WO2023074524A1 - Novel lateral flow assay - Google Patents

Novel lateral flow assay Download PDF

Info

Publication number
WO2023074524A1
WO2023074524A1 PCT/JP2022/039105 JP2022039105W WO2023074524A1 WO 2023074524 A1 WO2023074524 A1 WO 2023074524A1 JP 2022039105 W JP2022039105 W JP 2022039105W WO 2023074524 A1 WO2023074524 A1 WO 2023074524A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
iii
iron
oxide particles
lateral flow
Prior art date
Application number
PCT/JP2022/039105
Other languages
French (fr)
Japanese (ja)
Inventor
卓人 東條
真由美 和田
大貴 西口
彰人 川原
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to CN202280073011.5A priority Critical patent/CN118339454A/en
Publication of WO2023074524A1 publication Critical patent/WO2023074524A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K17/00Carrier-bound or immobilised peptides; Preparation thereof
    • C07K17/14Peptides being immobilised on, or in, an inorganic carrier
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals

Definitions

  • the present invention relates to a novel lateral flow assay.
  • immunoassays using proteins have been used in the medical diagnostic field.
  • detection of antigenic proteins associated with specific diseases in clinical samples such as nasal swabs, blood, urine, etc.
  • clinical tests for the qualitative or quantitative detection of specific pathogenic microorganisms, viruses and chemical substances are known.
  • the lateral flow assay makes it possible to visualize the presence of the antigen by visually observing the color development on the membrane due to the antigen-antibody reaction. Therefore, it is used not only in the medical diagnostic field but also in a wide range of fields such as clinical practice, veterinary medicine, agriculture, food industry, biological defense and sanitary environment.
  • the lateral flow assay is a clinical test method with excellent sensitivity and reproducibility, but there is a problem in terms of running costs, especially in fields other than medical diagnostics (agriculture, food industry, sanitary environment survey, etc.). .
  • detection devices such as lateral flow assays for food allergen testing and lateral flow assays for living environment surveys are commercially available for non-medical diagnostic use, most of them are sold at a price range exceeding 1,000 yen per test. It is For example, consumers should use such devices to conduct surveys of food allergens and sanitary environments when necessary.
  • the lateral flow assay is basically disposable, and the expensive carrier for detection and protein for detection that perform the detection function cannot be reused.
  • gold nanoparticles are frequently used as detection carriers for lateral flow assays (for example, Non-Patent Document 1).
  • Price volatility is an issue.
  • latex nanoparticles, colored silica nanoparticles, colored cellulose nanoparticles, etc. are also used, but since they are all nanoparticles manufactured using advanced technology, they are sold at the same price range as gold nanoparticles. Therefore, even if such a material is used, the problem that the carrier is expensive has not yet been solved.
  • Non-Patent Document 1 Tanaka, R. et al. A novel enhancement assay for immunochromatographic test strips using gold nanoparticles.
  • Anal Bioanal Chem 385, 1414-1420, 2006 Non-Patent Document 2 Connolly, R. &O' Kennedy, R. Magnetic lateral flow immunoassay test strip development -Considerations for proof of concept evaluation. Methods 116, 132-140, 2017
  • the present invention relates to the following 1) and 2).
  • 2) Reagents for lateral flow assays comprising antibodies immobilized on iron(III) oxide particles.
  • the term "lateral flow assay” refers to a labeled antibody that specifically binds to an antigen and is immobilized on a labeled antibody, and an antibody that specifically binds to an antigen and is immobilized on a membrane.
  • the label means a substance that carries an antibody and functions as a visually detectable marker.
  • the labeled antibody and the antigen in the sample form a complex, and the complex is captured by the capture antibody immobilized on the membrane, and the complex accumulates and develops color. , can detect the presence of antigen in a sample.
  • immobilization and “immobilization” refer to the state in which an antibody is supported on a carrier or membrane, or the state in which the antibody is supported.
  • the target “antigen” is not particularly limited, and includes, for example, antigens derived from allergens, biomarkers, viruses, bacteria, fungi, protozoa, and the like.
  • detection can also be referred to as “measurement”
  • antigen detection includes proof of the presence or absence of an antigen and quantification of the antigen in the broadest sense. Must be construed and should not be construed as limiting in any way.
  • An allergen is a substance that enters the body from the outside through inhalation, piercing, ingestion, or contact and causes hypersensitivity or allergic reaction.
  • Allergens include pollen of grasses (reeds, giant mothballs, giant sparrow, daffodil, sycamore, wheat, cornuca, bromeliad, corn sorghum, long grass, ragweed, broad house fescue, sarcophagus, etc.); , dandelion, wormwood, lesser sorrel, ragweed, ragweed, ragweed, plantain, mugwort, etc.); , beech, pine, willow, etc.); animal epidermis (duck feathers, cat dander, dog dander, cow dander, horse dander, rabbit epidermis, hamster epidermis, guinea pig epidermis, sheep epidermis, pig epidermis, goat epidermis, chicken dander);
  • Biomarkers are substances in the body, such as proteins and nucleic acids contained in body fluids such as blood, saliva, and sweat, urine, and feces. etc. Biomarkers include CK-MB, H-FABP, BNP, NT-proBNP, topolonin, myoglobin, albumin, ceruloplasmin, calbindin, clusterin, cystatin C, KIM-1, NGAL, Osteopontin, TFF3, TIMP-1, VEGF -A, L-FABP, Chorionic Gonadotropin, Interleukin, Amylase, NMP22, CEA, PSA, CYFRA21-1, SLX, CA125, SCC, NSE, ProGRP, CA19-9, CA19-9, AFP, PIVKA-II, AFP-L3, Span-1, DUPAN-2, CA50, BTA, CA15-3 and the like.
  • Viruses can be of all types, regardless of the type of nucleic acid (RNA, DNA) and the presence or absence of an envelope.
  • Bacteria include Pertussis, Diphtheria, Escherichia coli, Haemophilus influenzae, Helicobacter, Neisseria meningitidis, Pseudomonas aeruginosa, Streptococcus pneumoniae, Group A Streptococcus, Group B Streptococcus, Staphylococcus aureus, Tetanus, Legionella, and Tuberculosis.
  • fungi include Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus, Aspergillus nidulans, Aspergillus niger, Aspergillus ustus, etc.), Blastomyces dermatitidis, etc., Candida albicans, etc. , Coccidioides fungi (e.g.
  • Coccidioides immitis etc. Coccidioides immitis etc.
  • Cryptococcus fungi e.g. Cryptococcus neoformans, Cryptococcus gattii etc.
  • Histoplasma fungi e.g. Histoplasma capsulatum etc.
  • Paracoccidioides fungi e.g. Paracoccidioides brasiliensis etc.
  • Sporothrix fungi For example, Sporothrix schenckii, etc.
  • Protozoa include Plasmodium, Leishmania, Cryptosporidium, Trypanosoma Gambia, Trypanosoma Rhodesia, Trypanosoma cruzi, Trichomonas, Toxoplasma, Babesia, Entamoeba histolytica, Giardia, and the like.
  • the present invention relates to providing a novel lateral flow assay that can be performed at a much lower cost than conventional methods.
  • iron (III) oxide (Fe 2 O 3 ) particles have been found to be suitable as labels.
  • immunoglobulin G (IgG) was immobilized on iron (III) oxide particles, and a heavy chain variable domain antibody derived from a heavy chain antibody expected to be inexpensively produced by microbial culture was immobilized on iron (III) oxide particles.
  • IgG immunoglobulin G
  • iron (III) oxide particles it was found that a lateral flow assay for visually confirming color development by iron (III) oxide particles could be constructed.
  • the lateral flow assay using iron (III) oxide particles has overwhelmingly superior visibility compared to the case using iron (II, III) oxide particles.
  • the present invention has detection sensitivity equivalent to that of conventional lateral flow assays that use gold nanoparticles as labels, and enables lateral flow assays at significantly lower costs. Therefore, it is expected that the cost of the lateral flow assay device will be reduced, and the utilization of the lateral flow assay device will be promoted in a wide range of fields, both medical diagnostics and non-medical fields.
  • Samples to be subjected to the lateral flow assay of the present invention include samples that contain antigens or that may contain antigens.
  • samples include tracheal swabs, nasal swabs, oral swabs, pharyngeal swabs, nasal washes, nasal aspirates, nasal discharge, snot, saliva, sputum, tears, blood, serum, urine, feces, tissues, cells.
  • biological samples such as lysates of tissue or cells, food raw materials, processed foods, environmental samples, samples collected from hard or soft surfaces, and the like may be used.
  • the sample may be subjected to the assay as it is or after crushing the sample, extracting the antigen, and recovering the solution containing the antigen, and the antigen of interest may be appropriately concentrated or diluted with water or buffer.
  • the sample is a liquid sample.
  • the method of the present invention is a lateral flow assay in which an antibody immobilized on a label is used to detect an antigen in a sample, and the label is iron (III) oxide particles.
  • Iron (III) oxide is a reddish brown solid represented by the chemical formula Fe 2 O 3 (CAS Registry Number: 1309-37-1). Iron (III) oxide is a water-insoluble and chemically stable compound, and is highly safe, as it has a track record of being used as a pigment. It is also inexpensive and available in large quantities.
  • the shape of the iron (III) oxide particles is not particularly limited, and may be, for example, spherical, needle-like, or spindle-like.
  • the average particle size of the iron (III) oxide particles is not particularly limited, but is preferably 10 nm or more, more preferably 50 nm or more, preferably 1000 nm or less, and more preferably 500 nm or less.
  • a specific range of the average particle size of the iron (III) oxide particles is preferably 10 to 1000 nm, more preferably 50 to 500 nm.
  • the average particle size of iron (III) oxide particles can be measured by a laser diffraction/scattering method.
  • iron (III) oxide particles for example, ferric oxide (particle diameter: 300 nm, Kojundo Chemical Laboratory Co., Ltd.), Iron (III) oxide (particle diameter: ⁇ 5 ⁇ m, Sigma-Aldrich), etc. are commercially available. and these can be used.
  • the antibody immobilized on the iron (III) oxide particles may be any antibody that specifically binds to the antigen of interest, and may be either a polyclonal antibody or a monoclonal antibody.
  • antibody fragments such as F(ab') 2 , F(ab'), single-chain Fv (scFv), amino acid residues substituted with cysteine residues in VH and VL It may be a disulfide-bonded Fv (dsFv) or a polymer thereof, or a dimerized V region (diabody) in which the scFv is dimerized.
  • Antibody fragments also include peptides containing a portion of an antibody, that is, peptides comprising a portion of the amino acid sequence that constitutes the antibody, as long as they specifically bind to the antigen of interest.
  • the immunoglobulin class of the antibody is not particularly limited and may be any immunoglobulin class of IgG, IgM, IgA, IgE, IgD and IgY, preferably IgG.
  • Antibodies may be any of non-human animal antibodies, human chimeric antibodies, humanized antibodies and human antibodies. Antibodies from non-human animals include, for example, antibodies from mice, rats, hamsters, guinea pigs, rabbits, goats, camels, llamas, and alpacas.
  • a commercially available polyclonal antibody or monoclonal antibody can be used as the antibody to be immobilized on the iron (III) oxide particles.
  • polyclonal or monoclonal antibodies produced using known means can be used.
  • Mammal-derived monoclonal antibodies include those produced from hybridomas and those produced by designing antibody genes or antibody fragment genes and using well-known genetic engineering techniques. For example, for antibodies, a recombinant vector was constructed by inserting a DNA encoding an H chain variable region and a DNA encoding an L chain variable region downstream of a suitable vector promoter, and introduced into a host cell.
  • the H chain variable region and the L chain variable region are produced from the transformant and linked with a ligatable peptide, or the DNA encoding the H chain variable region and the DNA encoding the L chain variable region are linked by a known linker.
  • a single-chain recombinant antibody protein having antigen-binding ability scFv
  • the constant region may be the same as the antibody from which the variable region is derived, or may be derived from a different antibody.
  • Antibody-producing hybridomas can be produced basically using known techniques as follows.
  • antigenic peptides are optionally conjugated with suitable carrier proteins such as keyhole limpet hemocyanin (KLH), bovine serum albumin, etc. to enhance immunogenicity and immunize non-human mammals. It can be produced by An antigen peptide used as a sensitizing antigen (immunogen) can be produced by genetic engineering techniques or chemical synthesis.
  • the mammal to be immunized with the sensitizing antigen is not particularly limited, but is preferably selected in consideration of compatibility with mammalian myeloma cells, which are the parent cells used for cell fusion. Typically, rodent animals such as mice, rats, hamsters and the like are used.
  • Immunization of animals with sensitizing antigens is carried out according to known methods. For example, it is carried out by intraperitoneally or subcutaneously injecting a sensitizing antigen into a mammal. Specifically, the sensitizing antigen is diluted and suspended in an appropriate amount with PBS (Phosphate-Buffered Saline), physiological saline, or the like. , subcutaneously, intracutaneously, intraperitoneally, or the like to animals for temporary stimulation, and then repeat the same procedure as necessary.
  • the dosage of the antigen is appropriately determined depending on the route of administration and animal species, but the usual dosage is preferably about 10 ⁇ g to 1 mg per administration.
  • blood is collected from the mammal and serum components are purified to obtain polyclonal antibodies.
  • an affinity column or the like on which a sensitizing antigen is immobilized can be used.
  • immune cells When producing monoclonal antibodies, immune cells are taken out from mammals with elevated antibody levels, and cell fusion is performed. Preferred immune cells for cell fusion are splenocytes, among others. As mammalian myeloma cells as the other parent cells to be fused with the immune cells, various known cell lines such as P3X63, NS-1, MPC-11 and SP2/0 are appropriately used.
  • the cell fusion of the immune cells and myeloma cells can be performed according to a known method, for example, the method of Keller et al. (Kohler et al., Nature, vol, 256, p495-497 (1975)). That is, in the presence of a cell fusion promoter such as polyethylene glycol (PEG with an average molecular weight of 1000 to 6000, 30 to 60% concentration), Sendai virus (HVJ), if desired, an adjuvant such as dimethyl sulfoxide is added, RPMI1640 culture solution Fusion cells (hybridomas) are formed by mixing immune cells and myeloma cells in a nutrient medium such as MEM medium.
  • a cell fusion promoter such as polyethylene glycol (PEG with an average molecular weight of 1000 to 6000, 30 to 60% concentration)
  • Sendai virus Sendai virus
  • an adjuvant such as dimethyl sulfoxide
  • Hybridomas formed by fusion are cultured in a selection medium such as a medium containing hypoxanthine, thymidine and aminopterin (HAT medium) for 1 to 7 days to separate unfused cells.
  • the resulting hybridomas are further selected by the antibodies they produce.
  • the selected hybridomas are cloned according to a known limiting dilution method to establish monoclonal antibody-producing hybridomas.
  • Known methods can be used to detect the activity of antibodies produced by hybridomas. Examples include ELISA, agglutination, and radioimmunoassay.
  • Monoclonal antibodies can be obtained from the obtained hybridoma by culturing the hybridoma according to a conventional method and obtaining the culture supernatant thereof, or by administering the hybridoma to a mammal compatible therewith to proliferate the A method of obtaining ascites is adopted.
  • Antibody purification can be performed using known purification means such as salting out, gel filtration, ion exchange chromatography, or affinity chromatography.
  • the antibody immobilized on iron (III) oxide particles may be a heavy chain variable domain antibody.
  • Heavy chain variable domain antibodies include VHH antibodies and IgNAR antibodies.
  • a VHH antibody is a small antibody consisting of a single domain (single domain) containing the variable region of a heavy chain antibody without a light chain produced by camelids.
  • a VHH antibody has three antigen-binding loops (antigen complementarity determining regions; CDRs) like the H chain of an IgG antibody. Since the molecular weight of VHH antibody is as small as 1/10 that of IgG antibody, it can bind to epitopes even when normal IgG cannot bind to epitopes due to steric structural problems, and is modified with many sugar chains.
  • VHH antibodies are excellent in acid resistance and heat resistance, and unlike IgG, they do not need to be produced in cultured cells, and can be produced in Escherichia coli, yeast, and the like. Therefore, it has the advantage of being easy to mass-produce and easy to purify. Furthermore, since the VHH antibody is composed of a single-chain peptide, it is easy to modify its function using techniques such as protein engineering or chemical modification. From these points of view, the antibody immobilized on the iron (III) oxide particles is preferably a heavy chain variable domain antibody, more preferably a VHH antibody.
  • the method for producing the heavy chain variable domain antibody is not particularly limited, and it can be easily produced by a technique known in the art.
  • it can be prepared by combining a solid-phase peptide synthesis method and a native chemical ligation (NCL) method, or by genetic engineering.
  • NCL native chemical ligation
  • it is preferable to incorporate it into a plasmid), introduce it into a host cell, and produce it as a recombinant antibody.
  • plasmids suitable for various host cells can be used as antibody expression plasmids.
  • pBR322, pBR325, pUC12, pUC13, pUC19 and other E. coli derived plasmids pUB110, pTP5, pC194, pHY300pLK and other Bacillus subtilis derived vectors
  • pSH19, pSH15 and other yeast derived vectors lambda phage and other bacteriophages
  • Viruses, adeno-associated viruses, lentiviruses, vaccinia viruses, baculoviruses and other viral vectors as well as appropriately modified vectors thereof can be used.
  • expression plasmids have replication origins, selectable markers and promoters suitable for each plasmid, and optionally enhancers, transcription termination sequences (terminators), ribosome binding sites and polyadenylation signals. may have. Furthermore, in order to facilitate purification of the expressed polypeptide, the expression plasmid may have inserted therein a nucleotide sequence for fusing with a FLAG tag, His tag, HA tag, GST tag, or the like for expression.
  • Antibody-producing bacteria can be produced by introducing the above expression plasmid into desired bacteria by a desired method, such as electroporation, protoplast-PEG method, and the like.
  • host cells used for recombinant antibody production include E. coli, Bacillus subtilis, Corynebacterium, various fungi, animal cells, plant cells and other cells, baculovirus/insect cells, yeast cells, and the like. can.
  • Corynebacterium and Bacillus subtilis can be suitably used, and Bacillus subtilis with high productivity is more preferable.
  • the bacterial bodies or cultured cells are collected by a known method, suspended in an appropriate buffer, and treated with ultrasonic waves, lysozyme and/or After disrupting the cells or cells by freezing and thawing, a soluble extract is obtained by centrifugation or filtration.
  • the expressed antibody can also be obtained from the centrifugal supernatant of the culture medium.
  • the peptide of interest can be obtained from the resulting extract by appropriately combining known separation/purification methods.
  • separation and purification methods include methods utilizing solubility such as salting out and solvent precipitation, methods utilizing mainly molecular weight differences such as dialysis, ultrafiltration, gel filtration, SDS-PAGE, ion
  • methods utilizing a charge difference such as exchange chromatography, a method utilizing a specific affinity such as affinity chromatography, a method utilizing a hydrophobicity difference such as reversed-phase high-performance liquid chromatography, or isoelectric focusing.
  • a method using a difference in isoelectric points such as is used.
  • VHH antibody when the antigen of interest is lysozyme contained in eggs, a specific example of the VHH antibody is a VHH antibody consisting of the amino acid sequence shown in SEQ ID NO: 13 (referred to as "1ZVY" in the examples below), the sequence Examples thereof include a VHH antibody consisting of the amino acid sequence represented by number 15 (referred to as "1ZVH” in Examples below).
  • the antigen of interest is the SARS-CoV-2 S1 protein, which is an antigen derived from SARS-CoV-2
  • a specific example of the VHH antibody is a VHH antibody consisting of the amino acid sequence shown in SEQ ID NO: 17. (referred to as "E9" in Examples below).
  • VHH antibody when the antigen of interest is immunoglobulin G (IgG), a specific example of the VHH antibody is a VHH antibody consisting of the amino acid sequence represented by SEQ ID NO: 19 (“VHH28-His” in the examples below). ) and the like.
  • Antibodies can be immobilized on iron (III) oxide particles by physical adsorption or by chemical bonds such as covalent bonds via functional groups. Adsorption may also be performed by physical adsorption, but physical adsorption or adsorption using a material-adsorbing peptide or the like is preferably used from the viewpoint of operability. Physical adsorption or adsorption using a material-adsorbing peptide or the like can usually be carried out in a predetermined buffer solution. Examples of buffers include commonly used buffers such as phosphate buffer, Tris buffer, and Good's buffer. The pH of the buffer solution is preferably 6.0 to 9.5, more preferably 6.5 to 8.5, even more preferably 7.0 to 8.0.
  • the antibody concentration is preferably 0.01 to 100 ⁇ g/mL, more preferably 0.1 to 20 ⁇ g/mL, even more preferably 1 to 10 ⁇ g/mL.
  • the iron (III) oxide particles may be used as they are, or prior to antibody immobilization, they may be subjected to chemical immobilization to reduce non-specific immobilization of proteins other than those to be immobilized. Modification, for example, modification with PEG, NHS, carboxyl group, amine group, streptavidin, etc. may be performed in advance, but in the present invention, unmodified iron oxide that has not undergone such chemical modification before antibody immobilization (III) Particles are preferably used.
  • the iron(III) oxide particles may be further blocked with a commonly used blocking agent.
  • a commonly used blocking agent proteins such as BSA, casein, and gelatin, and polymer compounds such as polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), and PEG can be used.
  • PVA polyvinyl alcohol
  • PVP polyvinylpyrrolidone
  • PEG polyvinylpyrrolidone
  • the antibody immobilized on the iron (III) oxide particles, ie, the iron (III) oxide particle-labeled antibody may be dispersed and stored in a storage reagent to prevent denaturation.
  • the denaturation inhibitor proteins such as BSA, glycerin, sugar and the like are used.
  • an iron (III) oxide particle-labeled antibody is used to detect the antigen in the sample.
  • the assay involves contacting an iron (III) oxide particle-labeled antibody with a sample.
  • the lateral flow assay of the present invention uses a reagent comprising an iron (III) oxide particle-labeled antibody, preferably an iron (III) oxide particle-labeled antibody, and a membrane on which a capture antibody is immobilized. It can be carried out.
  • the capture antibody may be any antibody that specifically binds to the antigen of interest, and includes the same antibodies immobilized on the iron (III) oxide particles described above. From the viewpoint of detection sensitivity, it is preferable to use an antibody that recognizes an epitope different from that of the antibody immobilized on the iron (III) oxide particles as the capture antibody so that the antigen can be detected by a so-called sandwich assay.
  • any material can be used as the membrane.
  • polyethylene, polyethylene terephthalate, polypropylene, nylons, glass, polysaccharides such as cellulose and cellulose derivatives, ceramics, and the like formed into a membrane can be used.
  • a nitrocellulose membrane is preferably used as the membrane, and the pore size thereof is preferably 1 to 20 ⁇ m, more preferably 5 to 10 ⁇ m, from the viewpoint of development speed.
  • a capture antibody is immobilized on the membrane.
  • the capture antibody is preferably immobilized to form a detection line on the membrane.
  • Immobilization of the capture antibody to the membrane may be by physical adsorption, chemical bonding such as covalent bonding via a functional group, or adsorption using a material-adsorbing peptide or the like. However, from the viewpoint of operability, physical adsorption or adsorption using a material-adsorbing peptide or the like is preferably used. Immobilization of the capture antibody to the membrane can be performed by a known method.
  • the concentration of the capturing antibody is preferably 0.01-100 mg/mL, more preferably 0.1-10 mg/mL.
  • the amount of capture antibody immobilized on the membrane is preferably 0.5 to 2 ⁇ L/cm. The position on the membrane where the capture antibody is immobilized can be appropriately selected to match the design of the assay system.
  • the capture antibody solution described above can usually be prepared using a predetermined buffer solution.
  • the buffer examples include commonly used buffers such as phosphate buffer, Tris buffer and Good's buffer.
  • the pH of the buffer solution is preferably in the range of 6.0 to 9.5, more preferably 6.5 to 8.5, even more preferably 7.0 to 8.0.
  • the membrane may be further blocked with a commonly used blocking agent.
  • proteins such as BSA, casein and gelatin, and polymers such as PVA, PVP and PEG can be used.
  • a control capture antibody may be further immobilized on the membrane.
  • a control capture antibody is preferably immobilized to form a control line on the membrane.
  • the control capture antibody may be any antibody that can bind to the iron (III) oxide particle-labeled antibody, and can be appropriately selected according to the type, origin, etc. of the iron (III) oxide particle-labeled antibody.
  • a control line is provided to ensure the reliability of the assay.
  • the method for immobilizing the control capture antibody on the membrane is the same as for the capture antibody described above.
  • the position on the membrane where the control capture antibody is immobilized can be appropriately selected to match the design of the assay system, and is preferably downstream of the detection line.
  • a sample solution is prepared by contacting an iron (III) oxide particle-labeled antibody with a sample, and the sample solution is added dropwise to the membrane on which the capture antibody is immobilized, or the membrane on which the capture antibody is immobilized is immersed in the sample solution.
  • the sample liquid spreads on the membrane due to capillary action.
  • the iron (III) oxide particle-labeled antibody and the target antigen in the sample form a complex, which is captured by the capture antibody on the membrane and the complex accumulates.
  • the detection line develops a red color derived from the iron (III) oxide particles.
  • the detection line does not develop color. Using such color development as an index, the presence or absence of the target antigen in the sample can be determined. That is, if color development is observed in the detection line, it can be determined that the sample contains the antigen of interest, and if color development is not observed in the detection line, it can be determined that the sample does not contain the target antigen. be able to.
  • the control capture antibody captures excess iron oxide (III) particle-labeled antibody regardless of the presence or absence of the target antigen in the sample, and the iron oxide (III) particle-labeled antibody accumulates. As a result, the control line develops a red color derived from iron (III) oxide particles.
  • the validity of the assay can be evaluated. That is, if color development is observed in the control line, it can be determined that the assay was performed normally, and if color development is not observed in the control line, it can be determined that the assay was not performed normally.
  • the lateral flow assay of the present invention can be performed using a common lateral flow assay reagent (test strip) consisting of a sample pad, a conjugate pad, a membrane, and an absorbent pad.
  • test strip a common lateral flow assay reagent
  • the general structure of the test strip is shown in FIG.
  • the conjugate pad holds an iron (III) oxide particle-labeled antibody and the membrane has an immobilized capture antibody.
  • the sample pad is the part where the sample is dropped, and includes any substance and form that absorbs the sample while molded into the pad and allows the sample to pass through.
  • Suitable materials for sample pads include, but are not limited to, glass fibers, acrylic fibers, hydrophilic polyethylene materials, dry paper, paper pulp, textiles, and the like.
  • the sample pad can also have the function of a conjugate pad, which will be described later.
  • the conjugate pad holds an iron oxide (III) particle-labeled antibody, and when the sample passes through the conjugate pad, the iron (III) oxide particle-labeled antibody and the target antigen in the sample form a complex. It refers to the part that has the function to Suitable materials for conjugate pads include, but are not limited to, paper, cellulose blends, nitrocellulose, polyesters, acrylonitrile copolymers, glass fibers or non-woven fibers such as rayon.
  • the membrane preferably includes a detection line to which capture antibodies are immobilized and a control line to which control capture antibodies are immobilized.
  • the methods for immobilizing the capture antibody, the control capture antibody, or both on the membrane are as described above.
  • the absorbent pad is located at the most downstream position and is a part with liquid absorbency that controls the development of the sample by absorbing the sample developed on the membrane.
  • Suitable materials for absorbent pads include, but are not limited to, filter paper.
  • the above reagent is a membrane with a sample pad, conjugate pad, and absorbent pad arranged and attached.
  • the arrangement can be changed as appropriate, but the sample dropped onto the sample pad passes through the sample pad by capillary action, is transferred to the conjugate pad, and further passes through the conjugate pad by capillary action to the membrane.
  • Each site is preferably arranged so that it can be transferred, spread out on a membrane, and absorbed into an absorbent pad.
  • These are usually arranged on a solid support such as a plastic adhesive sheet.
  • the solid phase support is preferably composed of a material that does not interfere with the development of the sample, and the adhesive component is also preferably a material that does not interfere with the development of the sample.
  • the reagent can be stored and mounted in an appropriate container (housing) in consideration of the size of the reagent, the method and position of adding the sample, the immobilization position of the capturing antibody, and the like. Such a stored and mounted state is called a "device".
  • the control capture antibody captures excess iron oxide (III) particle-labeled antibody regardless of the presence or absence of the target antigen in the sample, and the iron oxide (III) particle-labeled antibody accumulates. As a result, the control line develops a red color derived from iron (III) oxide particles.
  • the validity of the assay can be evaluated. That is, if color development is observed in the control line, it can be determined that the assay was performed normally, and if color development is not observed in the control line, it can be determined that the assay was not performed normally.
  • iron oxide (II, III) particles when iron (III) oxide particles are used as a label for immobilizing an antibody that specifically binds to an antigen in a lateral flow assay, iron oxide (II, III) particles (the non-patented Visibility is overwhelmingly superior to the case of using document 2).
  • Such an assay does not use the magnetism of the iron (III) oxide particles as an indicator, but rather uses the color development as an indicator, so a dedicated detection device is not required, and the antigen in the sample can be detected by a simple method of visual observation. can be done.
  • iron (III) oxide particles when iron (III) oxide particles are used as the label, a detection sensitivity equivalent to that of colloidal gold particles commonly used as the label can be obtained.
  • iron (III) oxide particles are readily available at low cost, the cost of the label per assay is 1/100 or less compared to colloidal gold particles, and the cost of the lateral flow assay is remarkably high. Down is possible. Furthermore, if a VHH antibody, which can be mass-produced at a lower cost than a normal IgG antibody, is used as an antibody to be immobilized on iron (III) oxide particles, it is possible to improve mass productivity and further reduce costs.
  • the lateral flow assay according to ⁇ 1> which comprises contacting an antibody immobilized on iron (III) oxide particles with a sample.
  • the lateral flow assay according to ⁇ 1> or ⁇ 2> which comprises capturing a complex formed from the antibody immobilized on the iron (III) oxide particles and the antigen in the sample with a capture antibody.
  • ⁇ 5> The lateral flow assay according to any one of ⁇ 1> to ⁇ 4>, which comprises detecting the antigen using color development by iron (III) oxide particles as an indicator.
  • the color development is caused by the accumulation of a complex formed from the antibody immobilized on the iron (III) oxide particles and the antigen in the sample, preferably immobilized on the iron (III) oxide particles.
  • the lateral flow assay according to ⁇ 5> wherein a complex formed from the antibody obtained and the antigen in the sample is captured by the capture antibody and accumulated.
  • ⁇ 5> or ⁇ 5> or 6> Lateral flow assay as described.
  • the iron (III) oxide particles are iron (III) oxide particles that have not been chemically modified for protein immobilization before antibody immobilization.
  • the antibody immobilized on iron (III) oxide particles is preferably an IgG antibody or a heavy chain variable domain antibody, more preferably a heavy chain variable domain antibody, still more preferably a VHH antibody, still more preferably a VHH antibody.
  • the capture antibody is preferably an IgG antibody or a heavy chain variable domain antibody, more preferably a heavy chain variable domain antibody, still more preferably a VHH antibody, still more preferably SEQ ID NOs: 13, 15, 17 and
  • ⁇ 13> The reagent according to ⁇ 12>, further comprising a membrane on which the capture antibody is immobilized.
  • ⁇ 14> The reagent according to ⁇ 12> or ⁇ 13>, comprising a sample pad, a conjugate pad holding an antibody immobilized on iron (III) oxide particles, a membrane immobilized with a capture antibody, and an absorbent pad.
  • ⁇ 15> The reagent according to any one of ⁇ 12> to ⁇ 14>, wherein the iron (III) oxide particles have an average particle size of 10 to 1000 nm, preferably 50 to 500 nm.
  • the antibody immobilized on the iron (III) oxide particles is preferably an IgG antibody or a heavy chain variable domain antibody, more preferably a heavy chain variable domain antibody, still more preferably a VHH antibody, still more preferably a VHH antibody. is a VHH antibody consisting of the amino acid sequence of any one of SEQ ID NOs: 13, 15, 17 and 19.
  • the capture antibody is preferably an IgG antibody or a heavy chain variable domain antibody, more preferably a heavy chain variable domain antibody, still more preferably a VHH antibody, still more preferably SEQ ID NOs: 13, 15, 17 and
  • Example 1 Production of VHH by protease-deficient recombinant Bacillus subtilis 1
  • Bacillus strains used Bacillus subtilis strains derived from Bacillus subtilis 168 strains were used. Deletion of extracellular protease genes (epr, wprA, mpr, nprB, bpr, nprE, vpr, aprE, aprX) was carried out according to the method described in Japanese Patent No.
  • Used medium LB medium 1% Bacto TM Tryptone (Difco), 0.5% Bacto TM Yeast Extract (Difco), 1% sodium chloride. 1.5% agar was added to the plates. Tetracycline (50 ppm) was added as needed.
  • SMMP solution Antibiotic Medium 3 (Difco) (35 g/L), sucrose (171.5 g/L), disodium maleate ( 3.2 g/L), MgCl2.6H2O (4.06 g/L) PEG solution: sucrose (85.75 g/L), disodium maleate (1.6 g/L), MgCl2.6H2O ( 2.03 g/L), PEG8000 (400 g/L) DM3 medium: 1% CMC (Kanto Kagaku), 0.5% Bacto TM Casamino Acids (Difco), 0.5% Bacto TM Yeast Extract (Difco), 8.1% disodium succinate/6H 2 O, 0.5% BactoTM Yeast Extract (Difco) 35% dipotassium hydrogen phosphate, 0.15% potassium dihydrogen phosphate, 0.5% glucose, 20 mM magnesium chloride, 0.01% BSA, 50 ppm tetracycline.
  • 2x L-mal Medium 2% Bacto TM Tryptone (Difco), 1% Bacto TM Yeast Extract (Difco), 1% Sodium Chloride, 7.5% Maltose Monohydrate, 7.5 ppm Manganese Sulfate, 15 ppm Tetracycline Reagent were manufactured by Fuji Film Wako Pure Chemical Industries, Ltd. unless otherwise specified.
  • subtilis strain 168 as a template, and the recombinant plasmid pHY-S237 described in JP-A-2014-158430 as a template.
  • Protoplast transformation method Plasmid introduction into Bacillus subtilis was performed by the protoplast method shown below. Various types of Bacillus subtilis stocked in glycerol were inoculated into 1 mL of LB liquid medium and cultured with shaking at 30° C. and 210 rpm overnight. On the next day, 10 ⁇ L of this culture solution was inoculated into a new 1 mL LB liquid medium, and cultured with shaking at 37° C. and 210 rpm for about 2 hours. This culture solution was collected in a 1.5 mL tube, centrifuged at 12,000 rpm for 5 minutes, and the supernatant was removed. incubated.
  • Example 2 Lateral flow assay 1 (1) Method Nitrocellulose membrane used was FF120HP (cytiva lifesciences). A detection antibody was applied to a position 20 mm from the lower end of the membrane cut into 5 mm ⁇ 100 mm. For the domain antibody (1ZVH or 1ZVY) produced in Bacillus subtilis in Example 1, a 1 mg/mL solution was added to commercially available IgG antibodies (Lysozyme Polyclonal Antibody (Cosmo Bio) and SARS/SARS-CoV-2 Coronavirus Spike Protein (subunit 1 ) For Polyclonal Antibody (Thermo Fisher Scientific) (hereafter SARS Polyclonal Antibody), draw a detection line with a 0.1 mg/mL solution using a paintbrush, and then leave it to dry at 37°C for 1 hour.
  • IgG antibodies Lysozyme Polyclonal Antibody (Cosmo Bio) and SARS/SARS-CoV-2 Coronavirus Spike Protein (subunit 1 )
  • the dried membrane was immersed in 3-fold diluted N101 (NOF Corporation) for 15 minutes, washed twice with deionized water, then immersed in a 3% sucrose solution and allowed to stand for 5 minutes.
  • the membrane removed from the sucrose solution was dried overnight at room temperature.
  • Iron (III) oxide particles 300 nm, Kojundo Chemical
  • 200 ⁇ L of iron oxide (II, III) particles (10 nm, 5 mg/mL toluene, Wako Pure Chemical) were suspended in 1 mL of ethanol, centrifuged at 5,000 rpm for 15 minutes, and the supernatant was removed.
  • egg white lysozyme (Fujifilm Wako Pure Chemical Industries) 10 ⁇ g as antigens, E9 or SARS Polyclonal Antibody as antibodies for assays using SARS-CoV- 2 Spike Glycoprotein (S1), Sheep Fc-Tag (HEK293) (Native Antigen) (hereinafter SARS-CoV-2 S1) 1 ⁇ g of iron oxide (III) particle-labeled antibody or iron oxide (II, III) particle-labeled antibody added to the solution.
  • SARS-CoV-2 S1 1 ⁇ g of iron oxide (III) particle-labeled antibody or iron oxide (II, III) particle-labeled antibody added to the solution.
  • amino acid sequence homology between the domain antibodies used in this study was 68% for 1ZVY and 1ZVH, 63% for 1ZVY and E9, and 71% for 1ZVH and E9. It was also shown that the flow assay can be used independent of the domain antibody sequence.
  • Example 3 Production of VHH by protease-deficient recombinant Bacillus subtilis 2 (1) Bacterial strain used The same strain as in Example 1 (1) was used.
  • Example 4 Lateral flow assay 2 (1) Method Nitrocellulose membrane used was FF120HP (cytiva lifesciences). A detection antibody was applied to a position 20 mm from the lower end of the membrane cut into 5 mm ⁇ 100 mm. For the domain antibody (VHH28-His-FLAG) produced in Bacillus subtilis in Example 3, a 0.5 mg/mL solution was added to a commercially available IgG antibody (Anti-IgG (H+L), Cat, Rabbit-Poly (Bethyl Laboratories, A20 For -115A)), a 0.1 mg/mL solution was used to draw a detection line with a paintbrush, and then allowed to stand at 37°C for 1 hour to dry.
  • VHH28-His-FLAG domain antibody produced in Bacillus subtilis in Example 3
  • IgG antibody Anti-IgG (H+L)
  • Cat Cat
  • Rabbit-Poly Bethyl Laboratories, A20 For -115A
  • the dried membrane was immersed in 5-fold diluted N101 (NOF Corporation) for 15 minutes, washed twice with deionized water, then immersed in a 3% sucrose solution and allowed to stand for 5 minutes.
  • the membrane removed from the sucrose solution was dried overnight at room temperature.
  • Iron (III) oxide particles 300 nm, Kojundo Chemical
  • 20 ⁇ L of 30 mg/mL iron (III) oxide particles was added to 500 ⁇ L of 10 mM Tris-HCl (pH 8) and sonicated for 10 seconds.
  • a domain antibody (VHH28-His: 3 ⁇ g) produced in Bacillus subtilis was added and allowed to stand for 15 minutes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Genetics & Genomics (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention provides a novel lateral flow assay. This lateral flow assay uses an antibody immobilized to a label to detect an antigen in a sample. The label is iron(III) oxide particles.

Description

新規ラテラルフローアッセイNovel lateral flow assay
 本発明は、新規ラテラルフローアッセイに関する。 The present invention relates to a novel lateral flow assay.
 従来から、タンパク質、特に抗体及びその分子認識部位を含む断片を利用したイムノアッセイが医療診断領域で活用されてきた。例えば、鼻ぬぐい液、血液、尿等の臨床試料中に存在する特定の疾病に関与する抗原タンパク質の検出、特定の病原微生物やウイルス及び化学物質を定性的又は定量的に検出する臨床検査が知られている。イムノアッセイの中でもラテラルフローアッセイは、抗原抗体反応によりメンブレン上で生じる発色を目視することで抗原の存在を可視化できるため特殊な検出機器が不要であり、かつ簡便な操作で標的の検出が可能であることから、医療診断領域のみならず、臨床、獣医学、農学、食品産業、生体防御や衛生環境等の幅広い分野で活用されている。 Conventionally, immunoassays using proteins, especially antibodies and fragments containing their molecular recognition sites, have been used in the medical diagnostic field. For example, detection of antigenic proteins associated with specific diseases in clinical samples such as nasal swabs, blood, urine, etc., and clinical tests for the qualitative or quantitative detection of specific pathogenic microorganisms, viruses and chemical substances are known. It is Among immunoassays, the lateral flow assay makes it possible to visualize the presence of the antigen by visually observing the color development on the membrane due to the antigen-antibody reaction. Therefore, it is used not only in the medical diagnostic field but also in a wide range of fields such as clinical practice, veterinary medicine, agriculture, food industry, biological defense and sanitary environment.
 ラテラルフローアッセイは、臨床検査法として感度及び再現性ともに非常に優れた方法であるが、特に医療診断領域以外の分野(農学、食品産業、衛生環境調査等)ではランニングコストの面で課題がある。食物アレルゲン検査用ラテラルフローアッセイや住環境調査用ラテラルフローアッセイ等の検出デバイスが非医療診断用途として市販されているものの、そのほとんどが1試験あたりの費用が1,000円を超える価格帯で販売されている。例えば、食物アレルゲンや衛生環境調査等については本来消費者がそのようなデバイスを用いて必要なときに適宜行うべきであるが、デバイスが高価格であるために消費者の利用に制限が生じている。これはラテラルフローアッセイが基本的にディスポーザブル形態であり、その検出機能を担う高価な検出用担体や検出用タンパク質を再利用できないことに一因がある。特にラテラルフローアッセイ用の検出用担体については、金ナノ粒子が頻用されているが(例えば、非特許文献1)、金は希少金属であり、かつ世界の金市場の相場の影響を受け高価かつ価格不安定性があることが課題である。またラテックスナノ粒子や着色シリカナノ粒子、着色セルロースナノ粒子等も用いられているが、いずれも高度な技術を用いて製造されるナノ粒子であるために金ナノ粒子と同程度の価格帯で販売されており、そのような材料を用いても担体が高価であるという課題を解決するに至っていない。 The lateral flow assay is a clinical test method with excellent sensitivity and reproducibility, but there is a problem in terms of running costs, especially in fields other than medical diagnostics (agriculture, food industry, sanitary environment survey, etc.). . Although detection devices such as lateral flow assays for food allergen testing and lateral flow assays for living environment surveys are commercially available for non-medical diagnostic use, most of them are sold at a price range exceeding 1,000 yen per test. It is For example, consumers should use such devices to conduct surveys of food allergens and sanitary environments when necessary. there is One reason for this is that the lateral flow assay is basically disposable, and the expensive carrier for detection and protein for detection that perform the detection function cannot be reused. In particular, gold nanoparticles are frequently used as detection carriers for lateral flow assays (for example, Non-Patent Document 1). Price volatility is an issue. In addition, latex nanoparticles, colored silica nanoparticles, colored cellulose nanoparticles, etc. are also used, but since they are all nanoparticles manufactured using advanced technology, they are sold at the same price range as gold nanoparticles. Therefore, even if such a material is used, the problem that the carrier is expensive has not yet been solved.
 一方、酸化鉄(II,III)(Fe34)ナノ粒子を用いた磁性検出型ラテラルフローアッセイが利用されているが、やはりナノ粒子が高価であることに加え、磁性を検出することに主眼が置かれているため専用の検出装置の利用が前提であることが、一般消費者が利用する上での課題となっている。また、酸化鉄(II,III)ナノ粒子を利用したラテラルフローアッセイについては、目視での確認も可能とされているものの(非特許文献2)、その視認性は不十分である。 On the other hand, a magnetic detection type lateral flow assay using iron oxide (II, III) (Fe 3 O 4 ) nanoparticles has been used. Since it is the main focus, the use of a dedicated detection device is a premise, which poses a problem for general consumers to use. In addition, although the lateral flow assay using iron (II, III) oxide nanoparticles can be confirmed visually (Non-Patent Document 2), the visibility is insufficient.
  (非特許文献1)Tanaka, R. et al. A novel enhancement assay for immunochromatographic test strips using gold nanoparticles. Anal Bioanal Chem 385, 1414-1420, 2006
  (非特許文献2)Connolly, R. & O' Kennedy, R. Magnetic lateral flow immunoassay test strip development -Considerations for proof of concept evaluation. Methods 116, 132-140, 2017
(Non-Patent Document 1) Tanaka, R. et al. A novel enhancement assay for immunochromatographic test strips using gold nanoparticles. Anal Bioanal Chem 385, 1414-1420, 2006
(Non-Patent Document 2) Connolly, R. &O' Kennedy, R. Magnetic lateral flow immunoassay test strip development -Considerations for proof of concept evaluation. Methods 116, 132-140, 2017
 本発明は、以下の1)及び2)に係るものである。
 1)標識体に固定された抗体を用いて試料中の抗原を検出するラテラルフローアッセイであって、標識体が酸化鉄(III)粒子である、ラテラルフローアッセイ。
 2)酸化鉄(III)粒子に固定された抗体を含む、ラテラルフローアッセイ用試薬。
The present invention relates to the following 1) and 2).
1) A lateral flow assay in which an antibody immobilized on a label is used to detect an antigen in a sample, the label being iron (III) oxide particles.
2) Reagents for lateral flow assays comprising antibodies immobilized on iron(III) oxide particles.
ラテラルフローアッセイ用テストストリップの一般的構造。General structure of test strips for lateral flow assays. 酸化鉄(III)粒子と酸化鉄(II,III)粒子の検出ライン視認性の比較。Comparison of detection line visibility of iron (III) oxide particles and iron (II, III) oxide particles.
発明の詳細な説明Detailed description of the invention
 本明細書において、「ラテラルフローアッセイ」とは、抗原に特異的に結合する抗体であって標識体に固定された標識抗体と、抗原に特異的に結合する抗体であってメンブレンに固定された捕捉抗体とを用いて、試料に含まれる抗原の存在を視覚的に検出する方法のうち、試料をメンブレンと水平方向に展開させる方法をいう。ここで、「標識体」とは、抗体を担持し、且つ視覚的に検知し得るマーカーとして機能する物質を意味する。ラテラルフローアッセイでは、具体的には、標識抗体と試料中の抗原とが複合体を形成し、この複合体をメンブレンに固定された捕捉抗体が捕捉することで複合体が集積して発色するため、試料中の抗原の存在を検出できる。本明細書において、抗体を担体やメンブレンに担持させることあるいは担持させた状態を「固定化」、「固定」と表現する。 As used herein, the term "lateral flow assay" refers to a labeled antibody that specifically binds to an antigen and is immobilized on a labeled antibody, and an antibody that specifically binds to an antigen and is immobilized on a membrane. Among the methods for visually detecting the presence of antigens contained in a sample using a capture antibody, this is a method in which the sample is developed in the horizontal direction with respect to the membrane. Here, the "label" means a substance that carries an antibody and functions as a visually detectable marker. Specifically, in the lateral flow assay, the labeled antibody and the antigen in the sample form a complex, and the complex is captured by the capture antibody immobilized on the membrane, and the complex accumulates and develops color. , can detect the presence of antigen in a sample. In the present specification, "immobilization" and "immobilization" refer to the state in which an antibody is supported on a carrier or membrane, or the state in which the antibody is supported.
 本明細書において、目的となる「抗原」としては、特に制限されず、例えば、アレルゲン、バイオマーカー、ウイルス、細菌、真菌、原生動物等に由来する抗原が挙げられる。尚、本明細書において、「検出」という用語は、「測定」とも言い換えることができ、「抗原の検出」とは、抗原の存在又は不存在の証明、及び抗原の定量を含めて最も広義に解釈する必要があり、いかなる意味においても限定的に解釈されない。 As used herein, the target "antigen" is not particularly limited, and includes, for example, antigens derived from allergens, biomarkers, viruses, bacteria, fungi, protozoa, and the like. As used herein, the term "detection" can also be referred to as "measurement", and "antigen detection" includes proof of the presence or absence of an antigen and quantification of the antigen in the broadest sense. Must be construed and should not be construed as limiting in any way.
 アレルゲンは、吸入、刺入、摂取又は接触により外部から生体に入り、過敏反応やアレルギー反応を惹起する物質を意味する。アレルゲンとしては、イネ科植物花粉(アシ、オオアワガエリ、オオスズメノテッポウ、カモガヤ、ギョウギシバ、小麦、コヌカグサ、スズメノヒエ、セイバンモロコシ、ナガハグサ、ハルガヤ、ヒロハウシノケグサ、ホソムギ等);雑草花粉(アキノキリンソウ、イラクサ、オオブタクサ、カナムグラ、シロザタンポポ、ニガヨモギ、ヒメスイバ、ブタクサ、ブタクサモドキ、フランスギク、ヘラオオバコ、ヨモギ等);樹木花粉(アカシア、オリ一ブ、カエデ、クルミ、クワ、コナラ、シラカンバ、スギニレ、ハンノキ、スギ、ヒノキ、ビャクシン、ブナ、マツ、ヤナギ等);真菌又は細菌類(アスペルギルス、アルテルナリア、黄色ブドウ球菌エンテロトキシンA、黄色ブドウ球菌エンテロトキシンB、カンジダ、クラドスポリウム、トリコフィトン、ピティロスポリウム、ペニシリウム、ヘルミントスポリウム、マラセチア、ムコール等);動物表皮(アヒル羽毛、猫皮屑、犬皮屑、牛皮屑、馬皮屑、家兎上皮、ハムスター上皮、モルモット上皮、羊上皮、豚上皮、ヤギ上皮、ニワトリ羽毛、ガチョウ羽毛、セキセイインコ羽毛、セキセイインコのふん、マウス、ラット等);昆虫(アシナガバチ、ガ、ゴキブリ、スズメバチ、ミツバチ、ヤブカ、ユスリカ(成虫)等);寄生虫(アニサキス、回虫等);ダニ(アシブトコナダニ、ケナガコナダニ、コナヒョウダニ、サヤアシニクダニ、ヤケヒョウダニ等);食物(卵、乳、小麦、そば、落花生、えび、かに、アーモンド、あわび、いか、いくら、オレンジ、カシューナッツ、キウイフルーツ、牛肉、くるみ、ごま、さけ、さば、大豆、鶏肉、バナナ、豚肉、まつたけ、もも、やまいも、りんご、ゼラチン等);ヒトインシュリン等に由来するアレルゲンが挙げられる。 An allergen is a substance that enters the body from the outside through inhalation, piercing, ingestion, or contact and causes hypersensitivity or allergic reaction. Allergens include pollen of grasses (reeds, giant mothballs, giant sparrow, daffodil, sycamore, wheat, cornuca, bromeliad, corn sorghum, long grass, ragweed, broad house fescue, sarcophagus, etc.); , dandelion, wormwood, lesser sorrel, ragweed, ragweed, ragweed, plantain, mugwort, etc.); , beech, pine, willow, etc.); animal epidermis (duck feathers, cat dander, dog dander, cow dander, horse dander, rabbit epidermis, hamster epidermis, guinea pig epidermis, sheep epidermis, pig epidermis, goat epidermis, chicken dander); , goose feathers, budgerigars' feathers, budgerigars' droppings, mice, rats, etc.); (Acacia acarina, Dermatophagoides acarina, Dermatophagoides leopard mite, Green spider mite, Dermatophagoides leopard mite, etc.); Food (eggs, milk, wheat, buckwheat, peanuts, shrimp, crab, almonds, abalone, squid, salmon roe, oranges, cashew nuts, kiwifruit, beef, walnuts, sesame , salmon, mackerel, soybeans, chicken, bananas, pork, matsutake mushrooms, peaches, yam, apples, gelatin, etc.);
 バイオマーカーは、血液、だ液、汗などの体液、尿、糞便などに含まれるタンパク質、核酸などの生体内の物質で、病状の変化や治療の効果の指標となり、疾患の診断や予後の予測などに用いられるものをいう。バイオマーカーとしてはCK-MB、H-FABP、BNP、NT-proBNP、トポロニン、ミオグロビン、アルブミン、セルロプラスミン、カルビンディン、クラステリン、シスタチンC、KIM-1、NGAL、Osteopontin、TFF3、TIMP-1、VEGF-A、L-FABP、絨毛性ゴナドトロピン、インターロイキン、アミラーゼ、NMP22、CEA、PSA、CYFRA21-1、SLX、CA125、SCC、NSE、ProGRP、CA19-9、CA19-9、AFP、PIVKA-II、AFP-L3、Span-1、DUPAN-2、CA50、BTA、CA15-3等が挙げられる。 Biomarkers are substances in the body, such as proteins and nucleic acids contained in body fluids such as blood, saliva, and sweat, urine, and feces. etc. Biomarkers include CK-MB, H-FABP, BNP, NT-proBNP, topolonin, myoglobin, albumin, ceruloplasmin, calbindin, clusterin, cystatin C, KIM-1, NGAL, Osteopontin, TFF3, TIMP-1, VEGF -A, L-FABP, Chorionic Gonadotropin, Interleukin, Amylase, NMP22, CEA, PSA, CYFRA21-1, SLX, CA125, SCC, NSE, ProGRP, CA19-9, CA19-9, AFP, PIVKA-II, AFP-L3, Span-1, DUPAN-2, CA50, BTA, CA15-3 and the like.
 ウイルスは、核酸の種類(RNA、DNA)及びエンベロープの有無を問わず、すべての種類のウイルスであり得る。例えば、核酸としてRNAを有するインフルエンザウイルス;コロナウイルス;SARSコロナウイルス;SARSコロナウイルス-2;RSウイルス;ムンプスウイルス;ラッサウイルス;デングウイルス;風疹ウイルス;ヒト免疫不全ウイルス、ノロウイルス;ポリオウイルス;エコーウイルス;A型肝炎ウイルス;E型肝炎ウイルス;ライノウイルス;アストロウイルス;ロタウイルス;コクサッキーウイルス;エンテロウイルス;サポウイルス、核酸としてDNAを有するヒトヘルペスウイルス;ワクシニアウイルス;B型肝炎ウイルス、アデノウイルス;B19ウイルス;パポバウイルス;ヒトパピローマウイルス等が挙げられる。細菌としては、百日咳菌、ジフテリア菌、大腸菌、インフルエンザ菌、ヘリコバクター、髄膜炎菌、緑膿菌、肺炎球菌、A群連鎖球菌、B群連鎖球菌、黄色ブドウ球菌、破傷風菌、レジオネラ菌、結核菌、マイコプラズマ、腸炎ビブリオ、サルモネラ属菌、病原大腸菌、カンピロバクター、ウエルシュ菌、赤痢菌、セレウス菌、ボツリヌス菌、ミュータンス連鎖球菌等が挙げられる。真菌としては、アスペルギルス属真菌(例えばAspergillus fumigatus、Aspergillus flavus、Aspergillus terreus、Aspergillus nidulans、Aspergillus niger、Aspergillus ustus等)、ブラストミセス属真菌(例えば、Blastomyces dermatitidis等)、カンジダ属真菌(例えばCandida albicans等)、コクシジオイデス属真菌(例えばCoccidioides immitis等)、クリプトコッカス属真菌(例えばCryptococcus neoformans、Cryptococcus gattii等)、ヒストプラズマ属真菌(例えばHistoplasma capsulatum等)、パラコクシジオイデス属真菌(例えばParacoccidioides brasiliensis等)、スポロトリクス属真菌(例えばSporothrix schenckii等)等が挙げられる。原生動物としては、マラリア原虫、リーシュマニア、クリプトスポリジウム、ガンビアトリパノソーマ、ローデシアトリパノソーマ、クルーズトリパノソーマ、トリコモナス、トキソプラズマ、バベシア、赤痢アメーバ、ジアルジア等が挙げられる。 Viruses can be of all types, regardless of the type of nucleic acid (RNA, DNA) and the presence or absence of an envelope. SARS coronavirus; SARS coronavirus-2; respiratory syncytial virus; mumps virus; Lassa virus; dengue virus; Hepatitis A virus; Hepatitis E virus; Rhinovirus; Astrovirus; Rotavirus; Coxsackievirus; Enterovirus; ; human papillomavirus and the like. Bacteria include Pertussis, Diphtheria, Escherichia coli, Haemophilus influenzae, Helicobacter, Neisseria meningitidis, Pseudomonas aeruginosa, Streptococcus pneumoniae, Group A Streptococcus, Group B Streptococcus, Staphylococcus aureus, Tetanus, Legionella, and Tuberculosis. bacteria, Mycoplasma, Vibrio parahaemolyticus, Salmonella spp., Escherichia coli, Campylobacter, Clostridium perfringens, Shigella, Bacillus cereus, Clostridium botulinum, Streptococcus mutans, and the like. Examples of fungi include Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus, Aspergillus nidulans, Aspergillus niger, Aspergillus ustus, etc.), Blastomyces dermatitidis, etc., Candida albicans, etc. , Coccidioides fungi (e.g. Coccidioides immitis etc.), Cryptococcus fungi (e.g. Cryptococcus neoformans, Cryptococcus gattii etc.), Histoplasma fungi (e.g. Histoplasma capsulatum etc.), Paracoccidioides fungi (e.g. Paracoccidioides brasiliensis etc.), Sporothrix fungi ( For example, Sporothrix schenckii, etc.). Protozoa include Plasmodium, Leishmania, Cryptosporidium, Trypanosoma Gambia, Trypanosoma Rhodesia, Trypanosoma cruzi, Trichomonas, Toxoplasma, Babesia, Entamoeba histolytica, Giardia, and the like.
 本発明は、従来法と比較して格段に低コストで実施可能な新規ラテラルフローアッセイを提供することに関する。 The present invention relates to providing a novel lateral flow assay that can be performed at a much lower cost than conventional methods.
 本発明者らは、上記課題を解決すべく、ラテラルフローアッセイの検出用抗体を固定する担体、すなわち検出用抗体の標識体として種々の物質について検討したところ、安価に入手が可能であり、金ナノ粒子に類した赤色系統の天然色を有し、化学的に安定、かつ水に不溶な酸化物であり、さらに顔料としても用いられている安全な化合物である酸化鉄(III)(Fe23)粒子が標識体として適していることを見出した。また、酸化鉄(III)粒子に免疫グロブリンG(IgG)を固定した場合、及び酸化鉄(III)粒子に微生物培養による安価生産が期待される重鎖抗体由来の重鎖可変ドメイン抗体を固定した場合の双方で、酸化鉄(III)粒子による発色を目視確認するラテラルフローアッセイを構築できることを見出した。さらに驚くべきことに、酸化鉄(III)粒子を用いるラテラルフローアッセイでは、酸化鉄(II,III)粒子を用いる場合と比較して圧倒的に視認性に優れていることも見出した。 In order to solve the above problems, the present inventors have investigated various substances as carriers for immobilizing detection antibodies in lateral flow assays, that is, as labeled substances for detection antibodies. Iron (III) oxide (Fe 2 O 3 ) particles have been found to be suitable as labels. In addition, immunoglobulin G (IgG) was immobilized on iron (III) oxide particles, and a heavy chain variable domain antibody derived from a heavy chain antibody expected to be inexpensively produced by microbial culture was immobilized on iron (III) oxide particles. In both cases, it was found that a lateral flow assay for visually confirming color development by iron (III) oxide particles could be constructed. Surprisingly, it was also found that the lateral flow assay using iron (III) oxide particles has overwhelmingly superior visibility compared to the case using iron (II, III) oxide particles.
 本発明によれば、従来の金ナノ粒子を標識体として用いるラテラルフローアッセイと同等の検出感度を有し、格段に低コストでのラテラルフローアッセイが可能となる。よって、ラテラルフローアッセイ型デバイスのコストダウンが見込まれ、医療診断領域及び非医療領域を問わず幅広い分野においてラテラルフローアッセイ型デバイスの活用が促進されることが期待される。 According to the present invention, it has detection sensitivity equivalent to that of conventional lateral flow assays that use gold nanoparticles as labels, and enables lateral flow assays at significantly lower costs. Therefore, it is expected that the cost of the lateral flow assay device will be reduced, and the utilization of the lateral flow assay device will be promoted in a wide range of fields, both medical diagnostics and non-medical fields.
 本発明のラテラルフローアッセイに供される試料としては、抗原を含有しているか、抗原を含有している可能性のある試料が挙げられる。斯かる試料としては、気管スワブ、鼻腔拭い液、口腔拭い液、咽頭拭い液、鼻腔洗浄液、鼻腔吸引液、鼻汁鼻かみ液、唾液、痰、涙、血液、血清、尿、糞便、組織、細胞、組織又は細胞の破砕物等の生体試料の他、食品原材料、加工食品、環境試料、硬質又は軟質表面から採取された試料等の何れでもよい。試料は、そのまま又は必要に応じて、試料の粉砕、抗原の抽出、抗原を含む溶液の回収の後にアッセイに供してもよく、また目的の抗原を適宜、濃縮、あるいは水もしくは緩衝液で希釈してもよい。好ましくは、試料は液体試料である。 Samples to be subjected to the lateral flow assay of the present invention include samples that contain antigens or that may contain antigens. Such samples include tracheal swabs, nasal swabs, oral swabs, pharyngeal swabs, nasal washes, nasal aspirates, nasal discharge, snot, saliva, sputum, tears, blood, serum, urine, feces, tissues, cells. In addition to biological samples such as lysates of tissue or cells, food raw materials, processed foods, environmental samples, samples collected from hard or soft surfaces, and the like may be used. The sample may be subjected to the assay as it is or after crushing the sample, extracting the antigen, and recovering the solution containing the antigen, and the antigen of interest may be appropriately concentrated or diluted with water or buffer. may Preferably the sample is a liquid sample.
 本発明の方法は、標識体に固定された抗体を用いて試料中の抗原を検出するラテラルフローアッセイであって、標識体が酸化鉄(III)粒子である、ラテラルフローアッセイである。 The method of the present invention is a lateral flow assay in which an antibody immobilized on a label is used to detect an antigen in a sample, and the label is iron (III) oxide particles.
 酸化鉄(III)は、化学式Fe23で表される赤褐色固体である(CAS登録番号:1309-37-1)。酸化鉄(III)は、水に不溶で化学的に安定な化合物であり、顔料としての使用実績がある等安全性が高い。また、安価で大量に入手可能である。 Iron (III) oxide is a reddish brown solid represented by the chemical formula Fe 2 O 3 (CAS Registry Number: 1309-37-1). Iron (III) oxide is a water-insoluble and chemically stable compound, and is highly safe, as it has a track record of being used as a pigment. It is also inexpensive and available in large quantities.
 酸化鉄(III)粒子の形状は、特に限定されるものではなく、例えば、球状、針状、紡錘状であり得る。
 また、酸化鉄(III)粒子の平均粒子径は、特に限定されないが、10nm以上が好ましく、50nm以上がより好ましく、1000nm以下が好ましく、500nm以下がより好ましい。酸化鉄(III)粒子の平均粒子径の具体的な範囲としては、10~1000nmが好ましく、50~500nmがより好ましい。尚、酸化鉄(III)粒子の平均粒子径は、レーザー回折/散乱法により測定することができる。
The shape of the iron (III) oxide particles is not particularly limited, and may be, for example, spherical, needle-like, or spindle-like.
The average particle size of the iron (III) oxide particles is not particularly limited, but is preferably 10 nm or more, more preferably 50 nm or more, preferably 1000 nm or less, and more preferably 500 nm or less. A specific range of the average particle size of the iron (III) oxide particles is preferably 10 to 1000 nm, more preferably 50 to 500 nm. The average particle size of iron (III) oxide particles can be measured by a laser diffraction/scattering method.
 酸化鉄(III)粒子としては、例えば、酸化第二鉄(粒子径:300nm、株式会社高純度化学研究所)、Iron(III) oxide(粒子径:<5μm、シグマアルドリッチ)等が市販されており、これらを用いることができる。 As iron (III) oxide particles, for example, ferric oxide (particle diameter: 300 nm, Kojundo Chemical Laboratory Co., Ltd.), Iron (III) oxide (particle diameter: <5 μm, Sigma-Aldrich), etc. are commercially available. and these can be used.
 酸化鉄(III)粒子に固定される抗体は、目的の抗原と特異的に結合する抗体であればよく、ポリクローナル抗体、モノクローナル抗体の何れであってもよい。また、抗体のフラグメント、例えば、F(ab’)2、F(ab’)、一本鎖Fv(scFv)、VH及びVL中のシステイン残基に置換されたアミノ酸残基がジスルフィド結合を介して結合しているジスルフィド結合Fv(dsFv)若しくはこれらの重合体、又はscFvが二量体化した二量体化V領域(Diabody)であってもよい。さらに、目的の抗原と特異的に結合する限りにおいて、抗体の一部を含むペプチド、すなわち抗体を構成するアミノ酸配列の一部を備えるペプチドも抗体のフラグメントに含まれる。抗体のイムノグロブリンクラスは特に限定されるものではなく、IgG、IgM、IgA、IgE、IgD、IgYの何れのイムノグロブリンクラスであってもよいが、好ましくはIgGである。また、抗体は、非ヒト動物の抗体、ヒト型キメラ抗体、ヒト化抗体及びヒト抗体の何れであってもよい。非ヒト動物の抗体としては、例えば、マウス、ラット、ハムスター、モルモット、ウサギ、ヤギ、ラクダ、ラマ、アルパカ等の抗体を挙げることができる。 The antibody immobilized on the iron (III) oxide particles may be any antibody that specifically binds to the antigen of interest, and may be either a polyclonal antibody or a monoclonal antibody. In addition, antibody fragments such as F(ab') 2 , F(ab'), single-chain Fv (scFv), amino acid residues substituted with cysteine residues in VH and VL It may be a disulfide-bonded Fv (dsFv) or a polymer thereof, or a dimerized V region (diabody) in which the scFv is dimerized. Antibody fragments also include peptides containing a portion of an antibody, that is, peptides comprising a portion of the amino acid sequence that constitutes the antibody, as long as they specifically bind to the antigen of interest. The immunoglobulin class of the antibody is not particularly limited and may be any immunoglobulin class of IgG, IgM, IgA, IgE, IgD and IgY, preferably IgG. Antibodies may be any of non-human animal antibodies, human chimeric antibodies, humanized antibodies and human antibodies. Antibodies from non-human animals include, for example, antibodies from mice, rats, hamsters, guinea pigs, rabbits, goats, camels, llamas, and alpacas.
 酸化鉄(III)粒子に固定される抗体は、市販のポリクローナル抗体又はモノクローナル抗体を使用することができる。あるいは、公知の手段を用いて作製されたポリクローナル抗体又はモノクローナル抗体を使用することもできる。哺乳動物由来のモノクローナル抗体としては、ハイブリドーマから産生されるもの、及び抗体遺伝子又は抗体フラグメント遺伝子を設計し周知の遺伝子工学的手法を用いて生産されるものが包含される。
 例えば、抗体は、H鎖可変領域をコードするDNAと、L鎖可変領域をコードするDNAを、それぞれ適当なベクターのプロモーター下流に挿入した組換え体ベクターを造成し、それを宿主細胞に導入した形質転換体からH鎖可変領域及びL鎖可変領域を製造し、これらを連結可能なペプチドで連結させる、或いはH鎖可変領域をコードするDNAとL鎖可変領域をコードするDNAを、公知のリンカーをコードするDNAで繋いで適当なベクターのプロモーター下流に挿入した組換え体ベクターを造成し、それを宿主細胞内で発現させる、等により抗原結合能を持った一本鎖の組換え抗体タンパク質(scFv)を生産することが挙げられる(MacCfferty, J. et al., Nature, 348, 552-554,1990、Tim Clackson et al, Nature, 352, 642-628, 1991等参照)。また、さらに、可変領域をコードするDNAと定常領域をコードするDNAとを結合させて発現させたものを生産することであってもよい。この場合、定常領域は、可変領域の由来する抗体と同一のものであっても、あるいは異なる抗体に由来するものであってもよい。
A commercially available polyclonal antibody or monoclonal antibody can be used as the antibody to be immobilized on the iron (III) oxide particles. Alternatively, polyclonal or monoclonal antibodies produced using known means can be used. Mammal-derived monoclonal antibodies include those produced from hybridomas and those produced by designing antibody genes or antibody fragment genes and using well-known genetic engineering techniques.
For example, for antibodies, a recombinant vector was constructed by inserting a DNA encoding an H chain variable region and a DNA encoding an L chain variable region downstream of a suitable vector promoter, and introduced into a host cell. The H chain variable region and the L chain variable region are produced from the transformant and linked with a ligatable peptide, or the DNA encoding the H chain variable region and the DNA encoding the L chain variable region are linked by a known linker. A single-chain recombinant antibody protein having antigen-binding ability ( scFv) (see MacCfferty, J. et al., Nature, 348, 552-554, 1990, Tim Clackson et al, Nature, 352, 642-628, 1991, etc.). Furthermore, it is also possible to produce an expressed product by combining a DNA encoding a variable region and a DNA encoding a constant region. In this case, the constant region may be the same as the antibody from which the variable region is derived, or may be derived from a different antibody.
 抗体産生ハイブリドーマは、基本的には公知技術を使用し、以下のようにして作製できる。例えば、抗原ペプチドを、必要に応じて、適当なキャリアータンパク質、例えばキーホールリンペットヘモシアニン(KLH)やウシ血清アルブミン等と結合することによって、より免疫原性を高め、非ヒト哺乳動物に免疫することにより作製することができる。尚、感作抗原(免疫原)として用いられる抗原ペプチドは、遺伝子工学的手法又は化学合成により作製することができる。 Antibody-producing hybridomas can be produced basically using known techniques as follows. For example, antigenic peptides are optionally conjugated with suitable carrier proteins such as keyhole limpet hemocyanin (KLH), bovine serum albumin, etc. to enhance immunogenicity and immunize non-human mammals. It can be produced by An antigen peptide used as a sensitizing antigen (immunogen) can be produced by genetic engineering techniques or chemical synthesis.
 感作抗原で免疫される哺乳動物としては、特に限定されるものではないが、細胞融合に使用する親細胞である哺乳動物のミエローマ細胞との適合性を考慮して選択するのが好ましく、一般的にはげっ歯類の動物、例えば、マウス、ラット、ハムスター等が使用される。 The mammal to be immunized with the sensitizing antigen is not particularly limited, but is preferably selected in consideration of compatibility with mammalian myeloma cells, which are the parent cells used for cell fusion. Typically, rodent animals such as mice, rats, hamsters and the like are used.
 感作抗原を動物に免疫するには、公知の方法に従って行われる。例えば、感作抗原を哺乳動物の腹腔内又は皮下に注射することにより行われる。具体的には、感作抗原をPBS(Phosphate-Buffered Saline)や生理食塩水等で適当量に希釈、懸濁したものを所望により通常のアジュバント、例えば、フロイント完全アジュバントを適量混合し、乳化後、動物の皮下、皮内、腹腔等に投与して一時刺激後、必要に応じて同様の操作を繰り返し行う。抗原の投与量は投与経路、動物種に応じて適宣決定されるが、通常の投与量は1回当たり10μg~1mg程度が好ましい。このように免疫し、血清中に所望の抗体レベルが上昇するのを確認した後に、哺乳動物から採血し、血清成分を精製することでポリクローナル抗体を得ることができる。血清成分を精製する際には、感作抗原を固定化したアフィニティーカラム等を使用することができる。 Immunization of animals with sensitizing antigens is carried out according to known methods. For example, it is carried out by intraperitoneally or subcutaneously injecting a sensitizing antigen into a mammal. Specifically, the sensitizing antigen is diluted and suspended in an appropriate amount with PBS (Phosphate-Buffered Saline), physiological saline, or the like. , subcutaneously, intracutaneously, intraperitoneally, or the like to animals for temporary stimulation, and then repeat the same procedure as necessary. The dosage of the antigen is appropriately determined depending on the route of administration and animal species, but the usual dosage is preferably about 10 μg to 1 mg per administration. After such immunization and confirmation of an increase in the desired antibody level in the serum, blood is collected from the mammal and serum components are purified to obtain polyclonal antibodies. When purifying serum components, an affinity column or the like on which a sensitizing antigen is immobilized can be used.
 モノクローナル抗体を作製する際には、抗体レベルが上昇した哺乳動物から免疫細胞を取り出し、細胞融合を行う。細胞融合を行う際の好ましい免疫細胞としては、特に脾細胞が挙げられる。
 前記免疫細胞と融合される他方の親細胞としての哺乳動物のミエローマ細胞は、すでに、公知の種々の細胞株、例えばP3X63、NS-1、MPC-11、SP2/0等が適宜使用される。
When producing monoclonal antibodies, immune cells are taken out from mammals with elevated antibody levels, and cell fusion is performed. Preferred immune cells for cell fusion are splenocytes, among others.
As mammalian myeloma cells as the other parent cells to be fused with the immune cells, various known cell lines such as P3X63, NS-1, MPC-11 and SP2/0 are appropriately used.
 前記免疫細胞とミエローマ細胞の細胞融合は公知の方法、たとえば、ケラーらの方法(Kohler et al., Nature, vol, 256, p495-497(1975))等に準じて行うことができる。すなわち、ポリエチレングリコール(平均分子量1000~6000のPEG、30~60%濃度)、センダイウィルス(HVJ)等の細胞融合促進剤の存在下、所望によりジメチルスルホキシド等の補助剤を添加し、RPMI1640培養液、MEM培養液等の栄養培養液中で、免疫細胞とミエローマ細胞を混合することによって、融合細胞(ハイブリドーマ)の形成が行われる。 The cell fusion of the immune cells and myeloma cells can be performed according to a known method, for example, the method of Keller et al. (Kohler et al., Nature, vol, 256, p495-497 (1975)). That is, in the presence of a cell fusion promoter such as polyethylene glycol (PEG with an average molecular weight of 1000 to 6000, 30 to 60% concentration), Sendai virus (HVJ), if desired, an adjuvant such as dimethyl sulfoxide is added, RPMI1640 culture solution Fusion cells (hybridomas) are formed by mixing immune cells and myeloma cells in a nutrient medium such as MEM medium.
 融合により形成されたハイブリドーマをヒポキサンチン、チミジン及びアミノプテリンを含む培地(HAT培地)等の選択培地で1日~7日間培養し、未融合細胞と分離する。得られたハイブリドーマをその産生する抗体によりさらに選択する。選択したハイブリドーマを公知の限界希釈法に従って単一クローン化し、単一クローン性抗体産生ハイブリドーマとして樹立する。
 ハイブリドーマが産生する抗体の活性を検出する方法は、公知の方法を使用することができる。例えばELISA法、凝集反応法、ラジオイムノアッセイ法が挙げられる。
Hybridomas formed by fusion are cultured in a selection medium such as a medium containing hypoxanthine, thymidine and aminopterin (HAT medium) for 1 to 7 days to separate unfused cells. The resulting hybridomas are further selected by the antibodies they produce. The selected hybridomas are cloned according to a known limiting dilution method to establish monoclonal antibody-producing hybridomas.
Known methods can be used to detect the activity of antibodies produced by hybridomas. Examples include ELISA, agglutination, and radioimmunoassay.
 得られたハイブリドーマからモノクローナル抗体を取得するには、当該ハイブリドーマを通常の方法に従って培養し、その培養上清として得る方法、あるいはハイブリドーマをこれと適合性がある哺乳動物に投与して増殖させ、その腹水として得る方法等が採用される。 Monoclonal antibodies can be obtained from the obtained hybridoma by culturing the hybridoma according to a conventional method and obtaining the culture supernatant thereof, or by administering the hybridoma to a mammal compatible therewith to proliferate the A method of obtaining ascites is adopted.
 抗体の精製は、塩析法、ゲル濾過法、イオン交換クロマト法又はアフィニティークロマト法等の公知の精製手段を用いて行うことができる。 Antibody purification can be performed using known purification means such as salting out, gel filtration, ion exchange chromatography, or affinity chromatography.
 あるいは、酸化鉄(III)粒子に固定される抗体は、重鎖可変ドメイン抗体であってもよい。重鎖可変ドメイン抗体としては、VHH抗体やIgNAR抗体が挙げられる。VHH抗体は、ラクダ科の動物によって産生される軽鎖を持たない重鎖抗体の可変領域を含む単一のドメイン(シングルドメイン)からなる低分子抗体である。VHH抗体は、IgG抗体のH鎖等と同様に3本の抗原結合ループ(抗原相補性決定領域;CDR)を有する。VHH抗体は、その分子量がIgG抗体の10分の1と小さいため、通常のIgGでは立体構造上の問題からエピトープに結合することができない場合でも結合が可能で、また多くの糖鎖で修飾されたウイルス粒子の表面等にも結合できるため、標的分子になり得る幅が広い。さらに、VHH抗体は耐酸性や耐熱性にも優れており、IgGとは異なって培養細胞で産生させる必要がなく、大腸菌、酵母等で生産することができる。このため、大量生産しやすく、精製も容易であるという利点がある。さらに、VHH抗体は1本鎖のペプチドで構成されているため、蛋白質工学の技術又は化学修飾等の技術を用いて機能の改変がしやすい。これらの点から、酸化鉄(III)粒子に固定される抗体は、重鎖可変ドメイン抗体であることが好ましく、VHH抗体であることがより好ましい。 Alternatively, the antibody immobilized on iron (III) oxide particles may be a heavy chain variable domain antibody. Heavy chain variable domain antibodies include VHH antibodies and IgNAR antibodies. A VHH antibody is a small antibody consisting of a single domain (single domain) containing the variable region of a heavy chain antibody without a light chain produced by camelids. A VHH antibody has three antigen-binding loops (antigen complementarity determining regions; CDRs) like the H chain of an IgG antibody. Since the molecular weight of VHH antibody is as small as 1/10 that of IgG antibody, it can bind to epitopes even when normal IgG cannot bind to epitopes due to steric structural problems, and is modified with many sugar chains. Since it can also bind to the surface of virus particles, etc., it has a wide range of possible target molecules. Furthermore, VHH antibodies are excellent in acid resistance and heat resistance, and unlike IgG, they do not need to be produced in cultured cells, and can be produced in Escherichia coli, yeast, and the like. Therefore, it has the advantage of being easy to mass-produce and easy to purify. Furthermore, since the VHH antibody is composed of a single-chain peptide, it is easy to modify its function using techniques such as protein engineering or chemical modification. From these points of view, the antibody immobilized on the iron (III) oxide particles is preferably a heavy chain variable domain antibody, more preferably a VHH antibody.
 重鎖可変ドメイン抗体の作製方法は特に限定されず、当該技術分野における公知技術により容易に作製することができる。例えば、ペプチド固相合成法とネイティブ・ケミカル・リゲーション(Native Chemical Ligation;NCL)法を組み合わせて作製することや遺伝子工学的に作製することができるが、抗体をコードする核酸を適当なベクター(例えば、プラスミド)に組み込んで、これを宿主細胞に導入し、組換え抗体として産生させる方法が好ましい。 The method for producing the heavy chain variable domain antibody is not particularly limited, and it can be easily produced by a technique known in the art. For example, it can be prepared by combining a solid-phase peptide synthesis method and a native chemical ligation (NCL) method, or by genetic engineering. For example, it is preferable to incorporate it into a plasmid), introduce it into a host cell, and produce it as a recombinant antibody.
 ここで、抗体発現用プラスミドとしては、各種の宿主細胞に適したプラスミドを用いることができる。例えば、pBR322、pBR325、pUC12、pUC13、pUC19その他の大腸菌由来のプラスミド;pUB110、pTP5、pC194、pHY300pLKその他の枯草菌由来のベクター;pSH19、pSH15その他の酵母由来ベクター;λファージその他のバクテリオファージ;アデノウイルス、アデノ随伴ウイルス、レンチウイルス、ワクシニアウイルス、バキュロウイルスその他のウイルスベクターの他、これらを適宜改変したベクターを用いることができる。 Here, plasmids suitable for various host cells can be used as antibody expression plasmids. For example, pBR322, pBR325, pUC12, pUC13, pUC19 and other E. coli derived plasmids; pUB110, pTP5, pC194, pHY300pLK and other Bacillus subtilis derived vectors; pSH19, pSH15 and other yeast derived vectors; lambda phage and other bacteriophages; Viruses, adeno-associated viruses, lentiviruses, vaccinia viruses, baculoviruses and other viral vectors as well as appropriately modified vectors thereof can be used.
 これらの発現プラスミドは、各々のプラスミドに適した、複製開始点、選択マーカー及びプロモーターを有しており、必要に応じて、エンハンサー、転写終結配列(ターミネーター)、リボソーム結合部位及びポリアデニル化シグナル等を有していてもよい。さらに、発現プラスミドには、発現したポリペプチドの精製を容易にするため、FLAGタグ、Hisタグ、HAタグ及びGSTタグ等を融合させて発現させるための塩基配列が挿入されていてもよい。 These expression plasmids have replication origins, selectable markers and promoters suitable for each plasmid, and optionally enhancers, transcription termination sequences (terminators), ribosome binding sites and polyadenylation signals. may have. Furthermore, in order to facilitate purification of the expressed polypeptide, the expression plasmid may have inserted therein a nucleotide sequence for fusing with a FLAG tag, His tag, HA tag, GST tag, or the like for expression.
 抗体産生菌は、所望の方法、例えば、エレクトロポレーション、プロトプラスト-PEG法などによって、上記の発現プラスミドを所望の菌に導入することにより作製できる。組換え抗体の産生に使用される宿主細胞としては、例えば、大腸菌、枯草菌、コリネ菌、各種のカビ、動物細胞、植物細胞その他の細胞、バキュロウイルス/昆虫細胞又は酵母細胞等を挙げることができる。これらのうちでも、コリネ菌と枯草菌が好適に使用でき、生産性が高い枯草菌がより好ましい。 Antibody-producing bacteria can be produced by introducing the above expression plasmid into desired bacteria by a desired method, such as electroporation, protoplast-PEG method, and the like. Examples of host cells used for recombinant antibody production include E. coli, Bacillus subtilis, Corynebacterium, various fungi, animal cells, plant cells and other cells, baculovirus/insect cells, yeast cells, and the like. can. Among these, Corynebacterium and Bacillus subtilis can be suitably used, and Bacillus subtilis with high productivity is more preferable.
 発現させた抗体を培養菌体又は培養細胞から抽出する際には、培養後、公知の方法で菌体又は培養細胞を集め、これを適当な緩衝液に懸濁し、超音波、リゾチーム及び/又は凍結融解などによって菌体又は細胞を破壊したのち、遠心分離や濾過により、可溶性抽出液を取得する。また分泌発現の場合は培養液の遠心上清から発現させた抗体を取得することもできる。得られた抽出液から、公知の分離・精製法を適切に組み合わせて目的のペプチドを取得することができる。 When extracting the expressed antibody from the cultured bacterial bodies or cultured cells, after culturing, the bacterial bodies or cultured cells are collected by a known method, suspended in an appropriate buffer, and treated with ultrasonic waves, lysozyme and/or After disrupting the cells or cells by freezing and thawing, a soluble extract is obtained by centrifugation or filtration. In the case of secretory expression, the expressed antibody can also be obtained from the centrifugal supernatant of the culture medium. The peptide of interest can be obtained from the resulting extract by appropriately combining known separation/purification methods.
 公知の分離、精製法としては、塩析や溶媒沈澱法などの溶解度を利用する方法、透析法、限外ろ過法、ゲルろ過法、SDS-PAGE等の主として分子量の差を利用する方法、イオン交換クロマトグラフィーなどの電荷の差を利用する方法、アフィニティークロマトグラフィーなどの特異的親和性を利用する方法、逆相高速液体クロマトグラフィーなどの疎水性の差を利用する方法又は等電点電気泳動法などの等電点の差を利用する方法などが用いられる。 Known separation and purification methods include methods utilizing solubility such as salting out and solvent precipitation, methods utilizing mainly molecular weight differences such as dialysis, ultrafiltration, gel filtration, SDS-PAGE, ion A method utilizing a charge difference such as exchange chromatography, a method utilizing a specific affinity such as affinity chromatography, a method utilizing a hydrophobicity difference such as reversed-phase high-performance liquid chromatography, or isoelectric focusing. A method using a difference in isoelectric points such as is used.
 一例において、目的の抗原が卵に含まれるリゾチームである場合、VHH抗体の具体例としては、配列番号13で示されるアミノ酸配列からなるVHH抗体(後記実施例においては「1ZVY」と称する)、配列番号15で示されるアミノ酸配列からなるVHH抗体(後記実施例においては「1ZVH」と称する)等が挙げられる。別の一例において、目的の抗原がSARS-CoV-2由来の抗原であるSARS-CoV-2 S1タンパク質である場合、VHH抗体の具体例としては、配列番号17で示されるアミノ酸配列からなるVHH抗体(後記実施例においては「E9」と称する)等が挙げられる。別の一例において、目的の抗原がイムノグロブリンG(IgG)である場合、VHH抗体の具体例としては、配列番号19で示されるアミノ酸配列からなるVHH抗体(後記実施例においては「VHH28-His」と称する)等が挙げられる。 In one example, when the antigen of interest is lysozyme contained in eggs, a specific example of the VHH antibody is a VHH antibody consisting of the amino acid sequence shown in SEQ ID NO: 13 (referred to as "1ZVY" in the examples below), the sequence Examples thereof include a VHH antibody consisting of the amino acid sequence represented by number 15 (referred to as "1ZVH" in Examples below). In another example, when the antigen of interest is the SARS-CoV-2 S1 protein, which is an antigen derived from SARS-CoV-2, a specific example of the VHH antibody is a VHH antibody consisting of the amino acid sequence shown in SEQ ID NO: 17. (referred to as "E9" in Examples below). In another example, when the antigen of interest is immunoglobulin G (IgG), a specific example of the VHH antibody is a VHH antibody consisting of the amino acid sequence represented by SEQ ID NO: 19 (“VHH28-His” in the examples below). ) and the like.
 酸化鉄(III)粒子への抗体の固定化は、物理的吸着によるものであっても、官能基を介した共有結合等の化学的な結合によるものであっても、素材吸着ペプチドなどを用いた吸着によるものであってもよいが、操作性の点から、物理的吸着又は素材吸着ペプチドなどを用いた吸着が好適に用いられる。物理的吸着又は素材吸着ペプチドなどを用いた吸着は、通常、所定の緩衝液中で実施することができる。緩衝液の種類としては、リン酸緩衝液、トリス緩衝液、グッド緩衝液等通常使用される緩衝液を挙げることができる。緩衝液のpHは、6.0~9.5が好ましく、6.5~8.5がより好ましく、7.0~8.0がさらに好ましい。抗体の濃度は、0.01~100μg/mLが好ましく、0.1~20μg/mLがより好ましく、1~10μg/mLがさらに好ましい。
 抗体の固定化にあたって、酸化鉄(III)粒子は、そのまま用いてもよいし、抗体固定化前に、固定化対象以外のタンパク質の非特異的な固定化を減少させるべく、タンパク質固定化に関する化学修飾、例えば、PEG、NHS、カルボキシル基、アミン基、ストレプトアビジン等による修飾を予め行ってもよいが、本発明においては、抗体固定化前に斯かる化学修飾を受けていない未修飾の酸化鉄(III)粒子を用いるのが好ましい。
 抗体固定化後、酸化鉄(III)粒子は、さらに、通常使用されるブロッキング剤によりブロッキングしてもよい。ブロッキングには、BSA、カゼイン、ゼラチン等のタンパク質や、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)、PEG等の高分子化合物が使用可能である。
 斯くして酸化鉄(III)粒子に固定された抗体、すなわち酸化鉄(III)粒子標識抗体は、変性を阻止するための保存試薬中に分散させて保存すればよい。変性阻止剤としては、BSA等のタンパク質、グリセリン、糖等が用いられる。
Antibodies can be immobilized on iron (III) oxide particles by physical adsorption or by chemical bonds such as covalent bonds via functional groups. Adsorption may also be performed by physical adsorption, but physical adsorption or adsorption using a material-adsorbing peptide or the like is preferably used from the viewpoint of operability. Physical adsorption or adsorption using a material-adsorbing peptide or the like can usually be carried out in a predetermined buffer solution. Examples of buffers include commonly used buffers such as phosphate buffer, Tris buffer, and Good's buffer. The pH of the buffer solution is preferably 6.0 to 9.5, more preferably 6.5 to 8.5, even more preferably 7.0 to 8.0. The antibody concentration is preferably 0.01 to 100 μg/mL, more preferably 0.1 to 20 μg/mL, even more preferably 1 to 10 μg/mL.
For antibody immobilization, the iron (III) oxide particles may be used as they are, or prior to antibody immobilization, they may be subjected to chemical immobilization to reduce non-specific immobilization of proteins other than those to be immobilized. Modification, for example, modification with PEG, NHS, carboxyl group, amine group, streptavidin, etc. may be performed in advance, but in the present invention, unmodified iron oxide that has not undergone such chemical modification before antibody immobilization (III) Particles are preferably used.
After antibody immobilization, the iron(III) oxide particles may be further blocked with a commonly used blocking agent. For blocking, proteins such as BSA, casein, and gelatin, and polymer compounds such as polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), and PEG can be used.
Thus, the antibody immobilized on the iron (III) oxide particles, ie, the iron (III) oxide particle-labeled antibody, may be dispersed and stored in a storage reagent to prevent denaturation. As the denaturation inhibitor, proteins such as BSA, glycerin, sugar and the like are used.
 本発明のラテラルフローアッセイにおいては、酸化鉄(III)粒子標識抗体を用いて試料中の抗原を検出する。具体的には、当該アッセイは、酸化鉄(III)粒子標識抗体と試料とを接触させることを含む。一実施形態において、本発明のラテラルフローアッセイは、酸化鉄(III)粒子標識抗体を含む試薬、好ましくは酸化鉄(III)粒子標識抗体、及び捕捉抗体が固定されたメンブレンを含む試薬を用いて行うことができる。 In the lateral flow assay of the present invention, an iron (III) oxide particle-labeled antibody is used to detect the antigen in the sample. Specifically, the assay involves contacting an iron (III) oxide particle-labeled antibody with a sample. In one embodiment, the lateral flow assay of the present invention uses a reagent comprising an iron (III) oxide particle-labeled antibody, preferably an iron (III) oxide particle-labeled antibody, and a membrane on which a capture antibody is immobilized. It can be carried out.
 ここで、捕捉抗体は、目的の抗原と特異的に結合する抗体であればよく、上記の酸化鉄(III)粒子に固定される抗体と同様のものが挙げられる。検出感度の点から、捕捉抗体としては、所謂サンドイッチアッセイにより抗原を検出することができるように、酸化鉄(III)粒子に固定される抗体とは異なるエピトープを認識する抗体を用いることが好ましい。 Here, the capture antibody may be any antibody that specifically binds to the antigen of interest, and includes the same antibodies immobilized on the iron (III) oxide particles described above. From the viewpoint of detection sensitivity, it is preferable to use an antibody that recognizes an epitope different from that of the antibody immobilized on the iron (III) oxide particles as the capture antibody so that the antigen can be detected by a so-called sandwich assay.
 メンブレンとしては、任意の材質のものが使用できる。例えば、ポリエチレン、ポリエチレンテレフタレート、ポリプロプレン、ナイロン類、ガラス、セルロースやセルロース誘導体等の多糖類、セラミックス等をメンブレン状にしたものが使用できる。メンブレンの孔径と構造を適宜選択することにより、酸化鉄(III)粒子標識抗体と抗原とから形成される複合体が該メンブレン上を展開する速度を制御することが可能である。メンブレンとしては、ニトロセルロースメンブレンを用いるのが好ましく、その孔径は、展開速度の点から、1~20μmが好ましく、5~10μmがより好ましい。 Any material can be used as the membrane. For example, polyethylene, polyethylene terephthalate, polypropylene, nylons, glass, polysaccharides such as cellulose and cellulose derivatives, ceramics, and the like formed into a membrane can be used. By appropriately selecting the pore size and structure of the membrane, it is possible to control the rate at which the complex formed from the iron (III) oxide particle-labeled antibody and the antigen develops on the membrane. A nitrocellulose membrane is preferably used as the membrane, and the pore size thereof is preferably 1 to 20 μm, more preferably 5 to 10 μm, from the viewpoint of development speed.
 メンブレンには、捕捉抗体が固定されている。捕捉抗体は、メンブレン上に検出ラインを形成するように固定されるのが好ましい。捕捉抗体のメンブレンへの固定化は、物理的吸着によるものであっても、官能基を介した共有結合等の化学的な結合によるものであっても、素材吸着ペプチドなどを用いた吸着によるものであってもよいが、操作性の点から、物理的吸着又は素材吸着ペプチドなどを用いた吸着が好適に用いられる。捕捉抗体のメンブレンへの固定化は、公知の方法により実施することができる。例えば、捕捉抗体を所定の濃度に調整し、その液をノズルから一定の速度で吐出しながら水平方向に移動させることのできる機構を有する装置等を用いて、メンブレンにライン状に塗布することにより行われる。この際、捕捉抗体の濃度は、0.01~100mg/mLが好ましく、0.1~10mg/mLがより好ましい。また、捕捉抗体のメンブレンへの固定量は、0.5~2μL/cmが好適である。メンブレン上の捕捉抗体を固定化する位置は、アッセイ系の設計に適合するよう適宜選択することができる。
 また、上記の捕捉抗体液は、通常所定の緩衝液を用いて調製することができる。その緩衝液の種類としては、リン酸緩衝液、トリス緩衝液、グッド緩衝液等通常使用される緩衝液を挙げることができる。緩衝液のpHは6.0~9.5の範囲が好ましく、6.5~8.5がより好ましく、7.0~8.0がさらに好ましい。
 捕捉抗体固定化後、メンブレンは、さらに、通常使用されるブロッキング剤によりブロッキングしてもよい。ブロッキングには、BSA、カゼイン、ゼラチン等のタンパク質や、PVA、PVP、PEG等の高分子が使用可能である。
 捕捉抗体が塗布されたメンブレンを乾燥することにより、適当な量の捕捉抗体が固定されたメンブレンを得ることができる。
A capture antibody is immobilized on the membrane. The capture antibody is preferably immobilized to form a detection line on the membrane. Immobilization of the capture antibody to the membrane may be by physical adsorption, chemical bonding such as covalent bonding via a functional group, or adsorption using a material-adsorbing peptide or the like. However, from the viewpoint of operability, physical adsorption or adsorption using a material-adsorbing peptide or the like is preferably used. Immobilization of the capture antibody to the membrane can be performed by a known method. For example, by adjusting the capture antibody to a predetermined concentration and applying the solution in a line on the membrane using a device having a mechanism capable of moving the solution in the horizontal direction while ejecting the solution from a nozzle at a constant speed. done. At this time, the concentration of the capturing antibody is preferably 0.01-100 mg/mL, more preferably 0.1-10 mg/mL. Also, the amount of capture antibody immobilized on the membrane is preferably 0.5 to 2 μL/cm. The position on the membrane where the capture antibody is immobilized can be appropriately selected to match the design of the assay system.
In addition, the capture antibody solution described above can usually be prepared using a predetermined buffer solution. Examples of the buffer include commonly used buffers such as phosphate buffer, Tris buffer and Good's buffer. The pH of the buffer solution is preferably in the range of 6.0 to 9.5, more preferably 6.5 to 8.5, even more preferably 7.0 to 8.0.
After immobilization of the capture antibody, the membrane may be further blocked with a commonly used blocking agent. For blocking, proteins such as BSA, casein and gelatin, and polymers such as PVA, PVP and PEG can be used.
By drying the membrane coated with the capturing antibody, a membrane on which an appropriate amount of capturing antibody is immobilized can be obtained.
 メンブレンには、さらにコントロール捕捉抗体が固定されていてもよい。コントロール捕捉抗体は、メンブレン上にコントロールラインを形成するように固定されるのが好ましい。コントロール捕捉抗体は、酸化鉄(III)粒子標識抗体と結合できる抗体であればよく、酸化鉄(III)粒子標識抗体の種類、由来等に応じて、適宜選択することができる。コントロールラインは、アッセイの信頼性を担保するためのものである。コントロール捕捉抗体のメンブレンへの固定化方法は、上述の捕捉抗体の場合と同様である。メンブレン上のコントロール捕捉抗体を固定化する位置は、アッセイ系の設計に適合するよう適宜選択することができ、検出ラインよりも下流とすることが好ましい。 A control capture antibody may be further immobilized on the membrane. A control capture antibody is preferably immobilized to form a control line on the membrane. The control capture antibody may be any antibody that can bind to the iron (III) oxide particle-labeled antibody, and can be appropriately selected according to the type, origin, etc. of the iron (III) oxide particle-labeled antibody. A control line is provided to ensure the reliability of the assay. The method for immobilizing the control capture antibody on the membrane is the same as for the capture antibody described above. The position on the membrane where the control capture antibody is immobilized can be appropriately selected to match the design of the assay system, and is preferably downstream of the detection line.
 具体的なアッセイの一例を以下に示す。酸化鉄(III)粒子標識抗体と試料とを接触させて試料液を調製し、捕捉抗体が固定されたメンブレンに試料液を滴下する、あるいは捕捉抗体が固定されたメンブレンを試料液に浸漬すると、試料液は毛細管現象によりメンブレン上を展開していく。試料中に目的の抗原を含む場合には、酸化鉄(III)粒子標識抗体と試料中の目的の抗原とが複合体を形成し、これをメンブレン上の捕捉抗体が捕捉して複合体が集積することで、検出ラインに酸化鉄(III)粒子に由来する赤色の発色を生じる。一方、試料中に目的の抗原を含まない場合は、検出ラインには発色を生じない。斯かる発色を指標に、試料中の目的の抗原の有無を測定できる。すなわち、検出ラインに発色が認められれば、試料には目的の抗原が含まれていると判定でき、検出ラインに発色が認められなければ、試料には目的の抗原が含まれていないと判定することができる。尚、メンブレンがコントロールラインを有する場合、試料中の目的の抗原の有無にかかわらず、コントロール捕捉抗体が余剰の酸化鉄(III)粒子標識抗体を捕捉して酸化鉄(III)粒子標識抗体が集積することで、コントロールラインに酸化鉄(III)粒子に由来する赤色の発色を生じる。斯かる発色を指標に、アッセイの妥当性を評価することができる。すなわち、コントロールラインに発色が認められれば、アッセイが正常に行われたと判定でき、コントロールラインに発色が認められなければ、アッセイが正常に行われなかったと判定することができる。 An example of a specific assay is shown below. A sample solution is prepared by contacting an iron (III) oxide particle-labeled antibody with a sample, and the sample solution is added dropwise to the membrane on which the capture antibody is immobilized, or the membrane on which the capture antibody is immobilized is immersed in the sample solution. The sample liquid spreads on the membrane due to capillary action. When the target antigen is contained in the sample, the iron (III) oxide particle-labeled antibody and the target antigen in the sample form a complex, which is captured by the capture antibody on the membrane and the complex accumulates. As a result, the detection line develops a red color derived from the iron (III) oxide particles. On the other hand, when the sample does not contain the target antigen, the detection line does not develop color. Using such color development as an index, the presence or absence of the target antigen in the sample can be determined. That is, if color development is observed in the detection line, it can be determined that the sample contains the antigen of interest, and if color development is not observed in the detection line, it can be determined that the sample does not contain the target antigen. be able to. When the membrane has a control line, the control capture antibody captures excess iron oxide (III) particle-labeled antibody regardless of the presence or absence of the target antigen in the sample, and the iron oxide (III) particle-labeled antibody accumulates. As a result, the control line develops a red color derived from iron (III) oxide particles. Using such color development as an index, the validity of the assay can be evaluated. That is, if color development is observed in the control line, it can be determined that the assay was performed normally, and if color development is not observed in the control line, it can be determined that the assay was not performed normally.
 別の一実施形態において、本発明のラテラルフローアッセイは、サンプルパッド、コンジュゲートパッド、メンブレン、及び吸収パッドで構成される一般的なラテラルフローアッセイ用試薬(テストストリップ)を用いて行うことができる。テストストリップの一般的構造を図1に示す。本発明において、コンジュゲートパッドには酸化鉄(III)粒子標識抗体が保持され、メンブレンには捕捉抗体が固定されている。 In another embodiment, the lateral flow assay of the present invention can be performed using a common lateral flow assay reagent (test strip) consisting of a sample pad, a conjugate pad, a membrane, and an absorbent pad. . The general structure of the test strip is shown in FIG. In the present invention, the conjugate pad holds an iron (III) oxide particle-labeled antibody and the membrane has an immobilized capture antibody.
 サンプルパッドとは、試料を滴下する部位であり、パッドに成型された状態で試料を吸収し、試料が通り抜けることができるどんな物質及び形態をも含む。サンプルパッドに適した材料としては、ガラス繊維(グラスファイバー)、アクリル繊維、親水性ポリエチレン材、乾燥紙、紙パルプ、織物等が挙げられるが、これらに限定されない。サンプルパッドには、後述するコンジュゲートパッドの機能を併せ持たせることもできる。 The sample pad is the part where the sample is dropped, and includes any substance and form that absorbs the sample while molded into the pad and allows the sample to pass through. Suitable materials for sample pads include, but are not limited to, glass fibers, acrylic fibers, hydrophilic polyethylene materials, dry paper, paper pulp, textiles, and the like. The sample pad can also have the function of a conjugate pad, which will be described later.
 コンジュゲートパッドとは、酸化鉄(III)粒子標識抗体を保持し、試料が該コンジュゲートパッドを通過する際、酸化鉄(III)粒子標識抗体と試料中の目的の抗原とが複合体を形成する機能を有する部位をいう。
 コンジュゲートパッドに適した材料としては、紙、セルロース混合物、ニトロセルロース、ポリエステル、アクリロニトリルコポリマー、ガラス繊維又はレーヨンのような不織繊維が挙げられるが、これらに限定されない。
The conjugate pad holds an iron oxide (III) particle-labeled antibody, and when the sample passes through the conjugate pad, the iron (III) oxide particle-labeled antibody and the target antigen in the sample form a complex. It refers to the part that has the function to
Suitable materials for conjugate pads include, but are not limited to, paper, cellulose blends, nitrocellulose, polyesters, acrylonitrile copolymers, glass fibers or non-woven fibers such as rayon.
 メンブレンとしては、上述と同様のものを用いることができる。メンブレンには、捕捉抗体が固定された検出ラインを含み、さらに、コントロール捕捉抗体が固定されたコントロールラインを含むことが好ましい。メンブレンへの捕捉抗体、コントロール捕捉抗体又はこれら両方の固定化方法は、上述したとおりである。 As the membrane, the same one as described above can be used. The membrane preferably includes a detection line to which capture antibodies are immobilized and a control line to which control capture antibodies are immobilized. The methods for immobilizing the capture antibody, the control capture antibody, or both on the membrane are as described above.
 吸収パッドとは、最下流に位置し、メンブレン上を展開した試料を吸収することにより試料の展開を制御する液体吸収性を有する部位である。吸収パッドに適した材料としては、例えば、ろ紙を挙げることができるが、これに限定されない。 The absorbent pad is located at the most downstream position and is a part with liquid absorbency that controls the development of the sample by absorbing the sample developed on the membrane. Suitable materials for absorbent pads include, but are not limited to, filter paper.
 上記試薬は、メンブレンにサンプルパッド、コンジュゲートパッド、吸収パッドが配置装着されたものである。配置については、適宜に変更可能であるが、サンプルパッドに滴下された試料が、毛細管現象によってサンプルパッドを通過し、コンジュゲートパッドに移送され、さらに毛細管現象によってコンジュゲートパッドを通過してメンブレンに移送され、メンブレン上を展開し、吸収パッドに吸収されるように、各部位を配置するのが好ましい。これらは、通常、プラスチック製粘着シートのような固相支持体上に配列させる。固相支持体は、試料の展開を妨げない物質で構成することが好ましく、また、接着剤の成分も試料の展開を妨げない物質とすることが好ましい。尚、メンブレンの機械的強度を上げ、且つアッセイ中の水分の蒸発(乾燥)を防ぐ目的でポリエステルフィルム等をラミネートすることも可能である。該試薬は、試薬の大きさや、試料の添加方法・位置、捕捉抗体の固定化位置等を考慮した適当な容器(ハウジング)に格納・搭載して使用することができる。このように格納・搭載された状態を「デバイス」という。 The above reagent is a membrane with a sample pad, conjugate pad, and absorbent pad arranged and attached. The arrangement can be changed as appropriate, but the sample dropped onto the sample pad passes through the sample pad by capillary action, is transferred to the conjugate pad, and further passes through the conjugate pad by capillary action to the membrane. Each site is preferably arranged so that it can be transferred, spread out on a membrane, and absorbed into an absorbent pad. These are usually arranged on a solid support such as a plastic adhesive sheet. The solid phase support is preferably composed of a material that does not interfere with the development of the sample, and the adhesive component is also preferably a material that does not interfere with the development of the sample. It is also possible to laminate a polyester film or the like for the purpose of increasing the mechanical strength of the membrane and preventing evaporation (drying) of water during the assay. The reagent can be stored and mounted in an appropriate container (housing) in consideration of the size of the reagent, the method and position of adding the sample, the immobilization position of the capturing antibody, and the like. Such a stored and mounted state is called a "device".
 具体的なアッセイの一例を以下に示す。試料液をサンプルパッドに滴下すると、試料液は毛細管現象によりサンプルパッド、コンジュゲートパッドを順次通過し、メンブレン上を展開していく。試料中に目的の抗原を含む場合には、コンジュゲートパッドに保持された酸化鉄(III)粒子標識抗体と試料中の目的の抗原とが複合体を形成し、これをメンブレン上の捕捉抗体が捕捉して複合体が集積することで、検出ラインに酸化鉄(III)粒子に由来する赤色の発色を生じる。一方、試料中に目的の抗原を含まない場合は、検出ラインには発色を生じない。斯かる発色を指標に、試料中の目的の抗原の有無を測定できる。すなわち、検出ラインに発色が認められれば、試料には目的の抗原が含まれていると判定でき、検出ラインに発色が認められなければ、試料には目的の抗原が含まれていないと判定することができる。尚、メンブレンがコントロールラインを有する場合、試料中の目的の抗原の有無にかかわらず、コントロール捕捉抗体が余剰の酸化鉄(III)粒子標識抗体を捕捉して酸化鉄(III)粒子標識抗体が集積することで、コントロールラインに酸化鉄(III)粒子に由来する赤色の発色を生じる。斯かる発色を指標に、アッセイの妥当性を評価することができる。すなわち、コントロールラインに発色が認められれば、アッセイが正常に行われたと判定でき、コントロールラインに発色が認められなければ、アッセイが正常に行われなかったと判定することができる。 An example of a specific assay is shown below. When the sample liquid is dropped onto the sample pad, the sample liquid passes through the sample pad and the conjugate pad sequentially due to capillary action, and develops on the membrane. When the target antigen is contained in the sample, the iron (III) oxide particle-labeled antibody retained on the conjugate pad and the target antigen in the sample form a complex, which is captured by the capture antibody on the membrane. The capture and accumulation of the complex causes the detection line to develop a red color derived from the iron (III) oxide particles. On the other hand, when the sample does not contain the target antigen, the detection line does not develop color. Using such color development as an index, the presence or absence of the target antigen in the sample can be determined. That is, if color development is observed in the detection line, it can be determined that the sample contains the antigen of interest, and if color development is not observed in the detection line, it can be determined that the sample does not contain the target antigen. be able to. When the membrane has a control line, the control capture antibody captures excess iron oxide (III) particle-labeled antibody regardless of the presence or absence of the target antigen in the sample, and the iron oxide (III) particle-labeled antibody accumulates. As a result, the control line develops a red color derived from iron (III) oxide particles. Using such color development as an index, the validity of the assay can be evaluated. That is, if color development is observed in the control line, it can be determined that the assay was performed normally, and if color development is not observed in the control line, it can be determined that the assay was not performed normally.
 後記実施例に示すように、ラテラルフローアッセイにおいて、抗原に特異的に結合する抗体を固定化する標識体として酸化鉄(III)粒子を用いると、酸化鉄(II,III)粒子(前記非特許文献2)を用いる場合と比較して、圧倒的に視認性に優れる。斯かるアッセイでは、酸化鉄(III)粒子の磁性を指標とせずに、発色を指標とすることから、専用の検出装置が不要であり、目視という簡便な手法で試料中の抗原を検出することができる。また、標識体として酸化鉄(III)粒子を用いると、標識体として汎用されている金コロイド粒子と同等の検出感度が得られる。酸化鉄(III)粒子は、容易に安価で入手可能であることから、金コロイド粒子と比べて、1アッセイあたりの標識体のコストが100分の1以下であり、ラテラルフローアッセイの格段のコストダウンが可能である。さらに、酸化鉄(III)粒子に固定する抗体として、通常のIgG抗体より安価大量生産できるVHH抗体を用いれば、量産性向上やさらなるコストダウンも可能である。 As shown in Examples below, when iron (III) oxide particles are used as a label for immobilizing an antibody that specifically binds to an antigen in a lateral flow assay, iron oxide (II, III) particles (the non-patented Visibility is overwhelmingly superior to the case of using document 2). Such an assay does not use the magnetism of the iron (III) oxide particles as an indicator, but rather uses the color development as an indicator, so a dedicated detection device is not required, and the antigen in the sample can be detected by a simple method of visual observation. can be done. Further, when iron (III) oxide particles are used as the label, a detection sensitivity equivalent to that of colloidal gold particles commonly used as the label can be obtained. Since iron (III) oxide particles are readily available at low cost, the cost of the label per assay is 1/100 or less compared to colloidal gold particles, and the cost of the lateral flow assay is remarkably high. Down is possible. Furthermore, if a VHH antibody, which can be mass-produced at a lower cost than a normal IgG antibody, is used as an antibody to be immobilized on iron (III) oxide particles, it is possible to improve mass productivity and further reduce costs.
 上述した実施形態に関し、本発明はさらに以下の態様を開示する。
<1>標識体に固定された抗体を用いて試料中の抗原を検出するラテラルフローアッセイであって、標識体が酸化鉄(III)粒子である、ラテラルフローアッセイ。
<2>酸化鉄(III)粒子に固定された抗体と試料とを接触させることを含む、<1>記載のラテラルフローアッセイ。
<3>酸化鉄(III)粒子に固定された抗体と試料中の抗原とから形成される複合体を捕捉抗体により捕捉することを含む、<1>又は<2>記載のラテラルフローアッセイ。
<4>捕捉抗体がメンブレンに固定されたものである、<3>記載のラテラルフローアッセイ。
<5>酸化鉄(III)粒子による発色を指標として抗原を検出することを含む、<1>~<4>のいずれか1項記載のラテラルフローアッセイ。
<6>発色が、酸化鉄(III)粒子に固定された抗体と試料中の抗原とから形成される複合体が集積して生じるものであり、好ましくは、酸化鉄(III)粒子に固定された抗体と試料中の抗原とから形成される複合体が捕捉抗体により捕捉されて集積して生じるものである、<5>記載のラテラルフローアッセイ。
<7>発色が認められる場合に試料中に抗原が含まれていると判定し、発色が認められない場合に試料中に抗原が含まれていないと判定することを含む、<5>又は<6>記載のラテラルフローアッセイ。
<8>酸化鉄(III)粒子の平均粒子径が10~1000nm、好ましくは50~500nmである、<1>~<7>のいずれか1項記載のラテラルフローアッセイ。
<9>酸化鉄(III)粒子が抗体固定前にタンパク質固定化に関する化学修飾を受けていない酸化鉄(III)粒子である、<1>~<8>のいずれか1項記載のラテラルフローアッセイ。
<10>酸化鉄(III)粒子に固定された抗体が、好ましくはIgG抗体又は重鎖可変ドメイン抗体であり、より好ましくは重鎖可変ドメイン抗体であり、さらに好ましくはVHH抗体であり、さらに好ましくは配列番号13、15、17及び19のいずれかで示されるアミノ酸配列からなるVHH抗体である、<1>~<9>のいずれか1項記載のラテラルフローアッセイ。
<11>捕捉抗体が、好ましくはIgG抗体又は重鎖可変ドメイン抗体であり、より好ましくは重鎖可変ドメイン抗体であり、さらに好ましくはVHH抗体であり、さらに好ましくは配列番号13、15、17及び19のいずれかで示されるアミノ酸配列からなるVHH抗体である、<3>~<10>のいずれか1項記載のラテラルフローアッセイ。
<12>酸化鉄(III)粒子に固定された抗体を含む、ラテラルフローアッセイ用試薬。
<13>捕捉抗体が固定されたメンブレンをさらに含む、<12>記載の試薬。
<14>サンプルパッド、酸化鉄(III)粒子に固定された抗体を保持するコンジュゲートパッド、捕捉抗体が固定されたメンブレン、及び吸収パッドを含む、<12>又は<13>記載の試薬。
<15>酸化鉄(III)粒子の平均粒子径が10~1000nm、好ましくは50~500nmである、<12>~<14>のいずれか1項記載の試薬。
<16>酸化鉄(III)粒子が抗体固定前にタンパク質固定化に関する化学修飾を受けていない酸化鉄(III)粒子である、<12>~<15>のいずれか1項記載の試薬。
<17>酸化鉄(III)粒子に固定された抗体が、好ましくはIgG抗体又は重鎖可変ドメイン抗体であり、より好ましくは重鎖可変ドメイン抗体であり、さらに好ましくはVHH抗体であり、さらに好ましくは配列番号13、15、17及び19のいずれかで示されるアミノ酸配列からなるVHH抗体である、<12>~<16>のいずれか1項記載の試薬。
<18>捕捉抗体が、好ましくはIgG抗体又は重鎖可変ドメイン抗体であり、より好ましくは重鎖可変ドメイン抗体であり、さらに好ましくはVHH抗体であり、さらに好ましくは配列番号13、15、17及び19のいずれかで示されるアミノ酸配列からなるVHH抗体である、<13>~<17>のいずれか1項記載の試薬。
This invention discloses the following aspects further regarding embodiment mentioned above.
<1> A lateral flow assay in which an antibody immobilized on a label is used to detect an antigen in a sample, wherein the label is iron (III) oxide particles.
<2> The lateral flow assay according to <1>, which comprises contacting an antibody immobilized on iron (III) oxide particles with a sample.
<3> The lateral flow assay according to <1> or <2>, which comprises capturing a complex formed from the antibody immobilized on the iron (III) oxide particles and the antigen in the sample with a capture antibody.
<4> The lateral flow assay described in <3>, wherein the capture antibody is immobilized on a membrane.
<5> The lateral flow assay according to any one of <1> to <4>, which comprises detecting the antigen using color development by iron (III) oxide particles as an indicator.
<6> The color development is caused by the accumulation of a complex formed from the antibody immobilized on the iron (III) oxide particles and the antigen in the sample, preferably immobilized on the iron (III) oxide particles. The lateral flow assay according to <5>, wherein a complex formed from the antibody obtained and the antigen in the sample is captured by the capture antibody and accumulated.
<5> or <5> or 6> Lateral flow assay as described.
<8> The lateral flow assay according to any one of <1> to <7>, wherein the iron (III) oxide particles have an average particle size of 10 to 1000 nm, preferably 50 to 500 nm.
<9> The lateral flow assay according to any one of <1> to <8>, wherein the iron (III) oxide particles are iron (III) oxide particles that have not been chemically modified for protein immobilization before antibody immobilization. .
<10> The antibody immobilized on iron (III) oxide particles is preferably an IgG antibody or a heavy chain variable domain antibody, more preferably a heavy chain variable domain antibody, still more preferably a VHH antibody, still more preferably a VHH antibody. is a VHH antibody consisting of the amino acid sequence of any one of SEQ ID NOs: 13, 15, 17 and 19, the lateral flow assay according to any one of <1> to <9>.
<11> The capture antibody is preferably an IgG antibody or a heavy chain variable domain antibody, more preferably a heavy chain variable domain antibody, still more preferably a VHH antibody, still more preferably SEQ ID NOs: 13, 15, 17 and The lateral flow assay according to any one of <3> to <10>, which is a VHH antibody consisting of the amino acid sequence shown in any one of 19.
<12> A reagent for lateral flow assay, comprising an antibody immobilized on iron (III) oxide particles.
<13> The reagent according to <12>, further comprising a membrane on which the capture antibody is immobilized.
<14> The reagent according to <12> or <13>, comprising a sample pad, a conjugate pad holding an antibody immobilized on iron (III) oxide particles, a membrane immobilized with a capture antibody, and an absorbent pad.
<15> The reagent according to any one of <12> to <14>, wherein the iron (III) oxide particles have an average particle size of 10 to 1000 nm, preferably 50 to 500 nm.
<16> The reagent according to any one of <12> to <15>, wherein the iron (III) oxide particles are iron (III) oxide particles that have not been chemically modified for protein immobilization before antibody immobilization.
<17> The antibody immobilized on the iron (III) oxide particles is preferably an IgG antibody or a heavy chain variable domain antibody, more preferably a heavy chain variable domain antibody, still more preferably a VHH antibody, still more preferably a VHH antibody. is a VHH antibody consisting of the amino acid sequence of any one of SEQ ID NOs: 13, 15, 17 and 19. The reagent according to any one of <12> to <16>.
<18> The capture antibody is preferably an IgG antibody or a heavy chain variable domain antibody, more preferably a heavy chain variable domain antibody, still more preferably a VHH antibody, still more preferably SEQ ID NOs: 13, 15, 17 and The reagent according to any one of <13> to <17>, which is a VHH antibody consisting of the amino acid sequence shown in any one of 19.
 以下、実施例に基づき本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。 The present invention will be described in more detail below based on examples, but the present invention is not limited to these.
実施例1 プロテアーゼ欠損組換え枯草菌によるVHHの生産1
(1)使用菌株
 枯草菌株はBacillus subtilis 168株の派生株を用いた。細胞外プロテアーゼ遺伝子(epr、wprA、mpr、nprB、bpr、nprE、vpr、aprE、aprX)の欠損については特許第4485341号公報に記載されている方法に従い行った(欠損株はそれぞれΔepr、ΔwprA、Δmpr、ΔnprB、Δbpr、ΔnprE、Δvpr、ΔaprE、ΔaprXと記載。全て欠損している株は168 Dpr9と記載)。また胞子形成に関与するsigF遺伝子の欠損については特許第4336082号公報に記載されている方法に従い行った(欠損株はΔsigFと記載)。また遺伝子構築のための大腸菌株についてはECOS Competent E. coli DH5 α株(ニッポンジーン)を用いた。
Example 1 Production of VHH by protease-deficient recombinant Bacillus subtilis 1
(1) Bacillus strains used Bacillus subtilis strains derived from Bacillus subtilis 168 strains were used. Deletion of extracellular protease genes (epr, wprA, mpr, nprB, bpr, nprE, vpr, aprE, aprX) was carried out according to the method described in Japanese Patent No. 4485341 (deficient strains are Δepr, ΔwprA, Δmpr, ΔnprB, Δbpr, ΔnprE, Δvpr, ΔaprE, ΔaprX (strains lacking all are designated 168 Dpr9). Deletion of the sigF gene involved in sporulation was performed according to the method described in Japanese Patent No. 4336082 (deficient strains are described as ΔsigF). E.coli strains for gene construction are available from ECOS Competent E. coli DH5α strain (Nippon Gene) was used.
(2)使用培地
LB培地:1% BactoTM Tryptone(Difco)、0.5% BactoTM Yeast Extract(Difco)、1% 塩化ナトリウム。平板培地には1.5%の寒天を加えた。必要に応じてテトラサイクリン(50ppm)を加えた。
SMMP溶液:Antibiotic Medium 3(Difco)(35g/L)、スクロース(171.5g/L)、マレイン酸2Na(3.2g/L)、MgCl2・6H2O(4.06g/L)
PEG溶液:スクロース(85.75g/L)、マレイン酸2Na(1.6g/L)、MgCl2・6H2O(2.03g/L)、PEG8000(400g/L)
DM3培地:1% CMC(関東化学)、0.5% BactoTM Casamino Acids(Difco)、0.5% BactoTM Yeast Extract(Difco)、8.1% コハク酸二ナトリウム・6H2O、0.35% リン酸水素二カリウム、0.15% リン酸二水素カリウム、0.5% グルコース、20mM 塩化マグネシウム、0.01% BSA、50ppm テトラサイクリン。平板培地には1%の寒天を加えた。
2×L-mal培地:2% BactoTM Tryptone(Difco)、1% BactoTM Yeast Extract(Difco)、1% 塩化ナトリウム、7.5% マルトース一水和物、7.5ppm 硫酸マンガン、15ppm テトラサイクリン
 試薬は特に記述が無い場合は富士フイルム和光純薬社製を用いた。
(2) Used medium LB medium: 1% Bacto Tryptone (Difco), 0.5% Bacto Yeast Extract (Difco), 1% sodium chloride. 1.5% agar was added to the plates. Tetracycline (50 ppm) was added as needed.
SMMP solution: Antibiotic Medium 3 (Difco) (35 g/L), sucrose (171.5 g/L), disodium maleate ( 3.2 g/L), MgCl2.6H2O (4.06 g/L)
PEG solution: sucrose (85.75 g/L), disodium maleate (1.6 g/L), MgCl2.6H2O ( 2.03 g/L), PEG8000 (400 g/L)
DM3 medium: 1% CMC (Kanto Kagaku), 0.5% Bacto Casamino Acids (Difco), 0.5% Bacto Yeast Extract (Difco), 8.1% disodium succinate/6H 2 O, 0.5% Bacto™ Yeast Extract (Difco) 35% dipotassium hydrogen phosphate, 0.15% potassium dihydrogen phosphate, 0.5% glucose, 20 mM magnesium chloride, 0.01% BSA, 50 ppm tetracycline. 1% agar was added to the plates.
2x L-mal Medium: 2% Bacto Tryptone (Difco), 1% Bacto Yeast Extract (Difco), 1% Sodium Chloride, 7.5% Maltose Monohydrate, 7.5 ppm Manganese Sulfate, 15 ppm Tetracycline Reagent were manufactured by Fuji Film Wako Pure Chemical Industries, Ltd. unless otherwise specified.
(3)遺伝子プラスミドの構築
 遺伝子発現プラスミド構築は以下の手順で行った。配列番号1及び2の人工合成遺伝子(サーモフィッシャー社)を混合し後述のプロトプラスト形質転換法に従ってB.subtilis 168 Dpr9ΔsigF株に導入した。形質転換されたB.subtilis 168 Dpr9ΔsigF株よりpKプラスミドを抽出した。pKプラスミドをテンプレートとし、PrimeSTAR Max DNAポリメラーゼ(TaKaRa)及び配列番号3と4のプライマーセットとを用いて増幅したPCR断片、B.subtilis 168株のゲノムDNAをテンプレートとして配列番号5と6のプライマーセットを用いて増幅したSpoVGプロモーター(PspoVG)のPCR断片、特開2014-158430号公報に記載の組換えプラスミドpHY-S237をテンプレートとし、それぞれ配列番号7と8及び配列番号9と10のプライマーセットを用いて増幅したS237セルラーゼ遺伝子由来の分泌シグナル(S237pre)と転写ターミネーター(Ts237)のPCR断片を混合し、In-Fusion HD Cloning Kit(Takara)を用いて連結し、大腸菌へと形質転換することでPspoVG-S237pre-Ts237-pKプラスミドを構築した。PspoVG-S237pre-Ts237-pKプラスミドをテンプレートとし、配列番号9と11のプライマーセット及びPrimeSTAR Maxを用いて増幅したPCR断片、及び配列番号12(リゾチームに対するVHH抗体:1ZVYをコードする遺伝子、翻訳アミノ酸配列は配列番号13)、配列番号14(リゾチームに対するVHH抗体:1ZVHをコードする遺伝子、翻訳アミノ酸配列は配列番号15)、配列番号16(SARS-CoV-2 S1タンパク質に対するVHH抗体:E9をコードする遺伝子、翻訳アミノ酸配列は配列番号17)で示す人工合成遺伝子(サーモフィッシャー社)を混合してIn-Fusion HD Cloning Kitを用いて連結し、大腸菌へと形質転換することで各遺伝子の発現プラスミドを構築した。構築したプラスミドは後述のプロトプラスト形質転換法に従ってB.subtilis 168 Dpr9ΔsigF株に導入した。用いたプライマーを表1に示す。
(3) Construction of Gene Plasmid Construction of gene expression plasmid was performed by the following procedure. Artificially synthesized genes of SEQ ID NOS: 1 and 2 (Thermo Fisher) were mixed and B. It was introduced into the subtilis 168 Dpr9ΔsigF strain. Transformed B. A pK plasmid was extracted from the subtilis 168 Dpr9ΔsigF strain. A PCR fragment amplified using PrimeSTAR Max DNA polymerase (TaKaRa) and the primer set of SEQ ID NOs: 3 and 4 using the pK plasmid as a template; A PCR fragment of the SpoVG promoter (PspoVG) amplified using the primer set of SEQ ID NOS: 5 and 6 using the genomic DNA of S. subtilis strain 168 as a template, and the recombinant plasmid pHY-S237 described in JP-A-2014-158430 as a template. , PCR fragments of the S237 cellulase gene-derived secretory signal (S237pre) and the transcription terminator (Ts237) amplified using the primer sets of SEQ ID NOs: 7 and 8 and SEQ ID NOs: 9 and 10, respectively, were mixed and used with the In-Fusion HD Cloning Kit. (Takara) and transformed into E. coli to construct the PspoVG-S237pre-Ts237-pK plasmid. Using the PspoVG-S237pre-Ts237-pK plasmid as a template, a PCR fragment amplified using the primer set of SEQ ID NOs: 9 and 11 and PrimeSTAR Max, and SEQ ID NO: 12 (VHH antibody against lysozyme: gene encoding 1ZVY, translated amino acid sequence is SEQ ID NO: 13), SEQ ID NO: 14 (VHH antibody against lysozyme: gene encoding 1ZVH, translated amino acid sequence is SEQ ID NO: 15), SEQ ID NO: 16 (VHH antibody against SARS-CoV-2 S1 protein: gene encoding E9 , The translated amino acid sequence is SEQ ID NO: 17). Artificial synthetic genes (Thermo Fisher) are mixed, ligated using the In-Fusion HD Cloning Kit, and transformed into E. coli to construct an expression plasmid for each gene. bottom. The constructed plasmid was transformed into B. elegans according to the protoplast transformation method described below. It was introduced into the subtilis 168 Dpr9ΔsigF strain. Table 1 shows the primers used.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(4)プロトプラスト形質転換法
 枯草菌へのプラスミド導入は以下に示すプロトプラスト法によって行った。1mLのLB液体培地にグリセロールストックした各種枯草菌を植菌し、30℃、210rpmで一晩振とう培養した。翌日、新たな1mLのLB液体培地にこの培養液を10μL植菌し、37℃、210rpmで約2時間振とう培養した。この培養液を1.5mLチューブに回収し、12,000rpmで5分間遠心分離を行い、上清を除去したペレットをLysozyme(SIGMA)4mg/mLを含むSMMP 500μLに懸濁し、37℃で1時間インキュベートした。次いで、3,500rpmで10分間遠心分離を行い、上清を除去したペレットをSMMP 400μLに懸濁した。この懸濁液33μLを各種プラスミドと混合し、さらに40% PEG 100μLを添加してボルテックスした。この液にSMMP 350μLを加えて転倒混和し、エッペンチューブのまま30℃で2時間インキュベートした後、DM3寒天培地プレートに塗布した。DM3寒天培地プレートを30℃で2~3日間インキュベートして形質転換体のコロニーを得た。
(4) Protoplast transformation method Plasmid introduction into Bacillus subtilis was performed by the protoplast method shown below. Various types of Bacillus subtilis stocked in glycerol were inoculated into 1 mL of LB liquid medium and cultured with shaking at 30° C. and 210 rpm overnight. On the next day, 10 μL of this culture solution was inoculated into a new 1 mL LB liquid medium, and cultured with shaking at 37° C. and 210 rpm for about 2 hours. This culture solution was collected in a 1.5 mL tube, centrifuged at 12,000 rpm for 5 minutes, and the supernatant was removed. incubated. Then, centrifugation was performed at 3,500 rpm for 10 minutes, and the supernatant was removed and the pellet was suspended in 400 μL of SMMP. 33 μL of this suspension was mixed with various plasmids, and 100 μL of 40% PEG was added and vortexed. 350 μL of SMMP was added to this solution, mixed by inversion, incubated at 30° C. for 2 hours in an Eppendorf tube, and then spread on a DM3 agar medium plate. Transformant colonies were obtained by incubating DM3 agar plates at 30° C. for 2-3 days.
(5)培養条件
 プラスミドを保持する枯草菌株を1mLの50ppmテトラサイクリンを含むLB培地に植菌し、30℃で一晩往復振とうし、前培養液とした。前培養液を三角フラスコに入れた20mLの2×L-mal培地に1%接種し、30℃で72時間振とう培養した。培養終了時の培養液を7,500rpm、5分遠心し、上清を回収した。上清にNi-NTAアガロースビーズ(富士フイルム和光純薬)を添加し、上清中に含まれるHisタグ連結ドメイン抗体をキットのプロトコルに従って精製後、透析によってバッファーをPBS(30mM イミダゾール含有)へと置換した。
(5) Culture conditions A Bacillus subtilis strain carrying a plasmid was inoculated into 1 mL of LB medium containing 50 ppm tetracycline and shaken back and forth overnight at 30°C to prepare a preculture solution. 1% of the preculture was inoculated into 20 mL of 2×L-mal medium in an Erlenmeyer flask and cultured with shaking at 30° C. for 72 hours. The culture solution at the end of culture was centrifuged at 7,500 rpm for 5 minutes to collect the supernatant. Ni-NTA agarose beads (Fujifilm Wako Pure Chemical Industries, Ltd.) were added to the supernatant, and the His-tag binding domain antibody contained in the supernatant was purified according to the protocol of the kit. replaced.
実施例2 ラテラルフローアッセイ1
(1)方法
 ニトロセルロースメンブレンはFF120HP(cytiva lifesciences)を用いた。5mm×100mmに切断したメンブレンの下端より20mmの位置に検出用の抗体を塗布した。実施例1において枯草菌で生産したドメイン抗体(1ZVH又は1ZVY)については1mg/mLの溶液を、市販IgG抗体(Lysozyme Polyclonal Antibody(コスモバイオ)及びSARS/SARS-CoV-2 Coronavirus Spike Protein(subunit 1) Polyclonal Antibody(サーモフィッシャーサイエンティフィック)(以下SARS Polyclonal Antibody))については0.1mg/mLの溶液を、絵筆を用いて検出ラインを描画した後、37℃で1時間静置して乾燥させた。乾燥したメンブレンを3倍希釈したN101(日油)に15分間浸し、イオン交換水で2回洗浄した後3%スクロース溶液に浸して5分間静置した。スクロース溶液から取り出したメンブレンを室温で一晩乾燥させた。
 酸化鉄(III)粒子(300nm、高純度化学)は30mg/mLになるようにMilli-Q水に懸濁した。酸化鉄(II,III)粒子(10nm、5mg/mL トルエン、和光純薬)は200μLを1mLのエタノールに懸濁した後に5,000rpmで15分間遠心し、上清除去した。沈殿にエタノールを1ml添加し5,000rpmで15分間遠心し、上清除去した。沈殿に20%エタノールを1mL添加し5,000rpmで15分間遠心し、上清除去しMilli-Q水200μLを添加して懸濁した。酸化鉄(III)粒子又は酸化鉄(II,III)粒子6μg、ないしは金粒子(40nm、1OD(530nm abs max)、G-40-20、コスモバイオ)100μLに、10mM Tris-HCl(pH8)を500μL添加し、超音波処理を10秒間行った(E9では酸化鉄(III)粒子100μg)(金粒子使用時は10mM Tris-HCl(pH8ないしは9))。枯草菌で生産したドメイン抗体(1ZVH又は1ZVY:10μg、E9:1mg)、又は市販IgG抗体(Lysozyme Polyclonal Antibody:1μg)を添加して15分間静置した。1% BSA及び0.1% PEG20000を含む10mM Tris-HCl(pH8)を200μL添加し、さらに15分間静置した。5,000rpmで15分間遠心したのちに上清を除去し、0.1% BSA及び0.5% Tween 20を含む10mM Tris-HCl(pH8)を200μL添加し、超音波処理を10秒行った(酸化鉄(III)粒子側にLysozyme Polyclonal Antibody又はE9使用時はTween 20非含有、金粒子使用時は0.1% BSA及び0.025% Tween 20)。
 抗体として1ZVH、1ZVY又はLysozyme Polyclonal Antibodyを用いたアッセイについては、抗原として卵白リゾチーム(富士フイルム和光純薬)10μgを、抗体としてE9又はSARS Polyclonal Antibodyを用いたアッセイについては、抗原としてSARS-CoV-2 Spike Glycoprotein (S1),Sheep Fc-Tag(HEK293)(Native Antigen)(以下SARS-CoV-2 S1)1μgを、酸化鉄(III)粒子標識抗体又は酸化鉄(II,III)粒子標識抗体の溶液に添加した。また、抗体として1ZVH、1ZVY又はLysozyme Polyclonal Antibodyを用いたアッセイについて、抗原として卵白リゾチーム10μgを、金粒子標識抗体の溶液に添加した。抗原を添加した溶液をメンブレンに作用させてラテラルフローアッセイを行った。
Example 2 Lateral flow assay 1
(1) Method Nitrocellulose membrane used was FF120HP (cytiva lifesciences). A detection antibody was applied to a position 20 mm from the lower end of the membrane cut into 5 mm×100 mm. For the domain antibody (1ZVH or 1ZVY) produced in Bacillus subtilis in Example 1, a 1 mg/mL solution was added to commercially available IgG antibodies (Lysozyme Polyclonal Antibody (Cosmo Bio) and SARS/SARS-CoV-2 Coronavirus Spike Protein (subunit 1 ) For Polyclonal Antibody (Thermo Fisher Scientific) (hereafter SARS Polyclonal Antibody), draw a detection line with a 0.1 mg/mL solution using a paintbrush, and then leave it to dry at 37°C for 1 hour. rice field. The dried membrane was immersed in 3-fold diluted N101 (NOF Corporation) for 15 minutes, washed twice with deionized water, then immersed in a 3% sucrose solution and allowed to stand for 5 minutes. The membrane removed from the sucrose solution was dried overnight at room temperature.
Iron (III) oxide particles (300 nm, Kojundo Chemical) were suspended in Milli-Q water at 30 mg/mL. 200 μL of iron oxide (II, III) particles (10 nm, 5 mg/mL toluene, Wako Pure Chemical) were suspended in 1 mL of ethanol, centrifuged at 5,000 rpm for 15 minutes, and the supernatant was removed. 1 ml of ethanol was added to the precipitate, centrifuged at 5,000 rpm for 15 minutes, and the supernatant was removed. 1 mL of 20% ethanol was added to the precipitate, centrifuged at 5,000 rpm for 15 minutes, the supernatant was removed, and 200 μL of Milli-Q water was added to suspend the precipitate. 10 mM Tris-HCl (pH 8) was added to 6 μg of iron oxide (III) particles or iron oxide (II, III) particles, or 100 μL of gold particles (40 nm, 1 OD (530 nm abs max), G-40-20, Cosmo Bio). 500 μL was added and sonicated for 10 seconds (100 μg of iron (III) oxide particles for E9) (10 mM Tris-HCl (pH 8 or 9) when using gold particles). A domain antibody (1ZVH or 1ZVY: 10 µg, E9: 1 mg) produced by Bacillus subtilis or a commercially available IgG antibody (Lysozyme Polyclonal Antibody: 1 µg) was added and allowed to stand for 15 minutes. 200 μL of 10 mM Tris-HCl (pH 8) containing 1% BSA and 0.1% PEG20000 was added and allowed to stand for 15 minutes. After centrifugation at 5,000 rpm for 15 minutes, the supernatant was removed, 200 μL of 10 mM Tris-HCl (pH 8) containing 0.1% BSA and 0.5% Tween 20 was added, and sonication was performed for 10 seconds. (No Tween 20 when using Lysozyme Polyclonal Antibody or E9 on iron (III) oxide particle side, 0.1% BSA and 0.025% Tween 20 when using gold particles).
For assays using 1ZVH, 1ZVY or Lysozyme Polyclonal Antibody as antibodies, egg white lysozyme (Fujifilm Wako Pure Chemical Industries) 10 μg as antigens, E9 or SARS Polyclonal Antibody as antibodies for assays using SARS-CoV- 2 Spike Glycoprotein (S1), Sheep Fc-Tag (HEK293) (Native Antigen) (hereinafter SARS-CoV-2 S1) 1 μg of iron oxide (III) particle-labeled antibody or iron oxide (II, III) particle-labeled antibody added to the solution. For the assay using 1ZVH, 1ZVY or Lysozyme Polyclonal Antibody as the antibody, 10 μg of egg white lysozyme was added as the antigen to the solution of the gold particle-labeled antibody. A lateral flow assay was performed by allowing the solution to which the antigen was added to act on the membrane.
(2)結果
 酸化鉄(II,III)粒子と酸化鉄(III)粒子の検出視認性の差異を確認するため、検出ライン側に1ZVH、酸化鉄粒子側に1ZVYを使用したラテラルフローアッセイを行った。その結果を図2に示す。酸化鉄(II,III)粒子と酸化鉄(III)粒子とも同量の粒子及び抗体・抗原を使用しているが、酸化鉄(II,III)粒子と比較して酸化鉄(III)粒子は明瞭な検出ラインを呈した。
(2) Results In order to confirm the difference in detection visibility between iron (II, III) oxide particles and iron (III) oxide particles, a lateral flow assay was performed using 1ZVH on the detection line side and 1ZVY on the iron oxide particle side. rice field. The results are shown in FIG. Both iron (II, III) oxide particles and iron (III) oxide particles use the same amount of particles and antibodies/antigens. It exhibited a clear detection line.
 酸化鉄(III)粒子を用いたラテラルフローアッセイが種々の抗原の検出に対して適用できることを確認するため、酸化鉄(III)粒子側及び検出ライン側の抗体を変化させて検討を行った。その結果を表2に示す。この結果より、酸化鉄(III)粒子側及び検出ライン側のIgG又はドメイン抗体の組み合わせに拠らず、検出ラインの視認を介して任意の抗原を検出可能であることが示された。なお、標識体として金粒子を用い、粒子側抗体として1ZVY、1ZVHを使用したリゾチーム検出系(表2の上3段に相当)でも検出ラインを視認できることを確認している。また本検討で用いたドメイン抗体間のアミノ酸配列相同性は1ZVYと1ZVHでは68%、1ZVYとE9では63%、1ZVHとE9では71%となっており、酸化鉄(III)粒子を用いたラテラルフローアッセイはドメイン抗体の配列に依存することなく利用可能であることも示された。 In order to confirm that the lateral flow assay using iron oxide (III) particles can be applied to the detection of various antigens, a study was conducted by changing the antibodies on the iron oxide (III) particle side and the detection line side. Table 2 shows the results. This result showed that any antigen can be detected through visual recognition of the detection line regardless of the combination of IgG or domain antibody on the iron (III) oxide particle side and the detection line side. It has been confirmed that the detection line can also be visually recognized in a lysozyme detection system (corresponding to the upper three rows of Table 2) using gold particles as the label and 1ZVY and 1ZVH as the particle-side antibodies. In addition, the amino acid sequence homology between the domain antibodies used in this study was 68% for 1ZVY and 1ZVH, 63% for 1ZVY and E9, and 71% for 1ZVH and E9. It was also shown that the flow assay can be used independent of the domain antibody sequence.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
実施例3 プロテアーゼ欠損組換え枯草菌によるVHHの生産2
(1)使用菌株
 実施例1(1)と同じ菌株を用いた。
Example 3 Production of VHH by protease-deficient recombinant Bacillus subtilis 2
(1) Bacterial strain used The same strain as in Example 1 (1) was used.
(2)使用培地
 実施例1(2)と同じ培地を用いた。
(2) Medium Used The same medium as in Example 1 (2) was used.
(3)遺伝子プラスミドの構築
 遺伝子発現プラスミド構築は以下の手順で行った。配列番号18(Hisタグを含むIgGに対するVHH抗体:VHH28-Hisをコードする遺伝子、翻訳アミノ酸配列は配列番号19)の人工合成遺伝子(GenScript社)をテンプレートとし、KOD One DNAポリメラーゼ(TOYOBO)及び配列番号20と21のプライマーセットとを用いて増幅したPCR断片と、PspoVG-S237pre-Ts237-pKプラスミドをテンプレートとし、配列番号9と11のプライマーセット及びPrimeSTAR Max(Takara)を用いて増幅したPCR断片を混合して、In-Fusion HD Cloning Kit(Takara)を用いて連結し、大腸菌へと形質転換することでVHH28-His遺伝子の発現プラスミドを構築した。
 また、配列番号18の人工合成遺伝子(GenScript社)をテンプレートとし、KOD One DNAポリメラーゼ及び配列番号20と22のプライマーセットとを用いて増幅したPCR断片と、PspoVG-S237pre-Ts237-pKプラスミドをテンプレートとし、配列番号23と11のプライマーセット及びKOD One DNAポリメラーゼを用いて増幅したPCR断片を混合して、In-Fusion HD Cloning Kitを用いて連結し、大腸菌へと形質転換することでVHH28-His-FLAG遺伝子の発現プラスミドを構築した。用いたプライマーを表3に示す。
 構築したプラスミドは実施例1(4)のプロトプラスト形質転換法に従ってB.subtilis 168 Dpr9ΔsigF株に導入した。得られたプラスミドを保持する枯草菌株は、実施例1(5)の培養条件に従って培養し、ドメイン抗体を生産した。
(3) Construction of Gene Plasmid Construction of gene expression plasmid was performed by the following procedure. SEQ ID NO: 18 (VHH antibody against IgG containing a His tag: gene encoding VHH28-His, translated amino acid sequence is SEQ ID NO: 19) using an artificial synthetic gene (GenScript) as a template, using KOD One DNA polymerase (TOYOBO) and sequence A PCR fragment amplified using the primer set of numbers 20 and 21 and a PCR fragment amplified using the primer set of SEQ ID NOs: 9 and 11 and PrimeSTAR Max (Takara) using the PspoVG-S237pre-Ts237-pK plasmid as a template. were mixed, ligated using an In-Fusion HD Cloning Kit (Takara), and transformed into E. coli to construct a VHH28-His gene expression plasmid.
In addition, using the artificially synthesized gene (GenScript) of SEQ ID NO: 18 as a template, a PCR fragment amplified using KOD One DNA polymerase and the primer set of SEQ ID NOS: 20 and 22, and the PspoVG-S237pre-Ts237-pK plasmid as a template. Then, the primer set of SEQ ID NOS: 23 and 11 and the PCR fragment amplified using KOD One DNA polymerase are mixed, ligated using the In-Fusion HD Cloning Kit, and transformed into E. coli to obtain VHH28-His - An expression plasmid for the FLAG gene was constructed. Table 3 shows the primers used.
The constructed plasmid was transformed into B. mutans according to the protoplast transformation method of Example 1 (4). It was introduced into the subtilis 168 Dpr9ΔsigF strain. The obtained Bacillus subtilis strain carrying the plasmid was cultured according to the culture conditions of Example 1(5) to produce domain antibodies.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
実施例4 ラテラルフローアッセイ2
(1)方法
 ニトロセルロースメンブレンはFF120HP(cytiva lifesciences)を用いた。5mm×100mmに切断したメンブレンの下端より20mmの位置に検出用の抗体を塗布した。実施例3において枯草菌で生産したドメイン抗体(VHH28-His-FLAG)については0.5mg/mLの溶液を、市販IgG抗体(Anti-IgG(H+L)、Cat、Rabbit-Poly(Bethyl Laboratories、A20-115A))については0.1mg/mLの溶液を、絵筆を用いて検出ラインを描画した後、37℃で1時間静置して乾燥させた。乾燥したメンブレンを5倍希釈したN101(日油)に15分間浸し、イオン交換水で2回洗浄した後3%スクロース溶液に浸して5分間静置した。スクロース溶液から取り出したメンブレンを室温で一晩乾燥させた。
 酸化鉄(III)粒子(300nm、高純度化学)は30mg/mLになるようにMilli-Q水に懸濁した。酸化鉄(III)粒子30mg/mL 20μLを10mM Tris-HCl(pH8)500μLに添加し、超音波処理を10秒間行った。枯草菌で生産したドメイン抗体(VHH28-His:3μg)を添加して15分間静置した。1% BSA及び0.1% PEG20000を含む10mM Tris-HCl(pH8)を400μL添加し、さらに15分間静置した。5,000rpmで15分間遠心したのちに上清を除去し、0.1% BSA及び0.025%-0.05% Tween 20を含む10mM Tris-HCl(pH8)を500μL添加し、超音波処理を10秒間行った。抗原についてはChromPure Cat IgG,whole molecule(Jackson ImmunoResearch Laboratories Inc.)1μgを、酸化鉄(III)粒子標識抗体の溶液に添加した。抗原を添加した溶液をメンブレンに作用させてラテラルフローアッセイを行った。
Example 4 Lateral flow assay 2
(1) Method Nitrocellulose membrane used was FF120HP (cytiva lifesciences). A detection antibody was applied to a position 20 mm from the lower end of the membrane cut into 5 mm×100 mm. For the domain antibody (VHH28-His-FLAG) produced in Bacillus subtilis in Example 3, a 0.5 mg/mL solution was added to a commercially available IgG antibody (Anti-IgG (H+L), Cat, Rabbit-Poly (Bethyl Laboratories, A20 For -115A)), a 0.1 mg/mL solution was used to draw a detection line with a paintbrush, and then allowed to stand at 37°C for 1 hour to dry. The dried membrane was immersed in 5-fold diluted N101 (NOF Corporation) for 15 minutes, washed twice with deionized water, then immersed in a 3% sucrose solution and allowed to stand for 5 minutes. The membrane removed from the sucrose solution was dried overnight at room temperature.
Iron (III) oxide particles (300 nm, Kojundo Chemical) were suspended in Milli-Q water at 30 mg/mL. 20 μL of 30 mg/mL iron (III) oxide particles was added to 500 μL of 10 mM Tris-HCl (pH 8) and sonicated for 10 seconds. A domain antibody (VHH28-His: 3 μg) produced in Bacillus subtilis was added and allowed to stand for 15 minutes. 400 μL of 10 mM Tris-HCl (pH 8) containing 1% BSA and 0.1% PEG20000 was added and allowed to stand for 15 minutes. After centrifugation at 5,000 rpm for 15 minutes, remove the supernatant, add 500 μL of 10 mM Tris-HCl (pH 8) containing 0.1% BSA and 0.025%-0.05% Tween 20, and sonicate. was performed for 10 seconds. For the antigen, 1 μg of ChromPure Cat IgG, whole molecule (Jackson ImmunoResearch Laboratories Inc.) was added to the iron (III) oxide particle-labeled antibody solution. A lateral flow assay was performed by allowing the solution to which the antigen was added to act on the membrane.
(2)結果
 酸化鉄(III)粒子を用いたラテラルフローアッセイがCat IgGの検出に対して適用できることを確認するため、検出ライン側の抗体を変化させて検討を行った。その結果を表4に示す。この結果より、検出ライン側のIgG又はドメイン抗体の組み合わせに拠らず、検出ラインの視認を介してCat IgGを検出可能であることが示された。
(2) Results In order to confirm that the lateral flow assay using iron (III) oxide particles can be applied to the detection of Cat IgG, a study was conducted by changing the antibody on the detection line side. Table 4 shows the results. This result indicates that Cat IgG can be detected through visual recognition of the detection line regardless of the combination of IgG or domain antibodies on the detection line side.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Claims (9)

  1.  標識体に固定された抗体を用いて試料中の抗原を検出するラテラルフローアッセイであって、標識体が酸化鉄(III)粒子である、ラテラルフローアッセイ。 A lateral flow assay in which an antibody immobilized on a label is used to detect an antigen in a sample, the label being iron (III) oxide particles.
  2.  酸化鉄(III)粒子に固定された抗体と試料とを接触させることを含む、請求項1記載のラテラルフローアッセイ。 The lateral flow assay according to claim 1, comprising contacting the antibody immobilized on iron (III) oxide particles with the sample.
  3.  酸化鉄(III)粒子による発色を指標として抗原を検出することを含む、請求項1又は2記載のラテラルフローアッセイ。 The lateral flow assay according to claim 1 or 2, comprising detecting the antigen using color development by iron (III) oxide particles as an indicator.
  4.  酸化鉄(III)粒子の平均粒子径が10~1000nmである、請求項1~3のいずれか1項記載のラテラルフローアッセイ。 The lateral flow assay according to any one of claims 1 to 3, wherein the iron (III) oxide particles have an average particle size of 10 to 1000 nm.
  5.  酸化鉄(III)粒子に固定された抗体がVHH抗体である、請求項1~4のいずれか1項記載のラテラルフローアッセイ。 The lateral flow assay according to any one of claims 1 to 4, wherein the antibody immobilized on the iron (III) oxide particles is a VHH antibody.
  6.  酸化鉄(III)粒子に固定された抗体を含む、ラテラルフローアッセイ用試薬。 A reagent for lateral flow assays containing antibodies immobilized on iron (III) oxide particles.
  7.  捕捉抗体が固定されたメンブレンをさらに含む、請求項6記載の試薬。 The reagent according to claim 6, further comprising a membrane on which capture antibodies are immobilized.
  8.  サンプルパッド、酸化鉄(III)粒子に固定された抗体を保持するコンジュゲートパッド、捕捉抗体が固定されたメンブレン、及び吸収パッドを含む、請求項6又は7記載の試薬。 The reagent according to claim 6 or 7, comprising a sample pad, a conjugate pad holding antibodies immobilized on iron (III) oxide particles, a membrane immobilized with capture antibodies, and an absorbent pad.
  9.  酸化鉄(III)粒子に固定された抗体がVHH抗体である、請求項6~8のいずれか1項記載の試薬。 The reagent according to any one of claims 6 to 8, wherein the antibody immobilized on the iron (III) oxide particles is a VHH antibody.
PCT/JP2022/039105 2021-10-29 2022-10-20 Novel lateral flow assay WO2023074524A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280073011.5A CN118339454A (en) 2021-10-29 2022-10-20 Novel lateral chromatography detection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021177620 2021-10-29
JP2021-177620 2021-10-29

Publications (1)

Publication Number Publication Date
WO2023074524A1 true WO2023074524A1 (en) 2023-05-04

Family

ID=86159378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039105 WO2023074524A1 (en) 2021-10-29 2022-10-20 Novel lateral flow assay

Country Status (3)

Country Link
JP (1) JP2023067793A (en)
CN (1) CN118339454A (en)
WO (1) WO2023074524A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999060401A1 (en) * 1998-05-15 1999-11-25 Sekisui Chemical Co., Ltd. Immunoassay reagents and immunoassay method
JP2005514618A (en) * 2001-12-28 2005-05-19 バイオアレイ ソリューションズ リミテッド Analysis of multiple analyte molecules using application specific random particle arrays
US20080314766A1 (en) * 2007-06-20 2008-12-25 Board Of Trustees Of Michigan State University Electrically-active ferromagnetic particle conductimetric biosensor test kit
JP2016516192A (en) * 2013-03-12 2016-06-02 エピネックス ダイアグノスティクス インコーポレイテッド Rapid testing for urinary albumin and urine creatinine
WO2020032294A1 (en) * 2018-08-09 2020-02-13 (주)비비비 Biosensor using magnetic nanoparticles, and detection device and detection method using same
JP2020193868A (en) * 2019-05-28 2020-12-03 パナソニックIpマネジメント株式会社 Detection method and detection device
JP2020536117A (en) * 2017-10-02 2020-12-10 セルテスト・ビオテク,ソシエダッド・リミターダ Antibodies and test devices for the detection of Campylobacter bacteria

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999060401A1 (en) * 1998-05-15 1999-11-25 Sekisui Chemical Co., Ltd. Immunoassay reagents and immunoassay method
JP2005514618A (en) * 2001-12-28 2005-05-19 バイオアレイ ソリューションズ リミテッド Analysis of multiple analyte molecules using application specific random particle arrays
US20080314766A1 (en) * 2007-06-20 2008-12-25 Board Of Trustees Of Michigan State University Electrically-active ferromagnetic particle conductimetric biosensor test kit
JP2016516192A (en) * 2013-03-12 2016-06-02 エピネックス ダイアグノスティクス インコーポレイテッド Rapid testing for urinary albumin and urine creatinine
JP2020536117A (en) * 2017-10-02 2020-12-10 セルテスト・ビオテク,ソシエダッド・リミターダ Antibodies and test devices for the detection of Campylobacter bacteria
WO2020032294A1 (en) * 2018-08-09 2020-02-13 (주)비비비 Biosensor using magnetic nanoparticles, and detection device and detection method using same
JP2020193868A (en) * 2019-05-28 2020-12-03 パナソニックIpマネジメント株式会社 Detection method and detection device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHAO SHUANG; BU TONG; HE KUNYI; BAI FEIER; ZHANG MENG; TIAN YONGMING; SUN XINYU; WANG XIN; ZHANGSUN HUI; WANG LI: "A novel aFe2O3 nanocubes-based multiplex immunochromatographic assay for simultaneous detection of deoxynivalenol and aflatoxin B1 in food samples", FOOD CONTROL, vol. 123, 16 December 2020 (2020-12-16), GB , XP086480567, ISSN: 0956-7135, DOI: 10.1016/j.foodcont.2020.107811 *

Also Published As

Publication number Publication date
JP2023067793A (en) 2023-05-16
CN118339454A (en) 2024-07-12

Similar Documents

Publication Publication Date Title
TW201610435A (en) Mycoplasma pneumoniae detection reagent and application of same
JP2011510291A (en) Methods and kits for detecting antibodies against therapeutic antibodies
Xu et al. Rapid detection of Campylobacter jejuni using fluorescent microspheres as label for immunochromatographic strip test
CN113447658B (en) Kit for detecting anti-peroxiredoxin-1-IgG antibody
JP5647599B2 (en) Method for detecting a substance in a biological sample
EP2972367A1 (en) Biomarkers for detecting the presence of bacteria
US8241857B2 (en) Method for detection of pneumococcus
JP6770805B2 (en) How to detect specific bacteria in a sample
JP5726432B2 (en) Detection method of Mycoplasma pneumoniae antigen measurement
WO2023074524A1 (en) Novel lateral flow assay
CN104297488A (en) Anti-CBir1 antibody detection test paper preparation method and purpose thereof
RU2478970C1 (en) Method for immunofluorescent detection of protective antigen of anthrax agent
CN110540597B (en) Preparation method of latex microsphere immunochromatographic test paper based on haemophilus influenzae surface protein
CN112903996A (en) nCoV-N protein detection kit and nCoV-N protein detection method
US10094833B2 (en) Method and kit for detecting bacterial infection
CN118324905B (en) Nanometer antibody of anti-human beta 2 microglobulin and application thereof
CN117209598B (en) Single-domain antibody for resisting plague V protein, application thereof and immunochromatography test strip
CN117964754B (en) Nanometer antibody for resisting human transferrin and application thereof
KR102092465B1 (en) Anthrax diagnostic detection kit using rapid immunochromatography, its specific antibody and antibody-producing cell lines
KR20240071718A (en) Method for preparing autodisplayed streptococcal protein g
CN115925846A (en) Methods and reagents for detecting antibodies to the Ses iPR-10 allergen
TWI532838B (en) Hybridoma cell line producing monoclonal antibodies against the ricin, the monoclonal antibodies therefrom, and reagent and elisa kit comprising the same
JP4954009B2 (en) Allergen detection method and detection kit
CN115819575A (en) Monoclonal antibodies against human tumor necrosis factor-alpha
CN114957461A (en) Detection kit containing alkaline phosphatase labeled antibody

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886852

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280073011.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22886852

Country of ref document: EP

Kind code of ref document: A1