one side and the other side in the vibration direction with respect to the central portion 321 of the yoke 32 passing through the center of the magnet 34 in the vibration direction, and cover the outer periphery of the magnet 34 . As a result, two magnetic gaps G can be formed on both sides in the vibrating direction across the central portion 321 of the yoke 32 .
  • Conventional vibration actuators have a structure in which two coils are arranged spaced apart in the direction of vibration and each is arranged in two magnetic gaps in a case.
  • the pole piece 36 is arranged outside the magnet 34 in the vibration direction, and the coil 24 is arranged in the magnetic gap G formed between the pole piece 36 and the yoke 32.
  • the coil 24 has a first region located within the magnetic gap G and a second region exposed from the magnetic gap G in the vibration direction.
  • the outer circumference of the pole piece 36 is covered with the cylindrical bobbin 22 provided on the case 10 , and the coil 24 is wound around the outer circumference of the bobbin 22 . That is, the bobbin 22 is arranged between the pole piece 36 forming the mover 30 and the coil 24 forming the stator 20 . Thereby, even when a strong external impact is applied to the case 10, insulation between the pole piece 36 and the bobbin 22 can be ensured.
  • the mover 30 vibrating in the axial direction of the case 10 is the first plate provided at one end and the other end of the case 10 in the axial direction via the connection member 40 without interposing a mass. It is elastically supported by the spring 2A and the second leaf spring 2B. As a result, the vibration actuator 1 does not require a mass having a complicated shape in consideration of weight and balance characteristics, so that the cost of parts can be reduced.
  • a first mover 30A having a yoke 32A, a first magnet 34A and a first pole piece 36A
  • a second mover having a second yoke 32B, a second magnet 34B and a second pole piece 36B
  • the mover 30 is configured by 30B.
  • the first movable element 30A and the second movable element 30B are arranged so that the yoke 32A and the second yoke 32B are opposed to each other on the center side of the vibration direction of the case 10 and joined to form a symmetrical structure in the vibration direction. ing.
  • common functional parts can be shared between the first mover 30A and the second mover 30B, and the cost of parts can be reduced. Also, assembly can be facilitated.
  • the vibration actuator 1 of this embodiment can be implemented in various applications.
  • it can be used for vibration of terminals such as portable terminals such as mobile phones and smart phones, controllers for game machines, facial beauty devices, massage devices and the like, and terminals such as diaphragm pumps.
  • the amplitude (displacement amount) of the first and second leaf springs 2A and 2B according to the present embodiment can be increased by changing the hardness of these leaf springs to make them more elastically deformable. Therefore, as in the example shown in FIG. 5, by fixing the tip of the connection member 50 that connects the first armature 30A and the first plate spring 2A to the diaphragm 70 made of an elastic material, the reciprocating motion of the diaphragm 70 is suppressed. can be used as an actuator for
  • the tip of the connection member 50 is connected to the center of the diaphragm 70 fixed to the housing 60.
  • a suction opening 62 is formed in the upper surface of the housing 60 facing the diaphragm 70.
  • connection member 50 is configured by a first connection member 52 and a second connection member 54 arranged along the axial center of the case 10 .
  • the first connection member 52 has a columnar shape whose axial direction is the vibration direction, and is arranged between the first mover 30A and the first leaf spring 2A.
  • the first connecting member 52 is mechanically joined to the first pole piece 36A using the first fixing pin 42 in the same manner as the connecting member 40 of the above-described embodiment, at the end on the center side in the vibration direction.
  • a projecting portion 521 that is inserted into the through hole 21 of the first plate spring 2A and protrudes outward in the vibration direction is formed at the end portion of the first connection member 52 on the outside in the vibration direction.
  • the second connecting member 54 has a columnar shape with an axial direction in the vibration direction, and a concave portion 541 provided corresponding to the protrusion 521 of the first connecting member 52 is formed at the end on the center side in the vibration direction. there is The first connection member 52 and the second connection member 54 are fixed with the protrusion 521 inserted into the recess 541 so as to sandwich the first plate spring 2A.
  • the conventional vibration actuator is indicated by solid lines
  • the vibration actuator 1 designed for vibration applications is indicated by dashed lines
  • the vibration actuator designed for suction applications is indicated by broken lines. 1 is indicated by a dashed line.
  • the input power was set to 1 [W]
  • the two coils that make up the stator had the same performance.
  • the connection member 40 of the above-described embodiment which is made of a resin material, is changed to be made of a metal soft magnetic material, and the connection member 40 is configured as a mass having a load mass of 100 [g].
  • the vibration mass (yoke, magnet, pole piece, and mass sum) is set larger than in the conventional example, and the magnetic Gap G is set small.
  • the only structural difference between the vibration actuator 1 for vibration and the vibration actuator 1 for suction is the mechanical compliance value (indicated by the reciprocal of the spring constant) of the first and second leaf springs 2A and 2B.
  • the mechanical compliance value is set to 0.50 [mm/N] for the vibration actuator 1 for vibration, and is set to 1.25 [mm/N] for suction.
  • the mechanical compliance values of the first and second leaf springs 2A and 2B are set larger than those for vibration, and soft springs are used. Therefore, it can be seen that the displacement amount exceeds the conventional example and the vibration actuator in the low frequency band of 40 [Hz] or less.
  • the vibration mass exceeds that of the conventional example, and the peak value of acceleration exceeds that of the other examples.
  • the vibrating vibration actuator 1 indicated by the dashed line and the conventional example indicated by the solid line even though the mass load is common, the vibrating mass including the mass of the yoke, magnet, and pole piece: Since the vibration actuator 1 for vibration exceeds that of the conventional example, it can be seen that the magnitude of the excitation force exceeds that of the conventional example.
  • the vibration actuator 1 of the present embodiment has been described above, the configuration of each part can be changed or combined without changing the gist thereof. Further, the present disclosure is not limited to the above embodiment, and configurations according to modifications shown in FIGS. 9 to 11 may be applied. 9 to 11 basically follow the configuration of the vibration actuator 1 according to the above-described embodiment, except for some deformed members. Therefore, in order to make the drawings easier to understand, some reference numerals are omitted in each drawing.
  • the central portions 321 of the first and second yokes 32A and 32B are directly sandwiched between the first magnet 34A and the second magnet 34B, but the present disclosure is not limited to this.
  • the central portions 321 of the first and second yokes 32A, 32B are connected to the first magnet 34A and the second magnet via members. It may be configured to be sandwiched between 34B.
  • a disk-shaped intermediate pole made of a metallic soft magnetic material is placed between the center portions 321 of the first and second yokes 32A and 32B and the first and second magnets 34A and 34B.
  • a piece 82 is placed.
  • the position of the mover 80 along the vibration direction can be adjusted using a soft magnetic material with a simple shape, such as the intermediate pole piece 82. Therefore, the height of the magnetic gap with respect to the coil 24 can be adjusted. Easy.
  • the intermediate pole piece 82 it is possible to ensure the distance between the tip of the stator 20 and the central portions 321 of the first and second yokes 32A and 32B.
  • the mover 80 can be vibrated at a position where it does not interfere with 32A and 32B.
  • the yoke 32A and the second yoke 32B are used to integrate the central portions 321 of the yokes 32A and 32B, thereby forming a yoke having an H-shaped cross section.
  • the present disclosure is not limited to this.
  • the yoke 32A and the second yoke 32B may be integrally formed to form one component. That is, like the mover 90 according to the second modification shown in FIG.
  • a yoke 92 having an H-shaped cross section in the vibrating direction may be formed by integrally forming a side portion 96 extending vertically.
  • first and second pole pieces 36A, 36B and the connection member 40 are configured as separate members.
  • a configuration in which the piece and the connection member are integrally formed may be used.
  • a columnar connecting portion 104 erected along the axial center of the case 10 is integrally formed with a disk-shaped body portion 102 .
  • the connecting portion 104 is connected to the first and second leaf springs 2A and 2B by inserting the second fixing pin 44 into a concave portion 104 formed at the tip thereof.
  • connection member 40 that connects the mover 30 and the plate spring 2 is formed in an elongated cylindrical shape, but the present disclosure is not limited to this.
  • the connecting member 110 includes a cylindrical connecting portion 112, a bottom portion 114 that extends radially from the end of the connecting portion 112 on the center side in the vibration direction, and a bottom portion 114 extending outward in the vibration direction from the outer edge of the bottom portion 114. and a cylindrical outer peripheral wall portion 116 erected on the wall.
  • An outer peripheral wall portion 116 forming the outermost peripheral portion of the connection member 110 is arranged to face the extending portion 14C of the coil frame 14 in close proximity.
  • the outer peripheral wall portion 116 of the connecting member 110 contacts the extending portion 14C of the coil frame 14, thereby suppressing the contact between the mover 30 and the coil 24. can do.
  • the size of the gap between the outer peripheral wall portion 116 of the connecting member 110 and the extension portion 14C is set to the size of the gap between the side portion 322 of the yoke 32 constituting the mover 30 and the coil 24. By setting it to be smaller than the height, contact between the mover 30 and the coil 24 can be reliably prevented.
  • a diaphragm 70 is fixed to the bottom surface of the housing 122 of the diaphragm pump 120 , and the volume of the internal chamber C can be changed by deformation (vibration) of the diaphragm 70 .
  • a first channel 124 and a second channel 126 communicating with the chamber C are formed in the housing 122, and a suction valve 130 is attached to the first channel 124, as shown in FIG. , when the diaphragm 70 is displaced in the direction of increasing the volume of the chamber C, the suction valve 130 opens to enter the intake cycle.
  • a discharge valve 140 is attached to the second flow path 126, and as shown in FIG. It opens and becomes a cycle of ejection.
  • the mover 30 (30A, 30B) and the connection member 40, and the connection member 40 and the plate spring 2 (2A, 2B) are joined via the first and second fixing pins 42, 44, respectively.
  • the present disclosure is not limited to this.
  • the connection may be made without using fixing pins or screws.
  • connection member 250 and the pole piece 240 of the mover 210 (210A, 210B) are fixed using the adhesive 260. Further, the connection member 250 and the leaf spring 2 are inserted through the through hole 21 formed through the tip portion 250A of the connection member 250 at the axial center of the leaf spring 2, and are crushed and crimped to form the leaf spring. 2 is joined. As a result, additional parts such as screws for joining are not required to join the connection member 250, the leaf spring 2, and the mover 210, so that the cost of the parts can be reduced.
  • the vibration actuator 200 the case body 302, the coil frame 304, the coil frame 304, and the cover case 306, which constitute the case 300, are joined together using an adhesive (not shown). Since the yoke 220, the magnet 230, and the pole piece 240 that constitute the mover 210 are bonded together using the adhesive 260, the vibration actuator 200 can be assembled without using screws or pins for bonding.
  • the yoke 220 of the mover 210 has a substantially E-shaped cross section along the vibration direction of the mover (center line O direction).
  • the yoke 220 has a disk-shaped center portion 221 forming a bottom portion, a cylindrical side portion 222 erected from the outer edge of the center portion 221 , and a cylindrical side portion 222 erected from the center portion 221 inside the side portion 222 . and a cylindrical middle column portion 223 formed integrally therewith. That is, the yoke 220 according to the fifth modification corresponds to a structure in which the yoke 32 (32A, 32B) and the intermediate pole piece 82 of the first modification shown in FIG. 9 are integrally formed.
  • a concave portion 270 recessed in the bonding direction is formed on the bonding surface facing the magnet 230 .
  • the recessed portion 270 extends along the outer periphery of the bonding surface, and is formed in a ring shape in this embodiment.
  • the recess 270 is formed in the bonding surface of the yoke 220 and the pole piece 240, but the present invention is not limited to this.
  • the concave portion 270 may be provided on at least one of the adhesive surfaces facing each other in the yoke 220 , the magnet 230 , and the pole piece 240 , or the concave portion 270 may be provided on the adhesive surface of the magnet 230 .
  • the yoke 220 is provided with the central column portion 223 to adjust the position of the mover 80 along the vibration direction, but the present invention is not limited to this.
  • the position of the mover 80 is adjusted by placing a plate-like spacer 280 between two yokes 220 spaced apart along the vibration direction.
  • the spacer 280 may be made of a nonmagnetic material that does not constitute the magnetic circuit, or may be made of a soft magnetic material and constitutes a part of the magnetic circuit together with the yoke 220 .
  • the sixth modification has the same configuration as the fifth modification except that a plate-shaped spacer 280 is arranged between the two yokes 220, so detailed description will be omitted.
  • a plate-shaped spacer 280 is arranged between the two yokes 220, so detailed description will be omitted.
  • FIG. 14 some reference numerals are omitted for easier understanding of the drawing.
  • the magnetization directions of the first magnet 34A and the second magnet 34B are set in the same direction along the vibration direction, but the present disclosure is not limited to this.
  • the magnetization directions of the first magnet 34A and the second magnet 34B can be magnetized in opposite directions along the vibration direction.
  • the first magnet 34A forms a magnetic circuit passing through the first pole piece 36A, the magnetic gap G, and the yoke 32A.
  • a magnetic circuit is formed through the second pole piece 36B, the magnetic gap G, and the second yoke 32B by the second magnet 34B.
  • the second magnet 34B acts as a repulsive magnet for the first magnet 34A, and magnetic leakage can be suppressed.
  • a repelling magnetic field is generated between the first yoke 32A and the second yoke 32B, the thickness of the central portion 321 is ensured, thereby increasing the mechanical strength when the first yoke 32A and the second yoke 32B are joined. can be ensured.
  • the first mover 30A and the second mover 30B can be assembled by magnetizing the first magnet 34A and the second magnet 34B in advance and then joining them with an adhesive or the like.
  • the dimensions and shapes of the yokes, magnets, and pole pieces are configured to be the same for the first mover 30A and the second mover 30B, but this is not essential. In other words, it is not essential to arrange the mover 30 of the magnetic drive unit in a symmetrical structure with respect to the center of the vibration direction.
  • the sizes of the first magnet 34A and the second magnet 34B are different. may be configured.
  • the first yoke 32A and the second yoke 32B are arranged inside the case 10, but the present disclosure is not limited to this. That is, since at least one yoke is provided at the center of the mover and is joined to the magnet in the vibration direction, the second yoke 32B, the second pole piece 36B, and the second coil are installed from the inside of the case 10. 24B may be omitted.
  • the coil 24 has a region (first region) arranged in the magnetic gap G and a region (second region) exposed from the magnetic gap G in the vibration direction.
  • the present disclosure is not limited to this.
  • a configuration in which the coil length in the axial direction of the wound coil is set short and the entire coil is arranged in the magnetic gap G may be employed. Even in this configuration, by setting the coil length short, the entire coil can be placed in the magnetic gap G even during vibration of the mover. can be reduced.

Abstract

A vibration actuator 1 includes a movable element 30 that forms a magnetic drive unit together with a coil 24 provided in a cylindrical case 10 and vibrates in the axial direction of the case 10 while being supported by the case 10 via a leaf spring 2. The movable element 30 is configured to include a magnet 34 and a yoke 32. The yoke 32 is provided in the central portion of the movable element 30.

Description

振動アクチュエータvibration actuator
 本開示は、振動アクチュエータに関する。 The present disclosure relates to vibration actuators.
 国際公開WO2020/175610号公報には、筒状のケースの内周にヨークとコイルを固定してケース側駆動部(固定子)を構成し、マグネットとポールピースとマスで構成した可動子をケースに弾性支持させる振動アクチュエータが開示されている。この振動アクチュエータでは、コイルに交流の電力を通電させて可動子の磁気回路との間に磁気反発と磁気吸着を発生させて可動子を振動させている。 In International Publication WO2020/175610, a yoke and a coil are fixed to the inner periphery of a cylindrical case to form a case-side drive unit (stator), and a mover made up of magnets, pole pieces, and masses is arranged in the case. A vibration actuator is disclosed that is elastically supported on a body. In this vibration actuator, AC power is applied to the coil to generate magnetic repulsion and magnetic attraction with the magnetic circuit of the mover, thereby vibrating the mover.
 ところで、可動子の推力を増強させるためには、マグネットとヨークとの間のギャップを小さくすることが望ましい。 By the way, in order to increase the thrust of the mover, it is desirable to reduce the gap between the magnet and the yoke.
 一方で、マグネットの磁力によって、マグネットとヨークの間には、互いに引き寄せあう方向の力が作用している。従って、国際公開WO2020/175610号公報のように、固定子を構成するヨークに対してマグネットの位置が変位する場合、マグネットとヨークとの間のギャップが小さすぎると、磁力によってマグネットがヨークに引き寄せられて可動子の軸心がずれる虞がある。 On the other hand, due to the magnetic force of the magnet, a force acts between the magnet and the yoke in a direction that pulls them together. Therefore, as in International Publication WO2020/175610, when the position of the magnet is displaced with respect to the yoke that constitutes the stator, if the gap between the magnet and the yoke is too small, the magnet will be attracted to the yoke by the magnetic force. There is a possibility that the shaft center of the mover may be displaced due to being pulled.
 本開示は上記事実を考慮し、可動子の軸心がずれることを防止して、マグネットとヨークとの間のギャップを小さくすることができる振動アクチュエータを提供することを目的とする。 In consideration of the above facts, an object of the present disclosure is to provide a vibration actuator capable of reducing the gap between the magnet and the yoke by preventing the shift of the axis of the mover.
 本開示の第1の態様に係る振動アクチュエータは、筒状のケースと、前記ケースに設けられたコイルと、前記ケースの軸方向の一端と他端にそれぞれ設けられた弾性部材と、マグネットとヨークを含み、前記コイルと共に磁気駆動部を構成し、前記弾性部材を介して前記ケースに支持された状態で前記ケースの軸方向に沿って振動する可動子と、を備え、前記可動子において、前記ヨークは、前記可動子の中心部に設けられている、振動アクチュエータ。 A vibration actuator according to a first aspect of the present disclosure includes a cylindrical case, a coil provided in the case, elastic members provided at one end and the other end in the axial direction of the case, a magnet, and a yoke. a mover that constitutes a magnetic driving unit together with the coil and vibrates along the axial direction of the case while being supported by the case via the elastic member; The vibration actuator, wherein the yoke is provided at the center of the mover.
 第1の態様に係る振動アクチュエータでは、筒状のケースに設けられたコイルと共に磁気駆動部を構成し、弾性部材を介してケースに支持された状態で、ケースの軸方向に沿って振動する可動子を備えている。この可動子は、マグネットとヨークを含んで構成され、ヨークは、可動子の中心部に設けられ、マグネットと一体に振動する。従って、ヨークに対してマグネットの位置が変位しない。その結果、マグネットの磁力によって可動子の軸心がずれることが防止され、マグネットとヨークとの間のギャップを小さくすることができる。 In the vibration actuator according to the first aspect, the coil provided in the cylindrical case constitutes the magnetic drive unit, and the movable actuator vibrates along the axial direction of the case while being supported by the case via the elastic member. have a child. The mover includes a magnet and a yoke. The yoke is provided at the center of the mover and vibrates integrally with the magnet. Therefore, the position of the magnet is not displaced with respect to the yoke. As a result, it is possible to prevent the axial center of the mover from shifting due to the magnetic force of the magnet, and to reduce the gap between the magnet and the yoke.
 本開示の第2の態様に係る振動アクチュエータは、第1の態様に記載の前記可動子において、前記マグネットは、振動方向に間隔を設けて配置され、前記ヨークの振動方向一方
側に配置される第1マグネットと、前記ヨークの振動方向他方側に配置される第2マグネットを有している。
A vibration actuator according to a second aspect of the present disclosure is the mover according to the first aspect, wherein the magnets are arranged at intervals in the vibration direction and arranged on one side of the yoke in the vibration direction. It has a first magnet and a second magnet arranged on the other side of the yoke in the vibration direction.
 第2の態様に係る振動アクチュエータによれば、マグネットは、ヨークに対して振動方向の一方側に配置される第1マグネットと他方側に配置される第2マグネットで構成され、振動方向に間隔を空けて配置される二つのマグネットの間にヨークの一部を配置することでマグネットの振動方向の中心にヨークを通して連結している。これにより、マグネットの振動方向の中心にヨークを通す複雑な構造部を必要とせずに、マグネットとヨークを容易に連結させることができる。 According to the vibration actuator of the second aspect, the magnets are composed of the first magnet arranged on one side of the yoke in the vibration direction and the second magnet arranged on the other side of the yoke, and are spaced apart in the vibration direction. By arranging a part of the yoke between two magnets that are spaced apart from each other, the magnet is connected through the yoke to the center of the vibration direction of the magnet. As a result, the magnet and the yoke can be easily connected without requiring a complicated structure for passing the yoke through the center of the vibration direction of the magnet.
 本開示の第3の態様に係る振動アクチュエータは、第2の態様に記載の構成の前記可動子において、前記第1マグネット及び第2マグネット着磁方向は、振動方向に沿って同一方向とされている。 A vibration actuator according to a third aspect of the present disclosure is the mover configured according to the second aspect, wherein the first magnet and the second magnet are magnetized in the same direction along the vibration direction. there is
 第3の態様に係る振動アクチュエータでは、第1マグネットと第2マグネットの着磁方向が軸方向に同一方向とされているため、中心を通るヨークを挟んで第1マグネットと第2マグネットとの間に強力な磁気吸着力が作用する。これにより、磁気吸着力を利用してマグネットとヨークを強固に連結することができ、部材間の接着強度を容易に確保することができる。 In the vibration actuator according to the third aspect, the magnetization directions of the first magnet and the second magnet are the same in the axial direction. A strong magnetic adsorption force acts on the As a result, the magnet and the yoke can be strongly connected using the magnetic attraction force, and the bonding strength between the members can be easily ensured.
 本開示の第4の態様に係る振動アクチュエータは、第1の態様~第3の態様の何れか1態様に記載の前記可動子において、前記ヨークは、前記マグネットの振動方向の中心を通る中心部と前記中心部の外縁から振動方向の一方側と他方側に延び、前記マグネットの外周を覆う側部とを有している。 A vibration actuator according to a fourth aspect of the present disclosure is the mover according to any one of the first to third aspects, wherein the yoke has a central portion passing through the center of the magnet in the vibration direction. and side portions extending from the outer edge of the central portion to one side and the other side in the vibration direction and covering the outer periphery of the magnet.
 第4の態様に係る振動アクチュエータでは、マグネットの振動方向の中心を通るヨークの中心部に対して、振動方向の一方側と他方側に側部が延びてマグネットの外周を覆っている。これにより、ヨークの中心部を隔てて振動方向の両側に二つの磁気ギャップを形成することができる。振動方向に間隔を空けて二つのコイルを配置して、それぞれをケース内の二つの磁気ギャップに配置する構造の振動アクチュエータは従来から存在する。しかしながら、これらは、振動方向の中心に一つのマグネットを配置して磁気ギャップを形成することが一般的であるため、振動質量を考慮して磁気ギャップの位置を調整することが難しい。これに対して、ヨークの中心部を隔てて振動方向の両側に二つの磁気ギャップを形成することができる構成とすることで、ヨークの中心部の板厚を変更して振動質量や磁気ギャップの位置の調整を容易に行うことができる。 In the vibration actuator according to the fourth aspect, the side portions extend on one side and the other side in the vibration direction with respect to the central portion of the yoke passing through the center of the magnet in the vibration direction, and cover the outer periphery of the magnet. As a result, two magnetic gaps can be formed on both sides in the vibration direction across the center of the yoke. Conventional vibration actuators have a structure in which two coils are arranged spaced apart in the direction of vibration and each is arranged in two magnetic gaps in a case. However, since these generally form a magnetic gap by arranging one magnet at the center of the vibration direction, it is difficult to adjust the position of the magnetic gap in consideration of the vibration mass. On the other hand, by adopting a configuration in which two magnetic gaps can be formed on both sides in the vibration direction with the center of the yoke separated, the plate thickness of the center of the yoke can be changed to reduce the vibration mass and the magnetic gap. Adjustment of the position can be easily performed.
 本開示の第5の態様に係る振動アクチュエータは、第4の態様の何れか1態様に記載の構成において、前記可動子は、前記マグネットに対して振動方向の外側に配置されたポールピースを更に備え、前記コイルは、前記マグネットの外周側で前記ポールピースと前記ヨークとの間に配置され、前記ポールピースと前記ヨークとの間に形成される磁気ギャップの中に配置される第1領域と、振動方向に前記磁気ギャップから露出した第2領域と、を有している。 A vibration actuator according to a fifth aspect of the present disclosure is the configuration according to any one aspect of the fourth aspect, wherein the mover further includes a pole piece arranged outside in the vibration direction with respect to the magnet. wherein the coil is arranged between the pole piece and the yoke on the outer peripheral side of the magnet, and a first region arranged in a magnetic gap formed between the pole piece and the yoke; , and a second region exposed from the magnetic gap in the direction of vibration.
 第5の態様に係る振動アクチュエータでは、マグネットに対して振動方向の外側にポールピースが配置されており、ポールピースとヨークとの間に形成される磁気ギャップにコイルが配置されている。ここで、コイルは、磁気ギャップの中に配置される第1領域と、振動方向に磁気ギャップから露出した第2領域と、を有している。これにより、コイルに対して可動子が相対的に変移する振動状態において、磁気ギャップの中に配置されるコイルの領域を確保することができ、コイルを貫く磁束を安定させることができる。また、振動質量の増加によって可動子の変位が大きくなった場合でも、同一の構造にて対応するこ
とができる。
In the vibration actuator according to the fifth aspect, the pole piece is arranged outside the magnet in the vibration direction, and the coil is arranged in the magnetic gap formed between the pole piece and the yoke. Here, the coil has a first region located within the magnetic gap and a second region exposed from the magnetic gap in the direction of vibration. As a result, in a vibrating state in which the mover moves relative to the coil, it is possible to secure a region for the coil arranged in the magnetic gap, and to stabilize the magnetic flux penetrating the coil. Also, even if the displacement of the mover increases due to an increase in the vibration mass, the same structure can be used.
 本開示の第6の態様に係る振動アクチュエータは、第5の態様に記載の構成において、前記ケースに設けられ、前記ポールピースの外周を覆う筒状のボビンを備え、前記コイルは、前記ボビンの外周に巻回されている。 A vibration actuator according to a sixth aspect of the present disclosure, in the configuration described in the fifth aspect, includes a cylindrical bobbin that is provided in the case and covers an outer circumference of the pole piece, and the coil is configured to cover the bobbin. wrapped around the circumference.
 第6の態様に係る振動アクチュエータでは、ケースに設けられた筒状のボビンによってポールピースの外周が覆われており、ボビンの外周にコイルが巻回されている。即ち、可動子を構成するポールピースと固定子を構成するコイルとの間にボビンが配置されている。これにより、ケースに対して外部からの強い衝撃が加わった際にも、ポールピースとボビンとの間の絶縁を確保することができる。 In the vibration actuator according to the sixth aspect, the outer circumference of the pole piece is covered with a cylindrical bobbin provided in the case, and the coil is wound around the outer circumference of the bobbin. That is, the bobbin is arranged between the pole piece that constitutes the mover and the coil that constitutes the stator. This ensures insulation between the pole piece and the bobbin even when a strong external impact is applied to the case.
 本開示の第7の態様に係る振動アクチュエータは、第1の態様~第6の態様の何れか1態様に記載の構成において、前記可動子は、前記ケースの軸中心に沿って配置された接続部材を介して 前記弾性部材に支持されている。 A vibration actuator according to a seventh aspect of the present disclosure is the configuration according to any one of the first to sixth aspects, wherein the mover is a connection arranged along the axial center of the case. It is supported by the elastic member via a member.
 第7の態様に係る振動アクチュエータでは、ケースの軸方向に振動する可動子が、接続部材を介してケースの軸方向の一端と他端に設けられた弾性部材に支持されている。これにより、ケース側に設けられた弾性部材との接合のために、可動子を複雑な形状にすることを要しないため、部品のコスト低減を図ることができる。 In the vibration actuator according to the seventh aspect, the mover that vibrates in the axial direction of the case is supported by the elastic members provided at one end and the other end in the axial direction of the case via the connecting member. As a result, the mover does not need to have a complicated shape for joining with the elastic member provided on the case side, so that the cost of the parts can be reduced.
 本開示の第8の態様に係る振動アクチュエータは、第7の態様に記載の構成において、前記ケースは、内周との間に間隙を設けて配置される円筒状の延在部を有し、前記接続部材は、前記延在部の内側に配置されると共にその最外周部が前記延在部の内周に近接対向して配置されている。 A vibration actuator according to an eighth aspect of the present disclosure is the configuration according to the seventh aspect, wherein the case has a cylindrical extension portion arranged with a gap from the inner circumference, The connecting member is arranged inside the extending portion, and the outermost peripheral portion thereof is arranged to face the inner periphery of the extending portion in close proximity.
 第8の態様に係る振動アクチュエータによれば、ケースは、内周との間に間隙を設けて配置される円筒状の延在部を有しており、延在部の内側に接続部材が配置される。ここで、接続部材は、その最外周部が延在部に近接対向して配置されるため、ケースに対して外部からの強い衝撃が加わった際にも、接続部材の最外周部が延在部に当接して可動部がコイルに接触することを抑制することができる。 According to the vibration actuator according to the eighth aspect, the case has the cylindrical extension portion arranged with a gap from the inner circumference, and the connection member is arranged inside the extension portion. be done. Here, since the outermost peripheral portion of the connecting member is arranged to face the extending portion in close proximity, the outermost peripheral portion of the connecting member extends even when a strong external impact is applied to the case. It is possible to suppress the contact of the movable part with the coil by contacting the part.
 本開示の第9の態様に係る振動アクチュエータは、第7の態様又は第8の態様に記載の構成において、前記接続部材の先端部は、前記弾性部材に貫通形成された貫通孔に挿通されると共に、押し潰されてかしめられた状態で前記弾性部材に接合されている。 A vibration actuator according to a ninth aspect of the present disclosure is configured according to the seventh aspect or the eighth aspect, wherein a tip portion of the connection member is inserted through a through hole formed through the elastic member. In addition, it is joined to the elastic member in a crushed and crimped state.
 第9の態様に係る振動アクチュエータでは、接続部材は、先端部を押し潰してかしめることにより、弾性部材に接合されている。従って、接続部材と弾性部材とを接合するために接合用のネジ等の追加部品が必要とされないため、部品のコスト低減を図ることができる。 In the vibration actuator according to the ninth aspect, the connecting member is joined to the elastic member by crushing and crimping the distal end portion. Therefore, since additional parts such as screws for joining are not required to join the connection member and the elastic member, the cost of the parts can be reduced.
 本開示の第10の態様に係る振動アクチュエータは、第1の態様~第9の態様の何れか1態様に記載の構成において、前記可動子において、前記マグネット及び前記ヨークは接着剤を介して接合され、互いに対向する接着面の少なくとも一方に接着方向に窪んだ凹部が形成され、前記凹部は、接着面の外周に沿って延在し、前記接着剤の一部を収容可能に構成されている。 A vibration actuator according to a tenth aspect of the present disclosure is the configuration according to any one of the first to ninth aspects, wherein in the mover, the magnet and the yoke are bonded via an adhesive. At least one of the bonding surfaces facing each other is formed with a recess recessed in the bonding direction, and the recess extends along the outer periphery of the bonding surface and is configured to be able to accommodate a portion of the adhesive. .
 第10の態様に係る振動アクチュエータでは、可動子を構成するマグネットとヨークが接着剤を介して接合されている。ここで、マグネットとヨークの互いに対向する接着面には、少なくとも一方に接着方向に窪んだ凹部が形成されている。この凹部は、接着面の外
周に沿って延在し、接着剤の一部を収容可能に構成されている。これにより、マグネットとヨークを接着する際に、余った接着剤の一部は、外周側に押し出されて凹部内に収容される。その結果、接着面の外側に余剰分の接着剤が漏れ出ることで、接着剤とコイルとが干渉することを抑制することができる。
In the vibration actuator according to the tenth aspect, the magnet and the yoke that constitute the mover are joined with an adhesive. At least one of the opposing bonding surfaces of the magnet and the yoke is formed with a concave portion recessed in the bonding direction. The recess extends along the outer periphery of the adhesive surface and is configured to accommodate a portion of the adhesive. As a result, when the magnet and the yoke are adhered, part of the remaining adhesive is pushed out to the outer peripheral side and accommodated in the recess. As a result, it is possible to suppress interference between the adhesive and the coil due to leakage of the surplus adhesive to the outside of the adhesive surface.
 本開示の第11の態様に係る振動アクチュエータは、筒状のケースと、前記ケースに設けられたコイルと、前記ケースの軸方向の一端と他端にそれぞれ設けられた弾性部材と、マグネットとヨークを含み、前記コイルと共に磁気駆動部を構成し、前記弾性部材を介して前記ケースに支持された状態で前記ケースの軸方向に沿って振動する可動子とを備え、前記マグネットは、振動方向に間隔を設けて配置される第1マグネットと第2マグネットを有し、前記ヨークは、その一部が前記第1マグネットと第2マグネットに挟み込まれるようにして前記第1マグネット及び前記第2マグネットと振動方向に接合されている。 A vibration actuator according to an eleventh aspect of the present disclosure includes a cylindrical case, a coil provided in the case, elastic members provided at one end and the other end in the axial direction of the case, a magnet, and a yoke. and a mover that constitutes a magnetic driving unit together with the coil and vibrates along the axial direction of the case while being supported by the case via the elastic member, wherein the magnet vibrates in the vibration direction The yoke has a first magnet and a second magnet spaced apart from each other, and the yoke is partly sandwiched between the first magnet and the second magnet. Bonded in the direction of vibration.
 第11の態様に係る振動アクチュエータでは、筒状のケースに設けられたコイルと共に磁気駆動部を構成し、弾性部材を介してケースに支持された状態で、ケースの軸方向に沿って振動する可動子を備えている。この可動子は、マグネットとヨークを含んで構成され、マグネットは、振動方向に間隔を設けて配置される第1マグネットと第2マグネットを有している。ここで、ヨークは、その一部が第1マグネットと第2マグネットに挟み込まれるようにして前記第1マグネット及び前記第2マグネットと振動方向に接合されている。これにより、ヨークが可動子の一部を構成してマグネットと一体に振動するため、ヨークに対してマグネットの位置が変位しない。その結果、マグネットの磁力によって可動子の軸心がずれることが防止され、マグネットとヨークとの間のギャップを小さくすることができる。 In the vibration actuator according to the eleventh aspect, the coil provided in the cylindrical case constitutes the magnetic drive unit, and the movable actuator vibrates along the axial direction of the case while being supported by the case via the elastic member. have a child. The mover includes a magnet and a yoke, and the magnet has a first magnet and a second magnet spaced apart in the vibration direction. Here, the yoke is joined to the first magnet and the second magnet in the vibration direction so that a part of the yoke is sandwiched between the first magnet and the second magnet. As a result, the yoke constitutes a part of the mover and vibrates integrally with the magnet, so that the position of the magnet does not change with respect to the yoke. As a result, it is possible to prevent the axial center of the mover from shifting due to the magnetic force of the magnet, and to reduce the gap between the magnet and the yoke.
 以上説明したように、本開示に係る振動アクチュエータでは、可動子の軸心がずれることを防止して、マグネットとヨークとの間のギャップを小さくすることができるという優れた効果を有する。 As described above, the vibration actuator according to the present disclosure has the excellent effect of preventing the shift of the axis of the mover and reducing the gap between the magnet and the yoke.
本実施形態に係る振動アクチュエータであって、その一部をケースの軸方向の中心線に沿って切断して示す部分断面斜視図である。FIG. 2 is a partial cross-sectional perspective view of the vibration actuator according to the present embodiment, a part of which is cut along the axial centerline of the case. 本実施形態に係る可動子の分解斜視図である。It is an exploded perspective view of a mover concerning this embodiment. 本実施形態に係る振動アクチュエータをケースの軸方向の中心線に沿って切断した断面図である。FIG. 2 is a cross-sectional view of the vibration actuator according to the present embodiment cut along the axial centerline of the case; 本実施形態に係る振動アクチュエータの作動を説明する概略図である。4A and 4B are schematic diagrams for explaining the operation of the vibration actuator according to the present embodiment; FIG. 本実施形態に係る振動アクチュエータの使用例の一例を示す図3に対応する断面図である。4 is a cross-sectional view corresponding to FIG. 3 showing an example of usage of the vibration actuator according to the present embodiment; FIG. 実施例に係る振動アクチュエータの周波数と変移の関係を示す図である。It is a figure which shows the frequency of the vibration actuator which concerns on an Example, and the relationship of a displacement. 実施例に係る振動アクチュエータの周波数と加速度の関係を示す図である。It is a figure which shows the frequency of the vibration actuator which concerns on an Example, and the relationship of an acceleration. 実施例に係る振動アクチュエータの周波数と加振力の関係を示す図である。It is a figure which shows the frequency of the vibration actuator which concerns on an Example, and the relationship of excitation force. 本実施形態の振動アクチュエータの第1の変形例を示す図3に対応する断面図である。FIG. 4 is a cross-sectional view corresponding to FIG. 3 showing a first modification of the vibration actuator of the present embodiment; 本実施形態の振動アクチュエータの第2の変形例を示す図3に対応する断面図である。FIG. 4 is a cross-sectional view corresponding to FIG. 3 showing a second modification of the vibration actuator of the present embodiment; 本実施形態の振動アクチュエータの第3の変形例を示す図3に対応する断面図である。FIG. 8 is a cross-sectional view corresponding to FIG. 3 showing a third modification of the vibration actuator of the present embodiment; 本実施形態の振動アクチュエータの第4の変形例を示す図3に対応する断面図である。FIG. 11 is a cross-sectional view corresponding to FIG. 3 showing a fourth modification of the vibration actuator of the present embodiment; 本実施形態の振動アクチュエータの第5の変形例を示す図3に対応する断面図である。FIG. 11 is a cross-sectional view corresponding to FIG. 3 showing a fifth modification of the vibration actuator of the present embodiment; 本実施形態の振動アクチュエータの第6の変形例を示す図3に対応する断面図である。FIG. 11 is a cross-sectional view corresponding to FIG. 3 showing a sixth modification of the vibration actuator of the present embodiment; 本実施形態の振動アクチュエータの第7の変形例であって、マグネットの着磁方向を示す、図4に対応する概略図である。FIG. 10 is a schematic diagram corresponding to FIG. 4 showing the magnetization direction of a magnet, showing a seventh modification of the vibration actuator of the present embodiment;
 以下、図1~図5を参照して本実施形態に係る振動アクチュエータ1について説明する。なお、図1~図4の各図に適宜示される線分Oは、振動アクチュエータ1の振動方向(軸方向)の中心線を示している。 A vibration actuator 1 according to the present embodiment will be described below with reference to FIGS. 1 to 5. FIG. 1 to 4 indicate the center line of the vibration actuator 1 in the vibration direction (axial direction).
 図1~図3に示されるように、本実施形態の振動アクチュエータ1は、その振動方向1/2の箇所(振動方向の中心)において中心線Oと直交する対称面S(図3参照)を境界として、同一形状の部材を設けたものである。そこで、各部材の構成については、対称形の一方の構成のみを説明し、他方については特別に必要がない限りは同一の符号を付すことで説明は省略する。また、「可動子の中心部」という場合には、可動子における振動方向の中心側をいい、中心線Oを軸心とする内外方向については、中心線Oを基準として内周或いは外周と表現する。 As shown in FIGS. 1 to 3, the vibration actuator 1 of the present embodiment has a plane of symmetry S (see FIG. 3) perpendicular to the center line O at a half of the vibration direction (the center of the vibration direction). A member having the same shape is provided as a boundary. Accordingly, with respect to the configuration of each member, only one symmetrical configuration will be described, and the description of the other members will be omitted by denoting the same reference numerals unless there is a particular need. The term "center of the mover" refers to the center side of the mover in the vibration direction, and the inside and outside directions with the center line O as the axis are expressed as the inner circumference or the outer circumference with the center line O as the reference. do.
 振動アクチュエータ1は、主に、外殻をなす円筒状のケース10と、ケース10の内部に設けられた固定子20と、固定子20により振動可能な可動子30と、可動子30の振動軸方向の両端部をそれぞれケース10に対して弾性支持する板バネ2を備えている。 The vibration actuator 1 mainly includes a cylindrical case 10 forming an outer shell, a stator 20 provided inside the case 10, a mover 30 capable of vibrating by the stator 20, and a vibration axis of the mover 30. A plate spring 2 is provided to elastically support both ends in the direction with respect to the case 10 .
 ケース10は、振動アクチュエータ1の振動方向を軸方向とする円筒状のケース本体12と、その両端開口を塞ぐ図示しないカバーケース、及びケース本体12の開口部の近傍の内周部分に設けられたコイルフレーム14を備えている。本実施形態において、ケース本体12、カバーケース及びコイルフレーム14は、それぞれABS等の樹脂材料からなるが、樹脂材料に限定されるものではない。また、ケース本体12の外面には、リード線が接続される図示しないターミナルが形成されている The case 10 includes a cylindrical case body 12 whose axial direction is the vibration direction of the vibration actuator 1, a cover case (not shown) that closes openings at both ends of the case body 12, and an inner peripheral portion near the opening of the case body 12. A coil frame 14 is provided. In this embodiment, the case main body 12, the cover case, and the coil frame 14 are each made of a resin material such as ABS, but the material is not limited to the resin material. A terminal (not shown) to which a lead wire is connected is formed on the outer surface of the case body 12 .
 コイルフレーム14は、ケース本体12の開口部に沿って設けられた環状の枠部14Aを有している。この枠部14Aには、内周部分から突出して設けられた複数のボス部16を有している。本実実施形態では、枠部14Aの周方向に沿って等間隔に三つのボス部16が設けられている。枠部14Aの上方側には板バネ2の外周部が配置され、ボス部16に加締められるピン18を用いて板バネ2がコイルフレーム14に固定されている。なお、ケース本体12とコイルフレーム14の枠部14Aとは、ネジや接着、溶着により接合してもよい。 The coil frame 14 has an annular frame portion 14A provided along the opening of the case body 12. The frame portion 14A has a plurality of boss portions 16 protruding from the inner peripheral portion. In this embodiment, three boss portions 16 are provided at regular intervals along the circumferential direction of the frame portion 14A. The outer peripheral portion of the leaf spring 2 is arranged on the upper side of the frame portion 14A, and the leaf spring 2 is fixed to the coil frame 14 using a pin 18 crimped to the boss portion 16 . The case main body 12 and the frame portion 14A of the coil frame 14 may be joined by screws, adhesion, or welding.
 更に、コイルフレーム14には、枠部14Aの内側で段差部14Bを介して形成された延在部14Cを有している。延在部14Cは、段差部14Bの内縁から振動方向中心側に延びる略円筒状を成しており、外径の寸法が枠部14Aの外径よりも小径に形成されている。この延在部14Cは、ケース本体12の内周面に対して径方向内側に間隔を設けて配置され、ケース本体12の内周と対向する外周側で固定子20を支持している。 Further, the coil frame 14 has an extension portion 14C formed through the stepped portion 14B inside the frame portion 14A. The extending portion 14C has a substantially cylindrical shape extending from the inner edge of the stepped portion 14B toward the center in the vibration direction, and has an outer diameter smaller than that of the frame portion 14A. The extending portion 14</b>C is arranged radially inward from the inner peripheral surface of the case body 12 with a gap therebetween, and supports the stator 20 on the outer peripheral side facing the inner periphery of the case body 12 .
 振動アクチュエータ1は、ケース10の内部に設けられた固定子20と、固定子20により振動可能な可動子30によって電磁駆動部を構成する。 The vibration actuator 1 includes a stator 20 provided inside the case 10 and a mover 30 that can be vibrated by the stator 20 to form an electromagnetic drive section.
 固定子20は、紙材で形成されたボビン22と、ボビン22に固定されたコイル24とを有している。ボビン22は、コイルフレーム14の延在部14Cの外周に接着剤を用いて固定されており、延在部14Cから振動方向中心側に延びる略円筒状を成している。コイル24は、ボビン22の外周に沿って巻回され、接着剤を用いてボビン22に固定されている。 The stator 20 has a bobbin 22 made of paper and a coil 24 fixed to the bobbin 22 . The bobbin 22 is fixed to the outer periphery of the extending portion 14C of the coil frame 14 using an adhesive, and has a substantially cylindrical shape extending from the extending portion 14C toward the center in the vibration direction. The coil 24 is wound along the outer periphery of the bobbin 22 and fixed to the bobbin 22 using an adhesive.
 コイル24は、ケース10内において、ケース本体12の内周との間に間隙を設けて配置されている。また、コイル24は、後述するヨーク32とポールピース36との間の磁気ギャップGに配置されている。振動時におけるポールピース36とのコイル24との接触を防止するために、ポールピース36の表面(外周)を覆うようにボビン22がコイルフレーム14に支持されて、ボビン22の内周とポールピース36の外周との間に間隙が設けられている。コイル24のリード線はケース本体12の外面側で図示しないターミナルに接続され、ターミナルからの通電により磁場を発生可能となっている。 The coil 24 is arranged within the case 10 with a gap provided between it and the inner circumference of the case body 12 . Also, the coil 24 is arranged in a magnetic gap G between a yoke 32 and a pole piece 36, which will be described later. In order to prevent the pole piece 36 from coming into contact with the coil 24 during vibration, the bobbin 22 is supported by the coil frame 14 so as to cover the surface (outer circumference) of the pole piece 36 so that the inner circumference of the bobbin 22 and the pole piece are separated. A gap is provided between the outer circumference of 36 . A lead wire of the coil 24 is connected to a terminal (not shown) on the outer surface side of the case body 12 so that a magnetic field can be generated by energization from the terminal.
 可動子30は、円筒状のケース10の軸方向である中心線O方向に沿って振動するように、ケース本体12内に配置されている。可動子30は、ヨーク32と、マグネット34と、ポールピース36と、接続部材40と、を備えている。マグネット34、ポールピース36及び接続部材40は、ケース本体12の内部において振動方向の中心から外側に向かってこの順で配置されている。また、本実施形態において、ヨーク32及びポールピース36は金属製の軟磁性材料で形成され、接続部材40はABS等の樹脂材料で形成されている。 The mover 30 is arranged in the case body 12 so as to vibrate along the center line O direction, which is the axial direction of the cylindrical case 10 . The mover 30 includes a yoke 32 , a magnet 34 , a pole piece 36 and a connection member 40 . The magnet 34 , the pole piece 36 and the connection member 40 are arranged in this order inside the case body 12 from the center in the vibration direction toward the outside. Further, in this embodiment, the yoke 32 and the pole piece 36 are made of a metallic soft magnetic material, and the connection member 40 is made of a resin material such as ABS.
 ヨーク32は、振動方向の外側に向かって開口する有底筒状に形成されており、中心部321と側部322とを備えている。中心部321は、円板状を成し、ケース本体12の振動方向の中心に配置されている。側部322は、中心部321の外縁から振動方向の外側に延びる円筒状を成している。このヨーク32は、中心線O方向(振動方向)と直交する対称面Sに対し、対称を成して配置される他方側のヨーク32と互いの中心部321同士を接着させて一体化されている。即ち、ケース本体12の振動方向の中心に対して一方側と他方側に配置される二つのヨーク32が一体化されることにより、ケース本体12の内部には、振動方向に沿った断面が略H形状を成すヨーク32が配置されている。 The yoke 32 is formed in a bottomed cylindrical shape that opens outward in the vibration direction, and includes a central portion 321 and side portions 322 . The central portion 321 has a disc shape and is arranged at the center of the case body 12 in the vibration direction. The side portion 322 has a cylindrical shape extending outward in the vibration direction from the outer edge of the central portion 321 . This yoke 32 and the yoke 32 on the other side arranged symmetrically with respect to the plane of symmetry S perpendicular to the direction of the center line O (vibration direction) are integrated by bonding their respective center portions 321 together. there is That is, by integrating the two yokes 32 arranged on one side and the other side with respect to the center of the vibration direction of the case body 12, the inside of the case body 12 has a substantially cross section along the vibration direction. An H-shaped yoke 32 is arranged.
 マグネット34は、略円板状を成し、ヨーク32の中心部321の振動方向外側に配置されている。更に、マグネット34の振動方向外側には、円板状を成すポールピース36が配置されている。上述したヨーク32の側部322は、マグネット34及びポールピース36の外周を覆い、マグネット34及びポールピース36の外周と側部322の内周との間に間隙を設けて配置されている。そして、ポールピース36とヨーク32との間に形成された磁気ギャップGの中に固定子20のコイル24が配置されている。 The magnet 34 has a substantially disk shape and is arranged outside the central portion 321 of the yoke 32 in the vibration direction. Further, a disk-shaped pole piece 36 is arranged outside the magnet 34 in the vibration direction. The side portion 322 of the yoke 32 described above covers the outer periphery of the magnet 34 and the pole piece 36 and is arranged with a gap between the outer periphery of the magnet 34 and pole piece 36 and the inner periphery of the side portion 322 . A coil 24 of the stator 20 is arranged in a magnetic gap G formed between the pole piece 36 and the yoke 32 .
 ここで、コイル24は、磁気ギャップGの中に配置される領域(第1領域)と、磁気ギャップGから振動方向に露出した領域(第2領域)とを有している。このため、コイル24に対して可動子30が相対的に変移する振動状態において、磁気ギャップGの中に配置されるコイルの領域を確保することができ、コイル24を貫く磁束を安定させることができる。 Here, the coil 24 has a region (first region) arranged in the magnetic gap G and a region (second region) exposed from the magnetic gap G in the vibration direction. Therefore, in a vibrating state in which the mover 30 is relatively displaced with respect to the coil 24, it is possible to secure the area of the coil arranged in the magnetic gap G and stabilize the magnetic flux penetrating the coil 24. can.
 なお、ここでいう磁気ギャップGとは、ポールピース36の外周とヨーク32の側部322の内周とが対向する領域である。 The magnetic gap G referred to here is a region where the outer circumference of the pole piece 36 and the inner circumference of the side portion 322 of the yoke 32 face each other.
 図3に示されるように、ポールピース36は接続部材40を介して板バネ2の中心に接続されている。 接続部材40は、振動方向を軸方向とする円筒状を成し、ケース本体12の軸中心に沿って配置されている。接続部材40は、その両端開口がポールピース36及び板バネ2の軸中心に貫通形成された貫通孔361,21と同軸的に配置されている。ポールピース36と接続部材40は、ポールピース36の貫通孔361と接続部材40の開口に振動方向の中心側から第1固定ピン42が挿入されることにより、固定されている
。接続部材40と板バネ2は、板バネ2の貫通孔21と接続部材40の開口に振動方向の外側から第2固定ピン44が挿通されることにより、固定されている。これにより、ヨーク32、マグネット34及びポールピース36で構成される可動子30が板バネ2を介してケース10に弾性支持されている。
As shown in FIG. 3, pole piece 36 is connected to the center of leaf spring 2 via connecting member 40 . The connection member 40 has a cylindrical shape whose axial direction is the vibration direction, and is arranged along the axial center of the case body 12 . The connecting member 40 is arranged coaxially with through holes 361 and 21 formed through the pole piece 36 and the leaf spring 2 at the openings at both ends thereof. The pole piece 36 and the connection member 40 are fixed by inserting the first fixing pin 42 into the through hole 361 of the pole piece 36 and the opening of the connection member 40 from the center side in the vibration direction. The connection member 40 and the leaf spring 2 are fixed by inserting a second fixing pin 44 through the through hole 21 of the leaf spring 2 and the opening of the connection member 40 from the outside in the vibration direction. As a result, the mover 30 composed of the yoke 32 , the magnet 34 and the pole piece 36 is elastically supported by the case 10 via the plate spring 2 .
 以下、振動アクチュエータ1の内部の対称性の成す構成について説明する。なお、以下では、説明を分かりやすくするために、ケース10の振動方向の中心に対し一方側に配置された可動子30を第1可動子30Aと称し、第1可動子30Aを構成するヨーク32、マグネット34、ポールピース36をそれぞれ、ヨーク32A、第1マグネット34A、第1ポールピース36Aと称して説明する。また、ケース10の振動方向の中心に対し他方側に配置された可動子30を第2可動子30Bと称し、第2可動子30Bを構成するヨーク32、マグネット34、ポールピース36をそれぞれ、第2ヨーク32B、第2マグネット34B、第2ポールピース36Bと称して説明する。また、第1可動子30Aの磁気ギャップGに配置されたコイル24を第1コイル24Aと称し、第2可動子30Bの磁気ギャップGに配置されたコイル24を第2コイル24Bと称して説明する。 The symmetrical configuration inside the vibration actuator 1 will be described below. In the following description, the mover 30 arranged on one side with respect to the center of the vibration direction of the case 10 is referred to as a first mover 30A, and the yoke 32 constituting the first mover 30A is referred to as a first mover 30A. , the magnet 34 and the pole piece 36 will be referred to as a yoke 32A, a first magnet 34A and a first pole piece 36A, respectively. Further, the mover 30 arranged on the other side with respect to the center of the vibration direction of the case 10 is referred to as a second mover 30B. These will be referred to as two yokes 32B, second magnets 34B, and second pole pieces 36B. Also, the coil 24 arranged in the magnetic gap G of the first armature 30A will be referred to as the first coil 24A, and the coil 24 arranged in the magnetic gap G of the second armature 30B will be referred to as the second coil 24B. .
 本実施形態の振動アクチュエータ1では、ケース10の振動方向の一方側に配置された第1可動子30Aと、他方側に配置された第2可動子30Bとを有している。第1可動子30A及び第2可動子30Bは、振動方向と直交する対称面Sに対して対称構造を成すように配置され、これにより、第1可動子30Aの第1マグネット34Aと第2可動子30Bの第2マグネット34Bとが振動方向に間隔を設けて配置される。そして、ヨーク32Aと第2ヨーク32Bの中心部321が、第1マグネット34Aと第2マグネット34Bに挟み込まれるようにして、第1マグネット34A及び第2マグネット34Bと振動方向に接合されている。即ち、本実施形態のヨーク(ヨーク32A,第2ヨーク32B)は、その一部がマグネット34(第1マグネット34A,第2マグネット34B)の振動方向の中心を通って配置されている。これにより、磁気駆動部を構成する第1マグネット34A及び第2マグネット34Bは、ヨーク32A及び第2ヨーク32Bとの相対的な位置関係が変位されない状態で振動する構成となっている。 The vibration actuator 1 of this embodiment has a first mover 30A arranged on one side of the case 10 in the vibration direction and a second mover 30B arranged on the other side. The first movable element 30A and the second movable element 30B are arranged so as to form a symmetrical structure with respect to a plane of symmetry S perpendicular to the vibration direction, thereby forming a first magnet 34A of the first movable element 30A and a second movable element 30A. The second magnet 34B of the child 30B is arranged with an interval in the vibration direction. The center portions 321 of the yoke 32A and the second yoke 32B are joined to the first magnet 34A and the second magnet 34B in the vibrating direction so as to be sandwiched between the first magnet 34A and the second magnet 34B. That is, the yokes (yoke 32A, second yoke 32B) of the present embodiment are partially arranged so as to pass through the center of the magnet 34 (first magnet 34A, second magnet 34B) in the vibration direction. As a result, the first magnet 34A and the second magnet 34B, which constitute the magnetic drive section, are configured to vibrate in a state in which the relative positional relationship with the yoke 32A and the second yoke 32B is not displaced.
 ここで、第1マグネット34Aと第2マグネット34Bの着磁方向は、振動方向に沿って同一方向とされている。このため、図4に矢印で示されるように、本実施形態の第1可動子30A及び第2可動子30Bでは、第2マグネット34Bの磁力線がヨーク32A及び第2ヨーク32Bの中心部321を通って第1マグネット34Aに至り、磁気ギャップG、ヨーク32Aの側部322、第2ヨーク32Bの側部322を経て磁気ギャップGを通る磁気回路が形成されている。従って、振動方向に沿って配置された各部材が磁気吸着力によって強力に連結されている。 Here, the magnetization directions of the first magnet 34A and the second magnet 34B are the same along the vibration direction. Therefore, as indicated by arrows in FIG. 4, in the first mover 30A and the second mover 30B of the present embodiment, the magnetic lines of force of the second magnet 34B pass through the central portions 321 of the yokes 32A and 32B. A magnetic circuit is formed that reaches the first magnet 34A, passes through the magnetic gap G, the side portion 322 of the yoke 32A, the side portion 322 of the second yoke 32B, and passes through the magnetic gap G. Therefore, each member arranged along the vibration direction is strongly connected by the magnetic adsorption force.
 本実施形態では、第1可動子30Aと第2可動子30Bとの間に反発磁界が生じないため、第1可動子30Aと第2可動子30Bの組立後に着磁することができる。 In this embodiment, since no repelling magnetic field is generated between the first mover 30A and the second mover 30B, magnetization can be performed after the first mover 30A and the second mover 30B are assembled.
 図3に示されるように、振動アクチュエータ1は、ケース10の軸方向の一端に取り付けられた第1板バネ2Aと、他端に取り付けられた第2板バネ2Bとを有する。第1可動子30A及び第2可動子30Bは、ケース10の軸中心(中心線O)に沿って配置される接続部材40を介して第1板バネ2Aと第2板バネ2Bにそれぞれ支持されている。 As shown in FIG. 3, the vibration actuator 1 has a first leaf spring 2A attached to one axial end of the case 10 and a second leaf spring 2B attached to the other axial end. The first armature 30A and the second armature 30B are respectively supported by the first leaf spring 2A and the second leaf spring 2B via a connection member 40 arranged along the axial center (center line O) of the case 10. ing.
 なお、接続部材40は、ABS等の軽量な樹脂材料で形成してもよい。若しくは、金属や樹脂等の比較的重い非磁性材料で形成し、第1及び第2可動子30A,30Bと第1及び第2板バネ2A,2Bとの間の負荷質量を調整するためのマスとして構成されてもよい。 The connection member 40 may be made of a lightweight resin material such as ABS. Alternatively, a mass formed of a relatively heavy non-magnetic material such as metal or resin for adjusting the load mass between the first and second movers 30A and 30B and the first and second plate springs 2A and 2B. may be configured as
 第1板バネ2A及び第2板バネ2Bは、金属製の一枚ないし複数枚の板バネで構成されており、例えば本実施形態ではステンレスの薄板を加工したものを使用している。第1板バネ2A及び第2板バネ2Bの材料は、金属に限らず樹脂や繊維を含む複合材料であってもよい。また、第1板バネ2A及び第2板バネ2Bの材料は、耐久性及び可撓性に優れた材料であればよく、例えば、コイルバネでもよい。なお、第1板バネ2A及び第2板バネ2Bが、本開示における「弾性部材」に相当する。 The first leaf spring 2A and the second leaf spring 2B are composed of one or more metal leaf springs. For example, in this embodiment, a thin stainless steel plate is used. The material of the first leaf spring 2A and the second leaf spring 2B is not limited to metal, and may be a composite material containing resin or fiber. Moreover, the material of the first leaf spring 2A and the second leaf spring 2B may be any material that is excellent in durability and flexibility, and may be, for example, a coil spring. The first leaf spring 2A and the second leaf spring 2B correspond to the "elastic member" in the present disclosure.
 第1板バネ2A及び第2板バネ2Bのそれぞれは、中心部から外周方向へ渦巻き状に延びる三本の腕部23を有しており、各腕部23の外周端がコイルフレーム14の枠部14Aとケース本体12のボス部16に連結されて、支持されている。 Each of the first leaf spring 2</b>A and the second leaf spring 2</b>B has three arms 23 spirally extending from the central portion in the outer peripheral direction. The portion 14A and the boss portion 16 of the case body 12 are connected and supported.
 本実施形態において、第1板バネ2A及び第2板バネ2Bは、対称面Sを境界として対称形に設けられている。これら2つの板バネの腕部23の渦巻き方向は互いに逆方向になっている。これにより、振動アクチュエータ1の振動時において、第1可動子30Aおよび第2可動子30Bは、第1板バネ2A及び第2板バネ2Bから各々逆方向のトルクを受けるため、振動方向に振動しても、中心線Oに沿った軸周りに回転しない。 In this embodiment, the first leaf spring 2A and the second leaf spring 2B are provided symmetrically with the plane of symmetry S as a boundary. The spiral directions of the arms 23 of these two leaf springs are opposite to each other. As a result, when the vibration actuator 1 vibrates, the first mover 30A and the second mover 30B receive torques in opposite directions from the first leaf spring 2A and the second leaf spring 2B, respectively, so that they vibrate in the vibration direction. does not rotate around the axis along the center line O.
 このように構成された第1板バネ2A及び第2板バネ2Bは、振動方向(中心線O方向)及び振動方向と直交する対称面Sの面方向において所定の範囲で弾性変形可能である。なお、この所定の範囲は、振動アクチュエータ1として通常に使用した場合の第1可動子30A及び第2可動子30Bの振幅範囲に相当する。従って、所定の範囲は少なくとも第1板バネ2A及び第2板バネ2Bがケース10に接触しない範囲であり、第1板バネ2A及び第2板バネ2Bの弾性変形の限界を超えない範囲である。 The first leaf spring 2A and the second leaf spring 2B configured in this manner are elastically deformable within a predetermined range in the direction of vibration (the direction of the center line O) and in the plane direction of the plane of symmetry S orthogonal to the direction of vibration. This predetermined range corresponds to the amplitude range of the first mover 30A and the second mover 30B when the vibration actuator 1 is normally used. Therefore, the predetermined range is a range in which at least the first leaf spring 2A and the second leaf spring 2B do not contact the case 10, and a range in which the elastic deformation of the first leaf spring 2A and the second leaf spring 2B does not exceed the limit. .
  (作用並びに効果) (action and effect)
 以上のように構成された振動アクチュエータ1において、第1及び第2可動子30A,30Bは、第1及び第2コイル24A、24Bに通電していない状態では、図3に示すように、第1及び第2コイル24A、24Bの中央に位置している。 In the vibration actuator 1 configured as described above, the first and second movers 30A and 30B, as shown in FIG. and the center of the second coils 24A and 24B.
 第1及び第2可動子30A,30Bを振動させる際には、ケース10の外面に設けたターミナル(不図示)を介して、第1及び第2コイル24A、24Bに交互に逆極性の磁界を発生させる向きに交流の電力を通電させる。即ち、第1及び第2コイル24Bの隣り合う部分に同極が発生するようになっている。 When vibrating the first and second movers 30A and 30B, magnetic fields of opposite polarities are alternately applied to the first and second coils 24A and 24B via terminals (not shown) provided on the outer surface of the case 10. AC power is applied in the direction of generation. That is, the same polarity is generated in the adjacent portions of the first and second coils 24B.
 例えば、図4に示す極性の場合、第1及び第2可動子30A,30Bには実線矢印Aで示す振動方向他方側(図4では下方側)への推力が発生し、第1及び第2コイル24A、24Bへ流す電流を反転させれば、第1及び第2可動子30A,30Bには点線矢印Bで示す振動方向一方側(図4では上方側)への推力が発生する。 For example, in the case of the polarities shown in FIG. 4, the first and second movers 30A and 30B generate a thrust toward the other vibration direction side (downward in FIG. 4) indicated by a solid arrow A, If the currents flowing through the coils 24A and 24B are reversed, the first and second movers 30A and 30B generate a thrust toward one vibration direction (upward in FIG. 4) indicated by the dotted arrow B.
 このように、第1及び第2コイル24A、24Bに交流の電力を通電させると、第1及び第2可動子30A,30Bは、第1及び第2板バネ2A,2Bによる付勢力を両側から受けながら、中心線O方向に沿って振動する。 Thus, when AC power is applied to the first and second coils 24A and 24B, the first and second movers 30A and 30B are biased by the first and second plate springs 2A and 2B from both sides. It vibrates along the direction of the center line O while receiving it.
 ところで、第1及び第2可動子30A,30Bに発生する推力は、基本的にはフレミングの左手の法則に基づいて与えられる推力に準じられる。本実施形態では、第1及び第2コイル24A、24Bがケース10に固定されているため、第1及び第2マグネット34A,34Bが取り付けられた第1及び第2可動子30A,30Bに、第1及び第2コイル24A、24Bに発生する力の反力としての推力が発生する。よって、第1及び第2マグネット34A,34Bの磁束の水平成分(対称面Sの面方向の成分)が推力に寄与してい
る。そして、第1及び第2ヨーク32A,32Bは、第1及び第2マグネット34A,34Bの磁束の水平成分を増大するものであるため、第1及び第2マグネット34A,34Bと第1及び第2ヨーク32A,32Bとの間には、互いに引き合う磁力が作用している。
By the way, the thrust generated in the first and second movable elements 30A and 30B basically conforms to the thrust given based on Fleming's left-hand rule. In the present embodiment, since the first and second coils 24A and 24B are fixed to the case 10, the first and second movers 30A and 30B to which the first and second magnets 34A and 34B are attached are connected to the first and second movers 30A and 30B. Thrust is generated as a reaction force of the forces generated in the first and second coils 24A and 24B. Therefore, the horizontal component of the magnetic flux of the first and second magnets 34A and 34B (the component in the plane direction of the plane of symmetry S) contributes to the thrust. Since the first and second yokes 32A, 32B increase the horizontal component of the magnetic flux of the first and second magnets 34A, 34B, the first and second magnets 34A, 34B and the first and second yokes 34A, 34B Magnetic forces that attract each other act between the yokes 32A and 32B.
 従って、仮に、第1及び第2ヨーク32A,32Bが、ケース10側に固定される固定子を構成した場合において、第1及び第2マグネット34A,34Bと第1及び第2ヨーク32A,32Bとの間のギャップが小さくなり過ぎると、互いに引き合う磁力の作用によって可動子30の軸心がずれる虞がある。このため、第1及び第2可動子30A,30Bの推力を増強させるために、第1及び第2マグネット34A,34Bと第1及び第2ヨーク32A,32Bとの間のギャップを小さくすることが困難になる。 Therefore, if the first and second yokes 32A, 32B constitute a stator fixed to the case 10 side, the first and second magnets 34A, 34B and the first and second yokes 32A, 32B If the gap between them becomes too small, there is a possibility that the axial center of the mover 30 will shift due to the action of magnetic forces that attract each other. Therefore, in order to increase the thrust of the first and second movers 30A, 30B, it is possible to reduce the gap between the first and second magnets 34A, 34B and the first and second yokes 32A, 32B. become difficult.
 これに対して、本実施形態によれば、第1及び第2ヨーク32A,32Bから成るヨーク32は、その一部が第1及び第2マグネット34A、34Bから成るマグネット34の振動方向の中心を通り、マグネット34と振動方向に接合されている。従って、ヨーク32が可動子30の一部を構成してマグネット34と一体に振動するため、ヨーク32に対してマグネット34の位置が変位しない。その結果、マグネット34の磁力によって可動子30の軸心がずれることが防止され、マグネット34とヨーク32との間のギャップを小さくすることができる。 On the other hand, according to the present embodiment, the yoke 32 composed of the first and second yokes 32A and 32B is partially aligned with the center of the vibration direction of the magnet 34 composed of the first and second magnets 34A and 34B. As shown, it is joined to the magnet 34 in the vibration direction. Therefore, since the yoke 32 constitutes a part of the mover 30 and vibrates together with the magnet 34 , the position of the magnet 34 is not displaced with respect to the yoke 32 . As a result, the magnetic force of the magnet 34 prevents the axial center of the mover 30 from deviating, and the gap between the magnet 34 and the yoke 32 can be reduced.
 また、本実施形態によれば、マグネット34は、ヨーク32の中心部321に対して振動方向の一方側に配置される第1マグネット34Aと他方側に配置される第2マグネット34Bで構成され、振動方向に間隔を空けて配置される二つのマグネットの間にヨークの一部を配置することでマグネット34の振動方向の中心にヨーク32を通して連結している。これにより、マグネット34の振動方向の中心にヨークを通す複雑な構造部を必要とせずに、マグネット34とヨーク32を容易に連結させることができる。 Further, according to the present embodiment, the magnet 34 is composed of the first magnet 34A arranged on one side in the vibration direction with respect to the central portion 321 of the yoke 32 and the second magnet 34B arranged on the other side, By disposing a part of the yoke between two magnets spaced apart in the vibration direction, the magnet 34 is connected through the yoke 32 to the center of the vibration direction. As a result, the magnet 34 and the yoke 32 can be easily connected without requiring a complicated structure for passing the yoke through the center of the vibration direction of the magnet 34 .
 また、本実施形態によれば、第1マグネット34Aと第2マグネット34Bの着磁方向が軸方向に同一方向とされているため、中心を通るヨーク32の中心部321を挟んで第1マグネット34Aと第2マグネット34Bとの間に強力な磁気吸着力が作用する。これにより、磁気吸着力を利用してマグネット34とヨーク32を強固に連結することができ、部材間の接着強度を容易に確保することができる。 Further, according to the present embodiment, since the magnetization directions of the first magnet 34A and the second magnet 34B are the same in the axial direction, the first magnet 34A is positioned across the center portion 321 of the yoke 32 passing through the center. and the second magnet 34B. As a result, the magnet 34 and the yoke 32 can be firmly connected using the magnetic attraction force, and the bonding strength between the members can be easily ensured.
 また、本実施形態によれば、ヨーク32Aと第2ヨーク32Bを連結して一体化し、振動方向に沿った断面形状がH形状を成す一つのヨーク32を構成している。従って、マグネット34の振動方向の中心を通るヨーク32の中心部321に対して、振動方向の一方側と他方側に側部322が延びてマグネット34の外周を覆っている。これにより、ヨーク32の中心部321を隔てて振動方向の両側に二つの磁気ギャップGを形成することができる。振動方向に間隔を空けて二つのコイルを配置して、それぞれをケース内の二つの磁気ギャップに配置する構造の振動アクチュエータは従来から存在する。しかしながら、これらは、振動方向の中心に一つのマグネットを配置して磁気ギャップを形成することが一般的であるため、振動質量を考慮して磁気ギャップの位置を調整することが難しい。これに対して、ヨーク32の中心部321を隔てて振動方向の両側に二つの磁気ギャップGを形成することができる構成とすることで、ヨーク32の中心部321の板厚を変更して振動質量や磁気ギャップGの位置の調整を容易に行うことができる。 Further, according to this embodiment, the yoke 32A and the second yoke 32B are connected and integrated to form one yoke 32 having an H-shaped cross section along the vibration direction. Therefore, the side portions 322 extend on one side and the other side in the vibration direction with respect to the central portion 321 of the yoke 32 passing through the center of the magnet 34 in the vibration direction, and cover the outer periphery of the magnet 34 . As a result, two magnetic gaps G can be formed on both sides in the vibrating direction across the central portion 321 of the yoke 32 . Conventional vibration actuators have a structure in which two coils are arranged spaced apart in the direction of vibration and each is arranged in two magnetic gaps in a case. However, since these generally form a magnetic gap by arranging one magnet at the center of the vibration direction, it is difficult to adjust the position of the magnetic gap in consideration of the vibration mass. On the other hand, by adopting a configuration in which two magnetic gaps G can be formed on both sides in the vibration direction across the central portion 321 of the yoke 32, the plate thickness of the central portion 321 of the yoke 32 can be changed to vibrate. The mass and the position of the magnetic gap G can be easily adjusted.
 また、本実施形態では、マグネット34に対して振動方向の外側にポールピース36が配置されており、ポールピース36とヨーク32との間に形成される磁気ギャップGにコイル24が配置されている。ここで、コイル24は、磁気ギャップGの中に配置される第1領域と、振動方向に磁気ギャップGから露出した第2領域と、を有している。これによ
り、コイル24に対して可動子30が相対的に変移する振動状態において、磁気ギャップGの中に配置されるコイル24の領域を確保することができ、コイル24を貫く磁束を安定させることができる。また、振動質量の増加によって可動子30の変位が大きくなった場合でも、同一の構造にて対応することができる。
In this embodiment, the pole piece 36 is arranged outside the magnet 34 in the vibration direction, and the coil 24 is arranged in the magnetic gap G formed between the pole piece 36 and the yoke 32. . Here, the coil 24 has a first region located within the magnetic gap G and a second region exposed from the magnetic gap G in the vibration direction. As a result, in a vibrating state in which the mover 30 moves relative to the coil 24, the area of the coil 24 arranged in the magnetic gap G can be secured, and the magnetic flux passing through the coil 24 can be stabilized. can be done. Further, even if the displacement of the mover 30 increases due to an increase in the vibration mass, the same structure can be used.
 また、本実施形態によれば、ケース10に設けられた筒状のボビン22によってポールピース36の外周が覆われており、ボビン22の外周にコイル24が巻回されている。即ち、可動子30を構成するポールピース36と固定子20を構成するコイル24との間にボビン22が配置されている。これにより、ケース10に対して外部からの強い衝撃が加わった際にも、ポールピース36とボビン22との間の絶縁を確保することができる。 Further, according to this embodiment, the outer circumference of the pole piece 36 is covered with the cylindrical bobbin 22 provided on the case 10 , and the coil 24 is wound around the outer circumference of the bobbin 22 . That is, the bobbin 22 is arranged between the pole piece 36 forming the mover 30 and the coil 24 forming the stator 20 . Thereby, even when a strong external impact is applied to the case 10, insulation between the pole piece 36 and the bobbin 22 can be ensured.
 また、本実施形態では、ケース10の軸方向に振動する可動子30が、接続部材40を介して間にマスを介さずにケース10の軸方向の一端と他端に設けられた第1板バネ2Aと第2板バネ2Bに弾性支持されている。これにより、振動アクチュエータ1では、重量やバランス特性を考慮した複雑な形状のマスが必要とされないため、部品のコスト低減を図ることができる。 Further, in this embodiment, the mover 30 vibrating in the axial direction of the case 10 is the first plate provided at one end and the other end of the case 10 in the axial direction via the connection member 40 without interposing a mass. It is elastically supported by the spring 2A and the second leaf spring 2B. As a result, the vibration actuator 1 does not require a mass having a complicated shape in consideration of weight and balance characteristics, so that the cost of parts can be reduced.
 また、本実施形態では、ヨーク32A、第1マグネット34A及び第1ポールピース36Aを有する第1可動子30Aと、第2ヨーク32B、第2マグネット34B及び第2ポールピース36Bを有する第2可動子30Bによって可動子30が構成されている。ここで、第1可動子30Aと第2可動子30Bは、ケース10の振動方向の中心側でヨーク32A及び第2ヨーク32Bを対向させて接合し、振動方向に対称構造を成して配置されている。これにより、共通する機能部品を第1可動子30Aと第2可動子30Bで共用することができ、部品コストを低減させることができる。また、組立を容易にすることができる。 Further, in this embodiment, a first mover 30A having a yoke 32A, a first magnet 34A and a first pole piece 36A, and a second mover having a second yoke 32B, a second magnet 34B and a second pole piece 36B The mover 30 is configured by 30B. Here, the first movable element 30A and the second movable element 30B are arranged so that the yoke 32A and the second yoke 32B are opposed to each other on the center side of the vibration direction of the case 10 and joined to form a symmetrical structure in the vibration direction. ing. As a result, common functional parts can be shared between the first mover 30A and the second mover 30B, and the cost of parts can be reduced. Also, assembly can be facilitated.
 更にまた、本実施形態の振動アクチュエータ1は、多様な用途での実施が可能である。例えば、携帯電話やスマートフォン等の携帯端末、ゲーム機のコントローラ、美顔器、マッサージ器等を含む美容機器、並びにダイヤフラムポンプ等の端末の振動のための用途で用いることができる。なお、本実施形態に係る第1及び第2板バネ2A,2Bの振幅(変位量)は、これらの板バネの硬さを変更し、より弾性変形し易くすることで大きくすることができる。このため、図5に示す一例のように、第1可動子30Aと第1板バネ2Aとを連結する接続部材50の先端を弾性材料から成るダイヤフラム70に固定することによって、ダイヤフラム70の往復動作のためのアクチュエータとして用いることができる。 Furthermore, the vibration actuator 1 of this embodiment can be implemented in various applications. For example, it can be used for vibration of terminals such as portable terminals such as mobile phones and smart phones, controllers for game machines, facial beauty devices, massage devices and the like, and terminals such as diaphragm pumps. The amplitude (displacement amount) of the first and second leaf springs 2A and 2B according to the present embodiment can be increased by changing the hardness of these leaf springs to make them more elastically deformable. Therefore, as in the example shown in FIG. 5, by fixing the tip of the connection member 50 that connects the first armature 30A and the first plate spring 2A to the diaphragm 70 made of an elastic material, the reciprocating motion of the diaphragm 70 is suppressed. can be used as an actuator for
 図5に示す一例では、接続部材50の先端が、筐体60に固定されたダイヤフラム70の中心に接続されている。筐体60には、ダイヤフラム70と対向する上面に吸引用の開口部62が形成されており、振動アクチュエータ1の作動により、ダイヤフラム70が振動方向の他方側(図5では下方側)に変位すると、筐体60の開口部62から外部の空気が吸引される。このように、本実施形態の振動アクチュエータ1は、気体の吸引用の用途で用いることも可能である。なお、図5では、図面を分かりやすくするために、一部の符号を省略して図示している。 In the example shown in FIG. 5, the tip of the connection member 50 is connected to the center of the diaphragm 70 fixed to the housing 60. A suction opening 62 is formed in the upper surface of the housing 60 facing the diaphragm 70. When the vibration actuator 1 is operated, the diaphragm 70 is displaced to the other side of the vibration direction (downward in FIG. 5). , external air is sucked from the opening 62 of the housing 60 . Thus, the vibration actuator 1 of this embodiment can also be used for gas suction. In addition, in FIG. 5, some reference numerals are omitted in order to make the drawing easier to understand.
 なお、接続部材50について補足すると、接続部材50は、ケース10の軸中心に沿って配置された第1接続部材52と第2接続部材54によって構成されている。第1接続部材52は、振動方向を軸方向とする円柱状を成し、第1可動子30Aと第1板バネ2Aとの間に配置されている。第1接続部材52は、振動方向の中心側の端部は、上記実施形態の接続部材40と同様に第1固定ピン42を用いて第1ポールピース36Aに機械的に接合されている。第1接続部材52の振動方向外側の端部には、第1板バネ2Aの貫通孔21に挿通され、振動方向の外側に突出した突起部521が形成されている。第2接続部材
54は、振動方向を軸方向とする円柱状を成し、振動方向中心側の端部に第1接続部材52の突起部521に対応して設けられた凹部541が形成されている。第1接続部材52及び第2接続部材54は、第1板バネ2Aを挟むようにして突起部521を凹部541に挿入した状態で固定されている。
In addition, to supplement the connection member 50 , the connection member 50 is configured by a first connection member 52 and a second connection member 54 arranged along the axial center of the case 10 . The first connection member 52 has a columnar shape whose axial direction is the vibration direction, and is arranged between the first mover 30A and the first leaf spring 2A. The first connecting member 52 is mechanically joined to the first pole piece 36A using the first fixing pin 42 in the same manner as the connecting member 40 of the above-described embodiment, at the end on the center side in the vibration direction. A projecting portion 521 that is inserted into the through hole 21 of the first plate spring 2A and protrudes outward in the vibration direction is formed at the end portion of the first connection member 52 on the outside in the vibration direction. The second connecting member 54 has a columnar shape with an axial direction in the vibration direction, and a concave portion 541 provided corresponding to the protrusion 521 of the first connecting member 52 is formed at the end on the center side in the vibration direction. there is The first connection member 52 and the second connection member 54 are fixed with the protrusion 521 inserted into the recess 541 so as to sandwich the first plate spring 2A.
 [実施例]
 発明者らは、アクチュエータの用途別に本願発明の効果を確認するために、振動方向の中心に一つのマグネットが配置され、ヨークがケース側に固定される固定子を構成する従来例の振動アクチュエータ(例えば、国際公開WO2020/175610号に記載の振動アクチュエータ)と、振動用の用途のために設計された図1~図3に相当する振動アクチュエータ1と、吸引用の用途のために設計された図5に相当する振動アクチュエータ1のそれぞれについて、周波数(Frequency[Hz])-変位(Displacement[mm])、周波数(Frequency[Hz])-加速度(Acceleration[m/ss])及び周波数(Frequency[Hz])-加振力(Forces[N])の関係を調べた。その結果を図6~図8に示す。
[Example]
In order to confirm the effect of the present invention for each actuator application, the inventors conducted a conventional vibration actuator ( For example, the vibration actuator described in International Publication WO 2020/175610), the vibration actuator 1 corresponding to FIGS. 1 to 3 designed for vibration applications, and the drawings designed for suction applications. 5, frequency (Frequency [Hz]) - displacement (Displacement [mm]), frequency (Frequency [Hz]) - acceleration (Acceleration [m / ss]) and frequency (Frequency [Hz ])-exciting force (Forces [N]) relationship was investigated. The results are shown in FIGS. 6 to 8. FIG.
 図6~図8の各図では、従来例の振動アクチュエータについて実線で示し、振動用の用途のために設計された振動アクチュエータ1について破線で示し、吸引用の用途のために設計された振動アクチュエータ1について一点鎖線で示している。 6 to 8, the conventional vibration actuator is indicated by solid lines, the vibration actuator 1 designed for vibration applications is indicated by dashed lines, and the vibration actuator designed for suction applications is indicated by broken lines. 1 is indicated by a dashed line.
 各実施例では、入力電力が1[W]に設定され、固定子を構成する二つのコイルの性能を同一の構成にした。また、樹脂材料で形成された上記実施形態の接続部材40を金属の軟磁性材料から成る構成に変更し、接続部材40を100[g]の負荷質量のマスとして構成した。更に、振動用の振動アクチュエータ1及び吸引用の振動アクチュエータ1では、従来例と比較して、振動質量(ヨーク、マグネット、ポールピース、及びマスの質量の加算値)が大きく設定され、且つ、磁気ギャップGが小さく設定されている。 In each example, the input power was set to 1 [W], and the two coils that make up the stator had the same performance. Further, the connection member 40 of the above-described embodiment, which is made of a resin material, is changed to be made of a metal soft magnetic material, and the connection member 40 is configured as a mass having a load mass of 100 [g]. Furthermore, in the vibration actuator 1 for vibration and the vibration actuator 1 for attraction, the vibration mass (yoke, magnet, pole piece, and mass sum) is set larger than in the conventional example, and the magnetic Gap G is set small.
 振動用の振動アクチュエータ1と吸引用の振動アクチュエータ1との間の構成の違いは、第1及び第2板バネ2A,2Bの機械的コンプライアンス値(バネ定数の逆数で示される)のみである。振動用の振動アクチュエータ1では、機械的コンプライアンス値が0.50[mm/N]に設定され、吸引用では1.25[mm/N]に設定されている。 The only structural difference between the vibration actuator 1 for vibration and the vibration actuator 1 for suction is the mechanical compliance value (indicated by the reciprocal of the spring constant) of the first and second leaf springs 2A and 2B. The mechanical compliance value is set to 0.50 [mm/N] for the vibration actuator 1 for vibration, and is set to 1.25 [mm/N] for suction.
 図6に示されるように、一点鎖線で示す吸引用の振動アクチュエータ1では、第1及び第2板バネ2A,2Bの機械的コンプライアンス値が振動用に比べて大きく設定され、軟らかいバネが使用されているため、周波数が40[Hz]以下の低周波数帯域で、変位量が従来例及び振動用のアクチュエータを上回っていることが分かる。 As shown in FIG. 6, in the suction vibration actuator 1 indicated by the dashed line, the mechanical compliance values of the first and second leaf springs 2A and 2B are set larger than those for vibration, and soft springs are used. Therefore, it can be seen that the displacement amount exceeds the conventional example and the vibration actuator in the low frequency band of 40 [Hz] or less.
 図7に示されるように、破線で示す振動用の振動アクチュエータ1では、従来例と比較して、振動質量が上回り、加速度のピーク値が他の実施例を上回っている。 As shown in FIG. 7, in the vibration actuator 1 for vibration indicated by the dashed line, the vibration mass exceeds that of the conventional example, and the peak value of acceleration exceeds that of the other examples.
 図8に示されるように、破線で示す振動用の振動アクチュエータ1と実線で示す従来例では、マスによる質量負荷が共通していても、ヨーク、マグネット及びポールピースの質量を含む振動質量において、振動用の振動アクチュエータ1が従来例を上回るため、加振力の大きさが従来例を上回ることが分かる。 As shown in FIG. 8, in the vibrating vibration actuator 1 indicated by the dashed line and the conventional example indicated by the solid line, even though the mass load is common, the vibrating mass including the mass of the yoke, magnet, and pole piece: Since the vibration actuator 1 for vibration exceeds that of the conventional example, it can be seen that the magnitude of the excitation force exceeds that of the conventional example.
  [補足説明]
 以上、本実施形態の振動アクチュエータ1について説明したが、各部の構成は、その要旨を変更しない範囲で変更又は組み合わせが可能である。また、本開示は、上記実施形態に限らず、図9~図11に示す各変形例に係る構成を適用してもよい。なお、図9~図11に示す各変形例は、変形した一部の部材を除き、基本的には、上記実施形態に係る振動
アクチュエータ1の構成を踏襲している。従って、図面を分かりやすくするために、各図において、一部の符号を省略して図示している。
[supplementary explanation]
Although the vibration actuator 1 of the present embodiment has been described above, the configuration of each part can be changed or combined without changing the gist thereof. Further, the present disclosure is not limited to the above embodiment, and configurations according to modifications shown in FIGS. 9 to 11 may be applied. 9 to 11 basically follow the configuration of the vibration actuator 1 according to the above-described embodiment, except for some deformed members. Therefore, in order to make the drawings easier to understand, some reference numerals are omitted in each drawing.
 (第1の変形例)
 上記実施形態では、第1マグネット34Aと第2マグネット34Bによって、第1及び第2ヨーク32A,32Bの中心部321が直接挟み込まれるように構成されたが、本開示はこれに限らない。図9に示す第1の変形例に係る可動子80(80A,80B)のように、第1及び第2ヨーク32A,32Bの中心部321が、部材を介して第1マグネット34Aと第2マグネット34Bに挟み込まれる構成としてもよい。この第1の変形例では、第1及び第2ヨーク32A,32Bの中心部321と第1及び第2マグネット34A,34Bとの間に金属の軟磁性材料で形成された円板状の中間ポールピース82が配置されている。上記構成では、中間ポールピース82のように、簡単な形状の軟磁性材料を用いて振動方向に沿った可動子80の位置を調整することができるため、コイル24に対する磁気ギャップの高さ調整が容易である。また、中間ポールピース82を設けることで、固定子20の先端と第1及び第2ヨーク32A,32Bの中心部321との距離を確保することができるため、コイル24と第1及び第2ヨーク32A,32Bとが干渉しない位置で可動子80を振動させることができる。
(First modification)
In the above-described embodiment, the central portions 321 of the first and second yokes 32A and 32B are directly sandwiched between the first magnet 34A and the second magnet 34B, but the present disclosure is not limited to this. Like the mover 80 (80A, 80B) according to the first modification shown in FIG. 9, the central portions 321 of the first and second yokes 32A, 32B are connected to the first magnet 34A and the second magnet via members. It may be configured to be sandwiched between 34B. In this first modification, a disk-shaped intermediate pole made of a metallic soft magnetic material is placed between the center portions 321 of the first and second yokes 32A and 32B and the first and second magnets 34A and 34B. A piece 82 is placed. In the above configuration, the position of the mover 80 along the vibration direction can be adjusted using a soft magnetic material with a simple shape, such as the intermediate pole piece 82. Therefore, the height of the magnetic gap with respect to the coil 24 can be adjusted. Easy. In addition, by providing the intermediate pole piece 82, it is possible to ensure the distance between the tip of the stator 20 and the central portions 321 of the first and second yokes 32A and 32B. The mover 80 can be vibrated at a position where it does not interfere with 32A and 32B.
 (第2の変形例)
 また、上記実施形態では、それぞれが有底筒状に形成されたヨーク32Aと第2ヨーク32Bを用いて、互いの中心部321を一体化させることにより、断面H形状のヨークを形成したが、本開示はこれに限らない。ヨーク32Aと第2ヨーク32Bを一体に形成して、一つの部品として構成してもよい。即ち、図10に示す第2の変形例に係る可動子90のように、ケース10内において振動方向の中心に配置される円板状の中心部94の外縁に振動方向の一方側と他方側に延びる側部96を一体に形成して、振動方向の断面がH形状を成すヨーク92を形成してもよい。
(Second modification)
In the above embodiment, the yoke 32A and the second yoke 32B, each of which is formed in a cylindrical shape with a bottom, are used to integrate the central portions 321 of the yokes 32A and 32B, thereby forming a yoke having an H-shaped cross section. The present disclosure is not limited to this. The yoke 32A and the second yoke 32B may be integrally formed to form one component. That is, like the mover 90 according to the second modification shown in FIG. A yoke 92 having an H-shaped cross section in the vibrating direction may be formed by integrally forming a side portion 96 extending vertically.
 また、上記実施形態では、第1及び第2ポールピース36A,36Bと接続部材40が別部材で構成されたが、これに限らず、第2の変形例に係るポールピース100のように、ポールピースと接続部材が一体に形成される構成でもよい。第2の変形例に係るポールピース100では、円板状の本体部102に、ケース10の軸中心に沿って立設された円柱状の接続部104が一体に形成されている。接続部104は、その先端部に形成された凹部104に第2固定ピン44が挿通されて第1及び第2板バネ2A,2Bに接続されている。 Further, in the above embodiment, the first and second pole pieces 36A, 36B and the connection member 40 are configured as separate members. A configuration in which the piece and the connection member are integrally formed may be used. In the pole piece 100 according to the second modification, a columnar connecting portion 104 erected along the axial center of the case 10 is integrally formed with a disk-shaped body portion 102 . The connecting portion 104 is connected to the first and second leaf springs 2A and 2B by inserting the second fixing pin 44 into a concave portion 104 formed at the tip thereof.
 (第3の変形例)
 また、上記実施形態では、可動子30と板バネ2を連結させる接続部材40が細長い円筒状に形成されたが、本開示はこれに限らない。この第3の変形例では、接続部材110は、円筒状の接続部112と、接続部112の振動方向中心側の端部から径方向に広がる底部114と、底部114の外縁から振動方向の外側に立設された円筒状の外周壁部116とを備えている。そして、接続部材110の最外周部を構成する外周壁部116が、コイルフレーム14の延在部14Cに近接対向して配置されている。このため、振動アクチュエータ1に外部からの衝撃などが加わった際にも、接続部材110の外周壁部116がコイルフレーム14の延在部14Cに当接し、可動子30とコイル24の接触を抑制することができる。なお、この際、接続部材110の外周壁部116と延在部14Cとの間の間隙の大きさを、可動子30を構成するヨーク32の側部322とコイル24との間の間隙の大きさよりも小さく設定することで可動子30とコイル24との接触を確実に防止することができる。
(Third modification)
Further, in the above-described embodiment, the connection member 40 that connects the mover 30 and the plate spring 2 is formed in an elongated cylindrical shape, but the present disclosure is not limited to this. In this third modification, the connecting member 110 includes a cylindrical connecting portion 112, a bottom portion 114 that extends radially from the end of the connecting portion 112 on the center side in the vibration direction, and a bottom portion 114 extending outward in the vibration direction from the outer edge of the bottom portion 114. and a cylindrical outer peripheral wall portion 116 erected on the wall. An outer peripheral wall portion 116 forming the outermost peripheral portion of the connection member 110 is arranged to face the extending portion 14C of the coil frame 14 in close proximity. Therefore, even when an external impact or the like is applied to the vibration actuator 1, the outer peripheral wall portion 116 of the connecting member 110 contacts the extending portion 14C of the coil frame 14, thereby suppressing the contact between the mover 30 and the coil 24. can do. At this time, the size of the gap between the outer peripheral wall portion 116 of the connecting member 110 and the extension portion 14C is set to the size of the gap between the side portion 322 of the yoke 32 constituting the mover 30 and the coil 24. By setting it to be smaller than the height, contact between the mover 30 and the coil 24 can be reliably prevented.
 (第4の変形例)
 また、上記図5では、接続部材50を用いてダイヤフラム70に固定される吸引用の振動アクチュエータ1の構成について説明したが、当該構成により、図12に示すように振動アクチュエータ1をダイヤフラムポンプ120のアクチュエータを構成することができる。ダイヤフラムポンプ120の筐体122には、底面にダイヤフラム70が固定され、ダイヤフラム70の変形(振動)により、内部のチャンバCの容積を変更可能に構成されている。筐体122には、チャンバCと連通する第1流路124と第2流路126が形成されており、第1流路124には、吸引弁130が取り付けられており、図12(A)に示すように、チャンバCの容積を増加させる方向にダイヤフラム70が変位されると、吸引弁130が開いて吸気サイクルとなる。また、第2流路126には、吐出弁140が取り付けられており、図12(B)に示すように、チャンバCの容積を縮小させる方向にダイヤフラム70が変位されると、吐出弁140が開いて吐出のサイクルとなる。
(Fourth modification)
5, the configuration of the suction vibration actuator 1 fixed to the diaphragm 70 using the connection member 50 has been described. Actuators can be configured. A diaphragm 70 is fixed to the bottom surface of the housing 122 of the diaphragm pump 120 , and the volume of the internal chamber C can be changed by deformation (vibration) of the diaphragm 70 . A first channel 124 and a second channel 126 communicating with the chamber C are formed in the housing 122, and a suction valve 130 is attached to the first channel 124, as shown in FIG. , when the diaphragm 70 is displaced in the direction of increasing the volume of the chamber C, the suction valve 130 opens to enter the intake cycle. A discharge valve 140 is attached to the second flow path 126, and as shown in FIG. It opens and becomes a cycle of ejection.
 (第5の変形例)
 また、上記実施形態では、可動子30(30A,30B)と接続部材40、接続部材40と板バネ2(2A,2B)が、それぞれ第1及び第2固定ピン42,44を介して接合される構成としたが、本開示はこれに限らない。図13に示すように、固定用のピンやネジを使用せずに接合してもよい。
(Fifth Modification)
Further, in the above embodiment, the mover 30 (30A, 30B) and the connection member 40, and the connection member 40 and the plate spring 2 (2A, 2B) are joined via the first and second fixing pins 42, 44, respectively. However, the present disclosure is not limited to this. As shown in FIG. 13, the connection may be made without using fixing pins or screws.
 即ち、図13に示す振動アクチュエータ200では、接続部材250と可動子210(210A,210B)のポールピース240とが接着剤260を用いて固定されている。また、接続部材250と板バネ2は、接続部材250の先端部250Aを板バネ2の軸中心に貫通形成された貫通孔21に挿通されると共に、押し潰されてかしめられた状態で板バネ2に接合されている。これにより、接続部材250と板バネ2、並びに可動子210を接合するために接合用のネジ等の追加部品が必要とされないため、部品のコスト低減を図ることができる。 That is, in the vibration actuator 200 shown in FIG. 13, the connection member 250 and the pole piece 240 of the mover 210 (210A, 210B) are fixed using the adhesive 260. Further, the connection member 250 and the leaf spring 2 are inserted through the through hole 21 formed through the tip portion 250A of the connection member 250 at the axial center of the leaf spring 2, and are crushed and crimped to form the leaf spring. 2 is joined. As a result, additional parts such as screws for joining are not required to join the connection member 250, the leaf spring 2, and the mover 210, so that the cost of the parts can be reduced.
 更に、この振動アクチュエータ200では、ケース300を構成するケース本体302、コイルフレーム304及びコイルフレーム304とカバーケース306が、図示しない接着剤を用いて互い接合されている。そして、可動子210を構成するヨーク220、マグネット230及びポールピース240が接着剤260を用いて互いに接合されているため、接合用のネジやピンを用いることなく振動アクチュエータ200を組み立てることができる。 Furthermore, in the vibration actuator 200, the case body 302, the coil frame 304, the coil frame 304, and the cover case 306, which constitute the case 300, are joined together using an adhesive (not shown). Since the yoke 220, the magnet 230, and the pole piece 240 that constitute the mover 210 are bonded together using the adhesive 260, the vibration actuator 200 can be assembled without using screws or pins for bonding.
 ここで、可動子210のヨーク220は、可動子の振動方向(中心線O方向)に沿った断面が略E形状を成している。このヨーク220には、底部を構成する円板状の中心部221と、中心部221の外縁から立設された円筒状の側部222と、側部222の内側で、中心部221から立設された円柱状の中柱部223とが一体に形成されている。即ち、この第5の変形例に係るヨーク220は、図9に示す第1の変形例のヨーク32(32A,32B)と中間ポールピース82とが一体に形成された構成に相当する。従って、基本的には、第1の変形例に係る可動子80(80A,80B)の構成を踏襲しているため、同様の作用効果を奏する。また、中間ポールピース82に相当する部材をヨーク220と一体に形成することで、部品点数を減らすことができる。 Here, the yoke 220 of the mover 210 has a substantially E-shaped cross section along the vibration direction of the mover (center line O direction). The yoke 220 has a disk-shaped center portion 221 forming a bottom portion, a cylindrical side portion 222 erected from the outer edge of the center portion 221 , and a cylindrical side portion 222 erected from the center portion 221 inside the side portion 222 . and a cylindrical middle column portion 223 formed integrally therewith. That is, the yoke 220 according to the fifth modification corresponds to a structure in which the yoke 32 (32A, 32B) and the intermediate pole piece 82 of the first modification shown in FIG. 9 are integrally formed. Therefore, basically, since the configuration of the mover 80 (80A, 80B) according to the first modified example is followed, the same effects can be obtained. Also, by integrally forming a member corresponding to the intermediate pole piece 82 with the yoke 220, the number of parts can be reduced.
 また、変形例5のヨーク220及びポールピース240には、マグネット230と対向する接着面に接着方向に窪んだ凹部270がそれぞれ形成されている。凹部270は、接着面の外周に沿って延在しており、本実施形態では、リング状に形成されている。そして、マグネット230とヨーク220、マグネット230とポールピース240をそれぞれ接着する際に、余った接着剤260の一部は、接着面の外周側に押し出されて凹部270内に収容される。このようにして、接着面の外側に余剰分の接着剤が漏れ出ることを防止することがきるので、余剰分の接着剤とコイルとが干渉する懸念を生じない。これにより
、可動子210の磁気ギャップGを小さく設定することができる。
Also, in the yoke 220 and the pole piece 240 of Modification 5, a concave portion 270 recessed in the bonding direction is formed on the bonding surface facing the magnet 230 . The recessed portion 270 extends along the outer periphery of the bonding surface, and is formed in a ring shape in this embodiment. When the magnet 230 and the yoke 220 and the magnet 230 and the pole piece 240 are respectively adhered, part of the surplus adhesive 260 is pushed out to the outer peripheral side of the adhesion surface and accommodated in the concave portion 270 . In this way, it is possible to prevent the surplus adhesive from leaking out of the bonding surface, so that there is no fear of interference between the surplus adhesive and the coil. Thereby, the magnetic gap G of the mover 210 can be set small.
 なお、上記変形例5では、凹部270をヨーク220及びポールピース240の接着面に形成したが、これに限らない。凹部270は、ヨーク220、マグネット230及びポールピース240において、互いに対向する接着面の少なくとも一方に設ける構成とすればよく、凹部270をマグネット230の接着面に設ける構成としてもよい。 It should be noted that in Modification 5, the recess 270 is formed in the bonding surface of the yoke 220 and the pole piece 240, but the present invention is not limited to this. The concave portion 270 may be provided on at least one of the adhesive surfaces facing each other in the yoke 220 , the magnet 230 , and the pole piece 240 , or the concave portion 270 may be provided on the adhesive surface of the magnet 230 .
 (第6の変形例)
 また、第5の変形例では、ヨーク220に中柱部223を設けることで、振動方向に沿った可動子80の位置を調整する構成としたが、これに限らない。図14に示す第6の変形例のように、振動方向に沿って間隔を空けて配置された二つのヨーク220の間に板状のスペーサ280を配置して、可動子80の位置を調整してもよい。このスペーサ280は、磁気回路を構成しない非磁性体材料で形成してもよいし、軟磁性体材料で形成してヨーク220と共に磁気回路の一部を構成してもよい。なお、第6の変形例は、二つのヨーク220の間に板状のスペーサ280を配置する以外は、第5の変形例と同様の構成であるため、詳細な説明を割愛する。また、図14では、図面を分かりやすくするために、一部の符号を省略して図示している。
(Sixth modification)
Further, in the fifth modified example, the yoke 220 is provided with the central column portion 223 to adjust the position of the mover 80 along the vibration direction, but the present invention is not limited to this. As in the sixth modification shown in FIG. 14, the position of the mover 80 is adjusted by placing a plate-like spacer 280 between two yokes 220 spaced apart along the vibration direction. may The spacer 280 may be made of a nonmagnetic material that does not constitute the magnetic circuit, or may be made of a soft magnetic material and constitutes a part of the magnetic circuit together with the yoke 220 . Note that the sixth modification has the same configuration as the fifth modification except that a plate-shaped spacer 280 is arranged between the two yokes 220, so detailed description will be omitted. In addition, in FIG. 14, some reference numerals are omitted for easier understanding of the drawing.
 (第7の変形例)
 なお、上記実施形態では、第1マグネット34Aと第2マグネット34B の着磁方向
が、振動方向に沿って同一方向に設定されたが、本開示はこれに限らない。図15に示す第7の変形例のように、第1マグネット34Aと第2マグネット34Bの着磁方向を、振動方向に沿って互いに逆方向に着磁することもできる。この場合、図15に矢印で示すように、第1マグネット34Aによって、第1ポールピース36A、磁気ギャップGを経てヨーク32Aを通る磁気回路が形成される。また、第2マグネット34Bによって第2ポールピース36B、磁気ギャップGを経て第2ヨーク32Bを通る磁気回路が形成される。
(Seventh Modification)
In the above embodiment, the magnetization directions of the first magnet 34A and the second magnet 34B are set in the same direction along the vibration direction, but the present disclosure is not limited to this. As in the seventh modification shown in FIG. 15, the magnetization directions of the first magnet 34A and the second magnet 34B can be magnetized in opposite directions along the vibration direction. In this case, as indicated by the arrow in FIG. 15, the first magnet 34A forms a magnetic circuit passing through the first pole piece 36A, the magnetic gap G, and the yoke 32A. Further, a magnetic circuit is formed through the second pole piece 36B, the magnetic gap G, and the second yoke 32B by the second magnet 34B.
 上記の磁気回路では、第2マグネット34Bが第1マグネット34Aの反発マグネットとなって磁気漏洩を抑制することができる。なお、第1ヨーク32Aと第2ヨーク32Bとの間には反発磁界が発生するが、中心部321の厚みを確保することで第1ヨーク32Aと第2ヨーク32Bを接合した際の機械的強度を確保することができる。また、第1可動子30Aと第2可動子30Bは、予め、第1マグネット34Aと第2マグネット34Bに着磁した後に、接着剤等を用いて接合することにより組み立てることができる。 In the magnetic circuit described above, the second magnet 34B acts as a repulsive magnet for the first magnet 34A, and magnetic leakage can be suppressed. Although a repelling magnetic field is generated between the first yoke 32A and the second yoke 32B, the thickness of the central portion 321 is ensured, thereby increasing the mechanical strength when the first yoke 32A and the second yoke 32B are joined. can be ensured. Also, the first mover 30A and the second mover 30B can be assembled by magnetizing the first magnet 34A and the second magnet 34B in advance and then joining them with an adhesive or the like.
 なお、上記各実施形態及び変形例では、ヨーク、マグネット、ポールピースの寸法及び形状が、第1可動子30Aと第2可動子30Bとで同一に構成したが、必須ではない。即ち、磁気駆動部の可動子30を、振動方向の中心に対して対称構造を成して配置することは必須ではなく、例えば、第1マグネット34Aの大きさと第2マグネット34Bの大きさが異なる構成としてもよい。 In addition, in each of the above-described embodiments and modified examples, the dimensions and shapes of the yokes, magnets, and pole pieces are configured to be the same for the first mover 30A and the second mover 30B, but this is not essential. In other words, it is not essential to arrange the mover 30 of the magnetic drive unit in a symmetrical structure with respect to the center of the vibration direction. For example, the sizes of the first magnet 34A and the second magnet 34B are different. may be configured.
 また、本実施形態では、ケース10の内部に第1ヨーク32Aと第2ヨーク32Bを配置したが、本開示はこれに限らない。即ち、少なくとも一つのヨークが可動子の中心部に設けられ、マグネットと振動方向に接合される構造であればよいので、ケース10内から、第2ヨーク32B、第2ポールピース36B及び第2コイル24Bを省いた構成としてもよい。 Also, in the present embodiment, the first yoke 32A and the second yoke 32B are arranged inside the case 10, but the present disclosure is not limited to this. That is, since at least one yoke is provided at the center of the mover and is joined to the magnet in the vibration direction, the second yoke 32B, the second pole piece 36B, and the second coil are installed from the inside of the case 10. 24B may be omitted.
 なお、上記実施形態及び各変形例では、コイル24は、磁気ギャップGの中に配置される領域(第1領域)と、磁気ギャップGから振動方向に露出した領域(第2領域)とを有する構成とされたが、本開示はこれに限らない。巻回されたコイルの軸方向のコイル長を
短く設定し、コイルの全体が磁気ギャップGの中に配置される構成としてもよい。当該構成においても、コイル長を短く設定することで可動子の振動中もコイル全体を磁気ギャップGの中に配置させることができるため、コイルを貫く磁束を安定させ、コイルが受ける磁力の変化を低減させることができる。
In the above embodiment and each modified example, the coil 24 has a region (first region) arranged in the magnetic gap G and a region (second region) exposed from the magnetic gap G in the vibration direction. However, the present disclosure is not limited to this. A configuration in which the coil length in the axial direction of the wound coil is set short and the entire coil is arranged in the magnetic gap G may be employed. Even in this configuration, by setting the coil length short, the entire coil can be placed in the magnetic gap G even during vibration of the mover. can be reduced.
 2021年10月29日に出願された日本国特許出願2021-178095号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載されたすべての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2021-178095 filed on October 29, 2021 is incorporated herein by reference in its entirety.
All publications, patent applications and technical standards mentioned herein are to the same extent as if each individual publication, patent application and technical standard were specifically and individually noted to be incorporated by reference. incorporated herein by reference.

Claims (11)

  1.  筒状のケースと、
     前記ケースに設けられたコイルと、
     前記ケースの軸方向の一端と他端にそれぞれ設けられた弾性部材と、
     マグネットとヨークを含み、前記コイルと共に磁気駆動部を構成し、前記弾性部材を介して前記ケースに支持された状態で前記ケースの軸方向に沿って振動する可動子と、を備え、
     前記可動子において、前記ヨークは、前記可動子の中心部に設けられている、
     振動アクチュエータ。
    a tubular case,
    a coil provided in the case;
    elastic members respectively provided at one end and the other end in the axial direction of the case;
    a mover that includes a magnet and a yoke, constitutes a magnetic driving unit together with the coil, and vibrates along the axial direction of the case while being supported by the case via the elastic member;
    In the mover, the yoke is provided at the center of the mover,
    vibration actuator.
  2.  前記可動子において、前記マグネットは、振動方向に間隔を設けて配置され、前記ヨークの振動方向一方側に配置される第1マグネットと、前記ヨークの振動方向他方側に配置される第2マグネットを有している、請求項1に記載の振動アクチュエータ。 In the mover, the magnets are arranged at intervals in the vibration direction, and consist of a first magnet arranged on one side of the yoke in the vibration direction and a second magnet arranged on the other side of the yoke in the vibration direction. 2. The vibration actuator of claim 1, comprising:
  3.  前記可動子において、前記第1マグネット及び第2マグネット着磁方向は、振動方向に沿って同一方向とされている、請求項2に記載の振動アクチュエータ。 3. The vibration actuator according to claim 2, wherein the first magnet and the second magnet are magnetized in the same direction along the vibration direction in the mover.
  4.  前記可動子において、前記ヨークは、前記可動子の中心部の一方側と他方側に延び、前記マグネットの外周を覆う側部とを有している、請求項1~請求項3の何れか1項に記載の振動アクチュエータ。 In the mover, the yoke has a side portion extending to one side and the other side of the center portion of the mover and covering an outer circumference of the magnet. A vibration actuator according to any one of the preceding paragraphs.
  5.  前記可動子は、前記マグネットに対して振動方向の外側に配置されたポールピースを更に備え、
     前記コイルは、前記マグネットの外周側で前記ポールピースと前記ヨークとの間に配置され、前記ポールピースと前記ヨークとの間に形成される磁気ギャップの中に配置される第1領域と、振動方向に前記磁気ギャップから露出した第2領域と、を有している、請求項4の何れか1項に記載の振動アクチュエータ。
    The mover further comprises a pole piece arranged outside in the vibration direction with respect to the magnet,
    the coil is arranged between the pole piece and the yoke on the outer peripheral side of the magnet, a first region arranged in a magnetic gap formed between the pole piece and the yoke; 5. The vibration actuator of claim 4, comprising a second region exposed from the magnetic gap in a direction.
  6.  前記ケースに設けられ、前記ポールピースの外周を覆う筒状のボビンを備え、
     前記コイルは、前記ボビンの外周に巻回されている、請求項5に記載の振動アクチュエータ。
    A cylindrical bobbin provided in the case and covering the outer periphery of the pole piece,
    6. The vibration actuator according to claim 5, wherein the coil is wound around the bobbin.
  7.  前記可動子は、前記ケースの軸中心に沿って配置された接続部材を介して前記弾性部材に支持されている、請求項1~請求項6の何れか1項に記載の振動アクチュエータ。 The vibration actuator according to any one of claims 1 to 6, wherein the mover is supported by the elastic member via a connection member arranged along the axial center of the case.
  8.  前記ケースは、内周との間に間隙を設けて配置される円筒状の延在部を有し、
     前記接続部材は、前記延在部の内側に配置されると共にその最外周部が前記延在部の内周に近接対向して配置されている、請求項7に記載の振動アクチュエータ。
    The case has a cylindrical extension that is arranged with a gap from the inner circumference,
    8. The vibration actuator according to claim 7, wherein said connecting member is arranged inside said extending portion, and the outermost peripheral portion of said connecting member is arranged so as to closely face the inner periphery of said extending portion.
  9.  前記接続部材の先端部は、前記弾性部材に貫通形成された貫通孔に挿通されると共に、押し潰されてかしめられた状態で前記弾性部材に接合されている、請求項7又は請求項8に記載の振動アクチュエータ。 9. The connecting member according to claim 7 or 8, wherein the tip portion of the connecting member is inserted through a through-hole formed through the elastic member and joined to the elastic member in a crushed and crimped state. A vibration actuator as described.
  10.  前記可動子において、前記マグネット及び前記ヨークは接着剤を介して接合され、互いに対向する接着面の少なくとも一方に接着方向に窪んだ凹部が形成され、
     前記凹部は、接着面の外周に沿って延在し、前記接着剤の一部を収容可能に構成されている、請求項1~請求項9の何れか1項に記載の振動アクチュエータ。
      
    In the mover, the magnet and the yoke are joined with an adhesive, and at least one of the mutually facing adhering surfaces is formed with a recess recessed in the adhering direction,
    10. The vibration actuator according to any one of claims 1 to 9, wherein the recess extends along the outer periphery of the adhesive surface and is configured to accommodate a portion of the adhesive.
  11.  筒状のケースと、
     前記ケースに設けられたコイルと、
     前記ケースの軸方向の一端と他端にそれぞれ設けられた弾性部材と、
     マグネットとヨークを含み、前記コイルと共に磁気駆動部を構成し、前記弾性部材を介して前記ケースに支持された状態で前記ケースの軸方向に沿って振動する可動子とを備え、
     前記マグネットは、振動方向に間隔を設けて配置される第1マグネットと第2マグネットを有し、
     前記ヨークは、その一部が前記第1マグネットと前記第2マグネットに挟み込まれるようにして前記第1マグネット及び前記第2マグネットと振動方向に接合されている、
     振動アクチュエータ。
    a tubular case,
    a coil provided in the case;
    elastic members respectively provided at one end and the other end in the axial direction of the case;
    a mover including a magnet and a yoke, forming a magnetic driving unit together with the coil, and vibrating along the axial direction of the case while being supported by the case via the elastic member;
    The magnet has a first magnet and a second magnet spaced apart in the vibration direction,
    The yoke is joined to the first magnet and the second magnet in the vibration direction such that a part of the yoke is sandwiched between the first magnet and the second magnet.
    vibration actuator.
PCT/JP2022/040012 2021-10-29 2022-10-26 Vibration actuator WO2023074762A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-178095 2021-10-29
JP2021178095A JP2023067105A (en) 2021-10-29 2021-10-29 vibration actuator

Publications (1)

Publication Number Publication Date
WO2023074762A1 true WO2023074762A1 (en) 2023-05-04

Family

ID=86158054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040012 WO2023074762A1 (en) 2021-10-29 2022-10-26 Vibration actuator

Country Status (2)

Country Link
JP (1) JP2023067105A (en)
WO (1) WO2023074762A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004260960A (en) * 2003-02-27 2004-09-16 Toyoda Mach Works Ltd Electric motor
JP2004305865A (en) * 2003-04-04 2004-11-04 Namiki Precision Jewel Co Ltd Vibration actuator and portable terminal instrument
JP2015130780A (en) * 2013-12-06 2015-07-16 株式会社デンソー Rotor and rotary electric machine using the same
JP2020141462A (en) * 2019-02-27 2020-09-03 フォスター電機株式会社 Vibration actuator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004260960A (en) * 2003-02-27 2004-09-16 Toyoda Mach Works Ltd Electric motor
JP2004305865A (en) * 2003-04-04 2004-11-04 Namiki Precision Jewel Co Ltd Vibration actuator and portable terminal instrument
JP2015130780A (en) * 2013-12-06 2015-07-16 株式会社デンソー Rotor and rotary electric machine using the same
JP2020141462A (en) * 2019-02-27 2020-09-03 フォスター電機株式会社 Vibration actuator

Also Published As

Publication number Publication date
JP2023067105A (en) 2023-05-16

Similar Documents

Publication Publication Date Title
JP6993533B2 (en) Vibration actuators and electronic devices
US9467035B2 (en) Vibration actuator
US20130169071A1 (en) Oscillating actuator
CN113490554B (en) Vibration actuator
JP7039751B2 (en) Vibration actuators and electronic devices
US20170354992A1 (en) Linear vibration motor
CN107847976B (en) Linear vibration motor and mobile electronic device including the same
JP6262189B2 (en) Linear vibration actuator
WO2023074762A1 (en) Vibration actuator
WO2022091776A1 (en) Vibration actuator
WO2021172577A1 (en) Vibration actuator and electronic device
JP7101604B2 (en) Vibration actuator
WO2022181490A1 (en) Electromechanical converter
WO2023013761A1 (en) Vibration actuator
US20230006525A1 (en) Vibration actuator and electric apparatus
US20240079942A1 (en) Vibration actuator and electric apparatus
US20230006527A1 (en) Vibration actuator and electric apparatus
JP2023141851A (en) Electromechanical transducer
JP2022059945A (en) Vibration motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22887087

Country of ref document: EP

Kind code of ref document: A1