WO2020226091A1 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
WO2020226091A1
WO2020226091A1 PCT/JP2020/017999 JP2020017999W WO2020226091A1 WO 2020226091 A1 WO2020226091 A1 WO 2020226091A1 JP 2020017999 W JP2020017999 W JP 2020017999W WO 2020226091 A1 WO2020226091 A1 WO 2020226091A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
exhaust
refrigerant
passage
ventilation
Prior art date
Application number
PCT/JP2020/017999
Other languages
French (fr)
Japanese (ja)
Inventor
浩介 平井
徹 藤本
山本 昌由
義孝 松木
岳人 酒井
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019088160A external-priority patent/JP2020183829A/en
Priority claimed from JP2019088577A external-priority patent/JP2020183838A/en
Priority claimed from JP2019089476A external-priority patent/JP2020186821A/en
Priority claimed from JP2019089518A external-priority patent/JP7457229B2/en
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2020226091A1 publication Critical patent/WO2020226091A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • This disclosure relates to an air conditioning system. More specifically, the present invention relates to an air conditioning system including an air conditioner and a ventilation device.
  • an air conditioner that generates cold air or hot air is usually used in combination with a ventilation device that supplies outside air to the living room and exhausts the living room (for example, see Patent Document 1).
  • the air conditioner described in Patent Document 1 described above when the refrigerant leakage detection device detects the refrigerant, the air-conditioned space
  • the air-conditioning mechanism discharges the refrigerant to and from the air-conditioned space together with the air in the casing accommodating the air-conditioning mechanism and the heat exchanger.
  • An object of the present disclosure is to provide an air conditioning system capable of suppressing the diffusion of the refrigerant and reducing the concentration of the refrigerant according to the use of the living room when the refrigerant leaks.
  • the air conditioning system of the present disclosure is (1) A refrigerant sensor for detecting the leakage of refrigerant in the air-conditioned space of the air conditioner, a ventilation device for supplying and exhausting air, and a control unit for controlling the operation of the ventilation device are provided.
  • the control unit changes the balance between the air supply and the exhaust of the ventilation device between the normal operation when the refrigerant sensor does not detect the leakage of the refrigerant and the detection of the leaked refrigerant by the refrigerant sensor.
  • the balance between the air supply and the exhaust of the ventilation device is changed between the normal operation when the refrigerant leakage is not detected by the refrigerant sensor and the detection of the leaked refrigerant.
  • the living room can be changed to, for example, exhaust rich or air supply rich, depending on the use of the living room which is the air conditioning target space.
  • exhaust rich it is possible to suppress the diffusion of the leaked refrigerant from the living room.
  • air supply rich it is possible to promote the discharge of the leaked refrigerant from the living room and reduce the refrigerant concentration in the living room.
  • exhaust rich means that the air volume of the exhaust gas by the ventilation device is larger than the air volume of the supply air
  • rich air supply means that the air volume of the air supply by the ventilation device is larger. It means that it is larger than the air volume of the exhaust.
  • the refrigerant is slightly flammable or flammable.
  • the ventilation device supplies air with a fan and / or exhausts with a fan.
  • the air conditioning system An air conditioner having a heat exchanger that generates harmonized air by exchanging heat with a refrigerant, An auxiliary fan that is communicably connected to the air conditioner and / or the ventilation device and does not operate when the leaked refrigerant is not detected by the refrigerant sensor but operates when the leaked refrigerant is detected by the refrigerant sensor.
  • the auxiliary fan when the refrigerant sensor detects the leakage of the refrigerant, the auxiliary fan operates to ventilate the living room, which is the air-conditioned space, as well as the ventilation by the ventilation device. This makes it possible to dilute the leaked refrigerant and prevent the refrigerant from reaching a combustible concentration. Further, since the auxiliary fan does not operate in the normal time when the refrigerant does not leak, the energy consumption of the air conditioning system in the normal time is not increased.
  • the ventilation device has two heat exchangers carrying an adsorbent that adsorbs water contained in air, and the two heat exchangers are alternately evaporated.
  • a refrigerant circuit that functions as a vessel or a condenser, two systems of air supply air passages and two systems of exhaust air passages that communicate the inside and outside of the air-conditioned space via the heat exchangers, and each of the supply air passages.
  • An air supply fan that supplies air outside the air-conditioned space to the air-conditioned space via an air passage, and air in the air-conditioned space is discharged to the outside of the air-conditioned space through each exhaust air passage.
  • an exhaust fan an air supply opening / closing mechanism for opening / closing the two systems of the air supply air passage, and an exhaust opening / closing mechanism for opening and closing the two systems of the exhaust air passage.
  • the control unit operates one of the air supply fan and the exhaust fan to stop the other fan, and causes the air supply air passage and the exhaust air passage.
  • the air supply opening / closing mechanism and the exhaust opening / closing mechanism are controlled so that one of the air passages corresponding to the one fan is opened in both systems and the other air passage is closed in both systems.
  • one of the air supply fan and the exhaust fan is operated, and one of the air supply air passage and the exhaust air passage is opened in both systems to supply air or air.
  • the exhaust air passage can be expanded and the ventilation volume can be increased.
  • the ventilation device has a first air supply air passage and a first air supply air passage that communicate the heat exchanger and the inside and the outside of the air-conditioned space via the heat exchanger.
  • the exhaust air passage a second air supply air passage that communicates the inside and the outside of the air-conditioned space without passing through the heat exchanger, the first air supply air passage, and the second air supply air passage.
  • An air supply fan that supplies air outside the air-conditioned space into the air-conditioned space, an exhaust fan that discharges air in the air-conditioned space through the first exhaust air passage to the outside of the air-conditioned space, and the above.
  • the first air supply air passage and the air supply opening / closing mechanism for opening and closing the second air supply air passage are provided.
  • the control unit controls the air supply opening / closing mechanism so as to open both the first air supply air passage and the second air supply air passage when the refrigerant sensor detects the leakage of the refrigerant.
  • both the first air supply air passage and the second air supply air passage are opened to provide air supply air.
  • the road can be expanded and ventilation can be increased.
  • the first air supply air passage and the first air supply air passage in which the ventilation device communicates the heat exchanger with the inside and outside of the air-conditioned space via the heat exchanger.
  • the air outside the air-conditioned space is passed through the exhaust air passage, the second exhaust air passage that communicates the inside and the outside of the air-conditioned space without passing through the heat exchanger, and the first air supply air passage.
  • It is provided with an exhaust opening / closing mechanism for opening / closing the first exhaust air passage and the second exhaust air passage.
  • the control unit controls the exhaust opening / closing mechanism so as to open both the first exhaust air passage and the second exhaust air passage when the refrigerant sensor detects the leakage of the refrigerant.
  • both the first exhaust air passage and the second exhaust air passage are opened to open the exhaust air passage. Can be expanded and the ventilation volume can be increased.
  • FIG. 1 It is the schematic for demonstrating the supply air independent operation which is the 2nd ventilation operation. It is the schematic for demonstrating the exhaust independent operation which is the 2nd ventilation operation. It is a schematic cross-sectional explanatory view of the ventilation apparatus which performs the 1st ventilation operation in the air conditioning system which concerns on 4th Embodiment of this disclosure as seen from the top. It is a schematic cross-sectional explanatory view in line AA of FIG. It is a schematic cross-sectional explanatory view in line BB of FIG. It is a perspective view of the total heat exchanger. It is a schematic cross-sectional explanatory view which looked at the ventilation apparatus which performs the 2nd ventilation operation from the top. FIG.
  • FIG. 6 is a schematic cross-sectional explanatory view taken along the line CC of FIG.
  • FIG. 5 is a schematic cross-sectional explanatory view of a ventilation device that performs a second ventilation operation of the air conditioning system according to the fifth embodiment of the present disclosure as viewed from above. It is a schematic cross-sectional explanatory view of the ventilation system which performs the 2nd ventilation operation of the air-conditioning system which concerns on 6th Embodiment of this disclosure as seen from the top. It is a top view, the right side view, and the left side view which show the schematic structure of the ventilation system of the air-conditioning system which concerns on 7th Embodiment of this disclosure.
  • FIG. 1 is an explanatory diagram showing a refrigerant piping system and an air system of the air conditioning system S according to the first embodiment of the present disclosure.
  • the air conditioning system S is provided with a distributed air conditioner of a refrigerant piping system, and by performing a vapor compression refrigeration cycle operation, the inside of the living room R, which is the air conditioning target space, is cooled and heated, and the ventilation device described later is used. Ventilate the room R.
  • the type of living room R to which the air conditioning system S is applied is not particularly limited in the present disclosure, and is a space where cooling and / or heating and ventilation are performed, such as an office, a hotel, a hospital, a factory, a theater, or a store. Or all of the space is included.
  • the air conditioning system S includes a heat source unit 10 installed outside the living room R, an indoor unit 20 which is a plurality of air conditioners installed inside the living room R, and a ventilation device 30.
  • the heat source unit 10 and the indoor unit 20 are connected by a liquid refrigerant connecting pipe 11 and a gas refrigerant connecting pipe 12.
  • the ventilation device 30 and the living room R are connected by an air supply (SA) duct 31 and a return air (RA) duct 32.
  • SA air supply
  • RA return air
  • the indoor unit 20 may be installed on the floor surface, may be arranged near the ceiling, or may be arranged behind the ceiling. In FIG. 1, only two indoor units 20 are drawn for the sake of clarity, but the number of indoor units 20 may be one or three or more.
  • the heat source unit 10 includes a compressor 13, a four-way switching valve 14, a heat source side heat exchanger 15, a heat source side expansion valve 16, a liquid side closing valve 17, and a gas side closing valve 18.
  • the compressor 13 is a closed-type compressor driven by a motor for the compressor (not shown), and sucks gas refrigerant from the suction flow path 13a.
  • the four-way switching valve 14 is a mechanism for switching the direction of the refrigerant flow.
  • the four-way switching valve 14 connects the refrigerant pipe 13b on the discharge side of the compressor 13 and one end of the heat exchanger 15 on the heat source side, and also connects the compressor 13.
  • the suction flow path 13a on the suction side and the gas side closing valve 18 are connected.
  • the heat source side heat exchanger 15 functions as a condenser of the refrigerant compressed by the compressor 13, and the utilization side heat exchanger described later is an evaporator of the refrigerant condensed in the heat source side heat exchanger 15. Functions as.
  • the four-way switching valve 14 connects the refrigerant pipe 13b on the discharge side of the compressor 13 and the gas side closing valve 18 and connects with the suction flow path 13a.
  • the heat source side heat exchanger 15 functions as a condenser of the refrigerant compressed by the compressor 13, and the heat source side heat exchanger 15 functions as an evaporator of the refrigerant cooled in the utilization side heat exchanger.
  • the heat source unit 10 is provided with a heat source side fan 19 for taking in outside air into the heat source unit 10 and discharging the outside air that has been heat exchanged with the refrigerant flowing through the heat source side heat exchanger 15 to the outside.
  • the indoor unit 20 is connected to the heat source unit 10 via the refrigerant connecting pipes 11 and 12, respectively.
  • the indoor unit 20 has the same outer shape and internal structure.
  • the indoor unit 20 includes a user-side expansion valve 21, a user-side heat exchanger 22, and a user-side fan 23.
  • the user-side fan 23 sucks the air in the living room R into the indoor unit 20, and supplies the air exchanged with the refrigerant flowing through the user-side heat exchanger 22 to the living room R.
  • the indoor unit 20 in the present embodiment includes a heat exchanger 22 on the user side and a refrigerant sensor 24 that detects refrigerant leaked from a refrigerant pipe or the like.
  • the position of the refrigerant sensor 24 is not particularly limited as long as the leaked refrigerant can be detected. It is desirable to place it in the vicinity of a place where leakage is likely to occur.
  • the refrigerant sensor 24 may be mounted on a remote controller described later for setting, for example, room temperature or air volume, or may be arranged at an appropriate location such as a wall surface of a living room. It can also be set up.
  • the indoor unit 20 includes a control unit 25 that receives a detection signal from the refrigerant sensor 24 and controls the operation of the user-side fan 23 and the like in the indoor unit 20.
  • the control unit 25 is communicably connected to the control unit 36 of the ventilation device 30 described later.
  • the refrigerant sensor 24 detects the leakage of the refrigerant, the information on the leakage of the refrigerant is transmitted to the ventilation device 30.
  • the ventilation device 30 supplies fresh outside air OA to the living room R and discharges the return air RA from the living room to the outside of the aircraft.
  • the ventilation device 30 includes a total heat exchanger 33, a blower fan 34, an exhaust fan 35, and a control unit 36 that controls the operation of the blower fan 34 and the exhaust fan 35.
  • the total heat exchanger 33 in the present embodiment is an orthogonal total heat exchanger configured so that the outside air OA from the outside and the return air RA from the living room are substantially orthogonal to each other. As shown in FIG. 2, the total heat exchanger 33 has a flat plate-shaped partition plate 33a having heat transfer property and moisture permeability and a substantially triangular cross section, and is an interval plate that maintains the flow path height.
  • the ventilation device 30 in the present embodiment is a first-class ventilation device that is supplied with air by a blower fan 34 and exhausted by an exhaust fan 35.
  • the air conditioning system S having the above-described configuration performs a cooling operation or a heating operation as follows.
  • the four-way switching valve 14 is in the state shown by the solid line in FIG.
  • the high-pressure gas refrigerant discharged from the compressor 13 is sent to the heat source side heat exchanger 15 functioning as a condenser via the four-way switching valve 14, and the outside air supplied by the heat source side fan 19. It is cooled by exchanging heat with.
  • the high-pressure refrigerant cooled and liquefied in the heat source side heat exchanger 15 is sent to each indoor unit 20 via the liquid refrigerant connecting pipe 11.
  • the refrigerant sent to each indoor unit 20 is decompressed by the utilization side expansion valve 21 to become a low-pressure gas-liquid two-phase state refrigerant, and the air and heat in the living room R in the utilization side heat exchanger 22 functioning as an evaporator. It is replaced and evaporated to a low pressure gas refrigerant.
  • the low-pressure gas refrigerant heated in the user-side heat exchanger 22 is sent to the heat source unit 10 via the gas refrigerant connecting pipe 12, and is sucked into the compressor 13 again via the four-way switching valve 14.
  • the four-way switching valve 14 is in the state shown by the broken line in FIG. In this state, the high-pressure gas refrigerant discharged from the compressor 13 is sent to each indoor unit 20 via the four-way switching valve 14 and the gas refrigerant connecting pipe 12.
  • the high-pressure gas refrigerant sent to each indoor unit 20 is sent to the utilization side heat exchanger 22 that functions as a condenser, exchanges heat with the air in the living room R to be cooled, and then the utilization side expansion valve 21. Is sent to the heat source unit 10 via the liquid refrigerant connecting pipe 11.
  • the high-pressure refrigerant sent to the heat source unit 10 is depressurized by the heat source-side expansion valve 16 to become a low-pressure gas-liquid two-phase state refrigerant, and flows into the heat source-side heat exchanger 15 that functions as an evaporator.
  • the low-pressure gas-liquid two-phase refrigerant that has flowed into the heat source-side heat exchanger 15 exchanges heat with the outside air supplied by the heat-source-side fan 19, is heated, and evaporates to become a low-pressure refrigerant.
  • the low-pressure gas refrigerant exiting the heat source side heat exchanger 15 is sucked into the compressor 13 again via the four-way switching valve 14.
  • the ventilation device 30 ventilates the living room R in addition to the cooling operation or heating operation as described above.
  • the required ventilation volume (m 3 / h) is selected according to the use of the living room R and the floor area of the living room R.
  • the control unit 36 of the ventilation device 30 that receives the information on the refrigerant leakage from the indoor unit 20 supplies the ventilation device 30.
  • Change the balance between qi and exhaust Specifically, the operation of the blower fan 34 and / or the exhaust fan 35 can be controlled to change the balance between air supply and exhaust as illustrated in Table 1 below. The mode of change can be appropriately set according to the use of the living room R.
  • pattern 1 general use such as an office is assumed as a living room.
  • the air supply air volume by the ventilation device 30 and the exhaust air volume by the ventilation device 30 are the same during normal operation.
  • the control unit 36 of the ventilation device 30 that receives the information on the refrigerant leakage determines the balance between the supply air and the exhaust gas. Is changed to exhaust rich, which is larger than the amount of air supplied by the ventilation device 30.
  • pattern 2 it is assumed that the living room is used in a clean room or the like where a predetermined cleanliness is required.
  • the air supply air volume by the ventilation device 30 and the exhaust air volume by the ventilation device 30 are the same during normal operation.
  • the control unit 36 of the ventilator 30 that receives the information on the refrigerant leak determines the balance between the supply air and the exhaust air by the ventilation device 30.
  • the air supply is changed to rich, which is larger than the exhaust air volume by the ventilation device 30.
  • Pattern 3 is expected to be used as a living room in hospitals and the like.
  • the exhaust air volume by the ventilation device 30 is larger than the supply air volume by the ventilation device 30 during normal operation.
  • the control unit 36 of the ventilator 30 that receives the information on the refrigerant leak determines the balance between the supply air and the exhaust air supplied by the ventilator 30. Is changed to an air supply rich that is larger than the exhaust air volume by the ventilation device 30.
  • the hospital positive pressure as the air supply is rich when the refrigerant leaks, the refrigerant leaked in the hospital can be quickly discharged and the concentration of the leaked refrigerant in the hospital room can be reduced.
  • the differential pressure can be used to increase the amount of air leaking from the hospital room and increase the air volume for discharging the refrigerant.
  • pattern 4 it is assumed that the room will be used as a theater or a large-scale office.
  • This pattern 4 is the opposite of the pattern 3, and is rich in air supply in which the air supply air volume by the ventilation device 30 is larger than the exhaust air volume by the ventilation device 30 during normal operation.
  • the control unit 36 of the ventilation device 30 that receives the information on the refrigerant leakage ventilates the exhaust air volume by the ventilation device 30 to balance the supply air and the exhaust gas. It is changed to an exhaust rich that is larger than the air supply air volume by the device 30.
  • the exhaust duct from the theater or the like can be omitted by making the theater or a large-scale office or the like rich in air supply during normal operation. In this case, the exhaust from the theater or the like can be exhausted by a fan from the corridor or the toilet adjacent to the theater.
  • the control unit 36 of the ventilation device 30 receives the information on the refrigerant leak.
  • the balance between the supply air and the exhaust gas may be changed to be more exhaust-rich by increasing the exhaust air volume by the ventilator 30 or decreasing the supply air volume (Pattern 5). By doing so, it is possible to make the pressure inside the room R more negative than usual, and it is possible to further suppress the diffusion of the leaked refrigerant to other rooms and spaces. ..
  • the control unit 36 of the ventilation device 30 that receives the information on the refrigerant leak determines the balance.
  • the balance between the supply air and the exhaust air may be changed to be richer in the air supply by increasing the air supply air volume by the ventilation device 30 or decreasing the exhaust air volume (Pattern 6). By doing so, it is possible to make the pressure inside the room R more positive, increase the amount of air leaking from the room R, and increase the air volume for discharging the refrigerant. be able to.
  • the air conditioner system S is a control unit that controls the operation of the refrigerant sensor 24 for detecting the leakage of the refrigerant in the air conditioner target space of the air conditioner 20, the ventilation device 30 for supplying and exhausting air, and the ventilation device 30. 36, and the control unit 36 supplies and exhausts the air supply and exhaust of the ventilation device 30 during normal operation when the refrigerant sensor 24 does not detect the leakage of the refrigerant and when the refrigerant sensor 24 detects the leakage of the refrigerant. Change the balance.
  • the balance between the supply air and the exhaust of the ventilation device 30 is changed between the normal operation when the refrigerant sensor 24 does not detect the leakage of the refrigerant and the detection of the leaked refrigerant. Therefore, when the refrigerant leaks, the living room can be changed to, for example, exhaust rich or air supply rich, depending on the use of the living room R which is the air-conditioned space.
  • exhaust rich it is possible to suppress the diffusion of the leaked refrigerant from the living room R.
  • the air supply rich it is possible to promote the discharge of the leaked refrigerant from the living room R and reduce the refrigerant concentration in the living room R.
  • the control unit 36 sets the air volume of the air supply by the ventilation device 30 and the air volume of the exhaust by the same amount during normal operation, and when the refrigerant sensor 24 detects the leaked refrigerant, the ventilation device 30
  • the air volume of the exhaust air can be made larger than the air volume of the supply air.
  • the air volume of the air supply and exhaust is the same during normal operation.
  • the office or the like when the refrigerant leaks, the office or the like is made negative pressure (negative pressure) as exhaust rich, so that the air leaks in the office. It is possible to prevent the refrigerant from diffusing into other rooms or spaces.
  • the control unit 36 sets the air volume of the supply air by the ventilation device 30 and the air volume of the exhaust air to be the same during normal operation, and when the refrigerant sensor 24 detects the leaked refrigerant, the ventilation device 30
  • the air volume of the air supply by the air can be made larger than the air volume of the exhaust air.
  • the air volume of the air supply and exhaust is the same during normal operation.
  • the clean room when the refrigerant leaks, the clean room is made positive pressure (positive pressure) as the supply air is rich, so that dust and the like are generated when dealing with the leaked refrigerant. It is possible to prevent foreign matter from entering the clean room, and as a result, the cleanliness of the clean room can be quickly restored to the original state after the above-mentioned measures are completed.
  • the control unit 36 makes the air volume of the exhaust gas by the ventilation device 30 larger than the air volume of the supply air during normal operation, and the ventilation device 30 when the refrigerant sensor 24 detects the leaked refrigerant.
  • the air volume of the air supply by the air can be made larger than the air volume of the exhaust air.
  • the exhaust gas is enriched during normal operation.
  • the refrigerant leaked in the hospital can be quickly discharged by making the hospital positive pressure as the air supply is rich when the refrigerant leaks.
  • the differential pressure can be used to increase the amount of air leaking from the hospital room and increase the air volume for discharging the refrigerant.
  • the control unit 36 makes the air volume of the supply air by the ventilation device 30 larger than the air volume of the exhaust gas during normal operation, and the ventilation device 30 when the refrigerant sensor 24 detects the leaked refrigerant.
  • the air volume of the exhaust gas can be made larger than the air volume of the supply air.
  • the air supply is rich during normal operation, for example, in a large-scale office or theater, the refrigerant leaked in the office is released by making the large-scale office or the like negative pressure as exhaust rich when the refrigerant leaks. It can be suppressed from spreading to other rooms or spaces.
  • the air conditioning system S of the second embodiment includes an auxiliary fan 40 in addition to the air conditioning system S of the first embodiment.
  • the ventilation device 30, the auxiliary fan 40, and the living room R are connected by an air supply (SA) duct 31. Further, the ventilation device 30 and the living room R are connected by a return air (RA) duct 32.
  • SA air supply
  • RA return air
  • the ventilation device 30 of the second embodiment is the same as the ventilation device 30 of the first embodiment.
  • the capacity of the ventilation device 30 is set based on the required ventilation volume (m 3 / h) calculated based on the estimated number of people in the room R or the room area.
  • the air supply is performed by a fan and the exhaust is a natural exhaust type 2 ventilation device, or the exhaust air is performed by a fan and the air supply is a natural air supply type 3 ventilation device. Can also be used.
  • the auxiliary fan 40 is a ventilation fan arranged separately from the ventilation device 30.
  • the auxiliary fan 40 includes a ventilation duct 41 that connects the ventilation device 30 and the living room R and is connected to an air supply duct 31 that supplies the outside air OA heat exchanged by the total heat exchanger 33 to the living room R. ..
  • An electric damper 42 for opening and closing the air duct 41 is provided in the air duct 41.
  • the auxiliary fan 40 includes a control unit 43 that controls the operation of the auxiliary fan 40 and the electric damper 42.
  • the control unit 43 is communicably connected to the control unit 36 of the ventilation device 30.
  • the ventilation duct 41 can be directly connected to the living room R without merging with the air supply duct 31 of the ventilation device 30.
  • R32 refrigerant having a low global warming potential has been progressing in air conditioners that cool and heat indoors by a vapor compression refrigeration cycle. Therefore, the R32 refrigerant is also used as the refrigerant in the air conditioning system S according to the second embodiment.
  • this R32 refrigerant has a slight flammability (slight flammability), and it is necessary to take measures against leakage in the unlikely event.
  • the R32 refrigerant may burn when its concentration in the air becomes flammable.
  • the combustion range which is the range of the concentration at which combustion occurs, has a lower limit and an upper limit.
  • the concentration of the leaked R32 refrigerant in the air is lower than the lower limit, the R32 refrigerant does not burn even if there is a fire.
  • the auxiliary fan 40 is operated together with the ventilation device 30 to ventilate the living room R, and the concentration of the leaked refrigerant is adjusted. It is diluted so as not to reach the lower limit.
  • the refrigerant for example, R717, R290 and a mixture thereof, a mixture of these and R32, and the like can be used in addition to the R32 refrigerant, and the present invention is not particularly limited.
  • the required ventilation volume of the ventilation device 30 When the required ventilation volume of the ventilation device 30 is larger than the required ventilation volume as a safety measure for refrigerant leakage, the required ventilation volume can be secured at the time of refrigerant leakage by operating the ventilation device.
  • the required ventilation volume of the ventilation device 30 is determined by the assumed number of people in the room and the size of the room as described above, the required ventilation volume becomes small in a room with a small number of people or a room with a small area, and it is necessary when the refrigerant leaks. It may not be possible to secure a sufficient ventilation volume.
  • the ventilation volume will be larger than the originally required ventilation volume, and as a result, the load of the outside air introduced into the living room will increase, resulting in an increase in energy consumption. It ends up.
  • the air conditioning system S of the second embodiment assists ventilation at the time of refrigerant leakage without increasing the energy consumption at the normal time.
  • FIG. 4 is a diagram showing an example of the relationship between the floor area of various living rooms and the required ventilation volume.
  • This example shows the required ventilation of a hotel room, a typical office and a restaurant.
  • the ceiling height of each room is 2.7 m
  • the ventilation frequency (times / h) is based on the standards of the Japan Society of Air Conditioning and Sanitary Engineering.
  • the dotted line shows 162 m 3 / h, which is the required ventilation volume at the time of refrigerant leakage, which is specified in GL-16 (JRA), and the alternate long and short dash line is specified in IEC, at the time of refrigerant leakage. It shows the required ventilation volume of 130 m 3 / h.
  • the ventilation device 30 can be operated. It is possible to dilute the leaked refrigerant to prevent the leaked refrigerant from reaching the flammable concentration in the air.
  • the ventilation volume by the ventilation device 30 becomes smaller than the required ventilation volume as a safety measure for the leaked refrigerant specified by GL-16 (JRA) or IEC.
  • the region below the dotted line or the alternate long and short dash line is defined by GL-16 (JRA) or IEC as the required ventilation volume (m 3 / h) selected as the air conditioning system S based on the CO 2 concentration. This is the area where the ventilation volume is less than the required ventilation as a safety measure for the leaking refrigerant.
  • the auxiliary fan 40 when the ventilation volume by the ventilation device 30 is the ventilation volume that enters the lower region depending on the use and floor area of the living room R, the auxiliary fan 40 is operated when the refrigerant leaks to the ventilation device 30. Ventilation volume is supplemented. This makes it possible to dilute the leaked refrigerant and prevent the concentration of the refrigerant in the air from reaching a combustible concentration.
  • the auxiliary fan 40 includes the required ventilation volume A as a safety measure for the leaked refrigerant specified by GL-16 (JRA) or IEC, and the ventilation volume B required to keep the CO 2 concentration in the living room below the standard value. It is desirable that an air volume equal to or greater than the difference (AB) can be blown.
  • the IEC states that the air volume of either the supply air or the exhaust gas should clear the standard value.
  • the auxiliary fan 40 operates based on the operation signal from the control unit 36 of the ventilation device 30 that receives the detection signal of the refrigerant sensor 24 that has detected the leaked refrigerant via the control unit 25 of the indoor unit 20.
  • the electric damper 42 Prior to the operation of the auxiliary fan 40, the electric damper 42, which normally closes the air duct 41, is opened.
  • the air blown from the auxiliary fan 40 is supplied to the living room R together with the air supply SA from the ventilation device 30.
  • the auxiliary fan 40 does not operate in the normal state when the refrigerant does not leak, and operates only when the refrigerant leaks. Therefore, it does not increase the energy consumption of the air conditioning system during normal times.
  • the auxiliary fan 40 which is a ventilation fan, at the maximum rotation speed.
  • the ventilation volume required to dilute the leaked refrigerant to less than the flammable concentration can be effectively secured, and as a result, the leaked refrigerant can be more effectively suppressed from reaching the flammable concentration. ..
  • the balance between the supply air and the exhaust becomes "air supply rich", the amount of leaked air is increased by making the room R a positive pressure, the leaked refrigerant is discharged quickly, and the leaked refrigerant in the room The concentration can be reduced.
  • the air conditioning system S of the second embodiment has the following effects.
  • the air conditioning system S of the second embodiment includes an air conditioner 20 having a heat exchanger 22 that generates harmonized air by heat exchange with a slightly flammable or flammable refrigerant, and leakage of the refrigerant in the air-conditioned space.
  • the refrigerant sensor 24 for detecting the above, the ventilation device 30 for supplying air by the fan 34 and / or exhausting by the fan 35, and the air conditioner 20 and / or the ventilation device 30 are communicably connected and leaked by the refrigerant sensor 24.
  • auxiliary fan 40 that does not operate when the refrigerant is not detected and operates when the leaked refrigerant is detected by the refrigerant sensor. Therefore, when the refrigerant sensor 24 detects the leakage of the refrigerant, the auxiliary fan 40 operates, and the ventilation device 30 can ventilate the living room R, which is the air-conditioned space. This makes it possible to dilute the leaked refrigerant and prevent the refrigerant from reaching a combustible concentration. Further, since the auxiliary fan 40 does not operate in the normal state when the refrigerant does not leak, the energy consumption of the air conditioning system S in the normal time does not increase.
  • the auxiliary fan 40 keeps the ventilation volume A required for diluting the leaked refrigerant to less than the combustible concentration and the CO 2 concentration of the living room R below the reference value. It is possible to blow an air volume equal to or greater than the difference (AB) from the required ventilation volume B. In this case, by operating the auxiliary fan 40, the ventilation volume required to dilute the leaked refrigerant to less than the flammable concentration can be secured, and as a result, the leaked refrigerant reaches the flammable concentration more effectively. It can be suppressed.
  • the air conditioner 20 or the ventilation device 30 that receives the detection signal of the refrigerant sensor 24 operates the auxiliary fan 40.
  • a start signal may be transmitted.
  • the ventilation volume required to dilute the leaked refrigerant to less than the flammable concentration can be secured, and as a result, the leaked refrigerant becomes combustible. It can be suppressed more effectively.
  • the auxiliary fan 40 can be used as a ventilation fan.
  • the ventilation fan by operating the ventilation fan, it is possible to secure the ventilation volume required to dilute the leaked refrigerant to less than the flammable concentration, and as a result, it is more effective for the leaked refrigerant to reach the flammable concentration. Can be suppressed.
  • the rotation speed of the ventilation fan 40 is set to the maximum rotation speed.
  • the ventilation volume required to dilute the leaked refrigerant to less than the combustible concentration can be effectively secured, and as a result, the leaked refrigerant is released. Reaching the flammable concentration can be suppressed more effectively.
  • the auxiliary fan 40 of the second embodiment is communicably connected to the air conditioner 20 and / or the ventilation device 30 of (1) to (5) above, and operates when the leaking refrigerant is not detected by the refrigerant sensor 24. Instead, it operates when the leaked refrigerant is detected by the refrigerant sensor 24.
  • the auxiliary fan 40 operates when the refrigerant sensor 24 detects the leakage of the refrigerant, and can ventilate the living room together with the ventilation by the ventilation device 30. This makes it possible to dilute the leaked refrigerant and prevent the refrigerant from reaching a combustible concentration.
  • since it does not operate in the normal state where the refrigerant does not leak it does not increase the energy consumption of the air conditioning system in the normal time.
  • FIG. 5 is a schematic configuration diagram of the air conditioning system 110 according to the third embodiment of the present disclosure.
  • the air conditioning system 110 of the present embodiment includes an air conditioner 111 and a ventilation device 112.
  • the air conditioner 111 includes an outdoor unit 121 and an indoor unit 122.
  • the indoor unit 122 and the ventilation device 112 are installed in the space S3 behind the ceiling of the room (living room) R.
  • the indoor unit 122 and the ventilation device 112 may be installed on the wall, the floor, the ceiling, or the like of the room R.
  • the indoor unit 122 and the ventilation device 112 are not limited to the same place in the room R, but may be installed in different places.
  • the air conditioner 111 adjusts the temperature of the air in the indoor space (air conditioning target space) S1 inside the room R by performing a vapor compression refrigeration cycle with a refrigerant circuit including a compressor, a heat exchanger, an expansion valve, and the like. adjust.
  • the outdoor unit 121 and the indoor unit 122 are connected by a refrigerant pipe 123 constituting a refrigerant circuit.
  • the indoor unit 122 takes in the air in the indoor space S1, exchanges heat between the air and the refrigerant, and blows out the temperature-controlled conditioned air to the indoor space S1 again, thereby making the temperature of the indoor space S1 desired. adjust.
  • the specific configuration of the refrigerant circuit of the air conditioner 111, the operation procedure of the cooling operation and the heating operation, and the like are the same as those described with reference to FIG. 1 in the first embodiment.
  • the indoor unit 122 includes a controller 124, a remote controller 125, and a refrigerant sensor 126.
  • the controller 124 (hereinafter, also referred to as “air conditioning controller”) controls the operation of the fan, electric valve, etc. housed in the indoor unit 122.
  • the air conditioning controller 124 is composed of, for example, a microcomputer having a processor such as a CPU and a memory such as RAM and ROM.
  • the air-conditioning controller 124 exerts a predetermined function when the processor executes a program installed in the memory.
  • the air conditioning controller 124 is also communicably connected to the controller (control unit) 136 of the ventilation device 112, which will be described later.
  • the air conditioning controller 124 may be provided in the outdoor unit 121, or may be provided in both the outdoor unit 121 and the indoor unit 122.
  • the remote controller 125 is used for operation start / stop operations and operation settings such as room temperature and ventilation strength.
  • the remote controller 125 is connected to the air conditioning controller 124 of the indoor unit 122 so as to be able to communicate by wire or wirelessly.
  • the user can operate the air conditioner 111 remotely by using the remote controller 125.
  • the refrigerant sensor 126 detects the refrigerant leaked from the refrigerant piping of the refrigerant circuit of the air conditioner 111.
  • the detection signal of the refrigerant sensor 126 is input to the air conditioning controller 124.
  • the refrigerant sensor 126 is provided in the housing of the indoor unit 122. However, the refrigerant sensor 126 may be provided outside the housing of the indoor unit 122.
  • the refrigerant sensor 126 may be provided, for example, on the remote controller 125 connected to the indoor unit 122.
  • the ventilation device 112 ventilates the indoor space S1.
  • the ventilator 112 is operated in conjunction with or independently of the air conditioner 111.
  • the ventilation device 112 is connected to the outdoor space S2 and the indoor space S1 via ducts 145a to 145d.
  • the ventilation device 112 of the present embodiment is configured by a humidity control device that adjusts the humidity at the same time as ventilating the indoor space S1.
  • FIG. 6 is a plan view, a right side view, and a left side view showing a schematic structure of the ventilation device.
  • the ventilator 112 includes a casing 158, an opening / closing mechanism 135, a controller (control unit) 136 (see FIG. 5), and a refrigerant circuit 161 (see FIG. 8).
  • the casing 158 is formed in a rectangular parallelepiped box shape having a rectangular planar shape.
  • the casing 158 includes a bottom plate 158e, a top plate 158f, and four side plates (first to fourth side plates) 158a to 158d.
  • a part of the refrigerant circuit 161, the opening / closing mechanism 135, and the like are housed in the space surrounded by the bottom plate 158e, the top plate 158f, and the side plates 158a to 158d.
  • the lower side in the plan view of FIG. 6 will be described as the front, the upper side as the rear, the left side as the left, and the right side as the right.
  • the side plate 158a arranged on the front side is the first side plate
  • the side plate 158b arranged on the rear side is the second side plate
  • the side plate 158c arranged on the left side is the third side plate.
  • the side plate 158d arranged on the right side is also referred to as a fourth side plate.
  • a return air intake 141 and an outside air intake 143 are formed on the second side plate 158b of the casing 158.
  • An exhaust air outlet 142 is formed on the third side plate 158c of the casing 158, and an air supply air outlet 144 is formed on the fourth side plate 158d.
  • the return air intake 141 is used to take in the air (return air) RA from the indoor space S1 into the casing 158.
  • the exhaust outlet 142 is used to discharge the return air RA taken into the casing 158 to the outdoor space S2 as an exhaust EA.
  • the outside air intake 143 is used to take in the air (outside air) OA from the outdoor space S2 into the casing 158.
  • the supply air outlet 144 is used to supply the outside air OA taken into the casing 158 to the indoor space S1 as the supply air SA.
  • the outside air intake port 143 and the exhaust air outlet 142 are connected to the outdoor space S2 via ducts 145a and 145b, respectively.
  • the return air intake 141 and the air supply outlet 144 are connected to the indoor space S1 via ducts 145c and 145d.
  • the inside of the casing 158 includes a first humidity control chamber 162, a second humidity control chamber 163, a return air side passage 164, an outside air side passage 165, an air supply side passage 166, an exhaust side passage 167, and a supply side passage. It is divided into an air fan chamber 168 and an exhaust fan chamber 169. Between the first side plate 158a and the second side plate 158b in the casing 158, the first partition wall 170a and the second partition wall 170b are arranged side by side in parallel with these side plates.
  • the space between the second side plate 158b and the first partition wall 170a is vertically partitioned by the third partition wall 170c, the return air side passage 164 is formed on the upper side, and the outside air side passage 165 is formed on the lower side. ing.
  • a first humidity control chamber 162 and a second humidity control chamber 163 are provided between the first partition wall 170a and the second partition wall 170b.
  • the first humidity control chamber 162 and the second humidity control chamber 163 are partitioned to the left and right by the fourth partition wall 170d.
  • a first heat exchanger 186 which will be described later, is arranged in the first humidity control chamber 162.
  • a second heat exchanger 189 which will be described later, is arranged in the second humidity control chamber 163.
  • a fifth partition wall 170e is provided on the front side of the second partition wall 170b.
  • the space between the second partition wall 170b and the fifth partition wall 170e is vertically partitioned by the sixth partition wall 170f, the air supply side passage 166 is formed on the upper side, and the exhaust side passage 167 is formed on the lower side.
  • An air supply fan chamber 168 and an exhaust fan chamber 169 are provided on the front side of the air supply side passage 166 and the exhaust side passage 167.
  • the air supply fan chamber 168 and the exhaust fan chamber 169 are partitioned to the left and right by the seventh partition wall 170 g.
  • the air supply fan chamber 168 communicates with the air supply side passage 166, and the exhaust fan chamber 169 communicates with the exhaust side passage 167.
  • An air supply fan 134 is arranged in the air supply fan room 168.
  • An exhaust fan 133 is arranged in the exhaust fan chamber 169.
  • An air supply outlet 144 is formed on the fourth side plate 158d forming the air supply fan chamber 168, and an exhaust outlet 142 is formed on the third side plate 158c forming the exhaust fan chamber 169.
  • the casing 158 has an "air supply air passage” and an “exhaust air passage”.
  • the air supply air passage reaches the air supply outlet 144 from the outside air intake port 143 through the outside air side passage 165, the first or second humidity control chamber 162, 163, the air supply side passage 166, and the air supply fan chamber 168. Is the air flow path to.
  • the exhaust air passage reaches the exhaust outlet 142 from the return air intake 141 through the return air passage 164, the first or second humidity control chamber 162, 163, the exhaust side passage 167, and the exhaust fan chamber 169.
  • Air flow path There are two systems of exhaust air passages, one passing through the first humidity control chamber 162 and the other passing through the second humidity control chamber 163. When the exhaust fan 133 is activated, an air flow is generated in each exhaust air passage.
  • the air supply air passage is formed by an opening / closing mechanism 183 for air supply, which will be described later.
  • the two air supply air passages are alternately switched and opened and closed by the air supply opening and closing mechanism 183, or are opened and closed at the same time.
  • the exhaust air passage is formed by an opening / closing mechanism 184 for exhaust, which will be described later.
  • the two exhaust air passages are alternately switched and opened and closed by the exhaust opening and closing mechanism 184, or are opened and closed at the same time.
  • opening and closing the two air passages by switching alternately means that when one air passage opens, the other air passage closes alternately.
  • Simultaneous opening and closing of two systems means that one air passage and the other air passage open or close at the same time.
  • the air supply opening / closing mechanism 183 and the exhaust opening / closing mechanism 184 are controlled by the controller (control unit) 136.
  • the opening / closing mechanism 135 includes an air supply opening / closing mechanism 183 and an exhaust opening / closing mechanism 184.
  • the opening / closing mechanism 135 has a plurality of dampers 171 to 178 provided on the first partition wall 170a and the second partition wall 170b of the casing 158.
  • Each damper 171 to 174 is provided on the first partition wall 170a.
  • Each damper 171 to 174 is formed in the shape of a horizontally long rectangular plate.
  • the first return air damper 171 is provided on the right side of the fourth section wall 170d, and the second is on the left side of the fourth section wall 170d.
  • a return air damper 172 is provided.
  • the return air side passage 164 and the first humidity control chamber 162 are communicated with each other.
  • the return air side passage 164 and the first humidity control chamber 162 are shut off.
  • the second return air damper 172 is opened, the return air side passage 164 and the second humidity control chamber 163 are communicated with each other.
  • the second return air damper 172 is closed, the return air side passage 164 and the second humidity control chamber 163 are shut off.
  • the first outside air damper 173 is provided on the right side of the fourth section wall 170d, and the second outside air damper is provided on the left side of the fourth section wall 170d. 174 is provided.
  • the first outside air damper 173 is opened, the outside air side passage 165 and the first humidity control chamber 162 are communicated with each other.
  • the first outside air damper 173 is closed, the outside air side passage 165 and the first humidity control chamber 162 are shut off.
  • the second outside air damper 174 is opened, the outside air side passage 165 and the second humidity control chamber 163 are communicated with each other.
  • the second outside air damper 174 is closed, the outside air side passage 165 and the second humidity control chamber 163 are shut off.
  • the second partition wall 170b is provided with four retractable dampers 175 to 178. Each damper 175 to 178 is formed in the shape of a horizontally long rectangular plate.
  • the first air supply damper 175 is provided on the right side of the fourth partition wall 170d, and the second is on the left side of the fourth partition wall 170d.
  • An air supply damper 176 is provided.
  • the air supply side passage 166 and the first humidity control chamber 162 are communicated with each other.
  • the air supply side passage 166 and the first humidity control chamber 162 are shut off.
  • the second air supply damper 176 is opened, the air supply side passage 166 and the second humidity control chamber 163 are communicated with each other.
  • the second air supply damper 176 is closed, the air supply side passage 166 and the second humidity control chamber 163 are shut off.
  • the first exhaust damper 177 is attached to the right side of the fourth partition wall 170d, and the second exhaust damper 177 is attached to the left side of the fourth partition wall 170d. 178 is attached.
  • the first exhaust damper 177 is opened, the exhaust side passage 167 and the first humidity control chamber 162 are communicated with each other.
  • the first exhaust damper 177 is closed, the exhaust side passage 167 and the first humidity control chamber 162 are shut off.
  • the second exhaust damper 178 is opened, the exhaust side passage 167 and the second humidity control chamber 163 are communicated with each other.
  • the second exhaust damper 178 is closed, the exhaust side passage 167 and the second humidity control chamber 163 are shut off.
  • FIG. 7 is an explanatory diagram briefly showing the air flow flowing through the two supply air passages and the air flow flowing through the two exhaust air passages.
  • the first and second outside air dampers 173 and 174, and the first and second air supply dampers 175 and 176 constitute an air supply opening / closing mechanism 183.
  • the first and second return air dampers 171 and 172, and the first and second exhaust dampers 177 and 178 constitute an exhaust opening / closing mechanism 184.
  • First system air supply air passage Opening operation of the first outside air damper 173 and first air supply damper 175
  • Second system air supply air passage Opening operation of the second outside air damper 174 and the second air supply damper 176 FIG. ,
  • the air flow flowing through the air supply air passage of the first system is indicated by the reference numeral Fa1
  • the air flow flowing through the air supply air passage of the second system is indicated by Fa2.
  • the two exhaust air passages are opened by the operation of the following dampers, respectively.
  • Exhaust air passage of the first system Opening operation of the first return air damper 171 and the first exhaust damper 177
  • Exhaust air passage of the second system Opening operation of the second return air damper 172 and the second exhaust damper 178 ,
  • the air flow flowing through the exhaust air passage of the first system is indicated by reference numeral Fb1
  • the air flow flowing through the exhaust air passage of the second system is indicated by Fb2.
  • FIG. 8 is a piping system diagram showing a refrigerant circuit of the ventilation device.
  • the refrigerant circuit 161 is formed by connecting a first heat exchanger 186, a four-way switching valve 187 (switching mechanism), a compressor 188, a second heat exchanger 189, and an electric expansion valve 190 (expansion mechanism) by a refrigerant pipe 191. Is.
  • the refrigerant circuit 161 is configured to execute a vapor compression refrigeration cycle by circulating the refrigerant.
  • the compressor 188, the four-way switching valve 187, and the like are arranged in the air supply fan chamber 168.
  • the discharge side of the compressor 188 is connected to the first port of the four-way switching valve 187, and the suction side thereof is connected to the second port of the four-way switching valve 187.
  • One end of the first heat exchanger 186 is connected to the third port of the four-way switching valve 187.
  • the other end of the first heat exchanger 186 is connected to the electric expansion valve 190.
  • One end of the second heat exchanger 189 is connected to the fourth port of the four-way switching valve 187.
  • the other end of the second heat exchanger 189 is connected to the electric expansion valve 190.
  • the first heat exchanger 186 is arranged in the first humidity control chamber 162, and the second heat exchanger 189 is arranged in the second humidity control chamber 163.
  • the compressor 188 is a so-called fully enclosed compressor, and is a variable capacity compressor whose rotation speed is controlled by an inverter.
  • Both the first heat exchanger 186 and the second heat exchanger 189 are composed of a so-called cross-fin type fin-and-tube heat exchanger provided with a heat transfer tube and a large number of fins. Adsorbents such as zeolite are supported on the outer surfaces of the first heat exchanger 186 and the second heat exchanger 189 over almost the entire surface thereof.
  • the first heat exchanger 186 and the second heat exchanger 189 may be microchannel type heat exchangers.
  • the four-way switching valve 187 has a state in which the first port and the third port communicate with each other and the second port and the fourth port communicate with each other (see FIG. 8A), and the first port and the first port. It is configured to be switchable to a state in which the port 4 communicates and the second port and the third port communicate (see FIG. 8B).
  • the refrigerant circuit 161 reverses the refrigerant circulation direction by switching the communication state of the port of the four-way switching valve 187. Due to the reversal of the refrigerant circulation direction, the first heat exchanger 186 functions as a condenser, the second heat exchanger 189 functions as an evaporator, and the first refrigeration cycle operation and the first heat exchanger 186 act as an evaporator. A second refrigeration cycle operation is performed in which the second heat exchanger 189 functions as a condenser.
  • the controller (control unit) 136 (hereinafter, also referred to as a ventilation controller) of the ventilation device 112 includes an exhaust fan 133, an air supply fan 134, a refrigerant circuit 161 (compressor 188, a four-way switching valve 187, and the like. It controls the operation of the expansion valve 190 and the like; see FIG. 8) and the opening / closing mechanism 135.
  • the ventilation controller 136 includes a processor such as a CPU, a microcomputer provided with a memory such as RAM and ROM, and the like.
  • the ventilation controller 136 exerts a predetermined function by executing a program installed in the memory by the processor.
  • the ventilation controller 136 is communicably connected to the air conditioning controller 124 of the air conditioner 111.
  • the ventilation controller 136 By controlling the operation of the exhaust fan 133, the air supply fan 134, the refrigerant circuit 161 and the opening / closing mechanism 135, the ventilation controller 136 performs the first ventilation operation for ventilation of the normal indoor space S1 and the refrigerant leakage. It is executed by switching between the corresponding second ventilation operation.
  • the first ventilation operation includes a dehumidification ventilation operation in which ventilation is performed while dehumidifying the room and a humidification ventilation operation in which ventilation is performed while humidifying the room.
  • the air supply fan 134 and the exhaust fan 133 are driven.
  • the outside air OA from the outdoor space S2 passes through the outside air intake 143 and is taken into the casing 158
  • the return air RA from the indoor space S1 passes through the return air intake 141 and is taken into the casing 158. Be done.
  • the first and second heat exchangers 186 and 189 are alternately switched between a condenser and an evaporator.
  • the outside air OA taken into the casing 158 is one of the first heat exchanger 186 of the first humidity control chamber 162 and the second heat exchanger 189 of the second humidity control chamber 163.
  • the return air RA which is supplied into the room through the above and is taken into the casing 158, passes through the other heat exchanger of the first heat exchanger 186 and the second heat exchanger 189 and is discharged to the outside of the room.
  • the air flow in the casing 158 is switched. Specifically, the next first operation and the second operation are alternately repeated for 3 minutes each.
  • the air supply air passage and the exhaust air passage in the casing 158 are set as shown in FIG. Specifically, the second return air damper 172, the first outside air damper 173, the first supply air damper 175, and the second exhaust damper 178 are opened, and the first return air damper 171 and the second outside air damper 174 and the second The air supply damper 176 and the first exhaust damper 177 are closed. In FIG. 9, the damper in the closed state is hatched.
  • the air supply air passage of the first system and the exhaust air passage of the second system are formed in the casing 158, and the outside air OA taken into the casing 158 passes through the first heat exchanger 186 and enters the room.
  • the return air RA supplied and taken into the casing 158 passes through the second heat exchanger 189 and is discharged to the outside of the room.
  • the second refrigeration cycle operation is performed in the refrigerant circuit 161 as shown in FIG. 8 (b).
  • the first refrigeration cycle operation is performed.
  • the outside air OA that has passed through the outside air intake 143 and is taken into the outside air side passage 165 passes through the first outside air damper 173 and flows into the first humidity control chamber 162, and exchanges the first heat in the first humidity control chamber 162.
  • Humidification is performed through the vessel 186.
  • the outside air OA passes through the first heat exchanger 186 which is an evaporator to dehumidify and cool
  • the outside air OA is a condenser. It is humidified and heated through the heat exchanger 186.
  • the air conditioned in the first heat exchanger 186 passes through the first air supply damper 175, the air supply side passage 166, the air supply fan chamber 168, and the air supply outlet 144 in this order, and is supplied to the indoor space S1.
  • the return air RA that has passed through the return air intake 141 and is taken into the return air side passage 164 passes through the second return air damper 172 and flows into the second humidity control chamber 163, and in the second humidity control chamber 163.
  • Humidification is performed through the second heat exchanger 189.
  • the return air RA passes through the second heat exchanger 189, which is a condenser, to be humidified and heated, and in the humidification ventilation operation, the return air RA is an evaporator. It is dehumidified and cooled through the second heat exchanger 189.
  • the air regulated by the second heat exchanger 189 passes through the second exhaust damper 178, the exhaust side passage 167, the exhaust fan chamber 169, and the exhaust outlet 142 in this order, and is discharged to the outside of the room.
  • the air supply air passage and the exhaust air passage in the casing 158 are set as shown in FIG. Specifically, the first return air damper 171, the second outside air damper 174, the second supply air damper 176, and the first exhaust damper 177 are in the open state, the second return air damper 172, the first outside air damper 173, and the first. The air supply damper 175 and the second exhaust damper 178 are closed. As a result, the air supply air passage of the second system and the exhaust air passage of the first system are formed in the casing 158, and the outside air OA taken into the casing 158 passes through the second heat exchanger 189 and enters the room. The return air RA supplied and taken into the casing 158 passes through the first heat exchanger 186 and is discharged to the outside of the room.
  • the first refrigeration cycle operation is performed in the refrigerant circuit 161 as shown in FIG. 8 (a).
  • the second refrigeration cycle operation is performed as shown in FIG. 8 (b).
  • the outside air OA that has passed through the outside air intake 143 and is taken into the outside air side passage 165 passes through the second outside air damper 174 and flows into the second humidity control chamber 163, and exchanges the second heat in the second humidity control chamber 163.
  • Humidification is performed through the vessel 189.
  • the outside air OA passes through the second heat exchanger 189, which is an evaporator, to be dehumidified and cooled, and in the humidifying ventilation operation, the outside air OA is a condenser. It is humidified and heated through the heat exchanger 189.
  • the air conditioned in the second heat exchanger 189 passes through the second air supply damper 176, the air supply side passage 166, the air supply fan chamber 168, and the air supply outlet 144 in this order, and is supplied to the indoor space S1.
  • the return air RA that has passed through the return air intake 141 and is taken into the return air side passage 164 passes through the first return air damper 171 and flows into the first humidity control chamber 162, and in the first humidity control chamber 162.
  • Humidification is performed through the first heat exchanger 186.
  • the return air RA passes through the first heat exchanger 186, which is a condenser, to be humidified and heated, and in the humidification ventilation operation, the return air RA is an evaporator. It is dehumidified and cooled through the first heat exchanger 186.
  • the air conditioned in the first heat exchanger 186 passes through the first exhaust damper 177, the exhaust side passage 167, the exhaust fan chamber 169, and the exhaust outlet 142 in this order, and is discharged to the outside of the room.
  • the second ventilation operation corresponding to the refrigerant leakage is an operation performed when the refrigerant in the air conditioner 111 leaks and the refrigerant sensor 126 detects the leaked refrigerant.
  • the detection signal is input to the air conditioning controller 124.
  • the air conditioning controller 124 transmits information indicating that a refrigerant leak has occurred (refrigerant leak information) to the ventilation controller 136, and the ventilation controller 136 sends the exhaust fan 133, the air supply fan 134, and the air supply fan 134 based on the refrigerant leak information. Controls the operation of the opening / closing mechanism 135.
  • FIG. 11 is a schematic view for explaining the supply air independent operation which is the second ventilation operation.
  • FIG. 12 is a schematic view for explaining the exhaust independent operation which is the second ventilation operation.
  • the second ventilation operation includes "supply air independent operation” and "exhaust independent operation”.
  • the “air supply independent operation” is an operation in which the outside air OA from the outdoor space S2 is taken into the casing 158 and only supplied to the indoor space S1 as the air supply SA.
  • the “exhaust independent operation” is an operation in which the return air RA from the indoor space S1 is taken into the casing 158 and only discharged to the outdoor space S2 as the exhaust EA.
  • both of the two air supply air passages are opened by the air supply opening / closing mechanism 183, and both of the two exhaust air passages are closed by the exhaust opening / closing mechanism 184.
  • the first and second outside air dampers 173, 174, the first and second air supply dampers 175, 176 are opened, and the first and second return air dampers 171 and 172, and the first and second exhaust dampers 177 are opened.
  • 178 closes.
  • the air supply fan 134 is driven and the exhaust fan 133 is stopped.
  • both of the two air supply air passages are opened in this way, the air supply air passage is expanded, and the ventilation volume can be increased as compared with the first ventilation operation.
  • both of the two exhaust air passages are opened by the exhaust opening / closing mechanism 184, and both of the two air supply air passages are closed by the air supply opening / closing mechanism 183.
  • the first and second return air dampers 171 and 172, the first and second exhaust dampers 177 and 178 are opened, and the first and second outside air dampers 173 and 174, and the first and second air supply dampers 175 are opened. , 176 closes.
  • the exhaust fan 133 is driven and the air supply fan 134 is stopped.
  • both of the two exhaust air passages are opened in this way, the exhaust air passage is expanded, and the ventilation volume can be increased as compared with the first operation.
  • the ventilation controller 136 has an air supply opening / closing mechanism 183 and an exhaust opening / closing mechanism so as to alternately switch between the supply air independent operation and the exhaust independent operation as described above at predetermined time intervals (for example, every 3 minutes). It controls 184, the air supply fan 134, and the exhaust fan 133. As a result, ventilation by the air supply SA and ventilation by the exhaust EA can be efficiently performed. Further, the ventilation controller 136 stops the operation of the compressor 188 of the refrigerant circuit 161 during the air supply operation and the exhaust operation, and performs only ventilation without performing heat exchange and humidity control between the air and the refrigerant. ..
  • the air conditioning system 110 includes an air conditioner 111 that generates harmonized air by exchanging heat with a refrigerant and supplies it to the indoor space (air conditioning target space) S1, and a refrigerant sensor 126 that detects leakage of the refrigerant.
  • a ventilation device 112 that ventilates the indoor space S1 and a ventilation controller 136 that controls the ventilation device 112 are provided.
  • the ventilator 112 has two first and second heat exchangers 186,189 carrying an adsorbent that adsorbs the moisture contained in the air, and alternately evaporates the two heat exchangers 186,189.
  • a refrigerant circuit 161 that functions as a condenser, two air supply air passages and two exhaust air passages that communicate the indoor space S1 and the outdoor space S2 via heat exchangers 186 and 189, and each air supply air.
  • Two systems of supply an air supply fan 134 that supplies the air of the outdoor space S2 to the indoor space S1 via a road, and an exhaust fan 133 that discharges the air of the indoor space S1 to the outdoor space S2 via each exhaust air passage. It includes an air supply opening / closing mechanism 183 that opens / closes the air passage, and an exhaust opening / closing mechanism 184 that opens and closes the two exhaust air passages.
  • the ventilation controller 136 When the refrigerant sensor 126 detects the leakage of the refrigerant, the ventilation controller 136 operates one of the supply air fan 134 and the exhaust fan 133 to stop the other fan, and of the supply air passage and the exhaust air passage.
  • the air supply opening / closing mechanism 183 and the exhaust opening / closing mechanism 184 are controlled so as to open both of the two air passages corresponding to one fan and close both of the other air passages.
  • the refrigerant leaks from the air conditioner 111, one of the air supply fan 134 and the exhaust fan 133 is operated, and one of the supply air passage and the exhaust air passage is opened to open both the supply air or the exhaust air passage.
  • the exhaust air passage can be expanded and the ventilation volume can be increased. Therefore, the refrigerant can be discharged to the outdoor space S2 in a short time, and the refrigerant concentration in the indoor space S1 can be reduced.
  • the ventilation controller 136 when the refrigerant sensor 126 detects the leakage of the refrigerant, the ventilation controller 136 alternately operates the air supply fan 134 and the exhaust fan 133 to alternate the air supply air passage and the exhaust air passage. Opens and closes. Therefore, the air supply air passage and the exhaust air passage can be opened and closed alternately to efficiently ventilate the indoor space S1.
  • FIG. 13 is a schematic cross-sectional explanatory view of a ventilation device that performs the first ventilation operation in the air conditioning system according to the fourth embodiment of the present release, as viewed from above.
  • FIG. 14 is a schematic cross-sectional explanatory view taken along the line AA of FIG.
  • FIG. 15 is a schematic cross-sectional explanatory view taken along the line BB of FIG.
  • the "first ventilation operation” is a normal ventilation operation of the indoor space S1 without refrigerant leakage
  • the "second ventilation operation” is a refrigerant leakage. It is a ventilation operation corresponding to.
  • the basic configuration of the air conditioner 111 and the ventilation device 112 in the air conditioning system of this embodiment is the same as that of the third embodiment described with reference to FIG. However, in the present embodiment, the specific configuration of the ventilation device 112 is different from that of the third embodiment.
  • the ventilation device 112 of the present embodiment has a casing 131 having a substantially rectangular parallelepiped box shape.
  • a total heat exchanger 132, an exhaust fan 133, an air supply fan 134, an opening / closing mechanism 135, and a controller (control unit) 136 are housed in the casing 131.
  • the casing 131 is provided with a return air intake 141, an exhaust air outlet 142, an outside air intake 143, and an air supply air outlet 144.
  • the return air intake 141 is used to take in the air (return air) RA from the indoor space S1 into the casing 131.
  • the exhaust outlet 142 is used to discharge the return air RA taken into the casing 131 to the outdoor space S2 as an exhaust EA.
  • the outside air intake port 143 is used to take in the air (outside air) OA from the outdoor space S2 into the casing 131.
  • the supply air outlet 144 is used to supply the outside air OA taken into the casing 131 to the indoor space S1 as the supply air SA.
  • the outside air intake port 143 and the exhaust air outlet 142 are connected to the outdoor space S2 via ducts 145a and 145b, respectively, as described in FIG.
  • the return air intake 141 and the air supply outlet 144 are connected to the indoor space S1 via ducts 145c and 145d.
  • the return air RA taken in from the return air intake 141 passes through the total heat exchanger 132, and is exhausted as exhaust EA from the exhaust outlet 142 to the outdoor space S2. ..
  • this air flow is also referred to as "first air flow F1".
  • the outside air OA taken in from the outside air intake port 143 passes through the total heat exchanger 132 and is supplied as the supply air SA from the supply air outlet 144 to the indoor space S1.
  • this air flow is also referred to as "second air flow F2".
  • FIG. 16 is a perspective view of the total heat exchanger.
  • the total heat exchanger 132 in the present embodiment is an orthogonal total heat exchanger configured so that the first air flow F1 and the second air flow F2 are substantially orthogonal to each other.
  • the total heat exchanger 132 has a partition plate 132a and a partition plate (spacing plate) 132b, as described with reference to FIG.
  • the partition plate 132a and the partition plate 132b are alternately laminated with an appropriate adhesive.
  • the total heat exchanger 132 is formed in a substantially quadrangular column shape as a whole.
  • the partition plate 132a has heat transfer property and moisture permeability, and is formed in a flat plate shape.
  • the partition plate 132a also has a property of allowing the refrigerant to permeate.
  • the partition plate 132b is formed in a corrugated plate shape in which a substantially triangular cross section is continuously formed.
  • the partition plate 132b forms an air passage between two adjacent partition plates 132a.
  • the partition plate 132b is laminated by changing the angle of 90 degrees for each partition plate 132a and the partition plate 132b in the stacking direction (vertical direction in FIG. 16).
  • the exhaust side passage 32c for passing the first air flow F1 and the air supply side passage 32d for passing the second air flow F2 are orthogonal to each other on both sides of the one partition plate 132a. Is formed.
  • the air flowing through the exhaust side passage 32c and the air flowing through the air supply side passage 32d are exchanged for sensible heat and latent heat (total heat exchange) via a partition plate 132a having heat transfer property and moisture permeability. ing.
  • the inside of the casing 131 is divided into two regions, the indoor space S1 side and the outdoor space S2 side, by the total heat exchanger 132.
  • an upstream exhaust air passage 146a is formed in the casing 131 on the upstream side of the first air flow F1 from the total heat exchanger 132, and is more than the total heat exchanger 132.
  • a downstream exhaust air passage 146b is formed on the downstream side of the first air flow F1.
  • Road 146 is constructed.
  • an upstream air supply air passage 147a is formed in the casing 131 on the upstream side of the second air flow F2 from the total heat exchanger 132, and is more than the total heat exchanger 132.
  • a downstream air supply air passage 147b is formed on the downstream side of the second air flow F2.
  • the upstream air supply air passage 147a and the downstream air supply air passage 147b constitute a first air supply air passage 147 that connects the indoor space S1 and the outdoor space S2 via the total heat exchanger 132.
  • a partition wall 151 is provided between the upstream exhaust air passage 146a and the downstream air supply air passage 147b.
  • a partition wall 152 is provided between the downstream exhaust air passage 146b and the upstream air supply air passage 147a.
  • an exhaust fan 133 is arranged in the vicinity of the exhaust outlet 142 in the downstream exhaust air passage 146b. By driving the exhaust fan 133, a first air flow F1 is generated, and the return air RA from the indoor space S1 passes through the first exhaust air passage 146 and is discharged to the outdoor space S2 as an exhaust EA.
  • an air supply fan 134 is arranged in the vicinity of the air supply outlet 144.
  • a second air flow F2 is generated, and the outside air OA of the outdoor space S2 passes through the first air supply air passage 147 and is supplied to the indoor space S1 as the supply air SA.
  • a second air supply air passage 148 and an opening / closing mechanism 135 are provided in the casing 131 of the present embodiment.
  • the second air supply air passage 148 is formed between the outside air intake port 143 and the air supply air outlet 144, and communicates with each other.
  • the second air supply air passage 148, the upstream air supply air passage 147a, and the total heat exchanger 132 are partitioned by a partition wall 153.
  • the second air supply air passage 148 communicates the indoor space S1 and the outdoor space S2 without passing through the total heat exchanger 132.
  • the downstream side of the second air supply air passage 148 merges with the downstream air supply air passage 147b.
  • the opening / closing mechanism 135 has an air supply damper (air supply opening / closing mechanism) 151 that switches between the first air supply air passage 147 and the second air supply air passage 148 to open and close.
  • the air supply damper 155 is swingably attached to the partition wall 153, for example.
  • the air supply damper 155 is driven by a motor (not shown).
  • the air supply damper 155 opens the first air supply air passage 147 to communicate with the outside air intake 143, and closes the second air supply air passage 148 with respect to the outside air intake 143, and the first air supply air passage 147.
  • the second mode in which both the second air supply air passage 148 and the second air supply air passage 148 are opened to communicate with the outside air intake 143 are switched.
  • FIG. 17 is a schematic cross-sectional explanatory view of the ventilation device that performs the second ventilation operation as viewed from above.
  • FIG. 18 is a schematic cross-sectional explanatory view taken along the line CC of FIG.
  • the second air flow F2 passing through the first air supply air passage 147 from the outside air intake port 143 and the return air intake port 141.
  • the first air flow F1 passing through the first exhaust air passage 146 and the first air flow F1 both pass through the total heat exchanger 132, and sensible heat and latent heat are exchanged between the two airs.
  • the controller (control unit) 36 (hereinafter, also referred to as a ventilation controller) of the ventilation device 112 includes an exhaust fan 133, an air supply fan 134, and an opening / closing mechanism 135 (air supply damper 155). ) Controls the operation.
  • the ventilation controller 136 is housed in the control box 137 included in the casing 131.
  • the ventilation controller 136 includes a processor such as a CPU, a microcomputer provided with a memory such as RAM and ROM, and the like.
  • the ventilation controller 136 exerts a predetermined function by executing a program installed in the memory by the processor.
  • the ventilation controller 136 is communicably connected to the air conditioning controller 124 of the air conditioner 111.
  • the ventilation controller 136 responds to the "first ventilation operation" performed for normal ventilation of the indoor space S1 and the refrigerant leakage by controlling the operations of the exhaust fan 133, the air supply fan 134, and the opening / closing mechanism 135. It is executed by switching between "second ventilation operation”. As shown in FIGS. 13 to 15, the first ventilation operation is performed by driving the exhaust fan 133 and the air supply fan 134 and switching the air supply damper 155 of the opening / closing mechanism 135 to the first mode. As a result, the return air RA from the indoor space S1 is discharged to the outdoor space S2, and the outside air OA from the outdoor space S2 is supplied to the indoor space S1 to ventilate the indoor space S1. Further, sensible heat and latent heat are exchanged between the return air RA from the indoor space S1 and the outside air OA from the outdoor space S2, and changes in temperature and humidity in the indoor space S1 can be suppressed.
  • the second ventilation operation corresponding to the refrigerant leakage is the operation performed when the refrigerant in the air conditioner 111 leaks.
  • the detection signal is input to the air conditioning controller 124.
  • the air conditioning controller 124 transmits information indicating that a refrigerant leak has occurred (refrigerant leak information) to the ventilation controller 136, and the ventilation controller 136 sends the exhaust fan 133, the air supply fan 134, and the air supply fan 134 based on the refrigerant leak information. Controls the operation of the opening / closing mechanism 135.
  • the ventilation controller 136 drives the exhaust fan 133 and the air supply fan 134 when a refrigerant leak occurs and the refrigerant sensor 126 detects the leaked refrigerant, and the air supply damper 155 is set to the second mode. Switch. If the exhaust fan 133 and the air supply fan 134 have already been driven, the drive is continued as it is. As a result, as shown in FIGS. 17 and 18, the return air RA from the indoor space S1 passes through the first exhaust air passage 146 and is discharged to the outdoor space S2 via the total heat exchanger 132.
  • the outside air OA from the outdoor space S2 passes through the first air supply air passage 147 and the second air supply air passage 148, partly via the total heat exchanger 132, and partly via the total heat exchanger 132. It is supplied to the indoor space S1 without being used.
  • both the first air supply air passage 147 and the second air supply air passage 148 are opened and the air supply air passage is expanded.
  • the ventilation volume can be increased as compared with the first ventilation operation. Therefore, ventilation can be further promoted, and the refrigerant can be discharged from the indoor space S1 in a short time.
  • the balance between the supply air and the exhaust becomes "air supply rich", the amount of leaked air is increased by making the room R a positive pressure, the leaked refrigerant is discharged quickly, and the leaked refrigerant in the room is discharged. The concentration can be reduced.
  • FIG. 19 is a schematic cross-sectional explanatory view of the air conditioning system according to the fifth embodiment of the present disclosure, which is a top view of the ventilation device that performs the second ventilation operation.
  • the ventilation device 112 of the fifth embodiment includes a second exhaust air passage 149 in place of the second air supply air passage 148 in the first embodiment.
  • the second exhaust air passage 149 is formed between the return air intake inlet 141 and the exhaust air outlet 142, and communicates with each other.
  • the second exhaust air passage 149, the upstream exhaust air passage 146a, and the total heat exchanger 132 are partitioned by a partition wall 154.
  • the downstream side of the second exhaust air passage 149 merges with the downstream exhaust air passage 146b. From the above, the second exhaust air passage 149 communicates the indoor space S1 and the outdoor space S2 without passing through the total heat exchanger 132.
  • the opening / closing mechanism 135 has an exhaust damper (exhaust opening / closing mechanism) 156 that switches between the first exhaust air passage 146 and the second exhaust air passage 149 to open and close.
  • the exhaust damper 156 is swingably attached to the partition wall 154, for example.
  • the exhaust damper 156 has a first aspect in which the first exhaust air passage 146 is opened to communicate with the return air intake 141 and the second exhaust air passage 149 is closed with respect to the return air intake 141, and the first exhaust air.
  • the second mode in which both the passage 146 and the second exhaust air passage 149 are opened to communicate with the return air intake 141 is switched.
  • the ventilation controller 136 switches the exhaust damper 156 to the first mode.
  • the ventilation device 112 ventilates while exchanging sensible heat and latent heat in the total heat exchanger 132 in the form shown in FIGS. 13 to 15.
  • the ventilation device 112 switches the exhaust damper 156 to the second mode by the ventilation controller 136 as shown in FIG. 19, and performs the second ventilation operation.
  • the outside air OA taken into the casing 131 from the outside air intake port 143 passes through the total heat exchanger 132 and is supplied into the room as the supply air SA from the supply air outlet 144.
  • the return air RA from the indoor space S1 taken into the casing 131 from the return air intake 141 passes through the first exhaust air passage 146 and the second exhaust air passage 149, and a part of the return air RA passes through the total heat exchanger 132. , The other part is discharged from the exhaust outlet 142 to the outdoor space S2 without passing through the total heat exchanger 132.
  • both the first exhaust air passage 146 and the second exhaust air passage 149 are opened and the exhaust air passage is expanded to expand the first ventilation. Ventilation can be increased more than driving. Therefore, ventilation can be further promoted, and the refrigerant can be discharged from the indoor space S1 in a short time. Further, in the present embodiment, the balance between the supply air and the exhaust gas becomes "exhaust rich", and by making the room R a negative pressure, it is possible to suppress the leakage refrigerant from diffusing into another room or space.
  • FIG. 20 is a schematic cross-sectional explanatory view of the air conditioning system according to the sixth embodiment of the present disclosure, which is a top view of the ventilation device that performs the second ventilation operation.
  • the ventilation device 112 of the present embodiment includes both the second air supply air passage 148 described in the fourth embodiment and the second exhaust air passage 149 described in the fifth embodiment.
  • the ventilation device 112 includes an air supply damper 155 corresponding to the second air supply air passage 148 and an exhaust damper 156 corresponding to the second exhaust air passage 149 as the opening / closing mechanism 135.
  • the ventilation device 112 of the present embodiment switches each damper 155, 156 to the first mode when performing the normal first ventilation operation, and sensible heat is generated in the total heat exchanger 132 in the embodiment shown in FIGS. 13 to 15. And ventilate while exchanging latent heat.
  • the ventilation device 112 switches the dampers 155 and 156 to the second mode by the ventilation controller 136 to perform the second ventilation operation as shown in FIG.
  • the outside air OA taken into the casing 131 from the outside air intake port 143 is supplied to the indoor space S1 through the first air supply air passage 147 and the second air supply air passage 148, and is supplied from the return air intake 141 to the casing 131.
  • the return air RA taken in is discharged to the outdoor space S2 through the first exhaust air passage 146 and the second exhaust air passage 149.
  • the ventilation device 112 of the present embodiment when the refrigerant leaks from the indoor unit 122, both the air supply air passage and the exhaust air passage are expanded, and the ventilation volume can be increased as compared with the first ventilation operation. Therefore, ventilation can be further promoted, and the refrigerant can be discharged from the indoor space S1 in a short time.
  • the balance between the air supply and the exhaust gas at the time of refrigerant leakage is set to " It can be changed to "air supply rich” or "exhaust rich".
  • FIG. 21 is a plan view, a right side view, and a left side view showing a schematic structure of a ventilation device of the air conditioning system according to the seventh embodiment of the present disclosure.
  • the basic configuration of the ventilation device 112 in the present embodiment is substantially the same as the ventilation device 112 (see FIG. 6) described in the third embodiment.
  • the ventilator 112 includes a casing 158, an opening / closing mechanism 135, a controller 136 (see FIG. 5), and a refrigerant circuit 161 (see FIG. 8).
  • the inside of the casing 158 is the first humidity control chamber 162, the second humidity control chamber 163, the return air side passage 164, the outside air side passage 165, the air supply side passage 166, and the exhaust side. It is divided into a passage 167, an air supply fan chamber 168, and an exhaust fan chamber 169. Further, an air supply side bypass passage 193 is partitioned and formed inside the casing 158 of the present embodiment.
  • the 8th partition wall 170h is provided in parallel with the 4th side plate 158d at intervals.
  • the eighth partition wall 170h forms an air supply side bypass passage 193 between the first humidity control chamber 162, the air supply side passage 166, and the exhaust side passage 167 and the fourth side plate 158d.
  • the rear end of the air supply side bypass passage 193 communicates with the outside air side passage 165.
  • the casing 158 has a "first air supply air passage” and a "first exhaust air passage".
  • the first air supply air passage is from the outside air intake 143 to the air supply outlet 144 through the outside air side passage 165, the first or second humidity control chamber 162, 163, the air supply side passage 166, and the air supply fan chamber 168. It is a flow path of air leading up to it.
  • the first air supply air passage has two systems, one passing through the first humidity control chamber 162 and the other passing through the second humidity control chamber 163. When the air supply fan 134 is activated, an air flow is generated in each first air supply air passage.
  • the first exhaust air passage reaches the exhaust outlet 142 from the return air intake 141 through the return air passage 164, the first or second humidity control chamber 162, 163, the exhaust side passage 167, and the exhaust fan chamber 169. It is a flow path of air up to.
  • the first exhaust air passage has two systems, one passing through the first humidity control chamber 162 and the other passing through the second humidity control chamber 163. When the exhaust fan 133 is activated, an air flow is generated in each exhaust air passage.
  • Casing 158 further has a "second air supply air passage".
  • the second air supply air passage is an air flow path from the outside air intake port 143 to the air supply outlet 144 through the outside air side passage 165, the air supply side bypass passage 193, and the air supply fan chamber 168. Including the second air supply air passage, the casing 158 has three air supply air passages.
  • the first air supply air passage and the second air supply air passage are formed by an opening / closing mechanism 183 for air supply.
  • the first air supply air passages of the two systems are alternately switched and opened and closed by the opening and closing mechanism 183 for air supply.
  • the first exhaust air passage is formed by an opening / closing mechanism 184 for exhaust.
  • the two exhaust air passages are alternately switched and opened and closed by the exhaust opening / closing mechanism 184.
  • the operation of closing the other air passage when one of the air passages is opened is alternately performed.
  • the air supply opening / closing mechanism 183 and the exhaust opening / closing mechanism 184 are controlled by the controller 136.
  • the basic configuration of the opening / closing mechanism 135 in this embodiment is the same as that of the opening / closing mechanism 135 described in the third embodiment. Further, the opening / closing mechanism 135 of the present embodiment has a third air supply damper 179 provided on the fifth compartment wall 170e in addition to the plurality of dampers 171 to 178 described above.
  • the third air supply damper 179 is provided at the right end of the fifth compartment wall 170e.
  • the third air supply damper 179 is opened, the air supply side bypass passage 193 and the air supply fan chamber 168 are communicated with each other.
  • the third air supply damper 179 is closed, the air supply side bypass passage 193 and the air supply fan chamber 168 are shut off.
  • FIG. 22 is an explanatory diagram briefly showing the air flow flowing through the first air supply air passage and the second air supply air passage of the two systems and the air flow flowing through the exhaust air passage of the two systems.
  • the first and second outside air dampers 173, 174, and the first to third air supply dampers 175, 176, 179 constitute an air supply opening / closing mechanism 183.
  • the first and second return air dampers 171 and 172, and the first and second exhaust dampers 177 and 178 constitute an exhaust opening / closing mechanism 184.
  • the first air supply air passage and the second air supply air passage of the two systems are opened by the operation of the following dampers, respectively.
  • 1st air supply air passage of 1st system Opening operation of 1st outside air damper 173 and 1st air supply damper 175
  • 1st air supply air passage of 2nd system Opening operation of 2nd outside air damper 174 and 2nd air supply damper 176
  • 2nd air supply air passage Opening operation of the 3rd air supply damper 179
  • the air flow flowing through the 1st air supply air passage of the 1st system is indicated by the symbol Fa1 and flows through the 1st air supply air passage of the 2nd system.
  • the air flow is indicated by Fa2
  • the air flow flowing through the second air supply air passage is indicated by Fa3.
  • the first exhaust air passages of the two systems are opened by the operation of the following dampers, respectively.
  • First exhaust air passage of the first system Opening operation of the first return air damper 171 and the first exhaust damper 177 Opening operation of the first exhaust air passage of the second system: the second return air damper 172 and the second exhaust damper 178.
  • Fb1 the air flow flowing through the first exhaust air passage of the first system
  • Fb2 the air flow flowing through the first exhaust air passage of the second system
  • the refrigerant circuit 161 in the ventilation device 112 of the present embodiment is the same as the refrigerant circuit 161 of the third embodiment described with reference to FIG.
  • the ventilation controller (control unit) 136 of the present embodiment is also the same as the ventilation controller 136 of the third embodiment.
  • the ventilation controller 136 controls the operation of the exhaust fan 133, the air supply fan 134, the refrigerant circuit 161 and the opening / closing mechanism 135, thereby performing the "first ventilation operation” for normal ventilation of the indoor space S1 and the refrigerant. It is executed by switching between the "second ventilation operation” corresponding to the leakage.
  • the first ventilation operation includes a dehumidification ventilation operation in which ventilation is performed while dehumidifying the room and a humidification ventilation operation in which ventilation is performed while humidifying the room.
  • the air supply fan 134 and the exhaust fan 133 are driven.
  • the outside air OA from the outdoor space S2 passes through the outside air intake 143 and is taken into the casing 158
  • the return air RA from the indoor space S1 passes through the return air intake 141 and is taken into the casing 158. Be done.
  • the first and second heat exchangers 186 and 189 are alternately switched between a condenser and an evaporator.
  • the outside air OA taken into the casing 158 is one of the first heat exchanger 186 of the first humidity control chamber 162 and the second heat exchanger 189 of the second humidity control chamber 163.
  • the return air RA which is supplied into the room through the above and is taken into the casing 158, passes through the other heat exchanger of the first heat exchanger 186 and the second heat exchanger 189 and is discharged to the outside of the room.
  • the air flow in the casing 158 is switched. Specifically, the next first operation and the second operation are alternately repeated for 3 minutes each.
  • the first and second air supply air passages and the first exhaust air passage in the casing 158 are set as shown in FIG. 23. Specifically, the second return air damper 172, the first outside air damper 173, the first supply air damper 175, and the second exhaust damper 178 are opened, and the first return air damper 171 and the second outside air damper 174 and the second The air supply damper 176, the first exhaust damper 177, and the third air supply damper 179 are closed. In FIG. 23, the damper in the closed state is hatched.
  • the first air supply air passage of the first system and the first exhaust air passage of the second system are formed in the casing 158, and the outside air OA taken into the casing 158 passes through the first heat exchanger 186.
  • the return air RA supplied into the room and taken into the casing 158 passes through the second heat exchanger 189 and is discharged to the outside.
  • the second refrigeration cycle operation is performed in the refrigerant circuit 161 as shown in FIG. 8 (b).
  • the first refrigeration cycle operation is performed.
  • the outside air OA that has passed through the outside air intake 143 and is taken into the outside air side passage 165 passes through the first outside air damper 173 and flows into the first humidity control chamber 162, and exchanges the first heat in the first humidity control chamber 162.
  • Humidification is performed through the vessel 186.
  • the outside air OA passes through the first heat exchanger 186 which is an evaporator to be dehumidified and cooled, and in the humidifying / ventilation operation, the outside air OA is a condenser. It passes through the heat exchanger 186 to be humidified and heated.
  • the air conditioned in the first heat exchanger 186 passes through the first air supply damper 175, the air supply side passage 166, the air supply fan chamber 168, and the air supply outlet 144 in this order, and is supplied to the indoor space S1. To.
  • the return air RA that has passed through the return air intake 141 and is taken into the return air side passage 164 passes through the second return air damper 172 and flows into the second humidity control chamber 163, and in the second humidity control chamber 163.
  • Humidification is performed through the second heat exchanger 189.
  • the return air RA passes through the second heat exchanger 189, which is a condenser, to be humidified and heated, and in the humidification ventilation operation, the return air RA is an evaporator. It passes through the second heat exchanger 189 to be dehumidified and cooled.
  • the air regulated by the second heat exchanger 189 passes through the second exhaust damper 178, the exhaust side passage 167, the exhaust fan chamber 169, and the exhaust outlet 142 in this order, and is discharged to the outside of the room.
  • the first and second air supply air passages and the first exhaust air passage in the casing 158 are set as shown in FIG. 24. Specifically, the first return air damper 171, the second outside air damper 174, the second supply air damper 176, and the first exhaust damper 177 are in the open state, the second return air damper 172, the first outside air damper 173, and the first. The air supply damper 175, the second exhaust damper 178, and the third air supply damper 179 are closed.
  • the first air supply air passage of the second system and the first exhaust air passage of the first system are formed in the casing 158, and the outside air OA taken into the casing 158 passes through the second heat exchanger 189.
  • the return air RA supplied into the room and taken into the casing 158 passes through the first heat exchanger 186 and is discharged to the outside.
  • the first refrigeration cycle operation is performed in the refrigerant circuit 161 as shown in FIG. 8 (a).
  • the second refrigeration cycle operation is performed as shown in FIG. 8 (b).
  • the outside air OA that has passed through the outside air intake 143 and is taken into the outside air side passage 165 passes through the second outside air damper 174 and flows into the second humidity control chamber 163, and exchanges the second heat in the second humidity control chamber 163.
  • Humidification is performed through the vessel 189.
  • the outside air OA passes through the second heat exchanger 189 which is an evaporator to be dehumidified and cooled, and in the humidifying / ventilation operation, the outside air OA is a condenser. It passes through the heat exchanger 189 to be humidified and heated.
  • the air conditioned in the second heat exchanger 189 passes through the second air supply damper 176, the air supply side passage 166, the air supply fan chamber 168, and the air supply outlet 144 in this order, and is supplied to the indoor space S1.
  • the return air RA that has passed through the return air intake 141 and is taken into the return air side passage 164 passes through the first return air damper 171 and flows into the first humidity control chamber 162, and in the first humidity control chamber 162.
  • Humidification is performed through the first heat exchanger 186.
  • the return air RA passes through the first heat exchanger 186, which is a condenser, to be humidified and heated, and in the humidification ventilation operation, the return air RA is an evaporator. It passes through the first heat exchanger 186 to be dehumidified and cooled.
  • the air conditioned in the first heat exchanger 186 passes through the first exhaust damper 177, the exhaust side passage 167, the exhaust fan chamber 169, and the exhaust outlet 142 in this order, and is discharged to the outside of the room.
  • the second ventilation operation corresponding to the refrigerant leakage is an operation performed when the refrigerant in the air conditioner 111 leaks and the refrigerant sensor 126 detects the leaked refrigerant.
  • the detection signal is input to the air conditioning controller 124.
  • the air conditioning controller 124 transmits information indicating that a refrigerant leak has occurred (refrigerant leak information) to the ventilation controller 136, and the ventilation controller 136 transmits the exhaust fan 133, the air supply fan 134, and the air supply fan 134 based on the refrigerant leak information. Controls the operation of the opening / closing mechanism 135.
  • FIG. 25 is a schematic view for explaining the first operation of the second ventilation operation.
  • FIG. 26 is a schematic view for explaining the second operation of the second ventilation operation.
  • the first operation of the second ventilation operation is an operation of supplying air using the second air supply air passage in addition to the first operation of the first ventilation operation.
  • the second operation of the second ventilation operation is an operation of supplying air using the second air supply air passage in addition to the second operation of the first ventilation operation.
  • the ventilation controller 136 keeps the third air supply damper 179 in a constantly open state.
  • the second air supply air passage is in an open state during the second ventilation operation. Therefore, by operating the air supply fan 134, in addition to the air supply SA to the indoor space S1 passing through the first air supply air passage of the first system or the second system, air is supplied to the indoor space S1 passing through the second air supply air passage. SA is performed.
  • both the first and second air supply air passages are opened in this way, the entire air supply air passage is expanded, and the ventilation volume can be increased as compared with the first ventilation operation. Therefore, the refrigerant can be discharged from the indoor space S1 in a short time.
  • the balance between the supply air and the exhaust becomes "air supply rich", the amount of leaked air is increased by making the room R a positive pressure, the leaked refrigerant is discharged quickly, and the leaked refrigerant in the room is discharged.
  • the concentration can be reduced.
  • FIG. 27 is a schematic view for explaining the first operation of the second ventilation operation of the ventilation device of the air conditioning system according to the eighth embodiment of the present disclosure.
  • FIG. 28 is a schematic view for explaining the second operation of the second ventilation operation of the ventilation device.
  • the air supply side bypass passage 193 described in the seventh embodiment is not provided inside the casing 158, and instead, the exhaust side bypass passage 194 is provided. ..
  • a ninth partition wall 170i is provided in parallel with the third side plate 158c at intervals on the right side of the third side plate 158c.
  • the ninth partition wall 170i is an exhaust side bypass passage between the return air side passage 164, the outside air side passage 165, the second humidity control chamber 163, the air supply side passage 166, and the exhaust side passage 167 and the third side plate 158c.
  • the rear end of the exhaust side bypass passage 194 communicates with the return air side passage 164.
  • the casing 158 has a "second exhaust air passage” instead of the "second air supply air passage” in the seventh embodiment.
  • the second exhaust air passage is an air flow path from the return air intake 141 to the exhaust air outlet 142 through the return air side passage 164, the exhaust side bypass passage 194, and the exhaust fan chamber 169.
  • the casing 158 has three exhaust air passages.
  • the opening / closing mechanism 135 of the present embodiment is provided with a third exhaust damper 180 at the left end of the fifth section wall 170e instead of the third air supply damper 179 of the seventh embodiment.
  • the third exhaust damper 180 constitutes an exhaust opening / closing mechanism 184.
  • the first ventilation operation of the ventilation device 112 is performed in the same manner as in the seventh embodiment.
  • the second ventilation operation of the ventilation device 112 is performed as the "first operation" and the "second operation” in the same manner as the first ventilation operation.
  • the first operation of the second ventilation operation is an operation of performing exhaust using the second exhaust air passage in addition to the first operation of the first ventilation operation.
  • the second operation of the second ventilation operation is an operation of performing exhaust using the second exhaust air passage in addition to the second operation of the first ventilation operation.
  • the ventilation controller 136 When performing the second ventilation operation, the ventilation controller 136 always keeps the third exhaust damper 180 in the open state. As a result, the second exhaust air passage is in an open state during the second ventilation operation. Therefore, by operating the exhaust fan 133, in addition to the exhaust EA to the outdoor space S2 passing through the first exhaust air passage of the first system or the second system, the exhaust EA to the outdoor space S2 passing through the second exhaust air passage is performed. It is said.
  • both the first and second exhaust air passages are opened in this way, the entire exhaust air passage is expanded, and the ventilation volume can be increased as compared with the first ventilation operation. Therefore, the refrigerant can be discharged from the indoor space S1 in a short time. Further, in the present embodiment, the balance between the supply air and the exhaust gas becomes "exhaust rich", and by making the room R a negative pressure, it is possible to suppress the leakage refrigerant from diffusing into another room or space.
  • FIG. 29 is a schematic view for explaining the first operation of the second ventilation operation of the ventilation device of the air conditioning system according to the ninth embodiment of the present disclosure.
  • FIG. 30 is a schematic view for explaining the second operation of the second ventilation operation of the ventilation device.
  • the air supply side bypass passage 193 and the third air supply damper 179 described in the fourth embodiment and the exhaust side bypass passage described in the fifth embodiment are inside the casing 158. 194 and a third exhaust damper 180 are provided.
  • the casing 158 has a second air supply air passage described in the seventh embodiment and a second exhaust air passage described in the eighth embodiment.
  • the first ventilation operation of the ventilation device 112 is performed in the same manner as in the seventh embodiment.
  • the second ventilation operation of the ventilation device 112 is performed as the "first operation" and the "second operation" in the same manner as the first ventilation operation.
  • the first operation of the second ventilation operation is an operation of performing air supply using the second air supply air passage and exhaust air using the second exhaust air passage in addition to the first operation of the first ventilation operation.
  • the second operation of the second ventilation operation is an operation of supplying air using the second air supply air passage and exhausting air using the second exhaust air passage in addition to the second operation of the first ventilation operation.
  • the ventilation controller 136 When performing the second ventilation operation, the ventilation controller 136 always keeps the third air supply damper 179 and the third exhaust damper 180 open. As a result, during the second ventilation operation, the second air supply air passage and the second exhaust air passage are in an open state. Therefore, by operating the air supply fan 134, in addition to the air supply SA to the indoor space S1 passing through the first air supply air passage of the first system or the second system, air is supplied to the indoor space S1 passing through the second air supply air passage. SA is performed. By operating the exhaust fan 133, in addition to the exhaust EA to the outdoor space S2 passing through the first exhaust air passage of the first system or the second system, the exhaust EA to the outdoor space S2 passing through the second exhaust air passage is performed.
  • the refrigerant can be discharged from the indoor space S1 in a short time.
  • the balance between the air supply and the exhaust gas at the time of refrigerant leakage is adjusted with respect to the normal operation. It can be changed to "air supply rich” or "exhaust rich”.
  • the air conditioning system 110 in the fourth, sixth, seventh, and ninth embodiments described above is an air conditioner that generates harmonized air by exchanging heat with a refrigerant and supplies it to the indoor space S1 (air conditioning target space). It includes a 111, a refrigerant sensor 126 that detects a refrigerant leak, a ventilation device 112 that ventilates the indoor space S1, and a ventilation controller 136 that controls the ventilation device 112.
  • the ventilation device 112 includes a first air supply air passage that communicates the heat exchangers 132, 186, 189, the indoor space S1 and the outdoor space S2 (outside the space subject to air conditioning) via the heat exchangers 132, 186, 189.
  • An air supply fan 134 that supplies the air of the outdoor space S2 to the indoor space S1 via the first air passage, an exhaust fan 133 that discharges the air of the indoor space S1 to the outdoor space S2 via the first exhaust air passage, and a first air supply air passage.
  • air supply opening / closing mechanisms 155 and 183 that open / close the second air supply air passage.
  • the ventilation controller 136 controls the air supply opening / closing mechanisms 155 and 183 so as to open both the first air supply air passage and the second air supply air passage when the refrigerant sensor 126 detects the leakage of the refrigerant.
  • both the first air supply air passage and the second air supply air passage are opened to supply air.
  • the air passage can be expanded and the ventilation volume can be increased. Therefore, the refrigerant can be discharged to the outdoor space S2 in a short time.
  • the ventilation device 112 communicates the indoor space S1 and the outdoor space S2 without passing through the heat exchangers 132, 186, 189 and exhausts air.
  • a second exhaust air passage for discharging the air in the indoor space S1 to the outdoor space S2 by the fan 133, and an exhaust opening / closing mechanism 156, 184 for opening and closing the first exhaust air passage and the second exhaust air passage are further provided for ventilation.
  • the controller 136 controls the exhaust opening / closing mechanisms 156 and 184 so as to open both the first exhaust air passage and the second exhaust air passage when the refrigerant sensor 126 detects the leakage of the refrigerant.
  • both the first exhaust air passage and the second exhaust air passage are opened, so that the exhaust air passage is opened. Can be expanded and the ventilation volume can be further increased.
  • the air conditioning system 110 includes an air conditioner 111 that generates harmonized air by exchanging heat with the refrigerant and supplies it to the indoor space S1 and the refrigerant. It includes a refrigerant sensor 126 that detects a leak, a ventilation device 112 that ventilates the indoor space S1, and a ventilation controller 136 that controls the ventilation device 112.
  • the ventilation device 112 includes a first air supply air passage and a first exhaust air passage that communicate the heat exchangers 132, 186, 189 and the indoor space S1 and the outdoor space S2 via the heat exchangers 132, 186, 189.
  • the air in the outdoor space S2 is transferred to the indoor space S1 via the second exhaust air passage that communicates the indoor space S1 and the outdoor space S2 without passing through the heat exchangers 132, 186, 189 and the first air supply air passage.
  • the supply air fan 134, the exhaust fan 133 that discharges the air in the indoor space S1 to the outdoor space S2 via the first exhaust air passage and the second exhaust air passage, and the first exhaust air passage and the second exhaust air passage.
  • the exhaust opening / closing mechanism 156, 184 for opening / closing the air is provided.
  • the ventilation controller 136 controls the exhaust opening / closing mechanism 156, 184 so as to open both the first exhaust air passage and the second exhaust air passage when the refrigerant sensor 126 detects the leakage of the refrigerant.
  • both the first exhaust air passage and the second exhaust air passage are opened, so that the exhaust air is blown.
  • the road can be expanded and ventilation can be increased. Therefore, the refrigerant can be discharged to the outdoor space S2 in a short time.
  • the orthogonal total heat exchanger is arranged in the ventilation device, but the heat is recovered from the return air by rotating the rotor. It is also possible to adopt a rotary total heat exchanger to perform. It is also possible to omit the adoption of such a total heat exchanger in the ventilation system.
  • the auxiliary fan 40 is a blower fan that supplies air to the living room, but instead of this, it can be an exhaust fan that exhausts air from the living room. Further, an auxiliary fan can be configured by the blower fan and the exhaust fan.
  • the auxiliary fan 40 is communicably connected to the ventilation device, but the auxiliary fan 40 can also be communicably connected to the indoor unit.
  • the control unit 25 of the indoor unit 20 that receives the detection signal issues a refrigerant leak signal to the auxiliary fan 40.
  • the refrigerant sensor may be provided in the ventilator 112.
  • the refrigerant sensor 126 detects the leakage of the refrigerant from the refrigerant circuit 161 of the ventilation device 112, even if the ventilation device 112 independently performs the second ventilation operation without the instruction from the air conditioner 111. Good.
  • the refrigerant sensors 24 and 126 may detect the leakage of the refrigerant in the ventilation devices 30 and 112.
  • the operation of the ventilation devices 30 and 112 may be controlled by the controllers (control units) 25 and 124 of the air conditioner 111.
  • a cloud server (control unit) provided in a remote location different from the building in which the air conditioner is installed is provided, and this cloud server and the control unit 36 of the ventilation devices 30, 112,
  • the 136 and / or the control units 25 and 124 of the air conditioner may be connected to each other via a communication network such as the Internet.
  • a communication network such as the Internet.
  • the air conditioning system may be configured to give an instruction to control the operation when the refrigerant leaks.
  • Air conditioning system 111 Air conditioner 112: Ventilation device 126: Refrigerant sensor 133 : Exhaust fan 134: Air supply fan 136: Ventilation controller (control unit) 146: 1st exhaust air passage 147: 1st air supply air passage 148: 2nd air supply air passage 149: 2nd exhaust air passage 155: Air supply damper (air supply opening / closing mechanism) 156: Exhaust damper (exhaust opening / closing mechanism) 161: Refrigerant circuit 183: Air supply opening / closing mechanism 184: Exhaust opening / closing mechanism 186: Heat exchanger 189: Heat exchanger

Abstract

An air conditioning system comprising: a heat exchanger that generates air-conditioned air by heat exchange with a refrigerant; a refrigerant sensor for detecting leakage of the refrigerant in the space to be air conditioned; a ventilation device that supplies and discharges air; and a control unit that controls the operation of the ventilation device. The control unit changes the balance between the air supply and discharge by the ventilation unit, for normal operation when refrigerant leakage is not detected by the refrigerant sensor and for when refrigerant leakage is detected by the refrigerant sensor.

Description

空調システムAir conditioning system
 本開示は空調システムに関する。さらに詳しくは、空調機及び換気装置を備えた空調システムに関する。 This disclosure relates to an air conditioning system. More specifically, the present invention relates to an air conditioning system including an air conditioner and a ventilation device.
 事務所ビル、ホテル等の比較的規模の大きい建物では、通常、冷風や温風を生成する空調機と、居室に外気を供給するとともに当該居室の排気を行う換気装置とが併用されている(例えば、特許文献1参照)。 In relatively large-scale buildings such as office buildings and hotels, an air conditioner that generates cold air or hot air is usually used in combination with a ventilation device that supplies outside air to the living room and exhausts the living room ( For example, see Patent Document 1).
特開2017-75777号公報JP-A-2017-75777
 空調機から冷媒が居室内に漏洩すると、酸欠等の不都合が発生する可能性があることから、前述した特許文献1記載の空調装置では、冷媒漏洩検知装置が冷媒を検知すると、被空調空間への給排気を行う給排気機構によって、当該給排気機構や熱交換器等を収容するケーシング内の空気とともに冷媒を被空調空間外に排出している。 If the refrigerant leaks from the air conditioner into the living room, inconveniences such as oxygen deficiency may occur. Therefore, in the air conditioner described in Patent Document 1 described above, when the refrigerant leakage detection device detects the refrigerant, the air-conditioned space The air-conditioning mechanism discharges the refrigerant to and from the air-conditioned space together with the air in the casing accommodating the air-conditioning mechanism and the heat exchanger.
 しかし、特許文献1記載の技術を含む従来技術には、冷媒漏洩時に、居室(被空調空間)の給気と排気のバランスを換気装置によって変更させて冷媒の拡散抑制や冷媒濃度の低減等を図ることについては開示されていない。
 本開示は、冷媒漏洩時に、居室の用途に応じて冷媒の拡散抑制や冷媒濃度の低減等を図ることができる空調システムを提供することを目的としている。
However, in the prior art including the technique described in Patent Document 1, when the refrigerant leaks, the balance between the supply air and the exhaust of the living room (air-conditioned space) is changed by the ventilation device to suppress the diffusion of the refrigerant and reduce the concentration of the refrigerant. There is no disclosure about what to do.
An object of the present disclosure is to provide an air conditioning system capable of suppressing the diffusion of the refrigerant and reducing the concentration of the refrigerant according to the use of the living room when the refrigerant leaks.
 本開示の空調システムは、
(1)空調機の空調対象空間における冷媒の漏洩を検知するための冷媒センサと、給気及び排気を行う換気装置と、前記換気装置の動作を制御する制御部と、を備え、
前記制御部は、前記冷媒センサによる冷媒の漏洩を検知していないときの通常運転時と、前記冷媒センサによる漏洩冷媒の検知時とで前記換気装置の給気と排気のバランスを変更させる。
The air conditioning system of the present disclosure is
(1) A refrigerant sensor for detecting the leakage of refrigerant in the air-conditioned space of the air conditioner, a ventilation device for supplying and exhausting air, and a control unit for controlling the operation of the ventilation device are provided.
The control unit changes the balance between the air supply and the exhaust of the ventilation device between the normal operation when the refrigerant sensor does not detect the leakage of the refrigerant and the detection of the leaked refrigerant by the refrigerant sensor.
 本開示の空調システムでは、冷媒センサによる冷媒の漏洩を検知していないときの通常運転時と、漏洩冷媒の検知時とで換気装置の給気と排気のバランスを変更させる。これにより、冷媒漏洩時には、空調対象空間である居室の用途に応じて当該居室を、例えば排気リッチ又は給気リッチに変更することができる。排気リッチにすることで当該居室から漏洩冷媒が拡散するのを抑制することができる。一方、給気リッチにすることで当該居室からの漏洩冷媒の排出を促進させ居室内における冷媒濃度を低減させることができる。
 なお、本明細書において「排気リッチ」とは、換気装置による排気の風量が給気の風量よりも多いことを意味し、また、「給気リッチ」とは、換気装置による給気の風量が排気の風量よりも多いことを意味する。ただし、給気風量及び排気風量の一方がゼロである場合、例えば換気装置の排気ファンだけが作動し、給気ファンが停止している場合も「排気リッチ」に含まれる。同様に、換気装置の給気ファンだけが作動し、排気ファンが停止している場合も「給気リッチ」に含まれる。
In the air conditioning system of the present disclosure, the balance between the air supply and the exhaust of the ventilation device is changed between the normal operation when the refrigerant leakage is not detected by the refrigerant sensor and the detection of the leaked refrigerant. Thereby, when the refrigerant leaks, the living room can be changed to, for example, exhaust rich or air supply rich, depending on the use of the living room which is the air conditioning target space. By making the exhaust rich, it is possible to suppress the diffusion of the leaked refrigerant from the living room. On the other hand, by making the air supply rich, it is possible to promote the discharge of the leaked refrigerant from the living room and reduce the refrigerant concentration in the living room.
In the present specification, "exhaust rich" means that the air volume of the exhaust gas by the ventilation device is larger than the air volume of the supply air, and "rich air supply" means that the air volume of the air supply by the ventilation device is larger. It means that it is larger than the air volume of the exhaust. However, when one of the supply air volume and the exhaust air volume is zero, for example, when only the exhaust fan of the ventilation device is operating and the supply air fan is stopped, it is also included in "exhaust rich". Similarly, when only the air supply fan of the ventilation device is operating and the exhaust fan is stopped, it is also included in "air supply rich".
(2)前記(1)の空調システムにおいて、前記冷媒が微燃性又は可燃性を有し、
 前記換気装置が、ファンによる給気及び/又はファンによる排気を行い、
 前記空調システムは、
 冷媒との熱交換により調和空気を生成する熱交換器を有する空調機と、
 前記空調機及び/又は前記換気装置に通信可能に接続され、前記冷媒センサによる漏洩冷媒の非検知時には作動せず当該冷媒センサによる漏洩冷媒の検知時に作動する補助ファンと、を備える。
(2) In the air conditioning system of (1), the refrigerant is slightly flammable or flammable.
The ventilation device supplies air with a fan and / or exhausts with a fan.
The air conditioning system
An air conditioner having a heat exchanger that generates harmonized air by exchanging heat with a refrigerant,
An auxiliary fan that is communicably connected to the air conditioner and / or the ventilation device and does not operate when the leaked refrigerant is not detected by the refrigerant sensor but operates when the leaked refrigerant is detected by the refrigerant sensor.
 この構成によれば、冷媒センサが冷媒の漏洩を検知した場合に補助ファンが作動して、換気装置による換気とともに空調対象空間である居室の換気を行うことができる。これにより、漏洩した冷媒を希釈して当該冷媒が可燃濃度に達するのを抑制することができる。また、冷媒が漏洩していない通常時には補助ファンは作動しないので、通常時の空調システムのエネルギ消費量を増やすことがない。 According to this configuration, when the refrigerant sensor detects the leakage of the refrigerant, the auxiliary fan operates to ventilate the living room, which is the air-conditioned space, as well as the ventilation by the ventilation device. This makes it possible to dilute the leaked refrigerant and prevent the refrigerant from reaching a combustible concentration. Further, since the auxiliary fan does not operate in the normal time when the refrigerant does not leak, the energy consumption of the air conditioning system in the normal time is not increased.
(3)前記(1)の空調システムにおいて、前記換気装置は、空気に含まれる水分を吸着する吸着剤が担持された2つの熱交換器を有しかつ前記2つの熱交換器を交互に蒸発器又は凝縮器として機能させる冷媒回路と、前記空調対象空間の内部と外部とを前記各熱交換器を経由して連通させる2系統の給気風路及び2系統の排気風路と、前記各給気風路を介して前記空調対象空間外の空気を前記空調対象空間内に供給する給気ファンと、前記各排気風路を介して前記空調対象空間内の空気を前記空調対象空間外へ排出する排気ファンと、2系統の前記給気風路を開閉する給気用開閉機構と、2系統の前記排気風路を開閉する排気用開閉機構と、を備え、
 前記制御部は、前記冷媒センサが冷媒の漏洩を検出したとき、前記給気ファン及び前記排気ファンのうち一方のファンを作動して他方のファンを停止し、前記給気風路及び前記排気風路のうち前記一方のファンに対応する一方の風路を2系統とも開きかつ他方の風路を2系統とも閉じるように前記給気用開閉機構及び前記排気用開閉機構を制御する。
(3) In the air conditioning system of (1), the ventilation device has two heat exchangers carrying an adsorbent that adsorbs water contained in air, and the two heat exchangers are alternately evaporated. A refrigerant circuit that functions as a vessel or a condenser, two systems of air supply air passages and two systems of exhaust air passages that communicate the inside and outside of the air-conditioned space via the heat exchangers, and each of the supply air passages. An air supply fan that supplies air outside the air-conditioned space to the air-conditioned space via an air passage, and air in the air-conditioned space is discharged to the outside of the air-conditioned space through each exhaust air passage. It is provided with an exhaust fan, an air supply opening / closing mechanism for opening / closing the two systems of the air supply air passage, and an exhaust opening / closing mechanism for opening and closing the two systems of the exhaust air passage.
When the refrigerant sensor detects the leakage of the refrigerant, the control unit operates one of the air supply fan and the exhaust fan to stop the other fan, and causes the air supply air passage and the exhaust air passage. Of these, the air supply opening / closing mechanism and the exhaust opening / closing mechanism are controlled so that one of the air passages corresponding to the one fan is opened in both systems and the other air passage is closed in both systems.
 この構成によれば、空調機から冷媒が漏れたときに、給気ファン及び排気ファンの一方を作動し、前記給気風路及び前記排気風路の一方を2系統とも開くことで、給気又は排気の風路を拡大し、換気量を増やすことができる。 According to this configuration, when the refrigerant leaks from the air conditioner, one of the air supply fan and the exhaust fan is operated, and one of the air supply air passage and the exhaust air passage is opened in both systems to supply air or air. The exhaust air passage can be expanded and the ventilation volume can be increased.
(4)前記(1)の空調システムにおいて、前記換気装置は、熱交換器と、前記空調対象空間の内部と外部とを前記熱交換器を経由して連通させる第1給気風路及び第1排気風路と、前記空調対象空間の内部と外部とを前記熱交換器を経由せずに連通させる第2給気風路と、前記第1給気風路及び前記第2給気風路を介して前記空調対象空間外の空気を前記空調対象空間内に供給する給気ファンと、前記第1排気風路を介して前記空調対象空間内の空気を前記空調対象空間外へ排出させる排気ファンと、前記第1給気風路及び前記第2給気風路を開閉する給気用開閉機構と、を備え、
 前記制御部は、前記冷媒センサが冷媒の漏洩を検出したとき、前記第1給気風路及び前記第2給気風路の双方を開くように前記給気用開閉機構を制御する。
(4) In the air-conditioning system of the above-mentioned (1), the ventilation device has a first air supply air passage and a first air supply air passage that communicate the heat exchanger and the inside and the outside of the air-conditioned space via the heat exchanger. The exhaust air passage, a second air supply air passage that communicates the inside and the outside of the air-conditioned space without passing through the heat exchanger, the first air supply air passage, and the second air supply air passage. An air supply fan that supplies air outside the air-conditioned space into the air-conditioned space, an exhaust fan that discharges air in the air-conditioned space through the first exhaust air passage to the outside of the air-conditioned space, and the above. The first air supply air passage and the air supply opening / closing mechanism for opening and closing the second air supply air passage are provided.
The control unit controls the air supply opening / closing mechanism so as to open both the first air supply air passage and the second air supply air passage when the refrigerant sensor detects the leakage of the refrigerant.
 以上のような構成により、空調機から冷媒が漏洩し、漏洩した冷媒が冷媒センサで検出された場合に、第1給気風路及び第2給気風路の双方を開くことで、給気の風路を拡大し、換気量を増やすことができる。 With the above configuration, when the refrigerant leaks from the air conditioner and the leaked refrigerant is detected by the refrigerant sensor, both the first air supply air passage and the second air supply air passage are opened to provide air supply air. The road can be expanded and ventilation can be increased.
(5)前記(1)の空調システムにおいて、前記換気装置が、熱交換器と、前記空調対象空間の内部と外部とを前記熱交換器を経由して連通させる第1給気風路及び第1排気風路と、前記空調対象空間の内部と外部とを前記熱交換器を経由せずに連通させる第2排気風路と、前記第1給気風路を介して前記空調対象空間外の空気を前記空調対象空間内に供給する給気ファンと、前記第1排気風路及び前記第2排気風路を介して前記空調対象空間内の空気を前記空調対象空間外へ排出する排気ファンと、前記第1排気風路及び前記第2排気風路を開閉する排気用開閉機構と、を備え、
 前記制御部は、前記冷媒センサが冷媒の漏洩を検出したとき、前記第1排気風路及び前記第2排気風路の双方を開くように前記排気用開閉機構を制御する。
(5) In the air-conditioning system of (1), the first air supply air passage and the first air supply air passage, in which the ventilation device communicates the heat exchanger with the inside and outside of the air-conditioned space via the heat exchanger. The air outside the air-conditioned space is passed through the exhaust air passage, the second exhaust air passage that communicates the inside and the outside of the air-conditioned space without passing through the heat exchanger, and the first air supply air passage. An air supply fan supplied into the air-conditioned space, an exhaust fan for discharging air in the air-conditioned space to the outside of the air-conditioned space through the first exhaust air passage and the second exhaust air passage, and the above. It is provided with an exhaust opening / closing mechanism for opening / closing the first exhaust air passage and the second exhaust air passage.
The control unit controls the exhaust opening / closing mechanism so as to open both the first exhaust air passage and the second exhaust air passage when the refrigerant sensor detects the leakage of the refrigerant.
 以上のような構成により、空調機から冷媒が漏洩し、漏洩した冷媒が冷媒センサで検出された場合に、第1排気風路及び第2排気風路を双方とも開くことで、排気の風路を拡大し、換気量を増やすことができる。 With the above configuration, when the refrigerant leaks from the air conditioner and the leaked refrigerant is detected by the refrigerant sensor, both the first exhaust air passage and the second exhaust air passage are opened to open the exhaust air passage. Can be expanded and the ventilation volume can be increased.
本開示の第1の実施形態に係る空調システムの一実施形態の冷媒配管系統及び空気系統の説明図である。It is explanatory drawing of the refrigerant piping system and the air system of one Embodiment of the air-conditioning system which concerns on 1st Embodiment of this disclosure. 換気装置における全熱交換器の構成を示す斜視説明図である。It is a perspective explanatory view which shows the structure of the total heat exchanger in a ventilator. 本開示の第2の実施形態に係る空調システムの一実施形態の冷媒配管系統及び空気系統の説明図である。It is explanatory drawing of the refrigerant piping system and the air system of one Embodiment of the air conditioning system which concerns on the 2nd Embodiment of this disclosure. 各種居室の床面積と必要換気量との関係の一例を示す図である。It is a figure which shows an example of the relationship between the floor area of various living rooms, and the required ventilation volume. 本開示の第3の実施形態に係る空調システムの概略的な構成図である。It is a schematic block diagram of the air-conditioning system which concerns on 3rd Embodiment of this disclosure. 換気装置の概略構造を示す平面図、右側面図、及び左側面図である。It is a top view, the right side view, and the left side view which show the schematic structure of the ventilation system. 2系統の給気風路を流れる空気流及び2系統の排気風路を流れる空気流を簡略的に示す説明図である。It is explanatory drawing which shows simply showing the air flow which flows through the air supply air passage of 2 systems, and the air flow which flows through the exhaust air passage of 2 systems. 換気装置の冷媒回路の構成を示す配管系統図であって、(a)は第1の冷凍サイクル動作における冷媒の流れを示し、(b)は第1の冷凍サイクル動作における冷媒の流れを示す。It is a piping system diagram which shows the structure of the refrigerant circuit of a ventilator, (a) shows the flow of the refrigerant in the 1st refrigeration cycle operation, and (b) shows the flow of the refrigerant in the 1st refrigeration cycle operation. 第1換気運転の第1動作について説明するための概略図である。It is the schematic for demonstrating the 1st operation of the 1st ventilation operation. 第1換気運転の第2動作について説明するための概略図である。It is the schematic for demonstrating the 2nd operation of the 1st ventilation operation. 第2換気運転である給気単独運転について説明するための概略図である。It is the schematic for demonstrating the supply air independent operation which is the 2nd ventilation operation. 第2換気運転である排気単独運転について説明するための概略図である。It is the schematic for demonstrating the exhaust independent operation which is the 2nd ventilation operation. 本開示の第4の実施形態に係る空調システムにおいて第1換気運転を行う換気装置を上から見た概略的な断面説明図である。It is a schematic cross-sectional explanatory view of the ventilation apparatus which performs the 1st ventilation operation in the air conditioning system which concerns on 4th Embodiment of this disclosure as seen from the top. 図13のA-A線における概略的な断面説明図である。It is a schematic cross-sectional explanatory view in line AA of FIG. 図13のB-B線における概略的な断面説明図である。It is a schematic cross-sectional explanatory view in line BB of FIG. 全熱交換器の斜視図である。It is a perspective view of the total heat exchanger. 第2換気運転を行う換気装置を上から見た概略的な断面説明図である。It is a schematic cross-sectional explanatory view which looked at the ventilation apparatus which performs the 2nd ventilation operation from the top. 図17のC-C線における概略的な断面説明図である。FIG. 6 is a schematic cross-sectional explanatory view taken along the line CC of FIG. 本開示の第5の実施形態に係る空調システムの、第2換気運転を行う換気装置を上から見た概略的な断面説明図である。FIG. 5 is a schematic cross-sectional explanatory view of a ventilation device that performs a second ventilation operation of the air conditioning system according to the fifth embodiment of the present disclosure as viewed from above. 本開示の第6の実施形態に係る空調システムの、第2換気運転を行う換気装置を上から見た概略的な断面説明図である。It is a schematic cross-sectional explanatory view of the ventilation system which performs the 2nd ventilation operation of the air-conditioning system which concerns on 6th Embodiment of this disclosure as seen from the top. 本開示の第7の実施形態に係る空調システムの、換気装置の概略構造を示す平面図、右側面図、及び左側面図である。It is a top view, the right side view, and the left side view which show the schematic structure of the ventilation system of the air-conditioning system which concerns on 7th Embodiment of this disclosure. 3系統の給気風路を流れる空気流及び2系統の排気風路を流れる空気流を簡略的に示す説明図である。It is explanatory drawing which shows the air flow which flows through the air supply air passage of 3 systems and the air flow which flows through the exhaust air passage of 2 systems simply. 第1換気運転の第1動作について説明するための概略図である。It is the schematic for demonstrating the 1st operation of the 1st ventilation operation. 第1換気運転の第2動作について説明するための概略図である。It is the schematic for demonstrating the 2nd operation of the 1st ventilation operation. 第2換気運転の第1動作について説明するための概略図である。It is the schematic for demonstrating the 1st operation of the 2nd ventilation operation. 第2換気運転の第2動作について説明するための概略図である。It is the schematic for demonstrating the 2nd operation of the 2nd ventilation operation. 本開示の第8の実施形態に係る空調システムの、換気装置の第2換気運転の第1動作について説明するための概略図である。It is the schematic for demonstrating the 1st operation of the 2nd ventilation operation of the ventilation apparatus of the air-conditioning system which concerns on 8th Embodiment of this disclosure. 換気装置の第2換気運転の第2動作について説明するための概略図である。It is the schematic for demonstrating the 2nd operation of the 2nd ventilation operation of the ventilation apparatus. 本開示の第9の実施形態に係る空調システムの、換気装置の第2換気運転の第1動作について説明するための概略図である。It is the schematic for demonstrating the 1st operation of the 2nd ventilation operation of the ventilation apparatus of the air-conditioning system which concerns on 9th Embodiment of this disclosure. 換気装置の第2換気運転の第2動作について説明するための概略図である。It is the schematic for demonstrating the 2nd operation of the 2nd ventilation operation of the ventilation apparatus.
 以下、添付図面を参照しつつ、本開示の空調システムを詳細に説明する。なお、本開示はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 Hereinafter, the air conditioning system of the present disclosure will be described in detail with reference to the attached drawings. It should be noted that the present disclosure is not limited to these examples, and is indicated by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
[第1の実施形態]
 [空調システムの全体構成]
 図1は、本開示の第1の実施形態に係る空調システムSの冷媒配管系統及び空気系統を示す説明図である。空調システムSは、冷媒配管方式の分散型の空気調和装置を備えており、蒸気圧縮式の冷凍サイクル運転を行うことで、空調対象空間である居室R内を冷暖房するとともに、後述する換気装置により当該居室R内の換気を行う。
[First Embodiment]
[Overall configuration of air conditioning system]
FIG. 1 is an explanatory diagram showing a refrigerant piping system and an air system of the air conditioning system S according to the first embodiment of the present disclosure. The air conditioning system S is provided with a distributed air conditioner of a refrigerant piping system, and by performing a vapor compression refrigeration cycle operation, the inside of the living room R, which is the air conditioning target space, is cooled and heated, and the ventilation device described later is used. Ventilate the room R.
 空調システムSが適用される居室Rの種類は、本開示において特に限定されるものではなく、事務所、ホテル、病院、工場、劇場、店舗等、冷房及び/又は暖房と換気とが行われる空間又はスペースのすべてが含まれる。空調システムSは、居室R外に設置される熱源ユニット10と、居室R内に設置される複数の空調機である室内機20と、換気装置30とを備えている。熱源ユニット10と室内機20は、液冷媒連絡管11及びガス冷媒連絡管12により接続されている。また、換気装置30と居室Rとは、給気(SA)用ダクト31及び還気(RA)用ダクト32により接続されている。居室R内において、室内機20は床面に設置してもよいし、天井付近に配設してもよいし、また、天井裏に配設してもよい。なお、図1では、分かり易くするために2台の室内機20だけが描かれているが、室内機20の数は1台でもよいし、3台以上でもよい。 The type of living room R to which the air conditioning system S is applied is not particularly limited in the present disclosure, and is a space where cooling and / or heating and ventilation are performed, such as an office, a hotel, a hospital, a factory, a theater, or a store. Or all of the space is included. The air conditioning system S includes a heat source unit 10 installed outside the living room R, an indoor unit 20 which is a plurality of air conditioners installed inside the living room R, and a ventilation device 30. The heat source unit 10 and the indoor unit 20 are connected by a liquid refrigerant connecting pipe 11 and a gas refrigerant connecting pipe 12. Further, the ventilation device 30 and the living room R are connected by an air supply (SA) duct 31 and a return air (RA) duct 32. In the living room R, the indoor unit 20 may be installed on the floor surface, may be arranged near the ceiling, or may be arranged behind the ceiling. In FIG. 1, only two indoor units 20 are drawn for the sake of clarity, but the number of indoor units 20 may be one or three or more.
 熱源ユニット10は、圧縮機13、四路切換弁14、熱源側熱交換器15、熱源側膨張弁16、液側閉鎖弁17、及びガス側閉鎖弁18を備えている。 The heat source unit 10 includes a compressor 13, a four-way switching valve 14, a heat source side heat exchanger 15, a heat source side expansion valve 16, a liquid side closing valve 17, and a gas side closing valve 18.
 圧縮機13は、圧縮機用のモータ(図示せず)によって駆動される密閉式圧縮機であり、吸入流路13aからガス冷媒を吸入する。 The compressor 13 is a closed-type compressor driven by a motor for the compressor (not shown), and sucks gas refrigerant from the suction flow path 13a.
 四路切換弁14は、冷媒の流れの方向を切り換えるための機構である。冷房運転時には、図1において実線で示されるように、四路切換弁14は、圧縮機13の吐出側の冷媒配管13bと熱源側熱交換器15の一端とを接続するとともに、圧縮機13の吸入側の吸入流路13aとガス側閉鎖弁18とを接続する。これにより、熱源側熱交換器15が、圧縮機13によって圧縮される冷媒の凝縮器として機能し、かつ、後述する利用側熱交換器が、熱源側熱交換器15において凝縮した冷媒の蒸発器として機能する。 The four-way switching valve 14 is a mechanism for switching the direction of the refrigerant flow. During the cooling operation, as shown by the solid line in FIG. 1, the four-way switching valve 14 connects the refrigerant pipe 13b on the discharge side of the compressor 13 and one end of the heat exchanger 15 on the heat source side, and also connects the compressor 13. The suction flow path 13a on the suction side and the gas side closing valve 18 are connected. As a result, the heat source side heat exchanger 15 functions as a condenser of the refrigerant compressed by the compressor 13, and the utilization side heat exchanger described later is an evaporator of the refrigerant condensed in the heat source side heat exchanger 15. Functions as.
 また、暖房運転時には、図1において破線で示されるように、四路切換弁14は、圧縮機13の吐出側の冷媒配管13bとガス側閉鎖弁18とを接続するとともに、吸入流路13aと熱源側熱交換器15の一端とを接続する。これにより、利用側熱交換器が、圧縮機13によって圧縮された冷媒の凝縮器として機能し、かつ、熱源側熱交換器15が、利用側熱交換器において冷却された冷媒の蒸発器として機能する。 Further, during the heating operation, as shown by the broken line in FIG. 1, the four-way switching valve 14 connects the refrigerant pipe 13b on the discharge side of the compressor 13 and the gas side closing valve 18 and connects with the suction flow path 13a. Connect to one end of the heat source side heat exchanger 15. As a result, the utilization side heat exchanger functions as a condenser of the refrigerant compressed by the compressor 13, and the heat source side heat exchanger 15 functions as an evaporator of the refrigerant cooled in the utilization side heat exchanger. To do.
 熱源ユニット10は、当該熱源ユニット10内に外気を取り入れ、熱源側熱交換器15を流れる冷媒との間で熱交換された外気を屋外に排出するための熱源側ファン19を備えている。 The heat source unit 10 is provided with a heat source side fan 19 for taking in outside air into the heat source unit 10 and discharging the outside air that has been heat exchanged with the refrigerant flowing through the heat source side heat exchanger 15 to the outside.
 室内機20は、それぞれ冷媒連絡管11、12を介して熱源ユニット10に接続されている。室内機20は、いずれも同じ外形及び内部構造である。室内機20は、利用側膨張弁21、利用側熱交換器22、及び利用側ファン23を備えている。利用側ファン23は、室内機20内に居室Rの空気を吸入し、利用側熱交換器22を流れる冷媒との間で熱交換された空気を居室Rに供給する。本実施形態における室内機20は、利用側熱交換器22及び冷媒配管等から漏洩した冷媒を検知する冷媒センサ24を備えている。冷媒センサ24の位置は、漏洩冷媒が検知可能な箇所であれば特に限定されないが、例えば、冷媒配管同士の接合点、冷媒配管の90度以上の曲げ箇所、配管厚さが薄い箇所等、冷媒の漏洩が発生しやすい箇所の近傍に配置することが望ましい。なお、冷媒センサ24は、室内機20の内部に配設する以外に、例えば室温や風量等を設定するための後述するリモートコントローラに搭載したり、また、居室の壁面等の適宜の箇所に配設したりすることもできる。 The indoor unit 20 is connected to the heat source unit 10 via the refrigerant connecting pipes 11 and 12, respectively. The indoor unit 20 has the same outer shape and internal structure. The indoor unit 20 includes a user-side expansion valve 21, a user-side heat exchanger 22, and a user-side fan 23. The user-side fan 23 sucks the air in the living room R into the indoor unit 20, and supplies the air exchanged with the refrigerant flowing through the user-side heat exchanger 22 to the living room R. The indoor unit 20 in the present embodiment includes a heat exchanger 22 on the user side and a refrigerant sensor 24 that detects refrigerant leaked from a refrigerant pipe or the like. The position of the refrigerant sensor 24 is not particularly limited as long as the leaked refrigerant can be detected. It is desirable to place it in the vicinity of a place where leakage is likely to occur. In addition to being arranged inside the indoor unit 20, the refrigerant sensor 24 may be mounted on a remote controller described later for setting, for example, room temperature or air volume, or may be arranged at an appropriate location such as a wall surface of a living room. It can also be set up.
 また、室内機20は、冷媒センサ24からの検知信号を受信したり、室内機20における利用側ファン23等の動作を制御したりする制御部25を備えている。この制御部25は、後述する換気装置30の制御部36と通信可能に接続されている。冷媒センサ24により冷媒の漏洩が検知されると、この冷媒漏洩の情報は換気装置30に伝えられる。 Further, the indoor unit 20 includes a control unit 25 that receives a detection signal from the refrigerant sensor 24 and controls the operation of the user-side fan 23 and the like in the indoor unit 20. The control unit 25 is communicably connected to the control unit 36 of the ventilation device 30 described later. When the refrigerant sensor 24 detects the leakage of the refrigerant, the information on the leakage of the refrigerant is transmitted to the ventilation device 30.
 換気装置30は、居室Rに新鮮な外気OAを供給するとともに、居室からの還気RAを機外に排出する。換気装置30は、全熱交換器33と、送風用ファン34と、排気用ファン35と、当該送風用ファン34及び排気用ファン35の動作を制御する制御部36とを備えている。本実施形態における全熱交換器33は、室外からの外気OAと居室からの還気RAとがほぼ直交するように構成された直交型の全熱交換器である。全熱交換器33は、図2に示されるように、伝熱性及び透湿性を有する平板状の仕切板33aと、ほぼ三角形状の断面を有しており、流路高さを維持する間隔板33bとの積層体から構成されている。間隔板33bは、或る側面において上下方向(図2において上下の方向)で波形状の断面が1枚おきに現れるように、1枚ごとに90度角度を変えて積層されている。これにより、透湿性を有する仕切板33aを挟んで給気側通路(図2における白抜き矢印参照)と排気側通路(図2における黒矢印参照)とが形成され、この仕切板33aを介して顕熱と潜熱の交換が行われるようになっている。本実施形態における換気装置30は、送風用ファン34により給気され、排気用ファン35により排気される第1種換気装置である。 The ventilation device 30 supplies fresh outside air OA to the living room R and discharges the return air RA from the living room to the outside of the aircraft. The ventilation device 30 includes a total heat exchanger 33, a blower fan 34, an exhaust fan 35, and a control unit 36 that controls the operation of the blower fan 34 and the exhaust fan 35. The total heat exchanger 33 in the present embodiment is an orthogonal total heat exchanger configured so that the outside air OA from the outside and the return air RA from the living room are substantially orthogonal to each other. As shown in FIG. 2, the total heat exchanger 33 has a flat plate-shaped partition plate 33a having heat transfer property and moisture permeability and a substantially triangular cross section, and is an interval plate that maintains the flow path height. It is composed of a laminated body with 33b. The spacing plates 33b are laminated one by one at an angle of 90 degrees so that every other wave-shaped cross section appears in the vertical direction (vertical direction in FIG. 2) on a certain side surface. As a result, an air supply side passage (see the white arrow in FIG. 2) and an exhaust side passage (see the black arrow in FIG. 2) are formed across the moisture-permeable partition plate 33a, and the air-permeable side passage (see the black arrow in FIG. 2) is formed through the partition plate 33a. The exchange of sensible heat and latent heat is being carried out. The ventilation device 30 in the present embodiment is a first-class ventilation device that is supplied with air by a blower fan 34 and exhausted by an exhaust fan 35.
 [空調システムの動作]
 前述した構成を有する空調システムSは、以下のようにして冷房運転又は暖房運転を行う。
 冷房運転時には、前述したように、四路切換弁14は図1において実線で示される状態となる。この状態において、圧縮機13から吐出された高圧のガス冷媒は、四路切換弁14を経由して凝縮器として機能する熱源側熱交換器15に送られ、熱源側ファン19によって供給される外気と熱交換を行って冷却される。熱源側熱交換器15において冷却されて液化した高圧の冷媒は、液冷媒連絡管11を経由して各室内機20に送られる。各室内機20に送られた冷媒は、利用側膨張弁21によって減圧されて低圧の気液二相状態の冷媒となり、蒸発器として機能する利用側熱交換器22において居室R内の空気と熱交換をし、蒸発して低圧のガス冷媒となる。利用側熱交換器22において加熱された低圧のガス冷媒は、ガス冷媒連絡管12を経由して熱源ユニット10に送られ、四路切換弁14を経由して再び圧縮機13に吸入される。
[Operation of air conditioning system]
The air conditioning system S having the above-described configuration performs a cooling operation or a heating operation as follows.
During the cooling operation, as described above, the four-way switching valve 14 is in the state shown by the solid line in FIG. In this state, the high-pressure gas refrigerant discharged from the compressor 13 is sent to the heat source side heat exchanger 15 functioning as a condenser via the four-way switching valve 14, and the outside air supplied by the heat source side fan 19. It is cooled by exchanging heat with. The high-pressure refrigerant cooled and liquefied in the heat source side heat exchanger 15 is sent to each indoor unit 20 via the liquid refrigerant connecting pipe 11. The refrigerant sent to each indoor unit 20 is decompressed by the utilization side expansion valve 21 to become a low-pressure gas-liquid two-phase state refrigerant, and the air and heat in the living room R in the utilization side heat exchanger 22 functioning as an evaporator. It is replaced and evaporated to a low pressure gas refrigerant. The low-pressure gas refrigerant heated in the user-side heat exchanger 22 is sent to the heat source unit 10 via the gas refrigerant connecting pipe 12, and is sucked into the compressor 13 again via the four-way switching valve 14.
 一方、暖房運転時には、前述したように、四路切換弁14は図1において破線で示される状態となる。この状態において、圧縮機13から吐出された高圧のガス冷媒は、四路切換弁14及びガス冷媒連絡管12を経由して各室内機20に送られる。各室内機20に送られた高圧のガス冷媒は、凝縮器として機能する利用側熱交換器22に送られ、居室R内の空気と熱交換を行って冷却された後、利用側膨張弁21を通過し、液冷媒連絡管11を経由して熱源ユニット10に送られる。熱源ユニット10に送られた高圧の冷媒は、熱源側膨張弁16によって減圧されて低圧の気液二相状態の冷媒となり、蒸発器として機能する熱源側熱交換器15に流入する。熱源側熱交換器15に流入した低圧の気液二相状態の冷媒は、熱源側ファン19によって供給される外気と熱交換を行って加熱され、蒸発して低圧の冷媒となる。熱源側熱交換器15を出た低圧のガス冷媒は、四路切換弁14を経由して再び圧縮機13に吸入される。 On the other hand, during the heating operation, as described above, the four-way switching valve 14 is in the state shown by the broken line in FIG. In this state, the high-pressure gas refrigerant discharged from the compressor 13 is sent to each indoor unit 20 via the four-way switching valve 14 and the gas refrigerant connecting pipe 12. The high-pressure gas refrigerant sent to each indoor unit 20 is sent to the utilization side heat exchanger 22 that functions as a condenser, exchanges heat with the air in the living room R to be cooled, and then the utilization side expansion valve 21. Is sent to the heat source unit 10 via the liquid refrigerant connecting pipe 11. The high-pressure refrigerant sent to the heat source unit 10 is depressurized by the heat source-side expansion valve 16 to become a low-pressure gas-liquid two-phase state refrigerant, and flows into the heat source-side heat exchanger 15 that functions as an evaporator. The low-pressure gas-liquid two-phase refrigerant that has flowed into the heat source-side heat exchanger 15 exchanges heat with the outside air supplied by the heat-source-side fan 19, is heated, and evaporates to become a low-pressure refrigerant. The low-pressure gas refrigerant exiting the heat source side heat exchanger 15 is sucked into the compressor 13 again via the four-way switching valve 14.
 前記冷媒センサ24による冷媒の漏洩が検知されていないときの通常運転時には、前記のような冷房運転又は暖房運転とともに、換気装置30による居室Rの換気が行われる。必要な換気量(m/h)は居室Rの用途及び当該居室Rの床面積に応じて選定される。
 一方、本実施形態では、室内機20に配設された冷媒センサ24が漏洩冷媒を検知すると、冷媒漏洩の情報を室内機20から受けた換気装置30の制御部36が当該換気装置30の給気と排気のバランスを変更させる。具体的に、送風用ファン34及び/又は排気用ファン35の運転を制御して、以下の表1に例示されるように給気と排気のバランスを変更することができる。変更の態様は、居室Rの用途に応じて適宜設定することができる。
During normal operation when the leakage of refrigerant is not detected by the refrigerant sensor 24, the ventilation device 30 ventilates the living room R in addition to the cooling operation or heating operation as described above. The required ventilation volume (m 3 / h) is selected according to the use of the living room R and the floor area of the living room R.
On the other hand, in the present embodiment, when the refrigerant sensor 24 arranged in the indoor unit 20 detects the leaked refrigerant, the control unit 36 of the ventilation device 30 that receives the information on the refrigerant leakage from the indoor unit 20 supplies the ventilation device 30. Change the balance between qi and exhaust. Specifically, the operation of the blower fan 34 and / or the exhaust fan 35 can be controlled to change the balance between air supply and exhaust as illustrated in Table 1 below. The mode of change can be appropriately set according to the use of the living room R.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 パターン1では、居室として、事務所等の一般的な用途が想定されている。このパターン1では、通常運転時は換気装置30による給気風量と当該換気装置30による排気風量とは同じである。かかる給気と排気のバランスは、室内機20に配設された冷媒センサ24が漏洩冷媒を検知すると、冷媒漏洩の情報を受けた換気装置30の制御部36によって、当該換気装置30による排気風量が換気装置30による給気風量よりも多くなる排気リッチに変更される。冷媒漏洩時に排気リッチとして、当該事務所等を負圧(陰圧)にすることで、事務所内で漏洩した冷媒が当該事務所に隣接する他の部屋やスペースに拡散するのを抑制することができる。 In pattern 1, general use such as an office is assumed as a living room. In this pattern 1, the air supply air volume by the ventilation device 30 and the exhaust air volume by the ventilation device 30 are the same during normal operation. When the refrigerant sensor 24 arranged in the indoor unit 20 detects the leaked refrigerant, the control unit 36 of the ventilation device 30 that receives the information on the refrigerant leakage determines the balance between the supply air and the exhaust gas. Is changed to exhaust rich, which is larger than the amount of air supplied by the ventilation device 30. By making the office etc. negative pressure (negative pressure) as exhaust rich when the refrigerant leaks, it is possible to prevent the refrigerant leaked in the office from diffusing into other rooms and spaces adjacent to the office. it can.
 パターン2では、居室として、クリーンルーム等の所定の清浄度が要求される用途が想定されている。このパターン2では、通常運転時は換気装置30による給気風量と当該換気装置30による排気風量とは同じである。かかる給気と排気のバランスは、室内機20に設けられた冷媒センサが漏洩冷媒を検知すると、冷媒漏洩の情報を受けた換気装置30の制御部36によって、当該換気装置30による給気風量が換気装置30による排気風量よりも多くなる給気リッチに変更される。冷媒漏洩時に給気リッチとして、当該クリーンルーム等を正圧(陽圧)にすることで、漏洩冷媒の対応時にごみ等の異物がクリーンルーム内に侵入するのを抑制することができ、その結果、前記対応の終了後にクリーンルームの清浄度を早く元の状態に戻すことができる。 In pattern 2, it is assumed that the living room is used in a clean room or the like where a predetermined cleanliness is required. In this pattern 2, the air supply air volume by the ventilation device 30 and the exhaust air volume by the ventilation device 30 are the same during normal operation. When the refrigerant sensor provided in the indoor unit 20 detects the leaked refrigerant, the control unit 36 of the ventilator 30 that receives the information on the refrigerant leak determines the balance between the supply air and the exhaust air by the ventilation device 30. The air supply is changed to rich, which is larger than the exhaust air volume by the ventilation device 30. By making the clean room or the like positive pressure (positive pressure) as the air supply is rich when the refrigerant leaks, it is possible to suppress foreign substances such as dust from entering the clean room when dealing with the leaked refrigerant, and as a result, the above-mentioned The cleanliness of the clean room can be quickly restored to its original state after the response is completed.
 パターン3では、居室として、病院等の用途が想定されている。このパターン3では、通常運転時は換気装置30による排気風量が当該換気装置30による給気風量よりも多い排気リッチである。かかる給気と排気のバランスは、室内機20に設けられた冷媒センサ24が漏洩冷媒を検知すると、冷媒漏洩の情報を受けた換気装置30の制御部36によって、当該換気装置30による給気風量が換気装置30による排気風量よりも多くなる給気リッチに変更される。冷媒漏洩時に給気リッチとして当該病院を正圧にすることで、病院内で漏れた冷媒を早く排出して当該病室内における漏洩冷媒の濃度を低減させることができる。パターン3では、通常は負圧にしているのを正圧にすることで、その差圧を利用して病院の部屋からの漏れ空気量を増やし、冷媒排出のための風量を増やすことができる。 Pattern 3 is expected to be used as a living room in hospitals and the like. In this pattern 3, the exhaust air volume by the ventilation device 30 is larger than the supply air volume by the ventilation device 30 during normal operation. When the refrigerant sensor 24 provided in the indoor unit 20 detects the leaked refrigerant, the control unit 36 of the ventilator 30 that receives the information on the refrigerant leak determines the balance between the supply air and the exhaust air supplied by the ventilator 30. Is changed to an air supply rich that is larger than the exhaust air volume by the ventilation device 30. By making the hospital positive pressure as the air supply is rich when the refrigerant leaks, the refrigerant leaked in the hospital can be quickly discharged and the concentration of the leaked refrigerant in the hospital room can be reduced. In pattern 3, by changing the normally negative pressure to a positive pressure, the differential pressure can be used to increase the amount of air leaking from the hospital room and increase the air volume for discharging the refrigerant.
 パターン4では、居室として、劇場や大規模事務所等の用途が想定されている。このパターン4は、パターン3とは逆であり、通常運転時は換気装置30による給気風量が当該換気装置30による排気風量よりも多い給気リッチである。かかる給気と排気のバランスは、室内機20に設けられた冷媒センサが漏洩冷媒を検知すると、冷媒漏洩の情報を受けた換気装置30の制御部36によって、当該換気装置30による排気風量が換気装置30による給気風量よりも多くなる排気リッチに変更される。冷媒漏洩時に排気リッチとして当該大規模事務所等を負圧にすることで、事務所内で漏れた冷媒が他の部屋又はスペースに拡散するのを抑制することができる。パターン4では、通常運転時に劇場や大規模事務所等を給気リッチとすることで、当該劇場等からの排気ダクトを省略することができる。この場合、劇場等からの排気は、当該劇場に隣接する廊下やトイレからファンで排気することができる。 In pattern 4, it is assumed that the room will be used as a theater or a large-scale office. This pattern 4 is the opposite of the pattern 3, and is rich in air supply in which the air supply air volume by the ventilation device 30 is larger than the exhaust air volume by the ventilation device 30 during normal operation. When the refrigerant sensor provided in the indoor unit 20 detects the leaked refrigerant, the control unit 36 of the ventilation device 30 that receives the information on the refrigerant leakage ventilates the exhaust air volume by the ventilation device 30 to balance the supply air and the exhaust gas. It is changed to an exhaust rich that is larger than the air supply air volume by the device 30. By making the large-scale office or the like negative pressure as exhaust rich when the refrigerant leaks, it is possible to prevent the refrigerant leaked in the office from diffusing into another room or space. In pattern 4, the exhaust duct from the theater or the like can be omitted by making the theater or a large-scale office or the like rich in air supply during normal operation. In this case, the exhaust from the theater or the like can be exhausted by a fan from the corridor or the toilet adjacent to the theater.
 なお、パターン3のように、通常運転時の給気と排気のバランスが排気リッチである場合、冷媒センサ24が漏洩冷媒を検知すると、冷媒漏洩の情報を受けた換気装置30の制御部36によって換気装置30による排気風量をより多くするか、または、給気風量をより少なくすることによって、給気と排気のバランスをより排気リッチに変更してもよい(パターン5)。このようにすることで、通常は部屋Rの内部を負圧にしているのを、より負圧にすることができ、漏洩冷媒が他の部屋やスペースに拡散するのをより抑制することができる。 When the balance between the supply air and the exhaust gas during normal operation is rich in exhaust gas as in pattern 3, when the refrigerant sensor 24 detects the leaked refrigerant, the control unit 36 of the ventilation device 30 receives the information on the refrigerant leak. The balance between the supply air and the exhaust gas may be changed to be more exhaust-rich by increasing the exhaust air volume by the ventilator 30 or decreasing the supply air volume (Pattern 5). By doing so, it is possible to make the pressure inside the room R more negative than usual, and it is possible to further suppress the diffusion of the leaked refrigerant to other rooms and spaces. ..
 パターン4のように、通常運転時の給気と排気のバランスが給気リッチである場合、冷媒センサ24が漏洩冷媒を検知すると、冷媒漏洩の情報を受けた換気装置30の制御部36によって、換気装置30による給気風量をより多くするか、または、排気風量をより少なくすることによって、給気と排気のバランスをより給気リッチに変更してもよい(パターン6)。このようにすることで、通常は部屋Rの内部を正圧にしているのをより正圧にすることができ、居室Rからの漏れ空気量をより増やし、冷媒排出のための風量を増加させることができる。 When the balance between air supply and exhaust during normal operation is rich in air supply as in pattern 4, when the refrigerant sensor 24 detects the leaked refrigerant, the control unit 36 of the ventilation device 30 that receives the information on the refrigerant leak determines the balance. The balance between the supply air and the exhaust air may be changed to be richer in the air supply by increasing the air supply air volume by the ventilation device 30 or decreasing the exhaust air volume (Pattern 6). By doing so, it is possible to make the pressure inside the room R more positive, increase the amount of air leaking from the room R, and increase the air volume for discharging the refrigerant. be able to.
 <第1の実施形態の作用効果>
 以上より、第1の実施形態の空調システムSは、次のような作用効果を奏する。
(1)空調システムSは、空調機20の空調対象空間における冷媒の漏洩を検知するための冷媒センサ24と、給気及び排気を行う換気装置30と、換気装置30の動作を制御する制御部36と、を備え、制御部36は、冷媒センサ24による冷媒の漏洩を検知していないときの通常運転時と、冷媒センサ24による漏洩冷媒の検知時とで換気装置30の給気と排気のバランスを変更させる。
<Action and effect of the first embodiment>
From the above, the air conditioning system S of the first embodiment has the following effects.
(1) The air conditioner system S is a control unit that controls the operation of the refrigerant sensor 24 for detecting the leakage of the refrigerant in the air conditioner target space of the air conditioner 20, the ventilation device 30 for supplying and exhausting air, and the ventilation device 30. 36, and the control unit 36 supplies and exhausts the air supply and exhaust of the ventilation device 30 during normal operation when the refrigerant sensor 24 does not detect the leakage of the refrigerant and when the refrigerant sensor 24 detects the leakage of the refrigerant. Change the balance.
 第1の実施形態の空調システムSでは、冷媒センサ24による冷媒の漏洩を検知していないときの通常運転時と、漏洩冷媒の検知時とで換気装置30の給気と排気のバランスを変更させるので、冷媒漏洩時には、空調対象空間である居室Rの用途に応じて当該居室を、例えば排気リッチ又は給気リッチに変更することができる。排気リッチにすることで当該居室Rから漏洩冷媒が拡散するのを抑制することができる。一方、給気リッチにすることで当該居室Rからの漏洩冷媒の排出を促進させ居室R内における冷媒濃度を低減させることができる。 In the air conditioning system S of the first embodiment, the balance between the supply air and the exhaust of the ventilation device 30 is changed between the normal operation when the refrigerant sensor 24 does not detect the leakage of the refrigerant and the detection of the leaked refrigerant. Therefore, when the refrigerant leaks, the living room can be changed to, for example, exhaust rich or air supply rich, depending on the use of the living room R which is the air-conditioned space. By making the exhaust rich, it is possible to suppress the diffusion of the leaked refrigerant from the living room R. On the other hand, by making the air supply rich, it is possible to promote the discharge of the leaked refrigerant from the living room R and reduce the refrigerant concentration in the living room R.
(2)前記(1)の空調システムSにおいて、制御部36は、通常運転時には換気装置30による給気の風量と排気の風量を同量とし、冷媒センサ24による漏洩冷媒の検知時には換気装置30による排気の風量を給気の風量よりも多くすることができる。この場合、通常運転時には給排気の各風量を同量にしている、例えば事務所等において、冷媒漏洩時に排気リッチとして当該事務所等を負圧(陰圧)にすることで、事務所内で漏れた冷媒が他の部屋又はスペースに拡散するのを抑制することができる。 (2) In the air conditioning system S of the above (1), the control unit 36 sets the air volume of the air supply by the ventilation device 30 and the air volume of the exhaust by the same amount during normal operation, and when the refrigerant sensor 24 detects the leaked refrigerant, the ventilation device 30 The air volume of the exhaust air can be made larger than the air volume of the supply air. In this case, the air volume of the air supply and exhaust is the same during normal operation. For example, in an office or the like, when the refrigerant leaks, the office or the like is made negative pressure (negative pressure) as exhaust rich, so that the air leaks in the office. It is possible to prevent the refrigerant from diffusing into other rooms or spaces.
(3)前記(1)の空調システムSにおいて、制御部36は、通常運転時には換気装置30による給気の風量と排気の風量を同量とし、冷媒センサ24による漏洩冷媒の検知時には換気装置30による給気の風量を排気の風量よりも多くすることができる。この場合、通常運転時には給排気の各風量を同量にしている、例えばクリーンルームにおいて、冷媒漏洩時に給気リッチとして当該クリーンルームを正圧(陽圧)にすることで、漏洩冷媒の対応時にごみ等の異物がクリーンルーム内に侵入するのを抑制することができ、その結果、前記対応の終了後にクリーンルームの清浄度を早く元の状態に戻すことができる。 (3) In the air conditioning system S of the above (1), the control unit 36 sets the air volume of the supply air by the ventilation device 30 and the air volume of the exhaust air to be the same during normal operation, and when the refrigerant sensor 24 detects the leaked refrigerant, the ventilation device 30 The air volume of the air supply by the air can be made larger than the air volume of the exhaust air. In this case, the air volume of the air supply and exhaust is the same during normal operation. For example, in a clean room, when the refrigerant leaks, the clean room is made positive pressure (positive pressure) as the supply air is rich, so that dust and the like are generated when dealing with the leaked refrigerant. It is possible to prevent foreign matter from entering the clean room, and as a result, the cleanliness of the clean room can be quickly restored to the original state after the above-mentioned measures are completed.
(4)前記(1)の空調システムSにおいて、制御部36は、通常運転時には換気装置30による排気の風量を給気の風量よりも多くし、冷媒センサ24による漏洩冷媒の検知時には換気装置30による給気の風量を排気の風量よりも多くすることができる。この場合、通常運転時には排気リッチにしている、例えば病院において、冷媒漏洩時に給気リッチとして当該病院を正圧にすることで、病院内で漏れた冷媒を早く排出することができる。通常は負圧にしているのを正圧にすることで、その差圧を利用して病院の部屋からの漏れ空気量を増やし、冷媒排出のための風量を増やすことができる。 (4) In the air conditioning system S of the above (1), the control unit 36 makes the air volume of the exhaust gas by the ventilation device 30 larger than the air volume of the supply air during normal operation, and the ventilation device 30 when the refrigerant sensor 24 detects the leaked refrigerant. The air volume of the air supply by the air can be made larger than the air volume of the exhaust air. In this case, the exhaust gas is enriched during normal operation. For example, in a hospital, the refrigerant leaked in the hospital can be quickly discharged by making the hospital positive pressure as the air supply is rich when the refrigerant leaks. By changing the pressure from the negative pressure to the positive pressure, the differential pressure can be used to increase the amount of air leaking from the hospital room and increase the air volume for discharging the refrigerant.
(5)前記(1)の空調システムSにおいて、制御部36は、通常運転時には換気装置30による給気の風量を排気の風量よりも多くし、冷媒センサ24による漏洩冷媒の検知時には換気装置30による排気の風量を給気の風量よりも多くすることができる。この場合、通常運転時には給気リッチにしている、例えば大規模事務所や劇場等において、冷媒漏洩時に排気リッチとして当該大規模事務所等を負圧にすることで、事務所内で漏れた冷媒が他の部屋又はスペースに拡散するのを抑制することができる。 (5) In the air conditioning system S of the above (1), the control unit 36 makes the air volume of the supply air by the ventilation device 30 larger than the air volume of the exhaust gas during normal operation, and the ventilation device 30 when the refrigerant sensor 24 detects the leaked refrigerant. The air volume of the exhaust gas can be made larger than the air volume of the supply air. In this case, the air supply is rich during normal operation, for example, in a large-scale office or theater, the refrigerant leaked in the office is released by making the large-scale office or the like negative pressure as exhaust rich when the refrigerant leaks. It can be suppressed from spreading to other rooms or spaces.
[その他の実施形態]
 以下、その他の複数の実施形態について説明する。以下のいずれの実施形態においても、第1の実施形態で説明したようなパターン1~パターン6の態様で給気と排気とのバランスを設定することができる。
[Other Embodiments]
Hereinafter, a plurality of other embodiments will be described. In any of the following embodiments, the balance between air supply and exhaust can be set in the modes 1 to 6 as described in the first embodiment.
[第2の実施形態]
 第2の実施形態の空調システムSは、第1の実施形態の空調システムSに加えて、補助ファン40を備えている。換気装置30及び補助ファン40と、居室Rとは、給気(SA)用ダクト31により接続されている。さらに、換気装置30と居室Rとは、還気(RA)用ダクト32により接続されている。
[Second Embodiment]
The air conditioning system S of the second embodiment includes an auxiliary fan 40 in addition to the air conditioning system S of the first embodiment. The ventilation device 30, the auxiliary fan 40, and the living room R are connected by an air supply (SA) duct 31. Further, the ventilation device 30 and the living room R are connected by a return air (RA) duct 32.
 第2の実施形態の換気装置30は、第1の実施形態の換気装置30と同様である。換気装置30の能力は、居室Rの想定在室人数又は部屋面積を基準にして算出される必要換気量(m/h)に基づいて設定される。なお、本開示における換気装置30として、給気はファンにより行い、排気は自然排気である第2種換気装置、又は、排気はファンにより行い、給気は自然給気である第3種換気装置を用いることもできる。 The ventilation device 30 of the second embodiment is the same as the ventilation device 30 of the first embodiment. The capacity of the ventilation device 30 is set based on the required ventilation volume (m 3 / h) calculated based on the estimated number of people in the room R or the room area. As the ventilation device 30 in the present disclosure, the air supply is performed by a fan and the exhaust is a natural exhaust type 2 ventilation device, or the exhaust air is performed by a fan and the air supply is a natural air supply type 3 ventilation device. Can also be used.
 補助ファン40は、換気装置30とは別に配設された換気用のファンである。補助ファン40は、換気装置30と居室Rとを接続し当該居室Rに全熱交換器33により熱交換された外気OAを供給する給気用ダクト31に接続される送風ダクト41を備えている。送風ダクト41内には、当該送風ダクト41の開閉を行う電動ダンパ42が配設されている。また、補助ファン40は、当該補助ファン40及び電動ダンパ42の動作を制御する制御部43を備えている。制御部43は、換気装置30の制御部36と通信可能に接続されている。なお、送風ダクト41は、換気装置30の給気用ダクト31と合流させずに直接に居室Rと接続させることもできる。 The auxiliary fan 40 is a ventilation fan arranged separately from the ventilation device 30. The auxiliary fan 40 includes a ventilation duct 41 that connects the ventilation device 30 and the living room R and is connected to an air supply duct 31 that supplies the outside air OA heat exchanged by the total heat exchanger 33 to the living room R. .. An electric damper 42 for opening and closing the air duct 41 is provided in the air duct 41. Further, the auxiliary fan 40 includes a control unit 43 that controls the operation of the auxiliary fan 40 and the electric damper 42. The control unit 43 is communicably connected to the control unit 36 of the ventilation device 30. The ventilation duct 41 can be directly connected to the living room R without merging with the air supply duct 31 of the ventilation device 30.
 近年、温暖化抑制という観点より、蒸気圧縮式の冷凍サイクルによって室内の冷暖房を行う空調機においては、地球温暖化係数の低いR32冷媒等の採用が進んでいる。したがって、第2の実施形態に係る空調システムSにおいても、冷媒としてR32冷媒が用いられている。しかし、このR32冷媒は僅かな可燃性(微燃性)を有しており、万一の漏洩に対する対策が必要である。 In recent years, from the viewpoint of suppressing global warming, the adoption of R32 refrigerant having a low global warming potential has been progressing in air conditioners that cool and heat indoors by a vapor compression refrigeration cycle. Therefore, the R32 refrigerant is also used as the refrigerant in the air conditioning system S according to the second embodiment. However, this R32 refrigerant has a slight flammability (slight flammability), and it is necessary to take measures against leakage in the unlikely event.
 R32冷媒は、その空気中の濃度が可燃濃度になると燃焼する恐れがある。燃焼を起こす濃度の範囲である燃焼範囲には下限と上限とがあり、漏洩したR32冷媒の空気中の濃度が下限よりも低い場合には火気があってもR32冷媒は燃焼しない。第2の実施形態に係る空調システムSでは、居室R内に室内機からR32冷媒が漏洩した場合に、換気装置30とともに補助ファン40を作動させて居室Rの換気を行い、漏洩冷媒の濃度を前記下限に達しないように希釈している。なお、冷媒としては、R32冷媒以外に、例えばR717、R290及びこれらの混合物や、これらとR32との混合物等を用いることもでき、本開示において特に限定されるものではない。 The R32 refrigerant may burn when its concentration in the air becomes flammable. The combustion range, which is the range of the concentration at which combustion occurs, has a lower limit and an upper limit. When the concentration of the leaked R32 refrigerant in the air is lower than the lower limit, the R32 refrigerant does not burn even if there is a fire. In the air conditioning system S according to the second embodiment, when the R32 refrigerant leaks from the indoor unit into the living room R, the auxiliary fan 40 is operated together with the ventilation device 30 to ventilate the living room R, and the concentration of the leaked refrigerant is adjusted. It is diluted so as not to reach the lower limit. As the refrigerant, for example, R717, R290 and a mixture thereof, a mixture of these and R32, and the like can be used in addition to the R32 refrigerant, and the present invention is not particularly limited.
 冷媒が漏洩した場合に換気によって当該冷媒を希釈し、冷媒が可燃濃度に達するのを防ぐことが考えられる。IEC基準又はGL-16(JRA)では、換気によって冷媒漏洩の安全対策とするために必要な換気量が定められている。 When the refrigerant leaks, it is conceivable to dilute the refrigerant by ventilation to prevent the refrigerant from reaching the combustible concentration. The IEC standard or GL-16 (JRA) stipulates the amount of ventilation required to take safety measures for refrigerant leakage by ventilation.
 換気装置30の必要換気量が、冷媒漏洩の安全対策としての必要換気量よりも大きい場合は、当該換気装置を作動させることで冷媒漏洩時に必要な換気量を確保することができる。しかし、換気装置30の必要換気量は、前述したように想定在室人数や部屋の広さで決まるため、人数が少ない部屋や面積が小さい部屋では、必要換気量が小さくなり、冷媒漏洩時に必要な換気量を確保することができない場合がある。これに対し、換気装置30の換気量を冷媒漏洩時に必要な換気量以上に設定することが考えられる。しかし、通常時にかかる設定換気量で換気をすると、本来必要とされる換気量よりも多く換気することになり、その結果、居室に導入する外気の負荷が多くなるため、エネルギ消費量が増えてしまう。 When the required ventilation volume of the ventilation device 30 is larger than the required ventilation volume as a safety measure for refrigerant leakage, the required ventilation volume can be secured at the time of refrigerant leakage by operating the ventilation device. However, since the required ventilation volume of the ventilation device 30 is determined by the assumed number of people in the room and the size of the room as described above, the required ventilation volume becomes small in a room with a small number of people or a room with a small area, and it is necessary when the refrigerant leaks. It may not be possible to secure a sufficient ventilation volume. On the other hand, it is conceivable to set the ventilation volume of the ventilation device 30 to be larger than the ventilation volume required when the refrigerant leaks. However, if ventilation is performed at the set ventilation volume that is normally applied, the ventilation volume will be larger than the originally required ventilation volume, and as a result, the load of the outside air introduced into the living room will increase, resulting in an increase in energy consumption. It ends up.
 第2の実施形態の空調システムSは、通常時のエネルギ消費量を増やすことなく冷媒漏洩時の換気を補助するものである。 The air conditioning system S of the second embodiment assists ventilation at the time of refrigerant leakage without increasing the energy consumption at the normal time.
 図4は、各種居室の床面積と必要換気量との関係の一例を示す図である。この例では、ホテルの客室、一般的な事務所及びレストランの必要換気量を示している。各居室の天井高さは2.7mとしており、又、換気回数(回/h)は日本空調衛生工学会規格を用いている。例えば、床面積が50mの一般的な事務所の場合、必要換気量は50(m)×2.7(m)×2.7(回/h)=364.5(m/h)である。 FIG. 4 is a diagram showing an example of the relationship between the floor area of various living rooms and the required ventilation volume. This example shows the required ventilation of a hotel room, a typical office and a restaurant. The ceiling height of each room is 2.7 m, and the ventilation frequency (times / h) is based on the standards of the Japan Society of Air Conditioning and Sanitary Engineering. For example, in the case of a general office with a floor area of 50 m 2 , the required ventilation volume is 50 (m 2 ) x 2.7 (m) x 2.7 (times / h) = 364.5 (m 3 / h). ).
 図4において、点線はGL-16(JRA)に規定されている、冷媒漏洩時の必要換気量である162m/hを示しており、一点鎖線はIECに規定されている、冷媒漏洩時の必要換気量である130m/hを示している。
 冷媒が漏洩した場合、換気装置30による換気量がGL-16(JRA)又はIECで規定されている漏洩冷媒の安全対策としての必要換気量よりも大きければ、当該換気装置30を作動させることで漏洩冷媒を希釈して漏洩冷媒の空気中の濃度が可燃濃度に達するのを抑制することができる。
In FIG. 4, the dotted line shows 162 m 3 / h, which is the required ventilation volume at the time of refrigerant leakage, which is specified in GL-16 (JRA), and the alternate long and short dash line is specified in IEC, at the time of refrigerant leakage. It shows the required ventilation volume of 130 m 3 / h.
When the refrigerant leaks, if the ventilation volume by the ventilation device 30 is larger than the required ventilation volume as a safety measure for the leaked refrigerant specified by GL-16 (JRA) or IEC, the ventilation device 30 can be operated. It is possible to dilute the leaked refrigerant to prevent the leaked refrigerant from reaching the flammable concentration in the air.
 しかし、居室の床面積が小さい場合、換気装置30による換気量がGL-16(JRA)又はIECで規定されている漏洩冷媒の安全対策としての必要換気量よりも小さくなる。例えば、床面積が30mのホテル客室の場合、空調システムSとしてCO濃度をベースに選定される必要換気量(m/h)は、30(m)×2.7(m)×1.2(回/h)=97.2(m/h)であり、IECに規定されている、冷媒漏洩時の必要換気量である130m/hよりも小さい。図4において、点線又は一点鎖線よりも下方の領域が、空調システムSとしてCO濃度をベースに選定される必要換気量(m/h)がGL-16(JRA)又はIECで規定されている漏洩冷媒の安全対策としての必要換気量以下となる領域である。 However, when the floor area of the living room is small, the ventilation volume by the ventilation device 30 becomes smaller than the required ventilation volume as a safety measure for the leaked refrigerant specified by GL-16 (JRA) or IEC. For example, in the case of a hotel guest room with a floor area of 30 m 2, the required ventilation volume (m 3 / h) selected based on the CO 2 concentration as the air conditioning system S is 30 (m 2 ) × 2.7 (m) ×. 1.2 (times / h) = 97.2 (m 3 / h), which is smaller than the required ventilation volume at the time of refrigerant leakage of 130 m 3 / h specified in the IEC. In FIG. 4, the region below the dotted line or the alternate long and short dash line is defined by GL-16 (JRA) or IEC as the required ventilation volume (m 3 / h) selected as the air conditioning system S based on the CO 2 concentration. This is the area where the ventilation volume is less than the required ventilation as a safety measure for the leaking refrigerant.
 本実施形態では、換気装置30による換気量が、居室Rの用途及び床面積により前記下方の領域に入る換気量である場合に、冷媒が漏洩したときに補助ファン40を作動させて換気装置30による換気量を補っている。これにより、漏洩した冷媒を希釈して当該冷媒の空気中の濃度が可燃濃度に達するのを抑制することができる。補助ファン40は、GL-16(JRA)又はIECで規定されている漏洩冷媒の安全対策としての必要換気量Aと、居室のCO濃度を基準値以下に保つために必要な換気量Bとの差(A-B)以上の風量を送風可能であることが望ましい。これにより、漏洩した冷媒の空気中の濃度が可燃濃度に達するのをより効果的に抑制することができる。なお、漏洩冷媒の安全対策としての必要換気量は、IECでは給気又は排気のいずれか一方の風量が基準値をクリアしておればよい、とされている。 In the present embodiment, when the ventilation volume by the ventilation device 30 is the ventilation volume that enters the lower region depending on the use and floor area of the living room R, the auxiliary fan 40 is operated when the refrigerant leaks to the ventilation device 30. Ventilation volume is supplemented. This makes it possible to dilute the leaked refrigerant and prevent the concentration of the refrigerant in the air from reaching a combustible concentration. The auxiliary fan 40 includes the required ventilation volume A as a safety measure for the leaked refrigerant specified by GL-16 (JRA) or IEC, and the ventilation volume B required to keep the CO 2 concentration in the living room below the standard value. It is desirable that an air volume equal to or greater than the difference (AB) can be blown. As a result, it is possible to more effectively suppress the concentration of the leaked refrigerant in the air from reaching the combustible concentration. As for the required ventilation volume as a safety measure for the leaked refrigerant, the IEC states that the air volume of either the supply air or the exhaust gas should clear the standard value.
 補助ファン40は、漏洩冷媒を検知した冷媒センサ24の検知信号を室内機20の制御部25経由で受信した換気装置30の制御部36からの作動信号に基づいて作動する。補助ファン40の作動に先立って、通常時は送風ダクト41を閉状態にしている電動ダンパ42を開状態にする。補助ファン40からの送風は、換気装置30からの給気SAとともに居室Rに供給される。補助ファン40は、冷媒が漏洩していない通常時には作動せず、冷媒漏洩時にだけ作動する。したがって、通常時の空調システムのエネルギ消費量を増やすことはない。漏洩冷媒の検知時には、換気用のファンである補助ファン40を最大回転数で作動させることが望ましい。これにより、漏洩冷媒を可燃濃度未満に希釈するために必要な換気量を効果的に確保することができ、その結果、漏洩した冷媒が可燃濃度に達するのをより効果的に抑制することができる。また、本実施形態では、給気と排気とのバランスが「給気リッチ」となり、部屋Rを正圧にすることで漏れ空気量を増やし、漏洩冷媒を早く排出して部屋内の漏洩冷媒の濃度を低減させることができる。 The auxiliary fan 40 operates based on the operation signal from the control unit 36 of the ventilation device 30 that receives the detection signal of the refrigerant sensor 24 that has detected the leaked refrigerant via the control unit 25 of the indoor unit 20. Prior to the operation of the auxiliary fan 40, the electric damper 42, which normally closes the air duct 41, is opened. The air blown from the auxiliary fan 40 is supplied to the living room R together with the air supply SA from the ventilation device 30. The auxiliary fan 40 does not operate in the normal state when the refrigerant does not leak, and operates only when the refrigerant leaks. Therefore, it does not increase the energy consumption of the air conditioning system during normal times. When detecting the leaked refrigerant, it is desirable to operate the auxiliary fan 40, which is a ventilation fan, at the maximum rotation speed. As a result, the ventilation volume required to dilute the leaked refrigerant to less than the flammable concentration can be effectively secured, and as a result, the leaked refrigerant can be more effectively suppressed from reaching the flammable concentration. .. Further, in the present embodiment, the balance between the supply air and the exhaust becomes "air supply rich", the amount of leaked air is increased by making the room R a positive pressure, the leaked refrigerant is discharged quickly, and the leaked refrigerant in the room The concentration can be reduced.
 <第2の実施形態の作用効果>
 以上より、第2の実施形態の空調システムSは、次のような作用効果を奏する。
(1)第2の実施形態の空調システムSは、微燃性又は可燃性の冷媒との熱交換により調和空気を生成する熱交換器22を有する空調機20と、空調対象空間における冷媒の漏洩を検知するための冷媒センサ24と、ファン34による給気及び/又はファン35による排気を行う換気装置30と、空調機20及び/又は換気装置30に通信可能に接続され、冷媒センサ24による漏洩冷媒の非検知時には作動せず当該冷媒センサによる漏洩冷媒の検知時に作動する補助ファン40とを備える。そのため、冷媒センサ24が冷媒の漏洩を検知した場合に補助ファン40が作動して、換気装置30による換気とともに空調対象空間である居室Rの換気を行うことができる。これにより、漏洩した冷媒を希釈して当該冷媒が可燃濃度に達するのを抑制することができる。また、冷媒が漏洩していない通常時には補助ファン40は作動しないので、通常時の空調システムSのエネルギ消費量を増やすことがない。
<Action and effect of the second embodiment>
From the above, the air conditioning system S of the second embodiment has the following effects.
(1) The air conditioning system S of the second embodiment includes an air conditioner 20 having a heat exchanger 22 that generates harmonized air by heat exchange with a slightly flammable or flammable refrigerant, and leakage of the refrigerant in the air-conditioned space. The refrigerant sensor 24 for detecting the above, the ventilation device 30 for supplying air by the fan 34 and / or exhausting by the fan 35, and the air conditioner 20 and / or the ventilation device 30 are communicably connected and leaked by the refrigerant sensor 24. It is provided with an auxiliary fan 40 that does not operate when the refrigerant is not detected and operates when the leaked refrigerant is detected by the refrigerant sensor. Therefore, when the refrigerant sensor 24 detects the leakage of the refrigerant, the auxiliary fan 40 operates, and the ventilation device 30 can ventilate the living room R, which is the air-conditioned space. This makes it possible to dilute the leaked refrigerant and prevent the refrigerant from reaching a combustible concentration. Further, since the auxiliary fan 40 does not operate in the normal state when the refrigerant does not leak, the energy consumption of the air conditioning system S in the normal time does not increase.
(2)前記(1)の空調システムSにおいて、補助ファン40は、漏洩冷媒を可燃濃度未満に希釈するために必要な換気量Aと、居室RのCO濃度を基準値以下に保つために必要な換気量Bとの差(A-B)以上の風量を送風可能である。この場合、補助ファン40を作動させることで漏洩冷媒を可燃濃度未満に希釈するために必要な換気量を確保することができ、その結果、漏洩した冷媒が可燃濃度に達するのをより効果的に抑制することができる。 (2) In the air conditioning system S of the above (1), the auxiliary fan 40 keeps the ventilation volume A required for diluting the leaked refrigerant to less than the combustible concentration and the CO 2 concentration of the living room R below the reference value. It is possible to blow an air volume equal to or greater than the difference (AB) from the required ventilation volume B. In this case, by operating the auxiliary fan 40, the ventilation volume required to dilute the leaked refrigerant to less than the flammable concentration can be secured, and as a result, the leaked refrigerant reaches the flammable concentration more effectively. It can be suppressed.
(3)前記(1)又は(2)の空調システムSにおいて、冷媒センサ24が漏洩冷媒を検知すると、当該冷媒センサ24の検知信号を受けた空調機20又は換気装置30から補助ファン40に作動開始信号が送信されるものとすることができる。この場合、作動開始信号を受けた補助ファン40が作動することで、漏洩冷媒を可燃濃度未満に希釈するために必要な換気量を確保することができ、その結果、漏洩した冷媒が可燃濃度に達するのをより効果的に抑制することができる。 (3) In the air conditioning system S of the above (1) or (2), when the refrigerant sensor 24 detects the leaked refrigerant, the air conditioner 20 or the ventilation device 30 that receives the detection signal of the refrigerant sensor 24 operates the auxiliary fan 40. A start signal may be transmitted. In this case, by operating the auxiliary fan 40 that receives the operation start signal, the ventilation volume required to dilute the leaked refrigerant to less than the flammable concentration can be secured, and as a result, the leaked refrigerant becomes combustible. It can be suppressed more effectively.
(4)前記(1)~(3)の空調システムにおいて、補助ファン40を換気用のファンとすることができる。この場合、換気用のファンが作動することで、漏洩冷媒を可燃濃度未満に希釈するために必要な換気量を確保することができ、その結果、漏洩した冷媒が可燃濃度に達するのをより効果的に抑制することができる。 (4) In the air conditioning system of (1) to (3) above, the auxiliary fan 40 can be used as a ventilation fan. In this case, by operating the ventilation fan, it is possible to secure the ventilation volume required to dilute the leaked refrigerant to less than the flammable concentration, and as a result, it is more effective for the leaked refrigerant to reach the flammable concentration. Can be suppressed.
(5)前記(4)の空調システムにおいて、冷媒センサ24が漏洩冷媒を検知すると、換気用のファン40の回転数が最大回転数とされることが望ましい。この場合、換気用のファン40が最大回転数で作動することで、漏洩冷媒を可燃濃度未満に希釈するために必要な換気量を効果的に確保することができ、その結果、漏洩した冷媒が可燃濃度に達するのをより効果的に抑制することができる。 (5) In the air conditioning system of (4) above, when the refrigerant sensor 24 detects the leaked refrigerant, it is desirable that the rotation speed of the ventilation fan 40 is set to the maximum rotation speed. In this case, since the ventilation fan 40 operates at the maximum rotation speed, the ventilation volume required to dilute the leaked refrigerant to less than the combustible concentration can be effectively secured, and as a result, the leaked refrigerant is released. Reaching the flammable concentration can be suppressed more effectively.
(6)第2の実施形態の補助ファン40は、前記(1)~(5)の空調機20及び/又は換気装置30に通信可能に接続され、冷媒センサ24による漏洩冷媒の非検知時には作動せず当該冷媒センサ24による漏洩冷媒の検知時に作動する。補助ファン40は、冷媒センサ24が冷媒の漏洩を検知した場合に作動して、換気装置30による換気とともに居室の換気を行うことができる。これにより、漏洩した冷媒を希釈して当該冷媒が可燃濃度に達するのを抑制することができる。また、冷媒が漏洩していない通常時には作動しないので、通常時の空調システムのエネルギ消費量を増やすことがない。 (6) The auxiliary fan 40 of the second embodiment is communicably connected to the air conditioner 20 and / or the ventilation device 30 of (1) to (5) above, and operates when the leaking refrigerant is not detected by the refrigerant sensor 24. Instead, it operates when the leaked refrigerant is detected by the refrigerant sensor 24. The auxiliary fan 40 operates when the refrigerant sensor 24 detects the leakage of the refrigerant, and can ventilate the living room together with the ventilation by the ventilation device 30. This makes it possible to dilute the leaked refrigerant and prevent the refrigerant from reaching a combustible concentration. In addition, since it does not operate in the normal state where the refrigerant does not leak, it does not increase the energy consumption of the air conditioning system in the normal time.
[第3の実施形態]
 図5は、本開示の第3の実施形態に係る空調システム110の概略的な構成図である。
 本実施形態の空調システム110は、空調機111と、換気装置112とを備えている。空調機111は、室外機121と室内機122とを備えている。室内機122と換気装置112とは、部屋(居室)Rの天井裏のスペースS3に設置されている。ただし、室内機122及び換気装置112は、部屋Rの壁、床の上、天井の下等に設置されていてもよい。室内機122と換気装置112とは、部屋Rの同じ場所に限らず、別々の場所に設置されていてもよい。
[Third Embodiment]
FIG. 5 is a schematic configuration diagram of the air conditioning system 110 according to the third embodiment of the present disclosure.
The air conditioning system 110 of the present embodiment includes an air conditioner 111 and a ventilation device 112. The air conditioner 111 includes an outdoor unit 121 and an indoor unit 122. The indoor unit 122 and the ventilation device 112 are installed in the space S3 behind the ceiling of the room (living room) R. However, the indoor unit 122 and the ventilation device 112 may be installed on the wall, the floor, the ceiling, or the like of the room R. The indoor unit 122 and the ventilation device 112 are not limited to the same place in the room R, but may be installed in different places.
 [空調機の構成]
 空調機111は、圧縮機、熱交換器、膨張弁等を含む冷媒回路により蒸気圧縮式の冷凍サイクルを行うことによって、部屋Rの内部である室内空間(空調対象空間)S1の空気の温度を調整する。室外機121と室内機122とは冷媒回路を構成する冷媒配管123で接続されている。室内機122は、室内空間S1の空気を取り込み、その空気と冷媒との間で熱交換を行い、温度調整された調和空気を再び室内空間S1に吹き出すことによって、室内空間S1の温度を所望に調整する。空調機111の冷媒回路の具体的構成、並びに、冷房運転及び暖房運転の動作手順等は、第1の実施形態において図1を参照して説明したものと同様である。
[Air conditioner configuration]
The air conditioner 111 adjusts the temperature of the air in the indoor space (air conditioning target space) S1 inside the room R by performing a vapor compression refrigeration cycle with a refrigerant circuit including a compressor, a heat exchanger, an expansion valve, and the like. adjust. The outdoor unit 121 and the indoor unit 122 are connected by a refrigerant pipe 123 constituting a refrigerant circuit. The indoor unit 122 takes in the air in the indoor space S1, exchanges heat between the air and the refrigerant, and blows out the temperature-controlled conditioned air to the indoor space S1 again, thereby making the temperature of the indoor space S1 desired. adjust. The specific configuration of the refrigerant circuit of the air conditioner 111, the operation procedure of the cooling operation and the heating operation, and the like are the same as those described with reference to FIG. 1 in the first embodiment.
 室内機122は、コントローラ124と、リモートコントローラ125と、冷媒センサ126とを備えている。
 コントローラ124(以下、「空調コントローラ」ともいう)は、室内機122に収容されたファン、電動弁等の動作を制御する。空調コントローラ124は、例えば、CPU等のプロセッサ、RAM、ROM等のメモリを備えたマイクロコンピュータにより構成される。空調コントローラ124は、メモリにインストールされたプログラムをプロセッサが実行することによって、所定の機能を発揮する。空調コントローラ124は、後述する換気装置112のコントローラ(制御部)136にも通信可能に接続されている。なお、空調コントローラ124は、室外機121に設けられていてもよいし、室外機121及び室内機122の双方に設けられていてもよい。
The indoor unit 122 includes a controller 124, a remote controller 125, and a refrigerant sensor 126.
The controller 124 (hereinafter, also referred to as “air conditioning controller”) controls the operation of the fan, electric valve, etc. housed in the indoor unit 122. The air conditioning controller 124 is composed of, for example, a microcomputer having a processor such as a CPU and a memory such as RAM and ROM. The air-conditioning controller 124 exerts a predetermined function when the processor executes a program installed in the memory. The air conditioning controller 124 is also communicably connected to the controller (control unit) 136 of the ventilation device 112, which will be described later. The air conditioning controller 124 may be provided in the outdoor unit 121, or may be provided in both the outdoor unit 121 and the indoor unit 122.
 リモートコントローラ125は、運転開始/運転停止の操作や、室内の温度、送風の強弱等の動作設定を行うために用いられる。リモートコントローラ125は、室内機122の空調コントローラ124に有線又は無線で通信可能に接続されている。ユーザは、リモートコントローラ125を使用することによって、遠隔で空調機111を操作することができる。 The remote controller 125 is used for operation start / stop operations and operation settings such as room temperature and ventilation strength. The remote controller 125 is connected to the air conditioning controller 124 of the indoor unit 122 so as to be able to communicate by wire or wirelessly. The user can operate the air conditioner 111 remotely by using the remote controller 125.
 冷媒センサ126は、空調機111の冷媒回路の冷媒配管等から漏洩した冷媒を検知する。冷媒センサ126の検出信号は、空調コントローラ124に入力される。冷媒センサ126は、室内機122の筐体内に設けられている。ただし、冷媒センサ126は、室内機122の筐体外に設けられていてもよい。冷媒センサ126は、例えば、室内機122に接続されたリモートコントローラ125に設けられていてもよい。 The refrigerant sensor 126 detects the refrigerant leaked from the refrigerant piping of the refrigerant circuit of the air conditioner 111. The detection signal of the refrigerant sensor 126 is input to the air conditioning controller 124. The refrigerant sensor 126 is provided in the housing of the indoor unit 122. However, the refrigerant sensor 126 may be provided outside the housing of the indoor unit 122. The refrigerant sensor 126 may be provided, for example, on the remote controller 125 connected to the indoor unit 122.
 [換気装置の構成]
 換気装置112は、室内空間S1の換気を行う。換気装置112は、空調機111と連動して、あるいは、単独で運転される。換気装置112は、ダクト145a~145dを介して室外空間S2及び室内空間S1と接続されている。本実施形態の換気装置112は、室内空間S1の換気と同時に湿度の調整も行う調湿装置により構成されている。
[Ventilation device configuration]
The ventilation device 112 ventilates the indoor space S1. The ventilator 112 is operated in conjunction with or independently of the air conditioner 111. The ventilation device 112 is connected to the outdoor space S2 and the indoor space S1 via ducts 145a to 145d. The ventilation device 112 of the present embodiment is configured by a humidity control device that adjusts the humidity at the same time as ventilating the indoor space S1.
 図6は、換気装置の概略構造を示す平面図、右側面図、及び左側面図である。
 換気装置112は、ケーシング158と、開閉機構135と、コントローラ(制御部)136(図5参照)と、冷媒回路161(図8参照)とを備えている。
FIG. 6 is a plan view, a right side view, and a left side view showing a schematic structure of the ventilation device.
The ventilator 112 includes a casing 158, an opening / closing mechanism 135, a controller (control unit) 136 (see FIG. 5), and a refrigerant circuit 161 (see FIG. 8).
  (ケーシングの構成)
 ケーシング158は、平面形状が矩形状で扁平な直方体の箱形に形成されている。具体的に、ケーシング158は、底板158eと、天板158fと、4枚の側板(第1~第4側板)158a~158dとを備えている。これら底板158e、天板158f、及び側板158a~158dによって囲まれた空間内に冷媒回路161の一部や開閉機構135等が収容されている。なお、以下の説明においては、図6の平面図における下側を前、上側を後、左側を左、右側を右として説明する。ケーシング158の4枚の側板158a~158dのうち、前側に配置された側板158aを第1側板、後側に配置された側板158bを第2側板、左側に配置された側板158cを第3側板、右側に配置された側板158dを第4側板ともいう。
(Construction of casing)
The casing 158 is formed in a rectangular parallelepiped box shape having a rectangular planar shape. Specifically, the casing 158 includes a bottom plate 158e, a top plate 158f, and four side plates (first to fourth side plates) 158a to 158d. A part of the refrigerant circuit 161, the opening / closing mechanism 135, and the like are housed in the space surrounded by the bottom plate 158e, the top plate 158f, and the side plates 158a to 158d. In the following description, the lower side in the plan view of FIG. 6 will be described as the front, the upper side as the rear, the left side as the left, and the right side as the right. Of the four side plates 158a to 158d of the casing 158, the side plate 158a arranged on the front side is the first side plate, the side plate 158b arranged on the rear side is the second side plate, and the side plate 158c arranged on the left side is the third side plate. The side plate 158d arranged on the right side is also referred to as a fourth side plate.
 ケーシング158の第2側板158bには、還気取入口141と、外気取入口143とが形成されている。ケーシング158の第3側板158cには、排気吹出口142が形成され、第4側板158dには、給気吹出口144が形成されている。還気取入口141は、室内空間S1からの空気(還気)RAをケーシング158内に取り入れるために用いられる。排気吹出口142は、ケーシング158内に取り入れられた還気RAを、排気EAとして室外空間S2に排出するために用いられる。外気取入口143は、室外空間S2からの空気(外気)OAをケーシング158内に取り入れるために用いられる。給気吹出口144は、ケーシング158内に取り入れられた外気OAを、給気SAとして室内空間S1に供給するために用いられる。 A return air intake 141 and an outside air intake 143 are formed on the second side plate 158b of the casing 158. An exhaust air outlet 142 is formed on the third side plate 158c of the casing 158, and an air supply air outlet 144 is formed on the fourth side plate 158d. The return air intake 141 is used to take in the air (return air) RA from the indoor space S1 into the casing 158. The exhaust outlet 142 is used to discharge the return air RA taken into the casing 158 to the outdoor space S2 as an exhaust EA. The outside air intake 143 is used to take in the air (outside air) OA from the outdoor space S2 into the casing 158. The supply air outlet 144 is used to supply the outside air OA taken into the casing 158 to the indoor space S1 as the supply air SA.
 図5に示すように、外気取入口143と排気吹出口142とは、それぞれダクト145a,145bを介して室外空間S2に繋がっている。還気取入口141と給気吹出口144とは、ダクト145c,145dを介して室内空間S1に繋がっている。 As shown in FIG. 5, the outside air intake port 143 and the exhaust air outlet 142 are connected to the outdoor space S2 via ducts 145a and 145b, respectively. The return air intake 141 and the air supply outlet 144 are connected to the indoor space S1 via ducts 145c and 145d.
 図6に示すように、ケーシング158の内部は、第1調湿室162、第2調湿室163、還気側通路164、外気側通路165、給気側通路166、排気側通路167、給気ファン室168、及び排気ファン室169に区画されている。
 ケーシング158内における第1側板158aと第2側板158bとの間には、これらの側板と平行に第1区画壁170aと第2区画壁170bとが前後に並べて配置されている。第2側板158bと第1区画壁170aとの間の空間は、第3区画壁170cによって上下に区画され、上段側に還気側通路164が形成され、下段側に外気側通路165が形成されている。
As shown in FIG. 6, the inside of the casing 158 includes a first humidity control chamber 162, a second humidity control chamber 163, a return air side passage 164, an outside air side passage 165, an air supply side passage 166, an exhaust side passage 167, and a supply side passage. It is divided into an air fan chamber 168 and an exhaust fan chamber 169.
Between the first side plate 158a and the second side plate 158b in the casing 158, the first partition wall 170a and the second partition wall 170b are arranged side by side in parallel with these side plates. The space between the second side plate 158b and the first partition wall 170a is vertically partitioned by the third partition wall 170c, the return air side passage 164 is formed on the upper side, and the outside air side passage 165 is formed on the lower side. ing.
 第1区画壁170aと第2区画壁170bとの間には、第1調湿室162と第2調湿室163とが設けられている。第1調湿室162と第2調湿室163とは、第4区画壁170dによって左右に区画されている。第1調湿室162には、後述する第1熱交換器186が配置されている。第2調湿室163には、後述する第2熱交換器189が配置されている。 A first humidity control chamber 162 and a second humidity control chamber 163 are provided between the first partition wall 170a and the second partition wall 170b. The first humidity control chamber 162 and the second humidity control chamber 163 are partitioned to the left and right by the fourth partition wall 170d. A first heat exchanger 186, which will be described later, is arranged in the first humidity control chamber 162. A second heat exchanger 189, which will be described later, is arranged in the second humidity control chamber 163.
 第2区画壁170bのさらに前側には、第5区画壁170eが設けられている。第2区画壁170bと第5区画壁170eとの間の空間は、第6区画壁170fによって上下に区画され、上段側に給気側通路166が形成され、下段側に排気側通路167が形成されている。
 給気側通路166及び排気側通路167の前側には、給気ファン室168及び排気ファン室169が設けられている。給気ファン室168と排気ファン室169とは、第7区画壁170gによって左右に区画されている。
A fifth partition wall 170e is provided on the front side of the second partition wall 170b. The space between the second partition wall 170b and the fifth partition wall 170e is vertically partitioned by the sixth partition wall 170f, the air supply side passage 166 is formed on the upper side, and the exhaust side passage 167 is formed on the lower side. Has been done.
An air supply fan chamber 168 and an exhaust fan chamber 169 are provided on the front side of the air supply side passage 166 and the exhaust side passage 167. The air supply fan chamber 168 and the exhaust fan chamber 169 are partitioned to the left and right by the seventh partition wall 170 g.
 給気ファン室168は、給気側通路166と連通し、排気ファン室169は、排気側通路167と連通している。給気ファン室168には、給気ファン134が配置されている。排気ファン室169には、排気ファン133が配置されている。給気ファン室168を形成する第4側板158dには給気吹出口144が形成され、排気ファン室169を形成する第3側板158cには排気吹出口142が形成されている。 The air supply fan chamber 168 communicates with the air supply side passage 166, and the exhaust fan chamber 169 communicates with the exhaust side passage 167. An air supply fan 134 is arranged in the air supply fan room 168. An exhaust fan 133 is arranged in the exhaust fan chamber 169. An air supply outlet 144 is formed on the fourth side plate 158d forming the air supply fan chamber 168, and an exhaust outlet 142 is formed on the third side plate 158c forming the exhaust fan chamber 169.
 ケーシング158は、「給気風路」と「排気風路」とを有する。
 給気風路は、外気取入口143から外気側通路165、第1又は第2調湿室162,163、給気側通路166、及び給気ファン室168を通って給気吹出口144に到るまでの空気の流路である。給気風路には、第1調湿室162を通るものと、第2調湿室163を通るものとの2系統がある。給気ファン134が作動すると、各給気風路において空気流が生成される。
The casing 158 has an "air supply air passage" and an "exhaust air passage".
The air supply air passage reaches the air supply outlet 144 from the outside air intake port 143 through the outside air side passage 165, the first or second humidity control chamber 162, 163, the air supply side passage 166, and the air supply fan chamber 168. Is the air flow path to. There are two systems of air supply air passages, one passing through the first humidity control chamber 162 and the other passing through the second humidity control chamber 163. When the air supply fan 134 is activated, an air flow is generated in each air supply air passage.
 排気風路は、還気取入口141から還気側通路164、第1又は第2調湿室162,163、排気側通路167、及び排気ファン室169を通って排気吹出口142に到るまでの空気の流路である。排気風路には、第1調湿室162を通るものと、第2調湿室163を通るものとの2系統がある。排気ファン133が作動すると、各排気風路において空気流が生成される。 The exhaust air passage reaches the exhaust outlet 142 from the return air intake 141 through the return air passage 164, the first or second humidity control chamber 162, 163, the exhaust side passage 167, and the exhaust fan chamber 169. Air flow path. There are two systems of exhaust air passages, one passing through the first humidity control chamber 162 and the other passing through the second humidity control chamber 163. When the exhaust fan 133 is activated, an air flow is generated in each exhaust air passage.
 給気風路は、後述する給気用の開閉機構183によって形成される。2系統の給気風路は、給気用の開閉機構183によって交互に切り替えて開閉され、又は、同時に開閉される。
 排気風路は、後述する排気用の開閉機構184によって形成される。2系統の排気風路は、排気用の開閉機構184によって交互に切り替えて開閉され、又は、同時に開閉される。
The air supply air passage is formed by an opening / closing mechanism 183 for air supply, which will be described later. The two air supply air passages are alternately switched and opened and closed by the air supply opening and closing mechanism 183, or are opened and closed at the same time.
The exhaust air passage is formed by an opening / closing mechanism 184 for exhaust, which will be described later. The two exhaust air passages are alternately switched and opened and closed by the exhaust opening and closing mechanism 184, or are opened and closed at the same time.
 なお、2系統の風路が「交互に切り替えて開閉される」とは、一方の風路が開くと他方の風路が閉じる動作が交互に行われることをいう。2系統の風路が「同時に開閉される」とは、一方の風路と他方の風路とが同時に開くか又は同時に閉じることをいう。これらの動作を実現するため、給気用開閉機構183及び排気用開閉機構184がコントローラ(制御部)136によって制御される。 Note that "opening and closing the two air passages by switching alternately" means that when one air passage opens, the other air passage closes alternately. "Simultaneous opening and closing" of two systems means that one air passage and the other air passage open or close at the same time. In order to realize these operations, the air supply opening / closing mechanism 183 and the exhaust opening / closing mechanism 184 are controlled by the controller (control unit) 136.
  (開閉機構の構成)
 以下、開閉機構135について詳細に説明する。
 開閉機構135は、給気用開閉機構183と、排気用開閉機構184とからなる。開閉機構135は、ケーシング158の第1区画壁170a及び第2区画壁170bに設けられた複数のダンパ171~178を有している。
(Structure of opening / closing mechanism)
Hereinafter, the opening / closing mechanism 135 will be described in detail.
The opening / closing mechanism 135 includes an air supply opening / closing mechanism 183 and an exhaust opening / closing mechanism 184. The opening / closing mechanism 135 has a plurality of dampers 171 to 178 provided on the first partition wall 170a and the second partition wall 170b of the casing 158.
 第1区画壁170aには、4つの開閉式のダンパ171~174が設けられている。各ダンパ171~174は、横長の長方形の板状に形成されている。
 第1区画壁170aのうち還気側通路164に面する上段側には、第4区画壁170dよりも右側に第1還気ダンパ171が設けられ、第4区画壁170dよりも左側に第2還気ダンパ172が設けられる。
Four openable dampers 171 to 174 are provided on the first partition wall 170a. Each damper 171 to 174 is formed in the shape of a horizontally long rectangular plate.
On the upper side of the first section wall 170a facing the return air side passage 164, the first return air damper 171 is provided on the right side of the fourth section wall 170d, and the second is on the left side of the fourth section wall 170d. A return air damper 172 is provided.
 第1還気ダンパ171を開くと、還気側通路164と第1調湿室162とが連通される。第1還気ダンパ171を閉じると、還気側通路164と第1調湿室162が遮断される。
 第2還気ダンパ172を開くと、還気側通路164と第2調湿室163とが連通される。第2還気ダンパ172を閉じると、還気側通路164と第2調湿室163とが遮断される。
When the first return air damper 171 is opened, the return air side passage 164 and the first humidity control chamber 162 are communicated with each other. When the first return air damper 171 is closed, the return air side passage 164 and the first humidity control chamber 162 are shut off.
When the second return air damper 172 is opened, the return air side passage 164 and the second humidity control chamber 163 are communicated with each other. When the second return air damper 172 is closed, the return air side passage 164 and the second humidity control chamber 163 are shut off.
 第1区画壁170aのうち外気側通路165に面する下段側には、第4区画壁170dよりも右側に第1外気ダンパ173が設けられ、第4区画壁170dよりも左側に第2外気ダンパ174が設けられる。
 第1外気ダンパ173を開くと、外気側通路165と第1調湿室162とが連通される。第1外気ダンパ173を閉じると、外気側通路165と第1調湿室162とが遮断される。
 第2外気ダンパ174を開くと、外気側通路165と第2調湿室163とが連通される。第2外気ダンパ174を閉じると、外気側通路165と第2調湿室163とが遮断される。
On the lower side of the first section wall 170a facing the outside air side passage 165, the first outside air damper 173 is provided on the right side of the fourth section wall 170d, and the second outside air damper is provided on the left side of the fourth section wall 170d. 174 is provided.
When the first outside air damper 173 is opened, the outside air side passage 165 and the first humidity control chamber 162 are communicated with each other. When the first outside air damper 173 is closed, the outside air side passage 165 and the first humidity control chamber 162 are shut off.
When the second outside air damper 174 is opened, the outside air side passage 165 and the second humidity control chamber 163 are communicated with each other. When the second outside air damper 174 is closed, the outside air side passage 165 and the second humidity control chamber 163 are shut off.
 第2区画壁170bには、4つの開閉式のダンパ175~178が設けられている。各ダンパ175~178は、横長の長方形の板状に形成されている。
 第2区画壁170bのうち給気側通路166に面する上段側には、第4区画壁170dよりも右側に第1給気ダンパ175が設けられ、第4区画壁170dよりも左側に第2給気ダンパ176が設けられる。
The second partition wall 170b is provided with four retractable dampers 175 to 178. Each damper 175 to 178 is formed in the shape of a horizontally long rectangular plate.
On the upper side of the second partition wall 170b facing the air supply side passage 166, the first air supply damper 175 is provided on the right side of the fourth partition wall 170d, and the second is on the left side of the fourth partition wall 170d. An air supply damper 176 is provided.
 第1給気ダンパ175を開くと、給気側通路166と第1調湿室162とが連通される。第1給気ダンパ175を閉じると、給気側通路166と第1調湿室162とが遮断される。
 第2給気ダンパ176を開くと、給気側通路166と第2調湿室163とが連通される。第2給気ダンパ176を閉じると、給気側通路166と第2調湿室163とが遮断される。
When the first air supply damper 175 is opened, the air supply side passage 166 and the first humidity control chamber 162 are communicated with each other. When the first air supply damper 175 is closed, the air supply side passage 166 and the first humidity control chamber 162 are shut off.
When the second air supply damper 176 is opened, the air supply side passage 166 and the second humidity control chamber 163 are communicated with each other. When the second air supply damper 176 is closed, the air supply side passage 166 and the second humidity control chamber 163 are shut off.
 第2区画壁170bのうち排気側通路167に面する下段側には、第4区画壁170dよりも右側に第1排気ダンパ177が取り付けられ、第4区画壁170dよりも左側に第2排気ダンパ178が取り付けられる。
 第1排気ダンパ177を開くと、排気側通路167と第1調湿室162とが連通される。第1排気ダンパ177を閉じると、排気側通路167と第1調湿室162とが遮断される。
 第2排気ダンパ178を開くと、排気側通路167と第2調湿室163とが連通される。第2排気ダンパ178を閉じると、排気側通路167と第2調湿室163とが遮断される。
On the lower side of the second partition wall 170b facing the exhaust side passage 167, the first exhaust damper 177 is attached to the right side of the fourth partition wall 170d, and the second exhaust damper 177 is attached to the left side of the fourth partition wall 170d. 178 is attached.
When the first exhaust damper 177 is opened, the exhaust side passage 167 and the first humidity control chamber 162 are communicated with each other. When the first exhaust damper 177 is closed, the exhaust side passage 167 and the first humidity control chamber 162 are shut off.
When the second exhaust damper 178 is opened, the exhaust side passage 167 and the second humidity control chamber 163 are communicated with each other. When the second exhaust damper 178 is closed, the exhaust side passage 167 and the second humidity control chamber 163 are shut off.
 図7は、2系統の給気風路を流れる空気流、及び2系統の排気風路を流れる空気流を、簡略的に示す説明図である。
 第1及び第2外気ダンパ173,174、並びに、第1及び第2給気ダンパ175,176は、給気用開閉機構183を構成している。第1及び第2還気ダンパ171,172、並びに、第1及び第2排気ダンパ177,178は、排気用開閉機構184を構成している。
FIG. 7 is an explanatory diagram briefly showing the air flow flowing through the two supply air passages and the air flow flowing through the two exhaust air passages.
The first and second outside air dampers 173 and 174, and the first and second air supply dampers 175 and 176 constitute an air supply opening / closing mechanism 183. The first and second return air dampers 171 and 172, and the first and second exhaust dampers 177 and 178 constitute an exhaust opening / closing mechanism 184.
 2系統の給気風路は、それぞれ次のダンパの動作により開かれる。
  第1系統の給気風路:第1外気ダンパ173及び第1給気ダンパ175の開動作
  第2系統の給気風路:第2外気ダンパ174及び第2給気ダンパ176の開動作
 図7には、第1系統の給気風路を流れる空気流を符号Fa1で示し、第2系統の給気風路を流れる空気流をFa2で示す。
The two air supply air passages are opened by the operation of the next damper.
First system air supply air passage: Opening operation of the first outside air damper 173 and first air supply damper 175 Second system air supply air passage: Opening operation of the second outside air damper 174 and the second air supply damper 176 FIG. , The air flow flowing through the air supply air passage of the first system is indicated by the reference numeral Fa1, and the air flow flowing through the air supply air passage of the second system is indicated by Fa2.
 2系統の排気風路は、それぞれ次のダンパの動作により開かれる。
  第1系統の排気風路:第1還気ダンパ171及び第1排気ダンパ177の開動作
  第2系統の排気風路:第2還気ダンパ172及び第2排気ダンパ178の開動作
 図3には、第1系統の排気風路を流れる空気流を符号Fb1で示し、第2系統の排気風路を流れる空気流をFb2で示す。
The two exhaust air passages are opened by the operation of the following dampers, respectively.
Exhaust air passage of the first system: Opening operation of the first return air damper 171 and the first exhaust damper 177 Exhaust air passage of the second system: Opening operation of the second return air damper 172 and the second exhaust damper 178 , The air flow flowing through the exhaust air passage of the first system is indicated by reference numeral Fb1, and the air flow flowing through the exhaust air passage of the second system is indicated by Fb2.
  (冷媒回路の構成)
 図8は、換気装置の冷媒回路を示す配管系統図である。
 冷媒回路161は、第1熱交換器186、四路切換弁187(切換機構)、圧縮機188、第2熱交換器189、及び電動膨張弁190(膨張機構)を冷媒配管191によって接続したものである。冷媒回路161は、冷媒を循環させることによって蒸気圧縮式の冷凍サイクルを実行するように構成されている。圧縮機188、四路切換弁187等は給気ファン室168に配置されている。
(Composition of refrigerant circuit)
FIG. 8 is a piping system diagram showing a refrigerant circuit of the ventilation device.
The refrigerant circuit 161 is formed by connecting a first heat exchanger 186, a four-way switching valve 187 (switching mechanism), a compressor 188, a second heat exchanger 189, and an electric expansion valve 190 (expansion mechanism) by a refrigerant pipe 191. Is. The refrigerant circuit 161 is configured to execute a vapor compression refrigeration cycle by circulating the refrigerant. The compressor 188, the four-way switching valve 187, and the like are arranged in the air supply fan chamber 168.
 圧縮機188は、その吐出側が四路切換弁187の第1のポートに接続され、その吸入側が四路切換弁187の第2のポートに接続されている。第1熱交換器186の一端は、四路切換弁187の第3のポートに接続されている。第1熱交換器186の他端は、電動膨張弁190に接続されている。第2熱交換器189の一端は、四路切換弁187の第4のポートに接続されている。第2熱交換器189の他端は、電動膨張弁190に接続されている。図6に示すように、第1熱交換器186は、第1調湿室162に配置され、第2熱交換器189は、第2調湿室163に配置されている。 The discharge side of the compressor 188 is connected to the first port of the four-way switching valve 187, and the suction side thereof is connected to the second port of the four-way switching valve 187. One end of the first heat exchanger 186 is connected to the third port of the four-way switching valve 187. The other end of the first heat exchanger 186 is connected to the electric expansion valve 190. One end of the second heat exchanger 189 is connected to the fourth port of the four-way switching valve 187. The other end of the second heat exchanger 189 is connected to the electric expansion valve 190. As shown in FIG. 6, the first heat exchanger 186 is arranged in the first humidity control chamber 162, and the second heat exchanger 189 is arranged in the second humidity control chamber 163.
 圧縮機188は、いわゆる全密閉型であり、インバータによって回転数が制御される容量可変型の圧縮機とされている。
 第1熱交換器186及び第2熱交換器189は、いずれも、伝熱管と多数のフィンとを備えた、いわゆるクロスフィン型のフィン・アンド・チューブ式熱交換器により構成されている。第1熱交換器186及び第2熱交換器189の外表面には、その概ね全面に亘ってゼオライト等の吸着剤が担持されている。第1熱交換器186及び第2熱交換器189は、マイクロチャネル型の熱交換器であってもよい。
The compressor 188 is a so-called fully enclosed compressor, and is a variable capacity compressor whose rotation speed is controlled by an inverter.
Both the first heat exchanger 186 and the second heat exchanger 189 are composed of a so-called cross-fin type fin-and-tube heat exchanger provided with a heat transfer tube and a large number of fins. Adsorbents such as zeolite are supported on the outer surfaces of the first heat exchanger 186 and the second heat exchanger 189 over almost the entire surface thereof. The first heat exchanger 186 and the second heat exchanger 189 may be microchannel type heat exchangers.
 四路切換弁187は、第1のポートと第3のポートとが連通しかつ第2のポートと第4のポートが連通する状態(図8(a)参照)と、第1のポートと第4のポートが連通しかつ第2のポートと第3のポートが連通する状態(図8(b)参照)とに切り換え可能に構成されている。冷媒回路161は、四路切換弁187のポートの連通状態を切り換えることにより、冷媒循環方向を反転させる。冷媒循環方向の反転により、第1熱交換器186が凝縮器として機能し、第2熱交換器189が蒸発器として機能する第1の冷凍サイクル動作と、第1熱交換器186が蒸発器として機能し、第2熱交換器189が凝縮器として機能する第2の冷凍サイクル動作とが行われる。 The four-way switching valve 187 has a state in which the first port and the third port communicate with each other and the second port and the fourth port communicate with each other (see FIG. 8A), and the first port and the first port. It is configured to be switchable to a state in which the port 4 communicates and the second port and the third port communicate (see FIG. 8B). The refrigerant circuit 161 reverses the refrigerant circulation direction by switching the communication state of the port of the four-way switching valve 187. Due to the reversal of the refrigerant circulation direction, the first heat exchanger 186 functions as a condenser, the second heat exchanger 189 functions as an evaporator, and the first refrigeration cycle operation and the first heat exchanger 186 act as an evaporator. A second refrigeration cycle operation is performed in which the second heat exchanger 189 functions as a condenser.
  (コントローラの構成)
 図5に示すように、換気装置112のコントローラ(制御部)136(以下、換気コントローラともいう)は、排気ファン133、給気ファン134、冷媒回路161(圧縮機188、四路切換弁187、膨張弁190等;図8参照)、及び開閉機構135の動作を制御する。換気コントローラ136は、CPU等のプロセッサ、RAM、ROM等のメモリを備えたマイクロコンピュータ等からなる。換気コントローラ136は、メモリにインストールされたプログラムをプロセッサが実行することによって、所定の機能を発揮する。換気コントローラ136は、空調機111の空調コントローラ124に通信可能に接続されている。
(Controller configuration)
As shown in FIG. 5, the controller (control unit) 136 (hereinafter, also referred to as a ventilation controller) of the ventilation device 112 includes an exhaust fan 133, an air supply fan 134, a refrigerant circuit 161 (compressor 188, a four-way switching valve 187, and the like. It controls the operation of the expansion valve 190 and the like; see FIG. 8) and the opening / closing mechanism 135. The ventilation controller 136 includes a processor such as a CPU, a microcomputer provided with a memory such as RAM and ROM, and the like. The ventilation controller 136 exerts a predetermined function by executing a program installed in the memory by the processor. The ventilation controller 136 is communicably connected to the air conditioning controller 124 of the air conditioner 111.
  (換気運転の詳細)
 換気コントローラ136は、排気ファン133、給気ファン134、冷媒回路161、及び開閉機構135の動作を制御することによって、通常の室内空間S1の換気のために行う第1換気運転と、冷媒漏洩に対応した第2換気運転とを切り替えて実行する。
(Details of ventilation operation)
By controlling the operation of the exhaust fan 133, the air supply fan 134, the refrigerant circuit 161 and the opening / closing mechanism 135, the ventilation controller 136 performs the first ventilation operation for ventilation of the normal indoor space S1 and the refrigerant leakage. It is executed by switching between the corresponding second ventilation operation.
  <第1換気運転>
 第1換気運転には、室内の除湿を行いながら換気を行う除湿換気運転と、室内の加湿を行いながら換気を行う加湿換気運転とが含まれる。
 第1換気運転では、給気ファン134と排気ファン133とが駆動される。これにより、室外空間S2からの外気OAが、外気取入口143を通過してケーシング158内に取り入れられ、室内空間S1からの還気RAが還気取入口141を通過してケーシング158内に取り入れられる。
<1st ventilation operation>
The first ventilation operation includes a dehumidification ventilation operation in which ventilation is performed while dehumidifying the room and a humidification ventilation operation in which ventilation is performed while humidifying the room.
In the first ventilation operation, the air supply fan 134 and the exhaust fan 133 are driven. As a result, the outside air OA from the outdoor space S2 passes through the outside air intake 143 and is taken into the casing 158, and the return air RA from the indoor space S1 passes through the return air intake 141 and is taken into the casing 158. Be done.
 第1及び第2熱交換器186,189は、凝縮器と蒸発器とに交互に切り換えられる。第1換気運転では、ケーシング158内に取り込まれた外気OAが第1調湿室162の第1熱交換器186および第2調湿室163の第2熱交換器189のうち一方の熱交換器を通過して室内に供給され、ケーシング158内に取り込まれた還気RAが第1熱交換器186および第2熱交換器189のうち他方の熱交換器を通過して室外に排出されるように、ケーシング158内における空気の流れが切り換えられる。具体的には、次の第1動作と第2動作とが3分間ずつ交互に繰り返し行われる。 The first and second heat exchangers 186 and 189 are alternately switched between a condenser and an evaporator. In the first ventilation operation, the outside air OA taken into the casing 158 is one of the first heat exchanger 186 of the first humidity control chamber 162 and the second heat exchanger 189 of the second humidity control chamber 163. The return air RA, which is supplied into the room through the above and is taken into the casing 158, passes through the other heat exchanger of the first heat exchanger 186 and the second heat exchanger 189 and is discharged to the outside of the room. The air flow in the casing 158 is switched. Specifically, the next first operation and the second operation are alternately repeated for 3 minutes each.
  (第1換気運転の第1動作)
 第1換気運転の第1動作では、ケーシング158内における給気風路及び排気風路が図9に示すように設定される。具体的には、第2還気ダンパ172と第1外気ダンパ173と第1給気ダンパ175と第2排気ダンパ178が開状態となり、第1還気ダンパ171と第2外気ダンパ174と第2給気ダンパ176と第1排気ダンパ177が閉状態となる。なお、図9において、閉状態のダンパにはハッチングが付されている。
(First operation of the first ventilation operation)
In the first operation of the first ventilation operation, the air supply air passage and the exhaust air passage in the casing 158 are set as shown in FIG. Specifically, the second return air damper 172, the first outside air damper 173, the first supply air damper 175, and the second exhaust damper 178 are opened, and the first return air damper 171 and the second outside air damper 174 and the second The air supply damper 176 and the first exhaust damper 177 are closed. In FIG. 9, the damper in the closed state is hatched.
 これにより、ケーシング158内に、第1系統の給気風路と第2系統の排気風路とが形成され、ケーシング158内に取り込まれた外気OAが第1熱交換器186を通過して室内に供給され、ケーシング158内に取り込まれた還気RAが第2熱交換器189を通過して室外に排出される。 As a result, the air supply air passage of the first system and the exhaust air passage of the second system are formed in the casing 158, and the outside air OA taken into the casing 158 passes through the first heat exchanger 186 and enters the room. The return air RA supplied and taken into the casing 158 passes through the second heat exchanger 189 and is discharged to the outside of the room.
 この第1動作の間、除湿換気運転の場合は、図8(b)に示すように、冷媒回路161において第2冷凍サイクル動作が行われる。加湿換気運転の場合は、図8(a)に示すように、第1冷凍サイクル動作が行われる。 During this first operation, in the case of the dehumidifying / ventilation operation, the second refrigeration cycle operation is performed in the refrigerant circuit 161 as shown in FIG. 8 (b). In the case of humidification ventilation operation, as shown in FIG. 8A, the first refrigeration cycle operation is performed.
 外気取入口143を通過して外気側通路165に取り込まれた外気OAは、第1外気ダンパ173を通過して第1調湿室162に流入し、第1調湿室162において第1熱交換器186を通過して調湿(除湿又は加湿)される。具体的には、除湿換気運転では、外気OAが蒸発器となっている第1熱交換器186を通過して除湿および冷却され、加湿換気運転では、外気OAが凝縮器となっている第1熱交換器186を通過して加湿および加熱される。第1熱交換器186において調湿された空気は、第1給気ダンパ175と給気側通路166と給気ファン室168と給気吹出口144とを順に通過して室内空間S1に供給される。 The outside air OA that has passed through the outside air intake 143 and is taken into the outside air side passage 165 passes through the first outside air damper 173 and flows into the first humidity control chamber 162, and exchanges the first heat in the first humidity control chamber 162. Humidification (dehumidification or humidification) is performed through the vessel 186. Specifically, in the dehumidifying ventilation operation, the outside air OA passes through the first heat exchanger 186 which is an evaporator to dehumidify and cool, and in the humidifying ventilation operation, the outside air OA is a condenser. It is humidified and heated through the heat exchanger 186. The air conditioned in the first heat exchanger 186 passes through the first air supply damper 175, the air supply side passage 166, the air supply fan chamber 168, and the air supply outlet 144 in this order, and is supplied to the indoor space S1. To.
 還気取入口141を通過して還気側通路164に取り込まれた還気RAは、第2還気ダンパ172を通過して第2調湿室163に流入し、第2調湿室163において第2熱交換器189を通過して調湿(加湿又は除湿)される。具体的には、除湿換気運転では、還気RAが凝縮器となっている第2熱交換器189を通過して加湿および加熱され、加湿換気運転では、還気RAが蒸発器となっている第2熱交換器189を通過して除湿および冷却される。第2熱交換器189において調湿された空気は、第2排気ダンパ178と排気側通路167と排気ファン室169と排気吹出口142とを順に通過して室外に排出される。 The return air RA that has passed through the return air intake 141 and is taken into the return air side passage 164 passes through the second return air damper 172 and flows into the second humidity control chamber 163, and in the second humidity control chamber 163. Humidification (humidification or dehumidification) is performed through the second heat exchanger 189. Specifically, in the dehumidifying ventilation operation, the return air RA passes through the second heat exchanger 189, which is a condenser, to be humidified and heated, and in the humidification ventilation operation, the return air RA is an evaporator. It is dehumidified and cooled through the second heat exchanger 189. The air regulated by the second heat exchanger 189 passes through the second exhaust damper 178, the exhaust side passage 167, the exhaust fan chamber 169, and the exhaust outlet 142 in this order, and is discharged to the outside of the room.
  (第1換気運転の第2動作)
 第1換気運転の第2動作では、ケーシング158内における給気風路及び排気風路が図10に示すように設定される。具体的には、第1還気ダンパ171と第2外気ダンパ174と第2給気ダンパ176と第1排気ダンパ177が開状態となり、第2還気ダンパ172と第1外気ダンパ173と第1給気ダンパ175と第2排気ダンパ178が閉状態となる。これにより、ケーシング158内に、第2系統の給気風路と第1系統の排気風路とが形成され、ケーシング158内に取り込まれた外気OAが第2熱交換器189を通過して室内に供給され、ケーシング158内に取り込まれた還気RAが第1熱交換器186を通過して室外に排出される。
(Second operation of the first ventilation operation)
In the second operation of the first ventilation operation, the air supply air passage and the exhaust air passage in the casing 158 are set as shown in FIG. Specifically, the first return air damper 171, the second outside air damper 174, the second supply air damper 176, and the first exhaust damper 177 are in the open state, the second return air damper 172, the first outside air damper 173, and the first. The air supply damper 175 and the second exhaust damper 178 are closed. As a result, the air supply air passage of the second system and the exhaust air passage of the first system are formed in the casing 158, and the outside air OA taken into the casing 158 passes through the second heat exchanger 189 and enters the room. The return air RA supplied and taken into the casing 158 passes through the first heat exchanger 186 and is discharged to the outside of the room.
 この第2動作の間、除湿換気運転の場合は、図8(a)に示すように、冷媒回路161において第1冷凍サイクル動作が行われる。加湿換気運転の場合は、図8(b)に示すように、第2冷凍サイクル動作が行われる。 During this second operation, in the case of the dehumidifying / ventilation operation, the first refrigeration cycle operation is performed in the refrigerant circuit 161 as shown in FIG. 8 (a). In the case of the humidification ventilation operation, the second refrigeration cycle operation is performed as shown in FIG. 8 (b).
 外気取入口143を通過して外気側通路165に取り込まれた外気OAは、第2外気ダンパ174を通過して第2調湿室163に流入し、第2調湿室163において第2熱交換器189を通過して調湿(除湿又は加湿)される。具体的には、除湿換気運転では、外気OAが蒸発器となっている第2熱交換器189を通過して除湿および冷却され、加湿換気運転では、外気OAが凝縮器となっている第2熱交換器189を通過して加湿および加熱される。第2熱交換器189において調湿された空気は、第2給気ダンパ176と給気側通路166と給気ファン室168と給気吹出口144とを順に通過して室内空間S1に供給される。 The outside air OA that has passed through the outside air intake 143 and is taken into the outside air side passage 165 passes through the second outside air damper 174 and flows into the second humidity control chamber 163, and exchanges the second heat in the second humidity control chamber 163. Humidification (dehumidification or humidification) is performed through the vessel 189. Specifically, in the dehumidifying ventilation operation, the outside air OA passes through the second heat exchanger 189, which is an evaporator, to be dehumidified and cooled, and in the humidifying ventilation operation, the outside air OA is a condenser. It is humidified and heated through the heat exchanger 189. The air conditioned in the second heat exchanger 189 passes through the second air supply damper 176, the air supply side passage 166, the air supply fan chamber 168, and the air supply outlet 144 in this order, and is supplied to the indoor space S1. To.
 還気取入口141を通過して還気側通路164に取り込まれた還気RAは、第1還気ダンパ171を通過して第1調湿室162に流入し、第1調湿室162において第1熱交換器186を通過して調湿(加湿又は除湿)される。具体的には、除湿換気運転では、還気RAが凝縮器となっている第1熱交換器186を通過して加湿および加熱され、加湿換気運転では、還気RAが蒸発器となっている第1熱交換器186を通過して除湿および冷却される。第1熱交換器186において調湿された空気は、第1排気ダンパ177と排気側通路167と排気ファン室169と排気吹出口142とを順に通過して室外に排出される。 The return air RA that has passed through the return air intake 141 and is taken into the return air side passage 164 passes through the first return air damper 171 and flows into the first humidity control chamber 162, and in the first humidity control chamber 162. Humidification (humidification or dehumidification) is performed through the first heat exchanger 186. Specifically, in the dehumidifying ventilation operation, the return air RA passes through the first heat exchanger 186, which is a condenser, to be humidified and heated, and in the humidification ventilation operation, the return air RA is an evaporator. It is dehumidified and cooled through the first heat exchanger 186. The air conditioned in the first heat exchanger 186 passes through the first exhaust damper 177, the exhaust side passage 167, the exhaust fan chamber 169, and the exhaust outlet 142 in this order, and is discharged to the outside of the room.
  <第2換気運転>
 冷媒漏洩に対応した第2換気運転は、空調機111における冷媒が漏洩し、漏洩した冷媒を冷媒センサ126が検出したときに行われる運転である。図5に示すように、室内機122に設けられた冷媒センサ126が、漏洩した冷媒を検出すると、その検出信号は空調コントローラ124に入力される。空調コントローラ124は、冷媒の漏洩が発生したことを示す情報(冷媒漏洩情報)を換気コントローラ136に送信し、この冷媒漏洩情報に基づいて換気コントローラ136が、排気ファン133、給気ファン134、及び開閉機構135の動作を制御する。
<Second ventilation operation>
The second ventilation operation corresponding to the refrigerant leakage is an operation performed when the refrigerant in the air conditioner 111 leaks and the refrigerant sensor 126 detects the leaked refrigerant. As shown in FIG. 5, when the refrigerant sensor 126 provided in the indoor unit 122 detects the leaked refrigerant, the detection signal is input to the air conditioning controller 124. The air conditioning controller 124 transmits information indicating that a refrigerant leak has occurred (refrigerant leak information) to the ventilation controller 136, and the ventilation controller 136 sends the exhaust fan 133, the air supply fan 134, and the air supply fan 134 based on the refrigerant leak information. Controls the operation of the opening / closing mechanism 135.
 図11は、第2換気運転である給気単独運転について説明するための概略図である。図12は、第2換気運転である排気単独運転について説明するための概略図である。
 第2換気運転は、「給気単独運転」と、「排気単独運転」とからなる。「給気単独運転」は、室外空間S2からの外気OAをケーシング158に取り入れ、給気SAとして室内空間S1に供給する動作のみを行う運転である。「排気単独運転」は、室内空間S1からの還気RAをケーシング158に取り入れ、排気EAとして室外空間S2に排出する動作のみを行う運転である。
FIG. 11 is a schematic view for explaining the supply air independent operation which is the second ventilation operation. FIG. 12 is a schematic view for explaining the exhaust independent operation which is the second ventilation operation.
The second ventilation operation includes "supply air independent operation" and "exhaust independent operation". The “air supply independent operation” is an operation in which the outside air OA from the outdoor space S2 is taken into the casing 158 and only supplied to the indoor space S1 as the air supply SA. The "exhaust independent operation" is an operation in which the return air RA from the indoor space S1 is taken into the casing 158 and only discharged to the outdoor space S2 as the exhaust EA.
 給気単独運転では、給気用開閉機構183によって2系統の給気風路の双方が開いた状態とされ、排気用開閉機構184によって2系統の排気風路の双方が閉じた状態とされる。具体的には、第1及び第2外気ダンパ173,174、第1及び第2給気ダンパ175,176が開き、第1及び第2還気ダンパ171,172、第1及び第2排気ダンパ177,178が閉じる。給気単独運転では、給気ファン134が駆動され、排気ファン133が停止される。このように2系統の給気風路の双方が開いた状態となることによって給気風路が拡大され、第1換気運転よりも換気量を増大させることができる。 In the air supply independent operation, both of the two air supply air passages are opened by the air supply opening / closing mechanism 183, and both of the two exhaust air passages are closed by the exhaust opening / closing mechanism 184. Specifically, the first and second outside air dampers 173, 174, the first and second air supply dampers 175, 176 are opened, and the first and second return air dampers 171 and 172, and the first and second exhaust dampers 177 are opened. , 178 closes. In the air supply independent operation, the air supply fan 134 is driven and the exhaust fan 133 is stopped. When both of the two air supply air passages are opened in this way, the air supply air passage is expanded, and the ventilation volume can be increased as compared with the first ventilation operation.
 排気単独運転では、排気用開閉機構184によって2系統の排気風路の双方が開いた状態とされ、給気用開閉機構183によって2系統の給気風路の双方が閉じた状態とされる。具体的には、第1及び第2還気ダンパ171,172、第1及び第2排気ダンパ177,178が開き、第1及び第2外気ダンパ173,174、第1及び第2給気ダンパ175,176が閉じる。
 排気単独運転では、排気ファン133が駆動され、給気ファン134が停止される。このように2系統の排気風路の双方が開いた状態となることによって排気風路が拡大され、第1の運転よりも換気量を増大することができる。
In the exhaust independent operation, both of the two exhaust air passages are opened by the exhaust opening / closing mechanism 184, and both of the two air supply air passages are closed by the air supply opening / closing mechanism 183. Specifically, the first and second return air dampers 171 and 172, the first and second exhaust dampers 177 and 178 are opened, and the first and second outside air dampers 173 and 174, and the first and second air supply dampers 175 are opened. , 176 closes.
In the exhaust independent operation, the exhaust fan 133 is driven and the air supply fan 134 is stopped. When both of the two exhaust air passages are opened in this way, the exhaust air passage is expanded, and the ventilation volume can be increased as compared with the first operation.
 以上の給気単独運転又は排気単独運転を行うことによって、室内空間S1から短時間に冷媒を排出することが可能となる。また、給気単独運転では、給気と排気とのバランスが「給気リッチ」となり、部屋Rを正圧にすることで漏れ空気量を増やし、漏洩冷媒を早く排出して部屋内の漏洩冷媒の濃度を低減させることができる。排気単独運転では、給気と排気とのバランスが「排気リッチ」となり、部屋Rを負圧にすることで漏洩冷媒が他の部屋又はスペースに拡散するのを抑制することができる。 By performing the above-mentioned supply air independent operation or exhaust independent operation, it is possible to discharge the refrigerant from the indoor space S1 in a short time. In addition, in the air supply independent operation, the balance between the supply air and the exhaust becomes "air supply rich", and the amount of leaked air is increased by making the room R positive pressure, and the leaked refrigerant is discharged quickly to leak the refrigerant in the room. The concentration of can be reduced. In the exhaust independent operation, the balance between the supply air and the exhaust becomes "exhaust rich", and by making the room R a negative pressure, it is possible to suppress the leakage refrigerant from diffusing into another room or space.
 換気コントローラ136は、以上のような給気単独運転と排気単独運転とを、所定の時間ごと(例えば3分毎)に交互に切り換えて行うように、給気用開閉機構183、排気用開閉機構184、給気ファン134、及び排気ファン133を制御する。これにより、給気SAによる換気と排気EAによる換気とを効率よく行うことができる。さらに、換気コントローラ136は、給気運転及び排気運転を行うときに冷媒回路161の圧縮機188の動作を停止し、空気と冷媒との間の熱交換及び調湿を行うことなく換気のみを行う。 The ventilation controller 136 has an air supply opening / closing mechanism 183 and an exhaust opening / closing mechanism so as to alternately switch between the supply air independent operation and the exhaust independent operation as described above at predetermined time intervals (for example, every 3 minutes). It controls 184, the air supply fan 134, and the exhaust fan 133. As a result, ventilation by the air supply SA and ventilation by the exhaust EA can be efficiently performed. Further, the ventilation controller 136 stops the operation of the compressor 188 of the refrigerant circuit 161 during the air supply operation and the exhaust operation, and performs only ventilation without performing heat exchange and humidity control between the air and the refrigerant. ..
 <第3の実施形態の作用効果>
(1)第3の実施形態における空調システム110は、冷媒との熱交換により調和空気を生成し室内空間(空調対象空間)S1に供給する空調機111と、冷媒の漏れを検出する冷媒センサ126と、室内空間S1の換気を行う換気装置112と、換気装置112を制御する換気コントローラ136と、を備える。換気装置112は、空気に含まれる水分を吸着する吸着剤が担持された2つの第1及び第2熱交換器186,189を有しかつ2つの熱交換器186,189を交互に蒸発器又は凝縮器として機能させる冷媒回路161と、室内空間S1と室外空間S2とを各熱交換器186,189を経由して連通させる2系統の給気風路及び2系統の排気風路と、各給気風路を介して室外空間S2の空気を室内空間S1に供給する給気ファン134と、各排気風路を介して室内空間S1の空気を室外空間S2へ排出する排気ファン133と、2系統の給気風路を開閉する給気用開閉機構183と、2系統の排気風路を開閉する排気用開閉機構184と、を備える。換気コントローラ136は、冷媒センサ126が冷媒の漏洩を検出したとき、給気ファン134及び排気ファン133のうち一方のファンを作動して他方のファンを停止し、給気風路及び排気風路のうち一方のファンに対応する一方の風路を2系統とも開きかつ他方の風路を2系統とも閉じるように給気用開閉機構183及び排気用開閉機構184を制御する。
<Action and effect of the third embodiment>
(1) The air conditioning system 110 according to the third embodiment includes an air conditioner 111 that generates harmonized air by exchanging heat with a refrigerant and supplies it to the indoor space (air conditioning target space) S1, and a refrigerant sensor 126 that detects leakage of the refrigerant. A ventilation device 112 that ventilates the indoor space S1 and a ventilation controller 136 that controls the ventilation device 112 are provided. The ventilator 112 has two first and second heat exchangers 186,189 carrying an adsorbent that adsorbs the moisture contained in the air, and alternately evaporates the two heat exchangers 186,189. A refrigerant circuit 161 that functions as a condenser, two air supply air passages and two exhaust air passages that communicate the indoor space S1 and the outdoor space S2 via heat exchangers 186 and 189, and each air supply air. Two systems of supply: an air supply fan 134 that supplies the air of the outdoor space S2 to the indoor space S1 via a road, and an exhaust fan 133 that discharges the air of the indoor space S1 to the outdoor space S2 via each exhaust air passage. It includes an air supply opening / closing mechanism 183 that opens / closes the air passage, and an exhaust opening / closing mechanism 184 that opens and closes the two exhaust air passages. When the refrigerant sensor 126 detects the leakage of the refrigerant, the ventilation controller 136 operates one of the supply air fan 134 and the exhaust fan 133 to stop the other fan, and of the supply air passage and the exhaust air passage. The air supply opening / closing mechanism 183 and the exhaust opening / closing mechanism 184 are controlled so as to open both of the two air passages corresponding to one fan and close both of the other air passages.
 以上の構成により、空調機111から冷媒が漏れたときに、給気ファン134及び排気ファン133の一方を作動し、給気風路及び排気風路の一方を2系統とも開くことで、給気又は排気の風路を拡大し、換気量を増やすことができる。そのため、短時間で室外空間S2へ冷媒を排出し、室内空間S1の冷媒濃度を低下させることができる。 With the above configuration, when the refrigerant leaks from the air conditioner 111, one of the air supply fan 134 and the exhaust fan 133 is operated, and one of the supply air passage and the exhaust air passage is opened to open both the supply air or the exhaust air passage. The exhaust air passage can be expanded and the ventilation volume can be increased. Therefore, the refrigerant can be discharged to the outdoor space S2 in a short time, and the refrigerant concentration in the indoor space S1 can be reduced.
(2)第3の実施形態では、給気ファン134及び排気ファン133のうち一方のファンのみが駆動される。冷媒回路161における圧縮機188も停止される。そのため、換気装置112の消費電力を低減することができる。 (2) In the third embodiment, only one of the air supply fan 134 and the exhaust fan 133 is driven. The compressor 188 in the refrigerant circuit 161 is also stopped. Therefore, the power consumption of the ventilation device 112 can be reduced.
(3)第3の実施形態では、冷媒センサ126が冷媒の漏洩を検出したとき、換気コントローラ136が、給気ファン134及び排気ファン133を交互に作動し、給気風路及び排気風路を交互に開閉する。そのため、給気風路及び排気風路を交互に開閉し、効率よく室内空間S1の換気を行うことができる。 (3) In the third embodiment, when the refrigerant sensor 126 detects the leakage of the refrigerant, the ventilation controller 136 alternately operates the air supply fan 134 and the exhaust fan 133 to alternate the air supply air passage and the exhaust air passage. Opens and closes. Therefore, the air supply air passage and the exhaust air passage can be opened and closed alternately to efficiently ventilate the indoor space S1.
[第4の実施形態]
 図13は、本解除の第4の実施形態に係る空調システムにおいて第1換気運転を行う換気装置を上から見た概略的な断面説明図である。図14は、図13のA-A線における概略的な断面説明図である。図15は、図13のB-B線における概略的な断面説明図である。なお、本明細書において、「第1換気運転」とは、後述するように、冷媒漏洩がない通常の室内空間S1の換気運転のことであり、「第2換気運転」とは、冷媒の漏洩に対応した換気運転のことである。
[Fourth Embodiment]
FIG. 13 is a schematic cross-sectional explanatory view of a ventilation device that performs the first ventilation operation in the air conditioning system according to the fourth embodiment of the present release, as viewed from above. FIG. 14 is a schematic cross-sectional explanatory view taken along the line AA of FIG. FIG. 15 is a schematic cross-sectional explanatory view taken along the line BB of FIG. In this specification, the "first ventilation operation" is a normal ventilation operation of the indoor space S1 without refrigerant leakage, and the "second ventilation operation" is a refrigerant leakage. It is a ventilation operation corresponding to.
 本実施形態の空調システムにおける空調機111及び換気装置112の基本構成は、図5において説明した第3の実施形態と同様である。ただし、本実施形態では、換気装置112の具体的構成が第3の実施形態とは異なっている。 The basic configuration of the air conditioner 111 and the ventilation device 112 in the air conditioning system of this embodiment is the same as that of the third embodiment described with reference to FIG. However, in the present embodiment, the specific configuration of the ventilation device 112 is different from that of the third embodiment.
 本実施形態の換気装置112は、略直方体の箱形状を有するケーシング131を有する。ケーシング131内には、全熱交換器132と、排気ファン133と、給気ファン134と、開閉機構135と、コントローラ(制御部)136とが収容されている。ケーシング131には、還気取入口141、排気吹出口142、外気取入口143、及び、給気吹出口144が設けられている。 The ventilation device 112 of the present embodiment has a casing 131 having a substantially rectangular parallelepiped box shape. A total heat exchanger 132, an exhaust fan 133, an air supply fan 134, an opening / closing mechanism 135, and a controller (control unit) 136 are housed in the casing 131. The casing 131 is provided with a return air intake 141, an exhaust air outlet 142, an outside air intake 143, and an air supply air outlet 144.
 還気取入口141は、室内空間S1からの空気(還気)RAをケーシング131内に取り入れるために用いられる。排気吹出口142は、ケーシング131内に取り入れられた還気RAを、排気EAとして室外空間S2に排出するために用いられる。外気取入口143は、室外空間S2からの空気(外気)OAをケーシング131内に取り入れるために用いられる。給気吹出口144は、ケーシング131内に取り入れられた外気OAを、給気SAとして室内空間S1に供給するために用いられる。 The return air intake 141 is used to take in the air (return air) RA from the indoor space S1 into the casing 131. The exhaust outlet 142 is used to discharge the return air RA taken into the casing 131 to the outdoor space S2 as an exhaust EA. The outside air intake port 143 is used to take in the air (outside air) OA from the outdoor space S2 into the casing 131. The supply air outlet 144 is used to supply the outside air OA taken into the casing 131 to the indoor space S1 as the supply air SA.
 外気取入口143と排気吹出口142とは、図5において説明したように、それぞれダクト145a,145bを介して室外空間S2に繋がっている。還気取入口141と給気吹出口144とは、ダクト145c,145dを介して室内空間S1に繋がっている。 The outside air intake port 143 and the exhaust air outlet 142 are connected to the outdoor space S2 via ducts 145a and 145b, respectively, as described in FIG. The return air intake 141 and the air supply outlet 144 are connected to the indoor space S1 via ducts 145c and 145d.
 図13に示すように、ケーシング131の内部において、還気取入口141から取り入れられた還気RAは全熱交換器132を通過し、排気EAとして排気吹出口142から室外空間S2へ排気される。以下、この空気の流れを「第1の空気流F1」ともいう。
 外気取入口143から取り入れられた外気OAは全熱交換器132を通過し、給気SAとして給気吹出口144から室内空間S1へ供給される。以下、この空気の流れを「第2の空気流F2」ともいう。
As shown in FIG. 13, inside the casing 131, the return air RA taken in from the return air intake 141 passes through the total heat exchanger 132, and is exhausted as exhaust EA from the exhaust outlet 142 to the outdoor space S2. .. Hereinafter, this air flow is also referred to as "first air flow F1".
The outside air OA taken in from the outside air intake port 143 passes through the total heat exchanger 132 and is supplied as the supply air SA from the supply air outlet 144 to the indoor space S1. Hereinafter, this air flow is also referred to as "second air flow F2".
 図16は、全熱交換器の斜視図である。
 本実施形態における全熱交換器132は、第1の空気流F1と、第2の空気流F2とがほぼ直交するように構成された直交型の全熱交換器である。この全熱交換器132は、図2を参照して説明したものと同様に、仕切板132aと、隔壁板(間隔板)132bとを有している。仕切板132aと隔壁板132bとは適宜の接着剤により交互に積層されている。全熱交換器132は、全体としてほぼ四角柱形状に形成されている。
FIG. 16 is a perspective view of the total heat exchanger.
The total heat exchanger 132 in the present embodiment is an orthogonal total heat exchanger configured so that the first air flow F1 and the second air flow F2 are substantially orthogonal to each other. The total heat exchanger 132 has a partition plate 132a and a partition plate (spacing plate) 132b, as described with reference to FIG. The partition plate 132a and the partition plate 132b are alternately laminated with an appropriate adhesive. The total heat exchanger 132 is formed in a substantially quadrangular column shape as a whole.
 仕切板132aは、伝熱性及び透湿性を有し、平板状に形成されている。仕切板132aは、冷媒を透過する性質をも有している。
 隔壁板132bは、ほぼ三角形状の断面が連続して形成された波板状に形成されている。隔壁板132bは、隣り合う2枚の仕切板132aの間に空気の通路を形成する。隔壁板132bは、仕切板132aと隔壁板132bとの積層方向(図16における上下方向)で1枚ごとに90度角度を変えて積層されている。これにより、1枚の仕切板132aを挟んでその両側に、第1の空気流F1を通すための排気側通路32cと第2の空気流F2を通すための給気側通路32dとが互いに直交して形成される。排気側通路32cを流れる空気と、給気側通路32dを流れる空気とは、伝熱性及び透湿性を有する仕切板132aを介して顕熱及び潜熱の交換(全熱交換)が行われるようになっている。
The partition plate 132a has heat transfer property and moisture permeability, and is formed in a flat plate shape. The partition plate 132a also has a property of allowing the refrigerant to permeate.
The partition plate 132b is formed in a corrugated plate shape in which a substantially triangular cross section is continuously formed. The partition plate 132b forms an air passage between two adjacent partition plates 132a. The partition plate 132b is laminated by changing the angle of 90 degrees for each partition plate 132a and the partition plate 132b in the stacking direction (vertical direction in FIG. 16). As a result, the exhaust side passage 32c for passing the first air flow F1 and the air supply side passage 32d for passing the second air flow F2 are orthogonal to each other on both sides of the one partition plate 132a. Is formed. The air flowing through the exhaust side passage 32c and the air flowing through the air supply side passage 32d are exchanged for sensible heat and latent heat (total heat exchange) via a partition plate 132a having heat transfer property and moisture permeability. ing.
 図13~図15に示すように、ケーシング131の内部は、全熱交換器132によって室内空間S1側と室外空間S2側との2つの領域に区画されている。図13及び図14に示すように、ケーシング131内には、全熱交換器132よりも第1の空気流F1の上流側に上流側排気風路146aが形成され、全熱交換器132よりも第1の空気流F1の下流側に下流側排気風路146bが形成されている。上流側排気風路146aと下流側排気風路146bとによって、室内空間S1(図5参照)と室外空間S2(図5参照)とを全熱交換器132を経由して連通させる第1排気風路146が構成される。 As shown in FIGS. 13 to 15, the inside of the casing 131 is divided into two regions, the indoor space S1 side and the outdoor space S2 side, by the total heat exchanger 132. As shown in FIGS. 13 and 14, an upstream exhaust air passage 146a is formed in the casing 131 on the upstream side of the first air flow F1 from the total heat exchanger 132, and is more than the total heat exchanger 132. A downstream exhaust air passage 146b is formed on the downstream side of the first air flow F1. The first exhaust air that allows the indoor space S1 (see FIG. 5) and the outdoor space S2 (see FIG. 5) to communicate with each other via the total heat exchanger 132 by the upstream exhaust air passage 146a and the downstream exhaust air passage 146b. Road 146 is constructed.
 図13及び図15に示すように、ケーシング131内には、全熱交換器132よりも第2の空気流F2の上流側に上流側給気風路147aが形成され、全熱交換器132よりも第2の空気流F2の下流側に下流側給気風路147bが形成されている。上流側給気風路147aと下流側給気風路147bとによって、室内空間S1と室外空間S2とを全熱交換器132を経由して連通させる第1給気風路147が構成されている。 As shown in FIGS. 13 and 15, an upstream air supply air passage 147a is formed in the casing 131 on the upstream side of the second air flow F2 from the total heat exchanger 132, and is more than the total heat exchanger 132. A downstream air supply air passage 147b is formed on the downstream side of the second air flow F2. The upstream air supply air passage 147a and the downstream air supply air passage 147b constitute a first air supply air passage 147 that connects the indoor space S1 and the outdoor space S2 via the total heat exchanger 132.
 図14及び図15に示すように、上流側排気風路146aと下流側給気風路147bとの間には、区画壁151が設けられている。下流側排気風路146bと上流側給気風路147aとの間には、区画壁152が設けられている。 As shown in FIGS. 14 and 15, a partition wall 151 is provided between the upstream exhaust air passage 146a and the downstream air supply air passage 147b. A partition wall 152 is provided between the downstream exhaust air passage 146b and the upstream air supply air passage 147a.
 図13及び図14に示すように、下流側排気風路146bにおいて、排気吹出口142の近傍には排気ファン133が配置されている。この排気ファン133が駆動されることによって第1の空気流F1が生成され、室内空間S1からの還気RAが第1排気風路146を通り排気EAとして室外空間S2に排出される。 As shown in FIGS. 13 and 14, an exhaust fan 133 is arranged in the vicinity of the exhaust outlet 142 in the downstream exhaust air passage 146b. By driving the exhaust fan 133, a first air flow F1 is generated, and the return air RA from the indoor space S1 passes through the first exhaust air passage 146 and is discharged to the outdoor space S2 as an exhaust EA.
 図13及び図15に示すように、下流側給気風路147bにおいて、給気吹出口144の近傍には給気ファン134が配置されている。この給気ファン134が駆動されることによって第2の空気流F2が生成され、室外空間S2の外気OAが第1給気風路147を通り、給気SAとして室内空間S1に供給される。 As shown in FIGS. 13 and 15, in the downstream air supply air passage 147b, an air supply fan 134 is arranged in the vicinity of the air supply outlet 144. By driving the air supply fan 134, a second air flow F2 is generated, and the outside air OA of the outdoor space S2 passes through the first air supply air passage 147 and is supplied to the indoor space S1 as the supply air SA.
 図13に示すように、本実施形態のケーシング131内には、第2給気風路148と、開閉機構135とが設けられている。
 第2給気風路148は、外気取入口143と給気吹出口144との間に形成され、両者を連通している。第2給気風路148と、上流側給気風路147a及び全熱交換器132とは、隔壁153によって区画されている。第2給気風路148は、室内空間S1と室外空間S2とを全熱交換器132を経由せずに連通している。第2給気風路148の下流側は、下流側給気風路147bと合流している。
As shown in FIG. 13, a second air supply air passage 148 and an opening / closing mechanism 135 are provided in the casing 131 of the present embodiment.
The second air supply air passage 148 is formed between the outside air intake port 143 and the air supply air outlet 144, and communicates with each other. The second air supply air passage 148, the upstream air supply air passage 147a, and the total heat exchanger 132 are partitioned by a partition wall 153. The second air supply air passage 148 communicates the indoor space S1 and the outdoor space S2 without passing through the total heat exchanger 132. The downstream side of the second air supply air passage 148 merges with the downstream air supply air passage 147b.
 開閉機構135は、第1給気風路147と第2給気風路148とを切り替えて開閉する給気用ダンパ(給気用開閉機構)151を有している。給気用ダンパ155は、例えば、隔壁153に揺動自在に取り付けられている。給気用ダンパ155は、図示していないモータによって駆動される。給気用ダンパ155は、第1給気風路147を開いて外気取入口143と連通させ、第2給気風路148を外気取入口143に対して閉じる第1態様と、第1給気風路147と第2給気風路148との双方を開いて外気取入口143と連通させる第2態様とを切り替える。 The opening / closing mechanism 135 has an air supply damper (air supply opening / closing mechanism) 151 that switches between the first air supply air passage 147 and the second air supply air passage 148 to open and close. The air supply damper 155 is swingably attached to the partition wall 153, for example. The air supply damper 155 is driven by a motor (not shown). The air supply damper 155 opens the first air supply air passage 147 to communicate with the outside air intake 143, and closes the second air supply air passage 148 with respect to the outside air intake 143, and the first air supply air passage 147. And the second mode in which both the second air supply air passage 148 and the second air supply air passage 148 are opened to communicate with the outside air intake 143 are switched.
 図17は、第2換気運転を行う換気装置を上から見た概略的な断面説明図である。図18は、図17のC-C線における概略的な断面説明図である。
 給気用ダンパ155を第1態様に切り替えたとき、図13に示すように、外気取入口143から第1給気風路147を通る第2の空気流F2と、還気取入口141から第1排気風路146を通る第1の空気流F1とは、ともに全熱交換器132を通過し、両者の空気の間で顕熱及び潜熱の交換が行われる。給気用ダンパ155を第2態様に切り替えたとき、図17及び図18に示すように、外気取入口143から第1給気風路147を通る第2の空気流F2と、還気取入口141から第1排気風路146を通る第1の空気流F1とは、ともに全熱交換器132を通過し、両者の空気の間で顕熱及び潜熱の交換が行われる。外気取入口143から第2給気風路148を通る空気流(第3の空気流)F3と、還気取入口141から第1排気風路146を通る第1の空気流F1との間では熱交換が行われない。
FIG. 17 is a schematic cross-sectional explanatory view of the ventilation device that performs the second ventilation operation as viewed from above. FIG. 18 is a schematic cross-sectional explanatory view taken along the line CC of FIG.
When the air supply damper 155 is switched to the first mode, as shown in FIG. 13, the second air flow F2 passing through the outside air intake port 143 to the first air supply air passage 147 and the return air intake inlet 141 to the first Both the first air flow F1 passing through the exhaust air passage 146 passes through the total heat exchanger 132, and sensible heat and latent heat are exchanged between the two airs. When the air supply damper 155 is switched to the second mode, as shown in FIGS. 17 and 18, the second air flow F2 passing through the first air supply air passage 147 from the outside air intake port 143 and the return air intake port 141. The first air flow F1 passing through the first exhaust air passage 146 and the first air flow F1 both pass through the total heat exchanger 132, and sensible heat and latent heat are exchanged between the two airs. Heat between the air flow (third air flow) F3 passing from the outside air intake port 143 to the second air supply air passage 148 and the first air flow F1 passing through the return air intake inlet 141 to the first exhaust air passage 146. No exchange is done.
 図5を参照して説明したように、換気装置112のコントローラ(制御部)36(以下、換気コントローラともいう)は、排気ファン133、給気ファン134、及び開閉機構135(給気用ダンパ155)の動作を制御する。換気コントローラ136は、図13に示すように、ケーシング131が有する制御ボックス137内に収容されている。換気コントローラ136は、CPU等のプロセッサ、RAM、ROM等のメモリを備えたマイクロコンピュータ等からなる。換気コントローラ136は、メモリにインストールされたプログラムをプロセッサが実行することによって、所定の機能を発揮する。換気コントローラ136は、空調機111の空調コントローラ124に通信可能に接続されている。 As described with reference to FIG. 5, the controller (control unit) 36 (hereinafter, also referred to as a ventilation controller) of the ventilation device 112 includes an exhaust fan 133, an air supply fan 134, and an opening / closing mechanism 135 (air supply damper 155). ) Controls the operation. As shown in FIG. 13, the ventilation controller 136 is housed in the control box 137 included in the casing 131. The ventilation controller 136 includes a processor such as a CPU, a microcomputer provided with a memory such as RAM and ROM, and the like. The ventilation controller 136 exerts a predetermined function by executing a program installed in the memory by the processor. The ventilation controller 136 is communicably connected to the air conditioning controller 124 of the air conditioner 111.
 換気コントローラ136は、排気ファン133、給気ファン134、及び開閉機構135の動作を制御することによって、室内空間S1の通常の換気のために行う「第1換気運転」と、冷媒漏洩に対応した「第2換気運転」とを切り替えて実行する。
 第1換気運転は、図13~図15に示すように、排気ファン133及び給気ファン134を駆動し、開閉機構135の給気用ダンパ155を第1態様に切り替えることによって行う。これにより、室内空間S1からの還気RAが室外空間S2に排出されるととともに、室外空間S2からの外気OAが室内空間S1に供給され、室内空間S1の換気が行われる。さらに室内空間S1からの還気RAと室外空間S2からの外気OAとの間で顕熱及び潜熱の交換が行われ、室内空間S1における温度及び湿度の変化を抑制することができる。
The ventilation controller 136 responds to the "first ventilation operation" performed for normal ventilation of the indoor space S1 and the refrigerant leakage by controlling the operations of the exhaust fan 133, the air supply fan 134, and the opening / closing mechanism 135. It is executed by switching between "second ventilation operation".
As shown in FIGS. 13 to 15, the first ventilation operation is performed by driving the exhaust fan 133 and the air supply fan 134 and switching the air supply damper 155 of the opening / closing mechanism 135 to the first mode. As a result, the return air RA from the indoor space S1 is discharged to the outdoor space S2, and the outside air OA from the outdoor space S2 is supplied to the indoor space S1 to ventilate the indoor space S1. Further, sensible heat and latent heat are exchanged between the return air RA from the indoor space S1 and the outside air OA from the outdoor space S2, and changes in temperature and humidity in the indoor space S1 can be suppressed.
 冷媒漏洩に対応した第2換気運転は、空調機111における冷媒が漏洩したときに行われる運転である。室内機122に設けられた冷媒センサ126が、冷媒の漏洩を検出すると、その検出信号は空調コントローラ124に入力される。空調コントローラ124は、冷媒の漏洩が発生したことを示す情報(冷媒漏洩情報)を換気コントローラ136に送信し、この冷媒漏洩情報に基づいて換気コントローラ136が、排気ファン133、給気ファン134、及び開閉機構135の動作を制御する。 The second ventilation operation corresponding to the refrigerant leakage is the operation performed when the refrigerant in the air conditioner 111 leaks. When the refrigerant sensor 126 provided in the indoor unit 122 detects the leakage of the refrigerant, the detection signal is input to the air conditioning controller 124. The air conditioning controller 124 transmits information indicating that a refrigerant leak has occurred (refrigerant leak information) to the ventilation controller 136, and the ventilation controller 136 sends the exhaust fan 133, the air supply fan 134, and the air supply fan 134 based on the refrigerant leak information. Controls the operation of the opening / closing mechanism 135.
 具体的に、換気コントローラ136は、冷媒漏洩が発生し、漏洩した冷媒を冷媒センサ126が検出したときに、排気ファン133及び給気ファン134を駆動し、給気用ダンパ155を第2態様に切り替える。排気ファン133及び給気ファン134がすでに駆動されていた場合には、そのまま駆動を継続する。これにより、図17及び図18に示すように、室内空間S1からの還気RAが第1排気風路146を通り、全熱交換器132を経由して室外空間S2に排出される。室外空間S2からの外気OAは、第1給気風路147と第2給気風路148とを通り、一部が全熱交換器132を経由し、他の一部が全熱交換器132を経由せずに室内空間S1に供給される。 Specifically, the ventilation controller 136 drives the exhaust fan 133 and the air supply fan 134 when a refrigerant leak occurs and the refrigerant sensor 126 detects the leaked refrigerant, and the air supply damper 155 is set to the second mode. Switch. If the exhaust fan 133 and the air supply fan 134 have already been driven, the drive is continued as it is. As a result, as shown in FIGS. 17 and 18, the return air RA from the indoor space S1 passes through the first exhaust air passage 146 and is discharged to the outdoor space S2 via the total heat exchanger 132. The outside air OA from the outdoor space S2 passes through the first air supply air passage 147 and the second air supply air passage 148, partly via the total heat exchanger 132, and partly via the total heat exchanger 132. It is supplied to the indoor space S1 without being used.
 以上のように、本実施形態の換気装置112は、室内機122から冷媒が漏洩すると、第1給気風路147と第2給気風路148の双方が開いた状態となって給気風路が拡大し、第1換気運転よりも換気量を増大させることができる。したがって、より換気を促進し、室内空間S1から短時間に冷媒を排出することができる。また、本実施形態では、給気と排気とのバランスが「給気リッチ」となり、部屋Rを正圧にすることで漏れ空気量を増やし、漏洩冷媒を早く排出して部屋内の漏洩冷媒の濃度を低減させることができる。 As described above, in the ventilation device 112 of the present embodiment, when the refrigerant leaks from the indoor unit 122, both the first air supply air passage 147 and the second air supply air passage 148 are opened and the air supply air passage is expanded. However, the ventilation volume can be increased as compared with the first ventilation operation. Therefore, ventilation can be further promoted, and the refrigerant can be discharged from the indoor space S1 in a short time. Further, in the present embodiment, the balance between the supply air and the exhaust becomes "air supply rich", the amount of leaked air is increased by making the room R a positive pressure, the leaked refrigerant is discharged quickly, and the leaked refrigerant in the room is discharged. The concentration can be reduced.
[第5の実施形態]
 図19は、本開示の第5の実施形態に係る空調システムの、第2換気運転を行う換気装置を上から見た概略的な断面説明図である。
 第5の実施形態の換気装置112は、第1の実施形態における第2給気風路148に代えて、第2排気風路149を備えている。第2排気風路149は、還気取入口141と排気吹出口142との間に形成され、両者を連通している。第2排気風路149と、上流側排気風路146a及び全熱交換器132とは、隔壁154によって区画されている。第2排気風路149の下流側は、下流側排気風路146bと合流している。以上より、第2排気風路149は、室内空間S1と室外空間S2とを全熱交換器132を経由せずに連通している。
[Fifth Embodiment]
FIG. 19 is a schematic cross-sectional explanatory view of the air conditioning system according to the fifth embodiment of the present disclosure, which is a top view of the ventilation device that performs the second ventilation operation.
The ventilation device 112 of the fifth embodiment includes a second exhaust air passage 149 in place of the second air supply air passage 148 in the first embodiment. The second exhaust air passage 149 is formed between the return air intake inlet 141 and the exhaust air outlet 142, and communicates with each other. The second exhaust air passage 149, the upstream exhaust air passage 146a, and the total heat exchanger 132 are partitioned by a partition wall 154. The downstream side of the second exhaust air passage 149 merges with the downstream exhaust air passage 146b. From the above, the second exhaust air passage 149 communicates the indoor space S1 and the outdoor space S2 without passing through the total heat exchanger 132.
 開閉機構135は、第1排気風路146と第2排気風路149とを切り替えて開閉する排気用ダンパ(排気用開閉機構)156を有している。排気用ダンパ156は、例えば、隔壁154に揺動自在に取り付けられている。排気用ダンパ156は、第1排気風路146を開いて還気取入口141と連通させ、かつ第2排気風路149を還気取入口141に対して閉じる第1態様と、第1排気風路146及び第2排気風路149の双方を開いて還気取入口141と連通させる第2態様とを切り替える。 The opening / closing mechanism 135 has an exhaust damper (exhaust opening / closing mechanism) 156 that switches between the first exhaust air passage 146 and the second exhaust air passage 149 to open and close. The exhaust damper 156 is swingably attached to the partition wall 154, for example. The exhaust damper 156 has a first aspect in which the first exhaust air passage 146 is opened to communicate with the return air intake 141 and the second exhaust air passage 149 is closed with respect to the return air intake 141, and the first exhaust air. The second mode in which both the passage 146 and the second exhaust air passage 149 are opened to communicate with the return air intake 141 is switched.
 本実施形態では、通常の第1換気運転を行う場合には、換気コントローラ136が排気用ダンパ156を第1態様に切り替える。換気装置112は、図13~図15に示す形態で全熱交換器132において顕熱及び潜熱の交換を行いながら換気を行う。
 換気装置112は、冷媒センサ126が冷媒の漏洩を検出したときに、図19に示すように、換気コントローラ136により排気用ダンパ156を第2態様に切り替え、第2換気運転を行う。この場合、外気取入口143からケーシング131内に取り入れられた外気OAは全熱交換器132を通り、給気吹出口144から給気SAとして室内に供給される。還気取入口141からケーシング131に取り入れられた室内空間S1からの還気RAは、第1排気風路146と第2排気風路149とを通り、一部が全熱交換器132を経由し、他の一部が全熱交換器132を経由せずに排気吹出口142から室外空間S2に排出される。
In the present embodiment, when the normal first ventilation operation is performed, the ventilation controller 136 switches the exhaust damper 156 to the first mode. The ventilation device 112 ventilates while exchanging sensible heat and latent heat in the total heat exchanger 132 in the form shown in FIGS. 13 to 15.
When the refrigerant sensor 126 detects the leakage of the refrigerant, the ventilation device 112 switches the exhaust damper 156 to the second mode by the ventilation controller 136 as shown in FIG. 19, and performs the second ventilation operation. In this case, the outside air OA taken into the casing 131 from the outside air intake port 143 passes through the total heat exchanger 132 and is supplied into the room as the supply air SA from the supply air outlet 144. The return air RA from the indoor space S1 taken into the casing 131 from the return air intake 141 passes through the first exhaust air passage 146 and the second exhaust air passage 149, and a part of the return air RA passes through the total heat exchanger 132. , The other part is discharged from the exhaust outlet 142 to the outdoor space S2 without passing through the total heat exchanger 132.
 したがって、外気取入口143から第1給気風路147を通る第2の空気流F2と、還気取入口141から第1排気風路146を通る第1の空気流F1との間で全熱交換は行われるが、外気取入口143から第1給気風路147を通る第2の空気流F2と、還気取入口141から第2排気風路149を通る空気流(第4の空気流)F4との間で全熱交換は行われない。 Therefore, total heat exchange between the second air flow F2 passing from the outside air intake port 143 to the first air supply air passage 147 and the first air flow F1 passing through the return air intake inlet 141 to the first exhaust air passage 146. Is performed, but the second air flow F2 passing through the first air supply air passage 147 from the outside air intake 143 and the air flow (fourth air flow) F4 passing through the second exhaust air passage 149 from the return air intake inlet 141 No total heat exchange is performed with.
 本実施形態の換気装置112は、室内機122から冷媒が漏洩すると、第1排気風路146と第2排気風路149の双方が開いた状態となって排気風路が拡大し、第1換気運転よりも換気量を増大させることができる。したがって、より換気を促進し、室内空間S1から短時間に冷媒を排出することができる。また、本実施形態では、給気と排気とのバランスが「排気リッチ」となり、部屋Rを負圧にすることで漏洩冷媒が他の部屋又はスペースに拡散するのを抑制することができる。 In the ventilation device 112 of the present embodiment, when the refrigerant leaks from the indoor unit 122, both the first exhaust air passage 146 and the second exhaust air passage 149 are opened and the exhaust air passage is expanded to expand the first ventilation. Ventilation can be increased more than driving. Therefore, ventilation can be further promoted, and the refrigerant can be discharged from the indoor space S1 in a short time. Further, in the present embodiment, the balance between the supply air and the exhaust gas becomes "exhaust rich", and by making the room R a negative pressure, it is possible to suppress the leakage refrigerant from diffusing into another room or space.
[第6の実施形態]
 図20は、本開示の第6の実施形態に係る空調システムの、第2換気運転を行う換気装置を上から見た概略的な断面説明図である。
 本実施形態の換気装置112は、第4の実施形態で説明した第2給気風路148と、第5の実施形態で説明した第2排気風路149との双方を備えている。換気装置112は、開閉機構135として、第2給気風路148に対応する給気用ダンパ155と、第2排気風路149に対応する排気用ダンパ156とを備えている。
[Sixth Embodiment]
FIG. 20 is a schematic cross-sectional explanatory view of the air conditioning system according to the sixth embodiment of the present disclosure, which is a top view of the ventilation device that performs the second ventilation operation.
The ventilation device 112 of the present embodiment includes both the second air supply air passage 148 described in the fourth embodiment and the second exhaust air passage 149 described in the fifth embodiment. The ventilation device 112 includes an air supply damper 155 corresponding to the second air supply air passage 148 and an exhaust damper 156 corresponding to the second exhaust air passage 149 as the opening / closing mechanism 135.
 本実施形態の換気装置112は、通常の第1換気運転を行う場合には、各ダンパ155,156を第1態様に切り替え、図13~図15に示す形態で全熱交換器132において顕熱及び潜熱の交換を行いながら換気を行う。
 冷媒センサ126によって冷媒の漏洩が検出されたとき、換気装置112は、図20に示すように、換気コントローラ136により各ダンパ155,156を第2態様に切り替えて第2換気運転を行う。この場合、外気取入口143からケーシング131内に取り入れられた外気OAは、第1給気風路147及び第2給気風路148を通って室内空間S1に供給され、還気取入口141からケーシング131内に取り入れられた還気RAは、第1排気風路146及び第2排気風路149を通って室外空間S2に排出される。
The ventilation device 112 of the present embodiment switches each damper 155, 156 to the first mode when performing the normal first ventilation operation, and sensible heat is generated in the total heat exchanger 132 in the embodiment shown in FIGS. 13 to 15. And ventilate while exchanging latent heat.
When the refrigerant sensor 126 detects the leakage of the refrigerant, the ventilation device 112 switches the dampers 155 and 156 to the second mode by the ventilation controller 136 to perform the second ventilation operation as shown in FIG. In this case, the outside air OA taken into the casing 131 from the outside air intake port 143 is supplied to the indoor space S1 through the first air supply air passage 147 and the second air supply air passage 148, and is supplied from the return air intake 141 to the casing 131. The return air RA taken in is discharged to the outdoor space S2 through the first exhaust air passage 146 and the second exhaust air passage 149.
 本実施形態の換気装置112は、室内機122から冷媒が漏洩すると、給気風路と排気風路との双方が拡大され、第1換気運転よりも換気量を増大させることができる。したがって、より換気を促進し、室内空間S1から短時間に冷媒を排出することができる。なお、本実施形態では、例えば給気ファン134の回転数と排気ファン133の回転数との比率を変化させることによって、冷媒漏洩時の給気と排気とのバランスを、通常運転時に対して「給気リッチ」又は「排気リッチ」に変更することができる。 In the ventilation device 112 of the present embodiment, when the refrigerant leaks from the indoor unit 122, both the air supply air passage and the exhaust air passage are expanded, and the ventilation volume can be increased as compared with the first ventilation operation. Therefore, ventilation can be further promoted, and the refrigerant can be discharged from the indoor space S1 in a short time. In the present embodiment, for example, by changing the ratio between the rotation speed of the air supply fan 134 and the rotation speed of the exhaust fan 133, the balance between the air supply and the exhaust gas at the time of refrigerant leakage is set to " It can be changed to "air supply rich" or "exhaust rich".
[第7の実施形態]
 図21は、本開示の第7の実施形態に係る空調システムの、換気装置の概略構造を示す平面図、右側面図、及び左側面図である。
 本実施形態における換気装置112の基本構成は、第3の実施形態で説明した換気装置112(図6参照)と略同一である。換気装置112は、ケーシング158と、開閉機構135と、コントローラ136(図5参照)と、冷媒回路161(図8参照)とを備えている。
[7th Embodiment]
FIG. 21 is a plan view, a right side view, and a left side view showing a schematic structure of a ventilation device of the air conditioning system according to the seventh embodiment of the present disclosure.
The basic configuration of the ventilation device 112 in the present embodiment is substantially the same as the ventilation device 112 (see FIG. 6) described in the third embodiment. The ventilator 112 includes a casing 158, an opening / closing mechanism 135, a controller 136 (see FIG. 5), and a refrigerant circuit 161 (see FIG. 8).
 ケーシング158の内部は、第3の実施形態で説明したように、第1調湿室162、第2調湿室163、還気側通路164、外気側通路165、給気側通路166、排気側通路167、給気ファン室168、及び排気ファン室169に区画されている。さらに本実施形態のケーシング158の内部には、給気側バイパス通路193が区画して形成されている。 As described in the third embodiment, the inside of the casing 158 is the first humidity control chamber 162, the second humidity control chamber 163, the return air side passage 164, the outside air side passage 165, the air supply side passage 166, and the exhaust side. It is divided into a passage 167, an air supply fan chamber 168, and an exhaust fan chamber 169. Further, an air supply side bypass passage 193 is partitioned and formed inside the casing 158 of the present embodiment.
 具体的に、第4側板158dの左側には、間隔をあけて第8区画壁170hが第4側板158dと平行に設けられている。第8区画壁170hは、第1調湿室162、給気側通路166、及び排気側通路167と、第4側板158dとの間に給気側バイパス通路193を形成する。給気側バイパス通路193の後端は、外気側通路165と連通している。 Specifically, on the left side of the 4th side plate 158d, the 8th partition wall 170h is provided in parallel with the 4th side plate 158d at intervals. The eighth partition wall 170h forms an air supply side bypass passage 193 between the first humidity control chamber 162, the air supply side passage 166, and the exhaust side passage 167 and the fourth side plate 158d. The rear end of the air supply side bypass passage 193 communicates with the outside air side passage 165.
 ケーシング158は、「第1給気風路」と「第1排気風路」とを有する。
 第1給気風路は、外気取入口143から外気側通路165、第1又は第2調湿室162,163、給気側通路166、及び給気ファン室168を通って給気吹出口144に到るまでの空気の流路である。この第1給気風路には、第1調湿室162を通るものと、第2調湿室163を通るものとの2系統がある。給気ファン134が作動すると、各第1給気風路において空気流が生成される。
The casing 158 has a "first air supply air passage" and a "first exhaust air passage".
The first air supply air passage is from the outside air intake 143 to the air supply outlet 144 through the outside air side passage 165, the first or second humidity control chamber 162, 163, the air supply side passage 166, and the air supply fan chamber 168. It is a flow path of air leading up to it. The first air supply air passage has two systems, one passing through the first humidity control chamber 162 and the other passing through the second humidity control chamber 163. When the air supply fan 134 is activated, an air flow is generated in each first air supply air passage.
 第1排気風路は、還気取入口141から還気側通路164、第1又は第2調湿室162,163、排気側通路167、及び排気ファン室169を通って排気吹出口142に到るまでの空気の流路である。第1排気風路には、第1調湿室162を通るものと、第2調湿室163を通るものとの2系統がある。排気ファン133が作動すると、各排気風路において空気流が生成される。 The first exhaust air passage reaches the exhaust outlet 142 from the return air intake 141 through the return air passage 164, the first or second humidity control chamber 162, 163, the exhaust side passage 167, and the exhaust fan chamber 169. It is a flow path of air up to. The first exhaust air passage has two systems, one passing through the first humidity control chamber 162 and the other passing through the second humidity control chamber 163. When the exhaust fan 133 is activated, an air flow is generated in each exhaust air passage.
 ケーシング158は、「第2給気風路」をさらに有する。第2給気風路は、外気取入口143から外気側通路165、給気側バイパス通路193、及び給気ファン室168を通って給気吹出口144に到る空気の流路である。第2給気風路を含めると、ケーシング158は、3系統の給気風路を有する。 Casing 158 further has a "second air supply air passage". The second air supply air passage is an air flow path from the outside air intake port 143 to the air supply outlet 144 through the outside air side passage 165, the air supply side bypass passage 193, and the air supply fan chamber 168. Including the second air supply air passage, the casing 158 has three air supply air passages.
 第1給気風路及び第2給気風路は、給気用の開閉機構183によって形成される。2系統の第1給気風路は、給気用の開閉機構183によって交互に切り替えて開閉される。
 第1排気風路は、排気用の開閉機構184によって形成される。2系統の排気風路は、排気用の開閉機構184によって交互に切り替えて開閉される。
The first air supply air passage and the second air supply air passage are formed by an opening / closing mechanism 183 for air supply. The first air supply air passages of the two systems are alternately switched and opened and closed by the opening and closing mechanism 183 for air supply.
The first exhaust air passage is formed by an opening / closing mechanism 184 for exhaust. The two exhaust air passages are alternately switched and opened and closed by the exhaust opening / closing mechanism 184.
 なお、2系統の第1給気風路又は第1排気風路が「交互に切り替えて開閉される」とは、いずれか一方の風路が開くと他方の風路が閉じる動作が交互に行われることをいう。この動作を実現するため、給気用開閉機構183及び排気用開閉機構184がコントローラ136によって制御される。 In addition, when the first air supply air passage or the first exhaust air passage of the two systems is "alternately switched to open and close", the operation of closing the other air passage when one of the air passages is opened is alternately performed. Say that. In order to realize this operation, the air supply opening / closing mechanism 183 and the exhaust opening / closing mechanism 184 are controlled by the controller 136.
 (開閉機構の構成)
 本実施形態における開閉機構135の基本構成は、第3の実施形態で説明した開閉機構135と同一である。さらに、本実施形態の開閉機構135は、前述した複数のダンパ171~178に加えて、第5区画壁170eに設けられた第3給気ダンパ179を有する。
(Structure of opening / closing mechanism)
The basic configuration of the opening / closing mechanism 135 in this embodiment is the same as that of the opening / closing mechanism 135 described in the third embodiment. Further, the opening / closing mechanism 135 of the present embodiment has a third air supply damper 179 provided on the fifth compartment wall 170e in addition to the plurality of dampers 171 to 178 described above.
 第3給気ダンパ179は、第5区画壁170eの右端に設けられている。第3給気ダンパ179を開くと、給気側バイパス通路193と給気ファン室168とが連通される。第3給気ダンパ179を閉じると、給気側バイパス通路193と給気ファン室168とが遮断される。 The third air supply damper 179 is provided at the right end of the fifth compartment wall 170e. When the third air supply damper 179 is opened, the air supply side bypass passage 193 and the air supply fan chamber 168 are communicated with each other. When the third air supply damper 179 is closed, the air supply side bypass passage 193 and the air supply fan chamber 168 are shut off.
 図22は、2系統の第1給気風路及び第2給気風路を流れる空気流、並びに2系統の排気風路を流れる空気流を、簡略的に示す説明図である。
 第1及び第2外気ダンパ173,174、並びに、第1~第3給気ダンパ175,176,179は、給気用開閉機構183を構成している。第1及び第2還気ダンパ171,172、並びに、第1及び第2排気ダンパ177,178は、排気用開閉機構184を構成している。
FIG. 22 is an explanatory diagram briefly showing the air flow flowing through the first air supply air passage and the second air supply air passage of the two systems and the air flow flowing through the exhaust air passage of the two systems.
The first and second outside air dampers 173, 174, and the first to third air supply dampers 175, 176, 179 constitute an air supply opening / closing mechanism 183. The first and second return air dampers 171 and 172, and the first and second exhaust dampers 177 and 178 constitute an exhaust opening / closing mechanism 184.
 2系統の第1給気風路及び第2給気風路は、それぞれ次のダンパの動作により開かれる。
  第1系統の第1給気風路:第1外気ダンパ173及び第1給気ダンパ175の開動作
  第2系統の第1給気風路:第2外気ダンパ174及び第2給気ダンパ176の開動作
  第2給気風路:第3給気ダンパ179の開動作
 図22には、第1系統の第1給気風路を流れる空気流を符号Fa1で示し、第2系統の第1給気風路を流れる空気流をFa2で示し、第2給気風路を流れる空気流をFa3で示す。
The first air supply air passage and the second air supply air passage of the two systems are opened by the operation of the following dampers, respectively.
1st air supply air passage of 1st system: Opening operation of 1st outside air damper 173 and 1st air supply damper 175 1st air supply air passage of 2nd system: Opening operation of 2nd outside air damper 174 and 2nd air supply damper 176 2nd air supply air passage: Opening operation of the 3rd air supply damper 179 In FIG. 22, the air flow flowing through the 1st air supply air passage of the 1st system is indicated by the symbol Fa1 and flows through the 1st air supply air passage of the 2nd system. The air flow is indicated by Fa2, and the air flow flowing through the second air supply air passage is indicated by Fa3.
 2系統の第1排気風路は、それぞれ次のダンパの動作により開かれる。
  第1系統の第1排気風路:第1還気ダンパ171及び第1排気ダンパ177の開動作
  第2系統の第1排気風路:第2還気ダンパ172及び第2排気ダンパ178の開動作
 図22には、第1系統の第1排気風路を流れる空気流を符号Fb1で示し、第2系統の第1排気風路を流れる空気流をFb2で示す。
The first exhaust air passages of the two systems are opened by the operation of the following dampers, respectively.
First exhaust air passage of the first system: Opening operation of the first return air damper 171 and the first exhaust damper 177 Opening operation of the first exhaust air passage of the second system: the second return air damper 172 and the second exhaust damper 178. In FIG. 22, the air flow flowing through the first exhaust air passage of the first system is indicated by reference numeral Fb1, and the air flow flowing through the first exhaust air passage of the second system is indicated by Fb2.
 本実施形態の換気装置112における冷媒回路161は、図8を参照して説明した第3実施形態の冷媒回路161と同様である。本実施形態の換気コントローラ(制御部)136も、第3の実施形態の換気コントローラ136と同様である。 The refrigerant circuit 161 in the ventilation device 112 of the present embodiment is the same as the refrigerant circuit 161 of the third embodiment described with reference to FIG. The ventilation controller (control unit) 136 of the present embodiment is also the same as the ventilation controller 136 of the third embodiment.
 (換気運転の詳細)
 換気コントローラ136は、排気ファン133、給気ファン134、冷媒回路161、及び開閉機構135の動作を制御することによって、室内空間S1の通常の換気のために行う「第1換気運転」と、冷媒漏洩に対応した「第2換気運転」とを切り替えて実行する。
(Details of ventilation operation)
The ventilation controller 136 controls the operation of the exhaust fan 133, the air supply fan 134, the refrigerant circuit 161 and the opening / closing mechanism 135, thereby performing the "first ventilation operation" for normal ventilation of the indoor space S1 and the refrigerant. It is executed by switching between the "second ventilation operation" corresponding to the leakage.
  <第1換気運転>
 第1換気運転には、室内の除湿を行いながら換気を行う除湿換気運転と、室内の加湿を行いながら換気を行う加湿換気運転とが含まれる。
 第1換気運転では、給気ファン134と排気ファン133とが駆動される。これにより、室外空間S2からの外気OAが、外気取入口143を通過してケーシング158内に取り入れられ、室内空間S1からの還気RAが還気取入口141を通過してケーシング158内に取り入れられる。
<1st ventilation operation>
The first ventilation operation includes a dehumidification ventilation operation in which ventilation is performed while dehumidifying the room and a humidification ventilation operation in which ventilation is performed while humidifying the room.
In the first ventilation operation, the air supply fan 134 and the exhaust fan 133 are driven. As a result, the outside air OA from the outdoor space S2 passes through the outside air intake 143 and is taken into the casing 158, and the return air RA from the indoor space S1 passes through the return air intake 141 and is taken into the casing 158. Be done.
 第1及び第2熱交換器186,189は、凝縮器と蒸発器とに交互に切り換えられる。第1換気運転では、ケーシング158内に取り込まれた外気OAが第1調湿室162の第1熱交換器186及び第2調湿室163の第2熱交換器189のうち一方の熱交換器を通過して室内に供給され、ケーシング158内に取り込まれた還気RAが第1熱交換器186及び第2熱交換器189のうち他方の熱交換器を通過して室外に排出されるように、ケーシング158内における空気の流れが切り換えられる。具体的には、次の第1動作と第2動作とが3分間ずつ交互に繰り返し行われる。 The first and second heat exchangers 186 and 189 are alternately switched between a condenser and an evaporator. In the first ventilation operation, the outside air OA taken into the casing 158 is one of the first heat exchanger 186 of the first humidity control chamber 162 and the second heat exchanger 189 of the second humidity control chamber 163. The return air RA, which is supplied into the room through the above and is taken into the casing 158, passes through the other heat exchanger of the first heat exchanger 186 and the second heat exchanger 189 and is discharged to the outside of the room. The air flow in the casing 158 is switched. Specifically, the next first operation and the second operation are alternately repeated for 3 minutes each.
  (第1換気運転の第1動作)
 第1換気運転の第1動作では、ケーシング158内における第1及び第2給気風路、並びに、第1排気風路が図23に示すように設定される。具体的には、第2還気ダンパ172と第1外気ダンパ173と第1給気ダンパ175と第2排気ダンパ178が開状態となり、第1還気ダンパ171と第2外気ダンパ174と第2給気ダンパ176と第1排気ダンパ177と第3給気ダンパ179とが閉状態となる。なお、図23において、閉状態のダンパにはハッチングが付されている。
(First operation of the first ventilation operation)
In the first operation of the first ventilation operation, the first and second air supply air passages and the first exhaust air passage in the casing 158 are set as shown in FIG. 23. Specifically, the second return air damper 172, the first outside air damper 173, the first supply air damper 175, and the second exhaust damper 178 are opened, and the first return air damper 171 and the second outside air damper 174 and the second The air supply damper 176, the first exhaust damper 177, and the third air supply damper 179 are closed. In FIG. 23, the damper in the closed state is hatched.
 これにより、ケーシング158内に、第1系統の第1給気風路と第2系統の第1排気風路とが形成され、ケーシング158内に取り込まれた外気OAが第1熱交換器186を通過して室内に供給され、ケーシング158内に取り込まれた還気RAが第2熱交換器189を通過して室外に排出される。 As a result, the first air supply air passage of the first system and the first exhaust air passage of the second system are formed in the casing 158, and the outside air OA taken into the casing 158 passes through the first heat exchanger 186. The return air RA supplied into the room and taken into the casing 158 passes through the second heat exchanger 189 and is discharged to the outside.
 この第1動作の間、除湿換気運転の場合は、図8(b)に示すように、冷媒回路161において第2冷凍サイクル動作が行われる。加湿換気運転の場合は、図8(a)に示すように、第1冷凍サイクル動作が行われる。 During this first operation, in the case of the dehumidifying / ventilation operation, the second refrigeration cycle operation is performed in the refrigerant circuit 161 as shown in FIG. 8 (b). In the case of humidification ventilation operation, as shown in FIG. 8A, the first refrigeration cycle operation is performed.
 外気取入口143を通過して外気側通路165に取り込まれた外気OAは、第1外気ダンパ173を通過して第1調湿室162に流入し、第1調湿室162において第1熱交換器186を通過して調湿(除湿又は加湿)される。具体的には、除湿換気運転では、外気OAが蒸発器となっている第1熱交換器186を通過して除湿及び冷却され、加湿換気運転では、外気OAが凝縮器となっている第1熱交換器186を通過して加湿及び加熱される。第1熱交換器186において調湿された空気は、第1給気ダンパ175と給気側通路166と給気ファン室168と給気吹出口144とを順に通過して室内空間S1に供給される。 The outside air OA that has passed through the outside air intake 143 and is taken into the outside air side passage 165 passes through the first outside air damper 173 and flows into the first humidity control chamber 162, and exchanges the first heat in the first humidity control chamber 162. Humidification (dehumidification or humidification) is performed through the vessel 186. Specifically, in the dehumidifying / ventilation operation, the outside air OA passes through the first heat exchanger 186 which is an evaporator to be dehumidified and cooled, and in the humidifying / ventilation operation, the outside air OA is a condenser. It passes through the heat exchanger 186 to be humidified and heated. The air conditioned in the first heat exchanger 186 passes through the first air supply damper 175, the air supply side passage 166, the air supply fan chamber 168, and the air supply outlet 144 in this order, and is supplied to the indoor space S1. To.
 還気取入口141を通過して還気側通路164に取り込まれた還気RAは、第2還気ダンパ172を通過して第2調湿室163に流入し、第2調湿室163において第2熱交換器189を通過して調湿(加湿又は除湿)される。具体的には、除湿換気運転では、還気RAが凝縮器となっている第2熱交換器189を通過して加湿及び加熱され、加湿換気運転では、還気RAが蒸発器となっている第2熱交換器189を通過して除湿及び冷却される。第2熱交換器189において調湿された空気は、第2排気ダンパ178と排気側通路167と排気ファン室169と排気吹出口142とを順に通過して室外に排出される。 The return air RA that has passed through the return air intake 141 and is taken into the return air side passage 164 passes through the second return air damper 172 and flows into the second humidity control chamber 163, and in the second humidity control chamber 163. Humidification (humidification or dehumidification) is performed through the second heat exchanger 189. Specifically, in the dehumidifying ventilation operation, the return air RA passes through the second heat exchanger 189, which is a condenser, to be humidified and heated, and in the humidification ventilation operation, the return air RA is an evaporator. It passes through the second heat exchanger 189 to be dehumidified and cooled. The air regulated by the second heat exchanger 189 passes through the second exhaust damper 178, the exhaust side passage 167, the exhaust fan chamber 169, and the exhaust outlet 142 in this order, and is discharged to the outside of the room.
  (第1換気運転の第2動作)
 第1換気運転の第2動作では、ケーシング158内における第1及び第2給気風路、並びに、第1排気風路が図24に示すように設定される。具体的には、第1還気ダンパ171と第2外気ダンパ174と第2給気ダンパ176と第1排気ダンパ177が開状態となり、第2還気ダンパ172と第1外気ダンパ173と第1給気ダンパ175と第2排気ダンパ178と第3給気ダンパ179とが閉状態となる。これにより、ケーシング158内に、第2系統の第1給気風路と第1系統の第1排気風路とが形成され、ケーシング158内に取り込まれた外気OAが第2熱交換器189を通過して室内に供給され、ケーシング158内に取り込まれた還気RAが第1熱交換器186を通過して室外に排出される。
(Second operation of the first ventilation operation)
In the second operation of the first ventilation operation, the first and second air supply air passages and the first exhaust air passage in the casing 158 are set as shown in FIG. 24. Specifically, the first return air damper 171, the second outside air damper 174, the second supply air damper 176, and the first exhaust damper 177 are in the open state, the second return air damper 172, the first outside air damper 173, and the first. The air supply damper 175, the second exhaust damper 178, and the third air supply damper 179 are closed. As a result, the first air supply air passage of the second system and the first exhaust air passage of the first system are formed in the casing 158, and the outside air OA taken into the casing 158 passes through the second heat exchanger 189. The return air RA supplied into the room and taken into the casing 158 passes through the first heat exchanger 186 and is discharged to the outside.
 この第2動作の間、除湿換気運転の場合は、図8(a)に示すように、冷媒回路161において第1冷凍サイクル動作が行われる。加湿換気運転の場合は、図8(b)に示すように、第2冷凍サイクル動作が行われる。 During this second operation, in the case of the dehumidifying / ventilation operation, the first refrigeration cycle operation is performed in the refrigerant circuit 161 as shown in FIG. 8 (a). In the case of the humidification ventilation operation, the second refrigeration cycle operation is performed as shown in FIG. 8 (b).
 外気取入口143を通過して外気側通路165に取り込まれた外気OAは、第2外気ダンパ174を通過して第2調湿室163に流入し、第2調湿室163において第2熱交換器189を通過して調湿(除湿又は加湿)される。具体的には、除湿換気運転では、外気OAが蒸発器となっている第2熱交換器189を通過して除湿及び冷却され、加湿換気運転では、外気OAが凝縮器となっている第2熱交換器189を通過して加湿及び加熱される。第2熱交換器189において調湿された空気は、第2給気ダンパ176と給気側通路166と給気ファン室168と給気吹出口144とを順に通過して室内空間S1に供給される。 The outside air OA that has passed through the outside air intake 143 and is taken into the outside air side passage 165 passes through the second outside air damper 174 and flows into the second humidity control chamber 163, and exchanges the second heat in the second humidity control chamber 163. Humidification (dehumidification or humidification) is performed through the vessel 189. Specifically, in the dehumidifying / ventilation operation, the outside air OA passes through the second heat exchanger 189 which is an evaporator to be dehumidified and cooled, and in the humidifying / ventilation operation, the outside air OA is a condenser. It passes through the heat exchanger 189 to be humidified and heated. The air conditioned in the second heat exchanger 189 passes through the second air supply damper 176, the air supply side passage 166, the air supply fan chamber 168, and the air supply outlet 144 in this order, and is supplied to the indoor space S1. To.
 還気取入口141を通過して還気側通路164に取り込まれた還気RAは、第1還気ダンパ171を通過して第1調湿室162に流入し、第1調湿室162において第1熱交換器186を通過して調湿(加湿又は除湿)される。具体的には、除湿換気運転では、還気RAが凝縮器となっている第1熱交換器186を通過して加湿及び加熱され、加湿換気運転では、還気RAが蒸発器となっている第1熱交換器186を通過して除湿及び冷却される。第1熱交換器186において調湿された空気は、第1排気ダンパ177と排気側通路167と排気ファン室169と排気吹出口142とを順に通過して室外に排出される。 The return air RA that has passed through the return air intake 141 and is taken into the return air side passage 164 passes through the first return air damper 171 and flows into the first humidity control chamber 162, and in the first humidity control chamber 162. Humidification (humidification or dehumidification) is performed through the first heat exchanger 186. Specifically, in the dehumidifying ventilation operation, the return air RA passes through the first heat exchanger 186, which is a condenser, to be humidified and heated, and in the humidification ventilation operation, the return air RA is an evaporator. It passes through the first heat exchanger 186 to be dehumidified and cooled. The air conditioned in the first heat exchanger 186 passes through the first exhaust damper 177, the exhaust side passage 167, the exhaust fan chamber 169, and the exhaust outlet 142 in this order, and is discharged to the outside of the room.
  <第2換気運転>
 冷媒漏洩に対応した第2換気運転は、空調機111における冷媒が漏洩し、漏洩した冷媒を冷媒センサ126が検出したときに行われる運転である。図5に示すように、室内機122に設けられた冷媒センサ126が、漏洩した冷媒を検出すると、その検出信号は空調コントローラ124に入力される。空調コントローラ124は、冷媒の漏洩が発生したことを示す情報(冷媒漏洩情報)を換気コントローラ136に送信し、この冷媒漏洩情報に基づいて換気コントローラ136が、排気ファン133、給気ファン134、及び開閉機構135の動作を制御する。
<Second ventilation operation>
The second ventilation operation corresponding to the refrigerant leakage is an operation performed when the refrigerant in the air conditioner 111 leaks and the refrigerant sensor 126 detects the leaked refrigerant. As shown in FIG. 5, when the refrigerant sensor 126 provided in the indoor unit 122 detects the leaked refrigerant, the detection signal is input to the air conditioning controller 124. The air conditioning controller 124 transmits information indicating that a refrigerant leak has occurred (refrigerant leak information) to the ventilation controller 136, and the ventilation controller 136 transmits the exhaust fan 133, the air supply fan 134, and the air supply fan 134 based on the refrigerant leak information. Controls the operation of the opening / closing mechanism 135.
 図25は、第2換気運転の第1動作について説明するための概略図である。図26は、第2換気運転の第2動作について説明するための概略図である。
 第2換気運転では、第1換気運転と同様に「第1動作」と「第2動作」とが行われる。第2換気運転の第1動作は、第1換気運転の第1動作に加え、第2給気風路を用いた給気をも行う動作である。第2換気運転の第2動作は、第1換気運転の第2動作に加え、第2給気風路を用いた給気をも行う動作である。
FIG. 25 is a schematic view for explaining the first operation of the second ventilation operation. FIG. 26 is a schematic view for explaining the second operation of the second ventilation operation.
In the second ventilation operation, the "first operation" and the "second operation" are performed in the same manner as in the first ventilation operation. The first operation of the second ventilation operation is an operation of supplying air using the second air supply air passage in addition to the first operation of the first ventilation operation. The second operation of the second ventilation operation is an operation of supplying air using the second air supply air passage in addition to the second operation of the first ventilation operation.
 第2換気運転を行う場合、換気コントローラ136は、第3給気ダンパ179を常時開状態とする。これにより、第2換気運転中は、第2給気風路が開いた状態となる。そのため、給気ファン134の作動により、第1系統又は第2系統の第1給気風路を経た室内空間S1への給気SAに加え、第2給気風路を経た室内空間S1への給気SAが行われる。このように第1及び第2給気風路の双方が開いた状態となることによって全体の給気風路が拡大され、第1換気運転よりも換気量を増大させることができる。そのため、室内空間S1から短時間に冷媒を排出することができる。また、本実施形態では、給気と排気とのバランスが「給気リッチ」となり、部屋Rを正圧にすることで漏れ空気量を増やし、漏洩冷媒を早く排出して部屋内の漏洩冷媒の濃度を低減させることができる。 When performing the second ventilation operation, the ventilation controller 136 keeps the third air supply damper 179 in a constantly open state. As a result, the second air supply air passage is in an open state during the second ventilation operation. Therefore, by operating the air supply fan 134, in addition to the air supply SA to the indoor space S1 passing through the first air supply air passage of the first system or the second system, air is supplied to the indoor space S1 passing through the second air supply air passage. SA is performed. When both the first and second air supply air passages are opened in this way, the entire air supply air passage is expanded, and the ventilation volume can be increased as compared with the first ventilation operation. Therefore, the refrigerant can be discharged from the indoor space S1 in a short time. Further, in the present embodiment, the balance between the supply air and the exhaust becomes "air supply rich", the amount of leaked air is increased by making the room R a positive pressure, the leaked refrigerant is discharged quickly, and the leaked refrigerant in the room is discharged. The concentration can be reduced.
[第8の実施形態]
 図27は、本開示の第8の実施形態に係る空調システムの、換気装置の第2換気運転の第1動作について説明するための概略図である。図28は、換気装置の第2換気運転の第2動作について説明するための概略図である。
 本実施形態の換気装置112では、ケーシング158の内部に、第7の実施形態で説明した給気側バイパス通路193が設けられておらず、その代わりに、排気側バイパス通路194が設けられている。
[8th Embodiment]
FIG. 27 is a schematic view for explaining the first operation of the second ventilation operation of the ventilation device of the air conditioning system according to the eighth embodiment of the present disclosure. FIG. 28 is a schematic view for explaining the second operation of the second ventilation operation of the ventilation device.
In the ventilation device 112 of the present embodiment, the air supply side bypass passage 193 described in the seventh embodiment is not provided inside the casing 158, and instead, the exhaust side bypass passage 194 is provided. ..
 ケーシング158の内部には、第3側板158cの右側に間隔をあけて第3側板158cと平行に第9区画壁170iが設けられている。第9区画壁170iは、還気側通路164、外気側通路165、第2調湿室163、給気側通路166、及び排気側通路167と、第3側板158cとの間に排気側バイパス通路194を形成する。排気側バイパス通路194の後端は、還気側通路164と連通している。 Inside the casing 158, a ninth partition wall 170i is provided in parallel with the third side plate 158c at intervals on the right side of the third side plate 158c. The ninth partition wall 170i is an exhaust side bypass passage between the return air side passage 164, the outside air side passage 165, the second humidity control chamber 163, the air supply side passage 166, and the exhaust side passage 167 and the third side plate 158c. Form 194. The rear end of the exhaust side bypass passage 194 communicates with the return air side passage 164.
 ケーシング158は、第7の実施形態における「第2給気風路」に代えて、「第2排気風路」を有する。第2排気風路は、還気取入口141から還気側通路164、排気側バイパス通路194、排気ファン室169を通って排気吹出口142に到る空気の流路である。第2排気風路を含めると、ケーシング158は、3系統の排気風路を有する。 The casing 158 has a "second exhaust air passage" instead of the "second air supply air passage" in the seventh embodiment. The second exhaust air passage is an air flow path from the return air intake 141 to the exhaust air outlet 142 through the return air side passage 164, the exhaust side bypass passage 194, and the exhaust fan chamber 169. Including the second exhaust air passage, the casing 158 has three exhaust air passages.
 本実施形態の開閉機構135は、第7の実施形態の第3給気ダンパ179に代えて、第5区画壁170eの左端に、第3排気ダンパ180を備えている。第3排気ダンパ180は、排気用開閉機構184を構成している。第3排気ダンパ180を開くと、排気側バイパス通路194と排気ファン室169とが連通され、第2排気風路が開かれる。第3排気ダンパ180を閉じると、排気側バイパス通路194と排気ファン室169とが遮断される。 The opening / closing mechanism 135 of the present embodiment is provided with a third exhaust damper 180 at the left end of the fifth section wall 170e instead of the third air supply damper 179 of the seventh embodiment. The third exhaust damper 180 constitutes an exhaust opening / closing mechanism 184. When the third exhaust damper 180 is opened, the exhaust side bypass passage 194 and the exhaust fan chamber 169 are communicated with each other, and the second exhaust air passage is opened. When the third exhaust damper 180 is closed, the exhaust side bypass passage 194 and the exhaust fan chamber 169 are shut off.
 本実施形態において、換気装置112の第1換気運転は、第7の実施形態と同様に行われる。
 本実施形態において、換気装置112の第2換気運転は、第1換気運転と同様に「第1動作」と「第2動作」とが行われる。第2換気運転の第1動作は、第1換気運転の第1動作に加え、第2排気風路を用いた排気をも行う動作である。第2換気運転の第2動作は、第1換気運転の第2動作に加え、第2排気風路を用いた排気をも行う動作である。
In the present embodiment, the first ventilation operation of the ventilation device 112 is performed in the same manner as in the seventh embodiment.
In the present embodiment, the second ventilation operation of the ventilation device 112 is performed as the "first operation" and the "second operation" in the same manner as the first ventilation operation. The first operation of the second ventilation operation is an operation of performing exhaust using the second exhaust air passage in addition to the first operation of the first ventilation operation. The second operation of the second ventilation operation is an operation of performing exhaust using the second exhaust air passage in addition to the second operation of the first ventilation operation.
 第2換気運転を行う場合、換気コントローラ136は、常時、第3排気ダンパ180を開状態とする。これにより、第2換気運転中は、第2排気風路が開いた状態となる。そのため、排気ファン133の作動により、第1系統又は第2系統の第1排気風路を経た室外空間S2への排気EAに加え、第2排気風路を経た室外空間S2への排気EAが行われる。このように第1及び第2排気風路の双方が開いた状態となることによって全体の排気風路が拡大され、第1換気運転よりも換気量を増大させることができる。そのため、室内空間S1から短時間に冷媒を排出することができる。また、本実施形態では、給気と排気とのバランスが「排気リッチ」となり、部屋Rを負圧にすることで漏洩冷媒が他の部屋又はスペースに拡散するのを抑制することができる。 When performing the second ventilation operation, the ventilation controller 136 always keeps the third exhaust damper 180 in the open state. As a result, the second exhaust air passage is in an open state during the second ventilation operation. Therefore, by operating the exhaust fan 133, in addition to the exhaust EA to the outdoor space S2 passing through the first exhaust air passage of the first system or the second system, the exhaust EA to the outdoor space S2 passing through the second exhaust air passage is performed. It is said. When both the first and second exhaust air passages are opened in this way, the entire exhaust air passage is expanded, and the ventilation volume can be increased as compared with the first ventilation operation. Therefore, the refrigerant can be discharged from the indoor space S1 in a short time. Further, in the present embodiment, the balance between the supply air and the exhaust gas becomes "exhaust rich", and by making the room R a negative pressure, it is possible to suppress the leakage refrigerant from diffusing into another room or space.
[第9の実施形態]
 図29は、本開示の第9の実施形態に係る空調システムの、換気装置の第2換気運転の第1動作について説明するための概略図である。図30は、換気装置の第2換気運転の第2動作について説明するための概略図である。
 本実施形態の換気装置112では、ケーシング158の内部に、第4の実施形態で説明した給気側バイパス通路193及び第3給気ダンパ179と、第5の実施形態で説明した排気側バイパス通路194及び第3排気ダンパ180とが設けられている。ケーシング158は、第7の実施形態で説明した第2給気風路と、第8の実施形態で説明した第2排気風路とを有する。
[9th Embodiment]
FIG. 29 is a schematic view for explaining the first operation of the second ventilation operation of the ventilation device of the air conditioning system according to the ninth embodiment of the present disclosure. FIG. 30 is a schematic view for explaining the second operation of the second ventilation operation of the ventilation device.
In the ventilation device 112 of the present embodiment, the air supply side bypass passage 193 and the third air supply damper 179 described in the fourth embodiment and the exhaust side bypass passage described in the fifth embodiment are inside the casing 158. 194 and a third exhaust damper 180 are provided. The casing 158 has a second air supply air passage described in the seventh embodiment and a second exhaust air passage described in the eighth embodiment.
 本実施形態において、換気装置112の第1換気運転は、第7の実施形態と同様に行われる。
 本実施形態において、換気装置112の第2換気運転は、第1換気運転と同様に「第1動作」と「第2動作」とが行われる。第2換気運転の第1動作は、第1換気運転の第1動作に加え、第2給気風路を用いた給気及び第2排気風路を用いた排気をも行う動作である。第2換気運転の第2動作は、第1換気運転の第2動作に加え、第2給気風路を用いた給気及び第2排気風路を用いた排気をも行う動作である。
In the present embodiment, the first ventilation operation of the ventilation device 112 is performed in the same manner as in the seventh embodiment.
In the present embodiment, the second ventilation operation of the ventilation device 112 is performed as the "first operation" and the "second operation" in the same manner as the first ventilation operation. The first operation of the second ventilation operation is an operation of performing air supply using the second air supply air passage and exhaust air using the second exhaust air passage in addition to the first operation of the first ventilation operation. The second operation of the second ventilation operation is an operation of supplying air using the second air supply air passage and exhausting air using the second exhaust air passage in addition to the second operation of the first ventilation operation.
 第2換気運転を行う場合、換気コントローラ136は、常時、第3給気ダンパ179及び第3排気ダンパ180を開状態とする。これにより、第2換気運転中は、第2給気風路と第2排気風路とが開いた状態となる。そのため、給気ファン134の作動により、第1系統又は第2系統の第1給気風路を経た室内空間S1への給気SAに加え、第2給気風路を経た室内空間S1への給気SAが行われる。排気ファン133の作動により、第1系統又は第2系統の第1排気風路を経た室外空間S2への排気EAに加え、第2排気風路を経た室外空間S2への排気EAが行われる。このように第1及び第2給気風路、並びに、第1及び第2排気風路の双方が開いた状態となることによって全体の給気風路及び排気風路が拡大され、第1換気運転よりも換気量を増大させることができる。そのため、室内空間S1から短時間に冷媒を排出することができる。なお、本実施形態では、例えば、給気ファン134の回転数と排気ファン133の回転数との比率を変化させることによって、冷媒漏洩時の給気と排気とのバランスを、通常運転時に対して「給気リッチ」又は「排気リッチ」に変更することができる。 When performing the second ventilation operation, the ventilation controller 136 always keeps the third air supply damper 179 and the third exhaust damper 180 open. As a result, during the second ventilation operation, the second air supply air passage and the second exhaust air passage are in an open state. Therefore, by operating the air supply fan 134, in addition to the air supply SA to the indoor space S1 passing through the first air supply air passage of the first system or the second system, air is supplied to the indoor space S1 passing through the second air supply air passage. SA is performed. By operating the exhaust fan 133, in addition to the exhaust EA to the outdoor space S2 passing through the first exhaust air passage of the first system or the second system, the exhaust EA to the outdoor space S2 passing through the second exhaust air passage is performed. By opening both the first and second air supply air passages and the first and second exhaust air passages in this way, the entire air supply air passage and the exhaust air passage are expanded, and the first ventilation operation is performed. Can also increase ventilation. Therefore, the refrigerant can be discharged from the indoor space S1 in a short time. In the present embodiment, for example, by changing the ratio between the rotation speed of the air supply fan 134 and the rotation speed of the exhaust fan 133, the balance between the air supply and the exhaust gas at the time of refrigerant leakage is adjusted with respect to the normal operation. It can be changed to "air supply rich" or "exhaust rich".
 <第4~第9の実施形態の作用効果>
(1) 上述した第4、第6、第7、及び第9の実施形態における空調システム110は、冷媒との熱交換により調和空気を生成し室内空間S1(空調対象空間)に供給する空調機111と、冷媒の漏れを検出する冷媒センサ126と、室内空間S1の換気を行う換気装置112と、換気装置112を制御する換気コントローラ136とを備える。換気装置112は、熱交換器132、186,189と、室内空間S1と室外空間S2(空調対象空間外)とを熱交換器132、186,189を経由して連通させる第1給気風路及び第1排気風路と、室内空間S1と室外空間S2とを熱交換器132,186,189を経由せずに連通させる第2給気風路と、第1給気風路及び第2給気風路を介して室外空間S2の空気を室内空間S1に供給する給気ファン134と、第1排気風路を介して室内空間S1の空気を室外空間S2へ排出させる排気ファン133と、第1給気風路及び第2給気風路を開閉する給気用開閉機構155、183と、を備える。換気コントローラ136は、冷媒センサ126が冷媒の漏洩を検出したとき、1給気風路及び第2給気風路の双方を開くように給気用開閉機構155,183を制御する。
<Action and effect of the fourth to ninth embodiments>
(1) The air conditioning system 110 in the fourth, sixth, seventh, and ninth embodiments described above is an air conditioner that generates harmonized air by exchanging heat with a refrigerant and supplies it to the indoor space S1 (air conditioning target space). It includes a 111, a refrigerant sensor 126 that detects a refrigerant leak, a ventilation device 112 that ventilates the indoor space S1, and a ventilation controller 136 that controls the ventilation device 112. The ventilation device 112 includes a first air supply air passage that communicates the heat exchangers 132, 186, 189, the indoor space S1 and the outdoor space S2 (outside the space subject to air conditioning) via the heat exchangers 132, 186, 189. The first exhaust air passage, the second air supply air passage that communicates the indoor space S1 and the outdoor space S2 without passing through the heat exchangers 132, 186, 189, and the first air supply air passage and the second air supply air passage. An air supply fan 134 that supplies the air of the outdoor space S2 to the indoor space S1 via the first air passage, an exhaust fan 133 that discharges the air of the indoor space S1 to the outdoor space S2 via the first exhaust air passage, and a first air supply air passage. Also provided are air supply opening / closing mechanisms 155 and 183 that open / close the second air supply air passage. The ventilation controller 136 controls the air supply opening / closing mechanisms 155 and 183 so as to open both the first air supply air passage and the second air supply air passage when the refrigerant sensor 126 detects the leakage of the refrigerant.
 以上のような構成により、空調機111から冷媒が漏洩し、漏洩した冷媒を冷媒センサ126が検出したときに、第1給気風路及び第2給気風路の双方が開くことで、給気の風路を拡大し、換気量を増やすことができる。したがって、室外空間S2へ短時間に冷媒を排出することができる。 With the above configuration, when the refrigerant leaks from the air conditioner 111 and the refrigerant sensor 126 detects the leaked refrigerant, both the first air supply air passage and the second air supply air passage are opened to supply air. The air passage can be expanded and the ventilation volume can be increased. Therefore, the refrigerant can be discharged to the outdoor space S2 in a short time.
(2) 上述した第6及び第9の実施形態における空調システム110では、換気装置112が、室内空間S1と室外空間S2とを熱交換器132,186,189を経由せずに連通させかつ排気ファン133により室内空間S1の空気を室外空間S2へ排出させる第2排気風路と、第1排気風路及び第2排気風路を開閉する排気用開閉機構156,184と、をさらに備え、換気コントローラ136が、冷媒センサ126が冷媒の漏洩を検出したとき、第1排気風路及び第2排気風路の双方を開くように排気用開閉機構156,184を制御する。
 このような構成により、空調機111から冷媒が漏洩し、漏洩した冷媒を冷媒センサ126が検出したときに、第1排気風路及び第2排気風路の双方が開くことで、排気の風路を拡大し、換気量をさらに増やすことができる。
(2) In the air conditioning system 110 according to the sixth and ninth embodiments described above, the ventilation device 112 communicates the indoor space S1 and the outdoor space S2 without passing through the heat exchangers 132, 186, 189 and exhausts air. A second exhaust air passage for discharging the air in the indoor space S1 to the outdoor space S2 by the fan 133, and an exhaust opening / closing mechanism 156, 184 for opening and closing the first exhaust air passage and the second exhaust air passage are further provided for ventilation. The controller 136 controls the exhaust opening / closing mechanisms 156 and 184 so as to open both the first exhaust air passage and the second exhaust air passage when the refrigerant sensor 126 detects the leakage of the refrigerant.
With such a configuration, when the refrigerant leaks from the air conditioner 111 and the refrigerant sensor 126 detects the leaked refrigerant, both the first exhaust air passage and the second exhaust air passage are opened, so that the exhaust air passage is opened. Can be expanded and the ventilation volume can be further increased.
(3) 上述した第5、第6、第8、及び第9の実施形態における空調システム110は、冷媒との熱交換により調和空気を生成し室内空間S1に供給する空調機111と、冷媒の漏れを検出する冷媒センサ126と、室内空間S1の換気を行う換気装置112と、換気装置112を制御する換気コントローラ136と、を備える。換気装置112は、熱交換器132,186,189と、室内空間S1と室外空間S2とを熱交換器132,186,189を経由して連通させる第1給気風路及び第1排気風路と、室内空間S1と室外空間S2とを熱交換器132,186,189を経由せずに連通させる第2排気風路と、第1給気風路を介して室外空間S2の空気を室内空間S1に供給する給気ファン134と、第1排気風路及び第2排気風路を介して室内空間S1の空気を室外空間S2へ排出する排気ファン133と、第1排気風路及び第2排気風路を開閉する排気用開閉機構156,184と、を備える。換気コントローラ136は、冷媒センサ126が冷媒の漏洩を検出したとき、第1排気風路及び第2排気風路の双方を開くように排気用開閉機構156,184を制御する。 (3) The air conditioning system 110 according to the fifth, sixth, eighth, and ninth embodiments described above includes an air conditioner 111 that generates harmonized air by exchanging heat with the refrigerant and supplies it to the indoor space S1 and the refrigerant. It includes a refrigerant sensor 126 that detects a leak, a ventilation device 112 that ventilates the indoor space S1, and a ventilation controller 136 that controls the ventilation device 112. The ventilation device 112 includes a first air supply air passage and a first exhaust air passage that communicate the heat exchangers 132, 186, 189 and the indoor space S1 and the outdoor space S2 via the heat exchangers 132, 186, 189. , The air in the outdoor space S2 is transferred to the indoor space S1 via the second exhaust air passage that communicates the indoor space S1 and the outdoor space S2 without passing through the heat exchangers 132, 186, 189 and the first air supply air passage. The supply air fan 134, the exhaust fan 133 that discharges the air in the indoor space S1 to the outdoor space S2 via the first exhaust air passage and the second exhaust air passage, and the first exhaust air passage and the second exhaust air passage. The exhaust opening / closing mechanism 156, 184 for opening / closing the air is provided. The ventilation controller 136 controls the exhaust opening / closing mechanism 156, 184 so as to open both the first exhaust air passage and the second exhaust air passage when the refrigerant sensor 126 detects the leakage of the refrigerant.
 以上のような構成により、空調機111から冷媒が漏洩し、漏洩した冷媒を冷媒センサ126が検出したときに、第1排気風路及び第2排気風路の双方が開くことで、排気の風路を拡大し、換気量を増やすことができる。したがって、室外空間S2へ短時間に冷媒を排出することができる。 With the above configuration, when the refrigerant leaks from the air conditioner 111 and the refrigerant sensor 126 detects the leaked refrigerant, both the first exhaust air passage and the second exhaust air passage are opened, so that the exhaust air is blown. The road can be expanded and ventilation can be increased. Therefore, the refrigerant can be discharged to the outdoor space S2 in a short time.
[その他の変形例]
 本開示は前述した実施形態に限定されるものではなく、特許請求の範囲内において種々の変更が可能である。
[Other variants]
The present disclosure is not limited to the above-described embodiment, and various modifications can be made within the scope of the claims.
 例えば、前述した第1の実施形態では、換気装置30による給気と排気のバランス変更として6つのパターンについて説明したが、本開示はこれらに限定されるものではなく、居室の用途によっては、例えば通常運転時は排気リッチ又は給気リッチであるものを、冷媒漏洩時には、換気装置による給気と排気の各風量を同じにすることもできる。 For example, in the above-described first embodiment, six patterns have been described as changing the balance between air supply and exhaust by the ventilation device 30, but the present disclosure is not limited to these, and depending on the use of the living room, for example, It is also possible to make the exhaust air rich or the air supply rich in the normal operation, and the air volume of the air supply and the exhaust air by the ventilation device the same in the case of the refrigerant leakage.
 パターン5及びパターン6として述べたように、通常運転時に給気リッチであるものを、冷媒漏洩には、その給気リッチの程度を大きくすることや、その逆に、通常運転時は排気リッチであるものを、冷媒漏洩時には、その排気リッチの程度を大きくすることも、本開示における給気と排気のバランス変更に含まれる。例えば、給気リッチの場合、通常運転時に給気120m/h、排気100m/hであるのを、冷媒漏洩時には、給気150m/h、排気100m/hにすることも、本開示における給気と排気のバランス変更に含まれる。 As described as Pattern 5 and Pattern 6, what is rich in air supply during normal operation is increased in the degree of rich air supply for refrigerant leakage, and conversely, it is rich in exhaust gas during normal operation. Increasing the degree of exhaust richness in the event of a refrigerant leak is also included in the change in the balance between air supply and exhaust in the present disclosure. For example, when the air supply-rich air supply 120 m 3 / h during normal operation, from an exhaust 100 m 3 / h, when the refrigerant leakage, the air supply 150 meters 3 / h, also the exhaust 100 m 3 / h, the Included in the disclosure of air supply and exhaust balance changes.
 また、前述した第1、第2、第4~第6の実施形態では、換気装置内に直交型の全熱交換器を配設しているが、ロータの回転により還気からの熱回収を行う回転型の全熱交換器を採用することもできる。また、換気装置における、かかる全熱交換器の採用を省略することもできる。 Further, in the first, second, fourth to sixth embodiments described above, the orthogonal total heat exchanger is arranged in the ventilation device, but the heat is recovered from the return air by rotating the rotor. It is also possible to adopt a rotary total heat exchanger to perform. It is also possible to omit the adoption of such a total heat exchanger in the ventilation system.
 第2の実施形態では、補助ファン40は居室に空気を供給する送風ファンであるが、これに代えて、居室から排気をする排気ファンとすることもできる。さらに、送風ファンと排気ファンとで補助ファンを構成することもできる。 In the second embodiment, the auxiliary fan 40 is a blower fan that supplies air to the living room, but instead of this, it can be an exhaust fan that exhausts air from the living room. Further, an auxiliary fan can be configured by the blower fan and the exhaust fan.
 第2の実施形態では、補助ファン40を換気装置に通信可能に接続しているが、当該補助ファン40を室内機に通信可能に接続することもできる。この場合、冷媒センサ24が漏洩冷媒を検知すると、その検知信号を受けた室内機20の制御部25が補助ファン40に冷媒漏洩の信号を発する。 In the second embodiment, the auxiliary fan 40 is communicably connected to the ventilation device, but the auxiliary fan 40 can also be communicably connected to the indoor unit. In this case, when the refrigerant sensor 24 detects the leaked refrigerant, the control unit 25 of the indoor unit 20 that receives the detection signal issues a refrigerant leak signal to the auxiliary fan 40.
 第3、第7~第9の実施形態において、冷媒センサは、換気装置112に備えられていてもよい。この場合、冷媒センサ126が換気装置112の冷媒回路161からの冷媒の漏れを検出したときに、空調機111からの指示によらずに換気装置112が単独で第2の換気運転を行ってもよい。
 第1~第9の実施形態において、冷媒センサ24、126は、換気装置30、112における冷媒の漏洩を検出するものであってもよい。
 第1~第9の実施形態において、換気装置30、112は、空調機111のコントローラ(制御部)25、124によって動作が制御されてもよい。
In the third, seventh to ninth embodiments, the refrigerant sensor may be provided in the ventilator 112. In this case, when the refrigerant sensor 126 detects the leakage of the refrigerant from the refrigerant circuit 161 of the ventilation device 112, even if the ventilation device 112 independently performs the second ventilation operation without the instruction from the air conditioner 111. Good.
In the first to ninth embodiments, the refrigerant sensors 24 and 126 may detect the leakage of the refrigerant in the ventilation devices 30 and 112.
In the first to ninth embodiments, the operation of the ventilation devices 30 and 112 may be controlled by the controllers (control units) 25 and 124 of the air conditioner 111.
 第1~第9の実施形態において、空調機が設置された建物とは異なる遠隔地に設けられたクラウドサーバ(制御部)を備え、このクラウドサーバと、換気装置30,112の制御部36,136及び/又は空調機の制御部25,124とがインターネット等の通信ネットワークを介して接続されていてもよい。この場合、漏洩した冷媒が冷媒センサ24,126で検知されると、その情報が通信ネットワークを介してクラウドサーバに送信され、クラウドサーバが、換気装置30,112の制御部36,136に対して冷媒漏洩時の動作制御を行う旨の指示を出すように、空調システムが構成されていてもよい。 In the first to ninth embodiments, a cloud server (control unit) provided in a remote location different from the building in which the air conditioner is installed is provided, and this cloud server and the control unit 36 of the ventilation devices 30, 112, The 136 and / or the control units 25 and 124 of the air conditioner may be connected to each other via a communication network such as the Internet. In this case, when the leaked refrigerant is detected by the refrigerant sensors 24 and 126, the information is transmitted to the cloud server via the communication network, and the cloud server sends the leaked refrigerant to the control units 36 and 136 of the ventilation devices 30 and 112. The air conditioning system may be configured to give an instruction to control the operation when the refrigerant leaks.
20 : 室内機(空調機)
22 : 利用側熱交換器
24 : 冷媒センサ
30 : 換気装置
34 : 送風用ファン
35 : 排気用ファン
36 : 制御部
40 : 補助ファン
110 : 空調システム
111 : 空調機
112 : 換気装置
126 : 冷媒センサ
133 : 排気ファン
134 : 給気ファン
136 : 換気コントローラ(制御部)
146 : 第1排気風路
147 : 第1給気風路
148 : 第2給気風路
149 : 第2排気風路
155 : 給気用ダンパ(給気用開閉機構)
156 : 排気用ダンパ(排気用開閉機構)
161 : 冷媒回路
183 : 給気用開閉機構
184 : 排気用開閉機構
186 : 熱交換器
189 : 熱交換器
 
20: Indoor unit (air conditioner)
22: User side heat exchanger 24: Refrigerant sensor 30: Ventilation device 34: Blower fan 35: Exhaust fan 36: Control unit 40: Auxiliary fan 110: Air conditioning system 111: Air conditioner 112: Ventilation device 126: Refrigerant sensor 133 : Exhaust fan 134: Air supply fan 136: Ventilation controller (control unit)
146: 1st exhaust air passage 147: 1st air supply air passage 148: 2nd air supply air passage 149: 2nd exhaust air passage 155: Air supply damper (air supply opening / closing mechanism)
156: Exhaust damper (exhaust opening / closing mechanism)
161: Refrigerant circuit 183: Air supply opening / closing mechanism 184: Exhaust opening / closing mechanism 186: Heat exchanger 189: Heat exchanger

Claims (5)

  1.  空調機(20)の空調対象空間における冷媒の漏洩を検知するための冷媒センサ(24,126)と、給気及び排気を行う換気装置(30,112)と、前記換気装置(30,112)の動作を制御する制御部(36,136)と、を備え、
     前記制御部(36,136)は、前記冷媒センサ(24,126)による冷媒の漏洩を検知していないときの通常運転時と、前記冷媒センサ(24,126)による漏洩冷媒の検知時とで前記換気装置(30,112)の給気と排気のバランスを変更させる空調システム。
    A refrigerant sensor (24,126) for detecting the leakage of refrigerant in the air-conditioned space of the air conditioner (20), a ventilation device (30,112) for supplying and exhausting air, and the ventilation device (30,112). A control unit (36, 136) that controls the operation of
    The control unit (36,136) is in normal operation when the refrigerant sensor (24,126) does not detect the leakage of the refrigerant, and when the refrigerant sensor (24,126) detects the leaked refrigerant. An air conditioning system that changes the balance between air supply and exhaust of the ventilation system (30, 112).
  2.  前記冷媒が微燃性又は可燃性を有し、
     前記換気装置(30)が、ファン(34)による給気及び/又はファン(35)による排気を行い、
     前記空調システムは、
     冷媒との熱交換により調和空気を生成する熱交換器(22)を有する空調機(20)と、
     前記空調機(20)及び/又は前記換気装置(30)に通信可能に接続され、前記冷媒センサ(24)による漏洩冷媒の非検知時には作動せず当該冷媒センサ(24)による漏洩冷媒の検知時に作動する補助ファン(40)と、を備える、請求項1に記載の空調システム。
    The refrigerant is slightly flammable or flammable and
    The ventilation device (30) supplies air by the fan (34) and / or exhausts by the fan (35).
    The air conditioning system
    An air conditioner (20) having a heat exchanger (22) that generates harmonized air by exchanging heat with a refrigerant.
    It is communicably connected to the air conditioner (20) and / or the ventilation device (30), does not operate when the leaked refrigerant is not detected by the refrigerant sensor (24), and does not operate when the leaked refrigerant is detected by the refrigerant sensor (24). The air conditioning system according to claim 1, further comprising an operating auxiliary fan (40).
  3.  前記換気装置(112)は、空気に含まれる水分を吸着する吸着剤が担持された2つの熱交換器(186,189)を有しかつ前記2つの熱交換器(186,189)を交互に蒸発器又は凝縮器として機能させる冷媒回路(161)と、前記空調対象空間の内部と外部とを前記各熱交換器(186,189)を経由して連通させる2系統の給気風路及び2系統の排気風路と、前記各給気風路を介して前記空調対象空間外の空気を前記空調対象空間内に供給する給気ファン(134)と、前記各排気風路を介して前記空調対象空間内の空気を前記空調対象空間外へ排出する排気ファン(133)と、2系統の前記給気風路を開閉する給気用開閉機構(183)と、2系統の前記排気風路を開閉する排気用開閉機構(184)と、を備え、
     前記制御部(136)は、前記冷媒センサ(126)が冷媒の漏洩を検出したとき、前記給気ファン(134)及び前記排気ファン(133)のうち一方のファンを作動して他方のファンを停止し、前記給気風路及び前記排気風路のうち前記一方のファンに対応する一方の風路を2系統とも開きかつ他方の風路を2系統とも閉じるように前記給気用開閉機構(183)及び前記排気用開閉機構(184)を制御する、請求項1に記載の空調システム。
    The ventilator (112) has two heat exchangers (186,189) carrying an adsorbent that adsorbs moisture contained in the air, and alternately alternates the two heat exchangers (186,189). A refrigerant circuit (161) that functions as an evaporator or a condenser, and two air supply air passages and two systems that communicate the inside and outside of the air-conditioned space via the heat exchangers (186, 189). The air supply fan (134) that supplies air outside the air conditioning target space into the air conditioning target space through the exhaust air passages, and the air conditioning target space via the exhaust air passages. An exhaust fan (133) that discharges the air inside to the outside of the air-conditioned space, an air supply opening / closing mechanism (183) that opens / closes the air supply air passages of the two systems, and an exhaust that opens / closes the exhaust air passages of the two systems. Equipped with an opening / closing mechanism (184)
    When the refrigerant sensor (126) detects the leakage of the refrigerant, the control unit (136) operates one of the air supply fan (134) and the exhaust fan (133) to operate the other fan. The air supply opening / closing mechanism (183) is stopped so that one of the air supply air passage and the exhaust air passage corresponding to the one fan is opened and both of the other air passages are closed. ) And the air conditioning system according to claim 1, which controls the exhaust opening / closing mechanism (184).
  4.  前記換気装置(112)は、熱交換器(132,186,189)と、前記空調対象空間の内部と外部とを前記熱交換器(132,186,189)を経由して連通させる第1給気風路(147)及び第1排気風路(146)と、前記空調対象空間の内部と外部とを前記熱交換器(132,186,189)を経由せずに連通させる第2給気風路(148)と、前記第1給気風路(147)及び前記第2給気風路(148)を介して前記空調対象空間外の空気を前記空調対象空間内に供給する給気ファン(134)と、前記第1排気風路(146)を介して前記空調対象空間内の空気を前記空調対象空間外へ排出させる排気ファン(133)と、前記第1給気風路(147)及び前記第2給気風路(148)を開閉する給気用開閉機構(155,183)と、を備え、
     前記制御部(136)は、前記冷媒センサ(126)が冷媒の漏洩を検出したとき、前記第1給気風路(147)及び前記第2給気風路(148)の双方を開くように前記給気用開閉機構(155,183)を制御する、請求項1に記載の空調システム。
    The ventilation device (112) is a first supply that communicates the heat exchanger (132,186,189) with the inside and outside of the air-conditioned space via the heat exchanger (132,186,189). A second air supply air passage (147) and a first exhaust air passage (146) that communicate the inside and outside of the air-conditioned space without passing through the heat exchanger (132,186,189). 148), and an air supply fan (134) that supplies air outside the air-conditioned space into the air-conditioned space via the first air-conditioned air passage (147) and the second air-conditioned air passage (148). The exhaust fan (133) that discharges the air in the air-conditioned space to the outside of the air-conditioned space through the first exhaust air passage (146), the first air supply air passage (147), and the second air supply air. It is equipped with an air supply opening / closing mechanism (155, 183) that opens / closes the road (148).
    The control unit (136) supplies the air supply so as to open both the first air supply air passage (147) and the second air supply air passage (148) when the refrigerant sensor (126) detects the leakage of the refrigerant. The air conditioning system according to claim 1, which controls a care opening / closing mechanism (155, 183).
  5.  前記換気装置(112)が、熱交換器(132,186,189)と、前記空調対象空間の内部と外部とを前記熱交換器(132,186,189)を経由して連通させる第1給気風路(147)及び第1排気風路(146)と、前記空調対象空間の内部と外部とを前記熱交換器(132,186,189)を経由せずに連通させる第2排気風路(149)と、前記第1給気風路(147)を介して前記空調対象空間外の空気を前記空調対象空間内に供給する給気ファン(134)と、前記第1排気風路(146)及び前記第2排気風路(149)を介して前記空調対象空間内の空気を前記空調対象空間外へ排出する排気ファン(133)と、前記第1排気風路(146)及び前記第2排気風路(149)を開閉する排気用開閉機構(156,184)と、を備え、
     前記制御部(136)は、前記冷媒センサ(126)が冷媒の漏洩を検出したとき、前記第1排気風路(146)及び前記第2排気風路(149)の双方を開くように前記排気用開閉機構(156,184)を制御する、請求項1に記載の空調システム。
     
    The first supply in which the ventilation device (112) communicates the heat exchanger (132,186,189) with the inside and outside of the air-conditioned space via the heat exchanger (132,186,189). A second exhaust air passage (147) and a first exhaust air passage (146) that communicate the inside and outside of the air-conditioned space without passing through the heat exchanger (132,186,189). 149), an air supply fan (134) that supplies air outside the air-conditioned space to the air-conditioned space via the first air-conditioned air passage (147), and the first exhaust air passage (146). The exhaust fan (133) that discharges the air in the air-conditioned space to the outside of the air-conditioned space through the second exhaust air passage (149), the first exhaust air passage (146), and the second exhaust air. It is equipped with an exhaust opening / closing mechanism (156,184) that opens / closes the road (149).
    When the refrigerant sensor (126) detects the leakage of the refrigerant, the control unit (136) opens both the first exhaust air passage (146) and the second exhaust air passage (149). The air conditioning system according to claim 1, which controls an opening / closing mechanism (156, 184).
PCT/JP2020/017999 2019-05-08 2020-04-27 Air conditioning system WO2020226091A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2019088160A JP2020183829A (en) 2019-05-08 2019-05-08 Air conditioning system and auxiliary fan
JP2019-088577 2019-05-08
JP2019088577A JP2020183838A (en) 2019-05-08 2019-05-08 Air conditioning system
JP2019-088160 2019-05-08
JP2019-089476 2019-05-10
JP2019-089518 2019-05-10
JP2019089476A JP2020186821A (en) 2019-05-10 2019-05-10 Air conditioning system
JP2019089518A JP7457229B2 (en) 2019-05-10 2019-05-10 air conditioning system

Publications (1)

Publication Number Publication Date
WO2020226091A1 true WO2020226091A1 (en) 2020-11-12

Family

ID=73050604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017999 WO2020226091A1 (en) 2019-05-08 2020-04-27 Air conditioning system

Country Status (1)

Country Link
WO (1) WO2020226091A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023113040A1 (en) * 2021-12-17 2023-06-22 ダイキン工業株式会社 Air-conditioning system and air-conditioning control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109120A (en) * 2007-10-31 2009-05-21 Daikin Ind Ltd Humidity conditioner
JP2016196996A (en) * 2015-04-06 2016-11-24 ダイキン工業株式会社 Utilization-side air conditioner and air conditioner comprising the same
JP2016211762A (en) * 2015-04-30 2016-12-15 ダイキン工業株式会社 Air conditioning ventilation system
WO2018158912A1 (en) * 2017-03-02 2018-09-07 三菱電機株式会社 Refrigeration cycle device and refrigeration cycle system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109120A (en) * 2007-10-31 2009-05-21 Daikin Ind Ltd Humidity conditioner
JP2016196996A (en) * 2015-04-06 2016-11-24 ダイキン工業株式会社 Utilization-side air conditioner and air conditioner comprising the same
JP2017075777A (en) * 2015-04-06 2017-04-20 ダイキン工業株式会社 Utilization-side air conditioner and air conditioner comprising the same
JP2016211762A (en) * 2015-04-30 2016-12-15 ダイキン工業株式会社 Air conditioning ventilation system
WO2018158912A1 (en) * 2017-03-02 2018-09-07 三菱電機株式会社 Refrigeration cycle device and refrigeration cycle system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023113040A1 (en) * 2021-12-17 2023-06-22 ダイキン工業株式会社 Air-conditioning system and air-conditioning control device
JP2023090692A (en) * 2021-12-17 2023-06-29 ダイキン工業株式会社 air conditioning system

Similar Documents

Publication Publication Date Title
JP4942785B2 (en) Air conditioning apparatus and air conditioning system
US7730736B2 (en) Air conditioning system
JP2002081688A (en) Ventilator
JP2021042918A (en) Air conditioning system
JP2013124788A (en) Ventilation system
JP7457229B2 (en) air conditioning system
WO2020226091A1 (en) Air conditioning system
WO2020230590A1 (en) Air conditioning system
US20220090813A1 (en) Outside air treatment device and air conditioning system
JP4520960B2 (en) Ventilation system
JP2020183838A (en) Air conditioning system
JP2020186821A (en) Air conditioning system
JP2020183829A (en) Air conditioning system and auxiliary fan
WO2023053712A1 (en) Ventilation device and air-conditioning system
JP7260827B2 (en) Ventilation and air conditioning system
WO2023276588A1 (en) Air conditioning system
JP7448827B2 (en) air conditioning system
JP7397275B2 (en) air conditioning system
JP2019039602A (en) Air conditioning system
WO2023276511A1 (en) Ventilation device
WO2023074500A1 (en) Ventilation device
JP7477739B2 (en) Outdoor air treatment device and air conditioning system
WO2022259361A1 (en) Air conditioning system
JP2018025337A (en) air conditioner
JP2023005592A (en) Ventilation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20802342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20802342

Country of ref document: EP

Kind code of ref document: A1