WO2023074594A1 - 信号処理装置、認知機能改善システム、信号処理方法、及びプログラム - Google Patents
信号処理装置、認知機能改善システム、信号処理方法、及びプログラム Download PDFInfo
- Publication number
- WO2023074594A1 WO2023074594A1 PCT/JP2022/039422 JP2022039422W WO2023074594A1 WO 2023074594 A1 WO2023074594 A1 WO 2023074594A1 JP 2022039422 W JP2022039422 W JP 2022039422W WO 2023074594 A1 WO2023074594 A1 WO 2023074594A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acoustic signal
- signal processing
- output
- processing device
- signal
- Prior art date
Links
- 238000012545 processing Methods 0.000 title claims abstract description 132
- 238000003672 processing method Methods 0.000 title claims description 4
- 230000003920 cognitive function Effects 0.000 title description 14
- 230000006872 improvement Effects 0.000 title description 7
- 230000008859 change Effects 0.000 claims abstract description 16
- 230000005236 sound signal Effects 0.000 claims description 25
- 230000002441 reversible effect Effects 0.000 claims description 11
- 230000000630 rising effect Effects 0.000 claims description 8
- 238000002474 experimental method Methods 0.000 description 48
- 230000006870 function Effects 0.000 description 39
- 238000000034 method Methods 0.000 description 22
- 210000004556 brain Anatomy 0.000 description 20
- 238000010586 diagram Methods 0.000 description 18
- 230000000638 stimulation Effects 0.000 description 16
- 230000000694 effects Effects 0.000 description 11
- 206010012289 Dementia Diseases 0.000 description 9
- 238000005259 measurement Methods 0.000 description 8
- 230000000763 evoking effect Effects 0.000 description 7
- 238000004891 communication Methods 0.000 description 6
- 230000006698 induction Effects 0.000 description 6
- 230000010365 information processing Effects 0.000 description 6
- 208000005145 Cerebral amyloid angiopathy Diseases 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000002265 prevention Effects 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 102000013455 Amyloid beta-Peptides Human genes 0.000 description 4
- 108010090849 Amyloid beta-Peptides Proteins 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000000540 analysis of variance Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 206010008111 Cerebral haemorrhage Diseases 0.000 description 1
- 206010052804 Drug tolerance Diseases 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000019771 cognition Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000026781 habituation Effects 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000002582 magnetoencephalography Methods 0.000 description 1
- 230000008450 motivation Effects 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 230000008035 nerve activity Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000000541 pulsatile effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000001020 rhythmical effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000001755 vocal effect Effects 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/369—Electroencephalography [EEG]
- A61B5/372—Analysis of electroencephalograms
- A61B5/374—Detecting the frequency distribution of signals, e.g. detecting delta, theta, alpha, beta or gamma waves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/369—Electroencephalography [EEG]
- A61B5/377—Electroencephalography [EEG] using evoked responses
- A61B5/38—Acoustic or auditory stimuli
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/486—Bio-feedback
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M21/00—Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10H—ELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
- G10H1/00—Details of electrophonic musical instruments
- G10H1/02—Means for controlling the tone frequencies, e.g. attack or decay; Means for producing special musical effects, e.g. vibratos or glissandos
- G10H1/04—Means for controlling the tone frequencies, e.g. attack or decay; Means for producing special musical effects, e.g. vibratos or glissandos by additional modulation
- G10H1/053—Means for controlling the tone frequencies, e.g. attack or decay; Means for producing special musical effects, e.g. vibratos or glissandos by additional modulation during execution only
- G10H1/057—Means for controlling the tone frequencies, e.g. attack or decay; Means for producing special musical effects, e.g. vibratos or glissandos by additional modulation during execution only by envelope-forming circuits
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10H—ELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
- G10H5/00—Instruments in which the tones are generated by means of electronic generators
- G10H5/10—Instruments in which the tones are generated by means of electronic generators using generation of non-sinusoidal basic tones, e.g. saw-tooth
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10H—ELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
- G10H7/00—Instruments in which the tones are synthesised from a data store, e.g. computer organs
- G10H7/02—Instruments in which the tones are synthesised from a data store, e.g. computer organs in which amplitudes at successive sample points of a tone waveform are stored in one or more memories
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K15/00—Acoustics not otherwise provided for
- G10K15/02—Synthesis of acoustic waves
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L21/00—Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
- G10L21/02—Speech enhancement, e.g. noise reduction or echo cancellation
- G10L21/0316—Speech enhancement, e.g. noise reduction or echo cancellation by changing the amplitude
- G10L21/0364—Speech enhancement, e.g. noise reduction or echo cancellation by changing the amplitude for improving intelligibility
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H20/00—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
- G16H20/70—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mental therapies, e.g. psychological therapy or autogenous training
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/60—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
- G16H40/63—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M21/00—Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
- A61M2021/0005—Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus
- A61M2021/0027—Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus by the hearing sense
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M21/00—Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
- A61M2021/0005—Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus
- A61M2021/0044—Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus by the sight sense
- A61M2021/005—Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus by the sight sense images, e.g. video
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/35—Communication
- A61M2205/3576—Communication with non implanted data transmission devices, e.g. using external transmitter or receiver
- A61M2205/3584—Communication with non implanted data transmission devices, e.g. using external transmitter or receiver using modem, internet or bluetooth
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/50—General characteristics of the apparatus with microprocessors or computers
- A61M2205/502—User interfaces, e.g. screens or keyboards
- A61M2205/505—Touch-screens; Virtual keyboard or keypads; Virtual buttons; Soft keys; Mouse touches
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/58—Means for facilitating use, e.g. by people with impaired vision
- A61M2205/581—Means for facilitating use, e.g. by people with impaired vision by audible feedback
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2230/00—Measuring parameters of the user
- A61M2230/08—Other bio-electrical signals
- A61M2230/10—Electroencephalographic signals
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10H—ELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
- G10H2220/00—Input/output interfacing specifically adapted for electrophonic musical tools or instruments
- G10H2220/155—User input interfaces for electrophonic musical instruments
- G10H2220/371—Vital parameter control, i.e. musical instrument control based on body signals, e.g. brainwaves, pulsation, temperature or perspiration; Biometric information
- G10H2220/376—Vital parameter control, i.e. musical instrument control based on body signals, e.g. brainwaves, pulsation, temperature or perspiration; Biometric information using brain waves, e.g. EEG
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10H—ELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
- G10H2250/00—Aspects of algorithms or signal processing methods without intrinsic musical character, yet specifically adapted for or used in electrophonic musical processing
- G10H2250/541—Details of musical waveform synthesis, i.e. audio waveshape processing from individual wavetable samples, independently of their origin or of the sound they represent
- G10H2250/551—Waveform approximation, e.g. piecewise approximation of sinusoidal or complex waveforms
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H10/00—ICT specially adapted for the handling or processing of patient-related medical or healthcare data
- G16H10/20—ICT specially adapted for the handling or processing of patient-related medical or healthcare data for electronic clinical trials or questionnaires
Definitions
- the present disclosure relates to a signal processing device, a cognitive function improvement system, a signal processing method, and a program.
- Gamma waves refer to those whose frequency is included in the gamma band (25 to 140 Hz) among nerve vibrations obtained by capturing periodic nerve activity in the cortex of the brain by electrophysiological techniques such as electroencephalograms and magnetoencephalography.
- U.S. Patent No. 5,300,000 discloses adjusting the volume by increasing or decreasing the amplitude of sound waves or soundtracks to create rhythmic stimulation corresponding to stimulation frequencies that induce brain wave entrainment.
- Multi-sensory Gamma Stimulation Ameliorates Alzheimer's-Associated Pathology and Improvements Cognition Cell 2019 Apr 4;177(2):256-271.e22. doi: 10.1016/j.cell.2019.02.014.
- the purpose of the present disclosure is to change the amplitude of the acoustic signal while suppressing discomfort given to the listener.
- a signal processing device includes means for receiving an input acoustic signal, and amplitude-modulating the received input acoustic signal to have an amplitude change corresponding to a gamma wave frequency, and an amplitude waveform envelope means for generating an output acoustic signal whose rise and fall are asymmetric; and means for outputting the generated output acoustic signal.
- FIG. 1 is a block diagram showing the configuration of an acoustic system of this embodiment
- FIG. 1 is a block diagram showing the configuration of a signal processing device according to an embodiment
- FIG. 1 is an explanatory diagram of one aspect of the present embodiment
- FIG. 4 is a diagram showing a first example of an amplitude waveform of an output acoustic signal
- FIG. 10 is a diagram showing a second example of an amplitude waveform of an output acoustic signal
- FIG. 10 is a diagram showing a third example of an amplitude waveform of an output acoustic signal; It is a figure which shows the result of experiment. It is a figure which shows the whole acoustic signal processing flow by the signal processing apparatus of this embodiment.
- FIG. 10 is a diagram showing experimental results of electroencephalogram induction by sound stimulation.
- FIG. 4 is a diagram showing the correlation between results of psychological experiments and electroencephalogram measurements;
- FIG. 1 is a block diagram showing the configuration of the acoustic system of this embodiment.
- the sound system 1 includes a signal processing device 10, a sound output device 30, and a sound source device 50.
- the signal processing device 10 and the sound source device 50 are connected to each other via a predetermined interface capable of transmitting acoustic signals.
- the interface is, for example, SPDIF (Sony Philips Digital Interface), HDMI (High-Definition Multimedia Interface), pin connector (RCA pin), or an audio interface for headphones.
- the interface may be a wireless interface using Bluetooth (registered trademark) or the like.
- the signal processing device 10 and the sound output device 30 are similarly connected to each other via a predetermined interface.
- the acoustic signal in this embodiment includes either or both of an analog signal and a digital signal.
- the signal processing device 10 performs acoustic signal processing on the input acoustic signal acquired from the sound source device 50 .
- Acoustic signal processing by the signal processing device 10 includes at least modulation processing of an acoustic signal (details will be described later).
- the acoustic signal processing by the signal processing device 10 may include conversion processing (for example, separation, extraction, or synthesis) of acoustic signals.
- the acoustic signal processing by the signal processing device 10 may further include acoustic signal amplification processing similar to that of an AV amplifier, for example.
- the signal processing device 10 sends the output acoustic signal generated by the acoustic signal processing to the acoustic output device 30 .
- the signal processing device 10 is an example of an information processing device.
- the sound output device 30 generates sound according to the output sound signal acquired from the signal processing device 10 .
- the sound output device 30 is, for example, a loudspeaker (which may include powered speakers), headphones, or earphones.
- the sound output device 30 can also be configured as one device together with the signal processing device 10 .
- the signal processing device 10 and the sound output device 30 can be mounted on a TV, radio, music player, AV amplifier, speaker, headphone, earphone, smart phone, or PC.
- the signal processing device 10 and the sound output device 30 constitute a cognitive function improvement system.
- the sound source device 50 sends out the input acoustic signal to the signal processing device 10 .
- the sound source device 50 is, for example, a TV, a radio, a music player, a smart phone, a PC, an electronic musical instrument, a telephone, a game machine, a game machine, or a device that conveys an acoustic signal by broadcasting or information communication.
- FIG. 2 is a block diagram showing the configuration of the signal processing device of this embodiment.
- the signal processing device 10 includes a storage device 11, a processor 12, an input/output interface 13, and a communication interface 14.
- the signal processing device 10 is connected to the display 21 .
- the storage device 11 is configured to store programs and data.
- the storage device 11 is, for example, a combination of ROM (Read Only Memory), RAM (Random Access Memory), and storage (eg, flash memory or hard disk).
- the program and data may be provided via a network, or may be provided by being recorded on a computer-readable recording medium.
- Programs include, for example, the following programs. ⁇ OS (Operating System) program ⁇ Application program that executes information processing
- the data includes, for example, the following data. ⁇ Databases referenced in information processing ⁇ Data obtained by executing information processing (that is, execution results of information processing)
- the processor 12 is a computer that implements the functions of the signal processing device 10 by reading and executing programs stored in the storage device 11 . At least part of the functions of the signal processing device 10 may be realized by one or more dedicated circuits.
- Processor 12 is, for example, at least one of the following: ⁇ CPU (Central Processing Unit) ⁇ GPU (Graphic Processing Unit) ⁇ ASIC (Application Specific Integrated Circuit) ⁇ FPGA (Field Programmable Array) ⁇ DSP (digital signal processor)
- the input/output interface 13 is configured to acquire user instructions from input devices connected to the signal processing apparatus 10 and to output information to output devices connected to the signal processing apparatus 10 .
- the input device is, for example, the sound source device 50, physical buttons, keyboard, pointing device, touch panel, or a combination thereof.
- the output device is, for example, display 21, sound output device 30, or a combination thereof.
- the input/output interface 13 may include signal processing hardware such as A/D converters, D/A converters, amplifiers, mixers, filters, and the like.
- the communication interface 14 is configured to control communication between the signal processing device 10 and an external device (for example, the sound output device 30 or the sound source device 50).
- an external device for example, the sound output device 30 or the sound source device 50.
- the display 21 is configured to display images (still images or moving images).
- the display 21 is, for example, a liquid crystal display or an organic EL display.
- FIG. 3 is an explanatory diagram of one aspect of the present embodiment.
- the signal processing device 10 modulates an input acoustic signal to generate an output acoustic signal.
- Modulation is amplitude modulation using a modulation function having a frequency corresponding to gamma waves (for example, frequencies between 35 Hz and 45 Hz).
- a modulation function having a frequency corresponding to gamma waves (for example, frequencies between 35 Hz and 45 Hz).
- an amplitude change (volume intensity) corresponding to the frequency is added to the acoustic signal.
- the amplitude waveforms of the output acoustic signals are different. Examples of amplitude waveforms will be described later.
- the signal processing device 10 sends the output acoustic signal to the acoustic output device 30 .
- the sound output device 30 generates an output sound according to the output sound signal.
- a user US1 listens to the output sound emitted from the sound output device 30.
- the user US1 is, for example, a patient with dementia, a pre-dementia group, or a healthy person who expects prevention of dementia.
- the output acoustic signal is based on an output acoustic signal that has been modulated using a modulation function with a periodicity between 35 Hz and 45 Hz. Therefore, when the user US1 listens to the sound emitted from the sound output device 30, gamma waves are induced in the brain of the user US1. As a result, an effect of improving the cognitive function of the user US1 (for example, treating or preventing dementia) can be expected.
- FIG. 4 is a diagram showing a first example of the amplitude waveform of the output acoustic signal.
- A(t) be the modulation function used to modulate the input acoustic signal
- X(t) be the function representing the waveform of the input acoustic signal before modulation
- Y be the function representing the waveform of the output acoustic signal after modulation.
- the modulation function has a reverse sawtooth waveform at 40 Hz.
- the input acoustic signal is an acoustic signal representing a homogeneous sound with a constant frequency higher than 40 Hz and a constant sound pressure.
- the envelope of the amplitude waveform of the output acoustic signal has a shape along the reverse sawtooth wave.
- the amplitude waveform of the output acoustic signal has an amplitude change corresponding to the frequency of the gamma wave, and the rising portion C and the falling portion B of the envelope A of the amplitude waveform are It is asymmetrical (that is, the rising time length and the falling time length are different).
- the rise of the envelope A of the amplitude waveform of the output acoustic signal in the first example is steeper than the fall. In other words, the time required for rising is shorter than the time required for falling.
- the amplitude value of the envelope A sharply rises to the maximum value of amplitude and then gradually falls with the lapse of time. That is, the envelope A has a reverse sawtooth wave shape.
- FIG. 5 is a diagram showing a second example of the amplitude waveform of the output acoustic signal.
- the modulation function has a sawtooth waveform at 40 Hz.
- the input acoustic signal is an acoustic signal representing a homogeneous sound with a constant frequency higher than 40 Hz and a constant sound pressure.
- the envelope of the amplitude waveform of the output acoustic signal has a shape along the sawtooth wave. Specifically, as shown in FIG. 5, the fall of the envelope A of the amplitude waveform of the output acoustic signal in the second example is steeper than the rise. In other words, the time required for falling is shorter than the time required for rising. The amplitude value of the envelope A gradually rises over time to the maximum value of the amplitude, and then sharply falls. That is, the envelope A has a sawtooth waveform.
- FIG. 6 is a diagram showing a third example of the amplitude waveform of the output acoustic signal.
- the modulation function has a sinusoidal waveform at 40 Hz.
- the input acoustic signal is an acoustic signal representing a homogeneous sound with a constant frequency higher than 40 Hz and a constant sound pressure.
- the envelope of the amplitude waveform of the output acoustic signal has a shape along the sine wave. Specifically, as shown in FIG.
- both the rise and fall of the envelope A of the amplitude waveform of the output acoustic signal in the third example are smooth. That is, the envelope A is sinusoidal.
- the modulation function has a periodicity of 40 Hz, but the frequency of the modulation function is not limited to this, and may be, for example, a frequency of 35 Hz or more and 45 Hz or less.
- the absolute value of the amplitude value of the envelope A is periodically set to 0, but this is not limiting, and the minimum absolute value of the amplitude value of the envelope A is A modulation function that results in a value greater than 0 (eg, half or quarter the maximum absolute value) may be used.
- the sound pressure and frequency of the input acoustic signal are constant in the examples shown in FIGS. 4 to 6, the sound pressure and frequency of the input acoustic signal may vary.
- the input audio signal may be a signal representing music, speech, environmental sounds, electronic sounds, or noise.
- the envelope of the amplitude waveform of the output acoustic signal is strictly different in shape from the waveform representing the modulation function, but the envelope has a rough shape similar to that of the waveform representing the modulation function (for example, a reverse sawtooth wave, a sawtooth wave, etc.). wavy or sinusoidal), and can provide the listener with the same auditory stimulus as when the sound pressure and frequency of the input acoustic signal are constant.
- Example A An experiment in which the subject answers the discomfort when hearing multiple types of output sounds corresponding to different modulation functions and input acoustic signals
- Example B Multiple types corresponding to different modulation functions and input acoustic signals
- FIG. 7 is a diagram showing the results of the experiment.
- the induction of gamma waves was confirmed in all modulated waveform patterns. Therefore, it can be expected that gamma waves are induced in the brain of the user US1 when the user US1 listens to the sound emitted from the sound output device 30 in the present embodiment. By inducing gamma waves in the brain of the user US1, an effect of improving the cognitive function of the user US1 (for example, treatment or prevention of dementia) can be expected. Further, it was confirmed that the waveform patterns of the first to third examples caused less discomfort than the waveform pattern of the fourth example.
- the discomfort given to the listener when listening to the sound is suppressed more than when using the acoustic signal composed of a simple pulse wave. can be expected to be
- FIG. 9 shows a list of sound stimuli (output sounds) used in this experiment.
- Column 901 shows the identification number of the sound stimulus (hereinafter referred to as “stimulus number”)
- column 902 shows the frequency of the sound signal (sine wave) before modulation
- column 903 shows the presence or absence of modulation and the modulation function used for modulation.
- column 904 shows the frequency of the modulation function
- column 905 shows the modulation index.
- m is the degree of modulation, and 0.00, 0.50 and 1.00 are used.
- fm is a modulation frequency, and 20 Hz, 40 Hz and 80 Hz are used.
- t is the time.
- a sinusoidally modulated sound stimulus corresponds to the third example of the amplitude waveform described above.
- stimulus numbers "07” and "08” are a sawtooth-wave-modulated sound stimulus and a reverse sawtooth-wave-modulated sound stimulus, respectively.
- Envelopes of sawtooth wave modulation and inverse sawtooth wave modulation are represented by equations (2) and (3), respectively.
- the modulation degree m was set to 1.00, and the modulation frequency fm was set to 40 Hz.
- a sawtooth-wave-modulated sound stimulus and an inverse sawtooth-wave-modulated sound stimulus correspond to the second and first examples of amplitude waveforms described above, respectively.
- the sawtooth function used here is a discontinuous function that repeatedly increases linearly from -1 to 1 and then instantly returns to -1.
- the stimuli used in the experiments were adjusted to have equal equivalent noise levels (Laeq) after modulation.
- the 40-Hz sine wave of stimulus number "01" has a sound pressure level 34.6 dB higher than that of 1 kHz when the equivalent noise level is uniform, but this makes the auditory loudness uniform.
- Non-Patent Document 1 the stimulus used in the study of Non-Patent Document 1 (1 kHz sine wave with a taper of 0.3 ms before and after was repeated at a period of 40 Hz) was used as a comparison target ( stimulus number "09").
- This pulse wave-like sound stimulation corresponds to the fourth example of the amplitude waveform described above.
- This stimulus also had the same equivalent noise level as the stimulus numbers "01" to "08".
- taper processing was applied for 0.5 seconds each before and after the stimulation. By performing the taper processing at the end in this manner, the equivalent noise level in the steady section is strictly maintained.
- the duration of stimulation was 10 seconds for psychological experiments and 30 seconds for electroencephalogram measurements.
- the experiment was conducted in the same quiet, magnetically shielded room as the electroencephalogram measurement experiment, with headphone presentation.
- An LCD display was installed in front of the experiment participants, and a GUI was prepared for psychological evaluation. All responses were made by mouse operation.
- the degree of discomfort and irritation when listening to each sound stimulus were evaluated on a 7-point scale. Playback was limited to one time, and the UI was designed so that no response could be given until the 10-second stimulus had finished playing. The next stimulus was set to play automatically when the response was completed. It was also designed to automatically prompt you to take a break in the middle of the experiment.
- an electroencephalogram measurement (equivalent to experiment B above) was performed. Measurements were performed in a quiet, magnetically shielded room. The length of the stimulus used, including the taper, was 30 seconds. During the experiment, stimuli with the same treatment were presented twice. The interstimulus interval was 5 seconds, and the order of presentation was random. Experimental participants were instructed to move as little as possible and blink as little as possible during the presentation of the stimuli. In addition, a silent short animation video was played on an LCD monitor, and the level of consciousness was controlled to be constant and the level of attention to be stably lowered. Participants in the experiment were asked to choose a video from among those prepared in advance. In addition to the A1 and A2 reference electrodes, the experimental participants were provided with active electrodes at the positions of the Fp1, Fp2, F3, F4, T3, T4, T5, T6, Cz and Pz channels of the 10-20 method, respectively.
- the measured EEG waveform was analyzed after the experiment. First, of the 30-second stimulus presentation interval, the area taper of 1 second before and after was excluded from the analysis target. After that, 55 sections of 1 second were cut out while shifting by 0.5 seconds. Since the same processing is performed twice, the analysis target is 110 sections. FFT was performed by applying a Hann window to each of these 110 waveforms. Since the window is moved half by half and the Hann window is applied, the data at all times are treated equally as a result.
- FIG. 10 is a diagram showing experimental results of electroencephalogram evoked by sound stimulation. Specifically, FIG. 10 shows the power ratio of the 40 Hz component of the electroencephalogram evoked by each stimulus in the T6 channel. Values and error bars in the graph are the mean and standard deviation for all experimental participants. ANOVA confirmed a significant difference in stimulation (p ⁇ 0.01).
- both the sawtooth wave modulation (stimulus number "07”) and the inverse sawtooth wave modulation (stimulus number "08") were significantly different from the unmodulated 1 kHz sine wave (stimulus number "05"). Also, no significant difference was found between these two stimuli. Therefore, it is shown that even a sound of 1 kHz, not a low frequency sound of 40 Hz, can induce a brain wave component of 40 Hz in the brain by setting the amplitude envelope curve of the modulation function to 40 Hz.
- the pulsed stimulus (stimulus number '09') was also significantly different from the unmodulated 1 kHz sinusoidal wave (stimulus number '05').
- FIG. 11 is a diagram showing the correlation between the results of psychological experiments and electroencephalogram measurements. Specifically, FIG. 11 shows the relationship between the degree of discomfort and the 40 Hz electroencephalogram component ratio.
- stimulus number "08” which is a stimulus obtained by modulating a sine wave with a reverse sawtooth wave
- the degree of discomfort is significantly lower than that of stimulus number "09”, but the 40 Hz electroencephalogram ratio
- stimulation number "06” which is a stimulus obtained by modulating a sine wave with a sine wave of 80 Hz
- the decrease in the degree of discomfort is small, but the decrease in the 40 Hz electroencephalogram is significant.
- stimulus number "07” which is a sine wave modulated by sawtooth wave modulation, has lower discomfort and a 40-Hz electroencephalogram ratio than stimulus number "09", which is pulse-type stimulation.
- the degree of discomfort is slightly higher and the 40 Hz electroencephalogram ratio is smaller.
- Stimulus number "03” which is a stimulus obtained by modulating a 1 kHz sine wave with a 40 Hz sine wave at a modulation degree of 100%, has a lower discomfort level and a 40 Hz electroencephalogram ratio than stimulus number "09”, which is a pulse-type stimulus, and has a reverse sawtooth wave.
- the degree of discomfort is slightly smaller and the 40 Hz electroencephalogram ratio is smaller.
- FIG. 8 is a diagram showing the overall flow of acoustic signal processing by the signal processing device 10 of this embodiment.
- the processing in FIG. 8 is implemented by the processor 12 of the signal processing device 10 reading and executing the program stored in the storage device 11 .
- At least part of the processing in FIG. 8 may be realized by one or more dedicated circuits.
- the acoustic signal processing in FIG. 8 is started when any of the following start conditions is satisfied. -
- the audio signal processing of FIG. 8 was called by another process or an instruction from the outside.
- the user performed an operation to call the acoustic signal processing in FIG. -
- the signal processing device 10 has entered a predetermined state (for example, the power has been turned on). ⁇ The specified date and time has arrived. - A predetermined time has passed since a predetermined event (for example, activation of the signal processing device 10 or previous execution of the acoustic signal processing in FIG. 8).
- the signal processing device 10 acquires an input acoustic signal (S110). Specifically, the signal processing device 10 receives an input acoustic signal sent from the sound source device 50 . In step S110, the signal processing device 10 may further perform A/D conversion of the input acoustic signal.
- the input acoustic signal corresponds, for example, to at least one of the following.
- - Music content e.g., singing, playing, or a combination thereof (i.e., music), which may include audio content that accompanies video content).
- - Audio content for example, reading, narration, announcement, broadcast play, solo performance, conversation, monologue, or a combination thereof, etc., may include audio content accompanying video content
- Other acoustic content e.g., electronic, ambient, or mechanical sounds
- singing or audio content is not limited to sounds produced by human vocal organs, but may include sounds generated by speech synthesis technology.
- the signal processing apparatus 10 determines the modulation method used to generate the output acoustic signal from the input acoustic signal acquired in step S110.
- the modulation method determined here includes, for example, at least one of a modulation function used for modulation processing and a modulation index corresponding to the degree of amplitude change due to modulation.
- the signal processing device 10 selects which one of the three types of modulation functions described with reference to FIGS. 4 to 6 is to be used. Which modulation function to select may be determined based on an input operation by the user or others, an instruction from the outside, or may be determined by an algorithm.
- the other person is, for example, at least one of the following.
- ⁇ The user's family, friends, or acquaintances ⁇ Medical personnel (for example, the user's doctor) - The creator or provider of the content corresponding to the input audio signal - The provider of the signal processing device 10 - The manager of the facility used by the user
- the signal processing device 10 for example, the characteristics of the input acoustic signal (balance between voice and music, volume change, type of music, timbre, or other characteristics) and user attribute information (age, gender, hearing ability, cognitive function level,
- the modulation method may be determined based on at least one of user identification information and other attribute information.
- the signal processing apparatus 10 can determine the modulation method so that the effect of improving the cognitive function by modulation becomes higher, or determine the modulation method so as to make the user less uncomfortable.
- the signal processing device 10 may determine the modulation method according to a timer. By periodically changing the modulation method according to the timer, it is possible to prevent the user from becoming accustomed to listening to the modulated sound, and to efficiently stimulate the user's brain. Further, the signal processing device 10 may determine the volume of the output acoustic signal according to various conditions, similar to determining the modulation method.
- the signal processing apparatus 10 may decide not to perform modulation (that is, set the degree of modulation to 0) as one of the options for the modulation method. Further, the signal processing apparatus 10 may determine the modulation method so that the modulation is performed when a predetermined time has elapsed after the modulation method is determined so as not to perform the modulation. Furthermore, the signal processing apparatus 10 may determine the modulation method so that the degree of modulation gradually increases when changing from a state in which no modulation is performed to a state in which modulation is performed.
- the signal processing apparatus 10 modulates the input acoustic signal (S112) to generate an output acoustic signal. Specifically, the signal processing apparatus 10 performs modulation processing according to the modulation method determined in S111 on the input acoustic signal acquired in S110. As an example, the signal processing device 10 amplitude-modulates the input acoustic signal using a modulation function having a frequency corresponding to a gamma wave (for example, a frequency of 35 Hz or more and 45 Hz or less). As a result, an amplitude change corresponding to the frequency is added to the input acoustic signal. In step S112, the signal processing device 10 may further perform at least one of amplification, volume control, and D/A conversion of the output acoustic signal.
- the signal processing device 10 transmits an output acoustic signal (S113). Specifically, the signal processing device 10 sends the output sound signal generated in step S112 to the sound output device 30 . The sound output device 30 generates sound according to the output sound signal. The signal processing device 10 ends the acoustic signal processing in FIG. 8 at step S113.
- the signal processing apparatus 10 may collectively perform the processing in FIG. 8 for an input sound signal having a certain reproduction period (for example, music content of one piece of music), or may perform the processing for each predetermined reproduction period of the input sound signal. The process of FIG. 8 may be repeated (for example, every 100 ms).
- the signal processing device 10 may continuously perform modulation processing on an input acoustic signal, such as modulation by analog signal processing, and output a modulated acoustic signal.
- the processing shown in FIG. 8 is terminated according to a specific termination condition (for example, a certain period of time has passed, a user operation has been performed, or the output history of modulated sound has reached a predetermined state). You may The order of processing by the signal processing device 10 is not limited to the example shown in FIG. 8, and for example, the determination of the modulation method (S111) may be performed before the acquisition of the input acoustic signal (S110).
- the signal processing apparatus 10 of the present embodiment performs amplitude modulation on an input acoustic signal to generate an output acoustic signal having an amplitude change corresponding to the gamma wave frequency. Generate. In the output acoustic signal, the rise and fall of the envelope of the amplitude waveform are asymmetrical.
- the signal processing device 10 outputs the generated output acoustic signal to the acoustic output device 30 .
- the amplitude of the acoustic signal can be increased or decreased in a predetermined cycle while suppressing discomfort given to the listener.
- the sound output device 30 causes the user to listen to the sound corresponding to the output sound signal, thereby inducing gamma waves in the user's brain due to fluctuations in the amplitude of the output sound signal.
- the effect of improving the user's cognitive function for example, treating or preventing dementia
- the output acoustic signal may have amplitude changes corresponding to frequencies between 35 Hz and 45 Hz. As a result, when the user hears the sound corresponding to the output acoustic signal, it can be expected that gamma waves will be induced in the user's brain.
- the input audio signal may be an audio signal corresponding to music content.
- the motivation of the user to listen to the sound corresponding to the output acoustic signal can be improved.
- the storage device 11 may be connected to the signal processing device 10 via the network NW.
- the display 21 may be built in the signal processing device 10 .
- the signal processing device 10 may extract a part of the acoustic signal from the input acoustic signal, modulate only the extracted acoustic signal, and then generate the output acoustic signal.
- the signal processing device 10 modulates an input acoustic signal and generates an output acoustic signal is sent to the acoustic output device 30 .
- the signal processing device 10 generates an output acoustic signal by synthesizing a modulated input acoustic signal obtained by modulating the input acoustic signal with other acoustic signals, and converts the generated output acoustic signal into an acoustic signal. It may be sent to the output device 30 . Further, the signal processing device 10 may send the modulated input acoustic signal and other acoustic signals to the acoustic output device 30 at the same time without synthesizing them.
- the envelope of the amplitude waveform is a reverse sawtooth wave or a sawtooth wave, and the rise and fall of the envelope are asymmetrical.
- the output acoustic signal generated by the signal processing device 10 is not limited to these, and may have other amplitude waveforms in which the rise and fall of the envelope of the amplitude waveform are asymmetrical.
- the slope of the tangent to the envelope may gradually decrease, or the slope of the tangent to the envelope may gradually increase.
- the slope of the tangent to the envelope may gradually decrease, or the slope of the tangent to the envelope may gradually increase.
- the modulation function has a frequency of 35 Hz or more and 45 Hz or less
- the modulation function used by the signal processing device 10 is not limited to this, and any modulation function that affects the induction of gamma waves in the brain of the listener may be used.
- the modulation function may have frequencies between 25 Hz and 140 Hz.
- the frequency of the modulating function may change over time, and the modulating function may have a frequency below 35 Hz or a frequency above 45 Hz in part.
- the output sound signal generated by the signal processing device 10 is output to the sound output device 30 that emits a sound corresponding to the output sound signal and is heard by the user.
- the output destination of the output acoustic signal by the signal processing device 10 is not limited to this.
- the signal processing device 10 may output the output acoustic signal to an external storage device or information processing device via a communication network or by broadcasting.
- the signal processing device 10 may output the input acoustic signal that has not been modulated together with the output acoustic signal generated by the modulation processing to an external device.
- the external device can arbitrarily select and reproduce one of the unmodulated acoustic signal and the modulated acoustic signal.
- the signal processing device 10 may output information indicating the content of modulation processing to an external device together with the output acoustic signal.
- Information indicating the content of modulation processing includes, for example, any of the following.
- Information indicating the modulation function Information indicating the degree of modulation Information indicating the volume With this, the external device can change the reproduction method of the acoustic signal according to the content of the modulation processing. Further, when the signal processing device 10 acquires additional information (for example, an ID3 tag in an MP3 file) together with the input sound signal, the signal processing device 10 may change the additional information and output it to the external device together with the output sound signal.
- Non-Patent Document 1 discloses that when 40-Hz sound stimulation induces gamma waves in the brain, amyloid ⁇ is reduced and cognitive function is improved. That is, by making the user hear the sound corresponding to the output acoustic signal output by the signal processing device 10, the amount of amyloid ⁇ in the brain of the user is reduced and the deposition is suppressed. It is expected to be useful for the prevention or treatment of various diseases.
- CAA cerebral amyloid angiopathy
- CAA is a disease in which amyloid ⁇ protein deposits on the walls of small blood vessels in the brain, making the walls of blood vessels fragile and causing cerebral hemorrhage and the like.
- the technology described in the above embodiments can be an innovative therapeutic method. That is, the sound system 1 comprising the signal processing device 10 and the sound output device 30 for allowing the user to hear a sound corresponding to the output sound signal output by the signal processing device 10 is used for treatment or prevention of cerebral amyloid angiopathy. It can also be used as a medical system for
- Sound system 10 Signal processing device 11: Storage device 12: Processor 13: Input/output interface 14: Communication interface 21: Display 30: Sound output device 50: Sound source device
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Acoustics & Sound (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Psychology (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Heart & Thoracic Surgery (AREA)
- Biophysics (AREA)
- Surgery (AREA)
- Pathology (AREA)
- Psychiatry (AREA)
- Molecular Biology (AREA)
- Multimedia (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Primary Health Care (AREA)
- Epidemiology (AREA)
- General Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Anesthesiology (AREA)
- Business, Economics & Management (AREA)
- General Business, Economics & Management (AREA)
- Quality & Reliability (AREA)
- Computational Linguistics (AREA)
- Biodiversity & Conservation Biology (AREA)
- Signal Processing (AREA)
- Hematology (AREA)
- Child & Adolescent Psychology (AREA)
- Developmental Disabilities (AREA)
- Hospice & Palliative Care (AREA)
- Social Psychology (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Description
ガンマ波とは、脳の皮質の周期的な神経活動を、脳波や脳磁図といった電気生理学的手法により捉えた神経振動のうち、周波数がガンマ帯域(25~140Hz)に含まれるものを指す。
音響システムの構成について説明する。図1は、本実施形態の音響システムの構成を示すブロック図である。
音響出力装置30は、信号処理装置10とともに、一装置として構成することもできる。具体的には、信号処理装置10および音響出力装置30は、TV、ラジオ、音楽プレーヤ、AVアンプ、スピーカ、ヘッドホン、イヤホン、スマートフォン、またはPCに実装可能である。信号処理装置10および音響出力装置30は、認知機能改善システムを構成する。
信号処理装置の構成について説明する。図2は、本実施形態の信号処理装置の構成を示すブロック図である。
・OS(Operating System)のプログラム
・情報処理を実行するアプリケーションのプログラム
・情報処理において参照されるデータベース
・情報処理を実行することによって得られるデータ(つまり、情報処理の実行結果)
・CPU(Central Processing Unit)
・GPU(Graphic Processing Unit)
・ASIC(Application Specific Integrated Circuit)
・FPGA(Field Programmable Array)
・DSP(digital signal processor)
入力デバイスは、例えば、音源装置50、物理ボタン、キーボード、ポインティングデバイス、タッチパネル、又は、それらの組合せである。
出力デバイスは、例えば、ディスプレイ21、音響出力装置30、又は、それらの組合せである。
本実施形態の一態様について説明する。図3は、本実施形態の一態様の説明図である。
図3に示すように、信号処理装置10は、音源装置50から入力音響信号を取得する。信号処理装置10は、入力音響信号に対して変調を行うことで、出力音響信号を生成する。変調は、ガンマ波に対応する周波数(例えば35Hz以上45Hz以下の周波数)を持つ変調関数を用いた振幅変調である。これにより、音響信号には、上記周波数に対応する振幅の変化(音量の強弱)が付加される。同じ入力音響信号に対して異なる変調関数を適用すると、出力音響信号の振幅波形は異なる。振幅波形の例については後述する。
図4は、出力音響信号の振幅波形の第1例を示す図である。入力音響信号の変調に用いる変調関数をA(t)とし、変調前の入力音響信号の波形を表す関数をX(t)とした場合に、変調後の出力音響信号の波形を表す関数をY(t)とした場合に、
Y(t)=A(t)・X(t)
となる。
第1例において、変調関数は40Hzの逆ノコギリ波状の波形を有する。入力音響信号は、40Hzより高い一定の周波数を有し、音圧も一定である、均質な音を表す音響信号である。その結果、出力音響信号の振幅波形の包絡線が、逆ノコギリ波に沿った形状となる。
具体的には図4に示すように、出力音響信号の振幅波形は、ガンマ波の周波数に対応する振幅の変化を有し、振幅波形の包絡線Aの立ち上がり部分Cと立ち下がり部分Bとが非対称(つまり、立ち上がりの時間長と立ち下がりの時間長とが異なる。)となっている。
第1例における出力音響信号の振幅波形の包絡線Aの立ち上がりは、立ち下がりと比較して急峻である。言い換えれば、立ち上がりに要する時間が立ち下がりに要する時間に比べて短い。包絡線Aの振幅値は、振幅の最大値まで急上昇した後に、時間の経過ととともに次第に下降する。すなわち、包絡線Aは、逆ノコギリ波状となっている。
出力音響信号の振幅波形の第2例について説明する。図5は、出力音響信号の振幅波形の第2例を示す図である。
具体的には図5に示すように、第2例における出力音響信号の振幅波形の包絡線Aの立ち下がりは、立ち上がりと比較して急峻である。言い換えれば、立ち下がりに要する時間が立ち上がりに要する時間に比べて短い。包絡線Aの振幅値は、振幅の最大値まで時間の経過ととともに次第に上昇した後に、急下降する。すなわち、包絡線Aは、ノコギリ波状となっている。
出力音響信号の振幅波形の第3例について説明する。図6は、出力音響信号の振幅波形の第3例を示す図である。
第3例において、変調関数は40Hzの正弦波状の波形を有する。入力音響信号は、40Hzより高い一定の周波数を有し、音圧も一定である、均質な音を表す音響信号である。その結果、出力音響信号の振幅波形の包絡線が、正弦波に沿った形状となる。
具体的には図6に示すように、第3例における出力音響信号の振幅波形の包絡線Aの立ち上がりと立ち下がりはいずれも滑らかである。すなわち、包絡線Aは、正弦波状となっている。
なお、上記の第1例から第3例において、変調関数は40Hzの周期性を有するものとしたが、変調関数の周波数はこれに限定されず、例えば35Hz以上45Hz以下の周波数であってもよい。また、上記の第1例から第3例において、包絡線Aの振幅値の絶対値は周期的に0になるものとしたが、これに限らず、包絡線Aの振幅値の最小絶対値が0より大きい値(例えば最大絶対値の2分の1又は4分の1)になるような変調関数が用いられてもよい。
(2-5―1)実験の概要
本開示の技術による効果を検証するために行った実験について説明する。
本実験では、男性18名、女性8名の被験者に対して、40Hzの変調関数を用いて変調された音響信号に基づく出力音を聴かせ、その際に感じる心理反応、および脳内のガンマ波の誘発の程度を評価した。また、比較のために、40Hzのパルス波状の波形を有する音響信号に基づく出力音を聞かせた場合の心理反応とガンマ波の誘発の程度も評価した。心理反応は、被験者の主観を基準に、アンケートの回答(7段階尺度)により評価した。ガンマ波の誘発の程度は、被験者の頭部に装着した複数の電極により計測した。変調された音響信号に応じて出力音を生成する音響出力装置30としては、被験者の頭部に装着されるヘッドホンを採用した。
・実験A…それぞれ異なる変調関数と入力音響信号に応じた複数種類の出力音を聞いた際の不快感を被験者が回答する実験
・実験B…それぞれ異なる変調関数と入力音響信号に応じた複数種類の出力音を聴いた際の被験者の脳波を測定する実験
・実験C…それぞれ異なる変調関数と入力音響信号に応じた複数種類の出力音を聴いた際の被験者の脳波を測定する実験(実験Bとは音の長さが異なる。)
・不快に感じる
・苛立たしさを感じる
・音声は不自然だ
・音声が聞き取りにくい
本開示の技術による効果を検証するための上述の実験について、さらに詳細に説明する。なお、以下では上述の実験Aと実験Bを中心に説明し、実験Cについては省略する。本実験では、誘発すべきガンマ波として40Hzの周波数を有する脳波に着目する。本実験で使用した音刺激(出力音)のリストを図9に示す。列901は音刺激の識別番号(以降「刺激番号」と呼ぶ。)を示し、列902は変調前の音信号(正弦波)の周波数を示し、列903は変調有無及び変調に用いた変調関数を示し、列904は変調関数の周波数を示し、列905は変調度を示す。
本実施形態の音響信号処理について説明する。図8は、本実施形態の信号処理装置10による音響信号処理の全体フローを示す図である。図8の処理は、信号処理装置10のプロセッサ12が、記憶装置11に記憶されたプログラムを読み出して実行することによって実現される。なお、図8の処理の少なくとも一部が、1又は複数の専用の回路により実現されてもよい。
・他の処理又は外部からの指示によって図8の音響信号処理が呼び出された。
・ユーザが図8の音響信号処理を呼び出すための操作を行った。
・信号処理装置10が所定の状態(例えば電源投入)になった。
・所定の日時が到来した。
・所定のイベント(例えば、信号処理装置10の起動、または図8の音響信号処理の前回の実行)から所定の時間が経過した。
具体的には、信号処理装置10は、音源装置50から送出される入力音響信号を受け付ける。
ステップS110において、信号処理装置10は、入力音響信号のA/D変換をさらに行ってもよい。
・音楽コンテンツ(例えば、歌唱、演奏、またはそれらの組み合わせ(つまり、楽曲)。動画コンテンツに付随する音声コンテンツを含み得る。)
・音声コンテンツ(例えば、朗読、ナレーション、アナウンス、放送劇、独演、会話、独言、またはそれらの組み合わせの音声など。動画コンテンツに付随する音声コンテンツを含み得る。)
・他の音響コンテンツ(例えば、電子音、環境音、または機械音)
ただし、歌唱、または音声コンテンツは、人間の発声器官により発せられる音声に限られず、音声合成技術により生成された音声を含み得る。
ステップS110の後に、信号処理装置10は、変調方法の決定(S111)を実行する。
具体的には、信号処理装置10は、ステップS110において取得した入力音響信号から出力音響信号を生成するために用いる変調方法を決定する。ここで決定される変調方法には、例えば、変調処理に用いる変調関数と、変調による振幅の変化の程度に対応する変調度との、少なくとも何れかが含まれる。一例として、信号処理装置10は、図4から図6を用いて説明した3種類の変調関数のうち何れを用いるかを選択する。いずれの変調関数を選択するかは、ユーザもしくは他者による入力操作又は外部からの指示に基づいて決定されてもよいし、アルゴリズムによって決定されてもよい。
・ユーザの家族、友人、または知人
・医療関係者(例えばユーザの担当医)
・入力音響信号に対応するコンテンツの作成者、または提供者
・信号処理装置10の提供者
・ユーザが利用する施設の管理者
具体的には、信号処理装置10は、S110において取得した入力音響信号に対して、S111において決定した変調方法に応じた変調処理を行う。一例として、信号処理装置10は、入力音響信号に対して、ガンマ波に対応する周波数(例えば、35Hz以上45Hz以下の周波数)を持つ変調関数を用いた振幅変調を行う。これにより、入力音響信号には、上記周波数に対応する振幅の変化が付加される。
ステップS112において、信号処理装置10は、出力音響信号の増幅、音量調節、またはD/A変換の少なくとも1つをさらに行ってよい。
具体的には、信号処理装置10は、ステップS112において生成した出力音響信号を音響出力装置30へ送出する。音響出力装置30は、出力音響信号に応じた音を発生する。
信号処理装置10は、ステップS113を以て、図8の音響信号処理を終了する。
なお、信号処理装置10は、一定の再生期間を有する入力音響信号(例えば1曲の音楽コンテンツ)に対して図8の処理をまとめて行ってもよいし、入力音響信号の所定の再生区間ごと(例えば100msごと)に図8の処理を繰り返し行ってもよい。あるいは、信号処理装置10は、例えばアナログ信号処理による変調のように、入力される音響信号に対して連続的に変調処理を行って変調済みの音響信号を出力してもよい。図8に示す処理は、特定の終了条件(例えば、一定時間が経過したこと、ユーザ操作が行われたこと、または変調済みの音の出力履歴が所定の状態に達したこと)に応じて終了してもよい。
また、信号処理装置10による処理の順番は図8に示す例に限定されず、例えば変調方法の決定(S111)が入力音響信号の取得(S110)より前に行われてもよい。
以上説明したように、本実施形態の信号処理装置10は、入力音響信号に対して振幅変調を行うことで、ガンマ波の周波数に対応する振幅の変化を有する出力音響信号を生成する。出力音響信号においては、振幅波形の包絡線の立ち上がりと立ち下がりが非対称である。信号処理装置10は、生成した出力音響信号を音響出力装置30に向けて出力する。これにより、聴者に与える不快感を抑制しながら音響信号の振幅を所定の周期で増減させることができる。そして、音響出力装置30が、かかる出力音響信号に応じた音をユーザに聴かせることで、ユーザの脳内において出力音響信号の振幅の変動に起因してガンマ波が誘発される。その結果、ユーザの認知機能の改善(例えば、認知症の治療、または予防)の効果を期待できる。
記憶装置11は、ネットワークNWを介して、信号処理装置10と接続されてもよい。ディスプレイ21は、信号処理装置10に内蔵されてもよい。
また、信号処理装置10は、変調済み入力音響信号とその他の音響信号とを、合成することなく同時に音響出力装置30に送出してもよい。
・変調関数を示す情報
・変調度を示す情報
・音量を示す情報
これにより、外部装置は、変調処理の内容に応じて音響信号の再生方法を変更することができる。
また、信号処理装置10は、入力音響信号と共に付加情報(例えばMP3ファイルにおけるID3タグ)を取得した場合に、当該付加情報を変更して出力音響信号と共に外部装置へ出力してもよい。
10 :信号処理装置
11 :記憶装置
12 :プロセッサ
13 :入出力インタフェース
14 :通信インタフェース
21 :ディスプレイ
30 :音響出力装置
50 :音源装置
Claims (11)
- 入力音響信号を受け付ける手段と、
受け付けた前記入力音響信号を振幅変調することで、ガンマ波の周波数に対応する振幅の変化を有し、振幅波形の包絡線の立ち上がりと立ち下がりが非対称である出力音響信号を生成する手段と、
生成された前記出力音響信号を出力する手段と、を備える、信号処理装置。 - 前記出力音響信号における振幅波形の包絡線の立ち上がりは、当該包絡線の立ち下がりと比較して急峻である、
請求項1に記載の信号処理装置。 - 前記出力音響信号の振幅波形の包絡線が逆ノコギリ波状である、請求項2に記載の信号処理装置。
- 前記出力音響信号における振幅波形の包絡線の立ち下がりは、立ち上がりと比較して急峻である、請求項1に記載の信号処理装置。
- 前記出力音響信号の振幅波形の包絡線がノコギリ波状である、請求項4に記載の信号処理装置。
- 入力音響信号を受け付ける手段と、
受け付けた前記入力音響信号を振幅変調することで、ガンマ波の周波数に対応する振幅の変化を有し、振幅波形の包絡線が正弦波状である出力音響信号を生成する手段と、
生成された前記出力音響信号を出力する手段と、を備える、信号処理装置。 - 前記出力音響信号は、35Hz以上45Hz以下の周波数に対応する振幅の変化を有する、請求項1から請求項6の何れかに記載の信号処理装置。
- 前記入力音響信号は、音楽コンテンツに対応する音響信号である、請求項1から請求項6の何れかに記載の信号処理装置。
- 請求項1に記載の信号処理装置と、
前記信号処理装置により出力される前記出力音響信号に応じた音をユーザに聞かせる手段と、を備える、認知機能改善システム。 - 入力音響信号を受け付け、
受け付けられた前記入力音響信号を振幅変調することで、ガンマ波の周波数に対応する振幅の変化を有し、振幅波形の包絡線の立ち上がりと立ち下がりが非対称である出力音響信号を生成し、
生成された前記出力音響信号を出力する、信号処理方法。 - コンピュータに、請求項10に記載の信号処理方法を実行させるためのプログラム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22886921.0A EP4425490A1 (en) | 2021-10-25 | 2022-10-24 | Signal processing device, cognitive function improvement system, signal processing method, and program |
JP2022574497A JP7410477B2 (ja) | 2021-10-25 | 2022-10-24 | 信号処理装置、信号処理方法、制御方法、システム、およびプログラム |
CN202280071534.6A CN118160035A (zh) | 2021-10-25 | 2022-10-24 | 信号处理装置、认知功能改善系统、信号处理方法以及程序 |
US18/171,844 US20230190174A1 (en) | 2021-10-25 | 2023-02-21 | Signal processing apparatus, and signal processing method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-173634 | 2021-10-25 | ||
JP2021173634 | 2021-10-25 | ||
JP2022-077088 | 2022-05-09 | ||
JP2022077088 | 2022-05-09 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/171,844 Continuation US20230190174A1 (en) | 2021-10-25 | 2023-02-21 | Signal processing apparatus, and signal processing method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023074594A1 true WO2023074594A1 (ja) | 2023-05-04 |
Family
ID=86159892
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/039422 WO2023074594A1 (ja) | 2021-10-25 | 2022-10-24 | 信号処理装置、認知機能改善システム、信号処理方法、及びプログラム |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230190174A1 (ja) |
EP (1) | EP4425490A1 (ja) |
JP (1) | JP7410477B2 (ja) |
WO (1) | WO2023074594A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4160402A (en) * | 1977-12-19 | 1979-07-10 | Schwartz Louis A | Music signal conversion apparatus |
JPS5531595Y1 (ja) * | 1970-10-26 | 1980-07-28 | ||
JPS5732497A (en) * | 1980-08-06 | 1982-02-22 | Matsushita Electric Ind Co Ltd | Echo adding unit |
JP2011251058A (ja) * | 2010-06-03 | 2011-12-15 | Panasonic Corp | 聴性定常反応測定方法および測定装置 |
JP2020501853A (ja) | 2016-11-17 | 2020-01-23 | コグニート セラピューティクス,インク. | 視覚刺激を介した神経刺激のための方法およびシステム |
JP2020014716A (ja) * | 2018-07-26 | 2020-01-30 | 株式会社フェイス | 音楽療法のための歌唱補助装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103981989B (zh) | 2013-02-08 | 2016-05-18 | 太阳光电能源科技股份有限公司 | 具有太阳能追日装置的建筑体 |
-
2022
- 2022-10-24 WO PCT/JP2022/039422 patent/WO2023074594A1/ja active Application Filing
- 2022-10-24 EP EP22886921.0A patent/EP4425490A1/en active Pending
- 2022-10-24 JP JP2022574497A patent/JP7410477B2/ja active Active
-
2023
- 2023-02-21 US US18/171,844 patent/US20230190174A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5531595Y1 (ja) * | 1970-10-26 | 1980-07-28 | ||
US4160402A (en) * | 1977-12-19 | 1979-07-10 | Schwartz Louis A | Music signal conversion apparatus |
JPS5732497A (en) * | 1980-08-06 | 1982-02-22 | Matsushita Electric Ind Co Ltd | Echo adding unit |
JP2011251058A (ja) * | 2010-06-03 | 2011-12-15 | Panasonic Corp | 聴性定常反応測定方法および測定装置 |
JP2020501853A (ja) | 2016-11-17 | 2020-01-23 | コグニート セラピューティクス,インク. | 視覚刺激を介した神経刺激のための方法およびシステム |
JP2020014716A (ja) * | 2018-07-26 | 2020-01-30 | 株式会社フェイス | 音楽療法のための歌唱補助装置 |
Non-Patent Citations (2)
Title |
---|
MULTI-SENSORY GAMMA STIMULATION AMELIORATES ALZHEIMER'S-ASSOCIATED PATHOLOGY AND IMPROVES COGNITION CELL, vol. 177, no. 2, 4 April 2019 (2019-04-04), pages 256 - 271 |
YASUI, NOZOMIKO; IURA, MASANOBU: "2-1-4 Does the Amplitude Shape of AM Sounds Change Roughness Perception?", SPRING AND AUTUMN MEETING OF THE ACOUSTICAL SOCIETY OF JAPAN, ACOUSTICAL SOCIETY OF JAPAN, JP, vol. 2011, 2 March 2011 (2011-03-02), JP , pages 1013 - 1016, XP009545830, ISSN: 1880-7658 * |
Also Published As
Publication number | Publication date |
---|---|
US20230190174A1 (en) | 2023-06-22 |
EP4425490A1 (en) | 2024-09-04 |
JP7410477B2 (ja) | 2024-01-10 |
JPWO2023074594A1 (ja) | 2023-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chatterjee et al. | Processing F0 with cochlear implants: Modulation frequency discrimination and speech intonation recognition | |
US8326628B2 (en) | Method of auditory display of sensor data | |
US20090018466A1 (en) | System for customized sound therapy for tinnitus management | |
Won et al. | Relationship between behavioral and physiological spectral-ripple discrimination | |
Meltzer et al. | The steady-state response of the cerebral cortex to the beat of music reflects both the comprehension of music and attention | |
US20150005661A1 (en) | Method and process for reducing tinnitus | |
Zelechowska et al. | Headphones or speakers? An exploratory study of their effects on spontaneous body movement to rhythmic music | |
Roman et al. | Relationship between auditory perception skills and mismatch negativity recorded in free field in cochlear-implant users | |
Petersen et al. | The CI MuMuFe–a new MMN paradigm for measuring music discrimination in electric hearing | |
CN112006843A (zh) | 一种耳鸣治疗仪及其使用方法 | |
Zhang et al. | Spatial release from informational masking: evidence from functional near infrared spectroscopy | |
US20230190173A1 (en) | Signal processing apparatus and signal processing method | |
Hann et al. | Strategies for the selection of music in the short-term management of mild tinnitus | |
Cantisani et al. | MAD-EEG: an EEG dataset for decoding auditory attention to a target instrument in polyphonic music | |
Sturm et al. | Extracting the neural representation of tone onsets for separate voices of ensemble music using multivariate EEG analysis. | |
WO2023074594A1 (ja) | 信号処理装置、認知機能改善システム、信号処理方法、及びプログラム | |
JP7515801B2 (ja) | 信号処理装置、認知機能改善システム、信号処理方法、及びプログラム | |
JP3868326B2 (ja) | 睡眠導入装置及び心理生理効果授与装置 | |
WO2014083375A1 (en) | Entrainment device | |
Erkens et al. | Hearing impaired participants improve more under envelope-transcranial alternating current stimulation when signal to noise ratio is high | |
CN118160035A (zh) | 信号处理装置、认知功能改善系统、信号处理方法以及程序 | |
RU2192777C2 (ru) | Способ биоакустической коррекции психофизиологического состояния организма | |
JP3444632B2 (ja) | Fmθを誘導する可聴音とその発生方法 | |
WO2024004926A1 (ja) | 信号処理装置、認知機能改善システム、信号処理方法、およびプログラム | |
JP2024003859A (ja) | 信号処理装置、認知機能改善システム、信号処理方法、およびプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2022574497 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22886921 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280071534.6 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022886921 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022886921 Country of ref document: EP Effective date: 20240527 |