WO2023074597A1 - Plastic lens, lens unit and method for producing plastic lens - Google Patents

Plastic lens, lens unit and method for producing plastic lens Download PDF

Info

Publication number
WO2023074597A1
WO2023074597A1 PCT/JP2022/039433 JP2022039433W WO2023074597A1 WO 2023074597 A1 WO2023074597 A1 WO 2023074597A1 JP 2022039433 W JP2022039433 W JP 2022039433W WO 2023074597 A1 WO2023074597 A1 WO 2023074597A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
plastic lens
hard coat
antireflection layer
plastic
Prior art date
Application number
PCT/JP2022/039433
Other languages
French (fr)
Japanese (ja)
Inventor
ティ ジェニファー トレス ダマスコ
貴則 加本
建 杉本
政孝 川上
明典 山本
Original Assignee
日本電産株式会社
日本電産サンキョー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022064019A external-priority patent/JP2023067707A/en
Application filed by 日本電産株式会社, 日本電産サンキョー株式会社 filed Critical 日本電産株式会社
Priority to CN202280072197.2A priority Critical patent/CN118355296A/en
Publication of WO2023074597A1 publication Critical patent/WO2023074597A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses

Definitions

  • the present invention relates to a plastic lens, a lens unit, and a method of manufacturing a plastic lens.
  • Patent Document 2 The plastic lens described in Patent Document 2 is intended for spectacle lenses.
  • lenses used in surveillance cameras and in-vehicle cameras are required to be more durable than spectacle lenses because they are used in environments with large temperature changes. Therefore, there is a problem that the configuration described in Patent Document 2 cannot sufficiently cope with this problem.
  • an object of the present invention is to provide a plastic lens and a lens unit that can further improve durability, for example.
  • the present invention provides a lens body made of resin, a hard coat layer covering at least one surface of the lens body, and an antireflection layer covering the hard coat layer from the side opposite to the lens body.
  • the total film thickness AR of the antireflection layer is the following conditional expression (1) 200 nm ⁇ AR ⁇ 500 nm (1)
  • the filling, In the antireflection layer, the outermost layer farthest from the lens body is a silicon dioxide film. 60 nm ⁇ ts ⁇ 150 nm (2) is characterized by satisfying
  • the total thickness AR of the antireflection layers is 200 nm or more and 500 nm or less, so it is excellent as an antireflection layer for plastic lenses.
  • the outermost layer of the antireflection layer is a silicon dioxide film, the plastic lens is less likely to be scratched in an actual usage environment, and blurring and distortion of images as a lens unit are less likely to occur. Therefore, a highly durable lens unit can be configured.
  • the film thickness ts of the outermost layer is 60 nm or more and 150 nm or less, the antireflection layer is excellent in chemical resistance and the antireflection properties of the optical thin film are obtained.
  • the present invention comprises a lens body made of resin, a hard coat layer covering at least one surface of the lens body, and an antireflection layer covering the hard coat layer from the side opposite to the lens body,
  • the total film thickness AR of the antireflection layer is the following conditional expression (1) 200 nm ⁇ AR ⁇ 500 nm (1)
  • the nanoindenter indentation elastic modulus E of the antireflection layer is the following conditional expression (3) 70GPa ⁇ E ⁇ 110GPa (3) is characterized by satisfying
  • the total thickness AR of the antireflection layers is 200 nm or more and 500 nm or less, so it is excellent as an antireflection layer for plastic lenses.
  • the nanoindenter indentation elastic modulus is 70 GPa or more and 110 G or less, both scratch resistance and film stress can be achieved.
  • the lens body preferably has a cyclic imide structure as the ring structure.
  • the antireflection layer is a dielectric multilayer film in which a silicon dioxide film and a high refractive index film having a higher refractive index than the silicon dioxide film are alternately laminated.
  • An embodiment in which the most distant outermost layer is a silicon dioxide film can be adopted.
  • the high refractive index film is a trisilicon tetranitride film.
  • the hard coat layer contains silica particles
  • the content rate of the silica particles in the hard coat layer is S
  • the content rate S is the following conditional expression (4) 40% ⁇ S ⁇ 65% (4) is preferably satisfied.
  • the lens body is, for example, a methacrylic resin having a structural unit having a ring structure in its main chain, wherein the structural unit is a structural unit derived from an N-substituted maleimide monomer and a glutarimide-based Among the structural units, an aspect containing at least one structural unit can be adopted.
  • the radius of curvature of the one surface is R11
  • the radius of curvature R11 is defined by the following conditional expression (5) 9.000mm ⁇ R11 ⁇ 16.000mm (5) is preferably satisfied.
  • the one surface of the lens body is an aspherical surface.
  • the lens unit can have a higher resolution.
  • the radius of curvature of the one surface is R11 and the focal length of the plastic lens is f1
  • the radius of curvature R11 and the focal length f1 are defined by the following conditional expression (6): -5.000 ⁇ R11/f1 ⁇ -1.000 (6) is preferably satisfied.
  • the effective radius of the one surface is sd11 and the distance measured along the one surface from the center of the one surface to the radial position corresponding to the effective radius is ARS11
  • the effective radius sd11 and The distance ARS11 is determined by the following conditional expression (7) 1.000 ⁇ ARS11/sd11 ⁇ 1.013 (7) is preferably satisfied.
  • the plastic lens is disposed closest to the object side among the plurality of lenses with the one surface facing the object side.
  • the radius of curvature of the one surface is R11 and the focal length of the entire lens system consisting of the plurality of lenses is f0
  • the radius of curvature R11 and the focal length f0 are defined by the following conditional expression: 8.000 ⁇ R11 /f0 ⁇ 14.000 is preferably satisfied.
  • the half angle of view ⁇ is the following conditional expression: 75deg ⁇ 120deg
  • the filling When the curvature radius of the one surface is R11 and the effective radius of the one surface is sd11, the curvature radius R11 and the effective radius sd11 are expressed by the following conditional expression (8) 0.300 ⁇ sd11/R11 ⁇ 0.600 (8) is preferably satisfied.
  • the lens body has a cyclic imide structure as a ring structure
  • the hard coat layer contains silica particles
  • S is the content of the silica particles in the hard coat layer.
  • S is the following conditional expression (9) 20% ⁇ S ⁇ 40% (9)
  • the filling When the degree of polymerization of the hard coat layer is DP, the degree of polymerization DP is the following conditional expression (10) 70% ⁇ DP ⁇ 100% (10) is preferably satisfied.
  • the hardness of the antireflection layer provided on the surface of the hard coat layer can be increased.
  • the weather resistance of the plastic lens tends to decrease. More specifically, when this plastic lens is used outdoors, cracks are likely to occur in the hard coat layer due to changes in temperature and humidity, ultraviolet rays, and the like. Therefore, according to the present invention, if the degree of polymerization of the hard coat layer is within the range of conditional expression (10), the hardness of the antireflection layer can be increased even if the silica content is reduced to the range of conditional expression (9). can be done. In addition, since the silica content can be lowered, cracks are less likely to occur in the hard coat layer even when this plastic lens is used outdoors. Therefore, the durability quality of the plastic lens can be further improved.
  • the film thickness HC of the hard coat layer is determined by the following conditional expression (11) 6 ⁇ m ⁇ HC ⁇ 15 ⁇ m (11) is preferably satisfied. By doing so, the hardness of the antireflection layer provided on the surface of the hard coat layer can be increased.
  • an antifouling layer that covers the antireflection layer from the side opposite to the lens body. In this way, when the plastic lens is used outdoors, the surface of the plastic lens is less likely to become dirty, so deterioration of the lens performance of the plastic lens can be suppressed.
  • the glass transition temperature of the lens body is preferably 120°C or higher. By doing so, it is possible to keep the film forming temperature low when forming the antireflection layer. As a result, the residual stress of the antireflection layer can be reduced, so that the antireflection layer is less likely to be damaged.
  • the present invention provides a method for manufacturing a plastic lens, which includes a forming step of forming an antireflection layer on at least one surface of the plastic lens, wherein the plastic lens has a glass transition temperature of 120° C. or higher, and in the forming step, The film forming temperature of the antireflection layer is lower than the glass transition temperature of the plastic lens, and the difference between the film forming temperature of the antireflection layer and the glass transition temperature of the plastic lens is 30° C. or more.
  • the film forming temperature of the antireflection layer by suppressing the film forming temperature of the antireflection layer to 30°C or more lower than the glass transition temperature of the plastic lens, the MTF change can be suppressed and the resolution can be maintained.
  • the residual stress in the antireflection layer can be reduced by keeping the film formation temperature low, the antireflection layer is less likely to be damaged.
  • the total thickness AR of the antireflection layers is 200 nm or more and 500 nm or less, so it is excellent as an antireflection layer for plastic lenses.
  • FIG. 2 is an explanatory diagram showing the pencil hardness of the plastic lens shown in FIG. 1;
  • FIG. 2 is an explanatory diagram showing conditions for forming a hard coat layer shown in FIG. 1;
  • 4 is a graph showing the relationship between the viscosity of the coating liquid for forming the hard coat layer shown in FIG. 1 and the thickness of the hard coat layer.
  • 2 is a graph showing the relationship between the silica content in the hard coat layer shown in FIG. 1 and the pencil hardness of the surface of the antireflection layer.
  • 4 is a graph showing the relationship between the film thickness difference of the hard coat layer shown in FIG. 1 and the MTF.
  • FIG. 4 is a graph showing the relationship between the film thickness difference of the hard coat layer shown in FIG. 1 and the angle of view.
  • FIG. 2 is an explanatory view showing the layer structure of the antireflection layer shown in FIG. 1;
  • FIG. 2 is an explanatory diagram showing optical characteristics of the antireflection layer shown in FIG. 1;
  • 2 is an explanatory diagram showing the nanoindenter indentation elastic modulus of the antireflection layer shown in FIG. 1;
  • FIG. FIG. 2 is an explanatory diagram showing the Vickers hardness of the antireflection layer or the like shown in FIG. 1; 2 is a graph showing linear expansion coefficients of resins forming the lens body shown in FIG.
  • FIG. 1 is an explanatory diagram of a lens unit according to Example 1 of the present invention
  • FIG. FIG. 16 is an explanatory diagram showing each lens data, aspheric coefficients, etc. in the lens unit shown in FIG. 15
  • FIG. 16 is an explanatory diagram showing main parameters of the lens unit shown in FIG. 15
  • FIG. 16 is an explanatory diagram showing optical characteristics of the lens unit shown in FIG. 15;
  • FIG. 1 is an explanatory diagram of a lens unit according to Example 1 of the present invention
  • FIG. FIG. 16 is an explanatory diagram showing each lens data, aspheric coefficients, etc. in the lens unit shown in FIG. 15
  • FIG. 16 is an explanatory diagram showing main parameters of the lens unit shown in FIG. 15
  • FIG. 16 is an explanatory diagram showing optical characteristics of the lens unit shown in FIG. 15;
  • FIG. 16 is an explanatory diagram showing lateral aberration of the lens unit shown in FIG. 15;
  • FIG. 5 is an explanatory diagram of a lens unit according to Example 2 of the present invention;
  • FIG. 21 is an explanatory diagram showing each lens data, aspheric coefficients, etc. in the lens unit shown in FIG. 20;
  • FIG. 21 is an explanatory diagram showing optical characteristics of the lens unit shown in FIG. 20;
  • FIG. 21 is an explanatory diagram showing lateral aberration of the lens unit shown in FIG. 20;
  • 4 is a graph showing the relationship between silica content and degree of polymerization in other hard coat layers.
  • 5 is a graph showing the relationship between silica content and film thickness in other hard coat layers.
  • FIG. 1 is an explanatory diagram of a plastic lens P to which the present invention is applied.
  • the plastic lens P shown in FIG. 1 has one surface Pa facing the object side La in the extending direction of the optical axis L, and the other surface Pb facing the image side Lb opposite to the object side La. It has The present invention can be applied whether one surface Pa is spherical or aspherical, and can be applied whether surface Pb is spherical or aspherical.
  • the plastic lens P illustrated in FIG. 1 is a meniscus lens with a convex surface facing the object side La and a concave surface facing the image side Lb.
  • the plastic lens P of this embodiment includes at least a lens body P1 made of resin, a hard coat layer P2 covering one surface Pa of the lens body P1, and an antireflection layer covering the hard coat layer P2 from the opposite side of the lens body P1. P3.
  • a hard coat layer forming step of forming the hard coat layer P2 and an antireflection layer forming step of forming the antireflection layer P3 are performed. I do.
  • FIG. 2 is an explanatory diagram showing the pencil hardness of the plastic lens P shown in FIG.
  • the pencil hardness of the plastic lens P to which the present invention is applied using a resin having a cyclic imide structure as a ring structure is indicated by C1
  • C2 the pencil hardness of the plastic lens
  • the plastic constituting the lens body P1 preferably has a glass transition temperature (Tg) of 110°C or higher when measured according to JIS-K7121. Further, considering the moldability of the lens body P1, it is preferable that the plastic constituting the lens body P1 has a glass transition temperature Tg of 200° C. or less. Therefore, it is preferable that the plastic constituting the lens body P1 has a glass transition temperature Tg of 110° C. or more and 200° C. or less. In consideration of thermal stability, it is preferable that the plastic constituting the lens body P1 has a glass transition temperature Tg of 130° C. or more and 200° C. or less.
  • the plastic forming the lens body P1 is a resin having a cyclic imide structure as a ring structure. More specifically, the lens body P1 is a methacrylic resin having a structural unit having a ring structure in its main chain, and the structural unit is a structural unit derived from an N-substituted maleimide monomer and a glutarimide structure. Among the units, at least one structural unit is included. More specifically, the lens body P1 includes a structural unit (X) having the above ring structure in its main chain and a structural unit (Y) derived from a methacrylic acid ester monomer. In this embodiment, the lens body P1 is composed only of the structural unit (X) and the structural unit (Y).
  • a methacrylic resin containing such a structural unit is excellent in both heat resistance and optical properties. More specifically, the resin forming the lens body P1 has a cyclic imide structure, is transparent, and has a glass transition temperature Tg 30° C. to 40° C. higher than that of ordinary methacrylic resins. Therefore, the lens body P1 does not deform even when exposed to a temperature of, for example, 110° C., and the light transmittance exceeds 90%.
  • Such resins are exemplified in, for example, Japanese Unexamined Patent Publication No. 2018-53044 and Japanese Unexamined Patent Publication No. 2020-63436.
  • the structural unit (Y) derived from a methacrylic acid ester monomer is, for example, derived from one or more monomers selected from the methacrylic acid esters shown below.
  • methacrylates include methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, and methacrylic acid.
  • the structural unit (X) derived from the N-substituted maleimide monomer is one or two selected from the group consisting of structural units represented by the following formula (1) and structural units represented by the following formula (2). It is formed from one or more structural units.
  • R1 is an arylalkyl group having 7 to 14 carbon atoms or an aryl group having 6 to 14 carbon atoms.
  • Each of R2 and R3 is a hydrogen atom, an oxygen atom, a sulfur atom, an alkyl group having 1 to 12 carbon atoms, or an aryl group having 6 to 14 carbon atoms.
  • R2 or R3 may contain a halogen atom as a substituent.
  • R4 is a hydrogen atom, a cycloalkyl group having 3 to 12 carbon atoms, or an alkyl group having 1 to 12 carbon atoms.
  • R5 and R6 is a hydrogen atom, an oxygen atom, a sulfur atom, an alkyl group having 1 to 12 carbon atoms, or an aryl group having 6 to 14 carbon atoms.
  • the glutarimide-based structural unit is represented by the following formula (3).
  • each of R7 and R8 is, for example, a hydrogen atom or a methyl group.
  • R9 is a hydrogen atom, a methyl group, a butyl group, or a cyclohexyl group.
  • R7 is a methyl group
  • R8 is hydrogen and R9 is a methyl group.
  • the pencil hardness of the lens surface is higher than when the lens body P1 is formed using a general-purpose methacrylic resin having no cyclic imide structure.
  • the pencil hardness of the lens surface with the hard coat layer P2 and the antireflection layer P3 provided is represented by the bar graph C2 in FIG.
  • the hardness is about 5H
  • the pencil hardness of the lens surface with the hard coat layer P2 and the antireflection layer P3 provided is , about 6H, as shown by bar graph C1 in FIG.
  • the resin material of the plastic lens P may be added with an ultraviolet absorber.
  • the hard coat layer P2 imparts scratch resistance to the plastic lens base material and enhances the adhesion between the plastic base material constituting the lens body P1 and the antireflection layer P3. .
  • the hard coat layer P2 includes a base layer made of an organic material layer or an organic silicon compound layer. Further, the hard coat layer P2 is composed of a layer in which metal oxide fine particles are dispersed in a base layer. Specific examples of metal oxide fine particles are metal oxides such as SiO 2 , Al 2 O 3 , SnO 2 and TiO 2 . In this embodiment, SiO 2 (silica) is used as the metal oxide fine particles.
  • Various resin layers are used for forming the organic material layer.
  • organosilicon compound layer for example, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraisopropoxysilane, tetrabutoxysilane, vinyltrialkoxysilane, allyltrialkoxysilane, acryloxypropyltrialkoxysilane and the like are used.
  • the coating liquid for forming the hard coat layer P2 a coating liquid in which metal oxide fine particles are dispersed in the liquid for forming the base layer is used.
  • the surface of the lens body P1 may be subjected to pretreatment such as acid treatment or primer treatment to improve adhesion between the lens body P1 and the hard coat layer P2. be.
  • FIG. 3 is an explanatory diagram showing conditions for forming the hard coat layer P2 of the plastic lens P shown in FIG.
  • FIG. 4 is a graph showing the relationship between the viscosity of the coating liquid for forming the hard coat layer P2 shown in FIG. 1 and the thickness of the hard coat layer.
  • FIG. 5 is a graph showing the relationship between the silica content in the hard coat layer shown in FIG. 1 and the pencil hardness of the antireflection layer surface.
  • the coating is cured by heat, electromagnetic waves such as ultraviolet rays, or electron beams.
  • heat a method of heating and drying at a temperature of 40 to 200° C. for several hours after applying the coating liquid can be exemplified. If the amount of the metal oxide fine particles in the coating solution is too small, the resulting hard coat layer P2 may have insufficient wear resistance. On the other hand, when the amount of the metal oxide fine particles blended in the coating liquid is too large, cracks may occur in the hard coat layer P2.
  • the material for the hard coat layer P2 is preferably a photocurable resin material.
  • a coating liquid containing a photocurable resin material made of acrylic and/or urethane and metal oxide fine particles is applied by a spin coating method, and then a coating film made of the coating liquid is heated. After drying, the hard coat layer P2 is formed by photocuring with electromagnetic waves or electron beams from an ultraviolet lamp. Therefore, the hard coat layer P2 can be formed at a temperature lower than the glass transition temperature Tg of the lens body P1.
  • the hard coat layer P2 is a photocurable resin made of acrylic and/or urethane, etc., it has excellent adhesion to the lens body P1, and excellent buffering is achieved between the lens body P1 and the antireflection layer P3. act as a layer.
  • a photocurable resin material is used as the material for the hard coat layer P2, but the material for the hard coat layer P2 may be a thermosetting resin material instead of the photocurable resin material.
  • the lens body P1 is rotated around the optical axis L to form a coating film of the coating liquid.
  • the lens shape is substantially distorted. Therefore, in this embodiment, a relatively high-viscosity coating liquid having a viscosity of 26 mPa ⁇ s to 50 mPa ⁇ s is applied, and after dropping the coating liquid so that it spreads over the entire surface of the lens body P1, the spin coater is rotated. , are controlled as shown in FIG.
  • the rotation speed of the spin coater is gradually accelerated with a predetermined acceleration gradient, then rotated at a constant speed for a predetermined time, and then with a predetermined deceleration gradient. , gradually decelerate.
  • the angular velocity r1 when rotating at a constant speed for a certain period of time is 1000 rpm, and the rotation time is 10 seconds.
  • the acceleration gradient a1 until the angular velocity r1 reaches 1000 rpm is assumed to be 333 rpm/s, and the deceleration gradient d1 is assumed to be 200 rpm/s.
  • the coating state after the primary rotation is checked, and depending on the confirmation result, the secondary rotation is performed for a certain period of time at a speed faster than the primary rotation.
  • the rotation speed of the spin coater is gradually accelerated with a predetermined acceleration gradient, then rotated at a constant speed for a certain period of time, and then gradually applied with a predetermined deceleration gradient.
  • the angular velocity r2 during uniform rotation is set to be at least twice the angular velocity r1 during primary rotation.
  • the angular velocity r2 when rotating at a constant speed for a certain period of time is 3000 rpm, and the rotation time is 9 seconds.
  • the acceleration gradient a2 until the angular velocity r2 reaches 3000 rpm is assumed to be 3000 rpm/s
  • the deceleration gradient d2 is assumed to be 600 rpm/s.
  • the secondary rotation gradually accelerates with a predetermined acceleration gradient without decelerating from the uniform rotation of the primary rotation. After that, it may be rotated at a constant speed for a certain period of time, and then gradually decelerated with a predetermined deceleration gradient.
  • the relationship between the viscosity of the coating liquid and the thickness of the hard coat layer P2 is as shown in FIG.
  • the circles show the results when the standard viscosity is used, and the triangles show the results when the viscosity is increased from 26 mPa ⁇ s to 50 mPa ⁇ s.
  • the hard coat layer P2 can be thickened when the viscosity of the coating liquid is high.
  • the hard coat layer P2 is thickened by using a relatively high-viscosity coating agent with a viscosity of 26 mPa ⁇ s to 50 mPa ⁇ s. Also, by setting the conditions of the spin process after dropping the coating material to the above conditions and making the speed gradient during acceleration and deceleration moderate, sudden acceleration and sudden stop can be prevented. Therefore, the moment of inertia associated with sudden acceleration and sudden stop can be reduced, so even if the hard coat layer P2 is formed with a sufficient thickness, the thickness of the coating film is less likely to vary.
  • the thickness of the hard coat layer P2 formed on the center Pa1 of the one surface Pa of the lens body P1 is 7.4 ⁇ m
  • the thickness of the hard coat layer P2 is 7.4 ⁇ m
  • the thickness of the formed hard coat layer P2 was 7.55 ⁇ m
  • the difference in thickness between the hard coat layer P2 formed at the center Pa1 and the outer circumference Pa2 of one surface Pa was ⁇ 0.3 ⁇ m. Therefore, it is possible to realize a plastic lens P that does not cause optical distortion of transmitted light.
  • the film thickness HC of the hard coat layer P2 preferably satisfies the following conditional expression. 2 ⁇ m ⁇ HC ⁇ 20 ⁇ m
  • a high pencil hardness can be achieved if the film thickness HC is 2 ⁇ m or more. Moreover, if the film thickness HC is 20 ⁇ m or less, the thermal shock resistance can be enhanced.
  • the film thickness HC of the hard coat layer P2 satisfies the following conditional expression. 5 ⁇ m ⁇ HC ⁇ 10 ⁇ m
  • the film thickness HC is 5 ⁇ m or more, a pencil hardness of 6H or more can be achieved. Also, if the film thickness HC is 10 ⁇ m or less, the occurrence of cracks due to thermal shock can be further suppressed.
  • the film thickness HC of the hard coat layer P2 satisfies the following conditional expression. 6 ⁇ m ⁇ HC ⁇ 9 ⁇ m
  • the film thickness HC is 6 ⁇ m or more, a pencil hardness of 6H or more can be reliably achieved. Further, when the film thickness HC is 9 ⁇ m or less, defects are less likely to occur in the antireflection layer P3 even after 1000 cycles of a thermal shock test at ⁇ 40° C. and 85° C. for 30 minutes each.
  • the difference in film thickness of the hard coat layer P2 between the center Pa1 and the outer circumference Pa2 on one surface Pa of the lens body P1 is ⁇ 0.7 ⁇ m or less.
  • the higher the silica content the higher the hardness of the surface of the antireflection layer P3. Therefore, when the content of silica particles in the hard coat layer P2 is S, the content S is the following conditional expression: 40% ⁇ S ⁇ 65% is preferably satisfied.
  • the hard coat layer P2 when the hard coat layer P2 has a thickness of 6 ⁇ m, when the silica content is 40% or more, the hardness of the surface of the antireflection layer P3 can be 6H or more in pencil hardness. can.
  • the silica content of the hard coat layer P2 exceeds 65%, defects are likely to occur in the antireflection layer P3 by a 1000-cycle thermal shock test (-40° C. to 85° C., 30 minutes). Therefore, the hard coat layer P2 preferably has a silica content of 40% or more and 65% or less, more preferably 44% or more and 62% or less. Substantially the same results were obtained even when the film thickness HC of the hard coat layer P2 was changed.
  • FIG. 6 is a graph showing the relationship between the film thickness difference of the hard coat layer P2 shown in FIG. 1 and the MTF (Modulation Transfer Function).
  • FIG. 7 is a graph showing the relationship between the film thickness difference of the hard coat layer P2 shown in FIG. 1 and the angle of view.
  • solid lines t1, t2, t3, t6, t10 They are indicated by t15, t20 and t25.
  • the difference between the thickness of the hard coat layer P2 at the center Pa1 of the lens and the thickness of the hard coat layer P2 at the outer circumference Pa2 of the lens is preferably 15 ⁇ m or less. According to this aspect, the change in MTF can be kept small, so the resolution can be maintained. Moreover, the difference between the MTF change amount in the film thickness at the center Pa1 of the lens and the MFT change amount in the film thickness at the outer circumference Pa2 of the lens is preferably 0.02% or less. According to this aspect, the resolution can be maintained.
  • the film thickness difference between the lens center and the outer periphery exceeds 15 ⁇ m, so the image as a unit is blurred. Specifically, the difference in the amount of change in MTF at 60 lP/mm exceeds 0.02%. In contrast, according to the present embodiment, the difference in the amount of change in the film thickness difference is 15 ⁇ m or less, so the image is not blurred. Specifically, the difference in MTF is 0.02% or less. In addition, the difference in the amount of change in film thickness difference is more preferably 6 ⁇ m or less.
  • the curvature radius R11 of the one surface Pa of the plastic lens P satisfies the following conditional expression, for example. 9.000mm ⁇ R11 ⁇ 16.000mm
  • the radius of curvature R11 is less than 9.000 mm, the occurrence of liquid pools on the outer periphery of the lens cannot be eliminated, and the thickness difference of the hard coat layer becomes 3 ⁇ m or more. As a result, the MTF value becomes 15% or less.
  • the radius of curvature R11 exceeds 16.000 mm, the film thickness difference of the hard coat layer can be reduced, but it is unsuitable for a fisheye lens unit.
  • the lens unit 100 using the plastic lens P of this embodiment as the first lens L1 the lens is less likely to be scratched in an actual usage environment. Therefore, the lens unit 100 is less likely to blur or distort images, and has high durability.
  • the lens P is a plastic lens, it is easy to make the lens shape aspherical. By forming the aspherical shape, high resolution can be obtained when the lens unit 100 is configured. Furthermore, by applying the coating of the present invention, it is possible to coat without destroying the aspherical shape. Therefore, combined with the effect of the antireflection layer P3 described below, high resolution is maintained while maintaining a pencil hardness of 6H or more. lens unit 100.
  • FIG. 8 is an explanatory diagram showing the layer structure of the antireflection layer P3 shown in FIG.
  • FIG. 9 is an explanatory diagram showing the optical properties of the antireflection layer P3 shown in FIG.
  • FIG. 10 is an explanatory diagram showing the nanoindenter indentation elastic modulus of the antireflection layer P3 shown in FIG.
  • the antireflection layer P3 is composed of a dielectric multilayer film in which a low refractive index film and a high refractive index film are alternately laminated.
  • the antireflection layer P3 includes a silicon dioxide film (SiO2 film) as a low refractive index film and a trisilicon tetranitride film ( Si3N4 film) as a high refractive index film . are alternately laminated.
  • the top layer of the antireflection layer P3 is a silicon dioxide film.
  • the film thickness of the uppermost silicon dioxide film is preferably 60 nm or more.
  • the multilayer film formed in the antireflection layer P3 is preferably about 5 or 7 layers in consideration of film performance and efficiency of the film formation work, and the total film thickness AR of the antireflection layer P3 is It is preferable to satisfy the following conditional expressions. 200 nm ⁇ AR ⁇ 500 nm
  • the total film thickness AR of the antireflection layer P3 satisfies the following conditional expression. 280 nm ⁇ AR ⁇ 500 nm
  • the antireflection performance of the plastic lens P is excellent.
  • the total film thickness AR of the antireflection layer P3 exceeds 500 nm, the stress of the antireflection layer P3 is too high and the film tends to crack, and the temperature of the lens body P1 rises excessively during the film formation, causing the lens surface to crack. have an impact on
  • the total thickness AR of the antireflection layer P3 is less than 200 nm, proper antireflection characteristics cannot be obtained, and it is difficult to secure the hardness of the antireflection layer P3, and the antireflection layer P3 is easily scratched.
  • the MTF change can be suppressed. Therefore, it is possible to obtain a high-quality image such as maintaining a high resolution.
  • silicon dioxide films SiO 2 films
  • trisilicon tetranitride films Si 3 N 4 films
  • the top layer is a silicon dioxide film with a thickness of 104.17 nm
  • the total thickness of the antireflection layer P3 is 296.18 nm.
  • the first layer is a trisilicon tetranitride film, but the first layer may be a silicon dioxide film.
  • the high refractive index film may be a tantalum oxide film, a titanium oxide film, or a niobium oxide film.
  • Al 2 O 3 may be used as the low refractive index film.
  • the antireflection layer P3 of this embodiment has a nanoindenter indentation elastic modulus of 70 GPa or more and 110 GPa or less.
  • the nanoindenter indentation elastic modulus when the nanoindenter indentation elastic modulus is less than 70 GPa, cracks do not occur in the antireflection layer P3, but the scratch resistance is poor.
  • the nanoindenter indentation elastic modulus exceeds 110 GPa, the stress of the antireflection layer P3 is too high and cracks may occur. Therefore, if the nanoindenter indentation elastic modulus is within the above range, both scratch resistance and film stress can be achieved.
  • the nanoindenter indentation elastic modulus was determined by a load-unloading test using ENT-NEXUS (Elionix Co., Ltd.). A Berkovich type diamond indenter was used for the test. The maximum load in the test is 1 mN or less.
  • the outermost layer farthest from the lens body P1 is a silicon dioxide film. is preferably satisfied. More preferably, the film thickness ts is determined by the following conditional expression: 60 nm ⁇ ts ⁇ 100 nm is preferably satisfied.
  • the outermost layer of the antireflection layer P3 is a silicon dioxide film, and the film thickness is 60 nm or more, so that durability such as chemical resistance of the antireflection layer P3 can be improved.
  • the outermost layer of the antireflection layer P3 is a silicon dioxide film, the plastic lens P is less likely to be scratched in an actual use environment, and blurring and distortion of images as a lens unit are less likely to occur. Therefore, a highly durable lens unit can be configured.
  • the plastic lens P provided with such an antireflection layer P3 exhibits an excellent antireflection effect against visible light with a wavelength longer than 420 nm.
  • an antifouling layer made of a fluorine-containing silane compound may be formed for the purpose of improving the water and oil repellency of the plastic lens surface.
  • a fluorine-containing silane compound can be dissolved in an organic solvent, and a water-repellent treatment liquid adjusted to a predetermined concentration can be used to coat the antireflection layer.
  • FIG. 11 is an explanatory diagram showing the Vickers hardness of the antireflection layer P3 and the like shown in FIG.
  • diamonds indicate the Vickers hardness when the antireflection layer P3 is formed by a vapor deposition method
  • triangles indicate the Vickers hardness when the antireflection layer P3 having a five-layer structure is formed by a sputtering method
  • triangles indicate the Vickers hardness when the antireflection layer P3 has a five-layer structure.
  • Circles indicate the Vickers hardness when the antireflection layer P3 is formed by sputtering.
  • PVD physical vapor deposition
  • sputtering sputtering
  • ion plating ion plating
  • CVD chemical vapor deposition
  • sputtered AR films are more scratch resistant and have improved scratch resistance compared to evaporated AR films.
  • FIG. 11 shows a comparison of the Vickers hardness of the antireflection layer P3 formed by the sputtering method and the vapor deposition method.
  • FIG. 11 compares the Vickers hardness of the antireflection layer P3 formed by sputtering to a thickness of about 200 nm to about 550 nm with the Vickers hardness of the antireflection layer P3 formed to a thickness of about 250 nm by vapor deposition. shown as As can be seen from FIG.
  • the vapor deposition method can only realize an antireflection layer P3 having a Vickers hardness of less than 400 kgf/mm2, whereas the sputtering method can realize an antireflection layer P3 having a Vickers hardness of more than 400 kgf/mm2. can be realized.
  • the antireflection layer P3 is formed by sputtering. More specifically, for example, argon at a pressure of about 2 to 5 Pa is introduced into a magnetron sputtering apparatus, and argon ions accelerated by an electric field are irradiated onto silicon dioxide as a target to form a silicon dioxide film. Argon is introduced into the magnetron sputtering apparatus at a pressure of about 2 to 5 Pa, and the trisilicon tetranitride target is irradiated with argon ions accelerated by an electric field to form a trisilicon tetranitride film.
  • FIG. 12 is a graph showing the coefficient of linear expansion of the resin forming the lens body P1.
  • FIG. 13 is a graph showing the relationship between the temperature and the amount of change in angle of view when the antireflection layer P3 shown in FIG. 1 is formed.
  • FIG. 14 is a graph showing the relationship between the temperature and the amount of change in MTF when the antireflection layer P3 shown in FIG. 1 is formed.
  • solid lines t50, t70, t80, t90, and t110 show the results when the film formation temperatures are 50° C., 70° C., 80° C., 90° C., and 110° C.
  • FIG. 13 solid lines t50, t70, t80, t90, and t110 show the results when the film formation temperatures are 50° C., 70° C., 80° C., 90° C., and 110° C.
  • the temperature at that time is preferably lower than the glass transition temperature Tg of the resin forming the lens body P1, and the difference between the glass transition temperature Tg and the film formation temperature is preferably 50° C. or more. More specifically, as shown in FIG. 12, the linear expansion coefficient of the resin forming the lens body P1 increases as the temperature rises.
  • the temperature during film formation is lower than the glass transition temperature Tg of the resin forming the lens body P1, but the temperature difference between the temperature during film formation and the glass transition temperature Tg is less than 50°C.
  • the coefficient of linear expansion of the lens body P1 is 1.3 times or more when 25° C. is used as a reference.
  • the temperature during film formation is lower than the glass transition temperature Tg of the resin forming the lens body P1 and the temperature difference between the temperature during film formation and the glass transition temperature Tg is 50° C. or more
  • the coefficient of linear expansion of the lens body P1 is less than 1.3 times that at 25°C. Therefore, in this embodiment, the temperature during film formation should be lower than the glass transition temperature Tg of the resin forming the lens body P1, and the difference between the temperature during film formation and the glass transition temperature Tg should be 30° C. or more. is preferred. According to this conditional range, since the thermal stress applied to the lens body P1 when forming the antireflection layer P3 is small, the compressive stress generated in the antireflection layer P3 can be reduced.
  • the resin forming the lens body P1 since the resin forming the lens body P1 has an imide structure, the glass transition temperature Tg is high and the coefficient of linear expansion at temperatures from 80°C to 100°C is small. Therefore, the difference in coefficient of linear expansion between the antireflection layer P3 and the lens body P1 is small.
  • the total film thickness of the antireflection layer P3 is large, the stress applied to the antireflection layer P3 due to expansion or contraction is small. Even in this case, since the total film thickness of the antireflection layer P3 is limited to 500 nm or less, the film formation time can be shortened. Therefore, it is possible to suppress the temperature rise of the plastic lens P during film formation.
  • the compressive stress generated in the antireflection layer P3 is small. Therefore, it can withstand a reliability test in which temperature cycles of 85° C. for 30 minutes and ⁇ 40° C. for 30 minutes are performed for 1000 cycles. Therefore, the lens unit is less likely to be scratched in an actual use environment, and less likely to cause blurring or disturbance of an image as a lens unit, so that a highly durable lens unit can be constructed.
  • the temperature at which the antireflection layer P3 is deposited increases as the deposition time increases. Therefore, the film thickness of the antireflection layer P3 affects the temperature at which the antireflection layer P3 is formed.
  • the higher the temperature at which the antireflection layer P3 shown in FIG. 1 is formed the larger the amount of change in the angle of view and the amount of change in the MTF. Therefore, when forming the antireflection layer P3, the film thickness of the antireflection layer P3 should be reduced and the glass transition temperature Tg of the resin forming the lens body P1 should be increased so as to be less susceptible to the effects of temperature. is preferred.
  • the plastic lens P may have one surface Pa facing the image side Lb in the extending direction of the optical axis L and the other surface Pb facing the object side La opposite to the object side La. That is, the plastic lens P of the modified example includes a hard coat layer P2 covering one surface Pa facing the image side Lb in the extending direction of the optical axis L, and an antireflection layer covering the hard coat layer P2 from the side opposite to the lens main body P1. and a layer P3.
  • the plastic lens P of the modified example may include a hard coat layer P2 on both sides of one surface Pa and the other surface Pb, and an antireflection layer P3 that covers the hard coat layer P2 from the side opposite to the lens body P1. good.
  • FIG. 15 is an explanatory diagram of the lens unit 10 according to Example 1 of the present invention.
  • surface numbers corresponding to lens data and aspheric coefficients are indicated in parentheses.
  • surfaces with "*" after the surface numbers are aspherical surfaces.
  • FIG. 16 is an explanatory diagram showing each lens data, aspheric coefficients, etc. in the lens unit 10 shown in FIG.
  • FIG. 17 is an explanatory diagram showing main parameters of the lens unit 10 shown in FIG.
  • FIG. 18 is an explanatory diagram showing the optical characteristics of the lens unit 10 shown in FIG.
  • FIG. 15 showing astigmatism/distortion (a), spherical aberration (b), and lateral chromatic aberration (c).
  • S is attached to the characteristic in the sagittal direction
  • T is attached to the characteristic in the tangential direction.
  • Distortion indicates the ratio of change in image between the center and the periphery of the image, and the smaller the absolute value of the numerical value representing the distortion, the higher the precision of the lens.
  • 19A, 19B, 19C, and 19D are explanatory diagrams showing lateral aberration of the lens unit 10 shown in FIG. 15.
  • the aberration for the light of wavelength 645 is denoted by (R)
  • the aberration for the light of wavelength 588 is denoted by (G)
  • the aberration for the light of wavelength 486 is denoted by (B).
  • Z is the amount of sag
  • c is the reciprocal of the radius of curvature
  • K is the conic coefficient
  • r is the ray height.
  • the horizontal angle of view of the lens unit 10 shown in FIGS. 15 and 16 is 120 degrees or more.
  • a first lens L1 a second lens 12, a third lens 13, a diaphragm 17, a fourth lens 14, and a fifth lens 15 are arranged in order from the object side to the image side.
  • a filter 18 and an imaging device 19 are arranged in this order on the image side of the lens 15 .
  • the first lens L1 is a negative meniscus lens with a convex surface facing the object side.
  • the convex object-side surface (first surface 1) of the first lens L1 is spherical
  • the concave image-side surface (second surface 2) is aspherical.
  • the second lens 12 is a negative lens with a concave surface facing the image side.
  • the second lens 12 is a negative meniscus lens with a concave surface facing the image side, and includes a convex object-side lens surface (third surface 3) and a concave image-side lens surface (third surface 3). At least one of the four surfaces 4) is an aspherical surface.
  • both the object-side surface (third surface 3) and the image-side surface (fourth surface 4) of the second lens 12 are aspherical surfaces.
  • the third lens 13 is a positive meniscus lens with a convex surface facing the image side or a biconvex lens, and is at least one of the object side lens surface (fifth surface 5) and the image side lens surface (sixth surface 6). is aspherical.
  • the third lens 13 is a biconvex lens, and both the convex surface on the object side (fifth surface 5) and the convex surface on the image side (sixth surface 6) are aspheric. be.
  • the fourth lens 14 is a negative meniscus lens with a concave surface facing the image side, or a biconcave lens.
  • the fourth lens 14 is a negative meniscus lens with a concave surface facing the image side, and includes a convex object-side surface (eighth surface 8) of the fourth lens 14 and a concave image-side surface (eighth surface 8). Both of the surfaces (the ninth surface 9) are aspheric.
  • the fifth lens 15 is a biconvex lens.
  • the fourth lens 14 and the fifth lens 15 are plastic lenses, and constitute a cemented lens 16 in which the image-side lens surface of the fourth lens 14 and the object-side lens surface of the fifth lens are cemented together.
  • Both the cemented surface (the ninth surface 9) of the cemented lens 16 and the convex image-side surface (the tenth surface 10) of the fifth lens 15 are aspherical surfaces.
  • the first lens L1, the second lens 12 and the third lens 13 are also plastic lenses, like the fourth lens 14 and the fifth lens.
  • FIG. 17 shows main parameters of the lens unit 10 constructed in this manner. The parameters shown in FIG. 17 are as follows. Note that FIG. 17 also shows parameters of Example 2, which will be described later.
  • f0 Focal length of the entire lens system f1 Focal length of the first lens L1 R11 Curvature radius of the first surface (1) of the first lens L1 r Viewing angle sd11 First lens L1 Effective radius of surface 1 (1) ARS11 ... Distance measured along the first surface (1) from the center of the first surface (1) of the first lens L1 to the radial position corresponding to the effective radius
  • the lens unit 10 has a focal length f0 (EffectiveFocaL Length) of the entire optical system of 0.822 mm, an object-to-image distance (TotaLTRack/optical total length) of 9.206 mm, and the entire lens system has an F value (Image Space F/#) of 2.4, a maximum field angle (Max. Field Angle) of 192 degrees, and a horizontal field angle (HOIRizontaL Field Angle) of 192 degrees.
  • the lens unit 10 satisfies all of the following conditional expressions.
  • the ratio R11/f1 between the radius of curvature R11 of one surface Pa of the plastic lens P and the focal length f1 of the plastic lens P is ⁇ 3.601, satisfying the following conditional expression. -5.0 ⁇ R11/f1 ⁇ -1.0
  • the ratio sd11/R11 between the effective radius sd11 of the one surface Pa of the plastic lens P and the distance ARS11 measured along the one surface Pa from the center of the one surface Pa to the radial position corresponding to the effective radius is 1.030. and satisfies the following conditional expression. 1.000 ⁇ ARS11/sd11 ⁇ 1.013
  • the ratio R11/f0 between the radius of curvature R11 of one surface Pa and the focal length f0 of the entire lens system is 13.509, satisfying the following conditional expression. 8.000 ⁇ R11/f0 ⁇ 14.000
  • R11/f0 is equal to or greater than the lower limit (8.00), it is possible to avoid excessive lens power. Therefore, various aberrations can be properly corrected, and high optical characteristics can be realized. Also, since R11/f0 is equal to or less than the upper limit (14.00), it is possible to avoid the power of the first lens L1 made of the plastic lens P from becoming too weak. Therefore, it is possible to reduce the size of the lens unit.
  • the half angle of view ⁇ is 95.901 deg and satisfies the following conditional expression. 75deg ⁇ 120deg
  • a ratio sd11/R11 between the radius of curvature R11 of one side Pa and the effective radius sd11 of one side Pa is 0.410, satisfying the following conditional expression. 0.300 ⁇ sd11/R11 ⁇ 0.600
  • the half angle of view ⁇ is equal to or higher than the lower limit, it is possible to widen the angle of view. Also, since the half angle of view ⁇ is equal to or less than the upper limit, it is possible to prevent the peripheral portion of the image from becoming dark due to the peripheral light amount ratio becoming smaller than that of the central portion. In addition, since sd11/R11 is equal to or less than the upper limit, it is possible to prevent the angle formed by the tangential line and the peripheral portion of the other surface of the first lens L1 made of a plastic lens from becoming excessively small. Therefore, molding of the other surface of the first lens L1 made of the plastic lens P is facilitated.
  • the astigmatism/distortion (distortion aberration), spherical aberration, and lateral chromatic aberration of the lens unit 10 constructed in this way are as shown in FIG. 18, and the lateral aberration is as shown in FIG. small.
  • FIG. 20 is an explanatory diagram of Example 1 of the lens unit 10 having the plastic lens P of the present invention.
  • FIG. 21 is an explanatory diagram showing each lens data, aspheric coefficients, etc. in the lens unit 10 shown in FIG.
  • FIG. 22 is an explanatory diagram showing the optical characteristics of the lens unit 10 shown in FIG. 20, showing astigmatism/distortion (a), spherical aberration (b), and lateral chromatic aberration (c).
  • 23A and 23B are explanatory diagrams showing the lateral aberration of the lens unit 10 shown in FIG. 19, and FIGS. , 76.76 deg, and 95.90 deg. Since the basic configuration of this embodiment is the same as that of the first embodiment, the same reference numerals are assigned to the common parts, and detailed description thereof will be omitted.
  • the lens unit 10 shown in FIG. 20 has a horizontal angle of view of 120 degrees or more as in Example 1, and has a first lens L1, a second lens 12, a third lens 13, and an aperture 17 from the object side to the image side. , the fourth lens 14 and the fifth lens 15 are arranged in this order.
  • the first lens L1 is a negative meniscus lens with a convex surface facing the object side.
  • the convex object-side surface (first surface 1) of the first lens L1 is spherical
  • the concave image-side surface (second surface 2) is aspherical.
  • the second lens 12 is a negative lens with a concave surface facing the image side.
  • the second lens 12 is a negative meniscus lens with a concave surface facing the image side, and includes a convex object-side lens surface (third surface 3) and a concave image-side lens surface (third surface 3). At least one of the four surfaces 4) is an aspherical surface.
  • both the object-side surface (third surface 3) and the image-side surface (fourth surface 4) of the second lens 12 are aspherical surfaces.
  • the third lens 13 is a positive meniscus lens with a convex surface facing the image side or a biconvex lens, and is at least one of the object side lens surface (fifth surface 5) and the image side lens surface (sixth surface 6). is aspherical.
  • the third lens 13 is a positive meniscus lens with a convex surface facing the image side, and includes a concave object-side surface (fifth surface 5) and a convex image-side surface (sixth surface). 6) are both aspheric.
  • the fourth lens 14 is a negative meniscus lens with a concave surface facing the image side, or a biconcave lens.
  • the fourth lens 14 is a negative meniscus lens with a concave surface facing the image side, and includes a convex object-side surface (eighth surface 8) of the fourth lens 14 and a concave image-side surface (eighth surface 8). Both of the surfaces (the ninth surface 9) are aspheric.
  • the fifth lens 15 is a biconvex lens.
  • the fourth lens 14 and the fifth lens 15 are plastic lenses, and constitute a cemented lens 16 in which the image-side lens surface of the fourth lens 14 and the object-side lens surface of the fifth lens are cemented together.
  • Both the cemented surface (the ninth surface 9) of the cemented lens 16 and the convex image-side surface (the tenth surface 10) of the fifth lens 15 are aspherical surfaces.
  • the first lens L1, the second lens 12 and the third lens 13 are also plastic lenses, like the fourth lens 14 and the fifth lens.
  • the focal length f0 of the entire optical system is 1.410 mm
  • the object-to-image distance is 11.378 mm
  • the F value of the entire lens system is 2.0
  • the maximum image The angle is 156 degrees
  • the horizontal angle of view is 130 degrees.
  • the lens unit 10 satisfies all of the following conditional expressions.
  • the ratio R11/f1 between the radius of curvature R11 of one surface Pa of the plastic lens P and the focal length f1 of the plastic lens P is -4.015, which satisfies the following conditional expression. -1.0 ⁇ R11/f1 ⁇ -5.0
  • the ratio sd11/R11 between the effective radius sd11 of the one surface Pa of the plastic lens P and the distance ARS11 measured along the one surface Pa from the center of the one surface Pa to the radial position corresponding to the effective radius is 1.018. and satisfies the following conditional expression. 1.000 ⁇ ARS11/sd11 ⁇ 1.013
  • the ratio R11/f0 between the radius of curvature R11 of one surface Pa and the focal length f0 of the entire lens system is 9.948, satisfying the following conditional expression. 8.000 ⁇ R11/f0 ⁇ 14.000
  • the half angle of view ⁇ is 77.846 deg and satisfies the following conditional expression. 75deg ⁇ 120deg
  • a ratio sd11/R11 between the radius of curvature R11 of one side Pa and the effective radius sd11 of one side Pa is 0.324, satisfying the following conditional expression. 0.300 ⁇ sd11/R11 ⁇ 0.600
  • the astigmatism/distortion (distortion aberration), spherical aberration, and lateral chromatic aberration of the lens unit 10 constructed in this way are as shown in FIG. 22, and the lateral aberration is as shown in FIG. small.
  • FIG. 24 is a graph showing the relationship between the silica content and the degree of polymerization in another hard coat layer P2.
  • FIG. 25 is a graph showing the relationship between the silica content and film thickness in another hard coat layer P2.
  • the hardness of the antireflection layer P3 provided on the surface of the hard coat layer P2 can be increased.
  • the weather resistance of the plastic lens P deteriorated as the silica content increased. That is, when the plastic lens P is used outdoors, cracks are likely to occur in the hard coat layer P2 due to changes in temperature and humidity, ultraviolet rays, and the like. Therefore, by increasing the degree of polymerization of the hard coat layer P2 of the present example, the hardness of the antireflection layer P3 can be increased even if the silica content is lower than the above silica content.
  • the durability quality of the plastic lens P can be further improved.
  • a xenon arc lamp type weather resistance tester based on JIS B7754-1991 xenon arc lamp 180 W/m 2 , black panel temperature 63 ° C., 120 minute cycle: irradiation for 102 minutes ⁇
  • a weather resistance test of the plastic lens P was performed using irradiation and spraying for 18 minutes and a test time of 1000 hours, and the weather resistance of the plastic lens P was evaluated based on the plastic lens P after the test time of 1000 hours.
  • the degree of polymerization of the hard coat layer P2 is S
  • the degree of polymerization DP is the following conditional expression: 70% ⁇ DP ⁇ 100% is preferably satisfied.
  • the degree of polymerization of the hard coat layer P2 is determined by a general formula for determining the degree of polymerization.
  • the silica content when the hard coat layer P2 has a thickness of 6 ⁇ m, when the polymerization degree is 70% or more and 100% or less, the silica content can be 20% or more and 40% or less. , the hardness of the surface of the antireflection layer P3 can be 6H or more in terms of pencil hardness. Moreover, since the silica content can be lowered, the weather resistance of the plastic lens can be improved.
  • the degree of polymerization of the hard coat layer P2 is 70% or more and 100% or less, if the silica content of the hard coat layer P2 is less than 20%, the hardness of the surface of the antireflection layer P3 is 6H in pencil hardness. It is difficult to do the above.
  • the hard coat layer P2 when the degree of polymerization of the hard coat layer P2 is 70% or more and 100% or less, if the silica content of the hard coat layer P2 exceeds 40%, the thermal shock test of 1000 cycles (-40°C to 85°C, 30 minutes), defects tend to occur in the hard coat layer P2. Furthermore, when the degree of polymerization of the hard coat layer P2 is less than 70%, it is difficult to achieve a pencil hardness of 6H or more on the surface of the antireflection layer P3 when the silica content is 40% or less. Therefore, the hard coat layer P2 preferably has a silica content of 20% or more and 40% or less and a degree of polymerization of 70% or more and 100% or less.
  • the film thickness HC of the hard coat layer P2 is determined by the following conditional expression: 6 ⁇ m ⁇ HC ⁇ 15 ⁇ m is preferably satisfied.
  • the hard coat layer P2 when the degree of polymerization of the hard coat layer P2 is 77%, a pencil hardness of 6H or more can be achieved if the film thickness is 6 ⁇ m or more and 15 ⁇ m or less.
  • the silica content of the hard coat layer P2 is 20% or more and 40% or less, and the thickness of the hard coat layer P2 is less than 6 ⁇ m, the hardness of the surface of the antireflection layer P3 is measured in terms of pencil hardness. It is difficult to make it 6H or more. Therefore, the hard coat layer P2 preferably has a film thickness of 6 ⁇ m or more and 15 ⁇ m or less.
  • the antireflection layer P3 described above can also be provided as the hard coat layer P2 of this example.
  • an antifouling layer made of a fluorine-containing silane compound may be formed for the purpose of improving the water and oil repellency of the plastic lens surface.
  • the total film thickness AR of the antireflection layer P3 is given by the following conditional expression (1) 200 nm ⁇ AR ⁇ 500 nm (1)
  • the filling, In the antireflection layer P3, the outermost layer farthest from the lens body is a silicon dioxide film. 60 nm ⁇ ts ⁇ 150 nm (2)
  • the total film thickness AR of the antireflection layer P3 is 200 nm or more and 500 nm or less, so it is excellent as the antireflection layer P3 of the plastic lens P.
  • the outermost layer of the antireflection layer P3 is a silicon dioxide film, the plastic lens P is less likely to be scratched in an actual use environment, and blurring and distortion of images as a lens unit are less likely to occur. Therefore, a highly durable lens unit can be configured.
  • the film thickness ts of the outermost layer is 60 nm or more and 150 nm or less, the antireflection layer P3 is excellent in chemical resistance and the antireflection properties of the optical thin film are obtained.
  • the total film thickness AR of the antireflection layer P3 is given by the following conditional expression (1) 200 nm ⁇ AR ⁇ 500 nm (1)
  • the nanoindenter indentation elastic modulus E of the antireflection layer P3 is the following conditional expression (3) 70GPa ⁇ E ⁇ 110GPa (3)
  • the total film thickness AR of the antireflection layer P3 is 200 nm or more and 500 nm or less, so it is excellent as the antireflection layer P3 of the plastic lens P.
  • the nanoindenter indentation elastic modulus is 70 GPa or more and 110 G or less, both scratch resistance and film stress can be achieved.
  • a plastic lens, wherein the antireflection layer P3 is a dielectric multilayer film in which a silicon dioxide film and a high refractive index film having a higher refractive index than the silicon dioxide film are alternately laminated.
  • a plastic lens, wherein the high refractive index film is a trisilicon tetranitride film.
  • the hard coat layer P2 contains silica particles,
  • the content rate of the silica particles in the hard coat layer P2 is S
  • the content rate S is the following conditional expression (4) 40% ⁇ S ⁇ 65% (4)
  • the lens body P1 is a methacrylic resin having a structural unit having a ring structure in its main chain, and the structural unit is a structural unit derived from an N-substituted maleimide monomer or a glutarimide structural unit, A plastic lens comprising at least one structural unit.
  • a lens unit comprising a plurality of lenses including the plastic lens according to any one of (001) to (011), A lens unit, wherein the plastic lens P is closest to the object side La among the plurality of lenses, and the one surface Pa faces the object side La.
  • a plastic lens comprising an antifouling layer covering the antireflection layer P3 from the side opposite to the lens body P1.
  • the lens body P1 has a cyclic imide structure as a ring structure
  • the hard coat layer P2 contains silica particles
  • the content rate S is the following conditional expression (9) 20% ⁇ S ⁇ 40% (9)
  • the filling When the degree of polymerization of the hard coat layer P2 is DP, the degree of polymerization DP is the following conditional expression (10) 70% ⁇ DP ⁇ 100% (10)
  • the film thickness HC of the hard coat layer is determined by the following conditional expression (11) 6 ⁇ m ⁇ HC ⁇ 15 ⁇ m (11)
  • a plastic lens comprising: an antifouling layer that covers the antireflection layer from a side opposite to the lens body.
  • a plastic lens, wherein the antireflection layer P3 is a dielectric multilayer film in which a silicon dioxide film and a high refractive index film having a higher refractive index than the silicon dioxide film are alternately laminated.
  • a plastic lens, wherein the high refractive index film is a trisilicon tetranitride film.
  • the hard coat layer P2 contains silica particles
  • the content rate of the silica particles in the hard coat layer P2 is S
  • the content rate S is the following conditional expression (4) 40% ⁇ S ⁇ 65% (4)
  • the lens body P1 is a methacrylic resin having a structural unit having a ring structure in its main chain, and the structural unit is a structural unit derived from an N-substituted maleimide monomer or a glutarimide structural unit, A plastic lens comprising at least one structural unit.
  • a plastic lens wherein the one surface Pa of the lens body P1 is an aspherical surface.
  • a lens unit comprising a plurality of lenses including the plastic lens according to any one of (016) to (027), A lens unit, wherein the plastic lens P is closest to the object side La among the plurality of lenses, and the one surface Pa faces the object side La.
  • the half angle of view ⁇ is given by the following conditional expression: 75deg ⁇ 120deg
  • the curvature radius R11 and the effective radius sd11 are defined by the following conditional expression: 0.300 ⁇ sd11/R11 ⁇ 0.600
  • a method for manufacturing a plastic lens P including a forming step of forming an antireflection layer P3 on at least one surface Pa of the plastic lens,
  • the plastic lens P has a glass transition temperature of 120° C. or higher,
  • the film formation temperature of the antireflection layer P3 is lower than the glass transition temperature of the plastic lens P, and the difference between the film formation temperature of the antireflection layer P3 and the glass transition temperature of the plastic lens P is is 30° C. or higher.
  • the film forming temperature of the antireflection layer P3 lower than the glass transition temperature of the plastic lens P by 30° C. or more, the MTF change can be suppressed and the resolution can be maintained.
  • the residual stress of the antireflection layer P3 can be reduced by keeping the film formation temperature low, the antireflection layer is less likely to be damaged.
  • L... optical axis La... object side, Lb... image side, P... plastic lens, Pa... one side, Pb... other side, Pa1... lens center, Pa2... lens periphery, P1... lens body, P2... hard coat layer , P3... antireflection layer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

The present invention provides: a plastic lens which has further improved durable quality; and a lens unit. A plastic lens P according to the present invention is provided with: a lens main body P1 that is formed of a resin; a hard coat layer P2 that covers at least one surface Pa of the lens main body P1; and an antireflection layer P3 that covers the hard coat layer P2 from the reverse side from the lens main body P1. With respect to the antireflection layer P3, the outermost layer that is farthest from the lens main body P1 is composed of a silicon dioxide film. The total film thickness AR and the film thickness ts of the outermost layer of the antireflection layer P3 satisfy the following conditional expressions. 200 nm ≤ AR ≤ 500 nm 60 nm ≤ ts ≤ 150 nm

Description

プラスチックレンズ、レンズユニットおよびプラスチックレンズの製造方法PLASTIC LENS, LENS UNIT AND PLASTIC LENS MANUFACTURING METHOD
 本発明は、プラスチックレンズ、レンズユニットおよびプラスチックレンズの製造方法に関するものである。 The present invention relates to a plastic lens, a lens unit, and a method of manufacturing a plastic lens.
 プラスチックレンズは、ガラスレンズに比べて、成形性等に優れている一方、傷が付きやすい。このため、レンズユニット等において最も物体側に配置されるレンズにはガラスレンズが多用される(例えば、特許文献1参照)。一方、アクリル樹脂やカーボネート樹脂からなるプラスチック製のレンズ本体の表面にハードコート層を設け、傷が付きにくくする技術が提案されている(例えば、特許文献2参照)。 Compared to glass lenses, plastic lenses have excellent moldability, but are easily scratched. For this reason, a glass lens is often used as the lens arranged closest to the object side in a lens unit or the like (see, for example, Patent Document 1). On the other hand, there has been proposed a technique of providing a hard coat layer on the surface of a plastic lens body made of acrylic resin or carbonate resin to make it less likely to be scratched (see, for example, Patent Document 2).
日本国公開公報特開2017-181857号公報Japanese Patent Laid-Open Publication No. 2017-181857 日本国公開公報特開2008-76598号公報Japanese Patent Laid-Open Publication No. 2008-76598
 特許文献2に記載のプラスチックレンズは、眼鏡レンズを対象とするものである。一方、監視カメラや車載カメラに用いられるレンズには、眼鏡レンズと比較して、温度変化が大きな環境下で使用されるため、耐久品質がより強く求められる。このため、特許文献2に記載の構成では、十分に対応することができないという問題点ある。 The plastic lens described in Patent Document 2 is intended for spectacle lenses. On the other hand, lenses used in surveillance cameras and in-vehicle cameras are required to be more durable than spectacle lenses because they are used in environments with large temperature changes. Therefore, there is a problem that the configuration described in Patent Document 2 cannot sufficiently cope with this problem.
 以上の問題点に鑑みて、本発明の課題は、例えば耐久品質をより向上することができるプラスチックレンズ、およびレンズユニットを提供することにある。 In view of the above problems, an object of the present invention is to provide a plastic lens and a lens unit that can further improve durability, for example.
 上記課題を解決するために、本発明は、樹脂製のレンズ本体と、前記レンズ本体の少なくとも一方面を覆うハードコート層と、前記ハードコート層を前記レンズ本体とは反対側から覆う反射防止層と、を備え前記反射防止層の総膜厚ARは、以下の条件式(1)
   200nm≦AR≦500nm・・・(1)
 を満たし、
 前記反射防止層において前記レンズ本体から最も離隔する最外層は二酸化珪素膜であって、前記最外層の膜厚をtsとしたとき、膜厚tsは、以下の条件式(2)
   60nm≦ts≦150nm・・・(2)
 を満たすことを特徴とする。
In order to solve the above problems, the present invention provides a lens body made of resin, a hard coat layer covering at least one surface of the lens body, and an antireflection layer covering the hard coat layer from the side opposite to the lens body. and the total film thickness AR of the antireflection layer is the following conditional expression (1)
200 nm≦AR≦500 nm (1)
The filling,
In the antireflection layer, the outermost layer farthest from the lens body is a silicon dioxide film.
60 nm≦ts≦150 nm (2)
is characterized by satisfying
 本発明において、反射防止層の総の総膜厚ARは、200nm以上、かつ500nm以下であるため、プラスチックレンズの反射防止層として優れている。また、反射防止層の最外層を二酸化珪素膜としたため、実使用環境においてプラスチックレンズに傷がつきにくく、レンズユニットとしての画像のボケや乱れが起きにくい。それ故、耐久性の高いレンズユニットを構成することができる。さらに、本発明では、最外層の膜厚tsが60nm以上であって、150nm以下であるので、反射防止層の耐薬品性が優れるとともに、光学薄膜の反射防止特性が得られる。 In the present invention, the total thickness AR of the antireflection layers is 200 nm or more and 500 nm or less, so it is excellent as an antireflection layer for plastic lenses. In addition, since the outermost layer of the antireflection layer is a silicon dioxide film, the plastic lens is less likely to be scratched in an actual usage environment, and blurring and distortion of images as a lens unit are less likely to occur. Therefore, a highly durable lens unit can be configured. Furthermore, in the present invention, since the film thickness ts of the outermost layer is 60 nm or more and 150 nm or less, the antireflection layer is excellent in chemical resistance and the antireflection properties of the optical thin film are obtained.
 また、本発明は、樹脂製のレンズ本体と、前記レンズ本体の少なくとも一方面を覆うハードコート層と、前記ハードコート層を前記レンズ本体とは反対側から覆う反射防止層と、を備え、
 前記反射防止層の総膜厚ARは、以下の条件式(1)
   200nm≦AR≦500nm・・・(1)
 を満たし、
 前記反射防止層のナノインデンター押込み弾性率Eは、以下の条件式(3)
  70GPa≦E≦110GPa・・・(3)
 を満たすことを特徴とする。
Further, the present invention comprises a lens body made of resin, a hard coat layer covering at least one surface of the lens body, and an antireflection layer covering the hard coat layer from the side opposite to the lens body,
The total film thickness AR of the antireflection layer is the following conditional expression (1)
200 nm≦AR≦500 nm (1)
The filling,
The nanoindenter indentation elastic modulus E of the antireflection layer is the following conditional expression (3)
70GPa≦E≦110GPa (3)
is characterized by satisfying
 本発明において、反射防止層の総の総膜厚ARは、200nm以上、かつ500nm以下であるため、プラスチックレンズの反射防止層として優れている。本発明では、ナノインデンター押込み弾性率が70GPa以上110G以下であれば、耐傷性と膜応力を両立できる。 In the present invention, the total thickness AR of the antireflection layers is 200 nm or more and 500 nm or less, so it is excellent as an antireflection layer for plastic lenses. In the present invention, if the nanoindenter indentation elastic modulus is 70 GPa or more and 110 G or less, both scratch resistance and film stress can be achieved.
 本発明において、前記レンズ本体は、環構造として環状イミド構造を有していることが好ましい。 In the present invention, the lens body preferably has a cyclic imide structure as the ring structure.
 本発明において、前記反射防止層は、二酸化珪素膜と、二酸化珪素膜より屈折率が大きい高屈折率膜とが交互に積層された誘電体多層膜であり、前記反射防止層において前記レンズ本体から最も離隔する最外層は二酸化珪素膜である態様を採用することができる。 In the present invention, the antireflection layer is a dielectric multilayer film in which a silicon dioxide film and a high refractive index film having a higher refractive index than the silicon dioxide film are alternately laminated. An embodiment in which the most distant outermost layer is a silicon dioxide film can be adopted.
 本発明において、前記高屈折率膜は四窒化三珪素膜である態様を採用することができる。 In the present invention, it is possible to employ an aspect in which the high refractive index film is a trisilicon tetranitride film.
 本発明において、前記ハードコート層は、シリカ粒子を含有し、
 前記ハードコート層における前記シリカ粒子の含有率をSとしたとき、含有率Sは以下の条件式(4)
   40%≦S≦65%・・・(4)
 を満たすことが好ましい。
In the present invention, the hard coat layer contains silica particles,
When the content rate of the silica particles in the hard coat layer is S, the content rate S is the following conditional expression (4)
40%≦S≦65% (4)
is preferably satisfied.
 本発明において、前記レンズ本体は、例えば、主鎖に環構造を有する構造単位を有するメタクリル系樹脂であって、前記構造単位が、N-置換マレイミド単量体由来の構造単位、およびグルタルイミド系構造単位のうち、少なくとも一種の構造単位を含む態様を採用することができる。 In the present invention, the lens body is, for example, a methacrylic resin having a structural unit having a ring structure in its main chain, wherein the structural unit is a structural unit derived from an N-substituted maleimide monomer and a glutarimide-based Among the structural units, an aspect containing at least one structural unit can be adopted.
 本発明において、前記一方面の曲率半径をR11としたとき、曲率半径R11は、以下の条件式(5)
  9.000mm≦R11≦16.000mm・・・(5)
 を満たすことが好ましい。
In the present invention, when the radius of curvature of the one surface is R11, the radius of curvature R11 is defined by the following conditional expression (5)
9.000mm≤R11≤16.000mm (5)
is preferably satisfied.
 本発明において、前記レンズ本体の前記一方面は、非球面である態様を採用することができる。レンズ本体の一方面を非球面とすることにより、より高解像度なレンズユニットにすることができる。 In the present invention, it is possible to employ an aspect in which the one surface of the lens body is an aspherical surface. By making one surface of the lens body aspherical, the lens unit can have a higher resolution.
 本発明において、前記一方面の曲率半径をR11とし、前記プラスチックレンズの焦点距離をf1としたとき、曲率半径R11および焦点距離f1は、以下の条件式(6)
    -5.000≦R11/f1≦-1.000・・・(6)
 を満たすことが好ましい。
In the present invention, when the radius of curvature of the one surface is R11 and the focal length of the plastic lens is f1, the radius of curvature R11 and the focal length f1 are defined by the following conditional expression (6):
-5.000≤R11/f1≤-1.000 (6)
is preferably satisfied.
 本発明において、前記一方面の有効半径をsd11とし、前記一方面の中心から前記有効半径に対応する半径位置まで前記一方面に沿って測定したときの距離をARS11としたとき、有効半径sd11および距離ARS11は、以下の条件式(7)
    1.000<ARS11/sd11<1.013・・・(7)
 を満たすことが好ましい。
In the present invention, when the effective radius of the one surface is sd11 and the distance measured along the one surface from the center of the one surface to the radial position corresponding to the effective radius is ARS11, the effective radius sd11 and The distance ARS11 is determined by the following conditional expression (7)
1.000<ARS11/sd11<1.013 (7)
is preferably satisfied.
 本発明に係るプラスチックレンズを含む複数のレンズを備えたレンズユニットにおいて、前記プラスチックレンズは、前記複数のレンズのうち、最も物体側で前記一方面を物体側に向けて配置される。 In the lens unit provided with a plurality of lenses including a plastic lens according to the present invention, the plastic lens is disposed closest to the object side among the plurality of lenses with the one surface facing the object side.
 本発明において、前記一方面の曲率半径をR11とし、前記複数のレンズからなるレンズ系全体の焦点距離をf0としたとき、曲率半径R11および焦点距離f0は、以下の条件式
   8.000≦R11/f0≦14.000
 を満たすことが好ましい。
In the present invention, when the radius of curvature of the one surface is R11 and the focal length of the entire lens system consisting of the plurality of lenses is f0, the radius of curvature R11 and the focal length f0 are defined by the following conditional expression: 8.000≦R11 /f0≤14.000
is preferably satisfied.
 本発明において、半画角をωとしたとき、半画角ωは以下の条件式
  75deg≦ω≦120deg
 を満たし、
 前記一方面の曲率半径をR11とし、前記一方面の有効半径をsd11としたとき、曲率半径R11および有効半径sd11は、以下の条件式(8)
  0.300≦sd11/R11≦0.600・・・(8)
 を満たすことが好ましい。
In the present invention, when the half angle of view is ω, the half angle of view ω is the following conditional expression: 75deg≦ω≦120deg
The filling,
When the curvature radius of the one surface is R11 and the effective radius of the one surface is sd11, the curvature radius R11 and the effective radius sd11 are expressed by the following conditional expression (8)
0.300≦sd11/R11≦0.600 (8)
is preferably satisfied.
 本発明に係るプラスチックレンズにおいて、前記レンズ本体は、環構造として環状イミド構造を有し、前記ハードコート層は、シリカ粒子を含有し、前記ハードコート層における前記シリカ粒子の含有率をSとしたとき、含有率Sは以下の条件式(9)
   20%≦S≦40%・・・(9)
 を満たし、
 前記ハードコート層の重合度をDPとしたとき、重合度DPは以下の条件式(10)
   70%≦DP≦100%・・・(10)
 を満たすことが好ましい。
In the plastic lens according to the present invention, the lens body has a cyclic imide structure as a ring structure, the hard coat layer contains silica particles, and S is the content of the silica particles in the hard coat layer. When the content rate S is the following conditional expression (9)
20%≦S≦40% (9)
The filling,
When the degree of polymerization of the hard coat layer is DP, the degree of polymerization DP is the following conditional expression (10)
70%≦DP≦100% (10)
is preferably satisfied.
 ここで、ハードコート層のシリカ含有率が高くなれば、ハードコート層の表面に設けた反射防止層の硬度を高くすることができる。しかしながら、シリカ含有率が高くなると、プラスチックレンズの耐候性が低下しやすくなる。より具体的には、このプラスチックレンズを屋外で使用する場合には、温湿度変化や紫外線などによって、ハードコート層に亀裂が発生しやすい。よって、本発明によれば、ハードコート層の重合度が条件式(10)の範囲であれば、シリカ含有率を条件式(9)の範囲まで下げても反射防止層の硬度を高くすることができる。また、シリカ含有率を下げることができるので、このプラスチックレンズを屋外で使用しても、ハードコート層に亀裂が発生しにくい。よって、プラスチックレンズの耐久品質をより向上させることができる。 Here, if the silica content of the hard coat layer increases, the hardness of the antireflection layer provided on the surface of the hard coat layer can be increased. However, when the silica content increases, the weather resistance of the plastic lens tends to decrease. More specifically, when this plastic lens is used outdoors, cracks are likely to occur in the hard coat layer due to changes in temperature and humidity, ultraviolet rays, and the like. Therefore, according to the present invention, if the degree of polymerization of the hard coat layer is within the range of conditional expression (10), the hardness of the antireflection layer can be increased even if the silica content is reduced to the range of conditional expression (9). can be done. In addition, since the silica content can be lowered, cracks are less likely to occur in the hard coat layer even when this plastic lens is used outdoors. Therefore, the durability quality of the plastic lens can be further improved.
 本発明において、前記ハードコート層の膜厚HCは、以下の条件式(11)
   6μm≦HC≦15μm・・・(11)
 を満たすことが好ましい。このようにすれば、ハードコート層の表面に設けた反射防止層の硬度を高くすることができる。
In the present invention, the film thickness HC of the hard coat layer is determined by the following conditional expression (11)
6 μm≦HC≦15 μm (11)
is preferably satisfied. By doing so, the hardness of the antireflection layer provided on the surface of the hard coat layer can be increased.
 本発明において、前記反射防止層を前記レンズ本体とは反対側から覆う防汚層、を備えることが好ましい。このようにすれば、プラスチックレンズを屋外で使用する場合に、プラスチックレンズの表面が汚れにくいので、プラスチックレンズのレンズ性能が低下することを抑制することができる。 In the present invention, it is preferable to include an antifouling layer that covers the antireflection layer from the side opposite to the lens body. In this way, when the plastic lens is used outdoors, the surface of the plastic lens is less likely to become dirty, so deterioration of the lens performance of the plastic lens can be suppressed.
 本発明において、前記レンズ本体のガラス転移温度は120℃以上であることが好ましい。このようにすれば、反射防止層を成膜する際に、成膜温度を低く抑えることが可能となる。これにより、反射防止層の残留応力を低減できるので、反射防止層に傷がつきにくい。 In the present invention, the glass transition temperature of the lens body is preferably 120°C or higher. By doing so, it is possible to keep the film forming temperature low when forming the antireflection layer. As a result, the residual stress of the antireflection layer can be reduced, so that the antireflection layer is less likely to be damaged.
 次に、本発明は、少なくともプラスチックレンズの一方面に反射防止層を形成する形成工程を含むプラスチックレンズの製造方法において、前記プラスチックレンズのガラス転移温度は120℃以上であり、前記形成工程では、前記反射防止層の成膜温度は、前記プラスチックレンズのガラス転移温度よりも低く、前記反射防止層の成膜温度と前記プラスチックレンズのガラス転移温度との差は、30℃以上であることを特徴とする。 Next, the present invention provides a method for manufacturing a plastic lens, which includes a forming step of forming an antireflection layer on at least one surface of the plastic lens, wherein the plastic lens has a glass transition temperature of 120° C. or higher, and in the forming step, The film forming temperature of the antireflection layer is lower than the glass transition temperature of the plastic lens, and the difference between the film forming temperature of the antireflection layer and the glass transition temperature of the plastic lens is 30° C. or more. and
 本発明において、反射防止層の成膜温度をプラスチックレンズのガラス転移温度より30℃以上低く抑えることによって、MTF変化を抑えることができ、解像度を維持することができる。また、成膜温度を低く抑えることによって、反射防止層の残留応力を低減できるので、反射防止層に傷がつきにくい。 In the present invention, by suppressing the film forming temperature of the antireflection layer to 30°C or more lower than the glass transition temperature of the plastic lens, the MTF change can be suppressed and the resolution can be maintained. In addition, since the residual stress in the antireflection layer can be reduced by keeping the film formation temperature low, the antireflection layer is less likely to be damaged.
 本発明において、反射防止層の総の総膜厚ARは、200nm以上、かつ500nm以下であるため、プラスチックレンズの反射防止層として優れている。 In the present invention, the total thickness AR of the antireflection layers is 200 nm or more and 500 nm or less, so it is excellent as an antireflection layer for plastic lenses.
本発明を適用したプラスチックレンズの説明図。Explanatory drawing of the plastic lens to which this invention is applied. 図1に示すプラスチックレンズの鉛筆硬度を示す説明図。FIG. 2 is an explanatory diagram showing the pencil hardness of the plastic lens shown in FIG. 1; 図1に示すハードコート層を形成する条件を示す説明図。FIG. 2 is an explanatory diagram showing conditions for forming a hard coat layer shown in FIG. 1; 図1に示すハードコート層を形成するための塗布液の粘度とハードコート層の厚さとの関係を示すグラフ。4 is a graph showing the relationship between the viscosity of the coating liquid for forming the hard coat layer shown in FIG. 1 and the thickness of the hard coat layer. 図1に示すハードコート層におけるシリカ含有率と反射防止層表面の鉛筆硬度との関係を示すグラフ。2 is a graph showing the relationship between the silica content in the hard coat layer shown in FIG. 1 and the pencil hardness of the surface of the antireflection layer. 図1に示すハードコート層の膜厚差とMTFとの関係を示すグラフ。4 is a graph showing the relationship between the film thickness difference of the hard coat layer shown in FIG. 1 and the MTF. 図1に示すハードコート層の膜厚差と画角との関係を示すグラフ。4 is a graph showing the relationship between the film thickness difference of the hard coat layer shown in FIG. 1 and the angle of view. 図1に示す反射防止層の層構造を示す説明図。FIG. 2 is an explanatory view showing the layer structure of the antireflection layer shown in FIG. 1; 図1に示す反射防止層の光学特性を示す説明図。FIG. 2 is an explanatory diagram showing optical characteristics of the antireflection layer shown in FIG. 1; は、図1に示す反射防止層のナノインデンター押込み弾性率を示す説明図。2 is an explanatory diagram showing the nanoindenter indentation elastic modulus of the antireflection layer shown in FIG. 1; FIG. 図1に示す反射防止層等のビッカース硬度を示す説明図。FIG. 2 is an explanatory diagram showing the Vickers hardness of the antireflection layer or the like shown in FIG. 1; 図1に示すレンズ本体を構成する樹脂の線膨張係数を示すグラフ。2 is a graph showing linear expansion coefficients of resins forming the lens body shown in FIG. 1; 図1に示す反射防止層P3を成膜する際の温度と画角変化量との関係を示すグラフ。4 is a graph showing the relationship between the temperature and the amount of change in angle of view when the antireflection layer P3 shown in FIG. 1 is formed. 図1に示す反射防止層を成膜する際の温度とMTF変化量との関係を示すグラフ。2 is a graph showing the relationship between the temperature and the amount of change in MTF when the antireflection layer shown in FIG. 1 is formed. 本発明の実施例1に係るレンズユニットの説明図。1 is an explanatory diagram of a lens unit according to Example 1 of the present invention; FIG. 図15に示すレンズユニットにおける各レンズデータおよび非球面係数等を示す説明図。FIG. 16 is an explanatory diagram showing each lens data, aspheric coefficients, etc. in the lens unit shown in FIG. 15; 図15に示すレンズユニットの主なパラメータを示す説明図。FIG. 16 is an explanatory diagram showing main parameters of the lens unit shown in FIG. 15; 図15に示すレンズユニットの光学特性を示す説明図。FIG. 16 is an explanatory diagram showing optical characteristics of the lens unit shown in FIG. 15; 図15に示すレンズユニットの横収差を示す説明図。FIG. 16 is an explanatory diagram showing lateral aberration of the lens unit shown in FIG. 15; 本発明の実施例2に係るレンズユニットの説明図。FIG. 5 is an explanatory diagram of a lens unit according to Example 2 of the present invention; 図20に示すレンズユニットにおける各レンズデータおよび非球面係数等を示す説明図。FIG. 21 is an explanatory diagram showing each lens data, aspheric coefficients, etc. in the lens unit shown in FIG. 20; 図20に示すレンズユニットの光学特性を示す説明図。FIG. 21 is an explanatory diagram showing optical characteristics of the lens unit shown in FIG. 20; 図20に示すレンズユニットの横収差を示す説明図。FIG. 21 is an explanatory diagram showing lateral aberration of the lens unit shown in FIG. 20; 他のハードコート層におけるシリカ含有率と重合度との関係を示すグラフ。4 is a graph showing the relationship between silica content and degree of polymerization in other hard coat layers. 他のハードコート層におけるシリカ含有率と膜厚との関係を示すグラフ。5 is a graph showing the relationship between silica content and film thickness in other hard coat layers.
 以下、本発明を適用したプラスチックレンズ、およびレンズユニットを説明する。(プラスチックレンズPの構成)
 図1は、本発明を適用したプラスチックレンズPの説明図である。図1に示すように、図1に示すプラスチックレンズPは、光軸Lの延在方向の物体側Laに向く一方面Paと、物体側Laとは反対の像側Lbに向く他方面Pbとを備えている。本発明は、一方面Paが球面あるいは非球面のいずれであっても適用することができ、他方面Pbが球面あるいは非球面のいずれであっても適用することができる。図1に例示するプラスチックレンズPは、物体側Laに凸面を向けたメニスカスレンズであり、像側Lbに凹面を向けている。
A plastic lens and a lens unit to which the present invention is applied will be described below. (Structure of plastic lens P)
FIG. 1 is an explanatory diagram of a plastic lens P to which the present invention is applied. As shown in FIG. 1, the plastic lens P shown in FIG. 1 has one surface Pa facing the object side La in the extending direction of the optical axis L, and the other surface Pb facing the image side Lb opposite to the object side La. It has The present invention can be applied whether one surface Pa is spherical or aspherical, and can be applied whether surface Pb is spherical or aspherical. The plastic lens P illustrated in FIG. 1 is a meniscus lens with a convex surface facing the object side La and a concave surface facing the image side Lb.
 本形態のプラスチックレンズPは、少なくとも、樹脂製のレンズ本体P1と、レンズ本体P1の一方面Paを覆うハードコート層P2と、ハードコート層P2をレンズ本体P1とは反対側から覆う反射防止層P3とを備えている。かかるプラスチックレンズPの製造方法では、後述するように、レンズ本体P1を成形した後、ハードコート層P2を成膜するハードコート層形成工程と、反射防止層P3を形成する反射防止層形成工程とを行う。 The plastic lens P of this embodiment includes at least a lens body P1 made of resin, a hard coat layer P2 covering one surface Pa of the lens body P1, and an antireflection layer covering the hard coat layer P2 from the opposite side of the lens body P1. P3. In the manufacturing method of the plastic lens P, as described later, after molding the lens body P1, a hard coat layer forming step of forming the hard coat layer P2 and an antireflection layer forming step of forming the antireflection layer P3 are performed. I do.
(レンズ本体P1の構成)
 図2は、図1に示すプラスチックレンズPの鉛筆硬度を示す説明図である。図2には、環構造として環状イミド構造を有する樹脂を用いた本発明を適用したプラスチックレンズPの鉛筆硬度をC1で示し、環状イミド構造を有しない汎用のメタクリル樹脂を用いた比較例に係るプラスチックレンズの鉛筆硬度をC2で示してある。
(Structure of lens body P1)
FIG. 2 is an explanatory diagram showing the pencil hardness of the plastic lens P shown in FIG. In FIG. 2, the pencil hardness of the plastic lens P to which the present invention is applied using a resin having a cyclic imide structure as a ring structure is indicated by C1, and is related to a comparative example using a general-purpose methacrylic resin having no cyclic imide structure. The pencil hardness of the plastic lens is indicated by C2.
 レンズ本体P1を構成するプラスチックは、JIS-K7121に準拠して測定した場合のガラス転移温度(Tg)が110℃以上であることが好ましい。また、レンズ本体P1の成形性等を考慮すると、レンズ本体P1を構成するプラスチックは、ガラス転移温度Tgが200℃以下であることが好ましい。よって、レンズ本体P1を構成するプラスチックは、ガラス転移温度Tgが110℃以上、かつ200℃以下であることが好ましい。また、熱的安定性を考慮すると、レンズ本体P1を構成するプラスチックは、ガラス転移温度Tgが130℃以上、かつ200℃以下であることが好ましい。 The plastic constituting the lens body P1 preferably has a glass transition temperature (Tg) of 110°C or higher when measured according to JIS-K7121. Further, considering the moldability of the lens body P1, it is preferable that the plastic constituting the lens body P1 has a glass transition temperature Tg of 200° C. or less. Therefore, it is preferable that the plastic constituting the lens body P1 has a glass transition temperature Tg of 110° C. or more and 200° C. or less. In consideration of thermal stability, it is preferable that the plastic constituting the lens body P1 has a glass transition temperature Tg of 130° C. or more and 200° C. or less.
 レンズ本体P1を構成するプラスチックは、環構造として環状イミド構造を有する樹脂である。より具体的には、レンズ本体P1は、主鎖に環構造を有する構造単位を有するメタクリル系樹脂であって、構造単位は、N-置換マレイミド単量体由来の構造単位、およびグルタルイミド系構造単位のうち、少なくとも一種の構造単位を含む。より具体的には、レンズ本体P1は、主鎖に上記の環構造を有する構造単位(X)とメタクリル酸エステル単量体由来の構造単位(Y)とを含む。本実施形態において、レンズ本体P1は、上記の構造単位(X)と構造単位(Y)とのみからなる。 The plastic forming the lens body P1 is a resin having a cyclic imide structure as a ring structure. More specifically, the lens body P1 is a methacrylic resin having a structural unit having a ring structure in its main chain, and the structural unit is a structural unit derived from an N-substituted maleimide monomer and a glutarimide structure. Among the units, at least one structural unit is included. More specifically, the lens body P1 includes a structural unit (X) having the above ring structure in its main chain and a structural unit (Y) derived from a methacrylic acid ester monomer. In this embodiment, the lens body P1 is composed only of the structural unit (X) and the structural unit (Y).
 かかる構造単位を含むメタクリル系樹脂は、耐熱性と光学特性との両方に優れている。より具体的には、レンズ本体P1を構成する樹脂は、環状イミド構造を有するため、透明であり、通常のメタクリル系樹脂等と比較してガラス転移温度Tgが30℃から40℃高い。従って、レンズ本体P1は、例えば110℃の温度に晒されても変形せず、光透過率は90%を超える。かかる樹脂については、例えば、日本国公開公報特開2018-53044号公報や日本国公開公報特開2020-63436号公報に例示されている。 A methacrylic resin containing such a structural unit is excellent in both heat resistance and optical properties. More specifically, the resin forming the lens body P1 has a cyclic imide structure, is transparent, and has a glass transition temperature Tg 30° C. to 40° C. higher than that of ordinary methacrylic resins. Therefore, the lens body P1 does not deform even when exposed to a temperature of, for example, 110° C., and the light transmittance exceeds 90%. Such resins are exemplified in, for example, Japanese Unexamined Patent Publication No. 2018-53044 and Japanese Unexamined Patent Publication No. 2020-63436.
 メタクリル酸エステル単量体由来の構造単位(Y)は、例えば、以下に示すメタクリル酸エステル類から選ばれる1種あるいは2種以上の単量体に由来する。メタクリル酸エステルとしては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸t-ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸シクロペンチル、メタクリル酸シクロヘキシル、メタクリル酸シクロオクチル、メタクリル酸トリシクロデシル、メタクリル酸ジシクロオクチル、メタクリル酸トリシクロドデシル等が挙げられる。 The structural unit (Y) derived from a methacrylic acid ester monomer is, for example, derived from one or more monomers selected from the methacrylic acid esters shown below. Examples of methacrylates include methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, and methacrylic acid. Cyclopentyl, cyclohexyl methacrylate, cyclooctyl methacrylate, tricyclodecyl methacrylate, dicyclooctyl methacrylate, tricyclododecyl methacrylate and the like.
 N-置換マレイミド単量体由来の構造単位(X)は、下記式(1)で表される構造単位、および下記式(2)で表される構造単位からなる群から選ばれる1種あるいは2種以上の構造単位から形成される。 The structural unit (X) derived from the N-substituted maleimide monomer is one or two selected from the group consisting of structural units represented by the following formula (1) and structural units represented by the following formula (2). It is formed from one or more structural units.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1)中、R1は、炭素数7~14のアリールアルキル基、または炭素数6~14のアリール基である。R2およびR3は各々、水素原子、酸素原子、硫黄原子、炭素数1~12のアルキル基、または炭素数6~14のアリール基である。R2またはR3がアリール基の場合には、R2またはR3は置換基としてハロゲン原子を含んでいてもよい。 In formula (1), R1 is an arylalkyl group having 7 to 14 carbon atoms or an aryl group having 6 to 14 carbon atoms. Each of R2 and R3 is a hydrogen atom, an oxygen atom, a sulfur atom, an alkyl group having 1 to 12 carbon atoms, or an aryl group having 6 to 14 carbon atoms. When R2 or R3 is an aryl group, R2 or R3 may contain a halogen atom as a substituent.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(2)中、R4は、水素原子、炭素数3~12のシクロアルキル基、または炭素数1~12のアルキル基である。R5及びR6は各々、水素原子、酸素原子、硫黄原子、炭素数1~12のアルキル基、または炭素数6~14のアリール基である。 In formula (2), R4 is a hydrogen atom, a cycloalkyl group having 3 to 12 carbon atoms, or an alkyl group having 1 to 12 carbon atoms. Each of R5 and R6 is a hydrogen atom, an oxygen atom, a sulfur atom, an alkyl group having 1 to 12 carbon atoms, or an aryl group having 6 to 14 carbon atoms.
 グルタルイミド系構造単位は、下記式(3)で表される。 The glutarimide-based structural unit is represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記式(3)において、R7及びR8は各々、例えば、水素原子またはメチル基である。R9は、水素原子、メチル基、ブチル基、またはシクロヘキシル基である。R7はメチル基であり、R8は水素であり、R9はメチル基である。 In formula (3) above, each of R7 and R8 is, for example, a hydrogen atom or a methyl group. R9 is a hydrogen atom, a methyl group, a butyl group, or a cyclohexyl group. R7 is a methyl group, R8 is hydrogen and R9 is a methyl group.
 かかる環状イミド構造を有する樹脂を用いてレンズ本体P1を形成した場合には、環状イミド構造を有しない汎用のメタクリル樹脂を用いてレンズ本体P1を形成した場合よりレンズ面の鉛筆硬度が高い。例えば、環状イミド構造を有しない汎用のメタクリル樹脂を用いてレンズ本体P1を形成した場合、ハードコート層P2および反射防止層P3を設けた状態におけるレンズ面の鉛筆硬度は、図2に棒グラフC2で示すように、約5Hであるのに対し、環状イミド構造を有するメタクリル樹脂を用いてレンズ本体P1を形成した場合、ハードコート層P2および反射防止層P3を設けた状態におけるレンズ面の鉛筆硬度は、図2に棒グラフC1で示すように、約6Hである。なお、プラスチックレンズPの樹脂材料には、紫外線吸収剤を添加してもよい。 When the lens body P1 is formed using a resin having such a cyclic imide structure, the pencil hardness of the lens surface is higher than when the lens body P1 is formed using a general-purpose methacrylic resin having no cyclic imide structure. For example, when the lens body P1 is formed using a general-purpose methacrylic resin that does not have a cyclic imide structure, the pencil hardness of the lens surface with the hard coat layer P2 and the antireflection layer P3 provided is represented by the bar graph C2 in FIG. As shown, while the hardness is about 5H, when the lens body P1 is formed using a methacrylic resin having a cyclic imide structure, the pencil hardness of the lens surface with the hard coat layer P2 and the antireflection layer P3 provided is , about 6H, as shown by bar graph C1 in FIG. Incidentally, the resin material of the plastic lens P may be added with an ultraviolet absorber.
(ハードコート層P2の構成)
 図1に示すプラスチックレンズPにおいて、ハードコート層P2は、プラスチックレンズ基材に耐擦傷性を付与するとともに、レンズ本体P1を構成するプラスチック基材と反射防止層P3との密着性を高めている。
(Structure of hard coat layer P2)
In the plastic lens P shown in FIG. 1, the hard coat layer P2 imparts scratch resistance to the plastic lens base material and enhances the adhesion between the plastic base material constituting the lens body P1 and the antireflection layer P3. .
 本形態において、ハードコート層P2は、有機材料層や有機ケイ素化合物層からなるベース層を備える。また、ハードコート層P2は、ベース層に金属酸化物微粒子が分散した層からなる。金属酸化物微粒子の具体例としてはSiO、Al、SnO、TiO等の金属酸化物からなる。本形態では、金属酸化物微粒子として、SiO(シリカ)が用いられる。 In this embodiment, the hard coat layer P2 includes a base layer made of an organic material layer or an organic silicon compound layer. Further, the hard coat layer P2 is composed of a layer in which metal oxide fine particles are dispersed in a base layer. Specific examples of metal oxide fine particles are metal oxides such as SiO 2 , Al 2 O 3 , SnO 2 and TiO 2 . In this embodiment, SiO 2 (silica) is used as the metal oxide fine particles.
 有機材料層の形成には、各種樹脂層が用いられる。有機ケイ素化合物層の形成には、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトライソプロポキシシラン、テトラブトキシシラン、ビニルトリアルコキシシラン、アリルトリアルコキシシラン、アクリルオキシプロピルトリアルコキシシラン等が用いられる。
 ハードコート層P2を形成するための塗布液は、ベース層を形成するための液状物に金属酸化物微粒子を分散させた塗布液が用いられる。また、ハードコート層P2を形成する際、レンズ本体P1の表面に、レンズ本体P1とハードコート層P2との密着性等を向上するための酸処理やプライマー処理等の前処理が行われることがある。
Various resin layers are used for forming the organic material layer. For forming the organosilicon compound layer, for example, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraisopropoxysilane, tetrabutoxysilane, vinyltrialkoxysilane, allyltrialkoxysilane, acryloxypropyltrialkoxysilane and the like are used. Used.
As the coating liquid for forming the hard coat layer P2, a coating liquid in which metal oxide fine particles are dispersed in the liquid for forming the base layer is used. Further, when the hard coat layer P2 is formed, the surface of the lens body P1 may be subjected to pretreatment such as acid treatment or primer treatment to improve adhesion between the lens body P1 and the hard coat layer P2. be.
(ハードコート層P2の形成方法等)
 図3は、図1に示すプラスチックレンズPのハードコート層P2を形成する条件を示す説明図である。図4は、図1に示すハードコート層P2を形成するための塗布液の粘度とハードコート層の厚さとの関係を示すグラフである。図5は、図1に示すハードコート層におけるシリカ含有率と反射防止層表面の鉛筆硬度との関係を示すグラフである。
(Method for forming hard coat layer P2, etc.)
FIG. 3 is an explanatory diagram showing conditions for forming the hard coat layer P2 of the plastic lens P shown in FIG. FIG. 4 is a graph showing the relationship between the viscosity of the coating liquid for forming the hard coat layer P2 shown in FIG. 1 and the thickness of the hard coat layer. FIG. 5 is a graph showing the relationship between the silica content in the hard coat layer shown in FIG. 1 and the pencil hardness of the antireflection layer surface.
 ハードコート層P2を形成する工程では、ディッピング法、スピンコート法、スプレー法等の塗布方法を用いて塗膜を形成した後に、塗膜に熱、紫外線等の電磁波または電子ビームなどによって硬化させる。熱を用いる場合には、塗布液を塗布した後、40~200℃の温度で数時間程度、加熱乾燥する方法が例示できる。塗布液における金属酸化物微粒子の配合量が少なすぎると、形成されるハードコート層P2の耐摩耗性が不十分となる場合がある。一方、塗布液における金属酸化物微粒子の配合量が多すぎると、ハードコート層P2にクラックが生じる場合がある。 In the step of forming the hard coat layer P2, after forming a coating film using a coating method such as dipping, spin coating, or spraying, the coating is cured by heat, electromagnetic waves such as ultraviolet rays, or electron beams. When heat is used, a method of heating and drying at a temperature of 40 to 200° C. for several hours after applying the coating liquid can be exemplified. If the amount of the metal oxide fine particles in the coating solution is too small, the resulting hard coat layer P2 may have insufficient wear resistance. On the other hand, when the amount of the metal oxide fine particles blended in the coating liquid is too large, cracks may occur in the hard coat layer P2.
 ハードコート層P2の材料としては、光硬化性樹脂材料であることが好ましい。本形態において、ハードコート層形成工程では、アクリルおよび/またはウレタンから成る光硬化性樹脂材料、および金属酸化物微粒子を含む塗布液をスピンコート法によって塗布した後、塗布液からなる塗膜に熱を与えて乾燥させた後、紫外線灯の電磁波または電子ビーム等によって光硬化させ、ハードコート層P2を形成する。従って、レンズ本体P1のガラス転移温度Tg未満の温度でハードコート層P2を形成することができる。さらに、ハードコート層P2がアクリルおよび/またはウレタン等から成る光硬化性樹脂であるため、レンズ本体P1との密着性に優れており、レンズ本体P1と反射防止層P3との間で優れた緩衝層として機能する。 The material for the hard coat layer P2 is preferably a photocurable resin material. In the present embodiment, in the hard coat layer forming step, a coating liquid containing a photocurable resin material made of acrylic and/or urethane and metal oxide fine particles is applied by a spin coating method, and then a coating film made of the coating liquid is heated. After drying, the hard coat layer P2 is formed by photocuring with electromagnetic waves or electron beams from an ultraviolet lamp. Therefore, the hard coat layer P2 can be formed at a temperature lower than the glass transition temperature Tg of the lens body P1. Furthermore, since the hard coat layer P2 is a photocurable resin made of acrylic and/or urethane, etc., it has excellent adhesion to the lens body P1, and excellent buffering is achieved between the lens body P1 and the antireflection layer P3. act as a layer.
 なお、本形態では、ハードコート層P2の材料は光硬化性樹脂材料を使用したが、ハードコート層P2の材料は、光硬化性樹脂材料に替えて熱硬化性樹脂材料であってもよい。 In this embodiment, a photocurable resin material is used as the material for the hard coat layer P2, but the material for the hard coat layer P2 may be a thermosetting resin material instead of the photocurable resin material.
 スピンコート法では、レンズ本体P1の一方面Paに塗布液を滴下した後、レンズ本体P1を光軸L周りに回転させて塗布液の塗膜を形成する。その際、ハードコート層P2を十分に厚く形成するには、塗布液の高粘度化が考えられるが、従来の塗布条件のまま、塗布液の粘性を高めると、塗膜の均一性が悪くなり、レンズ形状が実質的に歪んでしまう。
 従って、本形態では、粘度が26mPa・s~50mPa・sの比較的高粘度の塗布液を塗布し、レンズ本体P1の表面全体に塗布液が行き渡るように、滴下した後、スピンコーターの回転を、図3に示すように制御する。
In the spin coating method, after dropping the coating liquid onto one surface Pa of the lens body P1, the lens body P1 is rotated around the optical axis L to form a coating film of the coating liquid. At that time, in order to form the hard coat layer P2 sufficiently thick, it is conceivable to increase the viscosity of the coating liquid. , the lens shape is substantially distorted.
Therefore, in this embodiment, a relatively high-viscosity coating liquid having a viscosity of 26 mPa·s to 50 mPa·s is applied, and after dropping the coating liquid so that it spreads over the entire surface of the lens body P1, the spin coater is rotated. , are controlled as shown in FIG.
 より具体的には、まず、1次回転では、スピンコーターの回転速度に所定の加速勾配を付けて徐々に加速させた後、一定速度で一定時間回転させ、その後、所定の減速勾配を付けて、徐々に減速する。より具体的には、1次回転では、加速勾配a1、等速回転時の角速度r1、および減速勾配d1を各々、以下の条件とする。
  a1=100rpm/s~3000rpm/s
  r1=900rpm~3000rpm
  d1=100rpm/s~3000rpm/s
More specifically, first, in the primary rotation, the rotation speed of the spin coater is gradually accelerated with a predetermined acceleration gradient, then rotated at a constant speed for a predetermined time, and then with a predetermined deceleration gradient. , gradually decelerate. More specifically, in the primary rotation, the acceleration gradient a1, the angular velocity r1 during constant-speed rotation, and the deceleration gradient d1 are set as follows.
a1 = 100 rpm/s to 3000 rpm/s
r1=900rpm~3000rpm
d1=100rpm/s~3000rpm/s
 例えば、1次回転では、一定速度で一定時間回転させる際の角速度r1を1000rpmとし、回転時間を10秒とする。また、角速度r1が1000rpmとなるまでの加速勾配a1を333rpm/sとし、減速勾配d1を200rpm/sとする。 For example, in the primary rotation, the angular velocity r1 when rotating at a constant speed for a certain period of time is 1000 rpm, and the rotation time is 10 seconds. Also, the acceleration gradient a1 until the angular velocity r1 reaches 1000 rpm is assumed to be 333 rpm/s, and the deceleration gradient d1 is assumed to be 200 rpm/s.
 次に、1次回転後の塗布状態を確認し、その確認結果によっては、1次回転より早い速度で一定時間回転させる2次回転を行う。2次回転でも、1次回転と同様、スピンコーターの回転速度に所定の加速勾配を付けて徐々に加速させた後、一定速度で一定時間回転させ、その後、所定の減速勾配を付けて、徐々に減速する。より具体的には、等速回転時の角速度r2を1次回転における角速度r1の2倍以上とする。 Next, the coating state after the primary rotation is checked, and depending on the confirmation result, the secondary rotation is performed for a certain period of time at a speed faster than the primary rotation. In the secondary rotation, as in the primary rotation, the rotation speed of the spin coater is gradually accelerated with a predetermined acceleration gradient, then rotated at a constant speed for a certain period of time, and then gradually applied with a predetermined deceleration gradient. slow down to More specifically, the angular velocity r2 during uniform rotation is set to be at least twice the angular velocity r1 during primary rotation.
 例えば、2次回転では、一定速度で一定時間回転させる際の角速度r2を3000rpmとし、回転時間を9秒とする。また、角速度r2が3000rpmとなるまでの加速勾配a2を3000rpm/sとし、減速勾配d2を600rpm/sとする。 For example, in the secondary rotation, the angular velocity r2 when rotating at a constant speed for a certain period of time is 3000 rpm, and the rotation time is 9 seconds. Further, the acceleration gradient a2 until the angular velocity r2 reaches 3000 rpm is assumed to be 3000 rpm/s, and the deceleration gradient d2 is assumed to be 600 rpm/s.
 なお、1次回転および2次回転を行って塗布液の塗膜を形成する場合、2次回転では、1次回転の等速回転から減速させることなく、所定の加速勾配を付けて徐々に加速させた後、一定速度で一定時間回転させ、その後、所定の減速勾配を付けて、徐々に減速するように構成してもよい。 When the coating liquid is formed by performing the primary rotation and the secondary rotation, the secondary rotation gradually accelerates with a predetermined acceleration gradient without decelerating from the uniform rotation of the primary rotation. After that, it may be rotated at a constant speed for a certain period of time, and then gradually decelerated with a predetermined deceleration gradient.
 このような条件でハードコート層P2を形成する際、塗布液の粘度とハードコート層P2の厚さとの関係は、図4に示す通りである。図4では、標準的な粘度とした場合の結果を丸で示し、粘度を26mPa・s~50mPa・sまで高粘度化した場合の結果を三角で示してある。図4から分かるように、塗布液の粘度が高い場合には、ハードコート層P2を厚くすることができる。 When forming the hard coat layer P2 under such conditions, the relationship between the viscosity of the coating liquid and the thickness of the hard coat layer P2 is as shown in FIG. In FIG. 4, the circles show the results when the standard viscosity is used, and the triangles show the results when the viscosity is increased from 26 mPa·s to 50 mPa·s. As can be seen from FIG. 4, the hard coat layer P2 can be thickened when the viscosity of the coating liquid is high.
 このように本形態では、粘度が26mPa・s~50mPa・sの比較的高粘度の塗布剤を用いることによって、ハードコート層P2を厚くする。また、塗布剤を滴下した後のスピン工程の条件を上記条件に設定し、加速時および減速時の速度勾配を緩やかにすることによって、急加速および急停止を防ぐ。このため、急加速および急停止に伴う慣性モーメントを小さくすることができるので、十分な厚さのハードコート層P2を形成した場合でも、塗膜の厚さにばらつきが生じにくい。 Thus, in this embodiment, the hard coat layer P2 is thickened by using a relatively high-viscosity coating agent with a viscosity of 26 mPa·s to 50 mPa·s. Also, by setting the conditions of the spin process after dropping the coating material to the above conditions and making the speed gradient during acceleration and deceleration moderate, sudden acceleration and sudden stop can be prevented. Therefore, the moment of inertia associated with sudden acceleration and sudden stop can be reduced, so even if the hard coat layer P2 is formed with a sufficient thickness, the thickness of the coating film is less likely to vary.
 例えば、粘度が46mPa・sの塗布剤を用いた場合、レンズ本体P1の一方面Paの中心Pa1に形成されたハードコート層P2の膜厚は7.4μmであり、一方面Paの外周Pa2に形成されたハードコート層P2の膜厚は7.55μmであり、一方面Paの中心Pa1と外周Pa2とに形成されたハードコート層P2の膜厚差は±0.3μmであった。従って、透過光の光学的歪みが生じないプラスチックレンズPを実現できる。 For example, when a coating agent having a viscosity of 46 mPa·s is used, the thickness of the hard coat layer P2 formed on the center Pa1 of the one surface Pa of the lens body P1 is 7.4 μm, and the thickness of the hard coat layer P2 is 7.4 μm. The thickness of the formed hard coat layer P2 was 7.55 μm, and the difference in thickness between the hard coat layer P2 formed at the center Pa1 and the outer circumference Pa2 of one surface Pa was ±0.3 μm. Therefore, it is possible to realize a plastic lens P that does not cause optical distortion of transmitted light.
 ここで、ハードコート層P2の膜厚HCは、以下の条件式を満たすことが好ましい。
   2μm≦HC≦20μm
Here, the film thickness HC of the hard coat layer P2 preferably satisfies the following conditional expression.
2 µm ≤ HC ≤ 20 µm
 膜厚HCが2μm以上であれば、高い鉛筆硬度を実現することができる。また、膜厚HCが20μm以下であれば、耐熱衝撃性能を高めることができる。 A high pencil hardness can be achieved if the film thickness HC is 2 μm or more. Moreover, if the film thickness HC is 20 μm or less, the thermal shock resistance can be enhanced.
 好ましくは、ハードコート層P2の膜厚HCは、以下の条件式を満たすことが好ましい。
   5μm≦HC≦10μm
Preferably, the film thickness HC of the hard coat layer P2 satisfies the following conditional expression.
5 μm≦HC≦10 μm
 膜厚HCが5μm以上であれば、6H以上の鉛筆硬度を実現することができる。また、膜厚HCが10μm以下であれば、熱衝撃によるクラックの発生をさらに抑制できる。 If the film thickness HC is 5 μm or more, a pencil hardness of 6H or more can be achieved. Also, if the film thickness HC is 10 μm or less, the occurrence of cracks due to thermal shock can be further suppressed.
 より好ましくは、ハードコート層P2の膜厚HCは、以下の条件式を満たすことが好ましい。
   6μm≦HC≦9μm
More preferably, the film thickness HC of the hard coat layer P2 satisfies the following conditional expression.
6 μm≦HC≦9 μm
 膜厚HCが6μm以上であれば、6H以上の鉛筆硬度を確実に実現することができる。また、膜厚HCが9μm以下であれば、-40℃および85℃の各々で30分保持する熱衝撃試験を1000サイクル行った場合でも反射防止層P3に欠陥が発生しにくい。 If the film thickness HC is 6 μm or more, a pencil hardness of 6H or more can be reliably achieved. Further, when the film thickness HC is 9 μm or less, defects are less likely to occur in the antireflection layer P3 even after 1000 cycles of a thermal shock test at −40° C. and 85° C. for 30 minutes each.
 また、レンズ本体P1の一方面Paにおける中心Pa1と外周Pa2とにおけるハードコート層P2の膜厚差を±0.7μm以下とすることが好ましい。 Further, it is preferable that the difference in film thickness of the hard coat layer P2 between the center Pa1 and the outer circumference Pa2 on one surface Pa of the lens body P1 is ±0.7 μm or less.
 ここで、ハードコート層P2におけるシリカ含有率と反射防止層P3表面の鉛筆硬度との関係は、図5に示す通りである。 Here, the relationship between the silica content in the hard coat layer P2 and the pencil hardness of the surface of the antireflection layer P3 is as shown in FIG.
 また、図5から分かるように、シリカ含有率が多い程、反射防止層P3の表面の硬度が高くなる。従って、ハードコート層P2におけるシリカ粒子の含有率をSとしたとき、含有率Sは以下の条件式
   40%≦S≦65%
 を満たすことが好ましい。
Further, as can be seen from FIG. 5, the higher the silica content, the higher the hardness of the surface of the antireflection layer P3. Therefore, when the content of silica particles in the hard coat layer P2 is S, the content S is the following conditional expression: 40% ≤ S ≤ 65%
is preferably satisfied.
 より具体的には、例えば、ハードコート層P2が6μmの場合において検証したところ、シリカ含有率を40%以上とすれば、反射防止層P3の表面の硬度を鉛筆硬度で6H以上とすることができる。ここで、ハードコート層P2のシリカ含有率が65%を超えると、1000サイクルの熱衝撃試験(-40℃~85℃、30分)によって反射防止層P3に欠陥が発生しやすくなる。従って、ハードコート層P2は、シリカ含有率を40%以上、かつ65%以下とすることが好ましく、さらに、シリカ含有率を44%以上、かつ62%以下とすることがさらに好ましい。ハードコート層P2の膜厚HCを変更した場合でも、略同様の結果が得られた。 More specifically, for example, when the hard coat layer P2 has a thickness of 6 μm, when the silica content is 40% or more, the hardness of the surface of the antireflection layer P3 can be 6H or more in pencil hardness. can. Here, when the silica content of the hard coat layer P2 exceeds 65%, defects are likely to occur in the antireflection layer P3 by a 1000-cycle thermal shock test (-40° C. to 85° C., 30 minutes). Therefore, the hard coat layer P2 preferably has a silica content of 40% or more and 65% or less, more preferably 44% or more and 62% or less. Substantially the same results were obtained even when the film thickness HC of the hard coat layer P2 was changed.
(ハードコート層P2のレンズユニットへの影響)
 以下、プラスチックレンズPを後述するレンズユニットに用いた場合の影響を説明する。図6は、図1に示すハードコート層P2の膜厚差とMTF(Modulation Transfer Function)との関係を示すグラフである。図7は、図1に示すハードコート層P2の膜厚差と画角との関係を示すグラフである。なお、図6および図7には、レンズ中心と外周の膜厚差が1μm、2μm、3μm、6μm、10μm、15μm、20μm、25μmの場合の結果を実線t1、t2、t3、t6、t10、t15、t20、t25で示してある。図6および図7から分かるように、レンズ中心と外周の膜厚差が小さい程、MTFおよび画角の変化が小さい。
(Influence of Hard Coat Layer P2 on Lens Unit)
The effect of using the plastic lens P in a lens unit, which will be described later, will be described below. FIG. 6 is a graph showing the relationship between the film thickness difference of the hard coat layer P2 shown in FIG. 1 and the MTF (Modulation Transfer Function). FIG. 7 is a graph showing the relationship between the film thickness difference of the hard coat layer P2 shown in FIG. 1 and the angle of view. In FIGS. 6 and 7, solid lines t1, t2, t3, t6, t10, They are indicated by t15, t20 and t25. As can be seen from FIGS. 6 and 7, the smaller the film thickness difference between the lens center and the periphery, the smaller the change in the MTF and the angle of view.
 それ故、レンズの中心Pa1におけるハードコート層P2の膜厚とレンズの外周Pa2におけるハードコート層P2の膜厚との差は、15μm以下であることが好ましい。かかる態様によれば、MTFの変化を小さく抑えることができるため、解像度を維持することができる。また、レンズの中心Pa1の膜厚におけるMTF変化量と、レンズの外周Pa2の膜厚におけるMFT変化量との差は、0.02%以下であることが好ましい。かかる態様によれば、解像度を維持することができる。 Therefore, the difference between the thickness of the hard coat layer P2 at the center Pa1 of the lens and the thickness of the hard coat layer P2 at the outer circumference Pa2 of the lens is preferably 15 μm or less. According to this aspect, the change in MTF can be kept small, so the resolution can be maintained. Moreover, the difference between the MTF change amount in the film thickness at the center Pa1 of the lens and the MFT change amount in the film thickness at the outer circumference Pa2 of the lens is preferably 0.02% or less. According to this aspect, the resolution can be maintained.
 上記のように、従来のスピンコート方法では、レンズ中心と外周の膜厚差が15μmを超えるため、ユニットとしての画像がボケる。具体的には60lP/mmのMTFの変化量の差が0.02%を超える。これに対して、本形態によれば、膜厚差の変化量の差が15μm以下となるため、画像がボケない。具体的には、MTFの差で0.02%以下となる。なお、膜厚差の変化量の差は、6μm以下がより好ましい。 As described above, in the conventional spin coating method, the film thickness difference between the lens center and the outer periphery exceeds 15 μm, so the image as a unit is blurred. Specifically, the difference in the amount of change in MTF at 60 lP/mm exceeds 0.02%. In contrast, according to the present embodiment, the difference in the amount of change in the film thickness difference is 15 μm or less, so the image is not blurred. Specifically, the difference in MTF is 0.02% or less. In addition, the difference in the amount of change in film thickness difference is more preferably 6 μm or less.
 また、プラスチックレンズPの一方面Paの曲率半径R11は、例えば、以下の条件式を満たすことが好ましい。
  9.000mm≦R11≦16.000mm
Moreover, it is preferable that the curvature radius R11 of the one surface Pa of the plastic lens P satisfies the following conditional expression, for example.
9.000mm≤R11≤16.000mm
 曲率半径R11が9.000mm未満の場合、レンズ外周での液溜まりの発生を解消しきれず、ハードコート層の膜厚差が3μm以上となってしまう。その結果、MTF値が15%以下となってしまう。これに対し、曲率半径R11が16.000mmを超えると、ハードコート層の膜厚差は低減できるが、魚眼レンズユニット用として不適となってしまう。 If the radius of curvature R11 is less than 9.000 mm, the occurrence of liquid pools on the outer periphery of the lens cannot be eliminated, and the thickness difference of the hard coat layer becomes 3 μm or more. As a result, the MTF value becomes 15% or less. On the other hand, if the radius of curvature R11 exceeds 16.000 mm, the film thickness difference of the hard coat layer can be reduced, but it is unsuitable for a fisheye lens unit.
 それ故、本形態のプラスチックレンズPを第1レンズL1として用いたレンズユニット100では、実使用環境においてレンズにキズがつきにくい。従って、レンズユニット100としての画像のボケや乱れが起きにくく、耐久性が高い。また、プラスチックレンズPであるため、レンズ形状を非球面とすることも容易である。非球面形状とすることで、レンズユニット100とした構成にした場合、高い解像力を得ることができる。さらに本発明のコーティングをすることで、非球面形状を崩すことなくコーティングすることが可能となるため、以下に説明する反射防止層P3の効果と合わせて、鉛筆硬度6H以上を保ちつつ、高解像力なレンズユニット100とすることができる。 Therefore, in the lens unit 100 using the plastic lens P of this embodiment as the first lens L1, the lens is less likely to be scratched in an actual usage environment. Therefore, the lens unit 100 is less likely to blur or distort images, and has high durability. Moreover, since the lens P is a plastic lens, it is easy to make the lens shape aspherical. By forming the aspherical shape, high resolution can be obtained when the lens unit 100 is configured. Furthermore, by applying the coating of the present invention, it is possible to coat without destroying the aspherical shape. Therefore, combined with the effect of the antireflection layer P3 described below, high resolution is maintained while maintaining a pencil hardness of 6H or more. lens unit 100.
(反射防止層P3の構成)
 図8は、図1に示す反射防止層P3の層構造を示す説明図である。図9は、図1に示す反射防止層P3の光学特性を示す説明図である。図10は、図1に示す反射防止層P3のナノインデンター押込み弾性率を示す説明図である。
(Structure of antireflection layer P3)
FIG. 8 is an explanatory diagram showing the layer structure of the antireflection layer P3 shown in FIG. FIG. 9 is an explanatory diagram showing the optical properties of the antireflection layer P3 shown in FIG. FIG. 10 is an explanatory diagram showing the nanoindenter indentation elastic modulus of the antireflection layer P3 shown in FIG.
 図1に示すプラスチックレンズPにおいて、反射防止層P3は、低屈折率膜と高屈折率膜とが交互に積層された誘電体多層膜からなる。本形態においては、図8に示すように、反射防止層P3は、低屈折率膜としての二酸化珪素膜(SiO2膜)と高屈折率膜としての四窒化三珪素膜(Si膜)とが交互に積層された誘電体多層膜からなる。 In the plastic lens P shown in FIG. 1, the antireflection layer P3 is composed of a dielectric multilayer film in which a low refractive index film and a high refractive index film are alternately laminated. In this embodiment, as shown in FIG. 8, the antireflection layer P3 includes a silicon dioxide film (SiO2 film) as a low refractive index film and a trisilicon tetranitride film ( Si3N4 film) as a high refractive index film . are alternately laminated.
 本形態においては、反射防止層P3では、最上層が二酸化珪素膜であることが望ましい。また、最上層の二酸化珪素膜の膜厚は60nm以上であることが好ましい。ここで、反射防止層P3において成膜される多層膜は、膜性能および成膜作業の効率性を考慮すると、5層または7層程度が好ましく、その反射防止層P3の総膜厚ARは、以下の条件式を満たすことが好ましい。
  200nm≦AR≦500nm
In this embodiment, it is desirable that the top layer of the antireflection layer P3 is a silicon dioxide film. Further, the film thickness of the uppermost silicon dioxide film is preferably 60 nm or more. Here, the multilayer film formed in the antireflection layer P3 is preferably about 5 or 7 layers in consideration of film performance and efficiency of the film formation work, and the total film thickness AR of the antireflection layer P3 is It is preferable to satisfy the following conditional expressions.
200 nm≤AR≤500 nm
 好ましくは、反射防止層P3の総膜厚ARは、以下の条件式を満たすことが好ましい。
  280nm≦AR≦500nm
Preferably, the total film thickness AR of the antireflection layer P3 satisfies the following conditional expression.
280 nm≤AR≤500 nm
 かかる構成によれば、以下に説明するように、プラスチックレンズPの反射防止性能に優れている。例えば、反射防止層P3の総膜厚ARが500nmを超えると、反射防止層P3の応力が高すぎて被膜が割れやすくなるとともに、成膜時にレンズ本体P1の温度が過度に上昇し、レンズ面への影響が生じる。また、反射防止層P3の総膜厚ARが200nm未満であると、適正な反射防止特性が得られないとともに、反射防止層P3の硬度を確保しにくく、傷がつきやすい。また、反射防止層P3の総膜厚ARを適正化することにより、反射防止層P3を成膜する際の温度上昇を抑制すると、MTF変化を抑制することができる。それ故、高い解像度を維持することができる等、品位の高い画像を得ることができる。 According to such a configuration, as described below, the antireflection performance of the plastic lens P is excellent. For example, if the total film thickness AR of the antireflection layer P3 exceeds 500 nm, the stress of the antireflection layer P3 is too high and the film tends to crack, and the temperature of the lens body P1 rises excessively during the film formation, causing the lens surface to crack. have an impact on Further, if the total thickness AR of the antireflection layer P3 is less than 200 nm, proper antireflection characteristics cannot be obtained, and it is difficult to secure the hardness of the antireflection layer P3, and the antireflection layer P3 is easily scratched. Also, by optimizing the total film thickness AR of the antireflection layer P3 to suppress the temperature rise during the formation of the antireflection layer P3, the MTF change can be suppressed. Therefore, it is possible to obtain a high-quality image such as maintaining a high resolution.
 例えば、図8に示す実施例では、低屈折率膜としての二酸化珪素膜(SiO膜)と高屈折率膜としての四窒化三珪素膜(Si膜)とが交互に計8層、積層されている。最上層は、厚さが104.17nmの二酸化珪素膜であり、反射防止層P3の総膜厚は、296.18nmである。なお、図8に示す実施例では、第1層目が四窒化三珪素膜であったが、第1層目は二酸化珪素膜であってもよい。また、高屈折率膜としては、四窒化三珪素膜の他に、酸化タンタル膜、酸化チタン膜、酸化ニオブ膜であってもよい。また、低屈折率膜としては、Alであってもよい。 For example, in the embodiment shown in FIG. 8, silicon dioxide films (SiO 2 films) as low refractive index films and trisilicon tetranitride films (Si 3 N 4 films) as high refractive index films are alternately formed into a total of eight layers. , are stacked. The top layer is a silicon dioxide film with a thickness of 104.17 nm, and the total thickness of the antireflection layer P3 is 296.18 nm. In the embodiment shown in FIG. 8, the first layer is a trisilicon tetranitride film, but the first layer may be a silicon dioxide film. In addition to the trisilicon tetranitride film, the high refractive index film may be a tantalum oxide film, a titanium oxide film, or a niobium oxide film. Al 2 O 3 may be used as the low refractive index film.
 また、図10に示す実施例のように、本形態の反射防止層P3は、ナノインデンター押込み弾性率が70GPa以上、かつ、110GPa以下である。図10に示すように、ナノインデンター押込み弾性率が70GPa未満であると、反射防止層P3に割れは生じないが、耐傷性が劣る。一方、ナノインデンター押込み弾性率が110GPaを超えると、反射防止層P3の応力が高すぎて割れが発生するおそがある。それ故、ナノインデンター押込み弾性率が上記範囲であれば、耐傷性と膜応力を両立できる。なお、本形態では、ENT-NEXUS(株式会社エリオニクス)を用いた負荷除荷試験によって、ナノインデンター押込み弾性率を求めた。試験には、Berkovich型ダイヤモンド圧子を用いた。試験における最大荷重は、1mN以下である。 Further, as in the example shown in FIG. 10, the antireflection layer P3 of this embodiment has a nanoindenter indentation elastic modulus of 70 GPa or more and 110 GPa or less. As shown in FIG. 10, when the nanoindenter indentation elastic modulus is less than 70 GPa, cracks do not occur in the antireflection layer P3, but the scratch resistance is poor. On the other hand, if the nanoindenter indentation elastic modulus exceeds 110 GPa, the stress of the antireflection layer P3 is too high and cracks may occur. Therefore, if the nanoindenter indentation elastic modulus is within the above range, both scratch resistance and film stress can be achieved. In this embodiment, the nanoindenter indentation elastic modulus was determined by a load-unloading test using ENT-NEXUS (Elionix Co., Ltd.). A Berkovich type diamond indenter was used for the test. The maximum load in the test is 1 mN or less.
 また、反射防止層P3において、レンズ本体P1から最も離隔する最外層は二酸化珪素膜であって、最外層の膜厚をtsとしたとき、膜厚tsは、以下の条件式
  60nm≦ts≦150nm
 を満たすことが好ましい。また、より好ましくは、膜厚tsは、以下の条件式
  60nm≦ts≦100nm
 を満たすことが好ましい。
In the antireflection layer P3, the outermost layer farthest from the lens body P1 is a silicon dioxide film.
is preferably satisfied. More preferably, the film thickness ts is determined by the following conditional expression: 60 nm ≤ ts ≤ 100 nm
is preferably satisfied.
 かかる構成によれば、反射防止層P3の最外層を二酸化珪素膜とし、かつ膜厚を60nm以上とすることによって、反射防止層P3の耐薬品性等の耐久性を向上することができる。また、反射防止層P3の最外層を二酸化珪素膜としたため、実使用環境においてプラスチックレンズPにキズがつきにくく、レンズユニットとしての画像のボケや乱れが起きにくい。それ故、耐久性の高いレンズユニットを構成することができる。 According to this configuration, the outermost layer of the antireflection layer P3 is a silicon dioxide film, and the film thickness is 60 nm or more, so that durability such as chemical resistance of the antireflection layer P3 can be improved. In addition, since the outermost layer of the antireflection layer P3 is a silicon dioxide film, the plastic lens P is less likely to be scratched in an actual use environment, and blurring and distortion of images as a lens unit are less likely to occur. Therefore, a highly durable lens unit can be configured.
 かかる反射防止層P3を設けたプラスチックレンズPでは、図9に示すように、420nmより長波長の可視光に対して優れた反射防止効果を発揮する。
 なお、反射防止層P3を形成した後、プラスチックレンズ表面の撥水撥油性能を向上させる目的で、含フッ素シラン化合物からなる防汚層が形成されることがある。含フッ素シラン化合物は、有機溶剤に溶解し、所定濃度に調整した撥水処理液を用いて反射防止層上に塗布する方法を採用することができる。
As shown in FIG. 9, the plastic lens P provided with such an antireflection layer P3 exhibits an excellent antireflection effect against visible light with a wavelength longer than 420 nm.
After forming the antireflection layer P3, an antifouling layer made of a fluorine-containing silane compound may be formed for the purpose of improving the water and oil repellency of the plastic lens surface. A fluorine-containing silane compound can be dissolved in an organic solvent, and a water-repellent treatment liquid adjusted to a predetermined concentration can be used to coat the antireflection layer.
(反射防止層P3の形成工程)
 図11は、図1に示す反射防止層P3等のビッカース硬度を示す説明図である。図11において、反射防止層P3を蒸着法で形成した場合のビッカース硬度をひし形で示し、5層構造の反射防止層P3をスパッタ法で形成した場合のビッカース硬度を三角で示し、9層構造の反射防止層P3をスパッタ法で形成した場合のビッカース硬度を丸で示してある。
(Step of forming antireflection layer P3)
FIG. 11 is an explanatory diagram showing the Vickers hardness of the antireflection layer P3 and the like shown in FIG. In FIG. 11, diamonds indicate the Vickers hardness when the antireflection layer P3 is formed by a vapor deposition method, triangles indicate the Vickers hardness when the antireflection layer P3 having a five-layer structure is formed by a sputtering method, and triangles indicate the Vickers hardness when the antireflection layer P3 has a five-layer structure. Circles indicate the Vickers hardness when the antireflection layer P3 is formed by sputtering.
 本形態において、反射防止層形成工程では、真空蒸着法、スパッタリング法、イオンプレーティング法などの物理蒸着法(PVD法)、あるいは化学蒸着法(CVD法)などを採用することができる。ここで、蒸着されたAR膜と比較して、スパッタされたAR膜は引っかき傷に対する耐性が高くなり、耐擦過性が向上する。 In this embodiment, physical vapor deposition (PVD) such as vacuum deposition, sputtering, and ion plating, or chemical vapor deposition (CVD) can be employed in the antireflection layer forming step. Here, sputtered AR films are more scratch resistant and have improved scratch resistance compared to evaporated AR films.
 例えば、図11には、スパッタ法および蒸着法で形成した反射防止層P3のビッカース硬度を比較して示してある。なお、図11には、スパッタ法によって約200nmから約550nmの厚さで形成した反射防止層P3のビッカース硬度を、蒸着法によって約250nmの厚さで形成した反射防止層P3のビッカース硬度と比較して示してある。図11から分かるように、蒸着法によれば、ビッカース硬度が400kgf/mm2未満の反射防止層P3しか実現できないのに対し、スパッタ法によれば、ビッカース硬度が400kgf/mm2を超える反射防止層P3を実現することができる。 For example, FIG. 11 shows a comparison of the Vickers hardness of the antireflection layer P3 formed by the sputtering method and the vapor deposition method. FIG. 11 compares the Vickers hardness of the antireflection layer P3 formed by sputtering to a thickness of about 200 nm to about 550 nm with the Vickers hardness of the antireflection layer P3 formed to a thickness of about 250 nm by vapor deposition. shown as As can be seen from FIG. 11, the vapor deposition method can only realize an antireflection layer P3 having a Vickers hardness of less than 400 kgf/mm2, whereas the sputtering method can realize an antireflection layer P3 having a Vickers hardness of more than 400 kgf/mm2. can be realized.
 従って、本形態では、スパッタ法によって反射防止層P3を形成する。より具体的には、例えば、マグネトロンスパッタリング装置内に2~5Pa程度の圧力のアルゴンを導入し、電界で加速したアルゴンイオンをターゲットの二酸化珪素に照射し、二酸化珪素膜を形成する。また、マグネトロンスパッタリング装置内に2~5Pa程度の圧力のアルゴンを導入し、電界で加速したアルゴンイオンをターゲットの四窒化三珪素に照射し、四窒化三珪素膜を形成する。 Therefore, in this embodiment, the antireflection layer P3 is formed by sputtering. More specifically, for example, argon at a pressure of about 2 to 5 Pa is introduced into a magnetron sputtering apparatus, and argon ions accelerated by an electric field are irradiated onto silicon dioxide as a target to form a silicon dioxide film. Argon is introduced into the magnetron sputtering apparatus at a pressure of about 2 to 5 Pa, and the trisilicon tetranitride target is irradiated with argon ions accelerated by an electric field to form a trisilicon tetranitride film.
(反射防止層P3の成膜時の温度等の影響)
 図12は、レンズ本体P1を構成する樹脂の線膨張係数を示すグラフである。図13は、図1に示す反射防止層P3を成膜する際の温度と画角変化量との関係を示すグラフである。図14は、図1に示す反射防止層P3を成膜する際の温度とMTF変化量との関係を示すグラフである。なお、図13および図14において、成膜した際の温度が50℃、70℃、80℃、90℃、110℃の場合の結果を実線t50,t70,t80、t90,t110で示してある。
(Influence of temperature, etc. during film formation of the antireflection layer P3)
FIG. 12 is a graph showing the coefficient of linear expansion of the resin forming the lens body P1. FIG. 13 is a graph showing the relationship between the temperature and the amount of change in angle of view when the antireflection layer P3 shown in FIG. 1 is formed. FIG. 14 is a graph showing the relationship between the temperature and the amount of change in MTF when the antireflection layer P3 shown in FIG. 1 is formed. In FIGS. 13 and 14, solid lines t50, t70, t80, t90, and t110 show the results when the film formation temperatures are 50° C., 70° C., 80° C., 90° C., and 110° C. FIG.
 スパッタ工程において、反射防止層P3を成膜する際、温度が上昇する。その際の温度は、レンズ本体P1を構成する樹脂のガラス転移温度Tgより低く、かつガラス転移温度Tgと成膜温度との差が50℃以上であることが好ましい。より具体的には、図12に示すように、レンズ本体P1を構成する樹脂は、温度が上昇するに伴い、線膨張係数が増大する。 In the sputtering process, the temperature rises when forming the antireflection layer P3. The temperature at that time is preferably lower than the glass transition temperature Tg of the resin forming the lens body P1, and the difference between the glass transition temperature Tg and the film formation temperature is preferably 50° C. or more. More specifically, as shown in FIG. 12, the linear expansion coefficient of the resin forming the lens body P1 increases as the temperature rises.
 例えば、レンズ本体P1を構成する樹脂のガラス転移温度Tgが130℃の場合、成膜時の温度と線膨張係数との関係は以下の通りである。
  成膜時の温度            熱膨張係数(65ppm/℃)
   25℃(Tgとの差=105℃)  65
   50℃(Tgとの差=80℃)   65
   70℃(Tgとの差=60℃)   82(25℃の1.26倍)
   90℃(Tgとの差=40℃)  107(25℃の1.65倍)
For example, when the glass transition temperature Tg of the resin forming the lens body P1 is 130° C., the relationship between the temperature during film formation and the coefficient of linear expansion is as follows.
Temperature during film formation Coefficient of thermal expansion (65 ppm/°C)
25°C (difference from Tg = 105°C) 65
50°C (difference from Tg = 80°C) 65
70°C (difference from Tg = 60°C) 82 (1.26 times 25°C)
90°C (difference from Tg = 40°C) 107 (1.65 times 25°C)
 上記の結果から分かるように、成膜時の温度がレンズ本体P1を構成する樹脂のガラス転移温度Tgより低いが、成膜時の温度とガラス転移温度Tgとの温度差が50℃未満のときのレンズ本体P1の線膨張係数は、25℃を基準としたときの1.3倍以上である。 As can be seen from the above results, when the temperature during film formation is lower than the glass transition temperature Tg of the resin forming the lens body P1, but the temperature difference between the temperature during film formation and the glass transition temperature Tg is less than 50°C. The coefficient of linear expansion of the lens body P1 is 1.3 times or more when 25° C. is used as a reference.
 これに対して、成膜時の温度がレンズ本体P1を構成する樹脂のガラス転移温度Tgより低く、かつ、成膜時の温度とガラス転移温度Tgとの温度差が50℃以上である場合、レンズ本体P1の線膨張係数は、25℃を基準としたときの1.3倍未満である。従って、本形態では、成膜時の温度についてはレンズ本体P1を構成する樹脂のガラス転移温度Tgより低く、かつ、成膜時の温度とガラス転移温度Tgとの差が30℃以上であることが好ましい。かかる条件範囲によれば、反射防止層P3を形成する際のレンズ本体P1に加わる熱応力が小さいので、反射防止層P3に発生する圧縮応力を小さくすることができる。また、本形態では、レンズ本体P1を構成する樹脂がイミド構造を有するため、ガラス転移温度Tgが高く、80℃から100℃の温度での線膨張係数が小さい。従って、反射防止層P3とレンズ本体P1との線膨張係数の差が小さい。 On the other hand, when the temperature during film formation is lower than the glass transition temperature Tg of the resin forming the lens body P1 and the temperature difference between the temperature during film formation and the glass transition temperature Tg is 50° C. or more, The coefficient of linear expansion of the lens body P1 is less than 1.3 times that at 25°C. Therefore, in this embodiment, the temperature during film formation should be lower than the glass transition temperature Tg of the resin forming the lens body P1, and the difference between the temperature during film formation and the glass transition temperature Tg should be 30° C. or more. is preferred. According to this conditional range, since the thermal stress applied to the lens body P1 when forming the antireflection layer P3 is small, the compressive stress generated in the antireflection layer P3 can be reduced. In addition, in the present embodiment, since the resin forming the lens body P1 has an imide structure, the glass transition temperature Tg is high and the coefficient of linear expansion at temperatures from 80°C to 100°C is small. Therefore, the difference in coefficient of linear expansion between the antireflection layer P3 and the lens body P1 is small.
 また、反射防止層P3の総膜厚が厚いので、膨張もしくは収縮によって反射防止層P3に加わる応力が小さい。この場合でも、反射防止層P3の総膜厚を500nm以下に限定したため、成膜時間が短く済む。このため、成膜時におけるプラスチックレンズPの温度上昇を抑制することができる。 Also, since the total film thickness of the antireflection layer P3 is large, the stress applied to the antireflection layer P3 due to expansion or contraction is small. Even in this case, since the total film thickness of the antireflection layer P3 is limited to 500 nm or less, the film formation time can be shortened. Therefore, it is possible to suppress the temperature rise of the plastic lens P during film formation.
 従って、反射防止層P3で発生する圧縮応力が小さい。それ故、85℃で30minと-40℃で30minの温度サイクルを1000サイクル行う信頼性試験に耐えることができる。それ故、実使用環境においてキズがつきにくく、レンズユニットとしての画像のボケや乱れが起きにくいので、耐久性の高いレンズユニットを構成することができる。 Therefore, the compressive stress generated in the antireflection layer P3 is small. Therefore, it can withstand a reliability test in which temperature cycles of 85° C. for 30 minutes and −40° C. for 30 minutes are performed for 1000 cycles. Therefore, the lens unit is less likely to be scratched in an actual use environment, and less likely to cause blurring or disturbance of an image as a lens unit, so that a highly durable lens unit can be constructed.
 また、反射防止層P3を成膜する際の温度は、成膜時間が長い程、上昇する。従って、反射防止層P3の膜厚は、反射防止層P3を成膜する際の温度に影響を及ぼす。ここで、反射防止層P3を成膜する際の温度が高い程、熱膨張等の影響によって光学特性が変化する。例えば、図13および図14に示すように、図1に示す反射防止層P3を成膜する際の温度が高い程、画角の変化量およびMTFの変化量が大きい。それ故、反射防止層P3を成膜する際、温度の影響を受けにくくなるように、反射防止層P3の膜厚を薄くし、レンズ本体P1を構成する樹脂のガラス転移温度Tgを高くすることが好ましい。 Also, the temperature at which the antireflection layer P3 is deposited increases as the deposition time increases. Therefore, the film thickness of the antireflection layer P3 affects the temperature at which the antireflection layer P3 is formed. Here, the higher the temperature in forming the antireflection layer P3, the more the optical characteristics change due to the effects of thermal expansion and the like. For example, as shown in FIGS. 13 and 14, the higher the temperature at which the antireflection layer P3 shown in FIG. 1 is formed, the larger the amount of change in the angle of view and the amount of change in the MTF. Therefore, when forming the antireflection layer P3, the film thickness of the antireflection layer P3 should be reduced and the glass transition temperature Tg of the resin forming the lens body P1 should be increased so as to be less susceptible to the effects of temperature. is preferred.
(プラスチックレンズPの変形例)
 変形例としては、プラスチックレンズPは、光軸Lの延在方向の像側Lbに向く一方面Paと、物体側Laとは反対の物体側Laに向く他方面Pbとを備えてもよい。すなわち、変形例のプラスチックレンズPは、光軸Lの延在方向の像側Lbに向く一方面Paを覆うハードコート層P2と、ハードコート層P2をレンズ本体P1とは反対側から覆う反射防止層P3とを備えてもよい。
(Modified example of plastic lens P)
As a modification, the plastic lens P may have one surface Pa facing the image side Lb in the extending direction of the optical axis L and the other surface Pb facing the object side La opposite to the object side La. That is, the plastic lens P of the modified example includes a hard coat layer P2 covering one surface Pa facing the image side Lb in the extending direction of the optical axis L, and an antireflection layer covering the hard coat layer P2 from the side opposite to the lens main body P1. and a layer P3.
 また、変形例のプラスチックレンズPは、一方面Paおよび他方面Pbの両側に、ハードコート層P2と、ハードコート層P2をレンズ本体P1とは反対側から覆う反射防止層P3とを備えてもよい。 Further, the plastic lens P of the modified example may include a hard coat layer P2 on both sides of one surface Pa and the other surface Pb, and an antireflection layer P3 that covers the hard coat layer P2 from the side opposite to the lens body P1. good.
(レンズユニットの実施例1)
 図面を参照して、本発明を適用したプラスチックレンズPを用いたレンズユニットを説明する。なお、以下の説明においては、特別な指示がない限り、その単位はmmである。
 図15は、本発明の実施例1に係るレンズユニット10の説明図であり、図15には、レンズデータおよび非球面係数に対応する面ナンバーを括弧内に示してある。また、面ナンバーの後ろに「*」を付した面は非球面である。図16は、図15に示すレンズユニット10における各レンズデータおよび非球面係数等を示す説明図である。図17は、図15に示すレンズユニット10の主なパラメータを示す説明図である。図18は、図15に示すレンズユニット10の光学特性を示す説明図であり、非点収差/ディストーション(a)、球面収差(b)、および倍率色収差(c)を示す。図18において、サジタル方向の特性にはSを付し、タンジェンシャル方向の特性にはTを付してある。また、ディストーションとは、撮像中央部と周辺部における像の変化比率を示し、ディストーションをあらわす数値の絶対値が小さいほど、高精度なレンズといえる。図19は、図15に示すレンズユニット10の横収差を示す説明図であり、図19(a)、(b)、(c)、(d)には、0deg、29.46deg、55.40deg、76.76deg、95.90degにおけるX軸方向およびY軸方向における横収差を示してある。なお、図18および図19において、波長645の光に対する収差については(R)を付し、波長588の光に対する収差については(G)を付し、波長486の光に対する収差については(B)を付してある。なお、図16に示す非球面係数A4、A6、A8、A10は、以下の非球面関数における各係数に相当する。ここで、Zはサグ量、cは曲率半径の逆数、Kは円錐係数、rは光線高さである。
(Example 1 of lens unit)
A lens unit using a plastic lens P to which the present invention is applied will be described with reference to the drawings. In the following description, the unit is mm unless otherwise specified.
FIG. 15 is an explanatory diagram of the lens unit 10 according to Example 1 of the present invention. In FIG. 15, surface numbers corresponding to lens data and aspheric coefficients are indicated in parentheses. In addition, surfaces with "*" after the surface numbers are aspherical surfaces. FIG. 16 is an explanatory diagram showing each lens data, aspheric coefficients, etc. in the lens unit 10 shown in FIG. FIG. 17 is an explanatory diagram showing main parameters of the lens unit 10 shown in FIG. FIG. 18 is an explanatory diagram showing the optical characteristics of the lens unit 10 shown in FIG. 15, showing astigmatism/distortion (a), spherical aberration (b), and lateral chromatic aberration (c). In FIG. 18, S is attached to the characteristic in the sagittal direction, and T is attached to the characteristic in the tangential direction. Distortion indicates the ratio of change in image between the center and the periphery of the image, and the smaller the absolute value of the numerical value representing the distortion, the higher the precision of the lens. 19A, 19B, 19C, and 19D are explanatory diagrams showing lateral aberration of the lens unit 10 shown in FIG. 15. FIGS. , 76.76 deg, and 95.90 deg. In FIGS. 18 and 19, the aberration for the light of wavelength 645 is denoted by (R), the aberration for the light of wavelength 588 is denoted by (G), and the aberration for the light of wavelength 486 is denoted by (B). is attached. Note that the aspheric coefficients A4, A6, A8, and A10 shown in FIG. 16 correspond to coefficients in the following aspheric functions. Here, Z is the amount of sag, c is the reciprocal of the radius of curvature, K is the conic coefficient, and r is the ray height.
数式1 Equation 1
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000004
 図15および図16に示すレンズユニット10は水平画角が120度以上である。レンズユニット10では、物体側から像側に向かって第1レンズL1、第2レンズ12、第3レンズ13、絞り17、第4レンズ14、および第5レンズ15が順に配置されており、第5レンズ15に対して像側には、フィルタ18および撮像素子19が順に配置される。第1レンズL1は、物体側に凸面を向けた負メニスカスレンズである。本形態において、第1レンズL1の凸面からなる物体側の面(第1面1)は球面であり、凹面からなる像側の面(第2面2)は非球面である。 The horizontal angle of view of the lens unit 10 shown in FIGS. 15 and 16 is 120 degrees or more. In the lens unit 10, a first lens L1, a second lens 12, a third lens 13, a diaphragm 17, a fourth lens 14, and a fifth lens 15 are arranged in order from the object side to the image side. A filter 18 and an imaging device 19 are arranged in this order on the image side of the lens 15 . The first lens L1 is a negative meniscus lens with a convex surface facing the object side. In this embodiment, the convex object-side surface (first surface 1) of the first lens L1 is spherical, and the concave image-side surface (second surface 2) is aspherical.
 第2レンズ12は、像側に凹面を向けた負レンズである。本形態において、第2レンズ12は、像側に凹面を向けた負メニスカスレンズであって、凸面からなる物体側のレンズ面(第3面3)、および凹面からなる像側のレンズ面(第4面4)の少なくとも一方が非球面である。本形態において、第2レンズ12の物体側の面(第3面3)、および像側の面(第4面4)の双方が非球面である。
 第3レンズ13は、像側に凸面を向けた正メニスカスレンズ、または両凸レンズであって、物体側のレンズ面(第5面5)および像側のレンズ面(第6面6)の少なくとも一方が非球面である。本形態において、第3レンズ13は、両凸レンズであって、凸面からなる物体側の面(第5面5)、および凸面からなる像側の面(第6面6)の双方が非球面である。
The second lens 12 is a negative lens with a concave surface facing the image side. In this embodiment, the second lens 12 is a negative meniscus lens with a concave surface facing the image side, and includes a convex object-side lens surface (third surface 3) and a concave image-side lens surface (third surface 3). At least one of the four surfaces 4) is an aspherical surface. In this embodiment, both the object-side surface (third surface 3) and the image-side surface (fourth surface 4) of the second lens 12 are aspherical surfaces.
The third lens 13 is a positive meniscus lens with a convex surface facing the image side or a biconvex lens, and is at least one of the object side lens surface (fifth surface 5) and the image side lens surface (sixth surface 6). is aspherical. In this embodiment, the third lens 13 is a biconvex lens, and both the convex surface on the object side (fifth surface 5) and the convex surface on the image side (sixth surface 6) are aspheric. be.
 第4レンズ14は、像側に凹面を向けた負メニスカスレンズ、または両凹レンズである。本形態において、第4レンズ14は、像側に凹面を向けた負メニスカスレンズであって、第4レンズ14の凸面からなる物体側の面(第8面8)、および凹面からなる像側の面(第9面9)の双方が非球面である。
 第5レンズ15は、両凸レンズである。第4レンズ14および第5レンズ15は、プラスチックレンズであって、第4レンズ14の像側のレンズ面と第5レンズの物体側のレンズ面が接合された接合レンズ16を構成している。接合レンズ16の接合面(第9面9)、および第5レンズ15の凸面からなる像側の面(第10面10)の双方が非球面である。本形態においては、第1レンズL1、第2レンズ12および第3レンズ13も、第4レンズ14および第5レンズと同様、プラスチックレンズである。
 このように構成したレンズユニット10の主なパラメータを図17に示す。図17に示すパラメータは、以下の通りである。なお、図17には、後述する実施例2のパラメータも示してある。
 f0・・レンズ系全体の焦点距離
 f1・・第1レンズL1の焦点距離
 R11・・第1レンズL1の第1面(1)の曲率半径
 r・・視野角
 sd11・・第1レンズL1の第1面(1)の有効半径
 ARS11・・第1レンズL1の第1面(1)の中心から有効半径に対応する半径位置まで第1面(1)に沿って測定したときの距離
The fourth lens 14 is a negative meniscus lens with a concave surface facing the image side, or a biconcave lens. In the present embodiment, the fourth lens 14 is a negative meniscus lens with a concave surface facing the image side, and includes a convex object-side surface (eighth surface 8) of the fourth lens 14 and a concave image-side surface (eighth surface 8). Both of the surfaces (the ninth surface 9) are aspheric.
The fifth lens 15 is a biconvex lens. The fourth lens 14 and the fifth lens 15 are plastic lenses, and constitute a cemented lens 16 in which the image-side lens surface of the fourth lens 14 and the object-side lens surface of the fifth lens are cemented together. Both the cemented surface (the ninth surface 9) of the cemented lens 16 and the convex image-side surface (the tenth surface 10) of the fifth lens 15 are aspherical surfaces. In this embodiment, the first lens L1, the second lens 12 and the third lens 13 are also plastic lenses, like the fourth lens 14 and the fifth lens.
FIG. 17 shows main parameters of the lens unit 10 constructed in this manner. The parameters shown in FIG. 17 are as follows. Note that FIG. 17 also shows parameters of Example 2, which will be described later.
f0 Focal length of the entire lens system f1 Focal length of the first lens L1 R11 Curvature radius of the first surface (1) of the first lens L1 r Viewing angle sd11 First lens L1 Effective radius of surface 1 (1) ARS11 ... Distance measured along the first surface (1) from the center of the first surface (1) of the first lens L1 to the radial position corresponding to the effective radius
 図16に示すように、レンズユニット10は、光学系全体の焦点距離f0(EffectiveFocaL Length)が0.822mmであり、物像間距離(TotaLTRack/光学全長)が9.206mmであり、レンズ系全体のF値(Image Space F/#)が2.4であり、最大画角(Max. FieLd Angle)が192degであり、水平画角(HOIRizontaL FieldAngle)が192degである。 As shown in FIG. 16, the lens unit 10 has a focal length f0 (EffectiveFocaL Length) of the entire optical system of 0.822 mm, an object-to-image distance (TotaLTRack/optical total length) of 9.206 mm, and the entire lens system has an F value (Image Space F/#) of 2.4, a maximum field angle (Max. Field Angle) of 192 degrees, and a horizontal field angle (HOIRizontaL Field Angle) of 192 degrees.
 また、図16および図17に示すように、レンズユニット10は、以下の条件式を全て満たしている。 Also, as shown in FIGS. 16 and 17, the lens unit 10 satisfies all of the following conditional expressions.
 プラスチックレンズPの一方面Paの曲率半径R11とプラスチックレンズPの焦点距離f1との比R11/f1は、-3.601であり、以下の条件式を満たしている。
  -5.0≦R11/f1≦-1.0
The ratio R11/f1 between the radius of curvature R11 of one surface Pa of the plastic lens P and the focal length f1 of the plastic lens P is −3.601, satisfying the following conditional expression.
-5.0≤R11/f1≤-1.0
 プラスチックレンズPの一方面Paの有効半径sd11と、一方面Paの中心から有効半径に対応する半径位置まで一方面Paに沿って測定したときの距離ARS11との比sd11/R11は、1.030であり、以下の条件式を満たしている。
  1.000<ARS11/sd11<1.013
The ratio sd11/R11 between the effective radius sd11 of the one surface Pa of the plastic lens P and the distance ARS11 measured along the one surface Pa from the center of the one surface Pa to the radial position corresponding to the effective radius is 1.030. and satisfies the following conditional expression.
1.000<ARS11/sd11<1.013
 一方面Paの曲率半径R11とレンズ系全体の焦点距離f0との比R11/f0は、13.509であり、以下の条件式を満たしている。
  8.000≦R11/f0≦14.000
The ratio R11/f0 between the radius of curvature R11 of one surface Pa and the focal length f0 of the entire lens system is 13.509, satisfying the following conditional expression.
8.000≤R11/f0≤14.000
 R11/f0が下限(8.00)以上であるため、レンズパワーが強くなりすぎることを回避することができる。従って、各種収差の補正を適正に行うことができ、高い光学特性を実現することができる。また、R11/f0が上限(14.00)以下であるため、プラスチックレンズPからなる第1レンズL1のパワーが弱くなりすぎることを回避することができる。それ故、レンズユニットの小型化を図ることができる。
 半画角ωは、95.901degであり、以下の条件式を満たしている。
  75deg≦ω≦120deg
Since R11/f0 is equal to or greater than the lower limit (8.00), it is possible to avoid excessive lens power. Therefore, various aberrations can be properly corrected, and high optical characteristics can be realized. Also, since R11/f0 is equal to or less than the upper limit (14.00), it is possible to avoid the power of the first lens L1 made of the plastic lens P from becoming too weak. Therefore, it is possible to reduce the size of the lens unit.
The half angle of view ω is 95.901 deg and satisfies the following conditional expression.
75deg≦ω≦120deg
 一方面Paの曲率半径R11と一方面Paの有効半径sd11との比sd11/R11は、0.410であり、以下の条件式を満たしている。
 0.300≦sd11/R11≦0.600
A ratio sd11/R11 between the radius of curvature R11 of one side Pa and the effective radius sd11 of one side Pa is 0.410, satisfying the following conditional expression.
0.300≤sd11/R11≤0.600
 半画角ωが下限以上であるため、広画角化を図ることができる。また、半画角ωが上限以下であるため、周辺光量比が中心部分と比較して小さくなって画像の周辺部分が暗くなることを防ぐことができる。また、sd11/R11が上限以下であるため、プラスチックレンズからなる第1レンズL1の他方面の周辺部が接線となす角度が過度に小さくなることを抑制できる。したがって、プラスチックレンズPからなる第1レンズL1の他方面の成形が容易になる。 Since the half angle of view ω is equal to or higher than the lower limit, it is possible to widen the angle of view. Also, since the half angle of view ω is equal to or less than the upper limit, it is possible to prevent the peripheral portion of the image from becoming dark due to the peripheral light amount ratio becoming smaller than that of the central portion. In addition, since sd11/R11 is equal to or less than the upper limit, it is possible to prevent the angle formed by the tangential line and the peripheral portion of the other surface of the first lens L1 made of a plastic lens from becoming excessively small. Therefore, molding of the other surface of the first lens L1 made of the plastic lens P is facilitated.
 このように構成したレンズユニット10の非点収差/ディストーション(歪曲収差)、球面収差、および倍率色収差は、図18に示す通りであり、横収差は図19に示す通りであり、いずれも収差も小さい。 The astigmatism/distortion (distortion aberration), spherical aberration, and lateral chromatic aberration of the lens unit 10 constructed in this way are as shown in FIG. 18, and the lateral aberration is as shown in FIG. small.
(レンズユニットの実施例2)
 図20は、本発明のプラスチックレンズPを備えたレンズユニット10の実施例1の説明図である。図21は、図20に示すレンズユニット10における各レンズデータおよび非球面係数等を示す説明図である。図22は、図20に示すレンズユニット10の光学特性を示す説明図であり、非点収差/ディストーション(a)、球面収差(b)、および倍率色収差(c)を示す。図23は、図19に示すレンズユニット10の横収差を示す説明図であり、図23(a)、(b)、(c)、(d)には、0deg、29.46deg、55.40deg、76.76deg、95.90degにおけるX軸方向およびY軸方向における横収差を示してある。なお、本形態の基本的な構成は、実施例1と同様であるため、共通する部分には同一の符号を付して図示し、それらの詳細な説明を省略する。
(Example 2 of lens unit)
FIG. 20 is an explanatory diagram of Example 1 of the lens unit 10 having the plastic lens P of the present invention. FIG. 21 is an explanatory diagram showing each lens data, aspheric coefficients, etc. in the lens unit 10 shown in FIG. FIG. 22 is an explanatory diagram showing the optical characteristics of the lens unit 10 shown in FIG. 20, showing astigmatism/distortion (a), spherical aberration (b), and lateral chromatic aberration (c). 23A and 23B are explanatory diagrams showing the lateral aberration of the lens unit 10 shown in FIG. 19, and FIGS. , 76.76 deg, and 95.90 deg. Since the basic configuration of this embodiment is the same as that of the first embodiment, the same reference numerals are assigned to the common parts, and detailed description thereof will be omitted.
 図20に示すレンズユニット10は、実施例1と同様、水平画角が120度以上であり、物体側から像側に向かって第1レンズL1、第2レンズ12、第3レンズ13、絞り17、第4レンズ14、および第5レンズ15が順に配置されている。第1レンズL1は、物体側に凸面を向けた負メニスカスレンズである。本形態において、第1レンズL1の凸面からなる物体側の面(第1面1)は球面であり、凹面からなる像側の面(第2面2)は非球面である。 The lens unit 10 shown in FIG. 20 has a horizontal angle of view of 120 degrees or more as in Example 1, and has a first lens L1, a second lens 12, a third lens 13, and an aperture 17 from the object side to the image side. , the fourth lens 14 and the fifth lens 15 are arranged in this order. The first lens L1 is a negative meniscus lens with a convex surface facing the object side. In this embodiment, the convex object-side surface (first surface 1) of the first lens L1 is spherical, and the concave image-side surface (second surface 2) is aspherical.
 第2レンズ12は、像側に凹面を向けた負レンズである。本形態において、第2レンズ12は、像側に凹面を向けた負メニスカスレンズであって、凸面からなる物体側のレンズ面(第3面3)、および凹面からなる像側のレンズ面(第4面4)の少なくとも一方が非球面である。本形態において、第2レンズ12の物体側の面(第3面3)、および像側の面(第4面4)の双方が非球面である。 The second lens 12 is a negative lens with a concave surface facing the image side. In this embodiment, the second lens 12 is a negative meniscus lens with a concave surface facing the image side, and includes a convex object-side lens surface (third surface 3) and a concave image-side lens surface (third surface 3). At least one of the four surfaces 4) is an aspherical surface. In this embodiment, both the object-side surface (third surface 3) and the image-side surface (fourth surface 4) of the second lens 12 are aspherical surfaces.
 第3レンズ13は、像側に凸面を向けた正メニスカスレンズ、または両凸レンズであって、物体側のレンズ面(第5面5)および像側のレンズ面(第6面6)の少なくとも一方が非球面である。本形態において、第3レンズ13は、像側に凸面を向けた正メニスカスレンズであって、凹面からなる物体側の面(第5面5)、および凸面からなる像側の面(第6面6)の双方が非球面である。 The third lens 13 is a positive meniscus lens with a convex surface facing the image side or a biconvex lens, and is at least one of the object side lens surface (fifth surface 5) and the image side lens surface (sixth surface 6). is aspherical. In this embodiment, the third lens 13 is a positive meniscus lens with a convex surface facing the image side, and includes a concave object-side surface (fifth surface 5) and a convex image-side surface (sixth surface). 6) are both aspheric.
 第4レンズ14は、像側に凹面を向けた負メニスカスレンズ、または両凹レンズである。本形態において、第4レンズ14は、像側に凹面を向けた負メニスカスレンズであって、第4レンズ14の凸面からなる物体側の面(第8面8)、および凹面からなる像側の面(第9面9)の双方が非球面である。 The fourth lens 14 is a negative meniscus lens with a concave surface facing the image side, or a biconcave lens. In the present embodiment, the fourth lens 14 is a negative meniscus lens with a concave surface facing the image side, and includes a convex object-side surface (eighth surface 8) of the fourth lens 14 and a concave image-side surface (eighth surface 8). Both of the surfaces (the ninth surface 9) are aspheric.
 第5レンズ15は、両凸レンズである。第4レンズ14および第5レンズ15は、プラスチックレンズであって、第4レンズ14の像側のレンズ面と第5レンズの物体側のレンズ面が接合された接合レンズ16を構成している。接合レンズ16の接合面(第9面9)、および第5レンズ15の凸面からなる像側の面(第10面10)の双方が非球面である。本形態においては、第1レンズL1、第2レンズ12および第3レンズ13も、第4レンズ14および第5レンズと同様、プラスチックレンズである。 The fifth lens 15 is a biconvex lens. The fourth lens 14 and the fifth lens 15 are plastic lenses, and constitute a cemented lens 16 in which the image-side lens surface of the fourth lens 14 and the object-side lens surface of the fifth lens are cemented together. Both the cemented surface (the ninth surface 9) of the cemented lens 16 and the convex image-side surface (the tenth surface 10) of the fifth lens 15 are aspherical surfaces. In this embodiment, the first lens L1, the second lens 12 and the third lens 13 are also plastic lenses, like the fourth lens 14 and the fifth lens.
 このように構成したレンズユニット10において、光学系全体の焦点距離f0が1.410mmであり、物像間距離が11.378mmであり、レンズ系全体のF値が2.0であり、最大画角が156deg、水平画角が130degである。 In the lens unit 10 configured as described above, the focal length f0 of the entire optical system is 1.410 mm, the object-to-image distance is 11.378 mm, the F value of the entire lens system is 2.0, and the maximum image The angle is 156 degrees, and the horizontal angle of view is 130 degrees.
 また、図17および図21に示すように、レンズユニット10は、以下の条件式を全て満たしている。まず、プラスチックレンズPの一方面Paの曲率半径R11とプラスチックレンズPの焦点距離f1との比R11/f1は、-4.015であり、以下の条件式を満たしている。
  -1.0≦R11/f1≦-5.0
Moreover, as shown in FIGS. 17 and 21, the lens unit 10 satisfies all of the following conditional expressions. First, the ratio R11/f1 between the radius of curvature R11 of one surface Pa of the plastic lens P and the focal length f1 of the plastic lens P is -4.015, which satisfies the following conditional expression.
-1.0≤R11/f1≤-5.0
 プラスチックレンズPの一方面Paの有効半径sd11と、一方面Paの中心から有効半径に対応する半径位置まで一方面Paに沿って測定したときの距離ARS11との比sd11/R11は、1.018であり、以下の条件式を満たしている。
  1.000<ARS11/sd11<1.013
The ratio sd11/R11 between the effective radius sd11 of the one surface Pa of the plastic lens P and the distance ARS11 measured along the one surface Pa from the center of the one surface Pa to the radial position corresponding to the effective radius is 1.018. and satisfies the following conditional expression.
1.000<ARS11/sd11<1.013
 一方面Paの曲率半径R11とレンズ系全体の焦点距離f0との比R11/f0は、9.948であり、以下の条件式を満たしている。
  8.000≦R11/f0≦14.000
The ratio R11/f0 between the radius of curvature R11 of one surface Pa and the focal length f0 of the entire lens system is 9.948, satisfying the following conditional expression.
8.000≤R11/f0≤14.000
 半画角ωは、77.846degであり、以下の条件式を満たしている。
  75deg≦ω≦120deg
The half angle of view ω is 77.846 deg and satisfies the following conditional expression.
75deg≦ω≦120deg
 一方面Paの曲率半径R11と一方面Paの有効半径sd11との比sd11/R11は、0.324であり、以下の条件式を満たしている。
 0.300≦sd11/R11≦0.600
A ratio sd11/R11 between the radius of curvature R11 of one side Pa and the effective radius sd11 of one side Pa is 0.324, satisfying the following conditional expression.
0.300≤sd11/R11≤0.600
 このように構成したレンズユニット10の非点収差/ディストーション(歪曲収差)、球面収差、および倍率色収差は、図22に示す通りであり、横収差は図23に示す通りであり、いずれも収差も小さい。 The astigmatism/distortion (distortion aberration), spherical aberration, and lateral chromatic aberration of the lens unit 10 constructed in this way are as shown in FIG. 22, and the lateral aberration is as shown in FIG. small.
(ハードコート層P2の他の実施例)
 図24は、他のハードコート層P2におけるシリカ含有率と重合度との関係を示すグラフである。図25は、他のハードコート層P2におけるシリカ含有率と膜厚との関係を示すグラフである。
(Other Examples of Hard Coat Layer P2)
FIG. 24 is a graph showing the relationship between the silica content and the degree of polymerization in another hard coat layer P2. FIG. 25 is a graph showing the relationship between the silica content and film thickness in another hard coat layer P2.
 ここで、上記で説明したように、ハードコート層P2のシリカ含有率が高くなれば、ハードコート層P2の表面に設けた反射防止層P3の硬度を高くすることができる。しかしながら、上記のプラスチックレンズPを耐候性試験した結果、シリカ含有率が高くなると、プラスチックレンズPの耐候性が低下した。すなわち、上記のプラスチックレンズPを屋外で使用する場合には、温湿度変化や紫外線などによって、ハードコート層P2に亀裂が発生しやすい。そこで、本例のハードコート層P2は、ハードコート層P2の重合度を高くすることによって、上記のシリカ含有率より下回る範囲であっても、反射防止層P3の硬度を高くすることができるとともに、ハードコート層P2に亀裂が発生することを抑制することができる。よって、プラスチックレンズPの耐久品質をより向上させることができる。なお、プラスチックレンズPの耐候性については、JIS B7754-1991に基づいたキセノンアークランプ式耐候性試験機(キセノンアークランプ180W/m、ブラックパネル温度63℃、120分サイクル:102分間の照射→18分間の照射及び噴霧、試験時間1000時間)を用いてプラスチックレンズPの耐候性試験を行い、試験時間1000時間後のプラスチックレンズPに基づいて、プラスチックレンズPの耐候性を評価した。 Here, as explained above, if the silica content of the hard coat layer P2 is increased, the hardness of the antireflection layer P3 provided on the surface of the hard coat layer P2 can be increased. However, as a result of a weather resistance test of the plastic lens P, the weather resistance of the plastic lens P deteriorated as the silica content increased. That is, when the plastic lens P is used outdoors, cracks are likely to occur in the hard coat layer P2 due to changes in temperature and humidity, ultraviolet rays, and the like. Therefore, by increasing the degree of polymerization of the hard coat layer P2 of the present example, the hardness of the antireflection layer P3 can be increased even if the silica content is lower than the above silica content. , the occurrence of cracks in the hard coat layer P2 can be suppressed. Therefore, the durability quality of the plastic lens P can be further improved. For the weather resistance of the plastic lens P, a xenon arc lamp type weather resistance tester based on JIS B7754-1991 (xenon arc lamp 180 W/m 2 , black panel temperature 63 ° C., 120 minute cycle: irradiation for 102 minutes → A weather resistance test of the plastic lens P was performed using irradiation and spraying for 18 minutes and a test time of 1000 hours, and the weather resistance of the plastic lens P was evaluated based on the plastic lens P after the test time of 1000 hours.
 図24から分かるように、シリカ含有率が同じであっても、ハードコート層P2の重合度が高くなる程、反射防止層P3の表面の硬度が高くなる。従って、ハードコート層P2におけるシリカ粒子の含有率をSとしたとき、含有率Sは以下の条件式
   20%≦S≦40%
 を満たし、
 ハードコート層P2の重合度をDPとしたとき、重合度DPは以下の条件式
   70%≦DP≦100%
 を満たすことが好ましい。なお、ハードコート層P2の重合度は、重合度を求める一般的な数式により求められる。
As can be seen from FIG. 24, even if the silica content is the same, the higher the degree of polymerization of the hard coat layer P2, the higher the hardness of the surface of the antireflection layer P3. Therefore, when the content of silica particles in the hard coat layer P2 is S, the content S is the following conditional expression: 20% ≤ S ≤ 40%
The filling,
When the degree of polymerization of the hard coat layer P2 is DP, the degree of polymerization DP is the following conditional expression: 70% ≤ DP ≤ 100%
is preferably satisfied. In addition, the degree of polymerization of the hard coat layer P2 is determined by a general formula for determining the degree of polymerization.
 より具体的には、例えば、ハードコート層P2が6μmの場合において検証したところ、重合度を70%以上、かつ100%以下とすれば、シリカ含有率を20%以上、かつ40%以下としても、反射防止層P3の表面の硬度を鉛筆硬度で6H以上とすることができる。また、シリカ含有率を低くすることができるので、プラスチックレンズの耐候性を向上させることができる。ここで、ハードコート層P2の重合度を70%以上100%以下とした場合に、ハードコート層P2のシリカ含有率が20%を下回ると、反射防止層P3の表面の硬度を鉛筆硬度で6H以上とすることが困難である。また、ハードコート層P2の重合度を70%以上100%以下とした場合に、ハードコート層P2のシリカ含有率が40%を超えると、1000サイクルの熱衝撃試験(-40℃~85℃、30分)によってハードコート層P2に欠陥が発生しやすくなる。さらに、ハードコート層P2の重合度が70%を下回る場合には、シリカ含有率が40%以下では、反射防止層P3の表面の硬度を鉛筆硬度で6H以上とすることが困難である。従って、ハードコート層P2は、シリカ含有率を20%以上、かつ40%以下であって、重合度を70%以上、かつ100%以下とすることが好ましい。 More specifically, for example, when the hard coat layer P2 has a thickness of 6 μm, when the polymerization degree is 70% or more and 100% or less, the silica content can be 20% or more and 40% or less. , the hardness of the surface of the antireflection layer P3 can be 6H or more in terms of pencil hardness. Moreover, since the silica content can be lowered, the weather resistance of the plastic lens can be improved. Here, when the degree of polymerization of the hard coat layer P2 is 70% or more and 100% or less, if the silica content of the hard coat layer P2 is less than 20%, the hardness of the surface of the antireflection layer P3 is 6H in pencil hardness. It is difficult to do the above. Further, when the degree of polymerization of the hard coat layer P2 is 70% or more and 100% or less, if the silica content of the hard coat layer P2 exceeds 40%, the thermal shock test of 1000 cycles (-40°C to 85°C, 30 minutes), defects tend to occur in the hard coat layer P2. Furthermore, when the degree of polymerization of the hard coat layer P2 is less than 70%, it is difficult to achieve a pencil hardness of 6H or more on the surface of the antireflection layer P3 when the silica content is 40% or less. Therefore, the hard coat layer P2 preferably has a silica content of 20% or more and 40% or less and a degree of polymerization of 70% or more and 100% or less.
 また、図25から分かるように、シリカ含有率が同じであっても、ハードコート層P2の膜厚が高くなる程、反射防止層P3の表面の硬度が高くなる。従って、ハードコート層P2の膜厚HCは、以下の条件式
   6μm≦HC≦15μm
 を満たすことが好ましい。
Further, as can be seen from FIG. 25, even if the silica content is the same, the surface hardness of the antireflection layer P3 increases as the thickness of the hard coat layer P2 increases. Therefore, the film thickness HC of the hard coat layer P2 is determined by the following conditional expression: 6 μm≦HC≦15 μm
is preferably satisfied.
 より具体的には、例えば、ハードコート層P2の重合度が77%の場合において検証したところ、膜厚を6μm以上、かつ15μm以下とすれば、6H以上の鉛筆硬度を実現することができる。ここで、ハードコート層P2のシリカ含有率を20%以上、かつ40%以下とした場合に、ハードコート層P2の膜厚が6μmを下回ると、反射防止層P3の表面の硬度を鉛筆硬度で6H以上とすることが困難である。従って、ハードコート層P2は、膜厚を6μm以上、かつ15μm以下とすることが好ましい。 More specifically, for example, when the degree of polymerization of the hard coat layer P2 is 77%, a pencil hardness of 6H or more can be achieved if the film thickness is 6 μm or more and 15 μm or less. Here, when the silica content of the hard coat layer P2 is 20% or more and 40% or less, and the thickness of the hard coat layer P2 is less than 6 μm, the hardness of the surface of the antireflection layer P3 is measured in terms of pencil hardness. It is difficult to make it 6H or more. Therefore, the hard coat layer P2 preferably has a film thickness of 6 μm or more and 15 μm or less.
 なお、本例のハードコート層P2としても、上記で説明した反射防止層P3を設けることができる。また、反射防止層P3を形成した後、プラスチックレンズ表面の撥水撥油性能を向上させる目的で、含フッ素シラン化合物からなる防汚層を形成してもよい。プラスチックレンズPの表面に防汚層を設ければ、プラスチックレンズPを屋外で使用する場合に、プラスチックレンズPの表面が汚れにくい。これにより、プラスチックレンズPのレンズ性能が低下することを抑制することができる。 The antireflection layer P3 described above can also be provided as the hard coat layer P2 of this example. After forming the antireflection layer P3, an antifouling layer made of a fluorine-containing silane compound may be formed for the purpose of improving the water and oil repellency of the plastic lens surface. By providing an antifouling layer on the surface of the plastic lens P, the surface of the plastic lens P is less likely to become dirty when the plastic lens P is used outdoors. Thereby, it is possible to suppress the deterioration of the lens performance of the plastic lens P.
 以上説明してきたように、本明細書には下記の事項が開示されている。 As explained above, the following matters are disclosed in this specification.
 (001)
 樹脂製のレンズ本体P1と、前記レンズ本体P1の少なくとも一方面Paを覆うハードコート層P2と、前記ハードコート層P2を前記レンズ本体とは反対側から覆う反射防止層P3と、を備え、
 前記反射防止層P3の総膜厚ARは、以下の条件式(1)
   200nm≦AR≦500nm・・・(1)
 を満たし、
 前記反射防止層P3において前記レンズ本体から最も離隔する最外層は二酸化珪素膜であって、前記最外層の膜厚をtsとしたとき、膜厚tsは、以下の条件式(2)
   60nm≦ts≦150nm・・・(2)
 を満たすことを特徴とするプラスチックレンズ。
(001)
A lens body P1 made of resin, a hard coat layer P2 covering at least one surface Pa of the lens body P1, and an antireflection layer P3 covering the hard coat layer P2 from the side opposite to the lens body,
The total film thickness AR of the antireflection layer P3 is given by the following conditional expression (1)
200 nm≦AR≦500 nm (1)
The filling,
In the antireflection layer P3, the outermost layer farthest from the lens body is a silicon dioxide film.
60 nm≦ts≦150 nm (2)
A plastic lens characterized by satisfying
 (001)によれば、反射防止層P3の総の総膜厚ARは、200nm以上、かつ500nm以下であるため、プラスチックレンズPの反射防止層P3として優れている。また、反射防止層P3の最外層を二酸化珪素膜としたため、実使用環境においてプラスチックレンズPに傷がつきにくく、レンズユニットとしての画像のボケや乱れが起きにくい。それ故、耐久性の高いレンズユニットを構成することができる。さらに、本発明では、最外層の膜厚tsが60nm以上であって、150nm以下であるので、反射防止層P3の耐薬品性が優れるとともに、光学薄膜の反射防止特性が得られる。 According to (001), the total film thickness AR of the antireflection layer P3 is 200 nm or more and 500 nm or less, so it is excellent as the antireflection layer P3 of the plastic lens P. In addition, since the outermost layer of the antireflection layer P3 is a silicon dioxide film, the plastic lens P is less likely to be scratched in an actual use environment, and blurring and distortion of images as a lens unit are less likely to occur. Therefore, a highly durable lens unit can be configured. Furthermore, in the present invention, since the film thickness ts of the outermost layer is 60 nm or more and 150 nm or less, the antireflection layer P3 is excellent in chemical resistance and the antireflection properties of the optical thin film are obtained.
 (002)
 樹脂製のレンズ本体P1と、前記レンズ本体P1の少なくとも一方面Paを覆うハードコート層P2と、前記ハードコート層P2を前記レンズ本体P1とは反対側から覆う反射防止層P3と、を備え、
 前記反射防止層P3の総膜厚ARは、以下の条件式(1)
   200nm≦AR≦500nm・・・(1)
 を満たし、
 前記反射防止層P3のナノインデンター押込み弾性率Eは、以下の条件式(3)
  70GPa≦E≦110GPa・・・(3)
 を満たすことを特徴とするプラスチックレンズ。
(002)
A lens body P1 made of resin, a hard coat layer P2 covering at least one surface Pa of the lens body P1, and an antireflection layer P3 covering the hard coat layer P2 from the side opposite to the lens body P1,
The total film thickness AR of the antireflection layer P3 is given by the following conditional expression (1)
200 nm≦AR≦500 nm (1)
The filling,
The nanoindenter indentation elastic modulus E of the antireflection layer P3 is the following conditional expression (3)
70GPa≦E≦110GPa (3)
A plastic lens characterized by satisfying
 (002)によれば、反射防止層P3の総の総膜厚ARは、200nm以上、かつ500nm以下であるため、プラスチックレンズPの反射防止層P3として優れている。本発明では、ナノインデンター押込み弾性率が70GPa以上110G以下であれば、耐傷性と膜応力を両立できる。 According to (002), the total film thickness AR of the antireflection layer P3 is 200 nm or more and 500 nm or less, so it is excellent as the antireflection layer P3 of the plastic lens P. In the present invention, if the nanoindenter indentation elastic modulus is 70 GPa or more and 110 G or less, both scratch resistance and film stress can be achieved.
 (003)
 (001)または(002)に記載のプラスチックレンズにおいて、
 前記レンズ本体P1は、環構造として環状イミド構造を有していることを特徴とするプラスチックレンズ。
(003)
In the plastic lens according to (001) or (002),
A plastic lens, wherein the lens body P1 has a cyclic imide structure as a ring structure.
 (004)
 (001)から(003)までの何れかに記載のプラスチックレンズにおいて、
 前記反射防止層P3は、二酸化珪素膜と、二酸化珪素膜より屈折率が大きい高屈折率膜とが交互に積層された誘電体多層膜であることを特徴とするプラスチックレンズ。
(004)
In the plastic lens according to any one of (001) to (003),
A plastic lens, wherein the antireflection layer P3 is a dielectric multilayer film in which a silicon dioxide film and a high refractive index film having a higher refractive index than the silicon dioxide film are alternately laminated.
 (005)
 (004)に記載のプラスチックレンズにおいて、
 前記高屈折率膜は四窒化三珪素膜であることを特徴とするプラスチックレンズ。
(005)
In the plastic lens according to (004),
A plastic lens, wherein the high refractive index film is a trisilicon tetranitride film.
 (006)
 (001)から(005)までの何れかに記載のプラスチックレンズにおいて、
 前記ハードコート層P2は、シリカ粒子を含有し、
 前記ハードコート層P2における前記シリカ粒子の含有率をSとしたとき、含有率Sは以下の条件式(4)
   40%≦S≦65%・・・(4)
 を満たすことを特徴とするプラスチックレンズ。
(006)
In the plastic lens according to any one of (001) to (005),
The hard coat layer P2 contains silica particles,
When the content rate of the silica particles in the hard coat layer P2 is S, the content rate S is the following conditional expression (4)
40%≦S≦65% (4)
A plastic lens characterized by satisfying
 (007)
 (001)から(006)までの何れかに記載のプラスチックレンズにおいて、
 前記レンズ本体P1は、主鎖に環構造を有する構造単位を有するメタクリル系樹脂であって、前記構造単位が、N-置換マレイミド単量体由来の構造単位、およびグルタルイミド系構造単位のうち、少なくとも一種の構造単位を含むことを特徴とするプラスチックレンズ。
(007)
In the plastic lens according to any one of (001) to (006),
The lens body P1 is a methacrylic resin having a structural unit having a ring structure in its main chain, and the structural unit is a structural unit derived from an N-substituted maleimide monomer or a glutarimide structural unit, A plastic lens comprising at least one structural unit.
 (008)
 (001)から(007)までの何れかに記載のプラスチックレンズにおいて、
 前記一方面Paの曲率半径をR11としたとき、曲率半径R11は、以下の条件式(5)
   9.000mm≦R11≦16.000mm・・・(5)
 を満たすことを特徴とするプラスチックレンズ。
(008)
In the plastic lens according to any one of (001) to (007),
When the radius of curvature of the one surface Pa is R11, the radius of curvature R11 is expressed by the following conditional expression (5)
9.000mm≤R11≤16.000mm (5)
A plastic lens characterized by satisfying
 (009)
 (001)から(008)までの何れかに記載のプラスチックレンズにおいて、
 前記レンズ本体P1の前記一方面Paは、非球面であることを特徴とするプラスチックレンズ。
(009)
In the plastic lens according to any one of (001) to (008),
A plastic lens, wherein the one surface Pa of the lens body P1 is an aspherical surface.
 (010)
 (001)から(009)までの何れかに記載のプラスチックレンズにおいて、
 前記一方面Paの曲率半径をR11とし、前記プラスチックレンズPの焦点距離をf1としたとき、曲率半径R11および焦点距離f1は、以下の条件式(6)
   -5.000≦R11/f1≦-1.000・・・(6)
 を満たすことを特徴とするプラスチックレンズ。
(010)
In the plastic lens according to any one of (001) to (009),
When the radius of curvature of the one surface Pa is R11 and the focal length of the plastic lens P is f1, the radius of curvature R11 and the focal length f1 are expressed by the following conditional expression (6):
-5.000≤R11/f1≤-1.000 (6)
A plastic lens characterized by satisfying
 (011)
 (001)から(010)までの何れかに記載のプラスチックレンズにおいて、
 前記一方面Paの有効半径をsd11とし、前記一方面Paの中心から前記有効半径に対応する半径位置まで前記一方面に沿って測定したときの距離をARS11としたとき、有効半径sd11および距離ARS11は、以下の条件式(7)
   1.000<ARS11/sd11<1.013・・・(7)
 を満たすことを特徴とするプラスチックレンズ。
(011)
In the plastic lens according to any one of (001) to (010),
When the effective radius of the one side Pa is sd11 and the distance measured along the one side from the center of the one side Pa to the radial position corresponding to the effective radius is ARS11, the effective radius sd11 and the distance ARS11 is the following conditional expression (7)
1.000<ARS11/sd11<1.013 (7)
A plastic lens characterized by satisfying
 (012)
 (001)から(011)までの何れかに記載のプラスチックレンズを含む複数のレンズを備えたレンズユニットであって、
 前記プラスチックレンズPは、前記複数のレンズのうち、最も物体側Laで前記一方面Paを物体側Laに向けていることを特徴とするレンズユニット。
(012)
A lens unit comprising a plurality of lenses including the plastic lens according to any one of (001) to (011),
A lens unit, wherein the plastic lens P is closest to the object side La among the plurality of lenses, and the one surface Pa faces the object side La.
 (013)
 (012)に記載のレンズユニットにおいて、
 前記複数のレンズからなるレンズ系全体の焦点距離をf0としたとき、曲率半径R11および焦点距離f0は、以下の条件式(8)
   8.000≦R11/f0≦14.000・・・(8)
 を満たすことを特徴とするレンズユニット。
(013)
In the lens unit according to (012),
When the focal length of the entire lens system consisting of the plurality of lenses is f0, the radius of curvature R11 and the focal length f0 are defined by the following conditional expression (8)
8.000≦R11/f0≦14.000 (8)
A lens unit characterized by satisfying
 (014)
 (012)または(013)に記載のレンズユニットにおいて、
 半画角をωとしたとき、半画角ωは以下の条件式
   75deg≦ω≦120deg
 を満たし、
 前記一方面Paの曲率半径をR11とし、前記一方面Paの有効半径をsd11としたとき、曲率半径R11および有効半径sd11は、以下の条件式
   0.300≦sd11/R11≦0.600
 を満たすことを特徴とするレンズユニット。
(014)
(012) or (013) in the lens unit,
When the half angle of view is ω, the half angle of view ω is given by the following conditional expression: 75deg≦ω≦120deg
The filling,
When the curvature radius of the one surface Pa is R11 and the effective radius of the one surface Pa is sd11, the curvature radius R11 and the effective radius sd11 are defined by the following conditional expression: 0.300≦sd11/R11≦0.600
A lens unit characterized by satisfying
 (015)
 (001)から(011)までの何れかに記載のプラスチックレンズにおいて、
 前記反射防止層P3を前記レンズ本体P1とは反対側から覆う防汚層、を備えることを特徴とするプラスチックレンズ。
(015)
In the plastic lens according to any one of (001) to (011),
A plastic lens comprising an antifouling layer covering the antireflection layer P3 from the side opposite to the lens body P1.
 (016)
 (001)または(002)に記載のプラスチックレンズにおいて、
 前記レンズ本体P1は、環構造として環状イミド構造を有し、
 前記ハードコート層P2は、シリカ粒子を含有し、
 前記ハードコート層P2における前記シリカ粒子の含有率をSとしたとき、含有率Sは以下の条件式(9)
   20%≦S≦40%・・・(9)
 を満たし、
 前記ハードコート層P2の重合度をDPとしたとき、重合度DPは以下の条件式(10)
   70%≦DP≦100%・・・(10)
 を満たすことを特徴とするプラスチックレンズ。
(016)
In the plastic lens according to (001) or (002),
The lens body P1 has a cyclic imide structure as a ring structure,
The hard coat layer P2 contains silica particles,
When the content rate of the silica particles in the hard coat layer P2 is S, the content rate S is the following conditional expression (9)
20%≦S≦40% (9)
The filling,
When the degree of polymerization of the hard coat layer P2 is DP, the degree of polymerization DP is the following conditional expression (10)
70%≦DP≦100% (10)
A plastic lens characterized by satisfying
 (017)
 (016)に記載のプラスチックレンズにおいて、
 前記ハードコート層の膜厚HCは、以下の条件式(11)
   6μm≦HC≦15μm・・・(11)
 を満たすことを特徴とするプラスチックレンズ。
(017)
In the plastic lens according to (016),
The film thickness HC of the hard coat layer is determined by the following conditional expression (11)
6 μm≦HC≦15 μm (11)
A plastic lens characterized by satisfying
 (018)
 (016)または(017)に記載のプラスチックレンズにおいて、
 前記反射防止層を前記レンズ本体とは反対側から覆う防汚層、を備えることを特徴とするプラスチックレンズ。
(018)
In the plastic lens according to (016) or (017),
A plastic lens, comprising: an antifouling layer that covers the antireflection layer from a side opposite to the lens body.
 (019)
 (016)から(018)までの何れかに記載のプラスチックレンズにおいて、
 前記レンズ本体のガラス転移温度は120℃以上であることを特徴とするプラスチックレンズ。
(019)
In the plastic lens according to any one of (016) to (018),
A plastic lens, wherein the lens body has a glass transition temperature of 120° C. or higher.
 (020)
 (016)から(019)までの何れかに記載のプラスチックレンズにおいて、
 前記反射防止層P3は、二酸化珪素膜と、二酸化珪素膜より屈折率が大きい高屈折率膜とが交互に積層された誘電体多層膜であることを特徴とするプラスチックレンズ。
(020)
In the plastic lens according to any one of (016) to (019),
A plastic lens, wherein the antireflection layer P3 is a dielectric multilayer film in which a silicon dioxide film and a high refractive index film having a higher refractive index than the silicon dioxide film are alternately laminated.
 (021)
 (020)に記載のプラスチックレンズにおいて、
 前記高屈折率膜は四窒化三珪素膜であることを特徴とするプラスチックレンズ。
(021)
In the plastic lens according to (020),
A plastic lens, wherein the high refractive index film is a trisilicon tetranitride film.
 (022)
 (016)から(021)までの何れかに記載のプラスチックレンズにおいて、
 前記ハードコート層P2は、シリカ粒子を含有し、
 前記ハードコート層P2における前記シリカ粒子の含有率をSとしたとき、含有率Sは以下の条件式(4)
   40%≦S≦65%・・・(4)
 を満たすことを特徴とするプラスチックレンズ。
(022)
In the plastic lens according to any one of (016) to (021),
The hard coat layer P2 contains silica particles,
When the content rate of the silica particles in the hard coat layer P2 is S, the content rate S is the following conditional expression (4)
40%≦S≦65% (4)
A plastic lens characterized by satisfying
 (023)
 (016)から(022)までの何れかに記載のプラスチックレンズにおいて、
 前記レンズ本体P1は、主鎖に環構造を有する構造単位を有するメタクリル系樹脂であって、前記構造単位が、N-置換マレイミド単量体由来の構造単位、およびグルタルイミド系構造単位のうち、少なくとも一種の構造単位を含むことを特徴とするプラスチックレンズ。
(023)
In the plastic lens according to any one of (016) to (022),
The lens body P1 is a methacrylic resin having a structural unit having a ring structure in its main chain, and the structural unit is a structural unit derived from an N-substituted maleimide monomer or a glutarimide structural unit, A plastic lens comprising at least one structural unit.
 (024)
 (016)から(023)までの何れかに記載のプラスチックレンズにおいて、
 前記一方面Paの曲率半径をR11としたとき、曲率半径R11は、以下の条件式(5)
   9.000mm≦R11≦16.000mm・・・(5)
 を満たすことを特徴とするプラスチックレンズ。
(024)
In the plastic lens according to any one of (016) to (023),
When the radius of curvature of the one surface Pa is R11, the radius of curvature R11 is expressed by the following conditional expression (5)
9.000mm≤R11≤16.000mm (5)
A plastic lens characterized by satisfying
 (025)
 (016)から(024)までの何れかに記載のプラスチックレンズにおいて、
 前記レンズ本体P1の前記一方面Paは、非球面であることを特徴とするプラスチックレンズ。
(025)
In the plastic lens according to any one of (016) to (024),
A plastic lens, wherein the one surface Pa of the lens body P1 is an aspherical surface.
 (026)
 (016)から(025)までの何れかに記載のプラスチックレンズにおいて、
 前記一方面Paの曲率半径をR11とし、前記プラスチックレンズPの焦点距離をf1としたとき、曲率半径R11および焦点距離f1は、以下の条件式(6)
   -5.000≦R11/f1≦-1.000・・・(6)
 を満たすことを特徴とするプラスチックレンズ。
(026)
In the plastic lens according to any one of (016) to (025),
When the radius of curvature of the one surface Pa is R11 and the focal length of the plastic lens P is f1, the radius of curvature R11 and the focal length f1 are expressed by the following conditional expression (6):
-5.000≤R11/f1≤-1.000 (6)
A plastic lens characterized by satisfying
 (027)
 (016)から(026)までの何れかに記載のプラスチックレンズにおいて、
 前記一方面Paの有効半径をsd11とし、前記一方面Paの中心から前記有効半径に対応する半径位置まで前記一方面に沿って測定したときの距離をARS11としたとき、有効半径sd11および距離ARS11は、以下の条件式(7)
   1.000<ARS11/sd11<1.013・・・(7)
 を満たすことを特徴とするプラスチックレンズ。
(027)
In the plastic lens according to any one of (016) to (026),
When the effective radius of the one side Pa is sd11 and the distance measured along the one side from the center of the one side Pa to the radial position corresponding to the effective radius is ARS11, the effective radius sd11 and the distance ARS11 is the following conditional expression (7)
1.000<ARS11/sd11<1.013 (7)
A plastic lens characterized by satisfying
 (028)
 (016)から(027)までの何れかに記載のプラスチックレンズを含む複数のレンズを備えたレンズユニットであって、
 前記プラスチックレンズPは、前記複数のレンズのうち、最も物体側Laで前記一方面Paを物体側Laに向けていることを特徴とするレンズユニット。
(028)
A lens unit comprising a plurality of lenses including the plastic lens according to any one of (016) to (027),
A lens unit, wherein the plastic lens P is closest to the object side La among the plurality of lenses, and the one surface Pa faces the object side La.
 (029)
 (028)に記載のレンズユニットにおいて、
 前記複数のレンズからなるレンズ系全体の焦点距離をf0としたとき、曲率半径R11および焦点距離f0は、以下の条件式(8)
   8.000≦R11/f0≦14.000・・・(8)
 を満たすことを特徴とするレンズユニット。
(029)
In the lens unit according to (028),
When the focal length of the entire lens system consisting of the plurality of lenses is f0, the radius of curvature R11 and the focal length f0 are defined by the following conditional expression (8)
8.000≦R11/f0≦14.000 (8)
A lens unit characterized by satisfying
 (030)
 (028)または(029)に記載のレンズユニットにおいて、
 半画角をωとしたとき、半画角ωは以下の条件式
   75deg≦ω≦120deg
 を満たし、
 前記一方面Paの曲率半径をR11とし、前記一方面Paの有効半径をsd11としたとき、曲率半径R11および有効半径sd11は、以下の条件式
   0.300≦sd11/R11≦0.600
 を満たすことを特徴とするレンズユニット。
(030)
(028) or (029) in the lens unit,
When the half angle of view is ω, the half angle of view ω is given by the following conditional expression: 75deg≦ω≦120deg
The filling,
When the curvature radius of the one surface Pa is R11 and the effective radius of the one surface Pa is sd11, the curvature radius R11 and the effective radius sd11 are defined by the following conditional expression: 0.300≦sd11/R11≦0.600
A lens unit characterized by satisfying
 (031)
 少なくともプラスチックレンズの一方面Paに反射防止層P3を形成する形成工程を含むプラスチックレンズPの製造方法において、
 前記プラスチックレンズPのガラス転移温度は120℃以上であり、
 前記形成工程では、前記反射防止層P3の成膜温度は、前記プラスチックレンズPのガラス転移点温度よりも低く、前記反射防止層P3の成膜温度と前記プラスチックレンズPのガラス転移温度との差は、30℃以上であることを特徴とする。
(031)
In a method for manufacturing a plastic lens P including a forming step of forming an antireflection layer P3 on at least one surface Pa of the plastic lens,
The plastic lens P has a glass transition temperature of 120° C. or higher,
In the forming step, the film formation temperature of the antireflection layer P3 is lower than the glass transition temperature of the plastic lens P, and the difference between the film formation temperature of the antireflection layer P3 and the glass transition temperature of the plastic lens P is is 30° C. or higher.
 (031)によれば、反射防止層P3の成膜温度をプラスチックレンズPのガラス転移温度より30℃以上低く抑えることによって、MTF変化を抑えることができ、解像度を維持することができる。また、成膜温度を低く抑えることによって、反射防止層P3の残留応力を低減できるので、反射防止層に傷がつきにくい。 According to (031), by keeping the film forming temperature of the antireflection layer P3 lower than the glass transition temperature of the plastic lens P by 30° C. or more, the MTF change can be suppressed and the resolution can be maintained. In addition, since the residual stress of the antireflection layer P3 can be reduced by keeping the film formation temperature low, the antireflection layer is less likely to be damaged.
L…光軸、La…物体側、Lb…像側、P…プラスチックレンズ、Pa…一方面、Pb…他方面、Pa1…レンズ中心、Pa2…レンズ外周、P1…レンズ本体、P2…ハードコート層、P3…反射防止層

 
L... optical axis, La... object side, Lb... image side, P... plastic lens, Pa... one side, Pb... other side, Pa1... lens center, Pa2... lens periphery, P1... lens body, P2... hard coat layer , P3... antireflection layer

Claims (20)

  1.  樹脂製のレンズ本体と、前記レンズ本体の少なくとも一方面を覆うハードコート層と、前記ハードコート層を前記レンズ本体とは反対側から覆う反射防止層と、を備え、
     前記反射防止層の総膜厚ARは、以下の条件式(1)
       200nm≦AR≦500nm・・・(1)
     を満たし、
     前記反射防止層において前記レンズ本体から最も離隔する最外層は二酸化珪素膜であって、前記最外層の膜厚をtsとしたとき、膜厚tsは、以下の条件式(2)
       60nm≦ts≦150nm・・・(2)
     を満たすことを特徴とするプラスチックレンズ。
    A lens body made of resin, a hard coat layer covering at least one surface of the lens body, and an antireflection layer covering the hard coat layer from the side opposite to the lens body,
    The total film thickness AR of the antireflection layer is the following conditional expression (1)
    200 nm≦AR≦500 nm (1)
    The filling,
    In the antireflection layer, the outermost layer farthest from the lens body is a silicon dioxide film.
    60 nm≦ts≦150 nm (2)
    A plastic lens characterized by satisfying
  2.  樹脂製のレンズ本体と、前記レンズ本体の少なくとも一方面を覆うハードコート層と、前記ハードコート層を前記レンズ本体とは反対側から覆う反射防止層と、を備え、
     前記反射防止層の総膜厚ARは、以下の条件式(1)
       200nm≦AR≦500nm・・・(1)
     を満たし、
     前記反射防止層のナノインデンター押込み弾性率Eは、以下の条件式(3)
      70GPa≦E≦110GPa・・・(3)
     を満たすことを特徴とするプラスチックレンズ。
    A lens body made of resin, a hard coat layer covering at least one surface of the lens body, and an antireflection layer covering the hard coat layer from the side opposite to the lens body,
    The total film thickness AR of the antireflection layer is the following conditional expression (1)
    200 nm≦AR≦500 nm (1)
    The filling,
    The nanoindenter indentation elastic modulus E of the antireflection layer is the following conditional expression (3)
    70GPa≦E≦110GPa (3)
    A plastic lens characterized by satisfying
  3.  請求項1または2に記載のプラスチックレンズにおいて、
     前記レンズ本体は、環構造として環状イミド構造を有していることを特徴とするプラスチックレンズ。
    In the plastic lens according to claim 1 or 2,
    A plastic lens, wherein the lens body has a cyclic imide structure as a ring structure.
  4.  請求項1または2に記載のプラスチックレンズにおいて、
     前記反射防止層は、二酸化珪素膜と、二酸化珪素膜より屈折率が大きい高屈折率膜とが交互に積層された誘電体多層膜であることを特徴とするプラスチックレンズ。
    In the plastic lens according to claim 1 or 2,
    A plastic lens, wherein the antireflection layer is a dielectric multilayer film in which a silicon dioxide film and a high refractive index film having a higher refractive index than the silicon dioxide film are alternately laminated.
  5.  請求項4に記載のプラスチックレンズにおいて、
     前記高屈折率膜は四窒化三珪素膜であることを特徴とするプラスチックレンズ。
    In the plastic lens according to claim 4,
    A plastic lens, wherein the high refractive index film is a trisilicon tetranitride film.
  6.  請求項1または2に記載のプラスチックレンズにおいて、
     前記ハードコート層は、シリカ粒子を含有し、
     前記ハードコート層における前記シリカ粒子の含有率をSとしたとき、含有率Sは以下の条件式(4)
       40%≦S≦65%・・・(4)
     を満たすことを特徴とするプラスチックレンズ。
    In the plastic lens according to claim 1 or 2,
    The hard coat layer contains silica particles,
    When the content rate of the silica particles in the hard coat layer is S, the content rate S is the following conditional expression (4)
    40%≦S≦65% (4)
    A plastic lens characterized by satisfying
  7.  請求項1または2に記載のプラスチックレンズにおいて、
     前記レンズ本体は、主鎖に環構造を有する構造単位を有するメタクリル系樹脂であって、
     前記構造単位が、N-置換マレイミド単量体由来の構造単位、およびグルタルイミド系構造単位のうち、少なくとも一種の構造単位を含むことを特徴とするプラスチックレンズ。
    In the plastic lens according to claim 1 or 2,
    The lens body is a methacrylic resin having a structural unit having a ring structure in its main chain,
    A plastic lens, wherein the structural unit comprises at least one of a structural unit derived from an N-substituted maleimide monomer and a glutarimide-based structural unit.
  8.  請求項1または2に記載のプラスチックレンズにおいて、
     前記一方面の曲率半径をR11としたとき、曲率半径R11は、以下の条件式(5)
       9.000mm≦R11≦16.000mm・・・(5)
     を満たすことを特徴とするプラスチックレンズ。
    In the plastic lens according to claim 1 or 2,
    When the radius of curvature of the one surface is R11, the radius of curvature R11 is expressed by the following conditional expression (5)
    9.000mm≤R11≤16.000mm (5)
    A plastic lens characterized by satisfying
  9.  請求項1または2に記載のプラスチックレンズにおいて、
     前記レンズ本体の前記一方面は、非球面であることを特徴とするプラスチックレンズ。
    In the plastic lens according to claim 1 or 2,
    A plastic lens, wherein the one surface of the lens body is an aspherical surface.
  10.  請求項1または2に記載のプラスチックレンズにおいて、
     前記一方面の曲率半径をR11とし、前記プラスチックレンズの焦点距離をf1としたとき、曲率半径R11および焦点距離f1は、以下の条件式(6)
       -5.000≦R11/f1≦-1.000・・・(6)
     を満たすことを特徴とするプラスチックレンズ。
    In the plastic lens according to claim 1 or 2,
    When the radius of curvature of the one surface is R11 and the focal length of the plastic lens is f1, the radius of curvature R11 and the focal length f1 are defined by the following conditional expression (6)
    -5.000≤R11/f1≤-1.000 (6)
    A plastic lens characterized by satisfying
  11.  請求項1または2に記載のプラスチックレンズにおいて、
     前記一方面の有効半径をsd11とし、前記一方面の中心から前記有効半径に対応する半径位置まで前記一方面に沿って測定したときの距離をARS11としたとき、有効半径sd11および距離ARS11は、以下の条件式(7)
       1.000<ARS11/sd11<1.013・・・(7)
     を満たすことを特徴とするプラスチックレンズ。
    In the plastic lens according to claim 1 or 2,
    When the effective radius of the one surface is sd11 and the distance measured along the one surface from the center of the one surface to the radial position corresponding to the effective radius is ARS11, the effective radius sd11 and the distance ARS11 are: Conditional expression (7) below
    1.000<ARS11/sd11<1.013 (7)
    A plastic lens characterized by satisfying
  12.  請求項1または2に記載のプラスチックレンズを含む複数のレンズを備えたレンズユニットであって、
     前記プラスチックレンズは、前記複数のレンズのうち、最も物体側で前記一方面を物体側に向けていることを特徴とするレンズユニット。
    A lens unit comprising a plurality of lenses including the plastic lens according to claim 1 or 2,
    The lens unit, wherein the plastic lens is the most object side of the plurality of lenses and the one surface faces the object side.
  13.  請求項12に記載のレンズユニットにおいて、
     前記複数のレンズからなるレンズ系全体の焦点距離をf0としたとき、曲率半径R11および焦点距離f0は、以下の条件式(8)
       8.000≦R11/f0≦14.000・・・(8)
     を満たすことを特徴とするレンズユニット。
    13. The lens unit according to claim 12,
    When the focal length of the entire lens system consisting of the plurality of lenses is f0, the radius of curvature R11 and the focal length f0 are defined by the following conditional expression (8)
    8.000≦R11/f0≦14.000 (8)
    A lens unit characterized by satisfying
  14.  請求項12に記載のレンズユニットにおいて、
     半画角をωとしたとき、半画角ωは以下の条件式
       75deg≦ω≦120deg
     を満たし、
     前記一方面の曲率半径をR11とし、前記一方面の有効半径をsd11としたとき、曲率半径R11および有効半径sd11は、以下の条件式
       0.300≦sd11/R11≦0.600
     を満たすことを特徴とするレンズユニット。
    13. The lens unit according to claim 12,
    When the half angle of view is ω, the half angle of view ω is given by the following conditional expression: 75deg≦ω≦120deg
    The filling,
    When the curvature radius of the one surface is R11 and the effective radius of the one surface is sd11, the curvature radius R11 and the effective radius sd11 are defined by the following conditional expression: 0.300≦sd11/R11≦0.600
    A lens unit characterized by satisfying
  15.  請求項1または2に記載のプラスチックレンズにおいて、
     前記反射防止層を前記レンズ本体とは反対側から覆う防汚層、を備えることを特徴とするプラスチックレンズ。
    In the plastic lens according to claim 1 or 2,
    A plastic lens, comprising: an antifouling layer that covers the antireflection layer from a side opposite to the lens body.
  16.  請求項1または2に記載のプラスチックレンズにおいて、
     前記レンズ本体は、環構造として環状イミド構造を有し、
     前記ハードコート層は、シリカ粒子を含有し、
     前記ハードコート層における前記シリカ粒子の含有率をSとしたとき、含有率Sは以下の条件式(9)
       20%≦S≦40%・・・(9)
     を満たし、
     前記ハードコート層の重合度をDPとしたとき、重合度DPは以下の条件式(10)
       70%≦DP≦100%・・・(10)
     を満たすことを特徴とするプラスチックレンズ。
    In the plastic lens according to claim 1 or 2,
    the lens body has a cyclic imide structure as a ring structure,
    The hard coat layer contains silica particles,
    When the content rate of the silica particles in the hard coat layer is S, the content rate S is the following conditional expression (9)
    20%≦S≦40% (9)
    The filling,
    When the degree of polymerization of the hard coat layer is DP, the degree of polymerization DP is the following conditional expression (10)
    70%≦DP≦100% (10)
    A plastic lens characterized by satisfying
  17.  請求項16に記載のプラスチックレンズにおいて、
     前記ハードコート層の膜厚HCは、以下の条件式(11)
       6μm≦HC≦15μm・・・(11)
     を満たすことを特徴とするプラスチックレンズ。
    In the plastic lens according to claim 16,
    The film thickness HC of the hard coat layer is determined by the following conditional expression (11)
    6 μm≦HC≦15 μm (11)
    A plastic lens characterized by satisfying
  18.  請求項16に記載のプラスチックレンズにおいて、
     前記反射防止層を前記レンズ本体とは反対側から覆う防汚層、を備えることを特徴とするプラスチックレンズ。
    In the plastic lens according to claim 16,
    A plastic lens, comprising: an antifouling layer that covers the antireflection layer from a side opposite to the lens body.
  19.  請求項16に記載のプラスチックレンズにおいて、
     前記レンズ本体のガラス転移温度は120℃以上であることを特徴とするプラスチックレンズ。
    In the plastic lens according to claim 16,
    A plastic lens, wherein the lens body has a glass transition temperature of 120° C. or higher.
  20.  少なくともプラスチックレンズの一方面に反射防止層を形成する形成工程を含むプラスチックレンズの製造方法において、
     前記プラスチックレンズのガラス転移温度は120℃以上であり、
     前記形成工程では、前記反射防止層の成膜温度は、前記プラスチックレンズのガラス転移温度よりも低く、前記反射防止層の成膜温度と前記プラスチックレンズのガラス転移温度との差は、30℃以上であることを特徴とするプラスチックレンズの製造方法。

     
    A method for manufacturing a plastic lens, which includes a forming step of forming an antireflection layer on at least one surface of the plastic lens,
    The plastic lens has a glass transition temperature of 120° C. or higher,
    In the forming step, the film formation temperature of the antireflection layer is lower than the glass transition temperature of the plastic lens, and the difference between the film formation temperature of the antireflection layer and the glass transition temperature of the plastic lens is 30° C. or more. A method of manufacturing a plastic lens, characterized by:

PCT/JP2022/039433 2021-10-29 2022-10-24 Plastic lens, lens unit and method for producing plastic lens WO2023074597A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280072197.2A CN118355296A (en) 2021-10-29 2022-10-24 Plastic lens, lens unit, and method for manufacturing plastic lens

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021178177 2021-10-29
JP2021-178177 2021-10-29
JP2022-064019 2022-04-07
JP2022064019A JP2023067707A (en) 2021-10-29 2022-04-07 Plastic lens, lens unit, and method of manufacturing plastic lens

Publications (1)

Publication Number Publication Date
WO2023074597A1 true WO2023074597A1 (en) 2023-05-04

Family

ID=86159871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039433 WO2023074597A1 (en) 2021-10-29 2022-10-24 Plastic lens, lens unit and method for producing plastic lens

Country Status (1)

Country Link
WO (1) WO2023074597A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02267801A (en) * 1989-04-07 1990-11-01 Mitsubishi Rayon Co Ltd Lamp lens for vehicle
JPH03269507A (en) * 1990-03-20 1991-12-02 Nippon Sheet Glass Co Ltd Plastic lens having dimming property
JP2005234188A (en) * 2004-02-19 2005-09-02 Ito Kogaku Kogyo Kk Optical element having optical inorganic thin film
WO2012157072A1 (en) * 2011-05-17 2012-11-22 伊藤光学工業株式会社 Optical element and manufacturing method thereof
JP2016071338A (en) * 2014-10-01 2016-05-09 伊藤光学工業株式会社 Optical element and manufacturing method thereof
US20180219034A1 (en) * 2017-02-01 2018-08-02 Omnivision Technologies, Inc. Anti-Reflective Coating with High Refractive Index Material at Air Interface
WO2019035398A1 (en) * 2017-08-15 2019-02-21 大日本印刷株式会社 Optical film, polarizing plate, and image display device
WO2019168021A1 (en) * 2018-02-28 2019-09-06 大日本印刷株式会社 Functional film, polarizing plate and image display device
WO2019188970A1 (en) * 2018-03-27 2019-10-03 日本電産株式会社 Optical component and lens unit
WO2020230618A1 (en) * 2019-05-14 2020-11-19 信越化学工業株式会社 Water repellent and oil repellent member, and method for producing water repellent and oil repellent member

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02267801A (en) * 1989-04-07 1990-11-01 Mitsubishi Rayon Co Ltd Lamp lens for vehicle
JPH03269507A (en) * 1990-03-20 1991-12-02 Nippon Sheet Glass Co Ltd Plastic lens having dimming property
JP2005234188A (en) * 2004-02-19 2005-09-02 Ito Kogaku Kogyo Kk Optical element having optical inorganic thin film
WO2012157072A1 (en) * 2011-05-17 2012-11-22 伊藤光学工業株式会社 Optical element and manufacturing method thereof
JP2016071338A (en) * 2014-10-01 2016-05-09 伊藤光学工業株式会社 Optical element and manufacturing method thereof
US20180219034A1 (en) * 2017-02-01 2018-08-02 Omnivision Technologies, Inc. Anti-Reflective Coating with High Refractive Index Material at Air Interface
WO2019035398A1 (en) * 2017-08-15 2019-02-21 大日本印刷株式会社 Optical film, polarizing plate, and image display device
WO2019168021A1 (en) * 2018-02-28 2019-09-06 大日本印刷株式会社 Functional film, polarizing plate and image display device
WO2019188970A1 (en) * 2018-03-27 2019-10-03 日本電産株式会社 Optical component and lens unit
WO2020230618A1 (en) * 2019-05-14 2020-11-19 信越化学工業株式会社 Water repellent and oil repellent member, and method for producing water repellent and oil repellent member

Similar Documents

Publication Publication Date Title
US9817155B2 (en) Optical lens with scratch-resistant anti-reflective layer
US7697221B2 (en) Imaging lens and imaging device
JP6003503B2 (en) Eyepiece optical system, optical equipment
US20190116300A1 (en) Optical element, optical system, and image pickup apparatus
CN107250868B (en) Optical system and imaging device having the same
US9354430B2 (en) Zoom lens, imaging apparatus, and method for manufacturing zoom lens
WO2012165579A1 (en) Plastic lens
CN210348046U (en) Fisheye lens
JP2016136213A (en) Optical system, optical instrument having the same, and manufacturing method of optical system
US7239451B2 (en) Plastic optical components and an optical unit using the same
US8456750B2 (en) Zoom lens, optical apparatus and zoom lens manufacturing method
JP5093657B2 (en) Retrofocus lens, image pickup apparatus, and focusing method of retrofocus lens
JP6003504B2 (en) Eyepiece optical system, optical equipment
JP2004361732A (en) Optical element made from plastic
JP2012047870A (en) Optical system and optical apparatus having the same
US7626772B2 (en) Optical system and optical apparatus having the same
JP5264395B2 (en) Astronomical telescope
WO2023074597A1 (en) Plastic lens, lens unit and method for producing plastic lens
JP5871012B2 (en) Eyepiece lens, finder optical system and optical apparatus provided with the same, and method for manufacturing the eyepiece
WO2023074599A1 (en) Plastic lens and lens unit
JP2023067707A (en) Plastic lens, lens unit, and method of manufacturing plastic lens
WO2020262553A1 (en) Imaging lens, and image capturing device
JP2012173411A (en) Optical article
EP1542041A1 (en) Plastic optical components
WO2018159335A1 (en) Lens and method for manufacturing lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886924

Country of ref document: EP

Kind code of ref document: A1