WO2023074749A1 - 抗体代替分子のスクリーニング方法 - Google Patents

抗体代替分子のスクリーニング方法 Download PDF

Info

Publication number
WO2023074749A1
WO2023074749A1 PCT/JP2022/039963 JP2022039963W WO2023074749A1 WO 2023074749 A1 WO2023074749 A1 WO 2023074749A1 JP 2022039963 W JP2022039963 W JP 2022039963W WO 2023074749 A1 WO2023074749 A1 WO 2023074749A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
cells
target antigen
library
seq
Prior art date
Application number
PCT/JP2022/039963
Other languages
English (en)
French (fr)
Inventor
哲哉 門之園
科江 近藤
Original Assignee
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学 filed Critical 国立大学法人東京工業大学
Publication of WO2023074749A1 publication Critical patent/WO2023074749A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B30/00Methods of screening libraries
    • C40B30/04Methods of screening libraries by measuring the ability to specifically bind a target molecule, e.g. antibody-antigen binding, receptor-ligand binding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing

Definitions

  • the present invention relates to providing a novel screening method for molecules that can replace antibodies.
  • antibody drugs an antibody can specifically and strongly bind to a particular antigen. Using this property, antibodies that bind to antigens characteristic of various diseases including cancer are artificially produced and used as therapeutic agents.
  • the antibody drug trastuzumab which binds to the membrane protein HER2, cooperates with the body's immune system to eliminate HER2-expressing cancer cells.
  • the antibody drug pertuzumab which also binds to HER2, has the effect of inhibiting survival signals by binding to HER2, and induces cell death of HER2-expressing cancer cells.
  • antibody surrogate molecules such as antibody mimetics, small proteins and peptides, that bind to the same target antigen as therapeutic monoclonal antibodies (mAbs) may have lower formulation costs and improved tissue penetration compared to mAbs. highly desirable because of its
  • Non-Patent Document 1 a molecular display system that fuses genetically encoded library molecules to endogenous proteins and displays them on the surface of phages
  • Non-Patent Document 2 a molecular display system that displays them on the surface of bacteria
  • Several molecular display systems have been used, such as, a molecular display system for displaying on the surface of yeast (3), or a molecular display system for displaying on the surface of mammalian cells (4).
  • the finally identified modified molecule has the advantage of having a strong binding capacity, but on the other hand, it is not possible to know where in the antigen molecule it binds. , often showed no medicinal efficacy. Therefore, it was necessary to separately search for a molecule that binds to the same antigen-binding region (epitope) as an antibody drug and exhibits efficacy among many antigen-binding variants.
  • Non-Patent Document 5 FLuctuation-regulated Affinity Protein; FLAP
  • FLAP Fluorescence-regulated Affinity Protein
  • This design strategy includes selection of suitable non-Ig small protein scaffolds using computational simulation, computer design of target-binding peptides that are structurally immobilized on scaffolds, and in vitro screening methods such as phage display.
  • HER2 human epidermal growth factor receptor 2
  • HER2-binding FLAP composed of a fibronectin type III domain scaffold.
  • These HER2-binding FLAPs have relatively high binding affinities (dissociation constants of 24-65 nM as measured by ELISA) and we believe the efficiency and simplicity of the method as well as We have successfully demonstrated the target specificity and potential of FLAP as a non-Ig-derived antibody surrogate (Patent Document 1, Non-Patent Document 5).
  • the objective of the present invention is to develop a method for searching for molecules that bind to the same antigen-binding regions (epitopes) as existing antibodies and exhibit medicinal efficacy.
  • the inventors of the present invention use an existing antibody that binds to the target protein as a guide antibody and select antibody surrogate molecules that compete with the guide antibody to bind to the same epitope as the existing antibody. It was shown that the above problems can be solved by obtaining an antibody-substituting molecule capable of The present invention more specifically comprises the following steps: creating a cell that co-expresses and presents the target antigen and the library material on the cell surface; reacting a guide antibody that binds to a target antigen carrying a detectable label; recovering cells to which the guide antibody does not bind to the target antigen; a step of obtaining a library substance presented on the cell surface of the recovered cells as an antibody alternative molecule; A method for obtaining an antibody surrogate molecule that binds to a target antigen from library material, comprising:
  • the present application provides the following aspects to solve the aforementioned problems: [1]: A step of creating a cell that co-expresses and presents a target antigen and a library material on the cell surface; reacting a guide antibody that binds to a target antigen carrying a detectable label; recovering cells to which the guide antibody does not bind to the target antigen; a step of obtaining a library substance presented on the cell surface of the recovered cells as an antibody alternative molecule; A method for obtaining an antibody surrogate molecule that binds to a target antigen from a library material; [2]: The method of [1], wherein the antibody surrogate molecule obtained competes with the guide antibody for binding to the target antigen; [3]: The method of [1] or [2], wherein the library material is a library material composed of peptides or proteins; [4]: The library material is a peptide having an amino acid sequence represented by ERPYACXXXXCXXFXXXXXXXRHI
  • an antibody substitute molecule that binds to the same antigen-binding region (epitope) on the target antigen as an existing antibody and exhibits efficacy.
  • epipe antigen-binding region
  • FIG. 1 is a diagram showing an outline of a method for obtaining an antibody surrogate molecule of the present invention.
  • FIG. 2 is a diagram showing that it was confirmed that the scFv having the sequence of SEQ ID NO: 1 newly designed in Example 1 has binding activity to PD-1 protein.
  • FIG. 3 shows that it was confirmed that co-expression of PD-1 protein and nivolumab scFv antibody inhibited the binding of nivolumab to PD-1 protein.
  • FIG. 4 shows that it was confirmed that co-expression of the CD25 protein and the daclizumab scFv antibody inhibited the binding of daclizumab to the CD25 protein.
  • FIG. 1 is a diagram showing an outline of a method for obtaining an antibody surrogate molecule of the present invention.
  • FIG. 2 is a diagram showing that it was confirmed that the scFv having the sequence of SEQ ID NO: 1 newly designed in Example 1 has binding activity to PD-1 protein.
  • FIG. 5 shows that three peptides, peptide R1, peptide R4, and peptide R5, bind specifically with high binding affinity to CD25 on the surface of CD25-expressing K562 cells, while peptide R2 binds to K562 Both cells and K562 cells expressing CD25 form large aggregates, and peptide R3 exhibits weak binding to K562 cells expressing CD25.
  • FIG. 6 shows the results of introducing library substances into HER2-expressing K562 cells and confirming co-expression of HER2 and library substances (peptides) in the library cells by expression of mCherry and sfGFP, respectively.
  • FIG. 7 shows that library cells co-expressing HER2 and library materials were reacted with AF647-labeled pertuzumab (guide antibody).
  • FIG. 3 shows the results of collecting and culturing non-binding cell groups by fluorescence-activated cell sorting (FACS) using a cell sorter, and repeating this operation three times.
  • FIG. 8 is a diagram showing that 87 peptides out of 119 alternative molecule candidates bind to HER2.
  • FIG. 9 shows that, like pertuzumab, two pertuzumab surrogate molecules also have cytostatic effects on SK-BR-3 cells.
  • FIG. 10 is a diagram showing the binding mode when the pertuzumab scFv antibody, which is a model library substance, binds to the target antigen HER2 on the cell membrane.
  • FIG. 11 shows the results of analysis by flow cytometry for the presence of AF647 labeling when cells co-expressing a pertuzumab scFv antibody and a target antigen were reacted with AF647-labeled pertuzumab.
  • FIG. 12 is a diagram showing the binding mode when the trastuzumab scFv antibody, which is a model library substance, binds to the target antigen HER2 on the cell membrane.
  • FIG. 13 shows the results of analysis by flow cytometry for the presence of AF647 labeling when cells co-expressing a trastuzumab scFv antibody and a target antigen were reacted with AF647-labeled trastuzumab.
  • FIG. 14 shows that when the target antigen and library material displayed on the cell surface have the same epitope as the guide antibody (compete), they can be screened for binding.
  • FIG. 15 shows the results of reacting pertuzumab-AF647 with K562/HER2+each modified pertuzumab-scFv cell.
  • the present inventors selected antibody substitutes from a plurality of library substances based on whether the library substances can bind to the target antigen binding region (epitope) to which an existing antibody (guide antibody) binds. A method to obtain the molecule was established.
  • the present invention provides, as a first aspect, the following steps: creating a cell that co-expresses and presents the target antigen and the library material on the cell surface; reacting a guide antibody that binds to a target antigen carrying a detectable label; recovering cells to which the guide antibody does not bind to the target antigen; a step of obtaining a library substance presented on the cell surface of the recovered cells as an antibody alternative molecule; It is possible to provide a method for obtaining an antibody surrogate molecule that binds to a target antigen from a library material, comprising:
  • Step 1 Step of creating cells that co-express and present the target antigen and the library material on the cell surface (corresponding to step (1) in Figure 1)
  • Step 2 A step of reacting a guide antibody that binds to a target antigen that retains a detectable label (corresponding to step (2) in Figure 1)
  • Step 3 Collecting cells to which the guide antibody does not bind to the target antigen (equivalent to step (3) in Fig. 1)
  • Step 4 Step of obtaining library substances displayed on the cell surface of the collected cells as antibody-substituting molecules (corresponding to steps (4), (6) and (7) in Fig. 1) includes. Details of each step are as follows.
  • Step 1 Step of creating cells that co-express and present the target antigen and the library material on the cell surface (corresponding to step (1) in Figure 1)
  • a gene library composed of DNA sequences encoding each library material constituting the library is introduced into antigen-expressing cells using a vector such as a viral vector, and the target antigen and the library are combined. Create mutant cell libraries in which molecules are co-expressed on the cell membrane.
  • the target antigen used in the present invention may be any antigen, such as proteins, peptides, and sugar chains, as long as it is a pharmaceutical target antigen. preferable.
  • antibodies which are active ingredients of existing antibody drugs, can be used as guide antibodies in the present invention. Examples of already approved antibody drugs and their target antigens include those listed in Table 1 below, including HER2 protein, PD-L1 protein, and CD25. Target antigens and antibody drugs are not limited to these.
  • the cells into which the gene is introduced are commonly available mammalian cells, such as K562 cells (human chronic myelogenous leukemia cell line), HEK293 cells (human embryonic kidney cell line), HeLa cells ( human cervical cancer cell line), CHO cells, etc. can be used (but not limited to these).
  • K562 cells human chronic myelogenous leukemia cell line
  • HEK293 cells human embryonic kidney cell line
  • HeLa cells human cervical cancer cell line
  • CHO cells etc.
  • the gene of the target antigen and the gene of the library material are transduced into the above cells and co-expressed so that they can be displayed on the cell surface.
  • Both the gene of the target antigen and the gene of the library material are obtained by inserting a DNA fragment designed to be displayed on the cell surface into a plasmid generally used in the art.
  • Cells for library display can be generated by transfecting cells with the plasmids of , simultaneously or separately.
  • the target antigen gene and the library material are further transduced into the cells transduced with the target antigen gene and the library material.
  • the gene for rally material can be transduced into the same cell.
  • library substances used in the present invention are required to be expressed on the surface of cells, library substances composed of peptides, library substances composed of proteins, etc. can be used.
  • libraries of single-chain Fv antibodies (scFv antibodies) derived from guide antibodies, or any combination thereof. can be used,
  • a library substance is composed of multiple substances, and accordingly, there are the same number of DNAs of the genes of the library substances as there are library substances. Therefore, by transducing genes of library substances by the method of the present invention, library cells composed of various cells transduced with DNAs of various library genes can be constructed.
  • target antigens and library substances are co-expressed on the cell surface.
  • different fluorescent proteins are linked to the target antigen and the library substance, respectively, and expressed. This can be done by confirming that
  • Step 2 A step of reacting a guide antibody that binds to a target antigen that retains a detectable label (corresponding to step (2) in Figure 1)
  • the library cells prepared in step 1 are reacted with a guide antibody.
  • the guide antibody in the present invention is characterized by using a known antibody known in advance to bind to the target antigen.
  • guide antibody epitope portion When the epitope portion to which the guide antibody binds among the target antigens displayed on the cell surface of the library cells (hereinafter referred to as "guide antibody epitope portion") is accessible by the guide antibody (for example, when the target antigen is Exists in a free state without binding to the library material on the cell surface, or the library material is bound to a target antigen other than the guide antibody epitope portion, but the guide antibody can access the guide antibody epitope portion. case), the guide antibody can bind to the target antigen on the cell surface of the library cells.
  • the guide antibody when the library substance binds to the target antigen on the cell surface of the library cell, and the epitope portion of the guide antibody on the target antigen is inaccessible, the guide antibody will bind to the target antigen on the cell surface of the library cell. cannot be combined against.
  • This antibody must retain a detectable label.
  • This detectable label can be used in cell sorting methods in which cells can be collected alive, such as cell sorting, when the label is used to sort cells. It is preferred to use the labels that have been used.
  • labels such as Fluorescein Isothiocyanate (FITC), Alexa Fluor® dyes (e.g., 488, 647, etc.), Phycoerythrin (PE), mCherry, Allophycocyanin (APC) can be used, but are limited to these. not.
  • Step 3 Collecting cells to which the guide antibody does not bind to the target antigen (equivalent to step (3) in Fig. 1) In this step 3, as a result of allowing the guide antibody to react with the library cell in step 2, the cell to which the guide antibody could not bind, in other words, the library substance expressed on the surface of the library cell is the guide antibody. Harvest the competing cells.
  • the purpose of the present invention is to obtain a library substance that binds to the guide antibody epitope portion of the target antigen. are expressed in the library material, they are removed in this step 3. That is, in the library cells to which the guide antibody was able to bind in step 2, the target antigen was present on the cell surface in a free state that does not bind to the library substance, or the library substance was bound to the target antigen.
  • the guide antibody binds to the epitope portion of the guide antibody, and the guide antibody binds to the epitope portion of the guide antibody.
  • step 3 cells that are not labeled with the guide antibody (cells in which the library material on the cell surface has competed with the guide antibody) can be recovered as target cells.
  • Cells to which the guide antibody does not bind to the target antigen can be recovered as a result by removing cells labeled with the guide antibody from the library cells that have undergone step 2.
  • This sorting can be performed by a method that can sort cells while they are alive, for example, a method such as fluorescence-activated cell sorter (FACS) that uses fluorescence as a label.
  • FACS fluorescence-activated cell sorter
  • Step 4 Step of obtaining library substances displayed on the cell surface of the collected cells as antibody-substituting molecules (corresponding to steps (4), (6) and (7) in Fig. 1)
  • the cells to which the guide antibody collected in step 3 could not bind are cultured, and from the obtained cells, library substances expressed in the cells are obtained as antibody-substituting molecules.
  • Cells to which the guide antibody could not bind are mixed with cells to which the guide antibody cannot bind at all and cells to which the guide antibody binds weakly. cells with high binding properties can be selected (step (5) in Fig. 1).
  • single cell cloning of the cells can be performed as needed to select a single library material.
  • the library material is obtained as an antibody alternative molecule from the obtained cells
  • the genome is collected from the obtained cells, the DNA sequence encoding the antibody alternative molecule is identified by sequence analysis, and the antibody alternative molecule is incorporated again into the expression system. can be used, but is not limited to these methods.
  • the antibody surrogate molecule obtained by the above-described method of the present invention has the characteristic of sharing the same epitope as the guide antibody used for screening. Therefore, the antibody-substitute molecule obtained by the method of the present invention is expected to have the same efficacy and side reactions as the antibody drug used as the guide antibody, and can be used as an antibody-substitute drug. In addition, since it is possible to reduce the molecular weight, it is possible to reduce the cost of formulation and treatment. Applicable diseases can be expanded.
  • each amino acid sequence when referring to an amino acid sequence having one or several amino acid deletions, substitutions, or additions, each amino acid sequence It means a mutant scFv antibody that has one or several amino acid mutations in the constructed scFv antibody and maintains the binding ability to the target antigen.
  • scFv antibody having the amino acid sequence shown by SEQ ID NO: 22 that targets HER2 in (5) P53A mutant pertuzumab scFv antibody, N54A mutant pertuzumab scFv antibody, S55A
  • P53A mutant pertuzumab scFv antibody N54A mutant pertuzumab scFv antibody
  • S55A Specific examples include mutant pertuzumab scFv antibody and G56A mutant pertuzumab scFv antibody.
  • G101A mutant trastuzumab scFv antibody against the scFv antibody having the amino acid sequence represented by SEQ ID NO: 23 that targets HER2 in (6) (trastuzumab scFv antibody), G101A mutant trastuzumab scFv antibody, D102A mutant trastuzumab scFv antibody, G103A Specific examples include mutant trastuzumab scFv antibody, F104A mutant trastuzumab scFv antibody, and Y105A mutant trastuzumab scFv antibody.
  • a single-chain Fv antibody (scFv antibody) was designed from the active ingredient antibody nivolumab (KEGG: D10316) of an antibody drug that binds to the target antigen PD-1 protein as a model library material. (Synthesis 1, SEQ ID NO: 1) and co-expressed on the plasma membrane of PD-1-expressing cells transduced with DNA encoding the PD-1 protein into Jurkat cells. In addition, it was confirmed by ELISA that the scFv having the sequence of chemical formula 1 newly designed in this example has binding activity to the PD-1 protein (Fig. 2).
  • nivolumab scFv antibody which is a model library material
  • binds to the target antigen on the cell membrane it is predicted that the binding of the guide antibody nivolumab is inhibited because the epitope portion of the guide antibody on the PD-1 protein is masked. (Fig. 1).
  • AF647-labeled nivolumab After reacting these cells with AF647-labeled nivolumab, the presence of AF647 labeling was analyzed by flow cytometry.
  • As a negative control Jurkat cells not transduced with anything (referred to as “Jurkat cells” in FIG. 3), and as positive controls, Jurkat cells transduced with PD-1 protein (referred to as “Jurkat/PD-1 cells” in FIG. 3) cells”) were used for comparison.
  • Example 2 Development of Molecular Display Technology Using Daclizumab scFv Library
  • CD25 was used as a target antigen
  • daclizumab scFv antibody was used as a model library material
  • fluorescently labeled daclizumab was used as a guide antibody. It was evaluated whether it bound to the antigen.
  • scFv antibody a single-chain Fv antibody (scFv antibody) was designed from the active ingredient antibody daclizumab (KEGG: D03639) of an antibody drug that binds to the target antigen CD25 protein ( 2, SEQ ID NO: 2), were co-expressed on the plasma membrane of CD25-expressing cells transduced with DNA encoding the CD25 protein into K562 cells.
  • the amino acid sequences contained in the six complementarity-determining regions (CDR regions) of each antibody were analyzed to determine the daclizumab weight.
  • a library peptide (SEQ ID NO: 4) in which 14 amino acids in the sequence were randomized using the backbone peptide (SEQ ID NO: 3) of zinc finger peptides 335-367 of EGR1/ZIF268 protein as , from which five target-binding peptide libraries of library sets 1 to 5 (SEQ ID NO: 5 to SEQ ID NO: 10, respectively) were selected.
  • the number of peptides contained in the library is determined according to the number of Xs contained in each library sequence of library sets 1-5.
  • Plasmids for library material were transduced into CD25- and mRuby2-co-expressing CD25-expressing K562 cells designed to simultaneously express CD25 and mRuby2 to generate library cells. Cells co-expressing CD25 and library material can be obtained as double-positive cells for mRuby2 and sfGFP.
  • library substances that bind to the target antigen CD25 with high affinity bind to CD25 on the same cell surface and inhibit the binding of the guide antibody.
  • library cells displaying library material with high affinity for the target were selected by fluorescence-activated cell sorting (FACS) using a fluorescently labeled guide antibody. .
  • library cells (cells expressing both mRuby2 and sfGFP) (approximately 1.3 ⁇ 10 6 cells) co-expressing CD25 and library materials were reacted with AF647-labeled daclizumab as a guide antibody, and CD25 and library material (cells expressing both mRuby2 and sfGFP), high sfGFP signal (indicative of cells expressing library material) and low AF647 signal (guide antibody indicates unbound cells) was collected by fluorescence-activated cell sorting (FACS) using a cell sorter.
  • FACS fluorescence-activated cell sorting
  • the genome was extracted from the collected cells, and the gene region encoding the library material was identified using the two primers (Primer-1 (SEQ ID NO: 11) and Primer-2 (SEQ ID NO: 12) described above. After PCR amplification and purification, DNA sequences were analyzed by next-generation sequencing, and 1513 unique peptides were identified from the recovered cells, 29 of the top 30 most abundant sequences being daclizumab. and one peptide with sequence derived from basiliximab.This result suggested that daclizumab derived peptides were preferentially selected by daclizumab guided screening.
  • Peptides R1-R5 were synthesized as biotinylated peptides and their binding activity to CD25 was assessed by incubation with untransduced K562 and CD25-transduced K562/CD25 cell lines. . Binding of biotinylated peptides to CD25 on the cell surface was detected using AF488-conjugated streptavidin (SA-AF488, Invitrogen).
  • peptide R1, peptide R4, and peptide R5 were considered high-affinity CD25-binding peptides, and their binding kinetics to CD25, analyzed by biolayer interferometry (BLI), showed that 3 All three peptides were found to bind CD25 with K D values in the range of 30-40 nM (Table 2). This was higher than daclizumab (approximately 1 nM) but within the clinically useful range.
  • Example 4 Screening of Antibody Surrogate Molecules from Peptide Libraries
  • antibody surrogate molecules were used using HER2 as the target antigen, persuzumab as the guide antibody, and a peptide library as the library material. developed a screening method for
  • a library (SEQ ID NO: 4 ) was designed.
  • a gene (DNA sequence) for displaying this library material on the cell membrane was created and introduced into HER2-expressing K562 cells using lentivirus to create library cells (Fig. 6). Expression of HER2 and library substance (peptide) in the library cells could be confirmed by expression of mCherry and sfGFP, respectively.
  • the genome was extracted from the cells collected in each round, and the gene region encoding the library material was treated with the following primers: Primer-3: tcgtcggcag cgtcagatgt gtataagaga cagatgagga tatttgctgt ctttatattc (SEQ ID NO: 18) Primer-4: gtctcgtggg ctcggagatg tgtataagag acagggtcac tgcttgtcca gatgacttcg g (SEQ ID NO: 19) After amplification and purification by PCR using , the DNA sequence was analyzed by next-generation sequencing (Table 3).
  • sequences differing in the number of unique sequences were included.
  • those whose occupancy rate in all reads increased from the 2nd round to the 3rd round were selected, and among them, 184 types of library substances with the highest occupancy rate in the final round were selected for pertuzumab. It could be identified as an alternative molecular candidate.
  • Example 5 Evaluation of Binding Strength of Substitute Molecules for Pertuzumab
  • the 184 candidate substitute molecules for pertuzumab obtained in Example 6 were evaluated for the binding strength of each candidate substance to HER2.
  • the gene DNA of 184 pertuzumab alternative molecule candidates obtained in Example 4 was synthesized and prepared by the wheat germ cell-free protein synthesis method (transcription 18 hours, translation 18 hours). Each of the obtained peptides was adsorbed to a solid phase, reacted with recombinant HER2-Fc protein, and HER2-binding strength was measured by ELISA in which it was detected with an anti-IgG antibody (HRP-labeled).
  • the top two pertuzumab alternative molecules with particularly strong binding strength Rank 1 (SEQ ID NO: 20) and Rank 2 (SEQ ID NO: 21) were chemically synthesized and used in cultured cells. Efficacy was evaluated by the following method.
  • Heregulin (Peprotech) was added at 0.03 nM to the culture medium of HER2-overexpressing human breast cancer cell line SK-BR-3 (JCRB cell bank) and cultured for 2 hours.
  • Pertuzumab surrogate molecules (Rank 1 and Rank 2) were added and cultured for 24 hours. The number of viable cells was measured by WST-1 assay (Roche) to calculate the cell growth inhibitory activity of pertuzumab or pertuzumab surrogate molecule compared to control (PBS added).
  • Example 6 Development of Molecular Display Technology Using Pertuzumab scFv Library
  • HER2 was used as a target antigen
  • a pertuzumab scFv antibody was used as a model library material
  • fluorescently labeled pertuzumab was used as a guide antibody. It was evaluated whether it bound to the antigen.
  • a single-chain Fv antibody (scFv antibody) was designed from the active ingredient antibody pertuzumab (KEGG: D05446) of an antibody drug that binds to the target antigen HER2 protein ( 6, SEQ ID NO: 22), a secretory signal sequence-pertuzumab scFv antibody-transmembrane domain-self-cleaving T2A peptide-green fluorescent protein sfGFP fusion protein was generated, and the CSII-CMV-MCS plasmid was multiplied. inserted into the cloning site.
  • scFv antibody single-chain Fv antibody
  • This gene is introduced into K562 cells or HER2-expressing cells (K562/HER2 cells) transduced with DNA encoding HER2 protein by lentivirus, and a cell line that constitutively expresses pertuzumab scFv antibody K562 + pertuzumab-scFv cells and K562/HER2+ Pertuzumab-scFv cells were established.
  • the prepared cells were reacted with pertuzumab labeled with a fluorescent dye AF647 (pertuzumab-AF647) and measured by flow cytometry. Specifically, 1 ⁇ 10 6 cells placed in a 3% FBS-PBS solution and 1 nM pertuzumab-AF647 were mixed and allowed to react on ice for 60 minutes. The AF647 fluorescence intensity of these cells was measured by flow cytometry.
  • the pertuzumab scFv antibody which is a model library material, binds to the target antigen on the cell membrane, it is predicted that the binding of the guide antibody pertuzumab is inhibited because the epitope portion of the guide antibody on the HER2 protein is masked. (Fig. 10). After allowing these cells to react with AF647-labeled pertuzumab, the presence of AF647 labeling was analyzed by flow cytometry (Fig. 11). As a negative control, K562 cells not transduced with anything (indicated as "K562 cells” in FIG. 11), and as positive controls, K562 cells transduced with HER2 protein (indicated as "K562/HER2 cells” in FIG. 11) ) was used for comparison.
  • Example 7 Development of Molecular Display Technology Using Trastuzumab scFv Library
  • HER2 was used as a target antigen
  • a trastuzumab scFv antibody was used as a model library material
  • fluorescently labeled trastuzumab was used as a guide antibody. It was evaluated whether it bound to the antigen.
  • a single-chain Fv antibody (scFv antibody) was designed from the active ingredient antibody trastuzumab (KEGG: D03257) of an antibody drug that binds to the target antigen HER2 protein ( 7, SEQ ID NO: 23), a secretory signal sequence-trastuzumab scFv antibody-transmembrane domain-self-cleaving T2A peptide-green fluorescent protein sfGFP fusion protein was generated, and the CSII-CMV-MCS plasmid was multiplied. inserted into the cloning site.
  • trastuzumab KEGG: D03257
  • a secretory signal sequence-trastuzumab scFv antibody-transmembrane domain-self-cleaving T2A peptide-green fluorescent protein sfGFP fusion protein was generated, and the CSII-CMV-MCS plasmid was multiplied. inserted into the cloning site.
  • This gene was introduced into K562 cells or HER2-expressing cells (K562/HER2 cells) transduced with DNA encoding HER2 protein by lentivirus, and K562 + trastuzumab-scFv cells expressing trastuzumab scFv antibody and K562 /HER2+ trastuzumab-scFv cells were generated.
  • K562 + trastuzumab-scFv cells expressing trastuzumab scFv antibody and K562 /HER2+ trastuzumab-scFv cells were generated.
  • the amount of virus was adjusted so that the MOI was about 0.3, the infection rate was about 30%, and one gene was transferred to one cell.
  • the prepared cells were reacted with trastuzumab labeled with a fluorescent dye AF647 (trastuzumab-AF647) and measured by flow cytometry. Specifically, 1 ⁇ 10 6 cells placed in a 3% FBS-PBS solution and 1 nM trastuzumab-AF647 were mixed and allowed to react on ice for 60 minutes. The AF647 fluorescence intensity of these cells was measured by flow cytometry.
  • trastuzumab scFv antibody denoted as "K562/HER2 + trastuzumab scFv cells" in Figure 13
  • the amount of antibody binding to the cells was confirmed to be inhibited (Fig. 13).
  • Example 8 Evaluation of binding between anti-HER2 scFv antibody and HER2 co-expressing cells Fluorescently labeled pertuzumab and trastuzumab were assessed for binding to target antigens.
  • Cells co-expressing the pertuzumab scFv antibody and HER2 were K562/HER2 + pertuzumab-scFv cells prepared in Example 6, and cells co-expressing the trastuzumab scFv antibody and HER2 were K562/HER2 + trastuzumab prepared in Example 7. -scFv cells were used.
  • the lentivirus containing the svFc antibody gene was introduced into the K562/HER2 cells at an MOI of about 0.3, and the infection rate was about 30%. so that the gene can be introduced.
  • Fig. 14 The results are shown in Fig. 14.
  • the upper row shows the results when K562/HER2 + Pertuzumab-scFv cells were reacted with Pertuzumab-AF647 or Trastuzumab-AF647, and the results when K562/HER2 + Trastuzumab-scFv cells were reacted with Pertuzumab-AF647 or Trastuzumab-AF647.
  • the results of each are shown in the lower row.
  • both pertuzumab and trastuzumab are antibodies that bind to HER2, their epitopes are different.
  • trastuzumab-scFv on the cells did not compete with added pertuzumab-AF647, and pertuzumab-AF647 bound to HER2 on the cells.
  • K562/HER2 + trastuzumab-scFv cells were reacted with trastuzumab-AF647, the trastuzumab-scFv on the cells competed with the added trastuzumab-AF647 (Fig. 14, lower left). Therefore, a bimodal fluorescence distribution was shown (Fig. 14, lower right).
  • Example 9 Evaluation of binding between anti-HER2 scFv antibody and HER2 co-expressing cells Fluorescently labeled pertuzumab and trastuzumab were assessed for binding to target antigens.
  • K562 is integrated into the multiple cloning site of the CSII-CMV-MCS plasmid as a gene encoding a secretory signal sequence-scFv antibody-transmembrane domain-self-cleaving T2A peptide-green fluorescent protein sfGFP fusion protein, and constitutively expresses HER2 by lentivirus. /HER2 cells, and each svFc antibody was displayed on the cell membrane. Since the virus amount was adjusted so that the MOI was about 0.3, the infection rate was about 30%, and one gene was introduced into one cell.
  • Pertuzumab-AF647 was allowed to react with these cells, and the AF647 fluorescence intensity of each cell was measured by flow cytometry. Specifically, 2 ⁇ 10 5 cells placed in a 3% FBS-PBS solution and 0.1 nM pertuzumab-AF647 were mixed and allowed to react on ice for 60 minutes. Among these cells, the AF647 fluorescence intensity of the sfGFP-expressing cells expressing the scFv antibody was measured by flow cytometry.
  • an antibody substitute molecule that binds to the same antigen-binding region (epitope) on the target antigen as an existing antibody and exhibits efficacy.
  • epipe antigen-binding region

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本発明は、既存の抗体と同じ抗原結合領域(エピトープ)に結合し、薬効を示す分子を探索する方法を開発することを課題とする。 本発明の発明者らは、標的タンパク質に対して結合する既存の抗体をガイド抗体として使用して、そのガイド抗体と競合する抗体代替分子を選択することにより、既存の抗体と同じエピトープに結合することができる抗体代替分子を取得することにより、上記課題を解決することができることを示した。本発明は、より具体的には、以下の工程: 細胞表面に、標的抗原とライブラリー物質を共発現して提示する細胞を作成する工程、 検出可能な標識を保持させた標的抗原に結合するガイド抗体を反応させる工程、 ガイド抗体が標的抗原に対して結合しない細胞を回収する工程、 回収した細胞が細胞表面に提示するライブラリー物質を抗体代替分子として取得する工程、 を含む、ライブラリー物質中から標的抗原に結合する抗体代替分子を取得する方法を提供する。

Description

抗体代替分子のスクリーニング方法
 本発明は、抗体に代替する分子の新規なスクリーニング方法を提供することに関する。
 近年、抗体を利用した分子標的治療薬(抗体医薬)の開発が進められている。抗体は、特定の抗原に特異的に強く結合することができる。この特性を利用して、がんを始めとする様々な疾患に特徴的な抗原に結合する抗体を人工的に作製し、治療薬として利用されている。
 例えば、膜タンパク質HER2に結合する抗体医薬トラスツズマブは、体内の免疫システムと連携してHER2発現がん細胞を除去する。また、同じくHER2に結合する抗体医薬ペルツズマブは、HER2に結合することで生存シグナルを阻害する効果があり、HER2発現がん細胞の細胞死を誘導する。
 このように、抗体医薬は有用な治療薬であるが、分子サイズが150kDaと大きいため、製剤コスト・治療コストが高額であることや、組織浸透性が低く適応疾患が限られることなど、新たな課題が顕在化している。
 このような抗体医薬の課題を克服するために、抗体に代わる分子サイズの小さな標的結合性の抗体代替分子による医薬の開発が進められている。特に、治療用のモノクローナル抗体(mAb)と同じ標的抗原に結合する、抗体模倣体、小型タンパク質およびペプチドなどの抗体代替分子は、mAbと比較して製剤コストが安く、組織浸透が改善される可能性があるため、非常に望ましい。
 このような抗体代替分子を同定し作成するためには、抗原結合ペプチドを取得するためのスクリーニング技術が転用されている。例えば、遺伝的にコードされたライブラリー分子を内在性タンパク質に融合し、ファージの表面に表示する分子ディスプレイシステム(非特許文献1)または細菌の表面に表示する分子ディスプレイシステム(非特許文献2)、酵母の表面に表示する分子ディスプレイシステム(非特許文献3)、または哺乳類細胞の表面に表示する分子ディスプレイシステム(非特許文献4)など、いくつかの分子ディスプレイシステムが使用されてきた。
 しかし、従来のスクリーニングでは、抗原への結合力を指標に選別するため、最終的に同定された改変分子は強い結合力を持つという長所がある一方、抗原分子内のどこに結合するか分からないため、薬効を示さない場合が多かった。そのため、多くの抗原結合改変体の中から、抗体医薬と同じ抗原結合領域(エピトープ)に結合し、薬効を示す分子を別途探索する必要があった。
 本発明の発明者らは、以前に、足場におけるペプチドの固定化が結合親和性を増加させるという本発明者らの知見に基づいて、本発明者らは、(FLuctuation-regulated Affinity Protein;FLAP)と呼ばれる非免疫グロブリン(Ig)由来の小型抗体模倣体を作成する設計戦略を開発した(非特許文献5)。この設計戦略には、計算シミュレーションを用いた適切な非Ig低分子タンパク質足場の選択、足場に構造的に固定化される標的結合性ペプチドのコンピュータ設計、ファージディスプレイなどのインビトロスクリーニング法が含まれる。
 本発明者らの最近の研究は、フィブロネクチンIII型ドメイン足場から構成されるヒト上皮成長因子受容体2(HER2)結合FLAPを同定した。これらのHER2結合性FLAPは、比較的高い結合親和性(ELISAで測定した場合に24~65 nMの解離定数)を有し、本発明者らは、その方法の効率と簡便さだけでなく、非Ig由来抗体代替物としてFLAPの標的特異性および可能性を実証することに成功した(特許文献1、非特許文献5)。
WO2014/175305
Pande, J., et al., Biotechnol. Adv. 28, 849-858 (2010) Bessette, P. H., et al., Protein Eng. Des. Sel. 17, 731-739 (2004) Boder, E. T. & Wittrup, K. D. Nat. Biotechnol. 15, 553-557 (1997) Beerli, R. R. et al., Proc. Natl. Acad. Sci. U. S. A. 105, 14336-14341 (2008) Kadonosono T. et al., Sci. Rep. 10, 891; 10.1038/s41598-020-57713-4 (2020)
 本発明は、既存の抗体と同じ抗原結合領域(エピトープ)に結合し、薬効を示す分子を探索する方法を開発することを課題とする。
 本発明の発明者らは、標的タンパク質に対して結合する既存の抗体をガイド抗体として使用して、そのガイド抗体と競合する抗体代替分子を選択することにより、既存の抗体と同じエピトープに結合することができる抗体代替分子を取得することにより、上記課題を解決することができることを示した。本発明は、より具体的には、以下の工程:
 細胞表面に、標的抗原とライブラリー物質を共発現して提示する細胞を作成する工程、
 検出可能な標識を保持させた標的抗原に結合するガイド抗体を反応させる工程、
 ガイド抗体が標的抗原に対して結合しない細胞を回収する工程、
 回収した細胞が細胞表面に提示するライブラリー物質を抗体代替分子として取得する工程、
を含む、ライブラリー物質中から標的抗原に結合する抗体代替分子を取得する方法を提供する。
 より具体的には、本件出願は、前述した課題を解決するため、以下の態様を提供する:
[1]: 細胞表面に、標的抗原とライブラリー物質を共発現して提示する細胞を作成する工程、
 検出可能な標識を保持させた標的抗原に結合するガイド抗体を反応させる工程、
 ガイド抗体が標的抗原に対して結合しない細胞を回収する工程、
 回収した細胞が細胞表面に提示するライブラリー物質を抗体代替分子として取得する工程、
を含む、ライブラリー物質中から標的抗原に結合する抗体代替分子を取得する方法;
[2]: 取得される抗体代替分子が、標的抗原への結合に関して、ガイド抗体と競合する、[1]に記載の方法;
[3]: ライブラリー物質が、ペプチドまたはタンパク質により構成されるライブラリー物質である、[1]または[2]に記載の方法;
[4]: ライブラリー物質が、ERPYACXXXXCXXXFXXXXXXXRHIRIHTGQKP(SEQ ID NO: 4)で示されるアミノ酸配列を有するペプチド、ガイド抗体から誘導される一本鎖Fv抗体(scFv抗体)のライブラリー、またはこれらのいずれかの組み合わせである、[1]または[2]に記載の方法;
[5]: 標的抗原が、タンパク質、ペプチド、糖鎖から選択される、[1]または[2]に記載の方法;
[6]: 標的抗原が、HER2タンパク質、PD-L1タンパク質、CD25から選択される、[1]または[2]に記載の方法;
[7]: MQVQLVESGG GVVQPGRSLR LDCKASGITF SNSGMHWVRQ APGKGLEWVA VIWYDGSKRY YADSVKGRFT ISRDNSKNTL FLQMNSLRAE DTAVYYCATN DDYWGQGTLV TVSSGGGGSG GGGSGGGGSE IVLTQSPATL SLSPGERATL SCRASQSVSS YLAWYQQKPG QAPRLLIYDA SNRATGIPAR FSGSGSGTDF TLTISSLEPE DFAVYYCQQS SNWPRTFGQG TKVEIKR(SEQ ID NO: 1)で示されるアミノ酸配列、またはこのアミノ酸配列において1又は数個のアミノ酸の欠失、置換、付加を有するアミノ酸配列、
で示されるアミノ酸配列を有する、標的抗原であるPD-1タンパク質に対して結合する抗体代替分子;
[8]: QVQLVQSGAE VKKPGSSVKV SCKASGYTFT SYRMHWVRQA PGQGLEWIGY INPSTGYTEY NQKFKDKATI TADESTNTAY MELSSLRSED TAVYYCARGG GVFDYWGQGT LVTVSSGGGG SGGGGSGGGG SDIQMTQSPS TLSASVGDRV TITCSASSSI SYMHWYQQKP GKAPKLLIYT TSNLASGVPA RFSGSGSGTE FTLTISSLQP DDFATYYCHQ RSTYPLTFGQ GTKVEVKR(SEQ ID NO: 2)で示されるアミノ酸配列、またはこのアミノ酸配列において1又は数個のアミノ酸の欠失、置換、付加を有するアミノ酸配列、
 ERPYACPVES CDRRFTGGGV LTAHIRIHTG QKP(SEQ ID NO: 13)、
 ERPYACPVES CGGVFDYFET LTRHIRIHTG QKP(SEQ ID NO: 14)、
 ERPYACPVES CGGVFDYAPR LTRHIRIHTG QKP(SEQ ID NO: 15)、
 ERPYACPVES CGGVFDYHIG LTRHIRIHTG QKP(SEQ ID NO: 16)、または
 ERPYACPVES CGGVFDYKVQ LTRHIRIHTG QKP(SEQ ID NO: 17)
で示されるアミノ酸配列を有する、標的抗原であるCD25タンパク質に対して結合する抗体代替分子
[9]: EVQLVESGGG LVQPGGSLRL SCAASGFTFT DYTMDWVRQA PGKGLEWVAD VNPNSGGSIY NQRFKGRFTL SVDRSKNTLY LQMNSLRAED TAVYYCARNL GPSFYFDYWG QGTLVTVSSG GGGSGGGGSG GGGSGGGGSD IQMTQSPSSL SASVGDRVTI TCKASQDVSI GVAWYQQKPG KAPKLLIYSA SYRYTGVPSR FSGSGSGTDF TLTISSLQPE DFATYYCQQY YIYPYTFGQG TKVEIKR(SEQ ID NO: 22)で示されるアミノ酸配列、またはこのアミノ酸配列において1又は数個のアミノ酸の欠失、置換、付加を有するアミノ酸配列
 EVQLVESGGG LVQPGGSLRL SCAASGFNIK DTYIHWVRQA PGKGLEWVAR IYPTNGYTRY ADSVKGRFTI SADTSKNTAY LQMNSLRAED TAVYYCSRWG GDGFYAMDYW GQGTLVTVSS GGGGSGGGGS GGGGSDIQMT QSPSSLSASV GDRVTITCRA SQDVNTAVAW YQQKPGKAPK LLIYSASFLY SGVPSRFSGS RSGTDFTLTI SSLQPEDFAT YYCQQHYTTP PTFGQGTKVE IKR(SEQ ID NO: 23)で示されるアミノ酸配列、またはこのアミノ酸配列において1又は数個のアミノ酸の欠失、置換、付加を有するアミノ酸配列
 ERPYACSCRN CAGPFNLDEY RQRHIRIHTG QKP(SEQ ID NO: 20)、または
 ERPYACYRYW CMLPFPYSKS DRRHIRIHTG QKP(SEQ ID NO: 21)
で示されるアミノ酸配列を有する、標的抗原であるHER2タンパク質に対して結合する抗体代替分子。
 本発明の方法を使用することにより、既存の抗体と標的抗原上の同じ抗原結合領域(エピトープ)に結合し、薬効を示す抗体代替分子を取得することができる。この結果、低分子化を図ることが可能であることから、製剤コスト・治療コストを低減することができ、またライブラリー物質の設計次第で、組織浸透性の高い物質を選択することができることから、適応疾患を拡大することができる。
図1は、本発明の抗体代替分子を取得する方法の概要を示す図である。 図2は、実施例1において新たに設計したSEQ ID NO: 1の配列を有するscFvが、PD-1タンパク質に結合活性を有することを確認したことを示す図である。 図3は、PD-1タンパク質とニボルマブscFv抗体の共発現により、PD-1タンパク質に対するニボルマブの結合が阻害されることが確認できたことを示す図である。 図4は、CD25タンパク質とダクリズマブscFv抗体の共発現により、CD25タンパク質に対するダクリズマブの結合が阻害されることが確認できたことを示す図である。 図5は、ペプチドR1、ペプチドR4、およびペプチドR5の3つのペプチドが、CD25を発現するK562細胞表面上のCD25対して高い結合親和性で特異的に結合すること、一方でペプチドR2は、K562細胞とCD25を発現するK562細胞の両方ともと大きな凝集体を形成すること、そしてペプチドR3は、CD25を発現するK562細胞に対して弱い結合を示すこと、を示す図である。 図6は、ライブラリー物質をHER2発現K562細胞に導入して、ライブラリー細胞におけるHER2およびライブラリー物質(ペプチド)の共発現を、それぞれmCherryおよびsfGFPの発現で確認した結果を示す図である。 図7は、HER2およびライブラリー物質を共発現するライブラリー細胞に対して、AF647標識ペルツズマブ(ガイド抗体)を反応させ、HER2およびライブラリー分子が発現している細胞群の中から、ガイド抗体が結合しない細胞群をセルソーターを用いた蛍光活性化細胞ソーティング(FACS)により回収して培養し、この操作を3回繰り返した結果を示す図である。 図8は、119種類の代替分子候補のうち87種類のペプチドがHER2に結合することを示す図である。 図9は、ペルツズマブと同様に、2種類のペルツズマブ代替分子も、SK-BR-3細胞に対して細胞増殖抑制効果を持つことを示す図である。 図10は、ライブラリー物質のモデルであるペルツズマブscFv抗体が、細胞膜上で標的抗原HER2と結合する際の結合様式を示す図である。 図11は、ペルツズマブscFv抗体と標的抗原とを共発現する細胞と、AF647標識ペルツズマブとを反応させた際の、AF647標識の存在をフローサイトメトリーにより解析した結果を示す図である。 図12は、ライブラリー物質のモデルであるトラスツズマブscFv抗体が、細胞膜上で標的抗原HER2と結合する際の結合様式を示す図である。 図13は、トラスツズマブscFv抗体と標的抗原とを共発現する細胞と、AF647標識トラスツズマブとを反応させた際の、AF647標識の存在をフローサイトメトリーにより解析した結果を示す図である。 図14は、細胞表面に提示される標的抗原とライブラリー物質が、ガイド抗体と同じエピトープを有する場合(競合する場合)に、結合に関してスクリーニングができることを示す図である。 図15は、K562/HER2+各改変ペルツズマブ-scFv細胞に対してペルツズマブ-AF647を反応させた場合の結果を示す図である。
 本発明者らは、既存の抗体(ガイド抗体)が結合する標的抗原の結合領域(エピトープ)に対して、ライブラリー物質が結合できるかどうかに基づいて、複数のライブラリー物質の中から抗体代替分子を取得する方法を確立した。
 具体的には、本発明は、第一の態様として、以下の工程:
 細胞表面に、標的抗原とライブラリー物質を共発現して提示する細胞を作成する工程、
 検出可能な標識を保持させた標的抗原に結合するガイド抗体を反応させる工程、
 ガイド抗体が標的抗原に対して結合しない細胞を回収する工程、
 回収した細胞が細胞表面に提示するライブラリー物質を抗体代替分子として取得する工程、
を含む、ライブラリー物質中から標的抗原に結合する抗体代替分子を取得する方法を提供することができる。
 この方法の一例の概要を、図1に示す。この方法は、以下の4つの工程:
 工程1:細胞表面に、標的抗原とライブラリー物質を共発現して提示する細胞を作成する工程(図1の(1)の工程に相当)
 工程2:検出可能な標識を保持させた標的抗原に結合するガイド抗体を反応させる工程(図1の(2)の工程に相当)
 工程3:ガイド抗体が標的抗原に対して結合しない細胞を回収する工程(図1の(3)の工程に相当)
 工程4:回収した細胞が細胞表面に提示するライブラリー物質を抗体代替分子として取得する工程(図1の(4)、(6)および(7)の工程に相当)
を含むものである。それぞれの工程の詳細は以下の通りである。
 工程1:細胞表面に、標的抗原とライブラリー物質を共発現して提示する細胞を作成する工程(図1の(1)の工程に相当)
 この工程1において、ライブラリーを構成するそれぞれのライブラリー物質をコードするDNA配列により構成される遺伝子ライブラリーを、ウイルスベクターなどのベクターを使用して抗原発現細胞に導入し、標的抗原とライブラリー分子を細胞膜上に共発現させた変異細胞ライブラリーを作成する。
 本発明において使用する標的抗原は、タンパク質、ペプチド、糖鎖など、医薬的に標的とされる抗原であればどのようなものであってもよいが、既存の抗体医薬が開発されているものが好ましい。この場合、既存の抗体医薬の有効成分である抗体を、本発明におけるガイド抗体として使用することができる。すでに承認されている抗体医薬と、その標的抗原としては、HER2タンパク質、PD-L1タンパク質、CD25を含む、以下の表1に記載するものなどを例として挙げることができるが、本発明の方法における標的抗原および抗体医薬はこれらのものに限定されない。
Figure JPOXMLDOC01-appb-T000001
 この工程1において、遺伝子を導入する細胞は、一般に入手可能な哺乳動物細胞であり、例えば、K562細胞(ヒト慢性骨髄性白血病細胞株)、HEK293細胞(ヒト胚性腎臓細胞株)、HeLa細胞(ヒト子宮頸癌細胞株)、CHO細胞などを使用することができる(しかし、これらには限定されない)。
 前記のような細胞に対して、標的抗原の遺伝子とライブラリー物質の遺伝子を形質導入し、細胞表面に提示(ディスプレイ)できるように共発現させる。標的抗原の遺伝子とライブラリー物質の遺伝子とは、いずれも、細胞表面に提示(ディスプレイ)できるように設計したDNA断片を、当該技術分野において一般的に使用されているプラスミドにそれぞれ組み込んで、それらのプラスミドを同時にまたは別々に細胞に形質導入することにより、ライブラリーディスプレイ用の細胞を作成することができる。標的抗原とライブラリー物質を別々に細胞に形質導入する場合には、標的抗原の遺伝子を形質導入した細胞に対して、ライブラリー物質の遺伝子をさらに形質導入することにより、標的抗原の遺伝子とライブラリー物質の遺伝子とを同じ細胞に対して形質導入することができる。
 本発明で使用するライブラリー物質は、細胞の表面上に発現させることが求められることから、ペプチドで構成されるライブラリー物質、タンパク質で構成されるライブラリー物質などを使用することができる。このようなライブラリー物質の例として、SEQ ID NO: 4で示されるアミノ酸配列を有するペプチド、ガイド抗体から誘導される一本鎖Fv抗体(scFv抗体)のライブラリー、またはこれらのいずれかの組み合わせを使用することができる、
 ライブラリー物質は複数の物質から構成されるものであり、それに合わせてライブラリー物質の遺伝子のDNAもライブラリー物質の数と同じ数存在する。そのため、本発明の方法によりライブラリー物質の遺伝子を形質導入することにより、様々なライブラリー遺伝子のDNAが形質導入された様々な細胞から構成されるライブラリー細胞を構成することができる。
 ライブラリー細胞では、標的抗原とライブラリー物質が細胞表面上に共発現している。ライブラリー細胞において標的抗原とライブラリー物質とが細胞表面上に共発現していることの確認は、標的抗原およびライブラリー物質のそれぞれに異なる蛍光タンパク質を連結して発現させ、両方の蛍光が発光することを確認することにより行うことができる。
 工程2:検出可能な標識を保持させた標的抗原に結合するガイド抗体を反応させる工程(図1の(2)の工程に相当)
 この工程2において、工程1において作成したライブラリー細胞に対して、ガイド抗体を反応させる。本発明におけるガイド抗体は、標的抗原に結合することが事前に知られている公知の抗体を使用することを特徴とする。ライブラリー細胞の細胞表面上に提示される標的抗原のうちガイド抗体が結合するエピトープ部分(以下、「ガイド抗体エピトープ部分」という)が、ガイド抗体によりアクセスできる状態である場合(例えば、標的抗原が細胞表面上でライブラリー物質とは結合しないフリーの状態で存在している場合、またはライブラリー物質が標的抗原のガイド抗体エピトープ部分以外に結合しているがガイド抗体がガイド抗体エピトープ部分にアクセスできる場合)には、ガイド抗体はライブラリー細胞の細胞表面上の標的抗原と結合することができる。一方、ライブラリー細胞の細胞表面上の標的抗原に対してライブラリー物質が結合し、標的抗原のガイド抗体エピトープ部分がアクセスできない状態の場合、ガイド抗体はライブラリー細胞の細胞表面上の標的抗原に対して結合することができない。
 この抗体には、検出可能な標識を保持させておくことが必要である。この検出可能な標識は、標識を利用して細胞を選別する際に、セルソーティングなどの細胞を生きたまま回収することができる細胞選別方法において使用することができる、当該技術分野において一般的に使用されている標識を使用することが好ましい。例えば、Fluorescein Isothiocyanate(FITC)、Alexa Fluor(登録商標)色素(例えば、488、647など)、Phycoerythrin(PE)、mCherry、Allophycocyanin(APC)などの標識を使用することができるが、これらには限定されない。
 工程3:ガイド抗体が標的抗原に対して結合しない細胞を回収する工程(図1の(3)の工程に相当)
 この工程3において、工程2においてガイド抗体をライブラリー細胞に対して反応させた結果、ガイド抗体が結合できなかった細胞、言い換えると、ライブラリー細胞の表面に発現されたライブラリー物質がガイド抗体と競合した細胞、を回収する。
 本発明の目的は、標的抗原のガイド抗体エピトープ部分に結合するライブラリー物質を取得することが目的であるところ、前述の工程2においてガイド抗体が結合することができたライブラリー細胞は、目的外のライブラリー物質を発現していることとなるため、この工程3において除去する。すなわち、工程2においてガイド抗体が結合することができたライブラリー細胞においては、標的抗原が細胞表面上でライブラリー物質とは結合しないフリーの状態で存在しているか、またはライブラリー物質が標的抗原のガイド抗体エピトープ部分以外に結合していてガイド抗体がガイド抗体エピトープ部分に結合している状態であり、目的とした標的抗原のガイド抗体エピトープ部分に結合するライブラリー物質を取得することができない。
 したがって、この工程3において、ガイド抗体の標識により標識されていない細胞(細胞表面上のライブラリー物質がガイド抗体と競合した細胞)を、目的とする細胞として回収することができる。ガイド抗体が標的抗原に対して結合しない細胞は、工程2を経たライブラリー細胞のうちガイド抗体の標識により標識された細胞を除去することにより、結果として回収することができる。
 この選別は、細胞を生きたまま選別できる方法により行うことができ、例えば、標識として蛍光を使用する蛍光活性化セルソーター(FACS)などの方法を使用することができる。
 工程4:回収した細胞が細胞表面に提示するライブラリー物質を抗体代替分子として取得する工程(図1の(4)、(6)および(7)の工程に相当)
 この工程4において、工程3において採取したガイド抗体が結合できなかった細胞を培養し、得られた細胞から、その細胞で発現していたライブラリー物質を、抗体代替分子として取得する。ガイド抗体が結合できなかった細胞は、ガイド抗体が全く結合できない細胞や、ガイド抗体が弱く結合する細胞が混在していることから、必要に応じて、工程2および3を繰り返して、ガイド抗体との結合性の高い細胞を選択することができる(図1の(5)の工程)。また、単一のライブラリー物質を選択するため、必要に応じて細胞のシングルセルクローニングを行うことができる。
 得られた細胞からライブラリー物質を抗体代替分子として取得するに際して、得られた細胞からゲノムを回収し配列解析から抗体代替分子をコードするDNA配列を特定して発現系に再度組み込んで抗体代替分子を取得する方法などを使用することができるが、これらの方法に限定されない。
 本発明の上述した方法により得られた抗体代替分子は、スクリーニングに使用するガイド抗体と同じエピトープを共有するという特徴を持つ。そのため、本発明の方法により得られた抗体代替分子は、ガイド抗体として使用する抗体医薬と同じ薬効、副反応を持つことが期待され、抗体代替医薬として利用できる。また、低分子化を図ることが可能であることから、製剤コスト・治療コストを低減することができ、またライブラリー物質の設計次第で、組織浸透性の高い物質を選択することができることから、適応疾患を拡大することができる。
 本出願の実施例において、上述した方法にしたがって、
(1)標的抗原としてPD-1を使用し、ガイド抗体としてニボルマブを使用し、ライブラリー物質としてニボルマブscFvライブラリーを使用した、抗体代替分子のスクリーニング、
(2)標的抗原としてCD25を使用し、ガイド抗体としてダクリズマブを使用し、ライブラリー物質としてダクリズマブscFvライブラリーを使用した、抗体代替分子のスクリーニング、
(3)標的抗原としてCD25を使用し、ガイド抗体としてダクリズマブを使用し、ライブラリー物質としてダクリズマブCDR構造ライブラリーを使用した、抗体代替分子のスクリーニング、
(4)標的抗原としてHER2を使用し、ガイド抗体としてペルスツマブを使用し、ライブラリー物質としてペプチドライブラリーを使用した、抗体代替分子のスクリーニング、
(5)標的抗原としてHER2を使用し、ガイド抗体としてペルスツマブを使用し、ライブラリー物質としてペルスツマブscFvライブラリーを使用した、抗体代替分子のスクリーニング、
(6)標的抗原としてHER2を使用し、ガイド抗体としてTrastuzumabを使用し、ライブラリー物質としてTrastuzumab scFvライブラリーを使用した、抗体代替分子のスクリーニング、
を行った。
 この結果、
(1)において、MQVQLVESGG GVVQPGRSLR LDCKASGITF SNSGMHWVRQ APGKGLEWVA VIWYDGSKRY YADSVKGRFT ISRDNSKNTL FLQMNSLRAE DTAVYYCATN DDYWGQGTLV TVSSGGGGSG GGGSGGGGSE IVLTQSPATL SLSPGERATL SCRASQSVSS YLAWYQQKPG QAPRLLIYDA SNRATGIPAR FSGSGSGTDF TLTISSLEPE DFAVYYCQQS SNWPRTFGQG TKVEIKR(SEQ ID NO: 1)で示されるアミノ酸配列、またはこのアミノ酸配列において1又は数個のアミノ酸の欠失、置換、付加を有するアミノ酸配列を有する、標的抗原であるPD-1タンパク質に対して結合する抗体代替分子;
(2)において、QVQLVQSGAE VKKPGSSVKV SCKASGYTFT SYRMHWVRQA PGQGLEWIGY INPSTGYTEY NQKFKDKATI TADESTNTAY MELSSLRSED TAVYYCARGG GVFDYWGQGT LVTVSSGGGG SGGGGSGGGG SDIQMTQSPS TLSASVGDRV TITCSASSSI SYMHWYQQKP GKAPKLLIYT TSNLASGVPA RFSGSGSGTE FTLTISSLQP DDFATYYCHQ RSTYPLTFGQ GTKVEVKR(SEQ ID NO: 2)で示されるアミノ酸配列、またはこのアミノ酸配列において1又は数個のアミノ酸の欠失、置換、付加を有するアミノ酸配列を有する、標的抗原であるCD25タンパク質に対して結合する抗体代替分子;
(3)において、ERPYACPVES CDRRFTGGGV LTAHIRIHTG QKP(SEQ ID NO: 13)、ERPYACPVES CGGVFDYFET LTRHIRIHTG QKP(SEQ ID NO: 14)、ERPYACPVES CGGVFDYAPR LTRHIRIHTG QKP(SEQ ID NO: 15)、ERPYACPVES CGGVFDYHIG LTRHIRIHTG QKP(SEQ ID NO: 16)、ERPYACPVES CGGVFDYKVQ LTRHIRIHTG QKP(SEQ ID NO: 17)で示されるアミノ酸配列を有する、標的抗原であるCD25タンパク質に対して結合する抗体代替分子;
(4)において、ERPYACSCRN CAGPFNLDEY RQRHIRIHTG QKP(Rank 1、SEQ ID NO: 20)またはERPYACYRYW CMLPFPYSKS DRRHIRIHTG QKP(Rank 2、SEQ ID NO: 21)で示されるアミノ酸配列を有する、標的抗原であるHER2タンパク質に対して結合する抗体代替分子;
(5)において、EVQLVESGGG LVQPGGSLRL SCAASGFTFT DYTMDWVRQA PGKGLEWVAD VNPNSGGSIY NQRFKGRFTL SVDRSKNTLY LQMNSLRAED TAVYYCARNL GPSFYFDYWG QGTLVTVSSG GGGSGGGGSG GGGSGGGGSD IQMTQSPSSL SASVGDRVTI TCKASQDVSI GVAWYQQKPG KAPKLLIYSA SYRYTGVPSR FSGSGSGTDF TLTISSLQPE DFATYYCQQY YIYPYTFGQG TKVEIKR(SEQ ID NO: 22)で示されるアミノ酸配列、またはこのアミノ酸配列において1又は数個のアミノ酸の欠失、置換、付加を有するアミノ酸配列を有する、標的抗原であるHER2タンパク質に対して結合する抗体代替分子;
(6)において、EVQLVESGGG LVQPGGSLRL SCAASGFNIK DTYIHWVRQA PGKGLEWVAR IYPTNGYTRY ADSVKGRFTI SADTSKNTAY LQMNSLRAED TAVYYCSRWG GDGFYAMDYW GQGTLVTVSS GGGGSGGGGS GGGGSDIQMT QSPSSLSASV GDRVTITCRA SQDVNTAVAW YQQKPGKAPK LLIYSASFLY SGVPSRFSGS RSGTDFTLTI SSLQPEDFAT YYCQQHYTTP PTFGQGTKVE IKR(SEQ ID NO: 23)で示されるアミノ酸配列、またはこのアミノ酸配列において1又は数個のアミノ酸の欠失、置換、付加を有するアミノ酸配列を有する、標的抗原であるHER2タンパク質に対して結合する抗体代替分子;
を取得することができた。
 ここで、(1)、(2)、(5)または(6)において示されるアミノ酸配列において、1又は数個のアミノ酸の欠失、置換、付加を有するアミノ酸配列という場合、それぞれのアミノ酸配列により構成されるscFv抗体において、1又は数個のアミノ酸変異を有し、かつ標的抗原に対する結合性を維持する変異型scFv抗体のことを意味する。例えば、(5)のHER2を標的抗原とするSEQ ID NO: 22で示されるアミノ酸配列を有するscFv抗体(ペルスツマブscFv抗体)に対して、P53A変異型ペルツズマブscFv抗体、N54A変異型ペルツズマブscFv抗体、S55A変異型ペルツズマブscFv抗体、G56A変異型ペルツズマブscFv抗体などが具体例として挙げられる。また、(6)のHER2を標的抗原とするSEQ ID NO: 23で示されるアミノ酸配列を有するscFv抗体(トラスツズマブscFv抗体)に対して、G101A変異型トラスツズマブscFv抗体、D102A変異型トラスツズマブscFv抗体、G103A変異型トラスツズマブscFv抗体、F104A変異型トラスツズマブscFv抗体、Y105A変異型トラスツズマブscFv抗体などが具体例として挙げられる。
 以下、実施例を挙げて本発明を具体的に示す。下記に示す実施例はいかなる方法によっても本発明を限定するものではない。
 実施例1:ニボルマブscFvライブラリーによる分子ディスプレイ技術の開発
 本実施例においては、標的抗原としてPD-1を使用し、ライブラリー物質のモデルとしてニボルマブscFv抗体を使用し、ガイド抗体として蛍光標識したニボルマブが標的抗原に結合するかを評価した。
 本実施例において、ライブラリー物質のモデルとして、標的抗原であるPD-1タンパク質に対して結合する抗体医薬の有効成分抗体ニボルマブ(KEGG:D10316)から、一本鎖Fv抗体(scFv抗体)を設計し(化1、SEQ ID NO: 1)、Jurkat細胞にPD-1タンパク質をコードするDNAを形質導入したPD-1発現細胞の細胞膜上に共発現させた。なお、本実施例において新たに設計した化1の配列を有するscFvは、PD-1タンパク質に結合活性を有することをELISAにて確認した(図2)。
Figure JPOXMLDOC01-appb-C000002
 ライブラリー物質のモデルであるニボルマブscFv抗体が、細胞膜上で標的抗原と結合すると、PD-1タンパク質上のガイド抗体エピトープ部分がマスクされるため、ガイド抗体であるニボルマブの結合は阻害されると予測される(図1)。この細胞とAF647標識ニボルマブとを反応させたのち、フローサイトメトリーにより、AF647標識の存在を解析した。ネガティブコントロールとして、何も形質導入していないJurkat細胞(図3中、「Jurkat細胞」と表記)、ポジティブコントロールとしてPD-1タンパク質を形質導入したJurkat細胞(図3中、「Jurkat/PD-1細胞」と表記)を、対比のために使用した。
 この結果、ニボルマブscFv抗体の共発現(図3中「Jurkat/PD-1+ニボルマブscFv細胞」と表記)により、細胞に結合する抗体量が、ネガティブコントロールと同程度まで減少すること、すなわち、PD-1タンパク質に対するニボルマブの結合が阻害されることが確認できた(図3)。
 以上より、標的抗原発現細胞に、ガイド抗体と同じエピトープを持つ抗原結合性の分子(ライブラリー物質に対応)を共発現させると、ガイド抗体の結合が阻害され、フローサイトメトリーで分離できることが示された。
 実施例2:ダクリズマブscFvライブラリーによる分子ディスプレイ技術の開発
 本実施例においては、標的抗原としてCD25を使用し、ライブラリー物質のモデルとしてダクリズマブscFv抗体を使用し、ガイド抗体として蛍光標識したダクリズマブが標的抗原に結合するかを評価した。
 本実施例において、ライブラリー物質のモデルとして、標的抗原であるCD25タンパク質に対して結合する抗体医薬の有効成分抗体ダクリズマブ(KEGG:D03639)から、一本鎖Fv抗体(scFv抗体)を設計し(化2、SEQ ID NO: 2)、K562細胞にCD25タンパク質をコードするDNAを形質導入したCD25発現細胞の細胞膜上に共発現させた。
Figure JPOXMLDOC01-appb-C000003
 ライブラリー物質のモデルであるダクリズマブscFv抗体が、細胞膜上で標的抗原と結合すると、CD25タンパク質上のガイド抗体エピトープ部分がマスクされるため、ガイド抗体であるダクリズマブの結合は阻害されると予測される(図1)。この細胞とAF647標識ダクリズマブとを反応させたのち、フローサイトメトリーにより、AF647標識の存在を解析した。ネガティブコントロールとして、何も形質導入していないK562細胞(図4中、「K562細胞」と表記)、ポジティブコントロールとしてCD25タンパク質を形質導入したK562細胞(図4中、「K562/CD25細胞」と表記)を、対比のために使用した。
 この結果、ダクリズマブscFv抗体の共発現(図4中「K562/CD25+ダクリズマブscFv細胞」と表記)により、細胞に結合する抗体量が、ネガティブコントロールと同程度まで減少すること、すなわち、CD25タンパク質に対するダクリズマブの結合が阻害されることが確認できた(図4)。
 以上より、標的抗原発現細胞に、ガイド抗体と同じエピトープを持つ抗原結合性の分子(ライブラリー物質に対応)を共発現させると、ガイド抗体の結合が阻害され、フローサイトメトリーで分離できることが示された。
 実施例3:ダクリズマブCDR構造ライブラリーによる分子ディスプレイ技術の開発
 本実施例においては、標的抗原としてCD25を使用し、ガイド抗体としてダクリズマブを使用し、ライブラリー物質としてダクリズマブCDR構造ライブラリーを使用した、抗体代替分子のスクリーニング方法を開発した。
 最初に、標的抗原であるCD25に結合する公知の抗体、ダクリズマブおよびバシリキシマブの構造情報に基づいて、それぞれの抗体の6か所の相補性決定領域(CDR領域)に含まれるアミノ酸配列から、ダクリズマブ重鎖CDR3由来のCD25結合残基GGGV-D、そしてバシリキシマブ重鎖CDR3および軽鎖CDR3由来のCD25結合残基YGYおよびRS-Yを、それぞれ選択し、そしてこれらの部分配列を、抗原結合分子の骨格としてEGR1/ZIF268タンパク質の335-367番目のジンクフィンガーペプチドの骨格ペプチド(SEQ ID NO: 3)を使用し、配列内の14か所のアミノ酸をランダム化したライブラリーペプチド(SEQ ID NO: 4)を設計し、その中からライブラリーセット1~5(それぞれ、SEQ ID NO: 5~SEQ ID NO: 10)の5種類の標的結合ペプチドライブラリーを選択した。ライブラリーセット1~5のそれぞれのライブラリー配列中に含まれるXの数に応じて、ライブラリーに含まれるペプチドの数が決定される。
Figure JPOXMLDOC01-appb-C000004
 これらのライブラリー物質について得られたcDNAライブラリーを、スーパーフォルダGFP(sfGFP)と、細胞表面上にライブラリー物質を発現するために必要な他のエレメントをコードするプラスミドに挿入した(図1a)。ライブラリー物質についてのプラスミドを、CD25を発現すると同時にmRuby2も発現するように設計したCD25およびmRuby2を共発現するCD25発現K562細胞に形質導入して、ライブラリー細胞を作製した。CD25とライブラリー物質を共発現する細胞は、mRuby2およびsfGFPの二重陽性細胞として取得することができる。
 細胞ライブラリーから無作為に選んだ1×106個の細胞について、足場骨格に特異的なプライマー:
Primer-1:tcgtcggcag cgtcagatgt gtataagaga cagatgagga tatttgctgt ctttatat(SEQ ID NO: 11)
Primer-2:gtctcgtggg ctcggagatg tgtataagag acaggaggtg actggatcca caaccaaaa(SEQ ID NO: 12)
を用いて次世代ゲノムシーケンシング(NGS)解析したところ、ライブラリーセット1~5の5種類の標的結合ペプチドライブラリーにおける「X」位置でのアミノ酸(化3)が十分にランダム化され、残りの配列が設計どおりにコードされていることが確認できた。
 次に、標的抗原であるCD25に対して高親和性で結合するライブラリー物質は、同じ細胞表面上のCD25に結合し、ガイド抗体の結合を阻害する。この原理を使用して、蛍光標識したガイド抗体を使用して蛍光活性化細胞ソーティング(FACS)を行うことにより、標的に対して高い親和性を有するライブラリー物質を提示するライブラリー細胞を選択した。
 具体的には、CD25およびライブラリー物質を共発現するライブラリー細胞(mRuby2およびsfGFPを両方発現する細胞)(約1.3×106個)に対して、AF647標識ダクリズマブをガイド抗体として反応させ、CD25およびライブラリー物質を共発現するライブラリー細胞群(mRuby2およびsfGFPを両方発現する細胞群)の中から、高sfGFPシグナル(ライブラリー物質を発現している細胞を示す)および低AF647シグナル(ガイド抗体が結合しない細胞を示す)を有する単一細胞フラクション(3.1×104細胞)をセルソーターを用いた蛍光活性化細胞ソーティング(FACS)により回収した。
 回収した細胞からゲノムを抽出し、ライブラリー物質をコードする遺伝子領域を、前述の2種のプライマー(Primer-1(SEQ ID NO: 11)およびPrimer-2(SEQ ID NO: 12)を使用したPCRで増幅して精製した後に、次世代シーケンサーでDNA配列を解析した。回収された細胞から、1513個のユニークなペプチドが同定され、最も豊富な配列の上位30個のうち、29個はダクリズマブ由来の配列を有するペプチドであり、1個がバシリキシマブ由来の配列を有するペプチドであった。この結果から、ダクリズマブ由来ペプチドが、ダクリズマブガイドスクリーニングによって優先的に選択されたことが予想された。
 リード数が最も多い上位5つの以下の抗体代替分子候補(ペプチドR1~ペプチドR5、それぞれSEQ ID NO: 13~SEQ ID NO: 17)を、さらなる分析に供した(化4)。
Figure JPOXMLDOC01-appb-C000005
 
 ペプチドR1~ペプチドR5を、ビオチン化ペプチドとして合成し、それらのCD25に対する結合活性を、何も形質導入していないK562細胞株およびCD25を形質導入したK562/CD25細胞株とともにインキュベートすることによって評価した。細胞表面上のCD25に対するビオチン化ペプチドの結合は、AF488結合ストレプトアビジン(SA-AF488、Invitrogen)を用いて検出した。
 この結果、ペプチドR1、ペプチドR4、およびペプチドR5の3つのペプチドは、K562細胞への結合をほとんどまたは全く示さない一方で、K562/CD25細胞に対して強い結合を示し、このことから、これらのペプチドが細胞表面上のCD25対して高い結合親和性で特異的に結合することが示された(図5)。しかし、ペプチドR2は、不安定であるようで、K562細胞とK562/CD25細胞の両方ともと大きな凝集体を形成し、そしてペプチドR3は、K562/CD25細胞に対して弱い結合を示した。
 これらの結果から、ペプチドR1、ペプチドR4、およびペプチドR5は、高親和性CD25結合性ペプチドと考えられ、そしてCD25に対するそれらの結合動態は、バイオレイヤーインターフェロメトリー(BLI)によって分析したところ、3つのペプチドはすべて、30~40 nMの範囲のKD値でCD25に結合することが見いだされた(表2)。これはダクリズマブ(約1 nM)よりも高いものであったが、臨床的に有用な範囲内であった。
Figure JPOXMLDOC01-appb-T000006
 実施例4:ペプチドライブラリーからの抗体代替分子のスクリーニング
 本実施例においては、標的抗原としてHER2を使用し、ガイド抗体としてペルスツマブを使用し、ライブラリー物質としてペプチドライブラリーを使用した、抗体代替分子のスクリーニング方法を開発した。
 抗原結合分子の骨格としてEGR1/ZIF268タンパク質の335-367番目のジンクフィンガーペプチド(SEQ ID NO: 3)を使用し、配列内の14か所のアミノ酸をランダム化したライブラリー(SEQ ID NO: 4)を設計した。
Figure JPOXMLDOC01-appb-C000007
 
 このライブラリー物質を、細胞膜上にディスプレイするための遺伝子(DNA配列)を作製し、レンチウイルスを用いてHER2発現K562細胞に導入して、ライブラリー細胞を作製した(図6)。ライブラリー細胞におけるHER2およびライブラリー物質(ペプチド)の発現は、それぞれmCherryおよびsfGFPの発現で確認できた。
 このHER2およびライブラリー物質を共発現するライブラリー細胞(mCherryおよびsfGFPを両方発現する細胞)に対して、AF647標識ペルツズマブをガイド抗体として反応させ、HER2およびライブラリー分子が発現している細胞群(mCherryおよびsfGFPを両方発現する細胞群)の中から、ガイド抗体が結合しない細胞群(AF647の蛍光を発光しない細胞群)をセルソーターを用いた蛍光活性化細胞ソーティング(FACS)により回収して培養し、この操作を3回繰り返した(図7)。
 各ラウンドで回収した細胞からゲノムを抽出し、ライブラリー物質をコードする遺伝子領域を、以下のプライマー:
Primer-3:tcgtcggcag cgtcagatgt gtataagaga cagatgagga tatttgctgt ctttatattc(SEQ ID NO: 18)
Primer-4:gtctcgtggg ctcggagatg tgtataagag acagggtcac tgcttgtcca gatgacttcg g(SEQ ID NO: 19)
を使用したPCRで増幅して精製した後に、次世代シーケンサーでDNA配列を解析した(表3)。各ラウンドで解析したすべてのライブラリー物質の全数(全リード数)のうち、ユニーク配列の数の異なる配列が含まれていた。得られた配列のうち、2ラウンド目から3ラウンド目にかけて全リード中の占有率が増加したものを選択し、その中で最終ラウンドでの占有率が多いものから184種類のライブラリー物質をペルツズマブ代替分子候補として同定することができた。
Figure JPOXMLDOC01-appb-T000008
 実施例5:ペルツズマブの代替分子の結合力評価
 本実施例においては、実施例6で取得された184種類のペルツズマブの代替分子候補について、それぞれの候補物質のHER2への結合力を評価した。
 実施例4において取得された184種類のペルツズマブ代替分子候補の遺伝子DNAを、合成し、コムギ胚芽無細胞タンパク質合成法(転写18時間、翻訳18時間)により調製した。得られた各ペプチドについて、固相に吸着させたのち、組換えHER2-Fcタンパク質を反応させ、それを抗IgG抗体(HRP標識)で検出するELISAにてHER2への結合力を測定した。
 184種類のペルツズマブ代替分子候補のうち、非特異吸着が多かった65種類を除去し、119種類の代替分子候補について調べたところ、これらのうち87種類のペプチドがHER2に結合することが分かり(図8)、これらをペルツズマブ代替分子として同定した。
 これらのペルツズマブ代替分子のうち、特に結合力の強い上位2種のペルツズマブ代替分子Rank 1(SEQ ID NO: 20)およびRank 2(SEQ ID NO: 21)を化学合成し、培養細胞を利用して以下の方法にて薬効を評価した。
 HER2が過剰発現しているヒト乳がん細胞株SK-BR-3(JCRB細胞バンク)の培養液にヘレグリン(Peprotech)を0.03 nMで添加し、2時間培養した後に、3 nMのペルツズマブあるいは3 nMのペルツズマブ代替分子(Rank 1およびRank 2)を添加し、24時間培養した。生存細胞数をWST-1アッセイ(Roche)で測定して、コントロール(PBS添加)の場合と比較したペルツズマブまたはペルツズマブ代替分子の細胞増殖阻害活性を算出した。
 結果を図9に示す。ペルツズマブと同様に、2種類のペルツズマブ代替分子も、SK-BR-3細胞に対して細胞増殖抑制効果を持つことが明らかになった(図9)。以上より、本発明により抗体医薬代替分子を取得できることが示された。
Figure JPOXMLDOC01-appb-C000009
 実施例6:ペルツズマブscFvライブラリーによる分子ディスプレイ技術の開発
 本実施例においては、標的抗原としてHER2を使用し、ライブラリー物質のモデルとしてペルツズマブscFv抗体を使用し、ガイド抗体として蛍光標識したペルツズマブが標的抗原に結合するかを評価した。
 本実施例において、ライブラリー物質のモデルとして、標的抗原であるHER2タンパク質に対して結合する抗体医薬の有効成分抗体ペルツズマブ(KEGG:D05446)から、一本鎖Fv抗体(scFv抗体)を設計し(化6、SEQ ID NO: 22)、分泌シグナル配列-ペルツズマブscFv抗体-細胞膜貫通ドメイン-自己切断T2Aペプチド-緑色蛍光タンパク質sfGFPの融合タンパク質をコードする遺伝子を作製し、CSII-CMV-MCSプラスミドのマルチクローニング部位に挿入した。
Figure JPOXMLDOC01-appb-C000010
 この遺伝子を、レンチウイルスにより、K562細胞またはK562細胞にHER2タンパク質をコードするDNAを形質導入したHER2発現細胞(K562/HER2細胞)に導入し、ペルツズマブscFv抗体を恒常発現する細胞株K562+ペルツズマブ-scFv細胞およびK562/HER2+ペルツズマブ-scFv細胞を樹立した。
 作製した細胞は、蛍光色素AF647を標識したペルツズマブ(ペルツズマブ-AF647)と反応させ、フローサイトメトリーで測定した。具体的には、3%FBS-PBS溶液に入れた1×106個の細胞と、1 nMのペルツズマブ-AF647を混合し、氷上で60分反応させた。この細胞のAF647蛍光強度をフローサイトメトリーで測定した。
 ライブラリー物質のモデルであるペルツズマブscFv抗体が、細胞膜上で標的抗原と結合すると、HER2タンパク質上のガイド抗体エピトープ部分がマスクされるため、ガイド抗体であるペルツズマブの結合は阻害されると予測される(図10)。この細胞とAF647標識ペルツズマブとを反応させたのち、フローサイトメトリーにより、AF647標識の存在を解析した(図11)。ネガティブコントロールとして、何も形質導入していないK562細胞(図11中、「K562細胞」と表記)、ポジティブコントロールとしてHER2タンパク質を形質導入したK562細胞(図11中、「K562/HER2細胞」と表記)を、対比のために使用した。
 この結果、HER2とペルツズマブscFv抗体の共発現(図11中「K562/HER2+Pertuzumab scFv cell」と表記)により、細胞に結合する抗体量が、ネガティブコントロールと同程度まで減少すること、すなわち、HER2タンパク質に対するペルツズマブの結合が阻害されることが確認できた(図11)。
 以上より、標的抗原発現細胞に、ガイド抗体と同じエピトープを持つ抗原結合性の分子(ライブラリー物質に対応)を共発現させると、ガイド抗体の結合が阻害され、フローサイトメトリーで分離できることが示された。
 実施例7:トラスツズマブscFvライブラリーによる分子ディスプレイ技術の開発
 本実施例においては、標的抗原としてHER2を使用し、ライブラリー物質のモデルとしてトラスツズマブscFv抗体を使用し、ガイド抗体として蛍光標識したトラスツズマブが標的抗原に結合するかを評価した。
 本実施例において、ライブラリー物質のモデルとして、標的抗原であるHER2タンパク質に対して結合する抗体医薬の有効成分抗体トラスツズマブ(KEGG:D03257)から、一本鎖Fv抗体(scFv抗体)を設計し(化7、SEQ ID NO: 23)、分泌シグナル配列-トラスツズマブscFv抗体-細胞膜貫通ドメイン-自己切断T2Aペプチド-緑色蛍光タンパク質sfGFPの融合タンパク質をコードする遺伝子を作製し、CSII-CMV-MCSプラスミドのマルチクローニング部位に挿入した。
Figure JPOXMLDOC01-appb-C000011
 この遺伝子を、レンチウイルスにより、K562細胞またはK562細胞にHER2タンパク質をコードするDNAを形質導入したHER2発現細胞(K562/HER2細胞)に導入し、トラスツズマブscFv抗体を発現するK562+トラスツズマブ-scFv細胞およびK562/HER2+トラスツズマブ-scFv細胞を作製した。この際、MOIが0.3程度となるようにウイルス量を調整して導入したため、感染率は30%程度で、1細胞に1遺伝子が導入されるようにした。
 作製した細胞は、蛍光色素AF647を標識したトラスツズマブ(トラスツズマブ-AF647)と反応させ、フローサイトメトリーで測定した。具体的には、3%FBS-PBS溶液に入れた1×106個の細胞と、1 nMのトラスツズマブ-AF647を混合し、氷上で60分反応させた。この細胞のAF647蛍光強度をフローサイトメトリーで測定した。
 ライブラリー物質のモデルであるトラスツズマブscFv抗体が、細胞膜上で標的抗原と結合すると、HER2タンパク質上のガイド抗体エピトープ部分がマスクされるため、ガイド抗体であるトラスツズマブの結合は阻害されると予測される(図12)。この細胞とAF647標識トラスツズマブとを反応させたのち、フローサイトメトリーにより、AF647標識の存在を解析した。ネガティブコントロールとして、何も形質導入していないK562細胞(図12中、「K562細胞」と表記)、ポジティブコントロールとしてHER2タンパク質を形質導入したK562細胞(図12中、「K562/HER2細胞」と表記)を、対比のために使用した。
 この結果、トラスツズマブscFv抗体の共発現(図13中「K562/HER2+トラスツズマブscFv細胞」と表記)により、細胞に結合する抗体量が、ネガティブコントロールと同程度まで減少すること、すなわち、HER2タンパク質に対するトラスツズマブの結合が阻害されることが確認できた(図13)。
 以上より、標的抗原発現細胞に、ガイド抗体と同じエピトープを持つ抗原結合性の分子(ライブラリー物質に対応)を共発現させると、ガイド抗体の結合が阻害され、フローサイトメトリーで分離できることが示された。
 実施例8:抗HER2scFv抗体とHER2共発現細胞との結合評価
 本実施例においては、標的抗原としてHER2を使用し、ライブラリー物質のモデルとしてペルツズマブscFv抗体、トラスツズマブscFv抗体を使用し、ガイド抗体として蛍光標識したペルツズマブおよびトラスツズマブが標的抗原に結合するかを評価した。
 ペルツズマブscFv抗体およびHER2を共発現する細胞は、実施例6において作成したK562/HER2+ペルツズマブ-scFv細胞を、そしてトラスツズマブscFv抗体およびHER2を共発現する細胞は、実施例7において作成したK562/HER2+トラスツズマブ-scFv細胞を使用した。この際、K562/HER2細胞に対して、svFc抗体の遺伝子を含むレンチウイルスを、MOIが0.3程度となるようにウイルス量を調整して導入したため、感染率は30%程度で、1細胞に1遺伝子が導入されるようにした。
 これらの細胞に対して、ペルツズマブ-AF647またはトラスツズマブ-AF647を反応させて、それぞれの細胞のAF647蛍光強度をフローサイトメトリーで測定した。具体的には、3%FBS-PBS溶液に入れた2×105個の細胞と、0.1 nMのトラスツズマブ-AF647あるいはペルツズマブ-AF647を混合し、氷上で60分反応させた。この細胞のうち、scFv抗体が発現しているsfGFP発現細胞のAF647蛍光強度をフローサイトメトリーで測定した。
 結果を図14に示す。K562/HER2+ペルツズマブ-scFv細胞に対してペルツズマブ-AF647またはトラスツズマブ-AF647を反応させた場合の結果を上段に、K562/HER2+トラスツズマブ-scFv細胞に対してペルツズマブ-AF647またはトラスツズマブ-AF647を反応させた場合の結果を下段に、それぞれ示す。なお、ペルツズマブとトラスツズマブとはともにHER2に対して結合する抗体であるものの、それぞれのエピトープが異なるものである。
 この結果、K562/HER2+ペルツズマブ-scFv細胞に対してペルツズマブ-AF647を反応させた場合には、細胞上のペルツズマブ-scFvと添加するペルツズマブ-AF647とが競合するために二峰性の蛍光分布を示したが(図14上段左)、K562/HER2+ペルツズマブ-scFv細胞に対してトラスツズマブ-AF647を反応させた場合には、細胞上のペルツズマブ-scFvと添加するトラスツズマブ-AF647とが競合せずトラスツズマブ-AF647が細胞上のHER2に結合したことが示された(図14上段右)。
 また、K562/HER2+トラスツズマブ-scFv細胞に対してペルツズマブ-AF647を反応させた場合には、細胞上のトラスツズマブ-scFvと添加するペルツズマブ-AF647とが競合せずペルツズマブ-AF647が細胞上のHER2に結合したことが示されたが(図14下段左)、K562/HER2+トラスツズマブ-scFv細胞に対してトラスツズマブ-AF647を反応させた場合には、細胞上のトラスツズマブ-scFvと添加するトラスツズマブ-AF647とが競合するために二峰性の蛍光分布を示した(図14下段右)。
 この結果から、細胞表面に提示される標的抗原とライブラリー物質が、ガイド抗体と同じエピトープを有する場合(競合する場合)に、ライブラリー物質を標的抗原に対する結合に関してスクリーニングができることを示している。
 実施例9:抗HER2scFv抗体とHER2共発現細胞との結合評価
 本実施例においては、標的抗原としてHER2を使用し、ライブラリー物質のモデルとしてペルツズマブscFv抗体およびその改変体を使用し、ガイド抗体として蛍光標識したペルツズマブおよびトラスツズマブが標的抗原に結合するかを評価した。
 ペルツズマブscFv抗体の改変抗体は、P53A変異型ペルツズマブscFv抗体、N54A変異型ペルツズマブscFv抗体、S55A変異型ペルツズマブscFv抗体、G56A変異型ペルツズマブscFv抗体を設計し、それぞれの遺伝子を実施例6と同様に、分泌シグナル配列-scFv抗体-細胞膜貫通ドメイン-自己切断T2Aペプチド-緑色蛍光タンパク質sfGFPの融合タンパク質をコードする遺伝子としてCSII-CMV-MCSプラスミドのマルチクローニング部位に組み込み、レンチウイルスによりHER2を恒常発現するK562/HER2細胞に導入し、それぞれのsvFc抗体を細胞膜上に提示させた。MOIが0.3程度となるようにウイルス量を調整したため、感染率は30%程度で、1細胞に1遺伝子が導入されるようにした。
 これらの細胞に対して、ペルツズマブ-AF647を反応させて、それぞれの細胞のAF647蛍光強度をフローサイトメトリーで測定した。具体的には、3%FBS-PBS溶液に入れた2×105個の細胞と、0.1 nMのペルツズマブ-AF647を混合し、氷上で60分反応させた。この細胞のうち、scFv抗体が発現しているsfGFP発現細胞のAF647蛍光強度をフローサイトメトリーで測定した。
 結果を図15に示す。いずれの改変体ペルツズマブsvFc抗体についても、HER2への結合に関してペルツズマブ-AF647と競合して、ペルツズマブ-AF647のHER2への結合を阻害することから、フローサイトメトリーの結果、二峰性の蛍光分布を示した。
 本発明の方法を使用することにより、既存の抗体と標的抗原上の同じ抗原結合領域(エピトープ)に結合し、薬効を示す抗体代替分子を取得することができる。この結果、低分子化を図ることが可能であることから、製剤コスト・治療コストを低減することができ、またライブラリー物質の設計次第で、組織浸透性の高い物質を選択することができることから、適応疾患を拡大することができる。

Claims (9)

  1.  細胞表面に、標的抗原とライブラリー物質を共発現して提示する細胞を作成する工程、
     検出可能な標識を保持させた標的抗原に結合するガイド抗体を反応させる工程、
     ガイド抗体が標的抗原に対して結合しない細胞を回収する工程、
     回収した細胞が細胞表面に提示するライブラリー物質を抗体代替分子として取得する工程、
    を含む、ライブラリー物質中から標的抗原に結合する抗体代替分子を取得する方法。
  2.  取得される抗体代替分子が、標的抗原への結合に関して、ガイド抗体と競合する、請求項1に記載の方法。
  3.  ライブラリー物質が、ペプチドまたはタンパク質により構成されるライブラリー物質である、請求項1または2に記載の方法。
  4.  ライブラリー物質が、ERPYACXXXXCXXXFXXXXXXXRHIRIHTGQKP(SEQ ID NO: 4)で示されるアミノ酸配列を有するペプチド、ガイド抗体から誘導される一本鎖Fv抗体(scFv抗体)のライブラリー、またはこれらのいずれかの組み合わせである、請求項1または2に記載の方法。
  5.  標的抗原が、タンパク質、ペプチド、糖鎖から選択される、請求項1または2に記載の方法。
  6.  標的抗原が、HER2タンパク質、PD-1タンパク質、CD25から選択される、1または2に記載の方法。
  7.  MQVQLVESGG GVVQPGRSLR LDCKASGITF SNSGMHWVRQ APGKGLEWVA VIWYDGSKRY YADSVKGRFT ISRDNSKNTL FLQMNSLRAE DTAVYYCATN DDYWGQGTLV TVSSGGGGSG GGGSGGGGSE IVLTQSPATL SLSPGERATL SCRASQSVSS YLAWYQQKPG QAPRLLIYDA SNRATGIPAR FSGSGSGTDF TLTISSLEPE DFAVYYCQQS SNWPRTFGQG TKVEIKR(SEQ ID NO: 1)で示されるアミノ酸配列、またはこのアミノ酸配列において1又は数個のアミノ酸の欠失、置換、付加を有するアミノ酸配列、
    で示されるアミノ酸配列を有する、標的抗原であるPD-1タンパク質に対して結合する抗体代替分子。
  8.  QVQLVQSGAE VKKPGSSVKV SCKASGYTFT SYRMHWVRQA PGQGLEWIGY INPSTGYTEY NQKFKDKATI TADESTNTAY MELSSLRSED TAVYYCARGG GVFDYWGQGT LVTVSSGGGG SGGGGSGGGG SDIQMTQSPS TLSASVGDRV TITCSASSSI SYMHWYQQKP GKAPKLLIYT TSNLASGVPA RFSGSGSGTE FTLTISSLQP DDFATYYCHQ RSTYPLTFGQ GTKVEVKR(SEQ ID NO: 2)で示されるアミノ酸配列、またはこのアミノ酸配列において1又は数個のアミノ酸の欠失、置換、付加を有するアミノ酸配列、
     ERPYACPVES CDRRFTGGGV LTAHIRIHTG QKP(SEQ ID NO: 13)、
     ERPYACPVES CGGVFDYFET LTRHIRIHTG QKP(SEQ ID NO: 14)、
     ERPYACPVES CGGVFDYAPR LTRHIRIHTG QKP(SEQ ID NO: 15)、
     ERPYACPVES CGGVFDYHIG LTRHIRIHTG QKP(SEQ ID NO: 16)、または
     ERPYACPVES CGGVFDYKVQ LTRHIRIHTG QKP(SEQ ID NO: 17)
    で示されるアミノ酸配列を有する、標的抗原であるCD25タンパク質に対して結合する抗体代替分子。
  9.  EVQLVESGGG LVQPGGSLRL SCAASGFTFT DYTMDWVRQA PGKGLEWVAD VNPNSGGSIY NQRFKGRFTL SVDRSKNTLY LQMNSLRAED TAVYYCARNL GPSFYFDYWG QGTLVTVSSG GGGSGGGGSG GGGSGGGGSD IQMTQSPSSL SASVGDRVTI TCKASQDVSI GVAWYQQKPG KAPKLLIYSA SYRYTGVPSR FSGSGSGTDF TLTISSLQPE DFATYYCQQY YIYPYTFGQG TKVEIKR(SEQ ID NO: 22)で示されるアミノ酸配列、またはこのアミノ酸配列において1又は数個のアミノ酸の欠失、置換、付加を有するアミノ酸配列、
     EVQLVESGGG LVQPGGSLRL SCAASGFNIK DTYIHWVRQA PGKGLEWVAR IYPTNGYTRY ADSVKGRFTI SADTSKNTAY LQMNSLRAED TAVYYCSRWG GDGFYAMDYW GQGTLVTVSS GGGGSGGGGS GGGGSDIQMT QSPSSLSASV GDRVTITCRA SQDVNTAVAW YQQKPGKAPK LLIYSASFLY SGVPSRFSGS RSGTDFTLTI SSLQPEDFAT YYCQQHYTTP PTFGQGTKVE IKR(SEQ ID NO: 23)で示されるアミノ酸配列、またはこのアミノ酸配列において1又は数個のアミノ酸の欠失、置換、付加を有するアミノ酸配列、
     ERPYACSCRN CAGPFNLDEY RQRHIRIHTG QKP(SEQ ID NO: 20)、または
     ERPYACYRYW CMLPFPYSKS DRRHIRIHTG QKP(SEQ ID NO: 21)
    で示されるアミノ酸配列を有する、標的抗原であるHER2タンパク質に対して結合する抗体代替分子。
     
     

     
PCT/JP2022/039963 2021-10-27 2022-10-26 抗体代替分子のスクリーニング方法 WO2023074749A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-175474 2021-10-27
JP2021175474 2021-10-27

Publications (1)

Publication Number Publication Date
WO2023074749A1 true WO2023074749A1 (ja) 2023-05-04

Family

ID=86158035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039963 WO2023074749A1 (ja) 2021-10-27 2022-10-26 抗体代替分子のスクリーニング方法

Country Status (1)

Country Link
WO (1) WO2023074749A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050008625A1 (en) * 2003-02-13 2005-01-13 Kalobios, Inc. Antibody affinity engineering by serial epitope-guided complementarity replacement
WO2014175305A1 (ja) * 2013-04-23 2014-10-30 国立大学法人東京工業大学 ペプチド提示タンパク質及びそれを用いたペプチドライブラリー
WO2017115828A1 (ja) * 2015-12-29 2017-07-06 国立大学法人東京工業大学 標的結合ペプチドの安定化方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050008625A1 (en) * 2003-02-13 2005-01-13 Kalobios, Inc. Antibody affinity engineering by serial epitope-guided complementarity replacement
WO2014175305A1 (ja) * 2013-04-23 2014-10-30 国立大学法人東京工業大学 ペプチド提示タンパク質及びそれを用いたペプチドライブラリー
WO2017115828A1 (ja) * 2015-12-29 2017-07-06 国立大学法人東京工業大学 標的結合ペプチドの安定化方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
GUO XIAOCHEN; CAO HONGXUE; WANG YUNXIN; LIU YANG; CHEN YANMIN; WANG NAN; JIANG SHAN; ZHANG SHENGQI; WU QIANG; LI TIANHE; ZHANG YIN: "Screening scFv antibodies against infectious bursal disease virus by co-expression of antigen and antibody in the bacteria display system", VETERINARY IMMUNOLOGY AND IMMUNOPATHOLOGY, ELSEVIER, AMSTERDAM, NL, vol. 180, 9 September 2016 (2016-09-09), AMSTERDAM, NL, pages 45 - 52, XP029750459, ISSN: 0165-2427, DOI: 10.1016/j.vetimm.2016.09.004 *
KADONOSONO TETSUYA, YIMCHUEN WANAPORN, OTA YUMI, SEE KYRA, FURUTA TADAOMI, SHIOZAWA TADASHI, KITAZAWA MAIKA, GOTO YU, PATIL AKASH,: "Design strategy to create antibody mimetics harbouring immobilised complementarity determining region peptides for practical use", SCIENTIFIC REPORTS, vol. 10, no. 1, 1 December 2020 (2020-12-01), XP055781457, DOI: 10.1038/s41598-020-57713-4 *
KADONOSONO TETSUYA: "A smart design of target-binding molecules", NIHON NOYAKU GAKKAISHI = JAPANESE JOURNAL OF PESTICIDE SCIENCE, TOKIO, vol. 46, no. 2, 20 August 2021 (2021-08-20), Tokio , pages 168 - 172, XP093060987, ISSN: 2187-0365, DOI: 10.1584/jpestics.W21-33 *
ROBERTSON NATHAN, LOPEZ-ANTON NANCY, GURJAR SHALOM A., KHALIQUE HENA, KHALAF ZAINAB, CLERKIN SIOBHAN, LEYDON VAUGHAN R., PARKER-MA: "Development of a novel mammalian display system for selection of antibodies against membrane proteins", JOURNAL OF BIOLOGICAL CHEMISTRY, AMERICAN SOCIETY FOR BIOCHEMISTRY AND MOLECULAR BIOLOGY, US, vol. 295, no. 52, 1 December 2020 (2020-12-01), US , pages 18436 - 18448, XP093060996, ISSN: 0021-9258, DOI: 10.1074/jbc.RA120.015053 *
SEE KYRA, KADONOSONO TETSUYA, MIYAMOTO KOTARO, TSUBAKI TAKUYA, OTA YUMI, KATSUMI MARINA, RYO SUMOE, AIDA KAZUKI, MINEGISHI MISA, I: "Antibody-guided design and identification of CD25-binding small antibody mimetics using mammalian cell surface display", SCIENTIFIC REPORTS, vol. 11, no. 1, 11 November 2021 (2021-11-11), pages 22098, XP093060978, DOI: 10.1038/s41598-021-01603-w *
TETSUYA KADONOSONO: "New Developments in Middle Molecular Peptide Drug Discovery Design strategy for antibody-substituting peptides", CHEMISTRY AND BIOLOGY. KAGAKU TO SEIBUTSU, vol. 60, no. 6, 1 June 2022 (2022-06-01), pages 284 - 289, XP093060984 *
YIMCHUEN WANAPORN, KADONOSONO TETSUYA, OTA YUMI, SATO SHINICHI, KITAZAWA MAIKA, SHIOZAWA TADASHI, KUCHIMARU TAKAHIRO, TAKI MASUMI,: "Strategic design to create HER2-targeting proteins with target-binding peptides immobilized on a fibronectin type III domain scaffold", RSC ADVANCES, vol. 10, no. 26, 17 April 2020 (2020-04-17), pages 15154 - 15162, XP093060986, DOI: 10.1039/D0RA00427H *
ZHANG YINJIE, WU BOYANG JASON, YU XIAOLAN, LUO PING, YE HAO, YU YAN, HAN WEI, LI JINGJING: "Development of an Antigen-Antibody Co-Display System for Detecting Interaction of G-Protein-Coupled Receptors and Single-Chain Variable Fragments", INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, vol. 22, no. 9, 29 April 2021 (2021-04-29), pages 4711, XP093061003, DOI: 10.3390/ijms22094711 *

Similar Documents

Publication Publication Date Title
Frenzel et al. Designing human antibodies by phage display
CN113234173B (zh) 靶向bcma的嵌合抗原受体及其使用方法
JP7048494B2 (ja) 修飾t細胞に対する条件的活性型キメラ抗原受容体
RU2569187C2 (ru) Коллекция и способы ее применения
AU2018274932B2 (en) Cancer cell-specific antibody, anticancer drug and cancer testing method
JP2022191318A (ja) 抗gpc3抗体
EP2761064B1 (en) Molecular display method
CN105924519A (zh) 全面单克隆抗体产生
JP2003518391A (ja) エピトープに結合可能な蛋白質の変異体のライブラリーから発達した結合メンバーを選抜するために天然型エピトープを使用する方法
JP2014500725A (ja) コレクション及びその使用方法
WO2022061594A1 (zh) 新型冠状病毒(sars-cov-2)刺突蛋白结合分子及其应用
CN117186228B (zh) 包含长cdr3序列的抗人bcma纳米抗体的双特异性抗体及应用
CN116925229B (zh) 一种靶向gprc5d的抗体及其应用
CN117069844B (zh) 包含特定等电点的抗人bcma纳米抗体的双特异性抗体及应用
Yu et al. Specificity of recombinant antibodies generated from multiple sclerosis cerebrospinal fluid probed with a random peptide library
US20060263787A1 (en) Immunoglobulin-like variable chain binding polypeptides and methods of use
JP2021536256A (ja) 修飾t細胞に対する条件的活性型キメラ抗原受容体
JP2021528382A (ja) 免疫エフェクター細胞を腫瘍細胞へ誘引する方法及び手段
WO2021243028A1 (en) Bispecific molecules for selectively modulating t cells
WO2023074749A1 (ja) 抗体代替分子のスクリーニング方法
Moradi-Kalbolandi et al. Soluble expression and characterization of a new scFv directed to human CD123
CN114478789B (zh) 抗pd-l1与ox40双特异性抗体及其用途
WO2019075392A1 (en) ANTIGEN-BINDING PROTEIN CONSTRUCTS AND USES THEREOF
US20220411472A1 (en) Self-assembling circular tandem repeat proteins with increased stability
CN113121689B (zh) Ctla-4结合分子及其用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22887074

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023556603

Country of ref document: JP