WO2023074500A1 - Ventilation device - Google Patents

Ventilation device Download PDF

Info

Publication number
WO2023074500A1
WO2023074500A1 PCT/JP2022/038964 JP2022038964W WO2023074500A1 WO 2023074500 A1 WO2023074500 A1 WO 2023074500A1 JP 2022038964 W JP2022038964 W JP 2022038964W WO 2023074500 A1 WO2023074500 A1 WO 2023074500A1
Authority
WO
WIPO (PCT)
Prior art keywords
air supply
heat exchanger
air
fan
exhaust
Prior art date
Application number
PCT/JP2022/038964
Other languages
French (fr)
Japanese (ja)
Inventor
政典 池部
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2023074500A1 publication Critical patent/WO2023074500A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0033Indoor units, e.g. fan coil units characterised by fans having two or more fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0035Indoor units, e.g. fan coil units characterised by introduction of outside air to the room
    • F24F1/0038Indoor units, e.g. fan coil units characterised by introduction of outside air to the room in combination with simultaneous exhaustion of inside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • F24F1/0076Indoor units, e.g. fan coil units with means for purifying supplied air by electric means, e.g. ionisers or electrostatic separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/192Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by electrical means, e.g. by applying electrostatic fields or high voltages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/30Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by ionisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/40Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by ozonisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Definitions

  • This disclosure relates to a ventilation device.
  • the ventilation device disclosed in Patent Document 1 includes an air supply fan, an exhaust fan, a first heat exchanger (total heat exchange element), and a second heat exchanger (indoor heat exchanger).
  • first heat exchanger total heat exchange element
  • second heat exchanger outdoor heat exchanger
  • the purpose of the present disclosure is to downsize the ventilator.
  • a first aspect comprises a casing (12) in which an air supply path (13) for supplying outdoor air to the room and an exhaust path (14) for discharging the indoor air to the outside are formed, and the air supply path (13). ), an exhaust fan (40) for transporting air in the exhaust passage (14), air flowing in the air supply passage (13) and the exhaust passage (14). a first heat exchanger (21) that exchanges heat with flowing air; and a second heat exchanger (52) arranged downstream of the first heat exchanger (21) in the air supply path (13).
  • the air supply fan (30) and the exhaust fan (40) are centrifugal fans each rotating in a first direction orthogonal to the lower surface (12b) of the casing, and the first heat exchange
  • the unit (21), the air supply fan (30), and the second heat exchanger (52) are arranged in a second direction along the lower surface (12b) of the casing (12), and the exhaust fan ( 40) is a ventilator arranged to overlap with the air supply fan (30) when viewed from the first direction.
  • the first heat exchanger (21), the air supply fan (30), and the second heat exchanger (52) are arranged in the second direction along the lower surface (12b) of the casing (12), Moreover, the air supply fan (30) and the exhaust fan (40) overlap in the first direction perpendicular to the bottom surface (12b).
  • the casing (12) can be made smaller in the second direction than the configuration in which the exhaust fan, the first heat exchanger, the air supply fan, and the second heat exchanger are arranged in the second direction.
  • the air supply fan (30) and the exhaust fan (40) are so-called horizontal type centrifugal fans with their rotating shafts along the first direction, the air supply fan (30) and the exhaust fan (40) are arranged in the first direction. Even if it overlaps in the direction, it can suppress that a casing (12) becomes large in a 1st direction.
  • the casing (12) can be made smaller in the horizontal direction perpendicular to the second direction and in the vertical direction.
  • the first heat exchanger (21) and the exhaust fan (40) overlap each other when viewed from the second direction.
  • the casing (12) can be made smaller in the horizontal direction perpendicular to the second direction and in the vertical direction.
  • a fourth aspect is any one of the first to third aspects, wherein the upper end of the second heat exchanger (52) is higher than the upper end of the first heat exchanger (21),
  • the exhaust path (14) includes a first flow path (24) formed above the first heat exchanger (21).
  • the vertical height of the second heat exchanger (52) can be increased.
  • the heat transfer area of the second heat exchanger (52) can be increased.
  • the upper side of the second heat exchanger (52) is part of the exhaust passage (14). The first flow path (24) can be secured.
  • a drain pan (64) is arranged below the second heat exchanger (52), and the air supply fan (30) is , the air supply path (13) is formed below the air supply fan (30) and adjacent to the drain pan (64) in the second direction. and a second flow path (35) communicating with the suction port (36) of the air supply fan (30).
  • the space formed at a position adjacent to the drain pan (64) by providing the drain pan (64) is the second space in the air supply passage (13) located on the suction side of the air supply fan (30). It can be used as two flow paths (35).
  • the air supply fan (30) is arranged below the exhaust fan (40), and the upper end of the air supply fan (30) is higher than the half height position in the first direction in the casing (12), and the air supply passage (13) is formed below the air supply fan (30) and the air supply fan (30). It includes a second flow path (35) communicating with the suction port (36) of the air fan (30).
  • the upper end of the air supply fan (30) is higher than the half height position of the casing (12) in the first direction, so that the air supply fan (30) in the air supply passage (13) is
  • the second flow path (35) located on the suction side of the can be sufficiently secured.
  • the flow path resistance of the second flow path (35) can be reduced, thereby reducing the load on the air supply fan (30).
  • a seventh aspect in any one of the first to sixth aspects, is provided with a generator (74) arranged in the air supply path (13) to generate active species in the air.
  • the active species generated by the generator (74) can be supplied to the indoor space via the air supply path (13).
  • the air supply fan (30) has an air outlet (37) facing the second heat exchanger (52) and the second heat exchanger (52). It extends in the longitudinal direction of the exchanger (52).
  • the air blown out from the outlet (37) of the air supply fan (30) can be prevented from locally flowing through a part of the second heat exchanger (52).
  • FIG. 1 is a schematic configuration diagram of a building in which a ventilation system of an embodiment is installed.
  • FIG. 2 is a schematic configuration diagram of a refrigerant circuit of a ventilator.
  • FIG. 3 is a perspective view showing the appearance of the ventilator.
  • FIG. 4 is a side view of the ventilator.
  • FIG. 5 is a bottom view of the ventilator.
  • FIG. 6 is a bottom view of the ventilator with the indoor panel removed.
  • 7 is a cross-sectional view taken along the line VII--VII of FIG. 4.
  • FIG. 8 is a cross-sectional view taken along line VIII--VIII of FIG. 5.
  • FIG. 9 is a cross-sectional view taken along line IX-IX in FIG. 5.
  • FIG. 10 is a cross-sectional view taken along line XX of FIG. 5.
  • the ventilator (10) of the present disclosure ventilates the indoor space (5).
  • a ventilator (10) ventilates an indoor space (5) of a building such as a general house.
  • the ventilator (10) supplies outdoor air (OA) in the outdoor space (6) to the room as supply air (SA).
  • SA supply air
  • the ventilator (10) discharges indoor air (RA) in the indoor space (5) to the outside as exhaust air (EA).
  • the “indoor space” referred to here includes a living room such as a living room and a non-living room such as a corridor.
  • a ventilator (10) regulates the temperature of the air in the indoor space (5).
  • the ventilator (10) performs cooling operation and heating operation.
  • the ventilation device (10) has a ventilation unit (11).
  • the ventilation unit (11) is arranged in the ceiling space (8) behind the ceiling (7).
  • the ventilation unit (11) of this example is a horizontal ventilation unit. Ventilation units (11) are arranged along the ceiling (7).
  • the ventilation unit (11) has a casing (12).
  • the ventilation unit (11) is arranged in such a posture that the longitudinal direction of the casing (12) is substantially horizontal.
  • the casing (12) is formed with an air supply path (13) and an exhaust path (14).
  • the air supply path (13) is a flow path for supplying outdoor air (OA) indoors.
  • the exhaust path (14) is a flow path for discharging indoor air (RA) to the outside of the room.
  • the ventilation unit (11) has a supply air fan (30), an exhaust fan (40), a total heat exchanger (21) and a utilization heat exchanger (52).
  • the ventilator (10) has a heat source unit (80).
  • the heat source unit (80) and the heat utilization heat exchanger (52) are connected via a first communication pipe (86) and a second communication pipe (87).
  • a refrigerant circuit (R) is configured by connecting the pipes.
  • the refrigerant circuit (R) is filled with refrigerant.
  • the refrigerant is, for example, R32 (difluoromethane).
  • the refrigerant circuit (R) performs a refrigeration cycle by circulating refrigerant.
  • the first communication pipe (86) is a gas-side communication pipe.
  • the second communication pipe (87) is a liquid-side communication pipe.
  • the ventilation unit (11) is connected to an outside air duct (D1), an exhaust duct (D2), and an air supply duct (D3).
  • the inflow end of the outdoor air duct (D1) is connected to the outdoor space (6).
  • the outflow end of the outside air duct (D1) is connected to the inflow end of the air supply passage (13).
  • the inflow end of the exhaust duct (D2) is connected to the outflow end of the exhaust path (14).
  • the outflow end of the exhaust duct (D2) is connected to the outdoor space (6).
  • the inflow end of the air supply duct (D3) is connected to the outflow end of the air supply path (13).
  • the outflow end of the supply air duct (D3) leads to the interior space (5).
  • the heat source unit (80) shown in FIG. 2 is arranged in the outdoor space (6).
  • the heat source unit (80) has a heat source fan (81) and a heat source side electric component box (88).
  • the heat source unit (80) has a compressor (82), a heat source heat exchanger (83), a switching mechanism (84) and an expansion valve (85) as elements of the refrigerant circuit (R).
  • the compressor (82) compresses the sucked refrigerant.
  • the compressor (82) discharges compressed refrigerant.
  • the compressor (82) is of an inverter type.
  • the heat source heat exchanger (83) is a fin-and-tube air heat exchanger.
  • the heat source heat exchanger (83) is an outdoor heat exchanger that exchanges heat between refrigerant flowing therein and outdoor air.
  • the heat source fan (81) is arranged near the heat source heat exchanger (83).
  • the heat source fan (81) of this example is a propeller fan.
  • the heat source fan (81) conveys air passing through the heat source heat exchanger (83).
  • the switching mechanism (84) changes the flow path of the refrigerant circuit (R) so as to switch between the first refrigerating cycle, which is the cooling cycle, and the second refrigerating cycle, which is the heating cycle.
  • the switching mechanism (84) is a four-way switching valve.
  • the switching mechanism (84) has a first port (84a), a second port (84b), a third port (84c) and a fourth port (84d).
  • a first port (84a) of the switching mechanism (84) is connected to a discharge portion of the compressor (82).
  • the second port (84b) of the switching mechanism (84) is connected to the suction portion of the compressor (82).
  • the third port (84c) of the switching mechanism (84) is connected to the gas side end of the heat utilization heat exchanger (52) via the first communication pipe (86).
  • the fourth port (84d) of the switching mechanism (84) is connected to the gas side end of the heat source heat exchanger (83).
  • the switching mechanism (84) switches between the first state and the second state.
  • the switching mechanism (84) in the first state (the state indicated by the solid line in FIG. 2) communicates the first port (84a) and the fourth port (84d) and connects the second port (84b) and the third port (84c).
  • the switching mechanism (84) in the second state (indicated by broken lines in FIG. 2) communicates between the first port (84a) and the third port (84c), and connects the second port (84b) and the fourth port (84d).
  • the expansion valve (85) has one end connected to the liquid side end of the heat source heat exchanger (83) and the other end connected to the liquid side end of the utilization heat exchanger (52) via the second communication pipe (87). Connect.
  • the expansion valve (85) is an electronic expansion valve whose degree of opening is adjustable.
  • Electric parts are accommodated in the internal space of the heat source side electric component box (88).
  • the electric parts include power boards, reactors, control boards, and the like.
  • the power board includes an inverter board corresponding to the compressor (82) and the heat source fan (81).
  • a power device is mounted on the inverter board.
  • FIG. 1 Details of Ventilation Unit Details of the ventilation unit (11) will be described with reference to FIGS. 3 to 9.
  • the front surface of the ventilation unit (11) is a surface on which a first duct connection portion (C1) and a second duct connection portion (C2), which will be described later, are provided.
  • the ventilation unit (11) includes a casing (12), a total heat exchanger unit (20), a fan unit (F), a utilization heat exchanger unit (50), and a utilization side electrical component box (70).
  • the internal space of the casing (12) accommodates a total heat exchanger unit (20), a fan unit (F), a utilization heat exchanger unit (50), and a utilization side electrical component box (70).
  • the total heat exchanger unit (20), the fan unit (F), and the utilization heat exchanger unit (50) are arranged in order from front to back.
  • the casing (12) is shaped like a rectangular parallelepiped extending in the front-rear direction.
  • the casing (12) is shaped like a hollow box.
  • the casing (12) has an upper plate (12a) and a lower plate (12b) facing each other in the vertical direction, and four side plates.
  • the four side plates are composed of a front side plate (12c) and a rear side plate (12d) facing each other in the front-rear direction, and a right side plate (12e) and a left side plate (12f) facing each other in the left-right direction.
  • the upper plate (12a) constitutes the upper surface of the casing (12).
  • the lower plate (12b) constitutes the lower surface of the casing (12).
  • the front plate (12c) constitutes the front side surface of the casing (12).
  • the rear plate (12d) constitutes the rear side surface of the casing (12).
  • the right side plate (12e) constitutes the right side surface of the casing (12).
  • the left side plate (12f) constitutes the left side surface of the casing (12).
  • the upper plate (12a) and the lower plate (12b) extend substantially horizontally.
  • the front plate (12c) and the rear plate (12d) extend substantially vertically.
  • the front side duct fixing member (17) is provided on the back side of the front side plate (12c).
  • the front duct fixing member (17) is arranged at the front end inside the casing (12).
  • the front duct fixing member (17) includes a rectangular parallelepiped main body portion, and tubular first duct connection portion (C1) and second duct connection portion (C2) protruding forward from the front surface of the main body portion. have
  • the front duct fixing member (17) is provided with one first duct connection portion (C1) and one second duct connection portion (C2).
  • the first duct connection portion (C1) and the second duct connection portion (C2) pass through the front plate (12c) and are exposed to the outside of the casing (12).
  • An outflow end of an outside air duct (D1) is connected to the first duct connection portion (C1).
  • the inflow end of the exhaust duct (D2) is connected to the second duct connection (C2).
  • an outside air intake port (o1) is formed inside the first duct connection portion (C1).
  • An exhaust port (o2) is formed inside the second duct connection portion (C2).
  • the outdoor air intake port (o1) is an opening for introducing outdoor air into the air supply passage (13).
  • the exhaust port (o2) is an opening for discharging the air in the exhaust passage (14) to the outside of the room.
  • the outside air intake port (o1) is located closer to the center in the left-right direction of the front plate (12c) than the exhaust port (o2).
  • a rear duct fixing member (18) is provided on the back side of the rear plate (12d).
  • the rear duct fixing member (18) is arranged at the rear end inside the casing (12).
  • the rear duct fixing member (18) has a rectangular parallelepiped main body and a tubular third duct connection part (C3) projecting rearward from the rear surface of the main body.
  • the rear duct fixing member (18) is provided with five third duct connections (C3).
  • the third duct connection portion (C3) penetrates the rear plate (12d) and is exposed to the outside of the casing (12).
  • the inflow end of the air supply duct (D3) is connected to the third duct connection (C3).
  • the numbers of the first duct connection (C1), the second duct connection (C2), and the third duct connection (C3) shown here are merely examples. In FIG. 1, only one air supply duct (D3) is shown for convenience.
  • An air supply port (o3) is formed inside the third duct connection part (C3).
  • the air supply port (o3) is an opening for supplying the air in the air supply path (13) to the indoor space.
  • an inspection opening (19) is formed in the lower surface of the casing (12).
  • the inspection opening (19) is provided for inspecting the parts housed in the internal space of the casing (12).
  • the inspection opening (19) is formed in front of the lower plate (12b) of the casing (12).
  • the inspection port (19) communicates with the internal space of the casing (12).
  • the access door (19) corresponds to the opening of the present disclosure.
  • an interior panel (15) is provided below the inspection opening (19).
  • the indoor panel (15) is arranged so as to cover the entire inspection opening (19).
  • the interior panel (15) is provided in a ceiling opening (7a) passing through the ceiling (7).
  • the interior panel (15) faces the interior space (5).
  • the interior panel (15) is fixed to the casing (12) by fastening members (for example, bolts).
  • the interior panel (15) is configured to be removable.
  • the interior panel (15) has an outer panel (15a) and an inner panel (15b).
  • the outer panel (15a) is flat.
  • An inside air intake port (15c) is formed in the front portion of the outer panel (15a).
  • the inside air intake port (15c) is formed in a rectangular shape with long sides extending in the left-right direction.
  • the inside air intake port (15c) is an opening for sucking in room air.
  • the inside air intake port (15c) allows the indoor space (5) and the inflow end of the exhaust passage (14) to communicate with each other.
  • the inner panel (15b) is laid over the outer panel (15a). Three openings are formed in the inner panel (15b).
  • the first opening (15d) is formed in the front portion of the inner panel (15b).
  • the first opening (15d) is formed at a position vertically overlapping the inside air inlet (15c) of the outer panel (15a).
  • the first opening (15d) is formed in a rectangular shape with long sides extending in the horizontal direction.
  • the first opening (15d) is formed at a position vertically overlapping a filter (23) described later.
  • the second opening (15e) is formed behind the first opening (15d) in the inner panel (15b).
  • the second opening (15e) is formed in a rectangular shape with long sides extending in the left-right direction.
  • the second opening (15e) is formed at a position vertically overlapping a total heat exchanger (21) described later.
  • the third opening (15f) is formed to the right of the first opening (15d) and the second opening (15e) in the inner panel (15b).
  • the third opening (15f) is formed in a rectangular shape with long sides extending in the front-rear direction.
  • the third opening (15f) is formed at a position vertically overlapping the user side electrical component box (70).
  • a panel space (16) which is a small vertical space, is formed between the inner panel (15b) and the outer panel (15a). Room air that has flowed in through the inside air intake port (15c) flows into the total heat exchanger (21) via the panel space (16) and the second opening (15e).
  • the total heat exchanger unit (20) is arranged on the front side in the internal space of the casing (12).
  • the total heat exchanger unit (20) is arranged adjacently to the rear of the front side duct fixing member (17).
  • the total heat exchanger unit (20) is arranged above the inspection port (19).
  • the total heat exchanger unit (20) has a first housing (22), a total heat exchanger (21), and a filter (23).
  • the first accommodation portion (22) accommodates a total heat exchanger (21) and a filter (23).
  • the first receptacle part (22) is formed in a hollow, substantially rectangular parallelepiped shape.
  • the vertical length of the first accommodation portion (22) is substantially the same as the vertical length of the internal space of the casing (12).
  • the first accommodation portion (22) has an open bottom surface.
  • the first accommodation portion (22) is made of foamed polystyrene.
  • the total heat exchanger (21) corresponds to the first heat exchanger of the present disclosure.
  • the total enthalpy heat exchanger (21) is housed on the rear side inside the first housing portion (22).
  • the total heat exchanger (21) exchanges heat between air flowing through the air supply passage (13) and air flowing through the exhaust passage (14).
  • a supply side internal flow path (21a) and an exhaust side internal flow path (21b) are formed inside the total heat exchanger (21).
  • the air supply side internal flow path (21a) and the exhaust side internal flow path (21b) are orthogonal to each other.
  • the total heat exchanger (21) is arranged such that the inflow surface of the exhaust-side internal flow path (21b) is along the opening surface of the internal air intake port (15c).
  • the air flowing through the exhaust-side internal flow path (21b) flows from bottom to top. In other words, the air flowing through the exhaust-side internal flow path (21b) flows substantially vertically.
  • the air flowing through the air supply side internal channel (21a) flows from front to rear.
  • the air flowing through the air supply side internal flow path (21a) flows substantially horizontally.
  • the total heat exchanger (21) transfers heat between the air in the air supply side internal flow path (21a) and the air in the exhaust side internal flow path (21b).
  • the total heat exchanger (21) moves moisture between the air in the air supply side internal flow path (21a) and the air in the exhaust side internal flow path (21b).
  • the total heat exchanger (21) exchanges latent heat and sensible heat between the air in the supply side internal flow path (21a) and the air in the exhaust side internal flow path (21b).
  • a total heat exchange upper space (24) is formed between the total heat exchanger (21) and the upper surface of the first accommodation portion (22).
  • the total heat exchange upper space (24) is formed above the total heat exchanger (21). Air that has passed through the exhaust-side internal flow path (21b) of the total heat exchanger (21) flows into the total heat exchange upper space (24).
  • the filter (23) is arranged in front of the total heat exchanger (21) inside the first accommodation section (22).
  • the filter (23) is arranged upstream of the total heat exchanger (21) in the air supply path (13).
  • the filter (23) collects dust in outdoor air (OA).
  • a substantially rectangular first inlet (25) is formed in the front side surface of the first storage portion (22).
  • the first inlet (25) communicates with the internal space of the first accommodation portion (22).
  • the first inlet (25) communicates with the outside air duct (D1) via the first duct connection portion (C1) of the front duct fixing member (17).
  • the outdoor air that has flowed into the first inlet (25) passes through the filter (23) and flows into the air supply side internal flow path (21a) of the total heat exchanger (21).
  • the inner panel (15b) of the interior panel (15) is arranged on the lower surface of the first housing portion (22).
  • the second opening (15e) of the inner panel (15b) constitutes the second inlet (26) of the first accommodation portion (22).
  • the second inlet (26) communicates with the internal space of the first accommodation portion (22).
  • the second inlet (26) communicates with the inside air inlet (15c) of the outer panel (15a) through the panel space (16).
  • the room air that has flowed into the second inlet (26) flows into the exhaust-side internal flow path (21b) of the total heat exchanger (21).
  • the fan unit (F) is arranged adjacently behind the total heat exchanger unit (20) in the internal space of the casing (12).
  • the fan unit (F) is arranged above the lower plate (12b).
  • the fan unit (F) is formed in a substantially rectangular parallelepiped shape extending in the left-right direction.
  • the vertical length of the fan unit (F) is substantially the same as the vertical length of the internal space of the casing (12).
  • a part of the right side surface of the fan unit (F) protrudes rightward.
  • An opening is formed at the front end of the fan unit (F).
  • the rear end of the total heat exchanger (21) is inserted into this opening.
  • the fan unit (F) has an air supply fan (30) and an exhaust fan (40).
  • the air supply fan (30) and the exhaust fan (40) are arranged to overlap each other in the vertical direction.
  • the exhaust fan (40) is arranged above the air supply fan (30).
  • the exhaust fan (40) conveys the air in the exhaust passage (14).
  • the exhaust fan (40) includes an exhaust side housing (41), a first impeller (42) housed in the exhaust side housing (41), and a first motor (M1) for rotating the first impeller (42). and
  • the exhaust-side housing (41) is made of resin.
  • the exhaust side housing (41) is formed in a substantially rectangular parallelepiped shape that is vertically thin.
  • a first partition (41a) is formed in the upper portion of the exhaust-side housing (41).
  • the first partition (41a) is divided into an exhaust side suction space (44) formed in the upper portion of the exhaust side housing (41) and an exhaust fan accommodation space (43) formed in the lower portion of the exhaust side housing (41). divide the The exhaust side suction space (44) is a substantially rectangular parallelepiped space.
  • the exhaust side suction space (44) communicates with the total heat exchange upper space (24).
  • a first impeller (42) is arranged in the exhaust fan accommodation space (43).
  • the exhaust fan housing space (43) is a substantially cylindrical space.
  • the first partition (41a) is formed with a first suction port (45) vertically penetrating the first partition (41a).
  • the first suction port (45) communicates the exhaust side suction space (44) with the exhaust fan accommodation space (43).
  • the exhaust fan (40) is arranged in the exhaust path (14).
  • the exhaust fan (40) is a sirocco-type centrifugal fan.
  • the exhaust fan (40) is of a horizontal type with its rotation axis arranged along the vertical direction.
  • the exhaust fan (40) may be a turbo-type centrifugal fan.
  • the first impeller (42) is driven by the first motor (M1).
  • the first motor (M1) is fixed to the lower surface of the exhaust-side housing (41).
  • the rotation speed of the first motor (M1) is variable.
  • the first motor (M1) is a regulated DC fan motor.
  • the exhaust fan (40) is configured to have a variable air volume.
  • a second partition (41b) is formed in the front portion of the first partition (41a) of the exhaust-side housing (41).
  • the second partition (41b) includes an exhaust side suction space (44) formed above the second partition (41b) and an introduction space (G) formed below the second partition (41b). divide the The introduction space (G) is formed between the front end of the fan unit (F) and the outflow surface of the air supply side internal flow path (21a) in the total heat exchanger (21).
  • An exhaust-side outlet (48) is formed on the left side of the inflow surface of the exhaust-side suction space (44) in the exhaust-side housing (41).
  • the exhaust-side outlet (48) is a substantially rectangular opening elongated in the vertical direction.
  • the exhaust side outlet (48) communicates with the exhaust fan accommodation space (43) via an exhaust side relay passageway (47) extending from the left side of the exhaust fan accommodation space (43).
  • the air supply fan (30) conveys the air in the air supply passage (13).
  • the air supply fan (30) includes an air supply side housing (31), a second impeller (32) housed in the air supply side housing (31), and a second motor for rotating the second impeller (32). (M2) and
  • the air supply side housing (31) is made of resin.
  • the air supply side housing (31) is formed in a substantially rectangular parallelepiped shape that is vertically thin.
  • the air supply side housing (31) is fastened to the exhaust side housing (41) via a fastening member.
  • the air supply side housing (31) has the same outer shape as the exhaust side housing (41) when viewed from above.
  • the vertical length of the air supply side housing (31) is greater than the vertical length of the exhaust side housing (41). In other words, the upper end of the air supply side housing (31) is located above the vertical center of the casing (12).
  • a third partition (33) is formed in the lower portion of the air supply side housing (31).
  • the third partition (33) comprises an air supply fan accommodation space (34) formed in the upper part of the air supply side housing (31) and an air supply side suction space formed in the lower part of the air supply side housing (31). (35) separates the The air supply side suction space (35) is a substantially rectangular parallelepiped space.
  • the air supply side suction space (35) communicates with the introduction space (G).
  • a second impeller (32) is arranged in the air supply fan accommodation space (34).
  • the air supply fan accommodation space (34) is a substantially cylindrical space.
  • the third partition (33) is formed with a second suction port (36) vertically penetrating the third partition (33).
  • the second suction port (36) communicates the air supply side suction space (35) with the air supply fan accommodation space (34).
  • the vertical length of the air supply side suction space (35) is longer than the vertical length of the exhaust side suction space (44).
  • the air supply fan (30) is arranged in the air supply path (13).
  • the air supply fan (30) is a sirocco-type centrifugal fan.
  • the air supply fan (30) is of a horizontal type with its rotating shaft arranged along the vertical direction.
  • the rotating shaft of the second impeller (32) is not positioned to vertically overlap the rotating shaft of the first impeller (42).
  • the rotation shaft of the second impeller (32) is arranged rearward and to the right of the rotation shaft of the first impeller (42).
  • the air supply fan (30) may be a turbo-type centrifugal fan.
  • the second impeller (32) is driven by the second motor (M2).
  • the second motor (M2) is fixed to the upper surface of the air supply side housing (31).
  • the rotation speed of the second motor (M2) is variable.
  • the second motor (M2) is a regulated DC fan motor.
  • the air supply fan (30) is configured to have a variable air volume.
  • An air supply side outlet (37) is formed on the left side of the rear side surface of the air supply side housing (31).
  • the air supply side outlet (37) is a substantially rectangular opening with long sides extending in the left-right direction.
  • the air supply side outlet (37) communicates with the air supply fan accommodation space (34) via an air supply side relay passage (not shown) extending from the left side of the air supply fan accommodation space (34).
  • the utilization heat exchanger unit (50) is arranged adjacently behind the fan unit (F) in the internal space of the casing (12).
  • a utilization heat exchanger unit (50) is arranged between the fan unit (F) and the rear duct fixing member (18).
  • the utilization heat exchanger unit (50) is arranged above the lower plate (12b).
  • the utilization heat exchanger unit (50) has a second housing (51), a utilization heat exchanger (52), a pump (60), a drain pipe (62), and refrigerant pipes (56, 58).
  • the second housing portion (51) houses a heat utilization heat exchanger (52), a pump (60), a drain pipe (62), and refrigerant pipes (56, 58).
  • the second accommodation portion (51) is formed in a substantially L-shaped box shape.
  • the upper surface of the second accommodation portion (51) is formed in a substantially L shape.
  • the upper surface of the second accommodation portion (51) extends rearward and then leftward.
  • the second accommodation portion (51) has an open bottom surface.
  • the lateral length of the second accommodation portion (51) is substantially the same as the lateral length of the internal space of the casing (12).
  • the second housing portion (51) is made of resin.
  • a drain pan (64), which will be described later, is arranged below the second housing portion (51).
  • a space surrounded by the second storage section (51) and the drain pan (64) is a heat exchanger in which a first heat exchange section (52a) and a second heat exchange section (52b) of a heat utilization heat exchanger (52) described later are arranged. It is divided into a replacement part accommodation space (54) and a piping space (55) in which a pump (60), a drain pipe (62), and refrigerant pipes (56, 58) are arranged.
  • the piping space (55) is formed from the front end to the rear end on the right side of the second housing portion (51).
  • the heat exchanging portion accommodation space (54) is a portion of the second accommodation portion (51) other than the piping space (55).
  • the utilization heat exchanger (52) corresponds to the second heat exchanger of the present disclosure.
  • the utilization heat exchanger (52) is arranged downstream of the total heat exchanger (21) in the air supply path (13).
  • the utilization heat exchanger (52) has a first heat exchange section (52a), a second heat exchange section (52b), and a pressure reducing valve (52c). As shown in FIG. 2, the first heat exchange section (52a) and the second heat exchange section (52b) are connected via a refrigerant pipe provided with a pressure reducing valve (52c).
  • the first heat exchange section (52a) and the second heat exchange section (52b) exchange heat between the refrigerant flowing therein and the air flowing in the air supply passage (13).
  • the first heat exchange section (52a) and the second heat exchange section (52b) are fin-and-tube air heat exchangers. As shown in FIG. 7, the first heat exchange section (52a) and the second heat exchange section (52b) have a large number of fins (not shown) and heat transfer tubes (53).
  • the heat transfer tube (53) extends in the direction in which the numerous fins are arranged. Refrigerant flows inside the heat transfer tube (53).
  • the first heat exchanging part (52a) is composed of the front part of the fins
  • the second heat exchanging part (52b) is composed of the rear part of the fins.
  • the first heat exchange section (52a) and the second heat exchange section (52b) are arranged to extend along the vertical direction.
  • the upper portions of the first heat exchange portion (52a) and the second heat exchange portion (52b) are supported on the upper surface of the second housing portion (51).
  • Lower portions of the first heat exchange section (52a) and the second heat exchange section (52b) are supported by the drain pan (64).
  • the pressure reducing valve (52c) reduces the pressure of the refrigerant.
  • the pressure reducing valve (52c) is an electronic expansion valve whose degree of opening is adjustable.
  • the pressure reducing valve (52c) may be a solenoid valve. When the pressure reducing valve (52c) is a solenoid valve, the pressure reducing valve (52c) switches between a fully open state and a state where the degree of opening is reduced so as to reduce the pressure of the refrigerant.
  • the pressure reducing valve (52c) is arranged in the central portion of the piping space (55).
  • One end of a first refrigerant pipe (56) is connected to the first heat exchange section (52a).
  • One end of the first communication pipe (86) is connected to the other end of the first refrigerant pipe (56) via the first refrigerant pipe connector (57).
  • One end of the second refrigerant pipe (58) is connected to the second heat exchange portion (52b).
  • One end of the second communication pipe (87) is connected to the other end of the second refrigerant pipe (58) via the second refrigerant pipe connector (59).
  • the first refrigerant pipe (56) and the second refrigerant pipe (58) are arranged in the pipe space (55).
  • the first refrigerant pipe (56) and the second refrigerant pipe (58) extend from the corresponding heat exchange portions (52a, 52b) toward the rear end of the second accommodation portion (51).
  • the first refrigerant pipe connection portion (57) and the second refrigerant pipe connection portion (59) pass through the rear side surface of the second housing portion (51) and the rear side surface of the casing (12) to extend to the outside of the casing (12). extends to The first refrigerant pipe connection portion (57) and the second refrigerant pipe connection portion (59) are fixed to the rear side surface of the second housing portion (51). In other words, the first refrigerant pipe connection portion (57) and the second refrigerant pipe connection portion (59) protrude rearward from the rear side surface of the second housing portion (51).
  • the first refrigerant pipe connection (57) is arranged above and to the right of the second refrigerant pipe connection (59).
  • the first refrigerant pipe connection portion (57) and the second refrigerant pipe connection portion (59) are arranged below the drain pipe connection portion (63).
  • the pump (60) is arranged in the piping space (55) of the second storage section (51).
  • the pump (60) is arranged in front of the pressure reducing valve (52c) in the piping space (55).
  • the pump (60) is arranged above the drain pan (64).
  • the pump (60) is arranged on the right side of the fan unit (F). The pump (60) sucks up water in the drain pan (64) from its lower part.
  • a float switch (61) is arranged on the right side of the pump (60).
  • a float switch (61) detects the water level in the drain pan (64).
  • the pump (60) is controlled based on the water level detected by the float switch (61).
  • a drain pipe (62) is connected to the pump (60).
  • the drain pipe (62) is arranged in the piping space (55).
  • the drain pipe (62) extends from the pump (60) toward the rear end of the second housing (51).
  • the drain pipe (62) is connected to a drain pipe connector (63) provided on the rear side surface of the second housing portion (51).
  • the drain pipe connection portion (63) extends outside the casing (12) through the rear side surface of the second housing portion (51) and the rear side surface of the casing (12).
  • the drain pipe connection portion (63) is fixed to the rear side surface of the second housing portion (51).
  • the drain pipe connection (63) is arranged above the pump (60).
  • a substantially rectangular outflow port (51b) having a long side in the left-right direction is formed behind the second heat exchange portion (52b) in the second housing portion (51). The entire second heat exchanging portion (52b) is exposed from the outflow port (51b) of the second accommodating portion (51).
  • the ventilation unit (11) has a drain pan (64). As shown in FIG. 8, the drain pan (64) is arranged on the lower plate (12b) of the casing (12). The drain pan (64) is arranged below the utilization heat exchanger unit (50) and closes the bottom of the utilization heat exchanger unit (50).
  • the drain pan (64) is shaped like a dish with an open top.
  • the drain pan (64) receives condensed water generated around the utilization heat exchanger (52).
  • the drain pan (64) is L-shaped.
  • the drain pan (64) extends leftward after extending rearward.
  • the drain pan (64) vertically overlaps the second accommodation portion (51).
  • the user side electrical component box (70) is arranged along the right side surface of the casing (12).
  • the usage-side electrical component box (70) is arranged near the front side surface of the casing (12).
  • the utilization side electrical component box (70) is arranged on the right side of the total heat exchanger unit (20). Electrical components (not shown) are accommodated in the internal space of the user-side electrical component box (70). Electrical components include power boards, control boards, and the like.
  • the user-side electrical component box (70) is connected to the heat source-side electrical component box (88) of the heat source unit (80), which will be described later, via a connection line (W).
  • the communication line (W) passes through a through hole (H) formed in the front plate (12c) of the casing (12).
  • the through hole (H) is formed in the front plate (12c) of the casing (12) at the lower right side of the first duct connection (C1).
  • the ventilation unit (11) has an exhaust guide (14a).
  • the exhaust guide (14a) is a member for guiding the air blown out from the exhaust fan (40) to the second duct connection portion (C2).
  • the exhaust guide (14a) connects the exhaust side outlet (48) of the fan unit (F) and the second duct connection portion (C2) of the front duct fixing member (17).
  • the exhaust guide (14a) is arranged along the left side plate (12f) of the casing (12).
  • the exhaust guide (14a) is arranged to face the user-side electrical component box (70) with the total heat exchanger unit (20) interposed therebetween.
  • the exhaust guide (14a) is formed in a U shape with an open right side. As shown in FIG. 9, the lower surface of the exhaust guide (14a) approaches the lower surface of the casing (12) toward the second duct connection portion (C2). In other words, the lower surface of the exhaust guide (14a) slopes downward.
  • Air supply path and exhaust path (4-8-1) Air supply path a first air supply passage (S1), a second air supply passage (S2) that is a passage downstream of the total heat exchanger (21), and an air supply side internal passage of the total heat exchanger (21) (21a) and The air flowing through the air supply path (13) flows in order of the first air supply path (S1), the air supply side internal path (21a) of the total heat exchanger (21), and the second air supply path (S2). .
  • the first air supply passageway (S1) flows from the inflow end of the first duct connection (C1) through the first inflow port (25) of the first accommodation section (22) and the filter (23) to the total heat It is a flow path to the front side (inflow side) of the exchanger (21).
  • the second air supply path (S2) flows from the rear side (outflow surface) of the total heat exchanger (21) via the air supply fan (30) and the heat utilization heat exchanger (52) to the third duct connection portion. This is the flow path to the outflow end of (C3). Specifically, the air flowing through the second air supply channel (S2) flows into the intake space (G) from the rear side surface of the total heat exchanger (21) and then into the intake space (35). The air that has flowed into the air supply side suction space (35) is drawn into the second impeller (32) through the second suction port (36).
  • the air sucked into the second impeller (32) passes through the air supply side outlet (37) of the air supply side housing (31) and flows through the inlet (51a) of the second housing (51). flows into the second housing portion (51).
  • the air that has flowed into the second accommodation portion (51) passes through the first heat exchange portion (52a) and the second heat exchange portion (52b) of the heat utilization heat exchanger (52) in order, and reaches the second accommodation portion (51). ) out of the outlet (51b).
  • the air that has flowed out of the second accommodation portion (51) flows into the rear duct fixing member (18), and flows out of the ventilation unit (11) from the outflow end of the third duct connection portion (C3).
  • the exhaust path (14) includes a first exhaust path (E1), which is a flow path on the upstream side of the total heat exchanger (21) in the exhaust path (14), and a total heat exchange flow path (E1).
  • a second exhaust passage (E2) which is a passage on the downstream side of the unit (21), and an exhaust-side internal passage (21b) of the total heat exchanger (21).
  • the air flowing through the exhaust passageway (14) flows through the first exhaust passageway (E1), the exhaust-side internal passageway (21b) of the total heat exchanger (21), and the second exhaust passageway (E2) in this order.
  • the first exhaust flow path (E1) is a flow path from the inside air intake port (15c) of the indoor panel (15) to the lower surface (inflow surface) of the total heat exchanger (21).
  • the first exhaust flow path (E1) includes the inside air intake port (15c) of the outer panel (15a), the panel space (16), the second opening (15e) of the inner panel (15b), and the total heat exchange opening (15e). It extends over the lower surface of the vessel (21).
  • the second exhaust flow path (E2) extends from the upper surface (outlet surface) of the total heat exchanger (21) via the exhaust fan (40) and the exhaust guide (14a) to the second duct connection portion (C2). This is the flow path to the outflow end. Specifically, the air flowing through the second exhaust flow path (E2) flows into the total heat exchange upper space (24) from the upper surface of the total heat exchanger (21), and then flows into the exhaust side suction space (44). do. The air that has flowed into the exhaust side suction space (44) is drawn into the first impeller (42) through the first suction port (45).
  • the air sucked into the first impeller (42) passes through the exhaust fan housing space (43), the exhaust-side relay passage (47), and the exhaust-side outlet (48) to the exhaust guide (14a). flow into the interior of The air flowing out of the exhaust guide (14a) flows into the front duct fixing member (17) and is discharged to the outside of the ventilation unit (11) from the outflow end of the second duct connection portion (C2).
  • the ventilation unit (11) has three temperature and humidity sensors (71, 72, 73). As shown in FIGS. 3 and 7, the first temperature/humidity sensor (71) is fixed through the front plate (12c) of the casing (12). The first temperature/humidity sensor (71) is exposed to the outside of the casing (12). The first temperature/humidity sensor (71) measures the temperature and humidity outside the casing (12). The first temperature/humidity sensor (71) is arranged near the outside air intake (o1). Specifically, the first temperature/humidity sensor (71) is arranged on the right side of the first duct connection portion (C1). By arranging the first temperature/humidity sensor (71) near the outside air intake (o1), the state of dew condensation around the outside air intake (o1) can be grasped.
  • the first temperature/humidity sensor (71) is placed near the user side electrical component box (70). Specifically, the first temperature/humidity sensor (71) is arranged on the front side of the user-side electrical component box (70). None is arranged between the first temperature/humidity sensor (71) and the user-side electrical component box (70). Arranging the first temperature/humidity sensor (71) near the user-side electrical component box (70) facilitates wiring between the first temperature/humidity sensor (71) and the user-side electrical component box (70). .
  • the second temperature and humidity sensor (72) measures the temperature and humidity of the air after passing through the total heat exchanger (21) in the air supply path (13).
  • the second temperature/humidity sensor (72) is arranged in the second air supply channel (S2). Specifically, the second temperature/humidity sensor (72) is arranged in the air supply path (13) between the total heat exchanger (21) and the utilization heat exchanger (52).
  • the second temperature/humidity sensor (72) is arranged between the total heat exchanger (21) and the fan unit (F).
  • an upward recessed portion is formed in the lower surface of the exhaust side housing (41).
  • the internal space of the recess communicates only with the introduction space (G).
  • the second temperature/humidity sensor (72) is arranged in the recess of the exhaust side housing (41). Thereby, the second temperature/humidity sensor (72) detects the air after passing through the air supply side internal flow path (21a) of the total heat exchanger (21) and before flowing into the air supply fan (30). can be measured.
  • the third temperature and humidity sensor (73) measures the temperature and humidity of the air before passing through the total heat exchanger (21) in the air supply path (13).
  • the third temperature/humidity sensor (73) is arranged in the first air supply channel (S1). As shown in FIG. 7, the third temperature/humidity sensor (73) is arranged above the filter (23). The third temperature/humidity sensor (73) is fixed through the upper surface of the first accommodation portion (22).
  • the ventilator (10) switches between cooling operation and heating operation.
  • the ventilator (10) performs reheat dehumidification operation.
  • solid line arrows indicate the flow of the refrigerant during the cooling operation
  • dashed line arrows indicate the flow of the refrigerant during the heating operation.
  • Cooling operation In the cooling operation, the compressor (82) and the heat source fan (81) are operated, the switching mechanism (84) is in the first state, and the heat source heat exchanger (83) is switched to the radiator (strictly speaking, functions as a condenser) and the utilization heat exchanger (52) functions as an evaporator. Specifically, by reducing the degree of opening of the expansion valve (85) and fully opening the pressure reducing valve (52c), the first heat exchange section (52a) and the second heat exchange section (52b) function as evaporators. Function. Additionally, in cooling operation, the air supply fan (30) and the exhaust fan (40) operate.
  • the indoor air (RA) is taken into the first exhaust flow path (E1) as the exhaust fan (40) operates.
  • Outdoor air (OA) is taken into the first air supply channel (S1) as the air supply fan (30) operates.
  • the air in the first air supply channel (S1) flows through the air supply side internal channel (21a) of the total heat exchanger (21).
  • the air in the first exhaust channel (E1) flows through the exhaust-side internal channel (21b) of the total heat exchanger (21).
  • the air cooled and dehumidified in the air supply side internal flow path (21a) flows out to the second air supply flow path (S2).
  • This air is cooled by the first heat exchange section (52a) and the second heat exchange section (52b) of the utilization heat exchanger (52).
  • the cooled air flows through the supply air duct (D3) and is supplied to the interior space (5) as supply air (SA).
  • the refrigerant circuit (R) during heating operation performs the second refrigeration cycle.
  • the utilization heat exchanger (52) functions as a radiator
  • the heat source heat exchanger (83) functions as an evaporator.
  • the casing (12) can be made smaller in the left-right direction and the up-down direction.
  • the part of the second air supply flow path (S2) refers to a flow path (for example, the introduction space (G)) between the total heat exchanger (21) and the heat utilization heat exchanger (52), 3 shows a flow path (a part of the internal space of the second accommodation portion (51)) between the container (52) and the third duct connection portion (C3).
  • the total heat exchanger (21) and the exhaust fan (40) overlap each other when viewed from the front-rear direction.
  • the casing (12) can be made smaller in the left-right direction and the up-down direction.
  • all parts of the total heat exchanger (21), the exhaust fan (40), and the heat utilization heat exchanger (52) overlap each other when viewed from the front-rear direction.
  • the casing (12) can be made even smaller in the left-right direction and the up-down direction.
  • both the first impeller (42) and the second impeller (32) are positioned within the range from the lower end to the upper end of the total heat exchanger (21), And it is positioned within the range from the lower end to the upper end of the heat exchanger (52). Therefore, even if the air supply fan (30) and the exhaust fan (40) are arranged one above the other, it is possible to prevent the casing (12) from increasing in size in the vertical direction.
  • the height position h3 of the upper end of the air supply fan (30) is higher than the half height position h4 in the first direction (vertical direction) in the casing (12).
  • the height position h3 of the upper end of the air supply fan (30) corresponds to the height position of the lower end of the exhaust fan (40).
  • the fan unit (F) is arranged closer to the upper plate (12a) between the upper plate (12a) and the lower plate (12b) of the casing (12). This ensures a sufficient height for the air supply side suction space (35).
  • the height of the air supply side suction space (35) is greater than the height of the exhaust side suction space (44).
  • the air supply side suction space (35) corresponds to the second flow path of the present disclosure.
  • the static pressure of the air supply fan (30) on the blowout side tends to be higher than that of the exhaust fan (40).
  • the load on the air supply fan (30) can be reduced.
  • the air supply side suction space (35) is formed within the range from the lower end to the upper end of the drain pan (64). Therefore, it is possible to prevent the casing (12) from becoming larger in the vertical direction due to the formation of the air supply side suction space (35) below the air supply fan (30).
  • the air supply side outlet (37) of the air supply fan (30) faces the heat utilization heat exchanger (52). Strictly speaking, the air supply side outlet (37) faces the ventilation surface of the heat utilization heat exchanger (52). In other words, the air supply side outlet (37) and the ventilation surface of the heat utilization heat exchanger (52) overlap in the front-rear direction.
  • the "ventilation surface” is a surface formed on the upstream side (front side) of the heat utilization heat exchanger (52) through which air can flow. Therefore, the air blown out from the air supply side outlet (37) can be reliably introduced into the ventilation surface of the heat utilization heat exchanger (52).
  • the air supply side outlet (37) extends in the lateral direction, which is the longitudinal direction of the heat utilization heat exchanger (52).
  • the air-supply side outlet (37) is formed in a rectangular shape with long sides extending in the horizontal direction and short sides extending in the vertical direction. Therefore, the air blown out from the air supply side outlet (37) spreads in the left-right direction. This can prevent air from being locally supplied to the ventilation surface in the longitudinal direction of the heat utilization heat exchanger (52). As a result, the heat transfer performance of the utilization heat exchanger (52) can be improved.
  • the longitudinal direction of the utilization heat exchanger (52) corresponds to the direction in which the straight tubes of the heat transfer tubes extend and the direction in which the fins are arranged.
  • the ventilation unit (11) includes an active species supply section (74).
  • the active species supply section (74) is a generator that generates active species into the air.
  • the active species supply section (74) generates active species (eg, radicals, ozone, high-speed electrons, excited molecules, etc.) by streamer discharge.
  • the active species react with the components to be treated (hazardous components, odorous components, etc.) in the air, thereby oxidizing and decomposing the components to be removed.
  • the active species supply section (74) is arranged in the air supply path (13). Specifically, the active species supply section (74) is arranged in the introduction space (G) in the second air supply channel (S2). The active species supply section (74) is arranged along the left side plate (12f) of the casing (12).
  • the surface of the heat exchanger for utilization (52) can be sterilized, and the propagation of bacteria and mold on the surface of the heat exchanger for utilization (52) can be suppressed.
  • Air containing active species is supplied to the indoor space (5).
  • the air in the indoor space (5) can be purified and sterilized.
  • the upper end of the heat utilization heat exchanger (52) is positioned higher than the upper end of the total heat exchanger (21), and the exhaust path (14) is formed above the total heat exchanger (21). It contains a headspace (24).
  • the heat transfer area of the utilization heat exchanger (52) can be expanded, and the capacity of the utilization heat exchanger (52) can be increased.
  • a part of the flow path of the exhaust path (14) can be secured above the total heat exchanger (21), and the flow path resistance of the exhaust path (14) can be reduced.
  • the air supply fan (30) is arranged below the exhaust fan (40).
  • the air supply path (13) is formed below the air supply fan (30) and adjacent to the drain pan (64) in the second direction, and communicates with the suction port (36) of the air supply fan (30). Includes intake air space (35).
  • the air supply fan (30) is arranged below the exhaust fan (40).
  • the upper end of the air supply fan (30) is higher than half the height of the casing (12) in the first direction.
  • the air supply path (13) includes an air supply side suction space (35) formed below the air supply fan (30) and communicating with the suction port (36) of the air supply fan (30).
  • the active species supply section (74) may be arranged in a channel (first air supply channel (S1)) upstream of the total heat exchanger (21) in the air supply channel (13). In this case, the active species can sterilize the total heat exchanger (21).
  • the active species supply section (74) may be arranged in the exhaust path (14). In this case, it is preferable to arrange the active species supply section (74) in the flow path (first exhaust flow path (E1)) on the upstream side of the total heat exchanger (21) in the exhaust path (14).
  • the air supply fan (30) may be arranged above the exhaust fan (40).
  • the ventilator (10) of the above-described embodiment is turned upside down.
  • the first exhaust flow path (E1) is formed in the upper surface of the casing (12).
  • the indoor space (5) and the first exhaust flow path (E1) communicate through a duct. Thereby, the air in the indoor space (5) can be introduced into the exhaust path (14).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

An air supply fan (30) and an exhaust fan (40) are centrifugal fans, the respective axes of rotation of which are along a first direction orthogonal to a lower surface (12b) of a casing (12). A first heat exchanger (21), the air supply fan (30), and a second heat exchanger (52) are aligned in a second direction along the lower surface (12b) of the casing (12). When viewed from the first direction, the exhaust fan (40) is arranged overlapping the air supply fan (30).

Description

換気装置ventilator
 本開示は、換気装置に関する。 This disclosure relates to a ventilation device.
 特許文献1に開示された換気装置は、給気ファンと、排気ファンと、第1熱交換器(全熱熱交換素子)と、第2熱交換器(室内熱交換器)とを備える。給気ファンおよび排気ファンが運転されると、第1熱交換器において室内空気と室外空気とが熱交換する。第1熱交換器で熱交換した室外空気は、第2熱交換器で冷却または加熱された後、室内へ供給される。第1熱交換器で熱交換した室内空気は、室外へ排出される。 The ventilation device disclosed in Patent Document 1 includes an air supply fan, an exhaust fan, a first heat exchanger (total heat exchange element), and a second heat exchanger (indoor heat exchanger). When the air supply fan and the exhaust fan are operated, heat is exchanged between the indoor air and the outdoor air in the first heat exchanger. The outdoor air heat-exchanged by the first heat exchanger is cooled or heated by the second heat exchanger and then supplied indoors. The indoor air heat-exchanged in the first heat exchanger is discharged outdoors.
特開2011-75117号公報JP 2011-75117 A
 特許文献1に開示の換気装置では、ケーシングの下面に沿って、排気ファンと、第1熱交換器と、給気ファンと、第2熱交換器とが並んで配置される。このため、換気装置が、これらの並ぶ方向において大型化してしまうという問題があった。 In the ventilation device disclosed in Patent Document 1, an exhaust fan, a first heat exchanger, an air supply fan, and a second heat exchanger are arranged side by side along the lower surface of the casing. Therefore, there is a problem that the ventilator is enlarged in the direction in which they are arranged.
 本開示の目的は、換気装置を小型化することである。 The purpose of the present disclosure is to downsize the ventilator.
 第1の態様は、室外空気を室内に供給する給気路(13)と、室内空気を室外に排出する排気路(14)とが形成されるケーシング(12)と、前記給気路(13)の空気を搬送する給気ファン(30)と、前記排気路(14)の空気を搬送する排気ファン(40)と、前記給気路(13)を流れる空気と前記排気路(14)を流れる空気とを熱交換させる第1熱交換器(21)と、前記給気路(13)における前記第1熱交換器(21)の下流側に配置される第2熱交換器(52)とを備え、前記給気ファン(30)および前記排気ファン(40)は、各々の回転軸が前記ケーシングの下面(12b)に直交する第1方向に沿った遠心ファンであり、前記第1熱交換器(21)、前記給気ファン(30)、および前記第2熱交換器(52)は、前記ケーシング(12)の下面(12b)に沿った第2方向に並んでおり、前記排気ファン(40)は、前記第1方向から見た場合に、前記給気ファン(30)と重なって配置される換気装置である。 A first aspect comprises a casing (12) in which an air supply path (13) for supplying outdoor air to the room and an exhaust path (14) for discharging the indoor air to the outside are formed, and the air supply path (13). ), an exhaust fan (40) for transporting air in the exhaust passage (14), air flowing in the air supply passage (13) and the exhaust passage (14). a first heat exchanger (21) that exchanges heat with flowing air; and a second heat exchanger (52) arranged downstream of the first heat exchanger (21) in the air supply path (13). wherein the air supply fan (30) and the exhaust fan (40) are centrifugal fans each rotating in a first direction orthogonal to the lower surface (12b) of the casing, and the first heat exchange The unit (21), the air supply fan (30), and the second heat exchanger (52) are arranged in a second direction along the lower surface (12b) of the casing (12), and the exhaust fan ( 40) is a ventilator arranged to overlap with the air supply fan (30) when viewed from the first direction.
 第1の態様では、第1熱交換器(21)、給気ファン(30)、および第2熱交換器(52)がケーシング(12)の下面(12b)に沿った第2方向に並び、且つ給気ファン(30)と排気ファン(40)とが下面(12b)に直交する第1方向に重なる。この構成では、排気ファン、第1熱交換器、給気ファン、第2熱交換器が第2方向に並ぶ構成よりも、ケーシング(12)を第2方向において小型化できる。 In the first aspect, the first heat exchanger (21), the air supply fan (30), and the second heat exchanger (52) are arranged in the second direction along the lower surface (12b) of the casing (12), Moreover, the air supply fan (30) and the exhaust fan (40) overlap in the first direction perpendicular to the bottom surface (12b). With this configuration, the casing (12) can be made smaller in the second direction than the configuration in which the exhaust fan, the first heat exchanger, the air supply fan, and the second heat exchanger are arranged in the second direction.
 給気ファン(30)および排気ファン(40)は、回転軸が第1方向に沿った、いわゆる横置き型の遠心ファンであるため、給気ファン(30)および排気ファン(40)を第1方向に重ねても、ケーシング(12)が第1方向に大きくなることを抑制できる。 Since the air supply fan (30) and the exhaust fan (40) are so-called horizontal type centrifugal fans with their rotating shafts along the first direction, the air supply fan (30) and the exhaust fan (40) are arranged in the first direction. Even if it overlaps in the direction, it can suppress that a casing (12) becomes large in a 1st direction.
 第2の態様は、第1の態様において、前記第1熱交換器(21)、前記給気ファン(30)、および前記第2熱交換器(52)の全てが、前記第2方向から見た場合に互いに重なる。 In a second aspect, in the first aspect, all of the first heat exchanger (21), the air supply fan (30), and the second heat exchanger (52) are overlap each other when
 第2の態様では、水平方向のうち第2方向と直交する方向、および鉛直方向において、ケーシング(12)を小型化できる。 In the second aspect, the casing (12) can be made smaller in the horizontal direction perpendicular to the second direction and in the vertical direction.
 第3の態様は、第1または第2の態様において、前記第1熱交換器(21)および前記排気ファン(40)が、前記第2方向から見た場合に互いに重なる。 In a third aspect, in the first or second aspect, the first heat exchanger (21) and the exhaust fan (40) overlap each other when viewed from the second direction.
 第3の態様では、水平方向のうち第2方向と直交する方向、および鉛直方向において、ケーシング(12)を小型化できる。 In the third aspect, the casing (12) can be made smaller in the horizontal direction perpendicular to the second direction and in the vertical direction.
 第4の態様は、第1~第3のいずれか1つの態様において、前記第2熱交換器(52)の上端が、前記第1熱交換器(21)の上端よりも高い位置にあり、前記排気路(14)は、前記第1熱交換器(21)の上側に形成される第1流路(24)を含んでいる。 A fourth aspect is any one of the first to third aspects, wherein the upper end of the second heat exchanger (52) is higher than the upper end of the first heat exchanger (21), The exhaust path (14) includes a first flow path (24) formed above the first heat exchanger (21).
 第4の態様では、第2熱交換器(52)の上端が第1熱交換器(21)の上端よりも高いので、第2熱交換器(52)の上下の高さを大きくできる。これにより、第2熱交換器(52)の伝熱面積を拡大できる。一方、第2熱交換器(52)の上端が第1熱交換器(21)の上端よりも低いので、第2熱交換器(52)の上側において、排気路(14)の一部である第1流路(24)を確保できる。 In the fourth aspect, since the upper end of the second heat exchanger (52) is higher than the upper end of the first heat exchanger (21), the vertical height of the second heat exchanger (52) can be increased. Thereby, the heat transfer area of the second heat exchanger (52) can be increased. On the other hand, since the upper end of the second heat exchanger (52) is lower than the upper end of the first heat exchanger (21), the upper side of the second heat exchanger (52) is part of the exhaust passage (14). The first flow path (24) can be secured.
 第5の態様は、第1~第4のいずれか1つの態様において、前記第2熱交換器(52)の下側に配置されるドレンパン(64)を備え、前記給気ファン(30)は、前記排気ファン(40)の下側に配置され、前記給気路(13)は、前記給気ファン(30)の下側且つ前記ドレンパン(64)と第2方向に隣り合う位置に形成されるとともに前記給気ファン(30)の吸込口(36)と連通する第2流路(35)を含む。 According to a fifth aspect, in any one of the first to fourth aspects, a drain pan (64) is arranged below the second heat exchanger (52), and the air supply fan (30) is , the air supply path (13) is formed below the air supply fan (30) and adjacent to the drain pan (64) in the second direction. and a second flow path (35) communicating with the suction port (36) of the air supply fan (30).
 第5の態様では、ドレンパン(64)を設けることによりドレンパン(64)と隣り合う位置に形成される空間を、給気路(13)のうち給気ファン(30)の吸込側に位置する第2流路(35)として利用できる。 In the fifth aspect, the space formed at a position adjacent to the drain pan (64) by providing the drain pan (64) is the second space in the air supply passage (13) located on the suction side of the air supply fan (30). It can be used as two flow paths (35).
 第6の態様は、第1~第5のいずれか1つの態様において、前記給気ファン(30)は、前記排気ファン(40)の下側に配置され、前記給気ファン(30)の上端が、前記ケーシング(12)における前記第1方向の半分の高さ位置より高い位置にあり、前記給気路(13)は、前記給気ファン(30)の下側に形成されるとともに前記給気ファン(30)の吸込口(36)に連通する第2流路(35)を含む。 In a sixth aspect, in any one of the first to fifth aspects, the air supply fan (30) is arranged below the exhaust fan (40), and the upper end of the air supply fan (30) is higher than the half height position in the first direction in the casing (12), and the air supply passage (13) is formed below the air supply fan (30) and the air supply fan (30). It includes a second flow path (35) communicating with the suction port (36) of the air fan (30).
 第6の態様では、給気ファン(30)の上端を、ケーシング(12)における第1方向の半分の高さ位置より高くすることで、給気路(13)のうち給気ファン(30)の吸込側に位置する第2流路(35)を十分に確保できる。これにより、第2流路(35)の流路抵抗を低減できるので、給気ファン(30)の負荷を低減できる。 In the sixth aspect, the upper end of the air supply fan (30) is higher than the half height position of the casing (12) in the first direction, so that the air supply fan (30) in the air supply passage (13) is The second flow path (35) located on the suction side of the can be sufficiently secured. As a result, the flow path resistance of the second flow path (35) can be reduced, thereby reducing the load on the air supply fan (30).
 第7の態様は、第1~第6のいずれか1つの態様において、前記給気路(13)に配置され、空気中に活性種を発生する発生部(74)を備えている。 A seventh aspect, in any one of the first to sixth aspects, is provided with a generator (74) arranged in the air supply path (13) to generate active species in the air.
 第7の態様では、発生部(74)が発生した活性種を、給気路(13)を経由して室内空間へ供給できる。 In the seventh aspect, the active species generated by the generator (74) can be supplied to the indoor space via the air supply path (13).
 第8の態様は、第1~第7のいずれか1つにおいて、前記給気ファン(30)の吹出口(37)は、前記第2熱交換器(52)に対向するとともに該第2熱交換器(52)の長手方向に延びている。 In an eighth aspect, in any one of the first to seventh aspects, the air supply fan (30) has an air outlet (37) facing the second heat exchanger (52) and the second heat exchanger (52). It extends in the longitudinal direction of the exchanger (52).
 第8の態様では、給気ファン(30)の吹出口(37)から吹き出された空気が、第2熱交換器(52)の一部を局所的に流れることを抑制できる。 In the eighth aspect, the air blown out from the outlet (37) of the air supply fan (30) can be prevented from locally flowing through a part of the second heat exchanger (52).
図1は、実施形態の換気装置が設けられる建物の概略の構成図である。FIG. 1 is a schematic configuration diagram of a building in which a ventilation system of an embodiment is installed. 図2は、換気装置の冷媒回路の概略の構成図である。FIG. 2 is a schematic configuration diagram of a refrigerant circuit of a ventilator. 図3は、換気装置の外観を示す斜視図である。FIG. 3 is a perspective view showing the appearance of the ventilator. 図4は、換気装置の側面図である。FIG. 4 is a side view of the ventilator. 図5は、換気装置の下面図である。FIG. 5 is a bottom view of the ventilator. 図6は、換気装置における室内パネルを外した状態の下面図である。FIG. 6 is a bottom view of the ventilator with the indoor panel removed. 図7は、図4のVII-VII線矢視断面図である。7 is a cross-sectional view taken along the line VII--VII of FIG. 4. FIG. 図8は、図5のVIII-VIII線矢視断面図である。8 is a cross-sectional view taken along line VIII--VIII of FIG. 5. FIG. 図9は、図5のIX-IX線矢視断面図である。9 is a cross-sectional view taken along line IX-IX in FIG. 5. FIG. 図10は、図5のX-X線矢視断面図である。10 is a cross-sectional view taken along line XX of FIG. 5. FIG.
 以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示される実施形態に限定されるものではなく、本開示の技術的思想を逸脱しない範囲内で各種の変更が可能である。各図面は、本開示を概念的に説明するためのものであるから、理解容易のために必要に応じて寸法、比または数を誇張または簡略化して表す場合がある。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. Note that the present disclosure is not limited to the embodiments shown below, and various modifications are possible without departing from the technical idea of the present disclosure. Each drawing is for the purpose of conceptually explaining the present disclosure, and therefore dimensions, ratios or numbers may be exaggerated or simplified as necessary for ease of understanding.
 《実施形態》
 (1)換気装置の概要
 本開示の換気装置(10)は、室内空間(5)を換気する。図1に示すように、換気装置(10)は、一般家屋などの建物の室内空間(5)を換気する。換気装置(10)は、室外空間(6)の室外空気(OA)を供給空気(SA)として室内に供給する。同時に、換気装置(10)は、室内空間(5)の室内空気(RA)を排出空気(EA)として室外に排出する。ここでいう「室内空間」は、居間などの居室と、廊下などの非居室とを含む。換気装置(10)は、室内空間(5)の空気の温度を調節する。換気装置(10)は、冷房運転と暖房運転とを行う。
<<Embodiment>>
(1) Outline of ventilator The ventilator (10) of the present disclosure ventilates the indoor space (5). As shown in FIG. 1, a ventilator (10) ventilates an indoor space (5) of a building such as a general house. The ventilator (10) supplies outdoor air (OA) in the outdoor space (6) to the room as supply air (SA). At the same time, the ventilator (10) discharges indoor air (RA) in the indoor space (5) to the outside as exhaust air (EA). The “indoor space” referred to here includes a living room such as a living room and a non-living room such as a corridor. A ventilator (10) regulates the temperature of the air in the indoor space (5). The ventilator (10) performs cooling operation and heating operation.
 換気装置(10)は、換気ユニット(11)を有する。換気ユニット(11)は、天井(7)の裏側の天井裏空間(8)に配置される。本例の換気ユニット(11)は、横置き式の換気ユニットである。換気ユニット(11)は、天井(7)に沿って配置される。図3に示すように、換気ユニット(11)は、ケーシング(12)を有する。換気ユニット(11)は、ケーシング(12)の長手方向が略水平方向となる姿勢で配置される。図7および図8に示すように、ケーシング(12)には、給気路(13)と排気路(14)が形成される。給気路(13)は、室外空気(OA)を室内に供給するための流路である。排気路(14)は、室内空気(RA)を室外に排出するための流路である。換気ユニット(11)は、給気ファン(30)、排気ファン(40)、全熱交換器(21)、および利用熱交換器(52)を有する。 The ventilation device (10) has a ventilation unit (11). The ventilation unit (11) is arranged in the ceiling space (8) behind the ceiling (7). The ventilation unit (11) of this example is a horizontal ventilation unit. Ventilation units (11) are arranged along the ceiling (7). As shown in FIG. 3, the ventilation unit (11) has a casing (12). The ventilation unit (11) is arranged in such a posture that the longitudinal direction of the casing (12) is substantially horizontal. As shown in FIGS. 7 and 8, the casing (12) is formed with an air supply path (13) and an exhaust path (14). The air supply path (13) is a flow path for supplying outdoor air (OA) indoors. The exhaust path (14) is a flow path for discharging indoor air (RA) to the outside of the room. The ventilation unit (11) has a supply air fan (30), an exhaust fan (40), a total heat exchanger (21) and a utilization heat exchanger (52).
 図2に示すように、換気装置(10)は、熱源ユニット(80)を有する。熱源ユニット(80)と、利用熱交換器(52)とは、第1連絡配管(86)および第2連絡配管(87)を介して接続される。この配管の接続により、冷媒回路(R)が構成される。冷媒回路(R)には、冷媒が充填される。冷媒は、例えばR32(ジフルオロメタン)である。冷媒回路(R)は、冷媒が循環することで冷凍サイクルを行う。第1連絡配管(86)は、ガス側の連絡配管である。第2連絡配管(87)は、液側の連絡配管である。 As shown in FIG. 2, the ventilator (10) has a heat source unit (80). The heat source unit (80) and the heat utilization heat exchanger (52) are connected via a first communication pipe (86) and a second communication pipe (87). A refrigerant circuit (R) is configured by connecting the pipes. The refrigerant circuit (R) is filled with refrigerant. The refrigerant is, for example, R32 (difluoromethane). The refrigerant circuit (R) performs a refrigeration cycle by circulating refrigerant. The first communication pipe (86) is a gas-side communication pipe. The second communication pipe (87) is a liquid-side communication pipe.
 (2)ダクト
 図1に示すように、換気ユニット(11)には、外気ダクト(D1)、排気ダクト(D2)、および給気ダクト(D3)が接続される。外気ダクト(D1)の流入端は、室外空間(6)に繋がる。外気ダクト(D1)の流出端は、給気路(13)の流入端に繋がる。排気ダクト(D2)の流入端は、排気路(14)の流出端に繋がる。排気ダクト(D2)の流出端は、室外空間(6)に繋がる。給気ダクト(D3)の流入端は、給気路(13)の流出端に繋がる。給気ダクト(D3)の流出端は室内空間(5)に繋がる。
(2) Duct As shown in FIG. 1, the ventilation unit (11) is connected to an outside air duct (D1), an exhaust duct (D2), and an air supply duct (D3). The inflow end of the outdoor air duct (D1) is connected to the outdoor space (6). The outflow end of the outside air duct (D1) is connected to the inflow end of the air supply passage (13). The inflow end of the exhaust duct (D2) is connected to the outflow end of the exhaust path (14). The outflow end of the exhaust duct (D2) is connected to the outdoor space (6). The inflow end of the air supply duct (D3) is connected to the outflow end of the air supply path (13). The outflow end of the supply air duct (D3) leads to the interior space (5).
 (3)熱源ユニット
 図2に示す熱源ユニット(80)は、室外空間(6)に配置される。熱源ユニット(80)は、熱源ファン(81)と熱源側電装品箱(88)を有する。熱源ユニット(80)は、冷媒回路(R)の要素として、圧縮機(82)、熱源熱交換器(83)、切換機構(84)および膨張弁(85)を有する。
(3) Heat Source Unit The heat source unit (80) shown in FIG. 2 is arranged in the outdoor space (6). The heat source unit (80) has a heat source fan (81) and a heat source side electric component box (88). The heat source unit (80) has a compressor (82), a heat source heat exchanger (83), a switching mechanism (84) and an expansion valve (85) as elements of the refrigerant circuit (R).
 圧縮機(82)は、吸入した冷媒を圧縮する。圧縮機(82)は、圧縮した冷媒を吐出する。圧縮機(82)は、インバータ式である。 The compressor (82) compresses the sucked refrigerant. The compressor (82) discharges compressed refrigerant. The compressor (82) is of an inverter type.
 熱源熱交換器(83)は、フィンアンドチューブ式の空気熱交換器である。熱源熱交換器(83)は、その内部を流れる冷媒と室外空気とを熱交換させる室外熱交換器である。 The heat source heat exchanger (83) is a fin-and-tube air heat exchanger. The heat source heat exchanger (83) is an outdoor heat exchanger that exchanges heat between refrigerant flowing therein and outdoor air.
 熱源ファン(81)は、熱源熱交換器(83)の近傍に配置される。本例の熱源ファン(81)は、プロペラファンである。熱源ファン(81)は、熱源熱交換器(83)を通過する空気を搬送する。 The heat source fan (81) is arranged near the heat source heat exchanger (83). The heat source fan (81) of this example is a propeller fan. The heat source fan (81) conveys air passing through the heat source heat exchanger (83).
 切換機構(84)は、冷房サイクルである第1冷凍サイクルと、暖房サイクルである第2冷凍サイクルとを切り換えるように、冷媒回路(R)の流路を変更する。切換機構(84)は、四方切換弁である。切換機構(84)は、第1ポート(84a)、第2ポート(84b)、第3ポート(84c)、および第4ポート(84d)を有する。切換機構(84)の第1ポート(84a)は、圧縮機(82)の吐出部と繋がる。切換機構(84)の第2ポート(84b)は、圧縮機(82)の吸入部と繋がる。切換機構(84)の第3ポート(84c)は、第1連絡配管(86)を介して利用熱交換器(52)のガス側端部と繋がる。切換機構(84)の第4ポート(84d)は、熱源熱交換器(83)のガス側端部と繋がる。 The switching mechanism (84) changes the flow path of the refrigerant circuit (R) so as to switch between the first refrigerating cycle, which is the cooling cycle, and the second refrigerating cycle, which is the heating cycle. The switching mechanism (84) is a four-way switching valve. The switching mechanism (84) has a first port (84a), a second port (84b), a third port (84c) and a fourth port (84d). A first port (84a) of the switching mechanism (84) is connected to a discharge portion of the compressor (82). The second port (84b) of the switching mechanism (84) is connected to the suction portion of the compressor (82). The third port (84c) of the switching mechanism (84) is connected to the gas side end of the heat utilization heat exchanger (52) via the first communication pipe (86). The fourth port (84d) of the switching mechanism (84) is connected to the gas side end of the heat source heat exchanger (83).
 切換機構(84)は、第1状態と第2状態とに切り換わる。第1状態(図2の実線で示す状態)の切換機構(84)は、第1ポート(84a)と第4ポート(84d)とを連通し且つ第2ポート(84b)と第3ポート(84c)とを連通する。第2状態(図2の破線で示す状態)の切換機構(84)は、第1ポート(84a)と第3ポート(84c)とを連通し、第2ポート(84b)と第4ポート(84d)とを連通する。 The switching mechanism (84) switches between the first state and the second state. The switching mechanism (84) in the first state (the state indicated by the solid line in FIG. 2) communicates the first port (84a) and the fourth port (84d) and connects the second port (84b) and the third port (84c). ). The switching mechanism (84) in the second state (indicated by broken lines in FIG. 2) communicates between the first port (84a) and the third port (84c), and connects the second port (84b) and the fourth port (84d). ).
 膨張弁(85)は、一端が熱源熱交換器(83)の液側端部と繋がり、他端が第2連絡配管(87)を介して利用熱交換器(52)の液側端部と繋がる。膨張弁(85)は、その開度が調節可能な電子膨張弁である。 The expansion valve (85) has one end connected to the liquid side end of the heat source heat exchanger (83) and the other end connected to the liquid side end of the utilization heat exchanger (52) via the second communication pipe (87). Connect. The expansion valve (85) is an electronic expansion valve whose degree of opening is adjustable.
 熱源側電装品箱(88)の内部空間には、電気部品が収容される。電気部品は、電源基板、リアクトル、制御基板などを含む。電源基板は、圧縮機(82)および熱源ファン(81)に対応するインバータ基板を含む。インバータ基板には、パワーデバイスが搭載される。 Electric parts are accommodated in the internal space of the heat source side electric component box (88). The electric parts include power boards, reactors, control boards, and the like. The power board includes an inverter board corresponding to the compressor (82) and the heat source fan (81). A power device is mounted on the inverter board.
 (4)換気ユニットの詳細
 換気ユニット(11)の詳細について、図3~図9を参照しながら説明する。なお、以下の説明の「上」「下」「左」「右」「前」「後」は、換気ユニット(11)を正面から見たときの方向である。換気ユニット(11)の正面は、後述する第1ダクト接続部(C1)および第2ダクト接続部(C2)が設けられた面である。
(4) Details of Ventilation Unit Details of the ventilation unit (11) will be described with reference to FIGS. 3 to 9. FIG. In the following description, "up", "down", "left", "right", "front", and "back" are directions when the ventilation unit (11) is viewed from the front. The front surface of the ventilation unit (11) is a surface on which a first duct connection portion (C1) and a second duct connection portion (C2), which will be described later, are provided.
 換気ユニット(11)は、ケーシング(12)、全熱交換器ユニット(20)、ファンユニット(F)、利用熱交換器ユニット(50)、および利用側電装品箱(70)を備える。ケーシング(12)の内部空間には、全熱交換器ユニット(20)、ファンユニット(F)、利用熱交換器ユニット(50)、および利用側電装品箱(70)が収容される。全熱交換器ユニット(20)、ファンユニット(F)、利用熱交換器ユニット(50)は、前から後ろに向かって順に並んで配置される。 The ventilation unit (11) includes a casing (12), a total heat exchanger unit (20), a fan unit (F), a utilization heat exchanger unit (50), and a utilization side electrical component box (70). The internal space of the casing (12) accommodates a total heat exchanger unit (20), a fan unit (F), a utilization heat exchanger unit (50), and a utilization side electrical component box (70). The total heat exchanger unit (20), the fan unit (F), and the utilization heat exchanger unit (50) are arranged in order from front to back.
 (4-1)ケーシング
 図3~図5に示すように、ケーシング(12)は、前後方向に延びる直方体状に形成される。ケーシング(12)は、中空の箱状に形成される。ケーシング(12)は、上下方向に互いに対向する上板(12a)および下板(12b)と、4つの側板とを有する。4つの側板は、前後方向に互いに対向する前側板(12c)および後側板(12d)と、左右方向に互いに対向する右側板(12e)および左側板(12f)とで構成される。
(4-1) Casing As shown in FIGS. 3 to 5, the casing (12) is shaped like a rectangular parallelepiped extending in the front-rear direction. The casing (12) is shaped like a hollow box. The casing (12) has an upper plate (12a) and a lower plate (12b) facing each other in the vertical direction, and four side plates. The four side plates are composed of a front side plate (12c) and a rear side plate (12d) facing each other in the front-rear direction, and a right side plate (12e) and a left side plate (12f) facing each other in the left-right direction.
 上板(12a)は、ケーシング(12)の上面を構成する。下板(12b)は、ケーシング(12)の下面を構成する。前側板(12c)は、ケーシング(12)の前側面を構成する。後側板(12d)は、ケーシング(12)の後側面を構成する。右側板(12e)は、ケーシング(12)の右側面を構成する。左側板(12f)は、ケーシング(12)の左側面を構成する。上板(12a)および下板(12b)は、略水平方向に延びる。前側板(12c)および後側板(12d)は、略鉛直方向に延びる。 The upper plate (12a) constitutes the upper surface of the casing (12). The lower plate (12b) constitutes the lower surface of the casing (12). The front plate (12c) constitutes the front side surface of the casing (12). The rear plate (12d) constitutes the rear side surface of the casing (12). The right side plate (12e) constitutes the right side surface of the casing (12). The left side plate (12f) constitutes the left side surface of the casing (12). The upper plate (12a) and the lower plate (12b) extend substantially horizontally. The front plate (12c) and the rear plate (12d) extend substantially vertically.
 図7に示すように、前側板(12c)の裏側には、前側ダクト固定部材(17)が設けられる。前側ダクト固定部材(17)は、ケーシング(12)の内部における前端部に配置される。前側ダクト固定部材(17)は、直方体状に形成される本体部と、該本体部の前面から前方に突出する筒状の第1ダクト接続部(C1)および第2ダクト接続部(C2)とを有する。前側ダクト固定部材(17)には、1つの第1ダクト接続部(C1)と1つの第2ダクト接続部(C2)が設けられる。第1ダクト接続部(C1)および第2ダクト接続部(C2)は、前側板(12c)を貫通してケーシング(12)の外部に露出する。第1ダクト接続部(C1)には、外気ダクト(D1)の流出端が接続される。第2ダクト接続部(C2)には、排気ダクト(D2)の流入端が接続される。 As shown in FIG. 7, the front side duct fixing member (17) is provided on the back side of the front side plate (12c). The front duct fixing member (17) is arranged at the front end inside the casing (12). The front duct fixing member (17) includes a rectangular parallelepiped main body portion, and tubular first duct connection portion (C1) and second duct connection portion (C2) protruding forward from the front surface of the main body portion. have The front duct fixing member (17) is provided with one first duct connection portion (C1) and one second duct connection portion (C2). The first duct connection portion (C1) and the second duct connection portion (C2) pass through the front plate (12c) and are exposed to the outside of the casing (12). An outflow end of an outside air duct (D1) is connected to the first duct connection portion (C1). The inflow end of the exhaust duct (D2) is connected to the second duct connection (C2).
 図7に示すように、第1ダクト接続部(C1)の内部には、外気吸込口(o1)が形成される。第2ダクト接続部(C2)の内部には、排気口(o2)が形成される。言い換えると、ケーシング(12)の前側面には、外気吸込口(o1)と排気口(o2)とが形成される。外気吸込口(o1)は、室外空気を給気路(13)に導入するための開口である。排気口(o2)は、排気路(14)の空気を室外へ排出するための開口である。外気吸込口(o1)は、排気口(o2)よりも前側板(12c)の左右方向の中央寄りに位置する。 As shown in FIG. 7, an outside air intake port (o1) is formed inside the first duct connection portion (C1). An exhaust port (o2) is formed inside the second duct connection portion (C2). In other words, the front side surface of the casing (12) is formed with an outside air intake port (o1) and an exhaust port (o2). The outdoor air intake port (o1) is an opening for introducing outdoor air into the air supply passage (13). The exhaust port (o2) is an opening for discharging the air in the exhaust passage (14) to the outside of the room. The outside air intake port (o1) is located closer to the center in the left-right direction of the front plate (12c) than the exhaust port (o2).
 後側板(12d)の裏側には、後側ダクト固定部材(18)が設けられる。後側ダクト固定部材(18)は、ケーシング(12)の内部における後端部に配置される。後側ダクト固定部材(18)は、直方体状に形成される本体部と、該本体部の後面から後方に突出する筒状の第3ダクト接続部(C3)を有する。後側ダクト固定部材(18)には、5つの第3ダクト接続部(C3)が設けられる。 A rear duct fixing member (18) is provided on the back side of the rear plate (12d). The rear duct fixing member (18) is arranged at the rear end inside the casing (12). The rear duct fixing member (18) has a rectangular parallelepiped main body and a tubular third duct connection part (C3) projecting rearward from the rear surface of the main body. The rear duct fixing member (18) is provided with five third duct connections (C3).
 第3ダクト接続部(C3)は、後側板(12d)を貫通してケーシング(12)の外部に露出する。第3ダクト接続部(C3)には、給気ダクト(D3)の流入端が接続される。なお、ここで示す第1ダクト接続部(C1)、第2ダクト接続部(C2)、および第3ダクト接続部(C3)の数は、単なる一例である。図1では、便宜上、給気ダクト(D3)を1つのみ図示している。 The third duct connection portion (C3) penetrates the rear plate (12d) and is exposed to the outside of the casing (12). The inflow end of the air supply duct (D3) is connected to the third duct connection (C3). It should be noted that the numbers of the first duct connection (C1), the second duct connection (C2), and the third duct connection (C3) shown here are merely examples. In FIG. 1, only one air supply duct (D3) is shown for convenience.
 第3ダクト接続部(C3)の内部には、給気口(o3)が形成される。給気口(o3)は、給気路(13)の空気を室内空間へ供給するための開口である。 An air supply port (o3) is formed inside the third duct connection part (C3). The air supply port (o3) is an opening for supplying the air in the air supply path (13) to the indoor space.
 図6に示すように、ケーシング(12)の下面には、点検口(19)が形成される。点検口(19)は、ケーシング(12)の内部空間に収容された部品の点検を行うために設けられる。点検口(19)は、ケーシング(12)の下板(12b)の前方に形成される。点検口(19)は、ケーシング(12)の内部空間と連通する。点検口(19)は、本開示の開口に対応する。 As shown in FIG. 6, an inspection opening (19) is formed in the lower surface of the casing (12). The inspection opening (19) is provided for inspecting the parts housed in the internal space of the casing (12). The inspection opening (19) is formed in front of the lower plate (12b) of the casing (12). The inspection port (19) communicates with the internal space of the casing (12). The access door (19) corresponds to the opening of the present disclosure.
 図5に示すように、点検口(19)の下方には、室内パネル(15)が設けられる。室内パネル(15)は、点検口(19)の全体を覆うように配置される。図1に模式的に示すように、室内パネル(15)は、天井(7)を貫通する天井開口(7a)に設けられる。室内パネル(15)は、室内空間(5)に面する。室内パネル(15)は、締結部材(例えば、ボルト)によってケーシング(12)に固定される。室内パネル(15)は、取り外し可能に構成される。 As shown in Fig. 5, an interior panel (15) is provided below the inspection opening (19). The indoor panel (15) is arranged so as to cover the entire inspection opening (19). As schematically shown in FIG. 1, the interior panel (15) is provided in a ceiling opening (7a) passing through the ceiling (7). The interior panel (15) faces the interior space (5). The interior panel (15) is fixed to the casing (12) by fastening members (for example, bolts). The interior panel (15) is configured to be removable.
 室内パネル(15)は、アウターパネル(15a)とインナーパネル(15b)とを有する。アウターパネル(15a)は、平板状に構成される。アウターパネル(15a)における前側部分には、内気吸込口(15c)が形成される。内気吸込口(15c)は、左右方向を長辺とする長方形状に形成される。内気吸込口(15c)は、室内空気を吸い込むための開口である。内気吸込口(15c)は、室内空間(5)と排気路(14)の流入端とを互いに連通させる。 The interior panel (15) has an outer panel (15a) and an inner panel (15b). The outer panel (15a) is flat. An inside air intake port (15c) is formed in the front portion of the outer panel (15a). The inside air intake port (15c) is formed in a rectangular shape with long sides extending in the left-right direction. The inside air intake port (15c) is an opening for sucking in room air. The inside air intake port (15c) allows the indoor space (5) and the inflow end of the exhaust passage (14) to communicate with each other.
 インナーパネル(15b)は、アウターパネル(15a)の上に重ねて配置される。インナーパネル(15b)には、3つの開口が形成される。第1開口(15d)は、インナーパネル(15b)における前側部分に形成される。第1開口(15d)は、アウターパネル(15a)の内気吸込口(15c)と上下方向に重なる位置に形成される。第1開口(15d)は、左右方向を長辺とする長方形状に形成される。第1開口(15d)は、後述するフィルタ(23)と上下方向に重なる位置に形成される。 The inner panel (15b) is laid over the outer panel (15a). Three openings are formed in the inner panel (15b). The first opening (15d) is formed in the front portion of the inner panel (15b). The first opening (15d) is formed at a position vertically overlapping the inside air inlet (15c) of the outer panel (15a). The first opening (15d) is formed in a rectangular shape with long sides extending in the horizontal direction. The first opening (15d) is formed at a position vertically overlapping a filter (23) described later.
 第2開口(15e)は、インナーパネル(15b)における第1開口(15d)の後側に形成される。第2開口(15e)は、左右方向を長辺とする長方形状に形成される。第2開口(15e)は、後述する全熱交換器(21)と上下方向に重なる位置に形成される。第3開口(15f)は、インナーパネル(15b)における第1開口(15d)および第2開口(15e)の右側に形成される。第3開口(15f)は、前後方向を長辺とする長方形状に形成される。第3開口(15f)は、利用側電装品箱(70)と上下方向に重なる位置に形成される。 The second opening (15e) is formed behind the first opening (15d) in the inner panel (15b). The second opening (15e) is formed in a rectangular shape with long sides extending in the left-right direction. The second opening (15e) is formed at a position vertically overlapping a total heat exchanger (21) described later. The third opening (15f) is formed to the right of the first opening (15d) and the second opening (15e) in the inner panel (15b). The third opening (15f) is formed in a rectangular shape with long sides extending in the front-rear direction. The third opening (15f) is formed at a position vertically overlapping the user side electrical component box (70).
 図8に示すように、インナーパネル(15b)とアウターパネル(15a)との間には、上下方向に僅かな空間であるパネル空間(16)が形成される。内気吸込口(15c)から流入した室内空気は、パネル空間(16)および第2開口(15e)を経由して、全熱交換器(21)に流入する。 As shown in FIG. 8, a panel space (16), which is a small vertical space, is formed between the inner panel (15b) and the outer panel (15a). Room air that has flowed in through the inside air intake port (15c) flows into the total heat exchanger (21) via the panel space (16) and the second opening (15e).
 (4-2)全熱交換器ユニット
 全熱交換器ユニット(20)は、ケーシング(12)の内部空間における前側に配置される。全熱交換器ユニット(20)は、前側ダクト固定部材(17)の後方に隣接して配置される。全熱交換器ユニット(20)は、点検口(19)の上方に配置される。全熱交換器ユニット(20)は、第1収容部(22)、全熱交換器(21)、およびフィルタ(23)を有する。第1収容部(22)には、全熱交換器(21)とフィルタ(23)が収容される。
(4-2) Total heat exchanger unit The total heat exchanger unit (20) is arranged on the front side in the internal space of the casing (12). The total heat exchanger unit (20) is arranged adjacently to the rear of the front side duct fixing member (17). The total heat exchanger unit (20) is arranged above the inspection port (19). The total heat exchanger unit (20) has a first housing (22), a total heat exchanger (21), and a filter (23). The first accommodation portion (22) accommodates a total heat exchanger (21) and a filter (23).
 (4-2-1)第1収容部
 第1収容部(22)は、中空の略直方体状に形成される。第1収容部(22)の上下方向の長さは、ケーシング(12)の内部空間の上下方向の長さと略同じである。第1収容部(22)は、下面が開放されている。第1収容部(22)は、発泡スチロールで構成される。
(4-2-1) First Receiving Part The first receptacle part (22) is formed in a hollow, substantially rectangular parallelepiped shape. The vertical length of the first accommodation portion (22) is substantially the same as the vertical length of the internal space of the casing (12). The first accommodation portion (22) has an open bottom surface. The first accommodation portion (22) is made of foamed polystyrene.
 (4-2-2)全熱交換器
 全熱交換器(21)は、本開示の第1熱交換器に対応する。全熱交換器(21)は、第1収容部(22)の内部における後側に収容される。全熱交換器(21)は、給気路(13)を流れる空気と排気路(14)を流れる空気とを熱交換させる。図8に模式的に示すように、全熱交換器(21)の内部には、給気側内部流路(21a)および排気側内部流路(21b)が形成される。給気側内部流路(21a)と排気側内部流路(21b)とは、互いに直交する。
(4-2-2) Total Heat Exchanger The total heat exchanger (21) corresponds to the first heat exchanger of the present disclosure. The total enthalpy heat exchanger (21) is housed on the rear side inside the first housing portion (22). The total heat exchanger (21) exchanges heat between air flowing through the air supply passage (13) and air flowing through the exhaust passage (14). As schematically shown in FIG. 8, a supply side internal flow path (21a) and an exhaust side internal flow path (21b) are formed inside the total heat exchanger (21). The air supply side internal flow path (21a) and the exhaust side internal flow path (21b) are orthogonal to each other.
 全熱交換器(21)は、排気側内部流路(21b)の流入面が、内気吸込口(15c)の開口面に沿うように配置される。排気側内部流路(21b)を流れる空気は、下から上に向かって流れる。言い換えると、排気側内部流路(21b)を流れる空気は、略鉛直方向に流れる。給気側内部流路(21a)を流れる空気は、前から後ろに向かって流れる。給気側内部流路(21a)を流れる空気は、略水平方向に流れる。 The total heat exchanger (21) is arranged such that the inflow surface of the exhaust-side internal flow path (21b) is along the opening surface of the internal air intake port (15c). The air flowing through the exhaust-side internal flow path (21b) flows from bottom to top. In other words, the air flowing through the exhaust-side internal flow path (21b) flows substantially vertically. The air flowing through the air supply side internal channel (21a) flows from front to rear. The air flowing through the air supply side internal flow path (21a) flows substantially horizontally.
 全熱交換器(21)は、給気側内部流路(21a)の空気と排気側内部流路(21b)の空気との間で熱を移動させる。全熱交換器(21)は、給気側内部流路(21a)の空気と排気側内部流路(21b)の空気との間で水分を移動させる。このように、全熱交換器(21)は、給気側内部流路(21a)の空気と排気側内部流路(21b)の空気との間で、潜熱および顕熱を交換させる。 The total heat exchanger (21) transfers heat between the air in the air supply side internal flow path (21a) and the air in the exhaust side internal flow path (21b). The total heat exchanger (21) moves moisture between the air in the air supply side internal flow path (21a) and the air in the exhaust side internal flow path (21b). Thus, the total heat exchanger (21) exchanges latent heat and sensible heat between the air in the supply side internal flow path (21a) and the air in the exhaust side internal flow path (21b).
 全熱交換器(21)と第1収容部(22)の上面との間には、全熱交換上部空間(24)が形成される。全熱交換上部空間(24)は、全熱交換器(21)の上側に形成される。全熱交換上部空間(24)には、全熱交換器(21)の排気側内部流路(21b)を通過した空気が流入する。 A total heat exchange upper space (24) is formed between the total heat exchanger (21) and the upper surface of the first accommodation portion (22). The total heat exchange upper space (24) is formed above the total heat exchanger (21). Air that has passed through the exhaust-side internal flow path (21b) of the total heat exchanger (21) flows into the total heat exchange upper space (24).
 (4-2-3)フィルタ
 図8に示すように、フィルタ(23)は、第1収容部(22)の内部における全熱交換器(21)の前方に配置される。フィルタ(23)は、給気路(13)における全熱交換器(21)の上流側に配置される。フィルタ(23)は、室外空気(OA)中の塵埃を捕集する。
(4-2-3) Filter As shown in FIG. 8, the filter (23) is arranged in front of the total heat exchanger (21) inside the first accommodation section (22). The filter (23) is arranged upstream of the total heat exchanger (21) in the air supply path (13). The filter (23) collects dust in outdoor air (OA).
 (4-2-4)第1流入口、第2流入口
 第1収容部(22)の前側面には、略矩形状の第1流入口(25)が形成される。第1流入口(25)は、第1収容部(22)の内部空間に連通する。第1流入口(25)は、前側ダクト固定部材(17)の第1ダクト接続部(C1)を介して、外気ダクト(D1)に連通する。第1流入口(25)に流入した室外空気は、フィルタ(23)を通過して、全熱交換器(21)の給気側内部流路(21a)に流入する。
(4-2-4) First Inlet, Second Inlet A substantially rectangular first inlet (25) is formed in the front side surface of the first storage portion (22). The first inlet (25) communicates with the internal space of the first accommodation portion (22). The first inlet (25) communicates with the outside air duct (D1) via the first duct connection portion (C1) of the front duct fixing member (17). The outdoor air that has flowed into the first inlet (25) passes through the filter (23) and flows into the air supply side internal flow path (21a) of the total heat exchanger (21).
 第1収容部(22)の下面には、室内パネル(15)のインナーパネル(15b)が配置されている。インナーパネル(15b)の第2開口(15e)が、第1収容部(22)の第2流入口(26)を構成する。第2流入口(26)は、第1収容部(22)の内部空間に連通する。第2流入口(26)は、パネル空間(16)を介して、アウターパネル(15a)の内気吸込口(15c)に連通する。第2流入口(26)に流入した室内空気は、全熱交換器(21)の排気側内部流路(21b)に流入する。 The inner panel (15b) of the interior panel (15) is arranged on the lower surface of the first housing portion (22). The second opening (15e) of the inner panel (15b) constitutes the second inlet (26) of the first accommodation portion (22). The second inlet (26) communicates with the internal space of the first accommodation portion (22). The second inlet (26) communicates with the inside air inlet (15c) of the outer panel (15a) through the panel space (16). The room air that has flowed into the second inlet (26) flows into the exhaust-side internal flow path (21b) of the total heat exchanger (21).
 (4-3)ファンユニット
 図7および図8に示すように、ファンユニット(F)は、ケーシング(12)の内部空間における全熱交換器ユニット(20)の後方に隣接して配置される。ファンユニット(F)は、下板(12b)の上方に配置される。ファンユニット(F)は、左右方向に延びる略直方体状に形成される。ファンユニット(F)の上下方向の長さは、ケーシング(12)の内部空間の上下方向の長さと略同じである。ファンユニット(F)は、その右側面の一部が右側方に突出している。ファンユニット(F)の前端部には、開口が形成される。この開口には、全熱交換器(21)の後端部が挿入されている。
(4-3) Fan Unit As shown in FIGS. 7 and 8, the fan unit (F) is arranged adjacently behind the total heat exchanger unit (20) in the internal space of the casing (12). The fan unit (F) is arranged above the lower plate (12b). The fan unit (F) is formed in a substantially rectangular parallelepiped shape extending in the left-right direction. The vertical length of the fan unit (F) is substantially the same as the vertical length of the internal space of the casing (12). A part of the right side surface of the fan unit (F) protrudes rightward. An opening is formed at the front end of the fan unit (F). The rear end of the total heat exchanger (21) is inserted into this opening.
 ファンユニット(F)は、給気ファン(30)および排気ファン(40)を有する。ファンユニット(F)において給気ファン(30)と排気ファン(40)とは、上下方向に重なって配置される。排気ファン(40)は、給気ファン(30)の上側に配置される。 The fan unit (F) has an air supply fan (30) and an exhaust fan (40). In the fan unit (F), the air supply fan (30) and the exhaust fan (40) are arranged to overlap each other in the vertical direction. The exhaust fan (40) is arranged above the air supply fan (30).
 (4-3-1)排気ファン
 排気ファン(40)は、排気路(14)の空気を搬送する。排気ファン(40)は、排気側ハウジング(41)と、排気側ハウジング(41)に収容される第1羽根車(42)と、第1羽根車(42)を回転させる第1モータ(M1)とを有する。
(4-3-1) Exhaust Fan The exhaust fan (40) conveys the air in the exhaust passage (14). The exhaust fan (40) includes an exhaust side housing (41), a first impeller (42) housed in the exhaust side housing (41), and a first motor (M1) for rotating the first impeller (42). and
 排気側ハウジング(41)は、樹脂で構成される。排気側ハウジング(41)は、上下方向に薄い略直方体状に形成される。排気側ハウジング(41)の上部には、第1仕切部(41a)が形成される。第1仕切部(41a)は、排気側ハウジング(41)の上部に形成される排気側吸込空間(44)と、排気側ハウジング(41)の下部に形成される排気ファン収容空間(43)とを仕切る。排気側吸込空間(44)は、略直方体状の空間である。排気側吸込空間(44)は、全熱交換上部空間(24)に連通する。排気ファン収容空間(43)には、第1羽根車(42)が配置される。排気ファン収容空間(43)は、略円柱状の空間である。 The exhaust-side housing (41) is made of resin. The exhaust side housing (41) is formed in a substantially rectangular parallelepiped shape that is vertically thin. A first partition (41a) is formed in the upper portion of the exhaust-side housing (41). The first partition (41a) is divided into an exhaust side suction space (44) formed in the upper portion of the exhaust side housing (41) and an exhaust fan accommodation space (43) formed in the lower portion of the exhaust side housing (41). divide the The exhaust side suction space (44) is a substantially rectangular parallelepiped space. The exhaust side suction space (44) communicates with the total heat exchange upper space (24). A first impeller (42) is arranged in the exhaust fan accommodation space (43). The exhaust fan housing space (43) is a substantially cylindrical space.
 第1仕切部(41a)には、該第1仕切部(41a)を上下方向に貫通する第1吸込口(45)が形成される。第1吸込口(45)は、排気側吸込空間(44)と排気ファン収容空間(43)とを連通させる。 The first partition (41a) is formed with a first suction port (45) vertically penetrating the first partition (41a). The first suction port (45) communicates the exhaust side suction space (44) with the exhaust fan accommodation space (43).
 排気ファン(40)は、排気路(14)に配置される。排気ファン(40)は、シロッコ型の遠心ファンである。排気ファン(40)は、その回転軸が上下方向に沿って配置される横置き型である。排気ファン(40)は、ターボ型の遠心ファンであってもよい。 The exhaust fan (40) is arranged in the exhaust path (14). The exhaust fan (40) is a sirocco-type centrifugal fan. The exhaust fan (40) is of a horizontal type with its rotation axis arranged along the vertical direction. The exhaust fan (40) may be a turbo-type centrifugal fan.
 第1羽根車(42)は、第1モータ(M1)によって駆動される。第1モータ(M1)は、排気側ハウジング(41)の下面に固定される。第1モータ(M1)の回転数は、可変である。第1モータ(M1)は、回転数が調節されるDCファンモータである。排気ファン(40)は、その風量が可変に構成される。 The first impeller (42) is driven by the first motor (M1). The first motor (M1) is fixed to the lower surface of the exhaust-side housing (41). The rotation speed of the first motor (M1) is variable. The first motor (M1) is a regulated DC fan motor. The exhaust fan (40) is configured to have a variable air volume.
 排気側ハウジング(41)の第1仕切部(41a)の前側部分には、第2仕切部(41b)が形成される。第2仕切部(41b)は、第2仕切部(41b)の上側に形成された排気側吸込空間(44)と、第2仕切部(41b)の下方に形成される導入空間(G)とを仕切る。導入空間(G)は、ファンユニット(F)の前端部と全熱交換器(21)における給気側内部流路(21a)の流出面との間に形成される。 A second partition (41b) is formed in the front portion of the first partition (41a) of the exhaust-side housing (41). The second partition (41b) includes an exhaust side suction space (44) formed above the second partition (41b) and an introduction space (G) formed below the second partition (41b). divide the The introduction space (G) is formed between the front end of the fan unit (F) and the outflow surface of the air supply side internal flow path (21a) in the total heat exchanger (21).
 排気側ハウジング(41)における排気側吸込空間(44)の流入面の左側方には、排気側吹出口(48)が形成される。排気側吹出口(48)は、上下方向に細長い略矩形状の開口である。排気側吹出口(48)は、排気ファン収容空間(43)の左側から延びる排気側中継通路(47)を介して、排気ファン収容空間(43)と連通する。 An exhaust-side outlet (48) is formed on the left side of the inflow surface of the exhaust-side suction space (44) in the exhaust-side housing (41). The exhaust-side outlet (48) is a substantially rectangular opening elongated in the vertical direction. The exhaust side outlet (48) communicates with the exhaust fan accommodation space (43) via an exhaust side relay passageway (47) extending from the left side of the exhaust fan accommodation space (43).
 (4-3-2)給気ファン
 給気ファン(30)は、給気路(13)の空気を搬送する。給気ファン(30)は、給気側ハウジング(31)と、給気側ハウジング(31)に収容される第2羽根車(32)と、第2羽根車(32)を回転させる第2モータ(M2)とを有する。
(4-3-2) Air Supply Fan The air supply fan (30) conveys the air in the air supply passage (13). The air supply fan (30) includes an air supply side housing (31), a second impeller (32) housed in the air supply side housing (31), and a second motor for rotating the second impeller (32). (M2) and
 給気側ハウジング(31)は、樹脂で構成される。給気側ハウジング(31)は、上下方向に薄い略直方体状に形成される。給気側ハウジング(31)は、排気側ハウジング(41)と締結部材を介して締結されている。給気側ハウジング(31)は、上面視において排気側ハウジング(41)と外形が同じである。給気側ハウジング(31)の上下方向の長さは、排気側ハウジング(41)の上下方向の長さよりも大きい。言い換えると、給気側ハウジング(31)の上端は、ケーシング(12)の上下方向における中央よりも上側に位置する。 The air supply side housing (31) is made of resin. The air supply side housing (31) is formed in a substantially rectangular parallelepiped shape that is vertically thin. The air supply side housing (31) is fastened to the exhaust side housing (41) via a fastening member. The air supply side housing (31) has the same outer shape as the exhaust side housing (41) when viewed from above. The vertical length of the air supply side housing (31) is greater than the vertical length of the exhaust side housing (41). In other words, the upper end of the air supply side housing (31) is located above the vertical center of the casing (12).
 給気側ハウジング(31)の下部には、第3仕切部(33)が形成される。第3仕切部(33)は、給気側ハウジング(31)の上部に形成される給気ファン収容空間(34)と、給気側ハウジング(31)の下部に形成される給気側吸込空間(35)とを仕切る。給気側吸込空間(35)は、略直方体状の空間である。給気側吸込空間(35)は、導入空間(G)に連通する。給気ファン収容空間(34)には、第2羽根車(32)が配置される。給気ファン収容空間(34)は、略円柱状の空間である。 A third partition (33) is formed in the lower portion of the air supply side housing (31). The third partition (33) comprises an air supply fan accommodation space (34) formed in the upper part of the air supply side housing (31) and an air supply side suction space formed in the lower part of the air supply side housing (31). (35) separates the The air supply side suction space (35) is a substantially rectangular parallelepiped space. The air supply side suction space (35) communicates with the introduction space (G). A second impeller (32) is arranged in the air supply fan accommodation space (34). The air supply fan accommodation space (34) is a substantially cylindrical space.
 第3仕切部(33)には、該第3仕切部(33)を上下方向に貫通する第2吸込口(36)が形成される。第2吸込口(36)は、給気側吸込空間(35)と給気ファン収容空間(34)とを連通させる。給気側吸込空間(35)の上下方向の長さは、排気側吸込空間(44)の上下方向の長さよりも長い。 The third partition (33) is formed with a second suction port (36) vertically penetrating the third partition (33). The second suction port (36) communicates the air supply side suction space (35) with the air supply fan accommodation space (34). The vertical length of the air supply side suction space (35) is longer than the vertical length of the exhaust side suction space (44).
 給気ファン(30)は、給気路(13)に配置される。給気ファン(30)は、シロッコ型の遠心ファンである。給気ファン(30)は、その回転軸が上下方向に沿って配置される横置き型である。第2羽根車(32)の回転軸は、第1羽根車(42)の回転軸と上下方向に重なる位置に配置されていない。第2羽根車(32)の回転軸は、第1羽根車(42)の回転軸よりも後側且つ右側に配置される。給気ファン(30)は、ターボ型の遠心ファンであってもよい。 The air supply fan (30) is arranged in the air supply path (13). The air supply fan (30) is a sirocco-type centrifugal fan. The air supply fan (30) is of a horizontal type with its rotating shaft arranged along the vertical direction. The rotating shaft of the second impeller (32) is not positioned to vertically overlap the rotating shaft of the first impeller (42). The rotation shaft of the second impeller (32) is arranged rearward and to the right of the rotation shaft of the first impeller (42). The air supply fan (30) may be a turbo-type centrifugal fan.
 第2羽根車(32)は、第2モータ(M2)によって駆動される。第2モータ(M2)は、給気側ハウジング(31)の上面に固定される。第2モータ(M2)の回転数は可変である。第2モータ(M2)は、回転数が調節されるDCファンモータである。給気ファン(30)は、その風量が可変に構成される。 The second impeller (32) is driven by the second motor (M2). The second motor (M2) is fixed to the upper surface of the air supply side housing (31). The rotation speed of the second motor (M2) is variable. The second motor (M2) is a regulated DC fan motor. The air supply fan (30) is configured to have a variable air volume.
 給気側ハウジング(31)の後側面における左側方には、給気側吹出口(37)が形成される。給気側吹出口(37)は、左右方向を長辺とする略矩形状の開口である。給気側吹出口(37)は、給気ファン収容空間(34)の左側から延びる給気側中継通路(図示省略)を介して、給気ファン収容空間(34)と連通する。 An air supply side outlet (37) is formed on the left side of the rear side surface of the air supply side housing (31). The air supply side outlet (37) is a substantially rectangular opening with long sides extending in the left-right direction. The air supply side outlet (37) communicates with the air supply fan accommodation space (34) via an air supply side relay passage (not shown) extending from the left side of the air supply fan accommodation space (34).
 (4-4)利用熱交換器ユニット
 利用熱交換器ユニット(50)は、ケーシング(12)の内部空間におけるファンユニット(F)の後方に隣接して配置される。利用熱交換器ユニット(50)は、ファンユニット(F)と後側ダクト固定部材(18)との間に配置される。利用熱交換器ユニット(50)は、下板(12b)の上方に配置される。利用熱交換器ユニット(50)は、第2収容部(51)、利用熱交換器(52)、ポンプ(60)、排水管(62)、および冷媒配管(56,58)を有する。第2収容部(51)には、利用熱交換器(52)、ポンプ(60)、排水管(62)、および冷媒配管(56,58)が収容される。
(4-4) Utilization heat exchanger unit The utilization heat exchanger unit (50) is arranged adjacently behind the fan unit (F) in the internal space of the casing (12). A utilization heat exchanger unit (50) is arranged between the fan unit (F) and the rear duct fixing member (18). The utilization heat exchanger unit (50) is arranged above the lower plate (12b). The utilization heat exchanger unit (50) has a second housing (51), a utilization heat exchanger (52), a pump (60), a drain pipe (62), and refrigerant pipes (56, 58). The second housing portion (51) houses a heat utilization heat exchanger (52), a pump (60), a drain pipe (62), and refrigerant pipes (56, 58).
 (4-4-1)第2収容部
 第2収容部(51)は、略L字の箱状に形成される。第2収容部(51)の上面は、略L字状に形成される。第2収容部(51)の上面は、後方に延びた後に左側方に延びる。第2収容部(51)は、その下面が開放されている。第2収容部(51)の左右方向の長さは、ケーシング(12)の内部空間の左右方向の長さと略同じである。第2収容部(51)は、樹脂で構成される。第2収容部(51)の下側には、後述するドレンパン(64)が配置される。
(4-4-1) Second accommodation portion The second accommodation portion (51) is formed in a substantially L-shaped box shape. The upper surface of the second accommodation portion (51) is formed in a substantially L shape. The upper surface of the second accommodation portion (51) extends rearward and then leftward. The second accommodation portion (51) has an open bottom surface. The lateral length of the second accommodation portion (51) is substantially the same as the lateral length of the internal space of the casing (12). The second housing portion (51) is made of resin. A drain pan (64), which will be described later, is arranged below the second housing portion (51).
 第2収容部(51)およびドレンパン(64)で囲まれる空間は、後述する利用熱交換器(52)の第1熱交換部(52a)および第2熱交換部(52b)が配置される熱交換部収容空間(54)と、ポンプ(60)、排水管(62)、および冷媒配管(56,58)が配置される配管空間(55)とに区分される。配管空間(55)は、第2収容部(51)における右側方の前端から後端に亘って形成される。熱交換部収容空間(54)は、第2収容部(51)における配管空間(55)以外の部分である。 A space surrounded by the second storage section (51) and the drain pan (64) is a heat exchanger in which a first heat exchange section (52a) and a second heat exchange section (52b) of a heat utilization heat exchanger (52) described later are arranged. It is divided into a replacement part accommodation space (54) and a piping space (55) in which a pump (60), a drain pipe (62), and refrigerant pipes (56, 58) are arranged. The piping space (55) is formed from the front end to the rear end on the right side of the second housing portion (51). The heat exchanging portion accommodation space (54) is a portion of the second accommodation portion (51) other than the piping space (55).
 (4-4-2)利用熱交換器
 利用熱交換器(52)は、本開示の第2熱交換器に対応する。利用熱交換器(52)は、給気路(13)における全熱交換器(21)の下流側に配置される。利用熱交換器(52)は、第1熱交換部(52a)、第2熱交換部(52b)、および減圧弁(52c)を有する。図2に示すように、第1熱交換部(52a)および第2熱交換部(52b)は、減圧弁(52c)が設けられた冷媒配管を介して接続される。
(4-4-2) Utilization heat exchanger The utilization heat exchanger (52) corresponds to the second heat exchanger of the present disclosure. The utilization heat exchanger (52) is arranged downstream of the total heat exchanger (21) in the air supply path (13). The utilization heat exchanger (52) has a first heat exchange section (52a), a second heat exchange section (52b), and a pressure reducing valve (52c). As shown in FIG. 2, the first heat exchange section (52a) and the second heat exchange section (52b) are connected via a refrigerant pipe provided with a pressure reducing valve (52c).
 第1熱交換部(52a)および第2熱交換部(52b)は、その内部を流れる冷媒と、給気路(13)を流れる空気とを熱交換させる。第1熱交換部(52a)および第2熱交換部(52b)は、フィンアンドチューブ式の空気熱交換器である。図7に示すように、第1熱交換部(52a)および第2熱交換部(52b)は、多数のフィン(図示省略)と伝熱管(53)とを有する。伝熱管(53)は、多数のフィンの配列方向に延びる。伝熱管(53)の内部には、冷媒が流れる。第1熱交換部(52a)はフィンの前側部分で構成され、第2熱交換部(52b)は、フィンの後側部分で構成させる。 The first heat exchange section (52a) and the second heat exchange section (52b) exchange heat between the refrigerant flowing therein and the air flowing in the air supply passage (13). The first heat exchange section (52a) and the second heat exchange section (52b) are fin-and-tube air heat exchangers. As shown in FIG. 7, the first heat exchange section (52a) and the second heat exchange section (52b) have a large number of fins (not shown) and heat transfer tubes (53). The heat transfer tube (53) extends in the direction in which the numerous fins are arranged. Refrigerant flows inside the heat transfer tube (53). The first heat exchanging part (52a) is composed of the front part of the fins, and the second heat exchanging part (52b) is composed of the rear part of the fins.
 第1熱交換部(52a)および第2熱交換部(52b)は、鉛直方向に沿って延びるように配置される。第1熱交換部(52a)および第2熱交換部(52b)の上部は、第2収容部(51)の上面に支持される。第1熱交換部(52a)および第2熱交換部(52b)の下部は、ドレンパン(64)に支持される。 The first heat exchange section (52a) and the second heat exchange section (52b) are arranged to extend along the vertical direction. The upper portions of the first heat exchange portion (52a) and the second heat exchange portion (52b) are supported on the upper surface of the second housing portion (51). Lower portions of the first heat exchange section (52a) and the second heat exchange section (52b) are supported by the drain pan (64).
 減圧弁(52c)は、冷媒を減圧する。減圧弁(52c)は、その開度が調節可能な電子膨張弁である。減圧弁(52c)は、電磁弁であってもよい。減圧弁(52c)が電磁弁である場合、減圧弁(52c)は、全開状態と、冷媒を減圧するように開度を小さくする状態とに切り換わる。減圧弁(52c)は、配管空間(55)の中央部分に配置される。 The pressure reducing valve (52c) reduces the pressure of the refrigerant. The pressure reducing valve (52c) is an electronic expansion valve whose degree of opening is adjustable. The pressure reducing valve (52c) may be a solenoid valve. When the pressure reducing valve (52c) is a solenoid valve, the pressure reducing valve (52c) switches between a fully open state and a state where the degree of opening is reduced so as to reduce the pressure of the refrigerant. The pressure reducing valve (52c) is arranged in the central portion of the piping space (55).
 (4-4-3)冷媒配管
 第1熱交換部(52a)には、第1冷媒配管(56)の一端が接続される。第1冷媒配管(56)の他端には、第1冷媒管接続部(57)を介して、第1連絡配管(86)の一端が接続される。第2熱交換部(52b)には、第2冷媒配管(58)の一端が接続される。第2冷媒配管(58)の他端には、第2冷媒管接続部(59)を介して、第2連絡配管(87)の一端が接続される。
(4-4-3) Refrigerant Piping One end of a first refrigerant pipe (56) is connected to the first heat exchange section (52a). One end of the first communication pipe (86) is connected to the other end of the first refrigerant pipe (56) via the first refrigerant pipe connector (57). One end of the second refrigerant pipe (58) is connected to the second heat exchange portion (52b). One end of the second communication pipe (87) is connected to the other end of the second refrigerant pipe (58) via the second refrigerant pipe connector (59).
 第1冷媒配管(56)および第2冷媒配管(58)は、配管空間(55)に配置される。第1冷媒配管(56)および第2冷媒配管(58)は、それぞれが対応する熱交換部(52a,52b)から第2収容部(51)の後端に向かって延びる。 The first refrigerant pipe (56) and the second refrigerant pipe (58) are arranged in the pipe space (55). The first refrigerant pipe (56) and the second refrigerant pipe (58) extend from the corresponding heat exchange portions (52a, 52b) toward the rear end of the second accommodation portion (51).
 第1冷媒管接続部(57)および第2冷媒管接続部(59)は、第2収容部(51)の後側面およびケーシング(12)の後側面を貫通して、ケーシング(12)の外部に延びる。第1冷媒管接続部(57)および第2冷媒管接続部(59)は、第2収容部(51)の後側面に固定される。言い換えると、第1冷媒管接続部(57)および第2冷媒管接続部(59)は、第2収容部(51)の後側面から後方に突出する。第1冷媒管接続部(57)は、第2冷媒管接続部(59)の上側かつ右側に配置される。第1冷媒管接続部(57)および第2冷媒管接続部(59)は、排水管接続部(63)よりも下側に配置される。 The first refrigerant pipe connection portion (57) and the second refrigerant pipe connection portion (59) pass through the rear side surface of the second housing portion (51) and the rear side surface of the casing (12) to extend to the outside of the casing (12). extends to The first refrigerant pipe connection portion (57) and the second refrigerant pipe connection portion (59) are fixed to the rear side surface of the second housing portion (51). In other words, the first refrigerant pipe connection portion (57) and the second refrigerant pipe connection portion (59) protrude rearward from the rear side surface of the second housing portion (51). The first refrigerant pipe connection (57) is arranged above and to the right of the second refrigerant pipe connection (59). The first refrigerant pipe connection portion (57) and the second refrigerant pipe connection portion (59) are arranged below the drain pipe connection portion (63).
 (4-4-4)ポンプ、排水管
 図7に示すように、ポンプ(60)は、第2収容部(51)の配管空間(55)に配置される。ポンプ(60)は、配管空間(55)における減圧弁(52c)よりも前側に配置される。ポンプ(60)は、ドレンパン(64)の上方に配置される。ポンプ(60)は、ファンユニット(F)の右側方に配置される。ポンプ(60)は、その下部からドレンパン(64)の水を吸い上げる。
(4-4-4) Pump and Drainage Pipe As shown in FIG. 7, the pump (60) is arranged in the piping space (55) of the second storage section (51). The pump (60) is arranged in front of the pressure reducing valve (52c) in the piping space (55). The pump (60) is arranged above the drain pan (64). The pump (60) is arranged on the right side of the fan unit (F). The pump (60) sucks up water in the drain pan (64) from its lower part.
 ポンプ(60)の右側方にはフロートスイッチ(61)が配置される。フロートスイッチ(61)は、ドレンパン(64)内の水位を検出する。ポンプ(60)は、フロートスイッチ(61)によって検出された水位に基づいて制御される。 A float switch (61) is arranged on the right side of the pump (60). A float switch (61) detects the water level in the drain pan (64). The pump (60) is controlled based on the water level detected by the float switch (61).
 ポンプ(60)には、排水管(62)が接続される。排水管(62)は、配管空間(55)に配置される。排水管(62)は、ポンプ(60)から第2収容部(51)の後端に向かって延びる。排水管(62)は、第2収容部(51)の後側面に設けられた排水管接続部(63)に接続される。排水管接続部(63)は、第2収容部(51)の後側面およびケーシング(12)の後側面を貫通して、ケーシング(12)の外部に延びる。排水管接続部(63)は、第2収容部(51)の後側面に固定される。排水管接続部(63)は、ポンプ(60)よりも上側に配置される。 A drain pipe (62) is connected to the pump (60). The drain pipe (62) is arranged in the piping space (55). The drain pipe (62) extends from the pump (60) toward the rear end of the second housing (51). The drain pipe (62) is connected to a drain pipe connector (63) provided on the rear side surface of the second housing portion (51). The drain pipe connection portion (63) extends outside the casing (12) through the rear side surface of the second housing portion (51) and the rear side surface of the casing (12). The drain pipe connection portion (63) is fixed to the rear side surface of the second housing portion (51). The drain pipe connection (63) is arranged above the pump (60).
 ポンプ(60)が運転されると、ドレンパン(64)に溜まった水がポンプ(60)の下部から吸い込まれ、排水管(62)および排水管接続部(63)を経由してケーシング(12)の外部へ排出される。 When the pump (60) is operated, the water accumulated in the drain pan (64) is sucked from the lower part of the pump (60) and flows through the drain pipe (62) and the drain pipe connection (63) to the casing (12). is discharged to the outside of the
 (4-4-5)流入口、流出口
 第2収容部(51)における第1熱交換部(52a)の前方には、左右方向を長辺とする略矩形状の流入口(51a)が形成される。第1熱交換部(52a)の全体は、第2収容部(51)の流入口(51a)から露出する。第2収容部(51)の流入口(51a)は、前後方向において、ファンユニット(F)の給気側吹出口(37)と重なる。
(4-4-5) Inlet and Outlet In front of the first heat exchange section (52a) in the second storage section (51), there is a substantially rectangular inlet (51a) with long sides extending in the horizontal direction. It is formed. The entire first heat exchange section (52a) is exposed from the inlet (51a) of the second accommodation section (51). The inlet (51a) of the second accommodation portion (51) overlaps with the air supply outlet (37) of the fan unit (F) in the front-rear direction.
 第2収容部(51)における第2熱交換部(52b)の後方には、左右方向を長辺とする略矩形状の流出口(51b)が形成される。第2熱交換部(52b)の全体は、第2収容部(51)の流出口(51b)から露出する。 A substantially rectangular outflow port (51b) having a long side in the left-right direction is formed behind the second heat exchange portion (52b) in the second housing portion (51). The entire second heat exchanging portion (52b) is exposed from the outflow port (51b) of the second accommodating portion (51).
 (4-5)ドレンパン
 換気ユニット(11)は、ドレンパン(64)を備える。図8に示すように、ドレンパン(64)は、ケーシング(12)の下板(12b)の上に配置される。ドレンパン(64)は、利用熱交換器ユニット(50)の下側に配置され、利用熱交換器ユニット(50)の下部を閉塞する。
(4-5) Drain Pan The ventilation unit (11) has a drain pan (64). As shown in FIG. 8, the drain pan (64) is arranged on the lower plate (12b) of the casing (12). The drain pan (64) is arranged below the utilization heat exchanger unit (50) and closes the bottom of the utilization heat exchanger unit (50).
 ドレンパン(64)は、上側が開放された皿状に形成される。ドレンパン(64)は、利用熱交換器(52)の周囲で発生した凝縮水を受ける。ドレンパン(64)は、L字状に形成される。ドレンパン(64)は、後方に延びた後に左側方に延びる。ドレンパン(64)は、第2収容部(51)と上下方向に重なる。 The drain pan (64) is shaped like a dish with an open top. The drain pan (64) receives condensed water generated around the utilization heat exchanger (52). The drain pan (64) is L-shaped. The drain pan (64) extends leftward after extending rearward. The drain pan (64) vertically overlaps the second accommodation portion (51).
 (4-6)利用側電装品箱
 利用側電装品箱(70)は、ケーシング(12)の右側面に沿って配置される。利用側電装品箱(70)は、ケーシング(12)の前側面寄りに配置される。利用側電装品箱(70)は、全熱交換器ユニット(20)の右側に配置される。利用側電装品箱(70)の内部空間には、電気部品(図示省略)が収容される。電気部品は、電源基板、制御基板などを含む。
(4-6) User Side Electrical Component Box The user side electrical component box (70) is arranged along the right side surface of the casing (12). The usage-side electrical component box (70) is arranged near the front side surface of the casing (12). The utilization side electrical component box (70) is arranged on the right side of the total heat exchanger unit (20). Electrical components (not shown) are accommodated in the internal space of the user-side electrical component box (70). Electrical components include power boards, control boards, and the like.
 利用側電装品箱(70)は、連絡線(W)を介して、後述する熱源ユニット(80)の熱源側電装品箱(88)に接続される。連絡線(W)は、ケーシング(12)の前側板(12c)に形成された貫通孔(H)を通る。貫通孔(H)は、ケーシング(12)の前側板(12c)における第1ダクト接続部(C1)の右側の下部に形成される。 The user-side electrical component box (70) is connected to the heat source-side electrical component box (88) of the heat source unit (80), which will be described later, via a connection line (W). The communication line (W) passes through a through hole (H) formed in the front plate (12c) of the casing (12). The through hole (H) is formed in the front plate (12c) of the casing (12) at the lower right side of the first duct connection (C1).
 (4-7)排気ガイド
 換気ユニット(11)は、排気ガイド(14a)を備える。排気ガイド(14a)は、排気ファン(40)から吹出された空気を第2ダクト接続部(C2)まで案内するための部材である。排気ガイド(14a)は、ファンユニット(F)の排気側吹出口(48)と前側ダクト固定部材(17)の第2ダクト接続部(C2)とを繋ぐ。排気ガイド(14a)は、ケーシング(12)の左側板(12f)に沿って配置される。排気ガイド(14a)は、全熱交換器ユニット(20)を介して、利用側電装品箱(70)と対向して配置される。
(4-7) Exhaust guide The ventilation unit (11) has an exhaust guide (14a). The exhaust guide (14a) is a member for guiding the air blown out from the exhaust fan (40) to the second duct connection portion (C2). The exhaust guide (14a) connects the exhaust side outlet (48) of the fan unit (F) and the second duct connection portion (C2) of the front duct fixing member (17). The exhaust guide (14a) is arranged along the left side plate (12f) of the casing (12). The exhaust guide (14a) is arranged to face the user-side electrical component box (70) with the total heat exchanger unit (20) interposed therebetween.
 排気ガイド(14a)は、右側面が開放されたU字状に形成される。図9に示すように、排気ガイド(14a)の下面は、第2ダクト接続部(C2)に向かうに従ってケーシング(12)の下面に近づく。言い換えると、排気ガイド(14a)の下面は、下方に傾斜している。 The exhaust guide (14a) is formed in a U shape with an open right side. As shown in FIG. 9, the lower surface of the exhaust guide (14a) approaches the lower surface of the casing (12) toward the second duct connection portion (C2). In other words, the lower surface of the exhaust guide (14a) slopes downward.
 (4-8)給気路および排気路
 (4-8-1)給気路
 給気路(13)は、給気路(13)のうち全熱交換器(21)の上流側の流路である第1給気流路(S1)および全熱交換器(21)の下流側の流路である第2給気流路(S2)と、全熱交換器(21)の給気側内部流路(21a)とで構成される。給気路(13)を流れる空気は、第1給気流路(S1)、全熱交換器(21)の給気側内部流路(21a)、および第2給気流路(S2)の順に流れる。
(4-8) Air supply path and exhaust path (4-8-1) Air supply path a first air supply passage (S1), a second air supply passage (S2) that is a passage downstream of the total heat exchanger (21), and an air supply side internal passage of the total heat exchanger (21) (21a) and The air flowing through the air supply path (13) flows in order of the first air supply path (S1), the air supply side internal path (21a) of the total heat exchanger (21), and the second air supply path (S2). .
 第1給気流路(S1)は、第1ダクト接続部(C1)の流入端から、第1収容部(22)の第1流入口(25)およびフィルタ(23)を経由して、全熱交換器(21)の前側面(流入面)までの流路である。 The first air supply passageway (S1) flows from the inflow end of the first duct connection (C1) through the first inflow port (25) of the first accommodation section (22) and the filter (23) to the total heat It is a flow path to the front side (inflow side) of the exchanger (21).
 第2給気流路(S2)は、全熱交換器(21)の後側面(流出面)から、給気ファン(30)および利用熱交換器(52)を経由して、第3ダクト接続部(C3)の流出端までの流路である。具体的には、第2給気流路(S2)を流れる空気は、全熱交換器(21)の後側面から導入空間(G)へ流入した後、給気側吸込空間(35)に流れる。給気側吸込空間(35)に流入した空気は、第2吸込口(36)から第2羽根車(32)の内部に吸い込まれる。 The second air supply path (S2) flows from the rear side (outflow surface) of the total heat exchanger (21) via the air supply fan (30) and the heat utilization heat exchanger (52) to the third duct connection portion. This is the flow path to the outflow end of (C3). Specifically, the air flowing through the second air supply channel (S2) flows into the intake space (G) from the rear side surface of the total heat exchanger (21) and then into the intake space (35). The air that has flowed into the air supply side suction space (35) is drawn into the second impeller (32) through the second suction port (36).
 第2羽根車(32)の内部に吸い込まれた空気は、給気側ハウジング(31)の給気側吹出口(37)を通過して、第2収容部(51)の流入口(51a)から第2収容部(51)に流入する。第2収容部(51)に流入した空気は、利用熱交換器(52)の第1熱交換部(52a)および第2熱交換部(52b)を順に通過して、第2収容部(51)の流出口(51b)から流出する。第2収容部(51)を流出した空気は、後側ダクト固定部材(18)に流入し、第3ダクト接続部(C3)の流出端から換気ユニット(11)の外部へ流れる。 The air sucked into the second impeller (32) passes through the air supply side outlet (37) of the air supply side housing (31) and flows through the inlet (51a) of the second housing (51). flows into the second housing portion (51). The air that has flowed into the second accommodation portion (51) passes through the first heat exchange portion (52a) and the second heat exchange portion (52b) of the heat utilization heat exchanger (52) in order, and reaches the second accommodation portion (51). ) out of the outlet (51b). The air that has flowed out of the second accommodation portion (51) flows into the rear duct fixing member (18), and flows out of the ventilation unit (11) from the outflow end of the third duct connection portion (C3).
 (4-8-2)排気路
 排気路(14)は、排気路(14)のうち全熱交換器(21)の上流側の流路である第1排気流路(E1)および全熱交換器(21)の下流側の流路である第2排気流路(E2)と、全熱交換器(21)の排気側内部流路(21b)とで構成される。排気路(14)を流れる空気は、第1排気流路(E1)、全熱交換器(21)の排気側内部流路(21b)、および第2排気流路(E2)の順に流れる。
(4-8-2) Exhaust path The exhaust path (14) includes a first exhaust path (E1), which is a flow path on the upstream side of the total heat exchanger (21) in the exhaust path (14), and a total heat exchange flow path (E1). A second exhaust passage (E2), which is a passage on the downstream side of the unit (21), and an exhaust-side internal passage (21b) of the total heat exchanger (21). The air flowing through the exhaust passageway (14) flows through the first exhaust passageway (E1), the exhaust-side internal passageway (21b) of the total heat exchanger (21), and the second exhaust passageway (E2) in this order.
 第1排気流路(E1)は、室内パネル(15)の内気吸込口(15c)から全熱交換器(21)の下面(流入面)までの流路である。詳細には、第1排気流路(E1)は、アウターパネル(15a)の内気吸込口(15c)、パネル空間(16)、インナーパネル(15b)の第2開口(15e)、および全熱交換器(21)の下面に亘って延びる。 The first exhaust flow path (E1) is a flow path from the inside air intake port (15c) of the indoor panel (15) to the lower surface (inflow surface) of the total heat exchanger (21). Specifically, the first exhaust flow path (E1) includes the inside air intake port (15c) of the outer panel (15a), the panel space (16), the second opening (15e) of the inner panel (15b), and the total heat exchange opening (15e). It extends over the lower surface of the vessel (21).
 第2排気流路(E2)は、全熱交換器(21)の上面(流出面)から、排気ファン(40)および排気ガイド(14a)を経由して、第2ダクト接続部(C2)の流出端までの流路である。具体的には、第2排気流路(E2)を流れる空気は、全熱交換器(21)の上面から全熱交換上部空間(24)に流入した後、排気側吸込空間(44)に流入する。排気側吸込空間(44)に流入した空気は、第1吸込口(45)から第1羽根車(42)の内部に吸い込まれる。 The second exhaust flow path (E2) extends from the upper surface (outlet surface) of the total heat exchanger (21) via the exhaust fan (40) and the exhaust guide (14a) to the second duct connection portion (C2). This is the flow path to the outflow end. Specifically, the air flowing through the second exhaust flow path (E2) flows into the total heat exchange upper space (24) from the upper surface of the total heat exchanger (21), and then flows into the exhaust side suction space (44). do. The air that has flowed into the exhaust side suction space (44) is drawn into the first impeller (42) through the first suction port (45).
 第1羽根車(42)の内部に吸い込まれた空気は、排気ファン収容空間(43)、排気側中継通路(47)、および排気側吹出口(48)を経由して、排気ガイド(14a)の内部に流入する。排気ガイド(14a)を流出した空気は、前側ダクト固定部材(17)に流入し、第2ダクト接続部(C2)の流出端から換気ユニット(11)の外部に排出される。 The air sucked into the first impeller (42) passes through the exhaust fan housing space (43), the exhaust-side relay passage (47), and the exhaust-side outlet (48) to the exhaust guide (14a). flow into the interior of The air flowing out of the exhaust guide (14a) flows into the front duct fixing member (17) and is discharged to the outside of the ventilation unit (11) from the outflow end of the second duct connection portion (C2).
 (4-9)温湿度センサ
 換気ユニット(11)は、3つの温湿度センサ(71,72,73)を備える。図3および図7に示すように、第1温湿度センサ(71)は、ケーシング(12)の前側板(12c)を貫通して固定される。第1温湿度センサ(71)は、ケーシング(12)の外部に露出する。第1温湿度センサ(71)は、ケーシング(12)の外部の温度および湿度を測定する
 第1温湿度センサ(71)は、外気吸込口(o1)の近くに配置される。具体的には、第1温湿度センサ(71)は、第1ダクト接続部(C1)の右側方に配置される。第1温湿度センサ(71)が外気吸込口(o1)の近くに配置されることにより、外気吸込口(o1)周辺の結露の状態を把握できる。
(4-9) Temperature and Humidity Sensors The ventilation unit (11) has three temperature and humidity sensors (71, 72, 73). As shown in FIGS. 3 and 7, the first temperature/humidity sensor (71) is fixed through the front plate (12c) of the casing (12). The first temperature/humidity sensor (71) is exposed to the outside of the casing (12). The first temperature/humidity sensor (71) measures the temperature and humidity outside the casing (12). The first temperature/humidity sensor (71) is arranged near the outside air intake (o1). Specifically, the first temperature/humidity sensor (71) is arranged on the right side of the first duct connection portion (C1). By arranging the first temperature/humidity sensor (71) near the outside air intake (o1), the state of dew condensation around the outside air intake (o1) can be grasped.
 第1温湿度センサ(71)は、利用側電装品箱(70)の近くに配置される。具体的には、第1温湿度センサ(71)は、利用側電装品箱(70)の前側に配置される。第1温湿度センサ(71)と利用側電装品箱(70)との間には、何も配置されていない。第1温湿度センサ(71)が利用側電装品箱(70)の近くに配置されることにより、第1温湿度センサ(71)と利用側電装品箱(70)との配線を容易にできる。 The first temperature/humidity sensor (71) is placed near the user side electrical component box (70). Specifically, the first temperature/humidity sensor (71) is arranged on the front side of the user-side electrical component box (70). Nothing is arranged between the first temperature/humidity sensor (71) and the user-side electrical component box (70). Arranging the first temperature/humidity sensor (71) near the user-side electrical component box (70) facilitates wiring between the first temperature/humidity sensor (71) and the user-side electrical component box (70). .
 第2温湿度センサ(72)は、給気路(13)における全熱交換器(21)を通過した後の空気の温度および湿度を測定する。第2温湿度センサ(72)は、第2給気流路(S2)に配置される。詳細には、第2温湿度センサ(72)は、給気路(13)における全熱交換器(21)と利用熱交換器(52)との間に配置される。 The second temperature and humidity sensor (72) measures the temperature and humidity of the air after passing through the total heat exchanger (21) in the air supply path (13). The second temperature/humidity sensor (72) is arranged in the second air supply channel (S2). Specifically, the second temperature/humidity sensor (72) is arranged in the air supply path (13) between the total heat exchanger (21) and the utilization heat exchanger (52).
 図7に示すように、第2温湿度センサ(72)は、全熱交換器(21)とファンユニット(F)の間に配置される。ここで、排気側ハウジング(41)の下面には、上方に窪む凹部が形成されている。凹部の内部空間は、導入空間(G)にだけ連通している。第2温湿度センサ(72)は、排気側ハウジング(41)の凹部に配置される。これにより、第2温湿度センサ(72)は、全熱交換器(21)の給気側内部流路(21a)を通過した後であり、給気ファン(30)に流入する前の空気を測定できる。 As shown in FIG. 7, the second temperature/humidity sensor (72) is arranged between the total heat exchanger (21) and the fan unit (F). Here, an upward recessed portion is formed in the lower surface of the exhaust side housing (41). The internal space of the recess communicates only with the introduction space (G). The second temperature/humidity sensor (72) is arranged in the recess of the exhaust side housing (41). Thereby, the second temperature/humidity sensor (72) detects the air after passing through the air supply side internal flow path (21a) of the total heat exchanger (21) and before flowing into the air supply fan (30). can be measured.
 第3温湿度センサ(73)は、給気路(13)における全熱交換器(21)を通過する前の空気の温度および湿度を測定する。第3温湿度センサ(73)は、第1給気流路(S1)に配置される。図7に示すように、第3温湿度センサ(73)は、フィルタ(23)の上側に配置される。第3温湿度センサ(73)は、第1収容部(22)の上面を貫通して固定される。 The third temperature and humidity sensor (73) measures the temperature and humidity of the air before passing through the total heat exchanger (21) in the air supply path (13). The third temperature/humidity sensor (73) is arranged in the first air supply channel (S1). As shown in FIG. 7, the third temperature/humidity sensor (73) is arranged above the filter (23). The third temperature/humidity sensor (73) is fixed through the upper surface of the first accommodation portion (22).
 (5)運転動作
 換気装置(10)の運転動作について図2を参照しながら説明する。換気装置(10)は、冷房運転と暖房運転とを切り換えて行う。換気装置(10)は、再熱除湿運転を行う。図2では、冷房運転時の冷媒の流れを実線矢印で示し、暖房運転時の冷媒の流れを破線矢印で示している。
(5) Operating Behavior The operating behavior of the ventilator (10) will be described with reference to FIG. The ventilator (10) switches between cooling operation and heating operation. The ventilator (10) performs reheat dehumidification operation. In FIG. 2 , solid line arrows indicate the flow of the refrigerant during the cooling operation, and dashed line arrows indicate the flow of the refrigerant during the heating operation.
 (5-1)冷房運転
 冷房運転では、圧縮機(82)および熱源ファン(81)が運転し、切換機構(84)が第1状態となり、熱源熱交換器(83)が放熱器(厳密には、凝縮器)として機能し、利用熱交換器(52)が蒸発器として機能する。具体的には、膨張弁(85)の開度を小さくし、減圧弁(52c)を全開にすることによって、第1熱交換部(52a)および第2熱交換部(52b)が蒸発器として機能する。加えて、冷房運転では、給気ファン(30)および排気ファン(40)が運転する。
(5-1) Cooling operation In the cooling operation, the compressor (82) and the heat source fan (81) are operated, the switching mechanism (84) is in the first state, and the heat source heat exchanger (83) is switched to the radiator (strictly speaking, functions as a condenser) and the utilization heat exchanger (52) functions as an evaporator. Specifically, by reducing the degree of opening of the expansion valve (85) and fully opening the pressure reducing valve (52c), the first heat exchange section (52a) and the second heat exchange section (52b) function as evaporators. Function. Additionally, in cooling operation, the air supply fan (30) and the exhaust fan (40) operate.
 換気ユニット(11)では、排気ファン(40)の運転に伴い室内空気(RA)が第1排気流路(E1)に取り込まれる。給気ファン(30)の運転に伴い室外空気(OA)が第1給気流路(S1)に取り込まれる。第1給気流路(S1)の空気は、全熱交換器(21)の給気側内部流路(21a)を流れる。第1排気流路(E1)の空気は、全熱交換器(21)の排気側内部流路(21b)を流れる。 In the ventilation unit (11), the indoor air (RA) is taken into the first exhaust flow path (E1) as the exhaust fan (40) operates. Outdoor air (OA) is taken into the first air supply channel (S1) as the air supply fan (30) operates. The air in the first air supply channel (S1) flows through the air supply side internal channel (21a) of the total heat exchanger (21). The air in the first exhaust channel (E1) flows through the exhaust-side internal channel (21b) of the total heat exchanger (21).
 例えば夏季においては、図1に示す他の空気調和装置(A)により室内空間(5)が冷房される。この場合、室内空気(RA)の温度は室外空気(OA)の温度よりも低くなる。加えて、室内空気(RA)の湿度は室外空気(OA)の湿度よりも低くなる。このため、全熱交換器(21)では、給気側内部流路(21a)の空気が排気側内部流路(21b)の空気によって冷却される。同時に、全熱交換器(21)では、給気側内部流路(21a)の空気中の水分が排気側内部流路(21b)の空気へ移動する。 For example, in summer, the indoor space (5) is cooled by another air conditioner (A) shown in FIG. In this case, the temperature of the indoor air (RA) will be lower than the temperature of the outdoor air (OA). In addition, indoor air (RA) humidity will be lower than outdoor air (OA) humidity. Therefore, in the total heat exchanger (21), the air in the supply side internal flow path (21a) is cooled by the air in the exhaust side internal flow path (21b). At the same time, in the total heat exchanger (21), moisture in the air in the supply side internal flow path (21a) moves to the air in the exhaust side internal flow path (21b).
 排気側内部流路(21b)から第2排気流路(E2)へ流出した空気は、排気ダクト(D2)を流れ、排出空気(EA)として室外空間(6)へ排出される。 The air flowing out from the exhaust-side internal flow path (21b) to the second exhaust flow path (E2) flows through the exhaust duct (D2) and is discharged to the outdoor space (6) as exhaust air (EA).
 給気側内部流路(21a)において冷却および除湿された空気は、第2給気流路(S2)に流出する。この空気は、利用熱交換器(52)の第1熱交換部(52a)および第2熱交換部(52b)によって冷却される。冷却された空気は、給気ダクト(D3)を流れ、供給空気(SA)として室内空間(5)へ供給される。 The air cooled and dehumidified in the air supply side internal flow path (21a) flows out to the second air supply flow path (S2). This air is cooled by the first heat exchange section (52a) and the second heat exchange section (52b) of the utilization heat exchanger (52). The cooled air flows through the supply air duct (D3) and is supplied to the interior space (5) as supply air (SA).
 (5-2)暖房運転
 暖房運転では、圧縮機(82)および熱源ファン(81)が運転し、切換機構(84)が第2状態となり、熱源熱交換器(83)が蒸発器として機能し、利用熱交換器(52)が放熱器(厳密には、凝縮器)として機能する。具体的には、膨張弁(85)の開度を小さくし、減圧弁(52c)を全開にすることによって、第1熱交換部(52a)および第2熱交換部(52b)が凝縮器として機能する。加えて、暖房運転では、給気ファン(30)および排気ファン(40)が運転する。
(5-2) Heating operation In the heating operation, the compressor (82) and the heat source fan (81) are operated, the switching mechanism (84) is in the second state, and the heat source heat exchanger (83) functions as an evaporator. , the utilization heat exchanger (52) functions as a radiator (strictly speaking, a condenser). Specifically, by reducing the degree of opening of the expansion valve (85) and fully opening the pressure reducing valve (52c), the first heat exchange section (52a) and the second heat exchange section (52b) function as condensers. Function. In addition, in heating operation, the air supply fan (30) and the exhaust fan (40) operate.
 暖房運転時の冷媒回路(R)は、第2冷凍サイクルを行う。第2冷凍サイクルでは、利用熱交換器(52)が放熱器として機能し、熱源熱交換器(83)が蒸発器として機能する。 The refrigerant circuit (R) during heating operation performs the second refrigeration cycle. In the second refrigerating cycle, the utilization heat exchanger (52) functions as a radiator, and the heat source heat exchanger (83) functions as an evaporator.
 例えば冬季においては、図1に示す他の空気調和装置(A)により室内空間(5)が暖房される。この場合、室内空気(RA)の温度は室外空気(OA)の温度よりも高くなる。加えて、室内空気(RA)の湿度は室外空気(OA)の湿度よりも高くなる。このため、全熱交換器(21)では、給気側内部流路(21a)の空気が排気側内部流路(21b)の空気によって加熱される。同時に、全熱交換器(21)では、排気側内部流路(21b)の空気中の水分が給気側内部流路(21a)の空気へ移動する。 For example, in winter, the indoor space (5) is heated by another air conditioner (A) shown in FIG. In this case, the temperature of the indoor air (RA) will be higher than the temperature of the outdoor air (OA). In addition, indoor air (RA) humidity will be higher than outdoor air (OA) humidity. Therefore, in the total heat exchanger (21), the air in the supply side internal flow path (21a) is heated by the air in the exhaust side internal flow path (21b). At the same time, in the total heat exchanger (21), moisture in the air in the exhaust side internal flow path (21b) moves to the air in the air supply side internal flow path (21a).
 排気側内部流路(21b)から第2排気流路(E2)へ流出した空気は、排気ダクト(D2)を流れ、排出空気(EA)として室外空間(6)へ排出される。 The air flowing out from the exhaust-side internal flow path (21b) to the second exhaust flow path (E2) flows through the exhaust duct (D2) and is discharged to the outdoor space (6) as exhaust air (EA).
 給気側内部流路(21a)において加熱および加湿された空気は、第2給気流路(S2)に流出する。この空気は、利用熱交換器(52)の第1熱交換部(52a)および第2熱交換部(52b)によって加熱される。加熱された空気は、給気ダクト(D3)を流れ、供給空気(SA)として室内空間(5)へ供給される。 The air heated and humidified in the air supply side internal channel (21a) flows out to the second air supply channel (S2). This air is heated by the first heat exchange section (52a) and the second heat exchange section (52b) of the utilization heat exchanger (52). The heated air flows through the supply air duct (D3) and is supplied to the interior space (5) as supply air (SA).
 (5-3)再熱除湿運転
 再熱除湿運転では、圧縮機(82)および熱源ファン(81)が運転し、切換機構(84)が第1状態となり、熱源熱交換器(83)が放熱器(厳密には、凝縮器)として機能し、利用熱交換器(52)の一部が蒸発器として機能する。具体的には、膨張弁(85)を全開にし、減圧弁(52c)の開度を小さくすることによって、第1熱交換部(52a)が蒸発器として機能し、第2熱交換部(52b)が放熱器(厳密には、凝縮器)として機能する。加えて、冷房運転では、給気ファン(30)および排気ファン(40)が運転する。
(5-3) Reheat dehumidification operation In the reheat dehumidification operation, the compressor (82) and the heat source fan (81) are operated, the switching mechanism (84) is in the first state, and the heat source heat exchanger (83) releases heat. It functions as a condenser (strictly speaking, a condenser) and part of the heat utilization heat exchanger (52) functions as an evaporator. Specifically, by fully opening the expansion valve (85) and reducing the degree of opening of the pressure reducing valve (52c), the first heat exchange section (52a) functions as an evaporator, and the second heat exchange section (52b) functions as an evaporator. ) functions as a radiator (strictly speaking, a condenser). Additionally, in cooling operation, the air supply fan (30) and the exhaust fan (40) operate.
 例えば夏季においては、冷房運転時と同様に、全熱交換器(21)では、給気側内部流路(21a)の空気が排気側内部流路(21b)の空気によって冷却される。同時に、全熱交換器(21)では、給気側内部流路(21a)の空気中の水分が排気側内部流路(21b)の空気へ移動する。給気側内部流路(21a)において冷却および除湿された空気は、第2給気流路(S2)に流出する。この空気は、利用熱交換器(52)の第1熱交換部(52a)において露点温度以下まで冷却される。これにより、空気中の水分が結露し、この空気が除湿される。 For example, in summer, as in the cooling operation, in the total heat exchanger (21), the air in the supply side internal flow path (21a) is cooled by the air in the exhaust side internal flow path (21b). At the same time, in the total heat exchanger (21), moisture in the air in the supply side internal flow path (21a) moves to the air in the exhaust side internal flow path (21b). The air cooled and dehumidified in the air supply side internal channel (21a) flows out to the second air supply channel (S2). This air is cooled to below the dew point temperature in the first heat exchange section (52a) of the heat utilization heat exchanger (52). As a result, moisture in the air is condensed and the air is dehumidified.
 第1熱交換部(52a)を通過して除湿された空気の温度は過剰に低くなる。そのため、第1熱交換部(52a)で冷却された空気をそのまま室内空間(5)に供給してしまうと、室内空間(5)の快適性を損なう場合がある。そこで、第1熱交換部(52a)で冷却された空気を第2熱交換部(52b)において加熱する。これにより、全熱交換器(21)において冷却および除湿された空気の相対湿度が下がるとともに、その空気の温度を快適な温度に調節できる。第2熱交換部(52b)で加熱された空気は、給気ダクト(D3)を流れ、供給空気(SA)として室内空間(5)へ供給される。 The temperature of the dehumidified air passing through the first heat exchange section (52a) becomes excessively low. Therefore, if the air cooled in the first heat exchange section (52a) is supplied to the indoor space (5) as it is, the comfort of the indoor space (5) may be impaired. Therefore, the air cooled in the first heat exchange section (52a) is heated in the second heat exchange section (52b). As a result, the relative humidity of the air cooled and dehumidified in the total heat exchanger (21) is lowered, and the temperature of the air can be adjusted to a comfortable temperature. The air heated in the second heat exchange section (52b) flows through the air supply duct (D3) and is supplied to the indoor space (5) as supply air (SA).
 (6)全熱交換器、給気ファン、排気ファン、および室内熱交換器などの配置関係
 図8に示すように、本実施形態では、全熱交換器(21)、給気ファン(30)、および利用熱交換器(52)がケーシング(12)の下面(下板(12b))に沿った第2方向(前後方向)に並んで配置される。給気ファン(30)および排気ファン(40)は、下板(12b)に直交する第1方向(略鉛直方向)に重なって配置される。この配置により、例えば全熱交換器(21)、給気ファン(30)、排気ファン(40)、および利用熱交換器(52)を前後方向に並べた構成と比較して、ケーシング(12)を前後方向に小型化できる。
(6) Arrangement relation of total heat exchanger, supply air fan, exhaust fan, indoor heat exchanger, etc. As shown in FIG. , and the utilization heat exchanger (52) are arranged side by side in the second direction (front-rear direction) along the lower surface (lower plate (12b)) of the casing (12). The air supply fan (30) and the exhaust fan (40) are arranged to overlap each other in a first direction (substantially vertical direction) orthogonal to the lower plate (12b). This arrangement allows the casing (12) to can be made smaller in the longitudinal direction.
 給気ファン(30)および前記排気ファン(40)は、各々の回転軸がケーシング(12)の下板(12b)に直交する第1方向に沿った遠心ファンである。ここで、回転軸は、第1羽根車(42)および第2羽根車(32)の回転軸を意味する。給気ファン(30)は、横置き型のファンであり、その上下方向の高さが、その前後および左右の長さよりも短い。排気ファン(40)は、横置き型のファンであり、その上下方向の高さが、その前後および左右の長さよりも短い。このため、給気ファン(30)および排気ファン(40)を上下に重ねて配置したとしても、ケーシング(12)の高さが大きくなるのを抑制できる。 The air supply fan (30) and the exhaust fan (40) are centrifugal fans with their rotation axes along the first direction perpendicular to the lower plate (12b) of the casing (12). Here, the rotating shaft means the rotating shaft of the first impeller (42) and the second impeller (32). The air supply fan (30) is a horizontal fan, and its vertical height is shorter than its front-rear and left-right lengths. The exhaust fan (40) is a horizontal fan, and its vertical height is shorter than its front-rear and left-right lengths. Therefore, even if the air supply fan (30) and the exhaust fan (40) are arranged one above the other, it is possible to prevent the height of the casing (12) from increasing.
 図8に示すように、全熱交換器(21)と、給気ファン(30)と、利用熱交換器(52)の全ての一部が、第2方向である前後方向に見た場合に、重なっている。これにより、ケーシング(12)を左右方向、および上下方向に小型化できる。 As shown in FIG. 8, when all of the total heat exchanger (21), the air supply fan (30), and the utilization heat exchanger (52) are partially viewed in the second direction, that is, the front-rear direction, ,overlapping. As a result, the casing (12) can be made smaller in the left-right direction and the up-down direction.
 本実施形態では、給気側の第1ダクト接続部(C1)と、全熱交換器(21)と、給気ファン(30)と、利用熱交換器(52)と、下側寄りの第3ダクト接続部(C3)とが、前後方向に重なる。厳密には、第1ダクト接続部(C1)と、第1給気流路(S1)と、全熱交換器(21)の給気側内部流路(21a)と、第2給気流路(S2)の一部と、利用熱交換器(52)と、下側寄りの第3ダクト接続部(C3)とが前後方向に重なる。このため、給気路(13)は、直線上に延びる流路が多くなるので、給気路(13)の流路抵抗を小さくできる。ここで、第2給気流路(S2)の一部とは、全熱交換器(21)と利用熱交換器(52)の間の流路(例えば導入空間(G))や、利用熱交換器(52)と第3ダクト接続部(C3)の間の流路(第2収容部(51)の内部空間の一部)を示す。 In the present embodiment, the first duct connection portion (C1) on the air supply side, the total heat exchanger (21), the air supply fan (30), the utilization heat exchanger (52), and the lower The 3-duct connection portion (C3) overlaps in the front-rear direction. Strictly speaking, the first duct connection portion (C1), the first air supply channel (S1), the air supply side internal channel (21a) of the total heat exchanger (21), the second air supply channel (S2 ), the utilization heat exchanger (52), and the lower third duct connection portion (C3) overlap in the front-rear direction. Therefore, the air supply passage (13) has a large number of flow passages extending linearly, so that the passage resistance of the air supply passage (13) can be reduced. Here, the part of the second air supply flow path (S2) refers to a flow path (for example, the introduction space (G)) between the total heat exchanger (21) and the heat utilization heat exchanger (52), 3 shows a flow path (a part of the internal space of the second accommodation portion (51)) between the container (52) and the third duct connection portion (C3).
 給気路(13)の下流側には、1つ以上の給気ダクト(D3)が接続される。給気ダクト(D3)は、排気ダクト(D2)と比べて、その本数が多くなったり、その流路長が長くなったりし易い。このため、給気ファン(30)の吹出側の流路の静圧は、排気ファン(40)の吹出側の流路の静圧と比べて大きくなり易い。これに対し、給気路(13)の流路抵抗を低減することで、給気ファン(30)の負荷を低減できる。その結果、排気ファン(40)の定格能力と比べて、給気ファン(30)の定格能力が大きくなることを抑制できる。本実施形態では、給気ファン(30)と排気ファン(40)の定格能力が同じである。 One or more air supply ducts (D3) are connected to the downstream side of the air supply path (13). The number of air supply ducts (D3) tends to increase and the length of the passage tends to be longer than that of the exhaust ducts (D2). Therefore, the static pressure in the flow path on the blowout side of the air supply fan (30) tends to be higher than the static pressure in the flow path on the blowout side of the exhaust fan (40). By reducing the flow path resistance of the air supply path (13), the load on the air supply fan (30) can be reduced. As a result, it is possible to prevent the rated capacity of the air supply fan (30) from becoming larger than the rated capacity of the exhaust fan (40). In this embodiment, the air supply fan (30) and the exhaust fan (40) have the same rated capacity.
 本実施形態では、全熱交換器(21)と排気ファン(40)が、前後方向から見た場合に互いに重なる。これにより、ケーシング(12)を左右方向、および上下方向に小型化できる。厳密には、全熱交換器(21)と排気ファン(40)と利用熱交換器(52)の全ての一部が、前後方向から見た場合に互いに重なる。これにより、ケーシング(12)を左右方向、および上下方向にさらに小型化できる。 In this embodiment, the total heat exchanger (21) and the exhaust fan (40) overlap each other when viewed from the front-rear direction. As a result, the casing (12) can be made smaller in the left-right direction and the up-down direction. Strictly speaking, all parts of the total heat exchanger (21), the exhaust fan (40), and the heat utilization heat exchanger (52) overlap each other when viewed from the front-rear direction. As a result, the casing (12) can be made even smaller in the left-right direction and the up-down direction.
 図8に示すように、本実施形態では、第1羽根車(42)および第2羽根車(32)の双方が、全熱交換器(21)の下端から上端までの範囲内に位置し、且つ利用熱交換器(52)の下端から上端までの範囲内に位置する。このため、給気ファン(30)および排気ファン(40)を上下に重ねて配置したとしても、ケーシング(12)が上下方向に大きくなることを抑制できる。 As shown in FIG. 8, in this embodiment, both the first impeller (42) and the second impeller (32) are positioned within the range from the lower end to the upper end of the total heat exchanger (21), And it is positioned within the range from the lower end to the upper end of the heat exchanger (52). Therefore, even if the air supply fan (30) and the exhaust fan (40) are arranged one above the other, it is possible to prevent the casing (12) from increasing in size in the vertical direction.
 (7)全熱交換器、室内熱交換器、給気ファン、および排気ファンの高さ位置の関係
 図8に示すように、利用熱交換器(52)の上端の高さ位置h1は、全熱交換器(21)の上端の高さ位置h2よりも高い位置にある。これにより、利用熱交換器(52)の通風面の高さを大きくすることができるので、利用熱交換器(52)と空気との間の伝熱面積を拡大できる。これにより、利用熱交換器(52)の能力を増大できる。
(7) Relationship between height positions of total heat exchanger, indoor heat exchanger, supply fan, and exhaust fan As shown in Fig. 8, the height position h1 of the upper end of the utilization heat exchanger It is positioned higher than the height position h2 of the upper end of the heat exchanger (21). As a result, the height of the ventilation surface of the heat utilization heat exchanger (52) can be increased, so that the heat transfer area between the heat utilization heat exchanger (52) and the air can be increased. Thereby, the capacity of the utilization heat exchanger (52) can be increased.
 加えて、高さ位置h2を高さ位置h1よりも低くすることで、全熱交換器(21)の上側に排気路(14)の一部である全熱交換上部空間(24)を確保できる。全熱交換上部空間(24)は、本開示の第1流路に対応する。これにより、排気路(14)の流路抵抗が増大することを抑制できる。 In addition, by making the height position h2 lower than the height position h1, the total heat exchange upper space (24), which is part of the exhaust passage (14), can be secured above the total heat exchanger (21). . The total heat exchange upper space (24) corresponds to the first flow path of the present disclosure. This can suppress an increase in flow path resistance of the exhaust path (14).
 給気ファン(30)の上端の高さ位置h3は、ケーシング(12)における第1方向(上下方向)の半分の高さ位置h4よりも高い位置にある。給気ファン(30)の上端の高さ位置h3は、排気ファン(40)の下端の高さ位置に相当する。言い換えると、ファンユニット(F)は、ケーシング(12)の上板(12a)および下板(12b)のうち、上板(12a)寄りに配置される。これにより、給気側吸込空間(35)の高さを十分に確保できる。具体的には、給気側吸込空間(35)の高さが排気側吸込空間(44)の高さよりも大きくなる。その結果、給気ファン(30)の吸込側における流路抵抗を効果的に低減できる。給気側吸込空間(35)は、本開示の第2流路に対応する。 The height position h3 of the upper end of the air supply fan (30) is higher than the half height position h4 in the first direction (vertical direction) in the casing (12). The height position h3 of the upper end of the air supply fan (30) corresponds to the height position of the lower end of the exhaust fan (40). In other words, the fan unit (F) is arranged closer to the upper plate (12a) between the upper plate (12a) and the lower plate (12b) of the casing (12). This ensures a sufficient height for the air supply side suction space (35). Specifically, the height of the air supply side suction space (35) is greater than the height of the exhaust side suction space (44). As a result, the flow path resistance on the suction side of the air supply fan (30) can be effectively reduced. The air supply side suction space (35) corresponds to the second flow path of the present disclosure.
 上述したように、給気ファン(30)の吹出側の流路の静圧は、排気ファン(40)のそれと比べて大きくなり易い。これに対し、このように給気ファン(30)の流路抵抗を低減することで、給気ファン(30)の負荷を低減できる。この結果、給気ファン(30)の定格能力が、排気ファン(40)の定格能力と比べて過剰に大きくなることを抑制できる。 As described above, the static pressure of the air supply fan (30) on the blowout side tends to be higher than that of the exhaust fan (40). By reducing the flow path resistance of the air supply fan (30) in this way, the load on the air supply fan (30) can be reduced. As a result, it is possible to prevent the rated capacity of the air supply fan (30) from becoming excessively large compared to the rated capacity of the exhaust fan (40).
 加えて、給気側吸込空間(35)は、ドレンパン(64)と前後方向に隣り合う位置に形成される。これにより、ドレンパン(64)を設けることにより形成されるデッドスペースを、給気側吸込空間(35)として利用できる。厳密には、給気側吸込空間(35)は、ドレンパン(64)および全熱交換器(21)と前後方向に隣り合っている。 In addition, the air supply side suction space (35) is formed adjacent to the drain pan (64) in the front-rear direction. Thereby, the dead space formed by providing the drain pan (64) can be used as the intake side suction space (35). Strictly speaking, the air supply side suction space (35) is adjacent to the drain pan (64) and the total heat exchanger (21) in the longitudinal direction.
 給気側吸込空間(35)は、ドレンパン(64)の下端から上端までの範囲内に形成される。このため、給気ファン(30)の下側に給気側吸込空間(35)を形成することに起因して、ケーシング(12)が上下方向に大きくなることを抑制できる。 The air supply side suction space (35) is formed within the range from the lower end to the upper end of the drain pan (64). Therefore, it is possible to prevent the casing (12) from becoming larger in the vertical direction due to the formation of the air supply side suction space (35) below the air supply fan (30).
 (8)給気側吹出口の形状、および位置
 図8に示すように、給気ファン(30)の給気側吹出口(37)は、利用熱交換器(52)に対向している。厳密には、給気側吹出口(37)は、利用熱交換器(52)の通風面に対向する。言い換えると、給気側吹出口(37)と、利用熱交換器(52)の通風面とは、前後方向において重なる。ここで、「通風面」は、利用熱交換器(52)の上流側(前側)に形成されて、空気が流通可能な面である。このため、給気側吹出口(37)から吹き出された空気を、確実に利用熱交換器(52)の通風面に導入できる。
(8) Shape and Position of Air Supply Side Outlet As shown in FIG. 8, the air supply side outlet (37) of the air supply fan (30) faces the heat utilization heat exchanger (52). Strictly speaking, the air supply side outlet (37) faces the ventilation surface of the heat utilization heat exchanger (52). In other words, the air supply side outlet (37) and the ventilation surface of the heat utilization heat exchanger (52) overlap in the front-rear direction. Here, the "ventilation surface" is a surface formed on the upstream side (front side) of the heat utilization heat exchanger (52) through which air can flow. Therefore, the air blown out from the air supply side outlet (37) can be reliably introduced into the ventilation surface of the heat utilization heat exchanger (52).
 図10に示すように、給気側吹出口(37)は、利用熱交換器(52)の長手方向である左右方向に延びている。具体的には、給気側吹出口(37)は、その長辺が左右方向となり、短辺が上下方向となる長方形状に形成される。このため、給気側吹出口(37)から吹き出される空気は左右方向に広がる。これにより、利用熱交換器(52)の長手方向において、空気が局所的に通風面に供給されることを抑制できる。その結果、利用熱交換器(52)の伝熱性能を向上できる。利用熱交換器(52)の長手方向は、伝熱管のうちストレート管の延びる方向や、フィンの配列方向に相当する。 As shown in FIG. 10, the air supply side outlet (37) extends in the lateral direction, which is the longitudinal direction of the heat utilization heat exchanger (52). Specifically, the air-supply side outlet (37) is formed in a rectangular shape with long sides extending in the horizontal direction and short sides extending in the vertical direction. Therefore, the air blown out from the air supply side outlet (37) spreads in the left-right direction. This can prevent air from being locally supplied to the ventilation surface in the longitudinal direction of the heat utilization heat exchanger (52). As a result, the heat transfer performance of the utilization heat exchanger (52) can be improved. The longitudinal direction of the utilization heat exchanger (52) corresponds to the direction in which the straight tubes of the heat transfer tubes extend and the direction in which the fins are arranged.
 (9)活性種供給部
 図8に示すように、換気ユニット(11)は、活性種供給部(74)を備える。活性種供給部(74)は、空気中に活性種を発生する発生部である。活性種供給部(74)は、ストリーマ放電により活性種(例えば、ラジカル、オゾン、高速電子、励起分子など)を生成する。この活性種は、空気中の被処理成分(有害成分や臭気成分など)と反応することにより、被処理成分が酸化分解されて除去される。
(9) Active Species Supply Section As shown in FIG. 8, the ventilation unit (11) includes an active species supply section (74). The active species supply section (74) is a generator that generates active species into the air. The active species supply section (74) generates active species (eg, radicals, ozone, high-speed electrons, excited molecules, etc.) by streamer discharge. The active species react with the components to be treated (hazardous components, odorous components, etc.) in the air, thereby oxidizing and decomposing the components to be removed.
 活性種供給部(74)は、給気路(13)に配置される。具体的には、活性種供給部(74)は、第2給気流路(S2)における導入空間(G)に配置される。活性種供給部(74)は、ケーシング(12)の左側板(12f)に沿って配置される。 The active species supply section (74) is arranged in the air supply path (13). Specifically, the active species supply section (74) is arranged in the introduction space (G) in the second air supply channel (S2). The active species supply section (74) is arranged along the left side plate (12f) of the casing (12).
 活性種供給部(74)が生成した活性種を含む空気は、利用熱交換器(52)を流れる。これにより、利用熱交換器(52)の表面を除菌できるとともに、利用熱交換器(52)の表面で菌やカビが繁殖するのを抑制できる。 The air containing the active species generated by the active species supply section (74) flows through the utilization heat exchanger (52). As a result, the surface of the heat exchanger for utilization (52) can be sterilized, and the propagation of bacteria and mold on the surface of the heat exchanger for utilization (52) can be suppressed.
 活性種を含む空気は、ドレンパン(64)の上側を流れる。このため、ドレンパン(64)を除菌できるとともに、ドレンパン(64)内で菌やカビが繁殖するのを抑制できる。 Air containing active species flows above the drain pan (64). Therefore, the drain pan (64) can be sterilized, and propagation of bacteria and mold in the drain pan (64) can be suppressed.
 活性種を含む空気は室内空間(5)へ供給される。これにより、室内空間(5)の空気を浄化したり、除菌したりできる。 Air containing active species is supplied to the indoor space (5). As a result, the air in the indoor space (5) can be purified and sterilized.
 (10)特徴
 (10-1)
 給気ファン(30)および前記排気ファン(40)は、各々の回転軸がケーシング(12)の下板(12b)に直交する第1方向に沿った遠心ファンである。全熱交換器(21)、給気ファン(30)、および利用熱交換器(52)は、ケーシング(12)の下板(12b)に沿った第2方向に並んでおり、排気ファン(40)は、1方向から見た場合に、前記給気ファン(30)と重なって配置される。
(10) Features (10-1)
The air supply fan (30) and the exhaust fan (40) are centrifugal fans each of which rotates in a first direction perpendicular to the lower plate (12b) of the casing (12). The total heat exchanger (21), the supply air fan (30) and the utilization heat exchanger (52) are arranged in a second direction along the lower plate (12b) of the casing (12) and the exhaust fan (40 ) are arranged so as to overlap the air supply fan (30) when viewed from one direction.
 この構成により、ケーシング(12)が前後方向、および上下方向に大きくなることを抑制でき、換気装置(10)の小型化を図ることができる。 With this configuration, it is possible to prevent the casing (12) from becoming large in the front-rear direction and the vertical direction, and it is possible to reduce the size of the ventilator (10).
 (10-2)
 全熱交換器(21)、給気ファン(30)、および第2熱交換器(52)の全てが、第2方向から見た場合に互いに重なる。
(10-2)
The total heat exchanger (21), the air supply fan (30), and the second heat exchanger (52) all overlap each other when viewed from the second direction.
 この構成によりケーシング(12)が左右方向、および上下方向に大きくなることを抑制できる。加えて、図8に示すように、給気路(13)の流路が、同一直線上に位置し易くなるので、給気路(13)の流路抵抗を低減できる。その結果、給気ファン(30)の負荷を低減できる。 With this configuration, it is possible to suppress the casing (12) from becoming large in the horizontal direction and the vertical direction. In addition, as shown in FIG. 8, the flow paths of the air supply path (13) are likely to be aligned on the same straight line, so the flow path resistance of the air supply path (13) can be reduced. As a result, the load on the air supply fan (30) can be reduced.
 (10-3)
 全熱交換器(21)および排気ファン(40)が、第2方向から見た場合に互いに重なる。
(10-3)
The total heat exchanger (21) and the exhaust fan (40) overlap each other when viewed from the second direction.
 この構成により、ケーシング(12)が左右方向、および上下方向に大きくなることを抑制できる。 With this configuration, it is possible to suppress the casing (12) from becoming large in the horizontal direction and the vertical direction.
 (10-4)
 利用熱交換器(52)の上端が、全熱交換器(21)の上端よりも高い位置にあり、排気路(14)は、全熱交換器(21)の上側に形成される全熱交換上部空間(24)を含んでいる。
(10-4)
The upper end of the heat utilization heat exchanger (52) is positioned higher than the upper end of the total heat exchanger (21), and the exhaust path (14) is formed above the total heat exchanger (21). It contains a headspace (24).
 この構成により、利用熱交換器(52)の伝熱面積を拡大でき、利用熱交換器(52)の能力を増大できる。全熱交換器(21)の上側に、排気路(14)の一部の流路を確保できるとともに、排気路(14)の流路抵抗を低減できる。 With this configuration, the heat transfer area of the utilization heat exchanger (52) can be expanded, and the capacity of the utilization heat exchanger (52) can be increased. A part of the flow path of the exhaust path (14) can be secured above the total heat exchanger (21), and the flow path resistance of the exhaust path (14) can be reduced.
 (10-5)
 給気ファン(30)は、前記排気ファン(40)の下側に配置される。給気路(13)は、給気ファン(30)の下側且つドレンパン(64)と第2方向に隣り合う位置に形成されるとともに給気ファン(30)の吸込口(36)と連通する給気側吸込空間(35)を含む。
(10-5)
The air supply fan (30) is arranged below the exhaust fan (40). The air supply path (13) is formed below the air supply fan (30) and adjacent to the drain pan (64) in the second direction, and communicates with the suction port (36) of the air supply fan (30). Includes intake air space (35).
 この構成により、ドレンパン(64)を設けることによって形成されるデッドスペースを給気側吸込空間(35)として利用できる。給気ファン(30)の吸込側の流路抵抗を低減できるので、給気ファン(30)の負荷を低減できる。給気ファン(30)の定格能力が、排気ファン(40)の定格能力よりも過剰に大きくなることを抑制できる。 With this configuration, the dead space formed by providing the drain pan (64) can be used as the air supply side suction space (35). Since the flow path resistance on the suction side of the air supply fan (30) can be reduced, the load on the air supply fan (30) can be reduced. It is possible to prevent the rated capacity of the air supply fan (30) from becoming excessively larger than the rated capacity of the exhaust fan (40).
 (10-6)
 給気ファン(30)は、排気ファン(40)の下側に配置される。給気ファン(30)の上端が、ケーシング(12)における第1方向の半分の高さ位置より高い位置にある。給気路(13)は、給気ファン(30)の下側に形成されるとともに給気ファン(30)の吸込口(36)に連通する給気側吸込空間(35)を含む。
(10-6)
The air supply fan (30) is arranged below the exhaust fan (40). The upper end of the air supply fan (30) is higher than half the height of the casing (12) in the first direction. The air supply path (13) includes an air supply side suction space (35) formed below the air supply fan (30) and communicating with the suction port (36) of the air supply fan (30).
 この構成により、給気ファン(30)の吸込側の流路抵抗を低減できるので、給気ファン(30)の負荷を低減できる。給気ファン(30)の定格能力が、排気ファン(40)の定格能力よりも過剰に大きくなることを抑制できる。 With this configuration, the flow path resistance on the suction side of the air supply fan (30) can be reduced, so the load on the air supply fan (30) can be reduced. It is possible to prevent the rated capacity of the air supply fan (30) from becoming excessively larger than the rated capacity of the exhaust fan (40).
 (10-7)
 換気装置(10)は、給気路(13)に配置され、空気中に活性種を供給する供給部(74)を備えている。このため、室内空間(5)の空気を浄化したり、殺菌したりできる。利用熱交換器(52)やドレンパン(64)において、菌やカビが繁殖することを抑制できる。
(10-7)
The ventilator (10) includes a supply section (74) arranged in the air supply path (13) and supplying active species into the air. Therefore, the air in the indoor space (5) can be purified and sterilized. In the utilization heat exchanger (52) and drain pan (64), propagation of bacteria and mold can be suppressed.
 (10-8)
 給気ファン(30)の給気側吹出口(37)は、利用熱交換器(52)に対向するとともに、利用熱交換器(52)の長手方向に延びている。 
(10-8)
The air supply side outlet (37) of the air supply fan (30) faces the heat utilization exchanger (52) and extends in the longitudinal direction of the heat utilization heat exchanger (52).
 この構成により、給気側吹出口(37)から吹き出された空気が、利用熱交換器(52)の長手方向に広がりやすくなる。その結果、利用熱交換器(52)において空気が局所的に流れてしまうことを抑制できる。 With this configuration, the air blown out from the air supply side outlet (37) can easily spread in the longitudinal direction of the heat utilization heat exchanger (52). As a result, it is possible to prevent air from flowing locally in the heat utilization heat exchanger (52).
 (11)その他の実施形態
 第1熱交換器(21)は、給気路(13)を流れる空気と、排気路(14)を流れる空気の顕熱のみを交換する顕熱交換器であってもよい。
(11) Other Embodiments The first heat exchanger (21) is a sensible heat exchanger that exchanges only the sensible heat of the air flowing through the air supply passage (13) and the air flowing through the exhaust passage (14). good too.
 活性種供給部(74)は、給気路(13)における全熱交換器(21)の上流側の流路(第1給気流路(S1))に配置してもよい。この場合、活性種により全熱交換器(21)を除菌できる。活性種供給部(74)を、排気路(14)に配置してもよい。この場合、活性種供給部(74)を排気路(14)における全熱交換器(21)の上流側の流路(第1排気流路(E1))に配置するのが好ましい。 The active species supply section (74) may be arranged in a channel (first air supply channel (S1)) upstream of the total heat exchanger (21) in the air supply channel (13). In this case, the active species can sterilize the total heat exchanger (21). The active species supply section (74) may be arranged in the exhaust path (14). In this case, it is preferable to arrange the active species supply section (74) in the flow path (first exhaust flow path (E1)) on the upstream side of the total heat exchanger (21) in the exhaust path (14).
 給気ファン(30)を排気ファン(40)の上側に配置してもよい。この場合、例えば上述した実施形態の換気装置(10)の上下逆さまにした構成とする。この構成では、第1排気流路(E1)は、ケーシング(12)の上面に形成される。室内空間(5)と第1排気流路(E1)とは、ダクトを介して連通する。これにより、室内空間(5)の空気を排気路(14)に導入できる。 The air supply fan (30) may be arranged above the exhaust fan (40). In this case, for example, the ventilator (10) of the above-described embodiment is turned upside down. In this configuration, the first exhaust flow path (E1) is formed in the upper surface of the casing (12). The indoor space (5) and the first exhaust flow path (E1) communicate through a duct. Thereby, the air in the indoor space (5) can be introduced into the exhaust path (14).
 以上、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態、変形例、その他の実施形態に係る要素を適宜組み合わせたり、置換したりしてもよい。 Although the embodiments and modifications have been described above, it will be understood that various changes in form and details are possible without departing from the spirit and scope of the claims. In addition, the elements according to the above embodiments, modifications, and other embodiments may be appropriately combined or replaced.
 以上に述べた「第1」、「第2」、「第3」…という記載は、これらの記載が付与された語句を区別するために用いられており、その語句の数や順序までも限定するものではない。 The descriptions of "first", "second", "third", etc. described above are used to distinguish the words and phrases to which these descriptions are given, and the number and order of the words and phrases are also limited. not something to do.
 以上に説明したように、本開示は、換気装置について有用である。 As described above, the present disclosure is useful for ventilators.
     10   換気装置
     12   ケーシング
     12b  下面
     13   給気路
     14   排気路
     21   全熱交換器(第1熱交換器)
     24   全熱交換上部空間(第1流路)
     30   給気ファン
     35   給気側吸込空間(第2流路)
     36   第2吸込口(吸込口)
     37   給気側吹出口(吹出口)
     40   排気ファン
     52   利用熱交換器(第2熱交換器)
     64   ドレンパン
     74   活性種供給部(発生部)
REFERENCE SIGNS LIST 10 ventilator 12 casing 12b lower surface 13 air supply path 14 exhaust path 21 total heat exchanger (first heat exchanger)
24 Total heat exchange upper space (first flow path)
30 Air supply fan 35 Air supply side suction space (second flow path)
36 second suction port (suction port)
37 Air supply side outlet (outlet)
40 exhaust fan 52 utilization heat exchanger (second heat exchanger)
64 drain pan 74 active species supply unit (generating unit)

Claims (8)

  1.  室外空気を室内に供給する給気路(13)と、室内空気を室外に排出する排気路(14)とが形成されるケーシング(12)と、
     前記給気路(13)の空気を搬送する給気ファン(30)と、
     前記排気路(14)の空気を搬送する排気ファン(40)と、
     前記給気路(13)を流れる空気と前記排気路(14)を流れる空気とを熱交換させる第1熱交換器(21)と、
     前記給気路(13)における前記第1熱交換器(21)の下流側に配置される第2熱交換器(52)とを備え、
     前記給気ファン(30)および前記排気ファン(40)は、各々の回転軸が前記ケーシング(12)の下面(12b)に直交する第1方向に沿った遠心ファンであり、
     前記第1熱交換器(21)、前記給気ファン(30)、および前記第2熱交換器(52)は、前記ケーシング(12)の下面(12b)に沿った第2方向に並んでおり、
     前記排気ファン(40)は、前記第1方向から見た場合に、前記給気ファン(30)と重なって配置される
     換気装置。
    a casing (12) having an air supply path (13) for supplying outdoor air to the room and an exhaust path (14) for discharging the indoor air to the outside;
    an air supply fan (30) for conveying air in the air supply path (13);
    an exhaust fan (40) for conveying the air in the exhaust passage (14);
    a first heat exchanger (21) for exchanging heat between air flowing through the air supply passage (13) and air flowing through the exhaust passage (14);
    a second heat exchanger (52) disposed downstream of the first heat exchanger (21) in the air supply path (13);
    The air supply fan (30) and the exhaust fan (40) are centrifugal fans each having a rotation axis along a first direction perpendicular to the lower surface (12b) of the casing (12),
    The first heat exchanger (21), the air supply fan (30), and the second heat exchanger (52) are arranged in a second direction along the lower surface (12b) of the casing (12). ,
    A ventilator in which the exhaust fan (40) is arranged to overlap with the air supply fan (30) when viewed from the first direction.
  2.  前記第1熱交換器(21)、前記給気ファン(30)、および前記第2熱交換器(52)の全てが、前記第2方向から見た場合に互いに重なる
     請求項1に記載の換気装置。
    2. Ventilation according to claim 1, wherein the first heat exchanger (21), the air supply fan (30) and the second heat exchanger (52) all overlap each other when viewed from the second direction. Device.
  3.  前記第1熱交換器(21)および前記排気ファン(40)が、前記第2方向から見た場合に互いに重なる
     請求項1または2に記載の換気装置。
    The ventilation system according to claim 1 or 2, wherein the first heat exchanger (21) and the exhaust fan (40) overlap each other when viewed from the second direction.
  4.  前記第2熱交換器(52)の上端が、前記第1熱交換器(21)の上端よりも高い位置にあり、
     前記排気路(14)は、前記第1熱交換器(21)の上側に形成される第1流路(24)を含んでいる
     請求項1~3のいずれか1つに記載の換気装置。
    the upper end of the second heat exchanger (52) is higher than the upper end of the first heat exchanger (21);
    The ventilator according to any one of claims 1 to 3, wherein the exhaust path (14) includes a first flow path (24) formed above the first heat exchanger (21).
  5.  前記第2熱交換器(52)の下側に配置されるドレンパン(64)を備え、
     前記給気ファン(30)は、前記排気ファン(40)の下側に配置され、
     前記給気路(13)は、前記給気ファン(30)の下側且つ前記ドレンパン(64)と第2方向に隣り合う位置に形成されるとともに前記給気ファン(30)の吸込口(36)と連通する第2流路(35)を含む
     請求項1~4のいずれか1つに記載の換気装置。
    A drain pan (64) arranged below the second heat exchanger (52),
    The air supply fan (30) is arranged below the exhaust fan (40),
    The air supply path (13) is formed at a position below the air supply fan (30) and adjacent to the drain pan (64) in the second direction, and is connected to the suction port (36) of the air supply fan (30). ), comprising a second channel (35) in communication with ).
  6.  前記給気ファン(30)は、前記排気ファン(40)の下側に配置され、
     前記給気ファン(30)の上端が、前記ケーシング(12)における前記第1方向の半分の高さ位置より高い位置にあり、
     前記給気路(13)は、前記給気ファン(30)の下側に形成されるとともに前記給気ファン(30)の吸込口(36)に連通する第2流路(35)を含む、
     請求項1~5のいずれか1つに記載の換気装置。
    The air supply fan (30) is arranged below the exhaust fan (40),
    an upper end of the air supply fan (30) is positioned higher than a half height position of the casing (12) in the first direction;
    The air supply path (13) includes a second flow path (35) formed below the air supply fan (30) and communicating with the suction port (36) of the air supply fan (30),
    Ventilation device according to any one of claims 1-5.
  7.  前記給気路(13)に配置され、空気中に活性種を発生する発生部(74)を備えている
     請求項1~6のいずれか1つに記載の換気装置。
    The ventilator according to any one of claims 1 to 6, further comprising a generator (74) arranged in the air supply path (13) and generating active species in the air.
  8.  前記給気ファン(30)の吹出口(37)は、前記第2熱交換器(52)に対向するとともに該第2熱交換器(52)の長手方向に延びている
     請求項1~7のいずれか1つに記載の換気装置。
    The outlet (37) of the air supply fan (30) faces the second heat exchanger (52) and extends in the longitudinal direction of the second heat exchanger (52). A ventilator according to any one of the preceding claims.
PCT/JP2022/038964 2021-10-29 2022-10-19 Ventilation device WO2023074500A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021177449A JP7415182B2 (en) 2021-10-29 2021-10-29 ventilation system
JP2021-177449 2021-10-29

Publications (1)

Publication Number Publication Date
WO2023074500A1 true WO2023074500A1 (en) 2023-05-04

Family

ID=86159402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038964 WO2023074500A1 (en) 2021-10-29 2022-10-19 Ventilation device

Country Status (2)

Country Link
JP (1) JP7415182B2 (en)
WO (1) WO2023074500A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03195834A (en) * 1989-12-25 1991-08-27 Toshiba Corp Ventilator for split air-conditioner
JPH08178349A (en) * 1994-12-24 1996-07-12 Daikin Ind Ltd Total heat-exchanger integrated type air-conditioner
JP2009109147A (en) * 2007-10-31 2009-05-21 Sanyo Electric Co Ltd Ventilation device and air conditioning device
JP2009186085A (en) * 2008-02-06 2009-08-20 Hitachi Appliances Inc Air conditioner
JP2012220129A (en) * 2011-04-12 2012-11-12 Panasonic Corp Heat exchange type ventilation apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4042673B2 (en) 2003-10-01 2008-02-06 松下電器産業株式会社 Heat exchange ventilator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03195834A (en) * 1989-12-25 1991-08-27 Toshiba Corp Ventilator for split air-conditioner
JPH08178349A (en) * 1994-12-24 1996-07-12 Daikin Ind Ltd Total heat-exchanger integrated type air-conditioner
JP2009109147A (en) * 2007-10-31 2009-05-21 Sanyo Electric Co Ltd Ventilation device and air conditioning device
JP2009186085A (en) * 2008-02-06 2009-08-20 Hitachi Appliances Inc Air conditioner
JP2012220129A (en) * 2011-04-12 2012-11-12 Panasonic Corp Heat exchange type ventilation apparatus

Also Published As

Publication number Publication date
JP7415182B2 (en) 2024-01-17
JP2023066701A (en) 2023-05-16

Similar Documents

Publication Publication Date Title
WO2015182461A1 (en) Air conditioning indoor equipment
JP5449951B2 (en) Outside air treatment air conditioner
KR100991809B1 (en) Ventilating system having heat pump
JP7457229B2 (en) air conditioning system
JP2002162067A (en) Air conditioner
WO2023276602A1 (en) Ventilation device
WO2023074500A1 (en) Ventilation device
WO2023074499A1 (en) Ventilation device
WO2020226091A1 (en) Air conditioning system
JP2023066758A (en) Ventilation device
JP7495627B2 (en) Ventilation system
KR100672602B1 (en) Indoor heat exchanging unit for air-conditioner
WO2007123144A1 (en) Ventilation system
JP3855393B2 (en) Air conditioner
WO2023276511A1 (en) Ventilation device
JP7235994B2 (en) Ventilators and methods of assembling the ventilators
JP2020186821A (en) Air conditioning system
JP2020134033A (en) Indoor unit
JP2011075119A (en) Outside air treating air conditioner
JP2011075116A (en) Outside air treating air conditioner
JP2023005595A (en) Ventilation device
JP3815486B2 (en) Humidity control device
JP2024039432A (en) air conditioner
JP2006162145A (en) Air conditioner
JPH05126357A (en) Air conditioning unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886828

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2401002588

Country of ref document: TH