WO2023074481A1 - Amide compound and curable resin composition containing same - Google Patents

Amide compound and curable resin composition containing same Download PDF

Info

Publication number
WO2023074481A1
WO2023074481A1 PCT/JP2022/038853 JP2022038853W WO2023074481A1 WO 2023074481 A1 WO2023074481 A1 WO 2023074481A1 JP 2022038853 W JP2022038853 W JP 2022038853W WO 2023074481 A1 WO2023074481 A1 WO 2023074481A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable resin
cured product
resin composition
amide compound
curing agent
Prior art date
Application number
PCT/JP2022/038853
Other languages
French (fr)
Japanese (ja)
Inventor
由紀 田窪
誠 中井
遼平 小野
Original Assignee
ユニチカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニチカ株式会社 filed Critical ユニチカ株式会社
Priority to JP2022580167A priority Critical patent/JP7253300B1/en
Priority to CN202280071313.9A priority patent/CN118159521A/en
Publication of WO2023074481A1 publication Critical patent/WO2023074481A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • C07D209/48Iso-indoles; Hydrogenated iso-indoles with oxygen atoms in positions 1 and 3, e.g. phthalimide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/48Polymers modified by chemical after-treatment

Definitions

  • the present invention relates to an amide compound and a curable resin composition containing the same.
  • Curable resins such as epoxy resins have excellent heat resistance, mechanical properties, and electrical properties, and are widely used industrially, mainly in electrical and electronic materials such as insulating materials for printed wiring boards and semiconductor sealing materials. ing.
  • SiC silicon carbide
  • insulating materials for printed wiring boards in order to reduce the transmission loss of signals in order to increase the speed and frequency of signals in electronic equipment, insulating materials with low dielectric constant, low dielectric loss tangent, etc. Dielectric properties are sought after.
  • insulating materials since the number of cases where insulating materials are manufactured or used in a high-temperature region is increasing, insulating materials are required to be flexible in order to reduce cracking, peeling, and the like.
  • Patent Document 1 discloses a cured product obtained by using a compound having an imide structure in an epoxy resin.
  • the cured product of Patent Document 1 is excellent in heat resistance, mechanical properties and dielectric properties, its flexibility is insufficient. It is generally known that heat resistance and flexibility are contradictory properties, and it has been difficult to achieve both of these properties.
  • the present invention provides a compound (particularly a curing agent) capable of obtaining a cured product excellent in flexibility and dielectric properties while maintaining heat resistance and mechanical properties, and a curable resin composition using the compound. for the purpose.
  • the present inventors found that the above objects can be achieved by using the amide compound represented by the general formula (1) as a curing agent, and have completed the present invention.
  • the gist of the present invention is as follows.
  • R is a hydrogen atom or an aryl group
  • X is a divalent hydrocarbon group derived from an aliphatic dicarboxylic acid having 10 or more carbon atoms
  • Y is a divalent diamine derived from an aliphatic diamine having 10 or more carbon atoms valence hydrocarbon group
  • n indicates a number of 1 or more.
  • a curing agent comprising the amide compound according to ⁇ 1> or ⁇ 2>.
  • the curable resin is an epoxy resin.
  • the curable resin composition further includes a diimidedicarboxylic acid compound as a curing agent different from the amide compound,
  • the curable resin contains a bisphenol A type epoxy resin,
  • R represents a hydrogen atom, and n represents a number of 2 or more and 3 or less.
  • ⁇ 12> An electrical insulating material comprising the cured product according to ⁇ 11>.
  • ⁇ 13> A sealing material containing the cured product according to ⁇ 11>.
  • ⁇ 14> The sealing material according to ⁇ 13>, which is used for a power semiconductor module.
  • ⁇ 15> A printed wiring board containing the cured product according to ⁇ 11>.
  • a compound capable of obtaining a cured product excellent in flexibility and dielectric properties while maintaining good heat resistance and mechanical properties, and a curable resin composition using the compound are provided.
  • a cured product obtained by curing the curable resin composition of the present invention can be suitably used for electrical insulating materials, sealing materials, and printed wiring boards.
  • FIG. 1 is a TEM photograph showing a sea-island phase separation structure of the cured product of Example 1.
  • the compound of the present invention is an amide compound represented by general formula (1).
  • X represents a divalent hydrocarbon group derived from an aliphatic dicarboxylic acid having 10 or more carbon atoms.
  • X is a group (so-called residue) that exhibits a partial structure other than an amide bond when the above-mentioned aliphatic dicarboxylic acid forms an amide bond, and is a divalent saturated or unsaturated aliphatic hydrocarbon group.
  • the above carbon number is the carbon number of the aliphatic dicarboxylic acid that provides the X group. Therefore, the number of carbon atoms in X (that is, the divalent hydrocarbon group) corresponds to the number of carbon atoms in the aliphatic dicarboxylic acid minus 2.
  • the number of carbon atoms in the aliphatic dicarboxylic acid giving the X group is usually 10 to 50, preferably 20 to 50, more preferably 30 to 30, from the viewpoint of further improving heat resistance, mechanical properties, flexibility and dielectric properties. 42, more preferably 34-38.
  • Aliphatic dicarboxylic acids that provide the X group include, for example, sebacic acid (C10), dodecanedioic acid (12), octadecanedioic acid (18), nonadecanedioic acid (19), eicosanedioic acid ( 20), heneicosanedioic acid (21), docosanedioic acid (22), tricosanedioic acid (23), tetracosanedioic acid (24), pentacosanedioic acid (25), hexacosanedioic acid (26) ), heptacosanedioic acid (27), octacosanedioic acid (28), nonacosanedioic acid (29), triacontanedioic acid (30), hentriacontanedioic acid (31), dotriacontaned
  • dimer acid is preferable because it has high versatility and improves the flexibility of the resulting cured product.
  • a dimer acid is a compound obtained by an addition reaction of two molecules selected from unsaturated fatty acids such as oleic acid and linoleic acid. The two molecules may be the same type of molecule, or they may be heterologous molecules to each other.
  • the dimer acid may be a dicarboxylic acid having an unsaturated bond, or a dicarboxylic acid whose degree of unsaturation has been reduced by hydrogenation, depending on the purpose of use.
  • the aliphatic dicarboxylic acid may have been subjected to a hydrogenation reaction, or may have a cyclic structure.
  • the cyclic structure of the aliphatic dicarboxylic acid means a saturated carbocyclic ring having no aromaticity.
  • the aliphatic dicarboxylic acid may have a branch or an unsaturated bond.
  • the aliphatic dicarboxylic acid preferably has a high purity.
  • dimer acid Commercial products of dimer acid include "Tsunodime 395" manufactured by Tsuno Foods Co., Ltd., "PRIPOL1009” manufactured by Croda Japan, and "PRIPOL1004" manufactured by Croda Japan.
  • aliphatic dicarboxylic acids one type may be used alone, or two or more types may be used in combination.
  • Y represents a divalent hydrocarbon group derived from an aliphatic diamine having 10 or more carbon atoms.
  • Y is, more specifically, a group (so-called residue) that exhibits a partial structure other than an amide bond when the above-mentioned aliphatic diamine forms an amide bond, and is a divalent saturated or unsaturated aliphatic hydrocarbon group.
  • the above carbon number is the carbon number of the aliphatic diamine that provides the Y group. Therefore, the carbon number of Y (ie, the divalent hydrocarbon group) corresponds to the same value as the carbon number of the aliphatic diamine.
  • the number of carbon atoms in the aliphatic diamine that provides the Y group is usually 10 to 50, preferably 20 to 50, more preferably 30 to 42, from the viewpoint of further improving heat resistance, mechanical properties, flexibility and dielectric properties. , more preferably 34-38.
  • Examples of aliphatic diamines that provide the Y group include decanediamine (identical to 10), dodecanediamine (identical to 12), octadecanediamine (identical to 18), nonadecanediamine (identical to 19), icosanediamine (identical to 20), Henicosanediamine (21), docosanediamine (22), tricosanediamine (23), tetracosanediamine (24), pentacosanediamine (25), hexacosanediamine (26), hepta cosanediamine (27), octacosanediamine (28), nonacosanediamine (29), triacontanediamine (30), hentriacontanediamine (31), dotriacontanediamine (32), triacontanediamine (No.
  • dimer diamine is preferable because of its high versatility and improved flexibility of the resulting cured product.
  • a dimer diamine is, for example, a compound obtained by reducing and aminating (reductive amination) the dimer acid described above.
  • the dimer diamine may be a diamine having an unsaturated bond or a diamine whose degree of unsaturation is reduced by hydrogenation reaction, depending on the purpose of use.
  • the aliphatic diamine may be hydrogenated or have a cyclic structure.
  • the cyclic structure of the aliphatic diamine is a saturated carbocyclic ring having no aromaticity.
  • the aliphatic diamine may have a branch or an unsaturated bond.
  • the aliphatic diamine preferably has a high purity.
  • Commercial products of dimer diamine include "Versamin 551” manufactured by BASF Japan, "Versamin 552” manufactured by BASF Japan (hydrogenated product of Versamin 551), "PRIAMINE 1075” manufactured by Croda Japan, and manufactured by Croda Japan. "PRIAMINE 1074" can be mentioned.
  • one may be used alone, or two or more may be used in combination.
  • each R independently represents a hydrogen atom or an aryl group.
  • Aryl groups include, for example, a phenyl group, a tolyl group, a xylyl group, and a naphthyl group. From the viewpoint of further improving heat resistance, mechanical properties, dielectric properties and flexibility, R is preferably a hydrogen atom.
  • n must be an integer of 1 or more, and from the viewpoint of further improving mechanical properties and flexibility, it is preferably an integer of 2 or more, and an integer of 3 or more It is more preferable to have When n is 0, heat resistance, mechanical properties and flexibility are lowered.
  • the upper limit of n is not particularly limited, and n is usually an integer of 10 or less, particularly 5 or less, and preferably an integer of 3 or less from the viewpoint of further improving heat resistance, mechanical properties, dielectric properties and flexibility. and more preferably 2.
  • the molecular weight of the amide compound of the present invention is preferably 1000 or more, more preferably 2000 to 5000, more preferably 2000 to 4000, from the viewpoint of further improving heat resistance, mechanical properties, dielectric properties and flexibility. 2000 to 3000 is particularly preferable.
  • the molecular weight of the amide compound is the number average molecular weight, and the polystyrene conversion value measured by gel permeation chromatography (GPC) is used.
  • the amide compound of the present invention can be used as a curing agent by using it together with a curing resin.
  • the method for producing the amide compound of the present invention is not particularly limited, but for example, the above-mentioned aliphatic dicarboxylic acid and the above-mentioned aliphatic diamine are reacted to produce an amide compound, which is further reacted with trimellitic anhydride and heated.
  • a method of carrying out a ring closure reaction is mentioned.
  • an esterification reaction may be carried out to esterify the terminal.
  • a known esterification reaction may be used, and examples thereof include a method of reacting a catalyst with phenols and a method of utilizing transesterification.
  • the curable resin composition of the present invention can be obtained by mixing an amide compound represented by formula (1) and a curable resin.
  • curable resins examples include epoxy resins, cyanate resins, phenol resins, imide resins, maleimide resins, benzoxazine resins, silicone resins, acrylic resins, and fluorine resins.
  • epoxy resin is more preferable.
  • one type may be used alone, or two or more types may be used in combination.
  • the epoxy resin preferably has two or more epoxy groups in one molecule.
  • epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, dicyclopentadiene type epoxy resin, phenol novolac type epoxy resin, and cresol novolak. type epoxy resins, isocyanurate type epoxy resins, alicyclic epoxy resins, acrylic acid-modified epoxy resins, polyfunctional epoxy resins, brominated epoxy resins, and phosphorus-modified epoxy resins.
  • the epoxy resin is preferably a bifunctional epoxy resin such as a bisphenol A type epoxy resin or a biphenyl type epoxy resin. is more preferred.
  • the epoxy equivalent of the epoxy resin is preferably 100-3000 g/eq, more preferably 150-300 g/eq.
  • the molecular weight of the curable resin is not particularly limited.
  • the molecular weight may be such that the epoxy equivalent weight described above is achieved.
  • the curable resin composition of the present invention may contain other curing agents in order to further improve heat resistance.
  • Another curing agent means a curing agent having a structure different from that of the amide compound represented by the general formula (1).
  • Other curing agents include, for example, phenol-based curing agents (for example, novolac-type phenolic resin curing agents), thiol-based curing agents, amine-based curing agents, acid anhydride-based curing agents, cyanate-based curing agents, and active ester-based curing agents. and imide curing agents.
  • imide-based curing agents and/or phenol-based curing agents are preferred, and imide-based curing agents are more preferred. preferable.
  • Other curing agents may be used alone or in combination of two or more of the above.
  • imide-based curing agents include compounds having 1 to 4 imide groups and 2 to 4 glycidyl group-reactive functional groups in the molecule.
  • a glycidyl group-reactive functional group is a functional group having reactivity with a glycidyl group, and may be, for example, a carboxyl group, a hydroxyl group, or an amino group.
  • the imide-based curing agent examples include, for example, a compound obtained by reacting two trimellitic anhydrides with one 4,4'-diaminophenyl ether (for example, a diimide dicarboxylic acid compound), one 3,3', 4,4'-Benzophenonetetracarboxylic dianhydride and two 2-aminoterephthalic acid reacted compounds (e.g., diimidotetracarboxylic acid compounds), one trimellitic anhydride and one 2-aminoterephthalic acid Acid-reacted compounds (for example, monoimidetricarboxylic acid compounds) can be mentioned.
  • the imide-based curing agent is preferably a diimide dicarboxylic acid compound from the viewpoint of further improving heat resistance, mechanical properties, dielectric properties and flexibility.
  • the ratio of the amide compound represented by the general formula (1) to the total of the curable resin and the curing agent is from the viewpoint of further improving heat resistance, mechanical properties, dielectric properties and flexibility. Therefore, it is preferably 35% by mass or less (especially 2 to 35% by mass), more preferably 20% by mass or less (especially 10 to 20% by mass), and 18% by mass or less (especially 10 to 18% by mass). is more preferable, 10 to 15% by mass is sufficiently preferable, and 12 to 14.5% by mass is particularly preferable.
  • the total of the curable resin and the curing agent is the total of the curable resin and the amide compound when only the amide compound of general formula (1) is used as the curing agent, and the curing agent is the general formula (1) When another curing agent is used together with the amide compound, it is the sum of the curing resin, the amide compound and the other curing agent.
  • the ratio of the curing agent is not particularly limited, and is 80 to 120 with respect to the curable resin (100 mol%). It may be mol %, preferably 90 to 110 mol %, more preferably 98 to 102 mol %, from the viewpoint of further improving heat resistance, mechanical properties, dielectric properties and flexibility.
  • the proportion of the curing agent is the total proportion thereof.
  • additives such as curing accelerators, inorganic fillers, antioxidants, flame retardants, organic solvents, etc. may be added as long as they do not impair the effects of the present invention.
  • Curing accelerators include, for example, imidazoles such as 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole; 4-dimethylaminopyridine, benzyldimethylamine, 2-(dimethylaminomethyl)phenol, tertiary amines such as 2,4,6-tris(dimethylaminomethyl)phenol; and organic phosphines such as triphenylphosphine and tributylphosphine.
  • imidazoles such as 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole
  • 4-dimethylaminopyridine 4-dimethylaminopyridine
  • benzyldimethylamine 2-(dimethylaminomethyl)phenol
  • tertiary amines such as 2,4,6-tris(dimethylaminomethyl)phenol
  • organic phosphines such as triphenylphosphin
  • the amount is preferably 0.01 to 2.0% by mass with respect to the total of the curable resin and the curing agent, and the heat resistance and dielectric properties of the resulting cured product are 0.01 to 1% by mass, more preferably 0.05 to 0.5% by mass.
  • inorganic fillers examples include silica, barium sulfate, alumina, aluminum nitride, boron nitride, silicon nitride, glass powder, glass frits, glass fibers, carbon fibers, and inorganic ion exchangers.
  • the average particle size of the inorganic filler is preferably from 50 nm to 4 ⁇ m, and more preferably from 100 nm to 3 ⁇ m because it is superior in coatability and workability.
  • antioxidants examples include hindered phenol-based antioxidants, phosphorus-based antioxidants, and thioether-based antioxidants.
  • hindered phenol-based antioxidants examples include hindered phenol-based antioxidants, phosphorus-based antioxidants, and thioether-based antioxidants.
  • one may be used alone, or two or more may be used in combination.
  • Flame retardants include non-halogen flame retardants, phosphorus flame retardants, nitrogen flame retardants, and silicone flame retardants. Among them, non-halogen flame retardants are preferred from the viewpoint of environmental impact. One of the above flame retardants may be used alone, or two or more thereof may be used in combination.
  • the organic solvent is not particularly limited as long as the curing agent and the curing resin can be uniformly dissolved and coated, and a non-halogenated solvent is preferable from the viewpoint of environmental impact.
  • Non-halogenated solvents include, for example, N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone.
  • One of the above organic solvents may be used alone, or two or more thereof may be used in combination.
  • the method for producing the curable resin composition of the present invention is not particularly limited. A method of mixing the resin with other additives that are added as necessary can be mentioned. From the viewpoint of dissolving each component in the organic solvent, the mixture may be heated to 80 to 200° C. (especially 100 to 150° C.).
  • the amide compound represented by the general formula (1) and the curable resin can be reacted to obtain a cured product.
  • the heating temperature is preferably 80 to 350°C, more preferably 130 to 300°C.
  • the heating time is preferably 1 minute to 24 hours, more preferably 5 minutes to 10 hours.
  • the organic solvent is distilled off by heating.
  • the characteristic values of the cured product are evaluated in comparison with a specific cured product that does not have a softening component.
  • the “specific cured product having no softening component” means a cured product containing another specific curing agent instead of the amide compound represented by formula (1).
  • the specific other curing agent refers to the case where the curable resin composition of the present invention constituting the cured product to be evaluated contains a curable resin, an amide compound represented by formula (1), and another curing agent. Other curing agents. When the curable resin composition contains two or more other curing agents, the other curing agent contained in the largest amount is referred to as the "specific other curing agent".
  • the curable resin composition of the present invention contains a curable resin, an amide compound represented by formula (1), and other curing agents
  • the cured product of the present invention produced from the curable resin composition
  • the characteristic values are those of a cured product produced in the same manner as the cured product of the present invention except that the other curing agent is further used instead of the amide compound (i.e., a "specific cured product having no softening component"). evaluated in comparison with
  • the difference between the glass transition temperature of the cured product of the present invention and the glass transition temperature of the "specific cured product having no softening component" is preferably 20°C or less, and preferably 10°C or less, from the viewpoint of heat resistance. is more preferable.
  • the tensile modulus of the cured product of the present invention is preferably 75% or less, more preferably 70% or less, compared to the "specific cured product having no flexible component". , 65% or less.
  • the tensile strength at break of the cured product of the present invention is preferably 60% or more, preferably 65% or more, compared to the "specific cured product having no flexible component". , more preferably 70% or more.
  • the dielectric loss tangent of the cured product of the present invention is preferably equal to or less than the dielectric loss tangent of the "specific cured product having no flexible component", and more preferably less than the dielectric loss tangent of the "specific cured product having no flexible component”. .
  • the cured product of the present invention is excellent in flexibility and dielectric properties while maintaining heat resistance and mechanical properties, so that it can be suitably used as an electrical insulating material.
  • the cured product of the present invention is a sealing material (e.g., power semiconductor module sealing material), printed wiring board, molding material (e.g., bushing transformer molding material, solid insulation switchgear molding material). , electrical penetrations for nuclear power plants, build-up laminates, interlayer insulating materials (eg, organic rewiring layers, insulating adhesive films), photosensitive insulating materials, conductive pastes, and the like.
  • the cured product of the present invention can be used more preferably for sealing materials, printed wiring boards, and interlayer insulating materials.
  • an epoxy resin solution particularly, The cured product of the present invention can be obtained by filling, drying and curing the curable resin composition of (1).
  • the epoxy resin solution especially the curable resin composition of the present invention
  • the epoxy resin solution is impregnated or applied to a glass cloth. , drying and curing to obtain the cured product of the present invention.
  • an epoxy resin solution (particularly, the curable resin composition of the present invention) is processed into a sheet, dried, and laminated on both sides of an inner layer substrate. , to obtain the cured product of the present invention.
  • ⁇ Diimidodicarboxylic acid F 50 parts by mass of dimer diamine and 35.9 parts by mass of trimellitic anhydride were mixed and pulverized for 3 minutes at a rotational speed of 9000 rpm using Wonder Crusher WC-3C manufactured by Osaka Chemical Co., Ltd. The treated sample was transferred to a glass container, and an imidization reaction was carried out at 300° C. for 2 hours in an inert oven DN411I manufactured by Yamato Kagaku Co., Ltd. to obtain diimide dicarboxylic acid F.
  • Diimidodicarboxylic acid F61.4 parts by mass and 1-naphthyl acetate 38.6 parts by mass were charged into a reaction vessel equipped with a heating mechanism and a stirring mechanism. Thereafter, the mixture was heated at 300° C. under stirring, and the reaction was carried out for 3 hours at normal pressure under a nitrogen stream while removing condensed water out of the system. Then, it was washed with methanol and dried to obtain imidodicarboxylic acid G.
  • Diimidedicarboxylic acid H was obtained in the same manner as imidedicarboxylic acid F, except that 18.8 parts by weight of 4,4'-diaminodiphenyl ether was used instead of 50 parts by weight of dimer diamine.
  • Diimidodicarboxylic acid H was confirmed by 1 H-NMR to be a compound composed of trimellitic acid-4,4′-diaminodiphenyl ether-trimellitic acid. Further, the diimidedicarboxylic acid H had a number average molecular weight of 549 and was solid at room temperature.
  • Example 2 The compounds and cured products obtained in Examples and Comparative Examples were evaluated as follows.
  • the object of comparison (or comparison standard) when evaluating the cured products obtained in Examples and Comparative Examples was "a specific cured product having no softening component", and the details were as follows.
  • the cured product of Reference Example 1 was compared with the cured products of Examples 1-7 and Comparative Examples 1-4.
  • the cured product of Example 8 was compared with the cured product of Reference Example 2.
  • the cured product of Example 9 was compared with the cured product of Reference Example 3.
  • a value A was obtained from the following formula and evaluated according to the following criteria.
  • Value A [Glass transition temperature of "specific cured product having no softening component”] - [Glass transition temperature of cured products obtained in Examples and Comparative Examples] ⁇ Evaluation Criteria> ⁇ : 20 ° C. or less (best) ⁇ : exceeds 20 ° C. (defective)
  • Dielectric loss tangent of cured product (dielectric properties)
  • the dielectric loss tangent of the cured products obtained in Examples and Comparative Examples was measured using the following equipment under the following conditions.
  • FIG. 1 shows a TEM photograph showing the sea-island phase separation structure of the cured product of Example 1.
  • Apparatus JEM-1230 TEM manufactured by JEOL Ltd.
  • Measurement method Transmission measurement Measurement conditions: Accelerating voltage 100 kV
  • phase separation structure> A It had a sea-island phase separation structure as shown in FIG. x: It did not have a sea-island phase separation structure as shown in FIG.
  • Example 1 Compound A 35.2 parts by mass of dimer acid and 50 parts by mass of dimer diamine were charged into a reaction vessel equipped with a heating mechanism and a stirring mechanism. After that, the mixture was heated at 230° C. with stirring, and polymerization was carried out for 2 hours at normal pressure under a nitrogen stream while condensed water was removed from the system. Then, it was once cooled to 50° C., and 11.9 parts by mass of trimellitic anhydride was added. The mixture was again heated at 210° C. under stirring to carry out a ring-closing reaction with heating for 1 hour to obtain compound A.
  • the compound A had a number average molecular weight of 2762 and was a viscous liquid at room temperature.
  • the resulting curable resin composition was applied to an aluminum substrate to a thickness of 300 ⁇ m, and heated in an inert oven at 120° C. for 1 hour in a nitrogen atmosphere, and then heated to 300° C. over 8 hours. C. for 1 hour to remove the solvent and perform a curing reaction. After that, the aluminum substrate was removed from the aluminum substrate on which the resin layer was formed to obtain a cured product.
  • the thickness of the cured product was 100 ⁇ m.
  • Example 2 Compound B was obtained in the same manner as in Example 1, except that 42.2 parts by mass of dimer acid and 11.9 parts by mass of trimellitic anhydride were used in place of 7.1 parts by mass.
  • the compound B had a number average molecular weight of 4900 and was a viscous liquid at room temperature.
  • Example 2 Using the obtained compound B, the same operation as in Example 1 was performed except that the compounding amount was changed so that the composition shown in Table 1 was obtained, to prepare a curable resin composition and to prepare a cured product. done.
  • Example 3 Compound C was obtained in the same manner as in Example 1, except that 26.4 parts by mass of dimer acid and 11.9 parts by mass of trimellitic anhydride were used instead of 17.8 parts by mass.
  • Compound C had a number average molecular weight of 1861 and was semi-solid at room temperature.
  • Example 2 Using the obtained compound C, the same operation as in Example 1 was performed except that the compounding amount was changed so that the composition shown in Table 1 was obtained, to prepare a curable resin composition and to prepare a cured product. done.
  • Example 7 84.7 parts by mass of Compound A and 15.3 parts by mass of 1-naphthyl acetate were charged into a reaction vessel equipped with a heating mechanism and a stirring mechanism. Thereafter, the mixture was heated at 300° C. under stirring, and the reaction was carried out for 3 hours at normal pressure under a nitrogen stream while removing condensed water out of the system. After that, it was washed with methanol and dried to obtain a compound D.
  • the compound D had a number average molecular weight of 3273 and was a viscous liquid at room temperature.
  • Example 2 Using the obtained compound D, the same operation as in Example 1 was performed except that the compounding amount was changed so that the composition shown in Table 1 was obtained, to prepare a curable resin composition and to prepare a cured product. done.
  • Comparative example 1 (Polyamide E) A reaction vessel equipped with a heating mechanism and a stirring mechanism was charged with 50 parts by mass of dimer acid and dimer diamine. Thereafter, the mixture was heated at 230° C. with stirring, and polymerization was carried out at normal pressure for 2 hours under a nitrogen stream while condensed water was removed from the system to obtain polyamide E. Polyamide D was confirmed by 1 H-NMR and GPC to have a structure in which dimer acid and dimer diamine were alternately polymerized. Polyamide E had a number average molecular weight of 2703 and was a viscous liquid at room temperature.
  • Example 2 Using the obtained polyamide E, the same operation as in Example 1 was performed except that the blending amount was changed so that the composition shown in Table 2 was obtained, to prepare a curable resin composition and to prepare a cured product. done.
  • Examples 4-9, Comparative Examples 2-4 and Reference Examples 1-3 A curable resin composition was produced and a cured product was produced in the same manner as in Example 1 except that the raw materials and compounding amounts were changed so that the compositions shown in Tables 1 to 3 were obtained.
  • the table shows the composition of the curable resin composition and the evaluation results of the obtained cured product.
  • R is a hydrogen atom
  • X is a divalent hydrocarbon group derived from an aliphatic dicarboxylic acid having 10 or more carbon atoms
  • Y is 10 or more carbon atoms.
  • the cured products of Examples 1 to 6 have a glass transition temperature difference of 20° C. or less and a tensile strength at break of 60% with respect to the “specific cured product having no flexible component” (Reference Example 1).
  • the dielectric loss tangent was smaller and the tensile elastic modulus was 75% or less.
  • the cured products of Examples 1 to 6 were excellent in flexibility and dielectric properties while maintaining heat resistance and mechanical properties.
  • R is a naphthyl group
  • X is a divalent hydrocarbon group derived from an aliphatic dicarboxylic acid having 10 or more carbon atoms
  • Y is derived from an aliphatic diamine having 10 or more carbon atoms.
  • R is a hydrogen atom
  • X is a divalent hydrocarbon group derived from an aliphatic dicarboxylic acid having 10 or more carbon atoms
  • Y is an aliphatic having 10 or more carbon atoms
  • R is a hydrogen atom
  • X is a divalent hydrocarbon group derived from an aliphatic dicarboxylic acid having 10 or more carbon atoms
  • Y is derived from an aliphatic diamine having 10 or more carbon atoms.
  • the cured product of Comparative Example 1 used a polyamide composed of dimer acid and dimer diamine, and therefore had a tensile strength at break of less than 60% with respect to the "specific cured product having no flexible component" (Reference Example 1). Since the cured product of Comparative Example 2 did not use the amide compound represented by the general formula (1), the glass transition temperature difference was 20° C. with respect to the "specific cured product having no flexible component” (Reference Example 1). and the tensile modulus exceeded 75%. Since the cured product of Comparative Example 3 did not use the amide compound represented by the general formula (1), the dielectric loss tangent was greater than the dielectric loss tangent of the "specific cured product having no flexible component" (Reference Example 1).
  • a cured product obtained by using the amide compound of the present invention as a curing agent is excellent in heat resistance, mechanical properties, flexibility and dielectric properties. Therefore, materials requiring at least one of these properties (for example, It can be suitably used as an electrical insulating material).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polyamides (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

The present invention provides a compound (in particular, a curing agent) which enables the achievement of a cured product that has excellent flexibility and excellent dielectric characteristics, while maintaining adequate heat resistance and mechanical characteristics. The present invention relates to an amide compound which is represented by general formula (1). (In formula (1), R represents a hydrogen atom or an aryl group; X represents a divalent hydrocarbon group derived from an aliphatic dicarboxylic acid having 10 or more carbon atoms; Y represents a divalent hydrocarbon group derived from an aliphatic diamine having 10 or more carbon atoms; and n represents a number of 1 or more.)

Description

アミド化合物およびそれを含む硬化性樹脂組成物Amide compound and curable resin composition containing the same
 本発明は、アミド化合物およびそれを含む硬化性樹脂組成物に関する。 The present invention relates to an amide compound and a curable resin composition containing the same.
 エポキシ樹脂等の硬化性樹脂は、耐熱性、機械的特性および電気的特性に優れており、プリント配線板用絶縁材料や半導体封止材料等の電気・電子材料を中心に工業的に広く利用されている。 Curable resins such as epoxy resins have excellent heat resistance, mechanical properties, and electrical properties, and are widely used industrially, mainly in electrical and electronic materials such as insulating materials for printed wiring boards and semiconductor sealing materials. ing.
 近年、車載用パワーモジュールに代表されるパワー半導体の分野では、更なる大電流化、小型化、高効率化が求められており、炭化ケイ素(SiC)半導体への移行が進みつつある。SiC半導体は、従来のシリコン(Si)半導体よりも高温条件下での動作が可能であることから、SiC半導体に用いる半導体封止材料にはこれまで以上に高い耐熱性が要求されている。 In recent years, in the field of power semiconductors, represented by automotive power modules, there is a demand for higher current, smaller size, and higher efficiency, and the shift to silicon carbide (SiC) semiconductors is progressing. Since SiC semiconductors can operate under higher temperature conditions than conventional silicon (Si) semiconductors, semiconductor sealing materials used for SiC semiconductors are required to have higher heat resistance than ever before.
 一方、プリント配線板用絶縁材料の分野では、電子機器における信号の高速化・高周波化に向け、信号の伝送損失を低減するため、絶縁材料には、低誘電率や低誘電正接等、優れた誘電特性が求められている。また、高温領域で製造されたり用いたりする場合が増加していることから、割れや剥離等を低減するため、絶縁材料には、柔軟性が求められている。 On the other hand, in the field of insulating materials for printed wiring boards, in order to reduce the transmission loss of signals in order to increase the speed and frequency of signals in electronic equipment, insulating materials with low dielectric constant, low dielectric loss tangent, etc. Dielectric properties are sought after. In addition, since the number of cases where insulating materials are manufactured or used in a high-temperature region is increasing, insulating materials are required to be flexible in order to reduce cracking, peeling, and the like.
 プリント配線板用絶縁材料や半導体封止材料等の電気・電子材料に用いる樹脂としては、例えば、特許文献1に、エポキシ樹脂にイミド構造を有する化合物を用いた硬化物が開示されている。しかしながら、特許文献1の硬化物は、耐熱性、機械的特性、誘電特性には優れているものの、柔軟性が不十分であった。一般に、耐熱性と柔軟性は相反する性質であることが知られており、これらの特性の両立は困難であった。 As for resins used in electrical and electronic materials such as insulating materials for printed wiring boards and semiconductor sealing materials, for example, Patent Document 1 discloses a cured product obtained by using a compound having an imide structure in an epoxy resin. However, although the cured product of Patent Document 1 is excellent in heat resistance, mechanical properties and dielectric properties, its flexibility is insufficient. It is generally known that heat resistance and flexibility are contradictory properties, and it has been difficult to achieve both of these properties.
国際公開2019/225166号パンフレットInternational publication 2019/225166 pamphlet
 本発明は、耐熱性および機械的特性を維持しつつも、柔軟性および誘電特性に優れた硬化物を得ることができる化合物(特に硬化剤)およびそれを用いた硬化性樹脂組成物を提供することを目的とする。 The present invention provides a compound (particularly a curing agent) capable of obtaining a cured product excellent in flexibility and dielectric properties while maintaining heat resistance and mechanical properties, and a curable resin composition using the compound. for the purpose.
 本発明者らは、上記課題について鋭意検討をおこなった結果、一般式(1)で示されるアミド化合物を硬化剤として用いることにより、上記目的が達成されることを見出し、本発明に至った。 As a result of intensive studies on the above problems, the present inventors found that the above objects can be achieved by using the amide compound represented by the general formula (1) as a curing agent, and have completed the present invention.
 すなわち、本発明の要旨は以下の通りである。
<1> 一般式(1)で示されるアミド化合物。
Figure JPOXMLDOC01-appb-C000002
(式(1)中、Rは、水素原子又はアリール基、Xは、炭素数10以上の脂肪族ジカルボン酸由来の二価炭化水素基、Yは、炭素数10以上の脂肪族ジアミン由来の二価炭化水素基、nは、1以上の数を示す。)
<2> 前記アミド化合物の数平均分子量が1000以上である、<1>に記載のアミド化合物。
<3> <1>または<2>に記載のアミド化合物からなる硬化剤。
<4> 硬化剤としての<1>または<2>に記載のアミド化合物および硬化性樹脂を含む硬化性樹脂組成物。
<5> さらに、前記アミド化合物とは異なる他の硬化剤を含む、<4>に記載の硬化性樹脂組成物。
<6> 硬化性樹脂がエポキシ樹脂である、<4>または<5>に記載の硬化性樹脂組成物。
<7> さらに、硬化促進剤を含む、<4>~<6>のいずれかに記載の硬化性樹脂組成物。
<8> 硬化性樹脂と硬化剤の合計に対する前記アミド化合物の割合が35質量%以下である、<4>~<7>のいずれかに記載の硬化性樹脂組成物。
<9> 硬化性樹脂と硬化剤の合計に対する前記アミド化合物の割合が10~18質量%である、<4>~<8>のいずれかに記載の硬化性樹脂組成物。
<10> 硬化性樹脂組成物は、前記アミド化合物とは異なる他の硬化剤として、ジイミドジカルボン酸化合物をさらに含み、
 硬化性樹脂がビスフェノールA型エポキシ樹脂を含み、
 一般式(1)において、Rは水素原子を示し、nは2以上、3以下の数を示す、<9>に記載の硬化性樹脂組成物。
<11> <4>~<10>のいずれかに記載の硬化性樹脂組成物の硬化物。
<12> <11>に記載の硬化物を含む電気絶縁材料。
<13> <11>に記載の硬化物を含む封止材。
<14> パワー半導体モジュールに用いられる、<13>に記載の封止材。
<15> <11>に記載の硬化物を含むプリント配線基板。
That is, the gist of the present invention is as follows.
<1> An amide compound represented by the general formula (1).
Figure JPOXMLDOC01-appb-C000002
(In the formula (1), R is a hydrogen atom or an aryl group, X is a divalent hydrocarbon group derived from an aliphatic dicarboxylic acid having 10 or more carbon atoms, Y is a divalent diamine derived from an aliphatic diamine having 10 or more carbon atoms valence hydrocarbon group, n indicates a number of 1 or more.)
<2> The amide compound according to <1>, wherein the amide compound has a number average molecular weight of 1000 or more.
<3> A curing agent comprising the amide compound according to <1> or <2>.
<4> A curable resin composition containing the amide compound according to <1> or <2> as a curing agent and a curable resin.
<5> The curable resin composition according to <4>, further comprising another curing agent different from the amide compound.
<6> The curable resin composition according to <4> or <5>, wherein the curable resin is an epoxy resin.
<7> The curable resin composition according to any one of <4> to <6>, further comprising a curing accelerator.
<8> The curable resin composition according to any one of <4> to <7>, wherein the amide compound accounts for 35% by mass or less of the total amount of the curable resin and the curing agent.
<9> The curable resin composition according to any one of <4> to <8>, wherein the amide compound accounts for 10 to 18% by mass of the total amount of the curable resin and the curing agent.
<10> The curable resin composition further includes a diimidedicarboxylic acid compound as a curing agent different from the amide compound,
The curable resin contains a bisphenol A type epoxy resin,
The curable resin composition according to <9>, wherein in general formula (1), R represents a hydrogen atom, and n represents a number of 2 or more and 3 or less.
<11> A cured product of the curable resin composition according to any one of <4> to <10>.
<12> An electrical insulating material comprising the cured product according to <11>.
<13> A sealing material containing the cured product according to <11>.
<14> The sealing material according to <13>, which is used for a power semiconductor module.
<15> A printed wiring board containing the cured product according to <11>.
 本発明によれば、良好な耐熱性および機械的特性を維持しつつも、柔軟性および誘電特性に優れた硬化物を得ることができる化合物およびそれを用いた硬化性樹脂組成物を提供することができる。
 本発明の硬化性樹脂組成物を硬化してなる硬化物は、電気絶縁性材料、封止材、プリント配線基板に好適に用いることができる。
INDUSTRIAL APPLICABILITY According to the present invention, a compound capable of obtaining a cured product excellent in flexibility and dielectric properties while maintaining good heat resistance and mechanical properties, and a curable resin composition using the compound are provided. can be done.
A cured product obtained by curing the curable resin composition of the present invention can be suitably used for electrical insulating materials, sealing materials, and printed wiring boards.
実施例1の硬化物の海島型の相分離構造を示すTEM写真である。1 is a TEM photograph showing a sea-island phase separation structure of the cured product of Example 1. FIG.
<化合物>
 本発明の化合物は、一般式(1)で示されるアミド化合物である。
<Compound>
The compound of the present invention is an amide compound represented by general formula (1).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 一般式(1)において、Xは、炭素数10以上の脂肪族ジカルボン酸由来の二価炭化水素基を示す。Xは、詳しくは、上記脂肪族ジカルボン酸がアミド結合を形成したとき、アミド結合以外の部分構造を示す基(いわゆる残基)のことであり、二価の飽和または不飽和脂肪族炭化水素基であってもよい。上記炭素数はX基を与える脂肪族ジカルボン酸の炭素数である。このため、X(すなわち、二価炭化水素基)の炭素数は、当該脂肪族ジカルボン酸の炭素数より2を減じた値に対応する。X基を与える脂肪族ジカルボン酸の炭素数は通常、10~50であり、耐熱性、機械的特性、柔軟性および誘電特性のさらなる向上の観点から、好ましくは20~50、より好ましくは30~42、さらに好ましくは34~38である。 In general formula (1), X represents a divalent hydrocarbon group derived from an aliphatic dicarboxylic acid having 10 or more carbon atoms. Specifically, X is a group (so-called residue) that exhibits a partial structure other than an amide bond when the above-mentioned aliphatic dicarboxylic acid forms an amide bond, and is a divalent saturated or unsaturated aliphatic hydrocarbon group. may be The above carbon number is the carbon number of the aliphatic dicarboxylic acid that provides the X group. Therefore, the number of carbon atoms in X (that is, the divalent hydrocarbon group) corresponds to the number of carbon atoms in the aliphatic dicarboxylic acid minus 2. The number of carbon atoms in the aliphatic dicarboxylic acid giving the X group is usually 10 to 50, preferably 20 to 50, more preferably 30 to 30, from the viewpoint of further improving heat resistance, mechanical properties, flexibility and dielectric properties. 42, more preferably 34-38.
 前記X基を与える脂肪族ジカルボン酸としては、例えば、セバシン酸(炭素数10)、ドデカン二酸(同12)、オクタデカン二酸(同18)、ノナデカン二酸(同19)、エイコサン二酸(同20)、ヘンエイコサン二酸(同21)、ドコサン二酸(同22)、トリコサン二酸(同23)、テトラコサン二酸(同24)、ペンタコサン二酸(同25)、ヘキサコサン二酸(同26)、ヘプタコサン二酸(同27)、オクタコサン二酸(同28)、ノナコサン二酸(同29)、トリアコンタン二酸(同30)、ヘントリアコンタン二酸(同31)、ドトリアコンタン二酸(同32)、トリトリアコンタン二酸(同33)、テトラトリアコンタン二酸(同34)、ペンタトリアコンタン二酸(同35)、ダイマー酸(同36)が挙げられる。中でも、汎用性が高く、得られる硬化物の柔軟性が向上することから、ダイマー酸が好ましい。ダイマー酸は、例えばオレイン酸、リノール酸等の不飽和脂肪酸から選択される2つの分子を付加反応することにより得られる化合物である。当該2つの分子は同種の分子であってもよいし、または相互に異種の分子であってもよい。ダイマー酸は、使用する目的に応じて、不飽和結合を有するジカルボン酸であってもよいし、または水素添加反応して不飽和度を低下させたジカルボン酸であってもよい。脂肪族ジカルボン酸は、水素添加反応を施したものであってもよいし、環状構造を有していてもよい。ここで脂肪族ジカルボン酸の環状構造とは、芳香族性を有しない飽和炭素環のことである。また、脂肪族ジカルボン酸は、分岐を有してもよいし、不飽和結合を有してもよい。脂肪族ジカルボン酸は純度が高いものが好ましい。ダイマー酸の市販品としては、築野食品社製「ツノダイム395」、クロ―ダジャパン社製「PRIPOL1009」、クロ―ダジャパン社製「PRIPOL1004」が挙げられる。脂肪族ジカルボン酸は、上記のうち1種を単独で用いてもよいし、2種以上を併用してもよい。 Aliphatic dicarboxylic acids that provide the X group include, for example, sebacic acid (C10), dodecanedioic acid (12), octadecanedioic acid (18), nonadecanedioic acid (19), eicosanedioic acid ( 20), heneicosanedioic acid (21), docosanedioic acid (22), tricosanedioic acid (23), tetracosanedioic acid (24), pentacosanedioic acid (25), hexacosanedioic acid (26) ), heptacosanedioic acid (27), octacosanedioic acid (28), nonacosanedioic acid (29), triacontanedioic acid (30), hentriacontanedioic acid (31), dotriacontanedioic acid (No. 32), tritriacontanedioic acid (No. 33), tetratriacontanedioic acid (No. 34), pentatriacontanedioic acid (No. 35), and dimer acid (No. 36). Among them, dimer acid is preferable because it has high versatility and improves the flexibility of the resulting cured product. A dimer acid is a compound obtained by an addition reaction of two molecules selected from unsaturated fatty acids such as oleic acid and linoleic acid. The two molecules may be the same type of molecule, or they may be heterologous molecules to each other. The dimer acid may be a dicarboxylic acid having an unsaturated bond, or a dicarboxylic acid whose degree of unsaturation has been reduced by hydrogenation, depending on the purpose of use. The aliphatic dicarboxylic acid may have been subjected to a hydrogenation reaction, or may have a cyclic structure. Here, the cyclic structure of the aliphatic dicarboxylic acid means a saturated carbocyclic ring having no aromaticity. Moreover, the aliphatic dicarboxylic acid may have a branch or an unsaturated bond. The aliphatic dicarboxylic acid preferably has a high purity. Commercial products of dimer acid include "Tsunodime 395" manufactured by Tsuno Foods Co., Ltd., "PRIPOL1009" manufactured by Croda Japan, and "PRIPOL1004" manufactured by Croda Japan. Among the above aliphatic dicarboxylic acids, one type may be used alone, or two or more types may be used in combination.
 一般式(1)において、Yは、炭素数10以上の脂肪族ジアミン由来の二価炭化水素基を示す。Yは、詳しくは、上記脂肪族ジアミンがアミド結合を形成したとき、アミド結合以外の部分構造を示す基(いわゆる残基)のことであり、二価の飽和または不飽和脂肪族炭化水素基であってもよい。上記炭素数はY基を与える脂肪族ジアミンの炭素数である。このため、Y(すなわち、二価炭化水素基)の炭素数は、当該脂肪族ジアミンの炭素数と同じ値に対応する。Y基を与える脂肪族ジアミンの炭素数は通常、10~50であり、耐熱性、機械的特性、柔軟性および誘電特性のさらなる向上の観点から、好ましくは20~50、より好ましくは30~42、さらに好ましくは34~38である。 In general formula (1), Y represents a divalent hydrocarbon group derived from an aliphatic diamine having 10 or more carbon atoms. Y is, more specifically, a group (so-called residue) that exhibits a partial structure other than an amide bond when the above-mentioned aliphatic diamine forms an amide bond, and is a divalent saturated or unsaturated aliphatic hydrocarbon group. There may be. The above carbon number is the carbon number of the aliphatic diamine that provides the Y group. Therefore, the carbon number of Y (ie, the divalent hydrocarbon group) corresponds to the same value as the carbon number of the aliphatic diamine. The number of carbon atoms in the aliphatic diamine that provides the Y group is usually 10 to 50, preferably 20 to 50, more preferably 30 to 42, from the viewpoint of further improving heat resistance, mechanical properties, flexibility and dielectric properties. , more preferably 34-38.
 前記Y基を与える脂肪族ジアミンとしては、例えば、デカンジアミン(同10)、ドデカンジアミン(同12)、オクタデカンジアミン(同18)、ノナデカンジアミン(同19)、イコサンジアミン(同20)、ヘンイコサンジアミン(同21)、ドコサンジアミン(同22)、トリコサンジアミン(同23)、テトラコサンジアミン(同24)、ペンタコサンジアミン(同25)、ヘキサコサンジアミン(同26)、ヘプタコサンジアミン(同27)、オクタコサンジアミン(同28)、ノナコサンジアミン(同29)、トリアコンタンジアミン(同30)、ヘントリアコンタンジアミン(同31)、ドトリアコンタンジアミン(同32)、トリトリアコンタンジアミン(同33)、テトラトリアコンタンジアミン(同34)、ペンタトリアコンタンジアミン(同35)、ダイマージアミン(同36)が挙げられる。中でも、汎用性が高く、得られる硬化物の柔軟性が向上することから、ダイマージアミンが好ましい。ダイマージアミンは、例えば、上記したダイマー酸を還元、アミノ化(還元的アミノ化)することにより得られる化合物である。ダイマージアミンは、使用する目的に応じて、不飽和結合を有するジアミンであってもよいし、または水素添加反応して不飽和度を低下させたジアミンであってもよい。脂肪族ジアミンは、水素添加反応を施したものであってもよいし、環状構造を有していてもよい。ここで脂肪族ジアミンの環状構造とは、芳香族性を有しない飽和炭素環のことである。また、脂肪族ジアミンは、分岐を有してもよいし、不飽和結合を有してもよい。脂肪族ジアミンは純度が高いものが好ましい。ダイマージアミンの市販品としては、BASFジャパン社製「バーサミン551」、BASFジャパン社製「バーサミン552」(バーサミン551の水素添加物)、クロ―ダジャパン社製「PRIAMINE1075」、クロ―ダジャパン社製「PRIAMINE1074」が挙げられる。脂肪族ジアミンは、上記のうち1種を単独で用いてもよいし、2種以上を併用してもよい。 Examples of aliphatic diamines that provide the Y group include decanediamine (identical to 10), dodecanediamine (identical to 12), octadecanediamine (identical to 18), nonadecanediamine (identical to 19), icosanediamine (identical to 20), Henicosanediamine (21), docosanediamine (22), tricosanediamine (23), tetracosanediamine (24), pentacosanediamine (25), hexacosanediamine (26), hepta cosanediamine (27), octacosanediamine (28), nonacosanediamine (29), triacontanediamine (30), hentriacontanediamine (31), dotriacontanediamine (32), triacontanediamine (No. 33), tetratriacontanediamine (No. 34), pentatriacontanediamine (No. 35), and dimer diamine (No. 36). Among them, dimer diamine is preferable because of its high versatility and improved flexibility of the resulting cured product. A dimer diamine is, for example, a compound obtained by reducing and aminating (reductive amination) the dimer acid described above. The dimer diamine may be a diamine having an unsaturated bond or a diamine whose degree of unsaturation is reduced by hydrogenation reaction, depending on the purpose of use. The aliphatic diamine may be hydrogenated or have a cyclic structure. Here, the cyclic structure of the aliphatic diamine is a saturated carbocyclic ring having no aromaticity. Also, the aliphatic diamine may have a branch or an unsaturated bond. The aliphatic diamine preferably has a high purity. Commercial products of dimer diamine include "Versamin 551" manufactured by BASF Japan, "Versamin 552" manufactured by BASF Japan (hydrogenated product of Versamin 551), "PRIAMINE 1075" manufactured by Croda Japan, and manufactured by Croda Japan. "PRIAMINE 1074" can be mentioned. Among the above aliphatic diamines, one may be used alone, or two or more may be used in combination.
 一般式(1)において、Rは、それぞれ独立して水素原子またはアリール基を示す。アリール基としては、例えば、フェニル基、トリル基、キシリル基、ナフチル基が挙げられる。Rは、耐熱性、機械的特性、誘電特性および柔軟性のさらなる向上の観点から、水素原子であることが好ましい。 In general formula (1), each R independently represents a hydrogen atom or an aryl group. Aryl groups include, for example, a phenyl group, a tolyl group, a xylyl group, and a naphthyl group. From the viewpoint of further improving heat resistance, mechanical properties, dielectric properties and flexibility, R is preferably a hydrogen atom.
 一般式(1)において、nは、1以上の整数であることが必要であり、機械的特性および柔軟性のさらなる向上の観点から、2以上の整数であることが好ましく、3以上の整数であることがより好ましい。nが0であると、耐熱性、機械的特性および柔軟性が低下する。nの上限値は特に限定されず、nは通常、10以下、特に5以下の整数であり、耐熱性、機械的特性、誘電特性および柔軟性のさらなる向上の観点から、好ましくは3以下の整数であり、より好ましくは2である。 In the general formula (1), n must be an integer of 1 or more, and from the viewpoint of further improving mechanical properties and flexibility, it is preferably an integer of 2 or more, and an integer of 3 or more It is more preferable to have When n is 0, heat resistance, mechanical properties and flexibility are lowered. The upper limit of n is not particularly limited, and n is usually an integer of 10 or less, particularly 5 or less, and preferably an integer of 3 or less from the viewpoint of further improving heat resistance, mechanical properties, dielectric properties and flexibility. and more preferably 2.
 本発明のアミド化合物の分子量は、1000以上であることが好ましく、耐熱性、機械的特性、誘電特性および柔軟性のさらなる向上の観点から、2000~5000であることがより好ましく、2000~4000であることがさらに好ましく、2000~3000であることが特に好ましい。 The molecular weight of the amide compound of the present invention is preferably 1000 or more, more preferably 2000 to 5000, more preferably 2000 to 4000, from the viewpoint of further improving heat resistance, mechanical properties, dielectric properties and flexibility. 2000 to 3000 is particularly preferable.
 アミド化合物の分子量は数平均分子量であり、ゲル浸透クロマトグラフィー(GPC)により測定されたポリスチレン換算値を用いている。 The molecular weight of the amide compound is the number average molecular weight, and the polystyrene conversion value measured by gel permeation chromatography (GPC) is used.
 本発明のアミド化合物は、硬化性樹脂と併用することにより、硬化剤として用いることができる。 The amide compound of the present invention can be used as a curing agent by using it together with a curing resin.
 本発明のアミド化合物を製造する方法としては特に限定されないが、例えば、上記脂肪族ジカルボン酸と上記脂肪族ジアミンとを反応させアミド化合物を作製した後、さらにトリメリット酸無水物を反応させ、加熱閉環反応をおこなう方法が挙げられる。さらに必要に応じて、エステル化反応をおこなって、末端をエステル化してもよい。エステル化する場合、公知のエステル化反応によりおこなえばよく、例えば、触媒とフェノール類を反応させる方法や、エステル交換反応を利用する方法が挙げられる。 The method for producing the amide compound of the present invention is not particularly limited, but for example, the above-mentioned aliphatic dicarboxylic acid and the above-mentioned aliphatic diamine are reacted to produce an amide compound, which is further reacted with trimellitic anhydride and heated. A method of carrying out a ring closure reaction is mentioned. Furthermore, if necessary, an esterification reaction may be carried out to esterify the terminal. In the case of esterification, a known esterification reaction may be used, and examples thereof include a method of reacting a catalyst with phenols and a method of utilizing transesterification.
<硬化性樹脂組成物>
 本発明の硬化性樹脂組成物は、一般式(1)で示されるアミド化合物と硬化性樹脂を混合することにより得ることができる。
<Curable resin composition>
The curable resin composition of the present invention can be obtained by mixing an amide compound represented by formula (1) and a curable resin.
 硬化性樹脂としては、例えば、エポキシ樹脂、シアネート樹脂、フェノール樹脂、イミド樹脂、マレイミド樹脂、ベンゾオキサジン樹脂、シリコーン樹脂、アクリル樹脂、フッ素樹脂が挙げられる。中でも、エポキシ樹脂がより好ましい。上記硬化性樹脂は、上記のうち1種を単独で用いてもよいし、2種以上を併用してもよい。 Examples of curable resins include epoxy resins, cyanate resins, phenol resins, imide resins, maleimide resins, benzoxazine resins, silicone resins, acrylic resins, and fluorine resins. Among them, epoxy resin is more preferable. Among the above curable resins, one type may be used alone, or two or more types may be used in combination.
 エポキシ樹脂は、1分子中、2個以上のエポキシ基を有することが好ましい。エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、イソシアヌレート型エポキシ樹脂、脂環式エポキシ樹脂、アクリル酸変性エポキシ樹脂、多官能エポキシ樹脂、臭素化エポキシ樹脂、リン変性エポキシ樹脂が挙げられる。エポキシ樹脂は、耐熱性、機械的特性、誘電特性および柔軟性のさらなる向上の観点から、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂のような2官能性のエポキシ樹脂が好ましく、ビスフェノールA型エポキシ樹脂がより好ましい。エポキシ樹脂のエポキシ当量は、100~3000g/eqであることが好ましく、150~300g/eqであることがより好ましい。 The epoxy resin preferably has two or more epoxy groups in one molecule. Examples of epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, dicyclopentadiene type epoxy resin, phenol novolac type epoxy resin, and cresol novolak. type epoxy resins, isocyanurate type epoxy resins, alicyclic epoxy resins, acrylic acid-modified epoxy resins, polyfunctional epoxy resins, brominated epoxy resins, and phosphorus-modified epoxy resins. From the viewpoint of further improving heat resistance, mechanical properties, dielectric properties and flexibility, the epoxy resin is preferably a bifunctional epoxy resin such as a bisphenol A type epoxy resin or a biphenyl type epoxy resin. is more preferred. The epoxy equivalent of the epoxy resin is preferably 100-3000 g/eq, more preferably 150-300 g/eq.
 硬化性樹脂の分子量は特に限定されず、例えば、エポキシ樹脂の場合、上記したエポキシ当量が達成されるような分子量であってもよい。 The molecular weight of the curable resin is not particularly limited. For example, in the case of epoxy resin, the molecular weight may be such that the epoxy equivalent weight described above is achieved.
 本発明の硬化性樹脂組成物は、耐熱性をより一層向上させるため、他の硬化剤を含めてもよい。他の硬化剤とは、一般式(1)で示されるアミド化合物とは構造が異なる硬化剤という意味である。他の硬化剤としては、例えば、フェノール系硬化剤(例えば、ノボラック型フェノール樹脂硬化剤)、チオール系硬化剤、アミン系硬化剤、酸無水物系硬化剤、シアネート系硬化剤、活性エステル系硬化剤、イミド系硬化剤が挙げられる。中でも、耐熱性、機械的特性、誘電特性および柔軟性のさらなる向上の観点から、イミド系硬化剤および/またはフェノール系硬化剤(特にノボラック型フェノール樹脂硬化剤)が好ましく、イミド系硬化剤がより好ましい。他の硬化剤は、上記のうち1種を単独で用いてもよいし、2種以上を併用してもよい。他の硬化剤と本発明のアミド化合物を併用することにより、硬化物中において、本発明のアミド化合物を島とする海島型の相分離構造を形成することができる。他の硬化剤とエポキシ樹脂が海成分となることで、耐熱性、機械的特性をより十分に維持しつつも、本発明のアミド化合物とエポキシ樹脂が島成分となることで、柔軟性がより十分に発現し、誘電特性により十分に優れた硬化物を得ることができる。 The curable resin composition of the present invention may contain other curing agents in order to further improve heat resistance. Another curing agent means a curing agent having a structure different from that of the amide compound represented by the general formula (1). Other curing agents include, for example, phenol-based curing agents (for example, novolac-type phenolic resin curing agents), thiol-based curing agents, amine-based curing agents, acid anhydride-based curing agents, cyanate-based curing agents, and active ester-based curing agents. and imide curing agents. Among them, from the viewpoint of further improving heat resistance, mechanical properties, dielectric properties and flexibility, imide-based curing agents and/or phenol-based curing agents (especially novolac-type phenol resin curing agents) are preferred, and imide-based curing agents are more preferred. preferable. Other curing agents may be used alone or in combination of two or more of the above. By using the amide compound of the present invention in combination with another curing agent, it is possible to form a sea-island phase separation structure in which the amide compound of the present invention serves as islands in the cured product. Other curing agents and epoxy resins serve as the sea component, so heat resistance and mechanical properties are more sufficiently maintained, while the amide compound and the epoxy resin of the present invention serve as island components, resulting in greater flexibility. It is sufficiently expressed, and a cured product having sufficiently excellent dielectric properties can be obtained.
 イミド系硬化剤としては、分子中に1~4個のイミド基と2~4個のグリシジル基反応性官能基を有する化合物が挙げられる。グリシジル基反応性官能基とは、グリシジル基との反応性を有する官能基のことであり、例えば、カルボキシル基、ヒドロキシル基、アミノ基であってもよい。前記イミド系硬化剤としては、例えば、2個の無水トリメリット酸と1個の4,4’-ジアミノフェニルエーテルが反応した化合物(例えば、ジイミドジカルボン酸化合物)、1個の3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物と2個の2-アミノテレフタル酸が反応した化合物(例えば、ジイミドテトラカルボン酸化合物)、1個の無水トリメリット酸と1個の2-アミノテレフタル酸が反応した化合物(例えば、モノイミドトリカルボン酸化合物)が挙げられる。イミド系硬化剤は、耐熱性、機械的特性、誘電特性および柔軟性のさらなる向上の観点から、ジイミドジカルボン酸化合物が好ましい。 Examples of imide-based curing agents include compounds having 1 to 4 imide groups and 2 to 4 glycidyl group-reactive functional groups in the molecule. A glycidyl group-reactive functional group is a functional group having reactivity with a glycidyl group, and may be, for example, a carboxyl group, a hydroxyl group, or an amino group. Examples of the imide-based curing agent include, for example, a compound obtained by reacting two trimellitic anhydrides with one 4,4'-diaminophenyl ether (for example, a diimide dicarboxylic acid compound), one 3,3', 4,4'-Benzophenonetetracarboxylic dianhydride and two 2-aminoterephthalic acid reacted compounds (e.g., diimidotetracarboxylic acid compounds), one trimellitic anhydride and one 2-aminoterephthalic acid Acid-reacted compounds (for example, monoimidetricarboxylic acid compounds) can be mentioned. The imide-based curing agent is preferably a diimide dicarboxylic acid compound from the viewpoint of further improving heat resistance, mechanical properties, dielectric properties and flexibility.
 本発明の硬化性樹脂組成物において、硬化性樹脂と硬化剤の合計に対する一般式(1)で示されるアミド化合物の割合は、耐熱性、機械的特性、誘電特性および柔軟性のさらなる向上の観点から、35質量%以下(特に2~35質量%)が好ましく、20質量%以下(特に10~20質量%)とすることがより好ましく、18質量%以下(特に10~18質量%)とすることがさらに好ましく、10~15質量%とすることが十分に好ましく、12~14.5質量%とすることが特に好ましい。硬化性樹脂と硬化剤の合計とは、硬化剤として一般式(1)のアミド化合物のみを用いる場合、硬化性樹脂と当該アミド化合物との合計のことであり、硬化剤として一般式(1)のアミド化合物とともに他の硬化剤を用いる場合、硬化性樹脂と当該アミド化合物と他の硬化剤との合計のことである。 In the curable resin composition of the present invention, the ratio of the amide compound represented by the general formula (1) to the total of the curable resin and the curing agent is from the viewpoint of further improving heat resistance, mechanical properties, dielectric properties and flexibility. Therefore, it is preferably 35% by mass or less (especially 2 to 35% by mass), more preferably 20% by mass or less (especially 10 to 20% by mass), and 18% by mass or less (especially 10 to 18% by mass). is more preferable, 10 to 15% by mass is sufficiently preferable, and 12 to 14.5% by mass is particularly preferable. The total of the curable resin and the curing agent is the total of the curable resin and the amide compound when only the amide compound of general formula (1) is used as the curing agent, and the curing agent is the general formula (1) When another curing agent is used together with the amide compound, it is the sum of the curing resin, the amide compound and the other curing agent.
 本発明の硬化性樹脂組成物において、硬化剤(一般式(1)で示されるアミド化合物を含む)の割合は、特に限定されず、硬化性樹脂(100モル%)に対して、80~120モル%であってよく、耐熱性、機械的特性、誘電特性および柔軟性のさらなる向上の観点から、好ましくは90~110モル%、より好ましくは98~102モル%である。なお、硬化剤の割合は、硬化剤が一般式(1)で示されるアミド化合物および他の硬化剤を含む場合、それらの合計割合のことである。 In the curable resin composition of the present invention, the ratio of the curing agent (including the amide compound represented by the general formula (1)) is not particularly limited, and is 80 to 120 with respect to the curable resin (100 mol%). It may be mol %, preferably 90 to 110 mol %, more preferably 98 to 102 mol %, from the viewpoint of further improving heat resistance, mechanical properties, dielectric properties and flexibility. When the curing agent contains the amide compound represented by formula (1) and other curing agents, the proportion of the curing agent is the total proportion thereof.
 本発明の硬化性樹脂組成物には、本発明の効果を損なわない範囲において、硬化促進剤、無機充填剤、酸化防止剤、難燃剤、有機溶媒等の他の添加剤を加えてもよい。 To the curable resin composition of the present invention, other additives such as curing accelerators, inorganic fillers, antioxidants, flame retardants, organic solvents, etc. may be added as long as they do not impair the effects of the present invention.
 硬化促進剤としては、例えば、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール等のイミダゾール類;4-ジメチルアミノピリジン、ベンジルジメチルアミン、2-(ジメチルアミノメチル)フェノール、2,4,6-トリス(ジメチルアミノメチル)フェノール等の3級アミン類;トリフェニルホスフィン、トリブチルホスフィン等の有機ホスフィン類が挙げられる。硬化促進剤は、上記のうち1種を単独で用いてもよいし、2種以上を併用してもよい。硬化促進剤を用いる場合、その配合量は、硬化性樹脂と硬化剤の合計に対して、0.01~2.0質量%とすることが好ましく、得られる硬化物の耐熱性と誘電特性が向上することから、0.01~1質量%とすることが好ましく、0.05~0.5質量%とすることがより好ましい。 Curing accelerators include, for example, imidazoles such as 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole; 4-dimethylaminopyridine, benzyldimethylamine, 2-(dimethylaminomethyl)phenol, tertiary amines such as 2,4,6-tris(dimethylaminomethyl)phenol; and organic phosphines such as triphenylphosphine and tributylphosphine. One of the above curing accelerators may be used alone, or two or more thereof may be used in combination. When using a curing accelerator, the amount is preferably 0.01 to 2.0% by mass with respect to the total of the curable resin and the curing agent, and the heat resistance and dielectric properties of the resulting cured product are 0.01 to 1% by mass, more preferably 0.05 to 0.5% by mass.
 無機充填剤としては、例えば、シリカ、硫酸バリウム、アルミナ、窒化アルミニウム、窒化ホウ素、窒化ケイ素、ガラスパウダー、ガラスフリット、ガラス繊維、カーボンファイバー、無機イオン交換体が挙げられる。無機充填剤は、上記のうち1種を単独で用いてもよいし、2種以上を併用してもよい。無機充填剤を用いる場合、無機充填材の平均粒子径は、50nm~4μmとすることが好ましく、塗布性や加工性により優れることから、100nm~3μmとすることがより好ましい。 Examples of inorganic fillers include silica, barium sulfate, alumina, aluminum nitride, boron nitride, silicon nitride, glass powder, glass frits, glass fibers, carbon fibers, and inorganic ion exchangers. Among the above inorganic fillers, one may be used alone, or two or more may be used in combination. When an inorganic filler is used, the average particle size of the inorganic filler is preferably from 50 nm to 4 μm, and more preferably from 100 nm to 3 μm because it is superior in coatability and workability.
 酸化防止剤としては、例えば、ヒンダードフェノール系酸化防止剤、リン系酸化防止剤、チオエーテル系酸化防止剤が挙げられる。酸化防止剤は、上記のうち1種を単独で用いてもよいし、2種以上を併用してもよい。 Examples of antioxidants include hindered phenol-based antioxidants, phosphorus-based antioxidants, and thioether-based antioxidants. Among the above antioxidants, one may be used alone, or two or more may be used in combination.
 難燃剤としては、非ハロゲン系難燃剤、リン系難燃剤、窒素系難燃剤、シリコーン系難燃剤が挙げられる。中でも、環境への影響の観点から非ハロゲン系難燃剤が好ましい。難燃剤は、上記のうち1種を単独で用いてもよいし、2種以上を併用してもよい。 Flame retardants include non-halogen flame retardants, phosphorus flame retardants, nitrogen flame retardants, and silicone flame retardants. Among them, non-halogen flame retardants are preferred from the viewpoint of environmental impact. One of the above flame retardants may be used alone, or two or more thereof may be used in combination.
 有機溶媒は、硬化剤および硬化性樹脂が均一に溶解し塗工できれば特に限定されず、環境への影響の観点から非ハロゲン化溶媒が好ましい。非ハロゲン化溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドンが挙げられる。有機溶媒は、上記のうち1種を単独で用いてもよいし、2種以上を併用してもよい。 The organic solvent is not particularly limited as long as the curing agent and the curing resin can be uniformly dissolved and coated, and a non-halogenated solvent is preferable from the viewpoint of environmental impact. Non-halogenated solvents include, for example, N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone. One of the above organic solvents may be used alone, or two or more thereof may be used in combination.
 本発明の硬化性樹脂組成物の製造方法は特に限定されないが、例えば、ホモディスパー、万能ミキサー、バンバリーミキサー、ニーダー等の混合機を用いて、一般式(1)で示されるアミド化合物と硬化性樹脂と、必要に応じて添加する他の添加剤とを混合する方法が挙げられる。各成分の有機溶媒への溶解の観点から、混合に際し、80~200℃(特に100~150℃)に加熱してもよい。 The method for producing the curable resin composition of the present invention is not particularly limited. A method of mixing the resin with other additives that are added as necessary can be mentioned. From the viewpoint of dissolving each component in the organic solvent, the mixture may be heated to 80 to 200° C. (especially 100 to 150° C.).
<硬化物>
 本発明の硬化性樹脂組成物を加熱することにより、一般式(1)で示されるアミド化合物と硬化性樹脂とを反応させ、硬化物を得ることができる。加熱温度(硬化温度)は、80~350℃とすることが好ましく、130~300℃とすることがより好ましい。加熱時間(硬化時間)は、1分~24時間とすることが好ましく、5分~10時間とすることがより好ましい。なお、有機溶媒を含む硬化性樹脂組成物の場合、加熱により有機溶媒は留去される。
<Cured product>
By heating the curable resin composition of the present invention, the amide compound represented by the general formula (1) and the curable resin can be reacted to obtain a cured product. The heating temperature (curing temperature) is preferably 80 to 350°C, more preferably 130 to 300°C. The heating time (curing time) is preferably 1 minute to 24 hours, more preferably 5 minutes to 10 hours. In addition, in the case of a curable resin composition containing an organic solvent, the organic solvent is distilled off by heating.
 本発明において、硬化物の特性値は、柔軟成分を有しない特定硬化物と対比して評価する。「柔軟成分を有しない特定硬化物」とは、一般式(1)で示されるアミド化合物の代わりに、特定の他の硬化剤を含む硬化物のことである。特定の他の硬化剤とは、評価される硬化物を構成する本発明の硬化性樹脂組成物が硬化性樹脂、一般式(1)で示されるアミド化合物および他の硬化剤を含む場合における当該他の硬化剤のことである。硬化性樹脂組成物が2種以上の他の硬化剤を含む場合、最も多量で含まれる他の硬化剤を「特定の他の硬化剤」とする。従って、本発明の硬化性樹脂組成物が硬化性樹脂、一般式(1)で示されるアミド化合物および他の硬化剤を含む場合、当該硬化性樹脂組成物から製造される本発明の硬化物の特性値は、当該アミド化合物の代わりに、当該他の硬化剤をさらに用いること以外、本発明の硬化物と同様の方法により製造された硬化物(すなわち「柔軟成分を有しない特定硬化物」)と対比して評価される。 In the present invention, the characteristic values of the cured product are evaluated in comparison with a specific cured product that does not have a softening component. The “specific cured product having no softening component” means a cured product containing another specific curing agent instead of the amide compound represented by formula (1). The specific other curing agent refers to the case where the curable resin composition of the present invention constituting the cured product to be evaluated contains a curable resin, an amide compound represented by formula (1), and another curing agent. Other curing agents. When the curable resin composition contains two or more other curing agents, the other curing agent contained in the largest amount is referred to as the "specific other curing agent". Therefore, when the curable resin composition of the present invention contains a curable resin, an amide compound represented by formula (1), and other curing agents, the cured product of the present invention produced from the curable resin composition The characteristic values are those of a cured product produced in the same manner as the cured product of the present invention except that the other curing agent is further used instead of the amide compound (i.e., a "specific cured product having no softening component"). evaluated in comparison with
 本発明の硬化物のガラス転移温度は、「柔軟成分を有しない特定硬化物」のガラス転移点との差が、耐熱性の観点から、20℃以下であることが好ましく、10℃以下であることがより好ましい。 The difference between the glass transition temperature of the cured product of the present invention and the glass transition temperature of the "specific cured product having no softening component" is preferably 20°C or less, and preferably 10°C or less, from the viewpoint of heat resistance. is more preferable.
 本発明の硬化物の引張弾性率は、「柔軟成分を有しない特定硬化物」と対比して、柔軟性の観点から、75%以下であることが好ましく、70%以下であることがより好ましく、65%以下であることがさらに好ましい。 From the viewpoint of flexibility, the tensile modulus of the cured product of the present invention is preferably 75% or less, more preferably 70% or less, compared to the "specific cured product having no flexible component". , 65% or less.
 本発明の硬化物の引張破断強度は、「柔軟成分を有しない特定硬化物」と対比して、機械的特性の観点から、60%以上であることが好ましく、65%以上であることが好ましく、70%以上であることがより好ましい。 From the viewpoint of mechanical properties, the tensile strength at break of the cured product of the present invention is preferably 60% or more, preferably 65% or more, compared to the "specific cured product having no flexible component". , more preferably 70% or more.
 本発明の硬化物の誘電正接は、「柔軟成分を有しない特定硬化物」の誘電正接以下であることが好ましく、「柔軟成分を有しない特定硬化物」の誘電正接未満であることがより好ましい。 The dielectric loss tangent of the cured product of the present invention is preferably equal to or less than the dielectric loss tangent of the "specific cured product having no flexible component", and more preferably less than the dielectric loss tangent of the "specific cured product having no flexible component". .
<硬化物の用途>
 本発明の硬化物は、耐熱性および機械的特性を維持しつつも、柔軟性および誘電特性に優れているため、電気絶縁材料として好適に用いることができる。具体的には、本発明の硬化物は、封止材(例えば、パワー半導体モジュール用封止材)、プリント配線基板、モールド材(例えば、ブッシング変圧器用モールド材、固体絶縁スイッチギア用モールド材)、原子力発電所用電気ペネトレーション、ビルドアップ積層板、層間絶縁材(例えば、有機再配線層、絶縁性接着フィルム)、感光性絶縁材料、導電性ペースト等に好適に用いることができる。中でも、本発明の硬化物は、封止材、プリント配線基板、層間絶縁材により好適に用いることができる。
<Application of cured product>
The cured product of the present invention is excellent in flexibility and dielectric properties while maintaining heat resistance and mechanical properties, so that it can be suitably used as an electrical insulating material. Specifically, the cured product of the present invention is a sealing material (e.g., power semiconductor module sealing material), printed wiring board, molding material (e.g., bushing transformer molding material, solid insulation switchgear molding material). , electrical penetrations for nuclear power plants, build-up laminates, interlayer insulating materials (eg, organic rewiring layers, insulating adhesive films), photosensitive insulating materials, conductive pastes, and the like. Among them, the cured product of the present invention can be used more preferably for sealing materials, printed wiring boards, and interlayer insulating materials.
 例えば、本発明の硬化物を封止材(特に、封止材用絶縁材料)として用いる場合、パワー半導体モジュールを作製した後、モジュールがセットされた金型内にエポキシ樹脂溶液(特に、本発明の硬化性樹脂組成物)を充填し、乾燥および硬化することにより、本発明の硬化物を得ることができる。
 また例えば、本発明の硬化物をプリント配線基板(特にプリント配線基板用絶縁材料)として用いる場合、エポキシ樹脂溶液(特に、本発明の硬化性樹脂組成物)をガラスクロスに含浸または塗布させた後、乾燥および硬化することより、本発明の硬化物を得ることができる。
 さらに例えば、本発明の硬化物を層間絶縁材として用いる場合、エポキシ樹脂溶液(特に、本発明の硬化性樹脂組成物)をシート状に加工し乾燥させた状態で、内層基板の両面に積層し、硬化することにより、本発明の硬化物を得ることができる。
For example, when the cured product of the present invention is used as a sealing material (particularly, an insulating material for sealing material), after producing a power semiconductor module, an epoxy resin solution (particularly, The cured product of the present invention can be obtained by filling, drying and curing the curable resin composition of (1).
Further, for example, when the cured product of the present invention is used as a printed wiring board (especially an insulating material for printed wiring boards), the epoxy resin solution (especially the curable resin composition of the present invention) is impregnated or applied to a glass cloth. , drying and curing to obtain the cured product of the present invention.
Further, for example, when the cured product of the present invention is used as an interlayer insulating material, an epoxy resin solution (particularly, the curable resin composition of the present invention) is processed into a sheet, dried, and laminated on both sides of an inner layer substrate. , to obtain the cured product of the present invention.
 以下、本発明を実施例によって具体的に説明するが、本発明はこれらによって限定されるものではない。 The present invention will be specifically described below with reference to examples, but the present invention is not limited to these.
A.原料
 実施例、比較例で用いた原料を以下に示す。
(A)硬化性樹脂
・ビスフェノールA型エポキシ樹脂:東京化成工業社製、エポキシ当量170g/eq
・ビフェニル型エポキシ樹脂:三菱ケミカル社製「YX4000H」、エポキシ当量180g/eq
A. Raw Materials Raw materials used in Examples and Comparative Examples are shown below.
(A) Curing resin/Bisphenol A type epoxy resin: manufactured by Tokyo Chemical Industry Co., Ltd., epoxy equivalent 170 g/eq
· Biphenyl type epoxy resin: "YX4000H" manufactured by Mitsubishi Chemical Corporation, epoxy equivalent 180 g / eq
(B)硬化剤の原料、硬化剤
・ダイマー酸:クロ―ダジャパン社製「PRIPOL1009」
・ダイマージアミン:クローダジャパン社製「PRIAMINE1075」
・無水トリメリット酸:東京化成工業社製
・4,4’-ジアミノジフェニルエーテル:東京化成工業社製
・酢酸1-ナフチル:東京化成工業社製
・ノボラック型フェノール樹脂:DIC社製「PHENOLITE TD-2131」
・ポリ(プロピレングリコール)ビス(2-アミノプロピルエーテル):HUNTSMAN社製「ELASTAMINE RP-2009」、分子量2000
(B) Curing agent raw material, curing agent/dimer acid: "PRIPOL 1009" manufactured by Croda Japan Co., Ltd.
・Dimer diamine: "PRIAMINE 1075" manufactured by Croda Japan Co., Ltd.
- Trimellitic anhydride: manufactured by Tokyo Chemical Industry Co., Ltd. - 4,4'-diaminodiphenyl ether: manufactured by Tokyo Chemical Industry Co., Ltd. - 1-naphthyl acetate: manufactured by Tokyo Chemical Industry Co., Ltd. - Novolac type phenolic resin: manufactured by DIC Corporation "PHENOLITE TD-2131" ”
· Poly (propylene glycol) bis (2-aminopropyl ether): HUNTSMAN "ELASTAMINE RP-2009", molecular weight 2000
・ジイミドジカルボン酸F
 ダイマージアミン50質量部と無水トリメリット酸35.9質量部を、大阪ケミカル社製ワンダークラッシャーWC-3Cを用いて、9000rpmの回転速度で3分間混合粉砕を行った。処理した試料をガラス容器に移し、ヤマト科学社製イナートオーブンDN411Iにて、窒素雰囲気下で300℃2時間イミド化反応をおこない、ジイミドジカルボン酸Fを得た。
 なお、ジイミドジカルボン酸Fは、H-NMRで確認したところ、一般式(1)で示される構造(n=0、Rは水素原子、Yはダイマージアミン残基)であった。また、該ジイミドジカルボン酸Eの数平均分子量は890であり、常温で固体であった。
・Diimidodicarboxylic acid F
50 parts by mass of dimer diamine and 35.9 parts by mass of trimellitic anhydride were mixed and pulverized for 3 minutes at a rotational speed of 9000 rpm using Wonder Crusher WC-3C manufactured by Osaka Chemical Co., Ltd. The treated sample was transferred to a glass container, and an imidization reaction was carried out at 300° C. for 2 hours in an inert oven DN411I manufactured by Yamato Kagaku Co., Ltd. to obtain diimide dicarboxylic acid F.
Diimidodicarboxylic acid F was confirmed by 1 H-NMR to have a structure represented by general formula (1) (n=0, R is a hydrogen atom, Y is a dimer diamine residue). Further, the diimidedicarboxylic acid E had a number average molecular weight of 890 and was solid at room temperature.
・ジイミドジカルボン酸G
 加熱機構、撹拌機構を備えた反応容器にジイミドジカルボン酸F61.4質量部、酢酸1-ナフチル38.6質量部を投入した。その後、撹拌下、300℃で加熱し、縮合水を系外に除去しながら、窒素気流下常圧で3時間反応をおこなった。その後、メタノールで洗浄、乾燥し、イミドジカルボン酸Gを得た。
 なお、ジイミドジカルボン酸Gは、H-NMR、GPCで確認ところ、一般式(1)で示される構造(n=0、Rはナフチル基、Yはダイマージアミン残基)であった。また、該イミドジカルボン酸Gの数平均分子量は1137であり、常温で固体であった。
・Diimidodicarboxylic acid G
Diimidodicarboxylic acid F61.4 parts by mass and 1-naphthyl acetate 38.6 parts by mass were charged into a reaction vessel equipped with a heating mechanism and a stirring mechanism. Thereafter, the mixture was heated at 300° C. under stirring, and the reaction was carried out for 3 hours at normal pressure under a nitrogen stream while removing condensed water out of the system. Then, it was washed with methanol and dried to obtain imidodicarboxylic acid G.
The diimidodicarboxylic acid G was confirmed by 1 H-NMR and GPC to have the structure represented by the general formula (1) (n=0, R is a naphthyl group, Y is a dimer diamine residue). Further, the imidodicarboxylic acid G had a number average molecular weight of 1137 and was solid at room temperature.
・ジイミドジカルボン酸H
 ダイマージアミン50質量部を4,4’-ジアミノジフェニルエーテル18.8質量部に代えた以外はイミドジカルボン酸Fと同様にして、ジイミドジカルボン酸Hを得た。
 なお、ジイミドジカルボン酸Hは、H-NMRで確認したところ、トリメリット酸-4,4’-ジアミノジフェニルエーテル-トリメリット酸から構成される化合物であった。また、該ジイミドジカルボン酸Hの数平均分子量は549であり、常温で固体であった。
・Diimidodicarboxylic acid H
Diimidedicarboxylic acid H was obtained in the same manner as imidedicarboxylic acid F, except that 18.8 parts by weight of 4,4'-diaminodiphenyl ether was used instead of 50 parts by weight of dimer diamine.
Diimidodicarboxylic acid H was confirmed by 1 H-NMR to be a compound composed of trimellitic acid-4,4′-diaminodiphenyl ether-trimellitic acid. Further, the diimidedicarboxylic acid H had a number average molecular weight of 549 and was solid at room temperature.
(C)硬化促進剤
・2-エチル-4-メチルイミダゾール:東京化成工業社製
(C) curing accelerator 2-ethyl-4-methylimidazole: manufactured by Tokyo Chemical Industry Co., Ltd.
(D)有機溶媒
・N,N-ジメチルホルムアミド:東京化成工業社製
・トルエン:東京化成工業社製
(D) Organic solvent N, N-dimethylformamide: manufactured by Tokyo Chemical Industry Co., Ltd. Toluene: manufactured by Tokyo Chemical Industry Co., Ltd.
B.評価方法
 実施例、比較例で得られた、化合物、硬化物について以下の評価をおこなった。
 特に、実施例および比較例で得られた硬化物を評価する際の比較対象(または比較基準)は、「柔軟成分を有しない特定硬化物」であり、詳しくは下記の通りであった。
 実施例1~7および比較例1~4の硬化物の比較対象は、参考例1の硬化物であった。
 実施例8の硬化物の比較対象は、参考例2の硬化物であった。
 実施例9の硬化物の比較対象は、参考例3の硬化物であった。
B. Evaluation Method The compounds and cured products obtained in Examples and Comparative Examples were evaluated as follows.
In particular, the object of comparison (or comparison standard) when evaluating the cured products obtained in Examples and Comparative Examples was "a specific cured product having no softening component", and the details were as follows.
The cured product of Reference Example 1 was compared with the cured products of Examples 1-7 and Comparative Examples 1-4.
The cured product of Example 8 was compared with the cured product of Reference Example 2.
The cured product of Example 9 was compared with the cured product of Reference Example 3.
(1)硬化剤(化合物A~G)の組成
 硬化剤を、高分解能核磁気共鳴装置(日本電子社製JNM-ECA500 NMR)を用いて、H-NMR分析することにより、それぞれの共重合成分のピーク強度から樹脂組成を求めた(分解能:500MHz、溶媒:重水素化ジメチルスルホキシド、温度:25℃)。
(1) Composition of Curing Agents (Compounds A to G) The curing agents were subjected to 1 H-NMR analysis using a high-resolution nuclear magnetic resonance spectrometer (JNM-ECA500 NMR manufactured by JEOL Ltd.) to determine each copolymer. The resin composition was determined from the peak intensities of the components (resolution: 500 MHz, solvent: deuterated dimethylsulfoxide, temperature: 25°C).
(2)硬化剤(化合物A~G)の数平均分子量
 ゲル浸透クロマトグラフィー(GPC)を用いて、下記の条件で標準ポリスチレンのGPCを測定し検量線を作成したのち、硬化剤(化合物A~G)を同一の条件でGPCを測定しポリスチレン換算の平均分子量を求めた。
<GPC測定条件>
 装置:東ソー社製HLC-8220GPC
 カラム:昭和電工社製Shodex  GPC KF-405L HQ 3本
 溶媒:クロロホルム
 流速:0.3mL/min
 温度:カラム40℃
 試料濃度:0.2質量%
 検出器:RI検出器
 較正試料:標準ポリスチレン
(2) Number average molecular weight of curing agent (compounds A to G) Using gel permeation chromatography (GPC), the GPC of standard polystyrene was measured under the following conditions to prepare a calibration curve, and then the curing agent (compound A to G) was measured by GPC under the same conditions to determine the average molecular weight in terms of polystyrene.
<GPC measurement conditions>
Apparatus: HLC-8220GPC manufactured by Tosoh Corporation
Column: Showa Denko Shodex GPC KF-405L HQ 3 Solvent: Chloroform Flow rate: 0.3 mL/min
Temperature: column 40°C
Sample concentration: 0.2% by mass
Detector: RI detector Calibration sample: standard polystyrene
(3)硬化物のガラス転移温度(耐熱性)
 実施例および比較例で得られた硬化物を、示差走査熱量測定装置(DSC)を用いて、以下の条件で測定した。
<測定条件>
 装置:Perkin Elmer社製 DSC 6000 
 昇温速度:10℃/分
 25℃から300℃まで昇温し、得られた昇温曲線中の転移温度に由来する不連続変化の開始温度をガラス転移温度とした。
(3) Glass transition temperature of cured product (heat resistance)
Cured products obtained in Examples and Comparative Examples were measured using a differential scanning calorimeter (DSC) under the following conditions.
<Measurement conditions>
Apparatus: DSC 6000 manufactured by Perkin Elmer
Heating rate: 10° C./min The temperature was raised from 25° C. to 300° C., and the starting temperature of the discontinuous change derived from the transition temperature in the obtained heating curve was taken as the glass transition temperature.
 以下の式から、値Aを求めて、以下の基準で評価した。
 値A=[「柔軟成分を有しない特定硬化物」のガラス転移温度]-[実施例および比較例で得られた硬化物のガラス転移温度]
<評価基準>
 ◎:20℃以下(最良)
 ×:20℃を超える(不良)
A value A was obtained from the following formula and evaluated according to the following criteria.
Value A = [Glass transition temperature of "specific cured product having no softening component"] - [Glass transition temperature of cured products obtained in Examples and Comparative Examples]
<Evaluation Criteria>
◎: 20 ° C. or less (best)
×: exceeds 20 ° C. (defective)
(4)硬化物の引張弾性率(柔軟性)および引張破断強度(機械的特性)
 実施例および比較例で得られた硬化物を幅10×長さ100mmに切断して試験片を作製し、ISO 178に準拠して測定した。
(4) Tensile modulus of cured product (flexibility) and tensile strength at break (mechanical properties)
The cured products obtained in Examples and Comparative Examples were cut into a width of 10 mm and a length of 100 mm to prepare a test piece, which was measured according to ISO 178.
 以下の式から、値B、値Cを求めて、以下の基準で評価した。
<引張弾性率の評価>
 値B=[実施例および比較例で得られた硬化物の引張弾性率]/[「柔軟成分を有しない特定硬化物」の引張弾性率]×100
 ◎:値B≦65%(最良)
 ○:65%<値B≦70%(良)
 △:70%<値B≦75%(通常)
 ×:75%<値B(不良)
Values B and C were obtained from the following formulas and evaluated according to the following criteria.
<Evaluation of tensile modulus>
Value B = [tensile elastic modulus of cured products obtained in Examples and Comparative Examples]/[tensile elastic modulus of “specific cured product having no flexible component”] × 100
◎: value B ≤ 65% (best)
○: 65% < value B ≤ 70% (good)
△: 70% < value B ≤ 75% (normal)
×: 75% < value B (defective)
<引張破断強度の評価>
 値C=[実施例および比較例で得られた硬化物の引張破断強度]/[「柔軟成分を有しない特定硬化物」の引張破断強度]×100
 ◎:70%≦値C(最良)
 ○:65%≦値C<70%(良)
 △:60%≦値C<65%(良)
 ×:値C<60%(不良)
<Evaluation of tensile strength at break>
Value C = [Tensile breaking strength of cured products obtained in Examples and Comparative Examples]/[Tensile breaking strength of “specified cured product having no flexible component”] × 100
◎: 70% ≤ value C (best)
○: 65% ≤ value C < 70% (good)
△: 60% ≤ value C < 65% (good)
×: value C < 60% (defective)
(5)硬化物の誘電正接(誘電特性)
 実施例および比較例で得られた硬化物を、以下の装置を用いて、以下の条件で誘電正接を測定した。
<測定条件>
 装置:キーサイト・テクノロジー社製 PNAネットワークアナライザN5222B
 関東電子応用開発社製 空洞共振器 5.8GHz用CP-521 
 試料寸法:長さ80mm×幅2mm×厚み100μm
 周波数:5.8GHz
 測定温度:23℃
 試験環境:23℃±1℃、50%RH±5%RH
(5) Dielectric loss tangent of cured product (dielectric properties)
The dielectric loss tangent of the cured products obtained in Examples and Comparative Examples was measured using the following equipment under the following conditions.
<Measurement conditions>
Device: Keysight Technologies PNA network analyzer N5222B
CP-521 for 5.8 GHz cavity resonator manufactured by Kanto Denshi Applied Development Co., Ltd.
Sample size: length 80 mm x width 2 mm x thickness 100 μm
Frequency: 5.8GHz
Measurement temperature: 23°C
Test environment: 23°C ± 1°C, 50% RH ± 5% RH
 「柔軟成分を有しない特定硬化物」(参考例)の誘電正接と対比し、以下の基準で評価した。
<誘電正接の評価>
 ◎:実施例および比較例で得られた硬化物の誘電正接の方が、「柔軟成分を有しない特定硬化物」の誘電正接よりも低い(良);
 ○:実施例および比較例で得られた硬化物の誘電正接は、「柔軟成分を有しない特定硬化物」の誘電正接と同じ(通常);および
 ×:実施例および比較例で得られた硬化物の誘電正接の方が、「柔軟成分を有しない特定硬化物」の誘電正接よりも高い(不良)。
It was compared with the dielectric loss tangent of the "specified cured product having no flexible component" (reference example) and evaluated according to the following criteria.
<Evaluation of dielectric loss tangent>
◎: the dielectric loss tangent of the cured products obtained in Examples and Comparative Examples is lower than the dielectric loss tangent of the “specific cured product having no flexible component” (good);
○: The dielectric loss tangent of the cured products obtained in Examples and Comparative Examples is the same as the dielectric loss tangent of the “specific cured product having no flexible component” (normal); and ×: Cured products obtained in Examples and Comparative Examples The dielectric loss tangent of the product is higher than the dielectric loss tangent of the "specified cured product having no flexible component" (defective).
(6)硬化物の相分離構造
 実施例および比較例で得られた硬化物を、ライカ製EM UC-7ウルトラミクロトームを用いて、硬化物から厚さ80nmの切片を採取し、以下の条件で相分離構造を観察した。図1に、実施例1の硬化物の海島型の相分離構造を示すTEM写真を示す。
<測定条件>
装置:日本電子(株)製 JEM-1230 TEM
測定方法:透過測定
測定条件:加速電圧 100kV
(6) Phase separation structure of cured product The cured products obtained in Examples and Comparative Examples were cut using a Leica EM UC-7 ultramicrotome, and a section with a thickness of 80 nm was taken from the cured product under the following conditions. A phase-separated structure was observed. FIG. 1 shows a TEM photograph showing the sea-island phase separation structure of the cured product of Example 1. As shown in FIG.
<Measurement conditions>
Apparatus: JEM-1230 TEM manufactured by JEOL Ltd.
Measurement method: Transmission measurement Measurement conditions: Accelerating voltage 100 kV
 得られたTEM写真を、以下の基準で評価した。
<相分離構造の評価>
 ◎:図1に示すような海島型の相分離構造を有していた。
 ×:図1に示すような海島型の相分離構造を有していなかった。
The obtained TEM photograph was evaluated according to the following criteria.
<Evaluation of phase separation structure>
A: It had a sea-island phase separation structure as shown in FIG.
x: It did not have a sea-island phase separation structure as shown in FIG.
(7)総合評価
 耐熱性、機械的特性、誘電特性および柔軟性の評価結果に基づいて、総合的に評価した。
 ◎:全ての評価結果が◎であった。
 ○:全ての評価結果うち、最も低い評価結果が○であった。
 △:全ての評価結果うち、最も低い評価結果が△であった。
 ×:全ての評価結果うち、最も低い評価結果が×であった。
(7) Comprehensive evaluation Based on the evaluation results of heat resistance, mechanical properties, dielectric properties and flexibility, comprehensive evaluation was made.
⊚: All the evaluation results were ⊚.
○: Among all the evaluation results, the lowest evaluation result was ○.
△: Among all the evaluation results, the lowest evaluation result was △.
x: Among all evaluation results, the lowest evaluation result was x.
実施例1
(化合物A)
 加熱機構、撹拌機構を備えた反応容器にダイマー酸35.2質量部、ダイマージアミン50質量部を投入した。その後、撹拌下、230℃で加熱し、縮合水を系外に除去しながら、窒素気流下常圧で2時間重合をおこなった。その後、一旦50℃まで冷却し、無水トリメリット酸11.9質量部を投入した。再度、撹拌下、210℃で加熱し、加熱閉環反応を1時間おこない、化合物Aを得た。
 なお、化合物Aは、H-NMR、GPCで確認ところ、一般式(1)で示される構造(n=2、Rは水素原子、Yはダイマージアミン残基、Xはダイマー酸残基)であった。また、該化合物Aの数平均分子量は2762であり、常温で粘調液体であった。
Example 1
(Compound A)
35.2 parts by mass of dimer acid and 50 parts by mass of dimer diamine were charged into a reaction vessel equipped with a heating mechanism and a stirring mechanism. After that, the mixture was heated at 230° C. with stirring, and polymerization was carried out for 2 hours at normal pressure under a nitrogen stream while condensed water was removed from the system. Then, it was once cooled to 50° C., and 11.9 parts by mass of trimellitic anhydride was added. The mixture was again heated at 210° C. under stirring to carry out a ring-closing reaction with heating for 1 hour to obtain compound A.
Compound A has a structure represented by general formula (1) (n=2, R is a hydrogen atom, Y is a dimer diamine residue, and X is a dimer acid residue), as confirmed by 1 H-NMR and GPC. there were. The compound A had a number average molecular weight of 2762 and was a viscous liquid at room temperature.
(硬化性樹脂組成物)
 表1に記載された配合比率で、得られた化合物Aとビスフェノール型エポキシ樹脂とイミドジカルボン酸Hと2-エチル-4-メチルイミダゾールとN,N-ジメチルホルムアミドとを130℃で0.5時間の還流加熱をおこない、溶解した。冷却後、その他添加剤を混合・撹拌し、硬化性樹脂組成物を得た。
(Curable resin composition)
The obtained compound A, bisphenol type epoxy resin, imidodicarboxylic acid H, 2-ethyl-4-methylimidazole and N,N-dimethylformamide were mixed at 130° C. for 0.5 hours at the blend ratios shown in Table 1. was heated under reflux to dissolve. After cooling, other additives were mixed and stirred to obtain a curable resin composition.
(硬化物)
 得られた硬化性樹脂組成物をアルミニウム基材に300μmの厚みで塗工し、イナートオーブンにて、窒素雰囲気下、120℃で1時間、続いて8時間かけて300℃まで昇温し、300℃で1時間乾燥して、脱溶媒および硬化反応をおこなった。
 その後、樹脂層を形成したアルミニウム基材からアルミニウム基材を除去し、硬化物を得た。硬化物の厚みは、100μmであった。
(cured product)
The resulting curable resin composition was applied to an aluminum substrate to a thickness of 300 μm, and heated in an inert oven at 120° C. for 1 hour in a nitrogen atmosphere, and then heated to 300° C. over 8 hours. C. for 1 hour to remove the solvent and perform a curing reaction.
After that, the aluminum substrate was removed from the aluminum substrate on which the resin layer was formed to obtain a cured product. The thickness of the cured product was 100 µm.
実施例2
(化合物B)
 ダイマー酸35.2質量部を42.2質量部、無水トリメリット酸11.9質量部を7.1質量部に代えて用いた以外は実施例1と同様にして、化合物Bを得た。
 なお、化合物Bは、H-NMR、GPCで確認したところ、一般式(1)で示される構造(n=4、Rは水素原子、Yはダイマージアミン残基、Xはダイマー酸残基)であった。また、該化合物Bの数平均分子量は4900であり、常温で粘調液体であった。
Example 2
(Compound B)
Compound B was obtained in the same manner as in Example 1, except that 42.2 parts by mass of dimer acid and 11.9 parts by mass of trimellitic anhydride were used in place of 7.1 parts by mass.
Compound B has a structure represented by general formula (1) (n=4, R is a hydrogen atom, Y is a dimer diamine residue, and X is a dimer acid residue), as confirmed by 1 H-NMR and GPC. Met. The compound B had a number average molecular weight of 4900 and was a viscous liquid at room temperature.
 得られた化合物Bを用いて、表1に記載の組成になるように配合量を変更する以外は実施例1と同様の操作をおこなって、硬化性樹脂組成物の作製、硬化物の作製をおこなった。 Using the obtained compound B, the same operation as in Example 1 was performed except that the compounding amount was changed so that the composition shown in Table 1 was obtained, to prepare a curable resin composition and to prepare a cured product. done.
実施例3
(化合物C)
 ダイマー酸35.2質量部を26.4質量部、無水トリメリット酸11.9質量部を17.8質量部に代えて用いた以外は実施例1と同様にして、化合物Cを得た。
 なお、化合物Cは、H-NMR、GPCで確認したところ、一般式(1)で示される構造(n=1、Rは水素原子、Yはダイマージアミン残基、Xはダイマー酸残基)であった。また、化合物Cの数平均分子量は1861であり、常温で半固体であった。
Example 3
(Compound C)
Compound C was obtained in the same manner as in Example 1, except that 26.4 parts by mass of dimer acid and 11.9 parts by mass of trimellitic anhydride were used instead of 17.8 parts by mass.
Compound C has a structure represented by general formula (1) (n=1, R is a hydrogen atom, Y is a dimer diamine residue, and X is a dimer acid residue), as confirmed by 1 H-NMR and GPC. Met. Compound C had a number average molecular weight of 1861 and was semi-solid at room temperature.
 得られた化合物Cを用いて、表1に記載の組成になるように配合量を変更する以外は実施例1と同様の操作をおこなって、硬化性樹脂組成物の作製、硬化物の作製をおこなった。 Using the obtained compound C, the same operation as in Example 1 was performed except that the compounding amount was changed so that the composition shown in Table 1 was obtained, to prepare a curable resin composition and to prepare a cured product. done.
実施例7
(化合物D)
 加熱機構、撹拌機構を備えた反応容器に化合物A84.7質量部、酢酸1-ナフチル15.3質量部を投入した。その後、撹拌下、300℃で加熱し、縮合水を系外に除去しながら、窒素気流下常圧で3時間反応をおこなった。その後、メタノールで洗浄、乾燥し、化合物Dを得た。
 なお、化合物Dは、H-NMR、GPCで確認ところ、一般式(1)で示される構造(n=2、Rはナフチル基、Yはダイマージアミン残基、Xはダイマー酸残基)であった。また、該化合物Dの数平均分子量は3273であり、常温で粘調液体であった。
Example 7
(Compound D)
84.7 parts by mass of Compound A and 15.3 parts by mass of 1-naphthyl acetate were charged into a reaction vessel equipped with a heating mechanism and a stirring mechanism. Thereafter, the mixture was heated at 300° C. under stirring, and the reaction was carried out for 3 hours at normal pressure under a nitrogen stream while removing condensed water out of the system. After that, it was washed with methanol and dried to obtain a compound D.
Compound D has a structure represented by general formula (1) (n=2, R is a naphthyl group, Y is a dimer diamine residue, and X is a dimer acid residue), as confirmed by 1 H-NMR and GPC. there were. The compound D had a number average molecular weight of 3273 and was a viscous liquid at room temperature.
 得られた化合物Dを用いて、表1に記載の組成になるように配合量を変更する以外は実施例1と同様の操作をおこなって、硬化性樹脂組成物の作製、硬化物の作製をおこなった。 Using the obtained compound D, the same operation as in Example 1 was performed except that the compounding amount was changed so that the composition shown in Table 1 was obtained, to prepare a curable resin composition and to prepare a cured product. done.
比較例1
(ポリアミドE)
 加熱機構、撹拌機構を備えた反応容器にダイマー酸、ダイマージアミン50質量部を投入した。その後、撹拌下、230℃で加熱し、縮合水を系外に除去しながら、窒素気流下常圧で2時間重合をおこない、ポリアミドEを得た。
 なお、ポリアミドDは、H-NMR、GPCで確認したところ、ダイマー酸とダイマージアミンが交互に重合した構造であった。また、ポリアミドEの数平均分子量は2703であり、常温で粘調液体であった。
Comparative example 1
(Polyamide E)
A reaction vessel equipped with a heating mechanism and a stirring mechanism was charged with 50 parts by mass of dimer acid and dimer diamine. Thereafter, the mixture was heated at 230° C. with stirring, and polymerization was carried out at normal pressure for 2 hours under a nitrogen stream while condensed water was removed from the system to obtain polyamide E.
Polyamide D was confirmed by 1 H-NMR and GPC to have a structure in which dimer acid and dimer diamine were alternately polymerized. Polyamide E had a number average molecular weight of 2703 and was a viscous liquid at room temperature.
 得られたポリアミドEを用いて、表2に記載の組成になるように配合量を変更する以外は実施例1と同様の操作をおこなって、硬化性樹脂組成物の作製、硬化物の作製をおこなった。 Using the obtained polyamide E, the same operation as in Example 1 was performed except that the blending amount was changed so that the composition shown in Table 2 was obtained, to prepare a curable resin composition and to prepare a cured product. done.
実施例4~9、比較例2~4および参考例1~3
 表1~表3に記載の組成になるように原料、配合量を変更する以外は実施例1と同様の操作をおこなって、硬化性樹脂組成物の作製、硬化物の作製をおこなった。
Examples 4-9, Comparative Examples 2-4 and Reference Examples 1-3
A curable resin composition was produced and a cured product was produced in the same manner as in Example 1 except that the raw materials and compounding amounts were changed so that the compositions shown in Tables 1 to 3 were obtained.
 硬化性樹脂組成物の組成と得られた硬化物の評価結果を表に示す。 The table shows the composition of the curable resin composition and the evaluation results of the obtained cured product.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 実施例1~6の硬化物は、いずれも、一般式(1)において、Rは水素原子、Xは炭素数10以上の脂肪族ジカルボン酸由来の二価炭化水素基、Yは炭素数10以上の脂肪族ジアミン由来の二価炭化水素基、nは1以上の数の化合物を用いたところ、海島型の相分離構造を有していた。このため、実施例1~6の硬化物は、「柔軟成分を有しない特定硬化物」(参考例1)に対して、ガラス転移温度の差が20℃以下であり、引張破断強度が60%以上であり、誘電正接がより小さく、引張弾性率が75%以下であった。これらの結果として、実施例1~6の硬化物は、耐熱性および機械的特性を維持しながらも、柔軟性および誘電特性に優れていた。 All of the cured products of Examples 1 to 6, in the general formula (1), R is a hydrogen atom, X is a divalent hydrocarbon group derived from an aliphatic dicarboxylic acid having 10 or more carbon atoms, and Y is 10 or more carbon atoms. When a compound having a divalent hydrocarbon group derived from an aliphatic diamine and n being 1 or more was used, it had a sea-island type phase separation structure. For this reason, the cured products of Examples 1 to 6 have a glass transition temperature difference of 20° C. or less and a tensile strength at break of 60% with respect to the “specific cured product having no flexible component” (Reference Example 1). Thus, the dielectric loss tangent was smaller and the tensile elastic modulus was 75% or less. As a result, the cured products of Examples 1 to 6 were excellent in flexibility and dielectric properties while maintaining heat resistance and mechanical properties.
 実施例7の硬化物は、一般式(1)において、Rはナフチル基、Xは炭素数10以上の脂肪族ジカルボン酸由来の二価炭化水素基、Yは炭素数10以上の脂肪族ジアミン由来の二価炭化水素基、nは1以上の数の化合物を用いたところ、海島型の相分離構造を有していた。このため、実施例7の硬化物は、「柔軟成分を有しない特定硬化物」(参考例1)に対して、ガラス転移温度の差が20℃以下であり、引張破断強度が60%以上であり、誘電正接がより小さく、引張弾性率が75%以下であった。これらの結果として、実施例7の硬化物は、耐熱性および機械的特性を維持しながらも、柔軟性および誘電特性に優れていた。 In the cured product of Example 7, in the general formula (1), R is a naphthyl group, X is a divalent hydrocarbon group derived from an aliphatic dicarboxylic acid having 10 or more carbon atoms, and Y is derived from an aliphatic diamine having 10 or more carbon atoms. When a compound having a divalent hydrocarbon group of n and a number of 1 or more was used, it had a sea-island type phase separation structure. Therefore, the cured product of Example 7 had a glass transition temperature difference of 20° C. or less and a tensile strength at break of 60% or more with respect to the “specific cured product having no flexible component” (Reference Example 1). It had a smaller dielectric loss tangent and a tensile modulus of 75% or less. As a result, the cured product of Example 7 was excellent in flexibility and dielectric properties while maintaining heat resistance and mechanical properties.
 また、実施例8の硬化物は、一般式(1)において、Rは水素原子、Xは炭素数10以上の脂肪族ジカルボン酸由来の二価炭化水素基、Yは炭素数10以上の脂肪族ジアミン由来の二価炭化水素基、nは1以上の数の化合物を用いたところ、海島型の相分離構造を有していた。このため、実施例8の硬化物は、「柔軟成分を有しない特定硬化物」(参考例2)に対して、ガラス転移温度の差が20℃以下であり、引張破断強度が60%以上であり、誘電正接がより小さく、引張弾性率が75%以下であった。これらの結果として、実施例8の硬化物は、耐熱性および機械的特性を維持しながらも、柔軟性および誘電特性に優れていた。 Further, in the cured product of Example 8, in the general formula (1), R is a hydrogen atom, X is a divalent hydrocarbon group derived from an aliphatic dicarboxylic acid having 10 or more carbon atoms, Y is an aliphatic having 10 or more carbon atoms When a diamine-derived divalent hydrocarbon group, n, used a compound having a number of 1 or more, it had a sea-island type phase separation structure. Therefore, the cured product of Example 8 had a glass transition temperature difference of 20° C. or less and a tensile strength at break of 60% or more with respect to the “specific cured product having no flexible component” (Reference Example 2). It had a smaller dielectric loss tangent and a tensile modulus of 75% or less. As a result, the cured product of Example 8 was excellent in flexibility and dielectric properties while maintaining heat resistance and mechanical properties.
 実施例9の硬化物は、一般式(1)において、Rは水素原子、Xは炭素数10以上の脂肪族ジカルボン酸由来の二価炭化水素基、Yは炭素数10以上の脂肪族ジアミン由来の二価炭化水素基、nは1以上の数の化合物を用いたところ、海島型の相分離構造を有していた。このため、実施例9の硬化物は、「柔軟成分を有しない特定硬化物」(参考例3)に対して、ガラス転移温度の差が20℃以下であり、引張破断強度が60%以上であり、誘電正接がより小さく、引張弾性率が75%以下であった。これらの結果として、実施例9の硬化物は、耐熱性および機械的特性を維持しながらも、柔軟性および誘電特性に優れていた。 In the cured product of Example 9, in the general formula (1), R is a hydrogen atom, X is a divalent hydrocarbon group derived from an aliphatic dicarboxylic acid having 10 or more carbon atoms, and Y is derived from an aliphatic diamine having 10 or more carbon atoms. When a compound having a divalent hydrocarbon group of n and a number of 1 or more was used, it had a sea-island type phase separation structure. Therefore, the cured product of Example 9 had a glass transition temperature difference of 20°C or less and a tensile strength at break of 60% or more with respect to the "specific cured product having no flexible component" (Reference Example 3). It had a smaller dielectric loss tangent and a tensile modulus of 75% or less. As a result, the cured product of Example 9 was excellent in flexibility and dielectric properties while maintaining heat resistance and mechanical properties.
 比較例1の硬化物は、ダイマー酸とダイマージアミンからなるポリアミドを用いたため、「柔軟成分を有しない特定硬化物」(参考例1)に対して、引張破断強度が60%未満であった。
 比較例2の硬化物は、一般式(1)で示されるアミド化合物を用いなかったため、「柔軟成分を有しない特定硬化物」(参考例1)に対して、ガラス転移温度の差が20℃を超え、引張弾性率が75%を超えていた。
 比較例3の硬化物は、一般式(1)で示されるアミド化合物を用いなかったため、誘電正接が、「柔軟成分を有しない特定硬化物」(参考例1)の誘電正接よりも大きかった。
 比較例4の硬化物は、一般式(1)で示されるアミド化合物を用いなかったため、「柔軟成分を有しない特定硬化物」(参考例1)に対して、ガラス転移温度の差が20℃を超え、引張弾性率が75%を超えていた。
The cured product of Comparative Example 1 used a polyamide composed of dimer acid and dimer diamine, and therefore had a tensile strength at break of less than 60% with respect to the "specific cured product having no flexible component" (Reference Example 1).
Since the cured product of Comparative Example 2 did not use the amide compound represented by the general formula (1), the glass transition temperature difference was 20° C. with respect to the "specific cured product having no flexible component" (Reference Example 1). and the tensile modulus exceeded 75%.
Since the cured product of Comparative Example 3 did not use the amide compound represented by the general formula (1), the dielectric loss tangent was greater than the dielectric loss tangent of the "specific cured product having no flexible component" (Reference Example 1).
Since the cured product of Comparative Example 4 did not use the amide compound represented by the general formula (1), the glass transition temperature difference was 20° C. with respect to the "specified cured product having no flexible component" (Reference Example 1). and the tensile modulus exceeded 75%.
 本発明のアミド化合物を硬化剤として用いた硬化物は、耐熱性、機械的特性、柔軟性および誘電特性に優れているため、これらの特性のうち少なくとも1つの特性が要求される材料(例えば、電気絶縁材料)として好適に用いることができる。 A cured product obtained by using the amide compound of the present invention as a curing agent is excellent in heat resistance, mechanical properties, flexibility and dielectric properties. Therefore, materials requiring at least one of these properties (for example, It can be suitably used as an electrical insulating material).

Claims (15)

  1.  一般式(1)で示されるアミド化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは、水素原子又はアリール基、Xは、炭素数10以上の脂肪族ジカルボン酸由来の二価炭化水素基、Yは、炭素数10以上の脂肪族ジアミン由来の二価炭化水素基、nは、1以上の数を示す。)
    An amide compound represented by the general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), R is a hydrogen atom or an aryl group, X is a divalent hydrocarbon group derived from an aliphatic dicarboxylic acid having 10 or more carbon atoms, Y is a divalent diamine derived from an aliphatic diamine having 10 or more carbon atoms valence hydrocarbon group, n indicates a number of 1 or more.)
  2.  前記アミド化合物の数平均分子量が1000以上である、請求項1に記載のアミド化合物。 The amide compound according to claim 1, wherein the amide compound has a number average molecular weight of 1000 or more.
  3.  請求項1または2に記載のアミド化合物からなる硬化剤。 A curing agent comprising the amide compound according to claim 1 or 2.
  4.  硬化剤としての請求項1または2に記載のアミド化合物および硬化性樹脂を含む硬化性樹脂組成物。 A curable resin composition comprising the amide compound according to claim 1 or 2 as a curing agent and a curable resin.
  5.  さらに、前記アミド化合物とは異なる他の硬化剤を含む、請求項4に記載の硬化性樹脂組成物。 The curable resin composition according to claim 4, further comprising another curing agent different from the amide compound.
  6.  硬化性樹脂がエポキシ樹脂である、請求項4に記載の硬化性樹脂組成物。 The curable resin composition according to claim 4, wherein the curable resin is an epoxy resin.
  7.  さらに、硬化促進剤を含む、請求項4に記載の硬化性樹脂組成物。 The curable resin composition according to claim 4, further comprising a curing accelerator.
  8.  硬化性樹脂と硬化剤の合計に対する前記アミド化合物の割合が35質量%以下である、請求項4に記載の硬化性樹脂組成物。 The curable resin composition according to claim 4, wherein the ratio of the amide compound to the total of the curable resin and the curing agent is 35% by mass or less.
  9.  硬化性樹脂と硬化剤の合計に対する前記アミド化合物の割合が10~18質量%である、請求項4に記載の硬化性樹脂組成物。 The curable resin composition according to claim 4, wherein the ratio of the amide compound to the total of the curable resin and the curing agent is 10-18% by mass.
  10.  硬化性樹脂組成物は、前記アミド化合物とは異なる他の硬化剤として、ジイミドジカルボン酸化合物をさらに含み、
     硬化性樹脂がビスフェノールA型エポキシ樹脂を含み、
     一般式(1)において、Rは水素原子を示し、nは2以上、3以下の数を示す、請求項9に記載の硬化性樹脂組成物。
    The curable resin composition further comprises a diimidedicarboxylic acid compound as a curing agent different from the amide compound,
    The curable resin contains a bisphenol A type epoxy resin,
    The curable resin composition according to claim 9, wherein in general formula (1), R represents a hydrogen atom, and n represents a number of 2 or more and 3 or less.
  11.  請求項4に記載の硬化性樹脂組成物を硬化してなる硬化物。 A cured product obtained by curing the curable resin composition according to claim 4.
  12.  請求項11に記載の硬化物を含む電気絶縁材料。 An electrical insulating material containing the cured product according to claim 11.
  13.  請求項11に記載の硬化物を含む封止材。 A sealing material containing the cured product according to claim 11.
  14.  パワー半導体モジュールに用いられる、請求項13に記載の封止材。 The sealing material according to claim 13, which is used for a power semiconductor module.
  15.  請求項11に記載の硬化物を含むプリント配線基板。 A printed wiring board containing the cured product according to claim 11.
PCT/JP2022/038853 2021-10-25 2022-10-19 Amide compound and curable resin composition containing same WO2023074481A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022580167A JP7253300B1 (en) 2021-10-25 2022-10-19 Amide compound and curable resin composition containing the same
CN202280071313.9A CN118159521A (en) 2021-10-25 2022-10-19 Amide compound and curable resin composition containing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-174117 2021-10-25
JP2021174117 2021-10-25

Publications (1)

Publication Number Publication Date
WO2023074481A1 true WO2023074481A1 (en) 2023-05-04

Family

ID=86159366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038853 WO2023074481A1 (en) 2021-10-25 2022-10-19 Amide compound and curable resin composition containing same

Country Status (2)

Country Link
TW (1) TW202328070A (en)
WO (1) WO2023074481A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3882085A (en) * 1969-04-03 1975-05-06 Veba Chemie Ag Polyamide polymers from amino polyamide reactants
AT383138B (en) * 1985-08-20 1987-05-25 Vianova Kunstharz Ag Process for preparing cationic imido-functional synthetic resins
JPH04356541A (en) * 1991-01-29 1992-12-10 Sekisui Plastics Co Ltd Production of polyamide resin foam
WO2020158493A1 (en) * 2019-01-31 2020-08-06 ユニチカ株式会社 Epoxy resin solution
JP2020186208A (en) * 2019-05-15 2020-11-19 ユニチカ株式会社 Diimide dicarboxylic acid and epoxy resin cured product based on the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3882085A (en) * 1969-04-03 1975-05-06 Veba Chemie Ag Polyamide polymers from amino polyamide reactants
AT383138B (en) * 1985-08-20 1987-05-25 Vianova Kunstharz Ag Process for preparing cationic imido-functional synthetic resins
JPH04356541A (en) * 1991-01-29 1992-12-10 Sekisui Plastics Co Ltd Production of polyamide resin foam
WO2020158493A1 (en) * 2019-01-31 2020-08-06 ユニチカ株式会社 Epoxy resin solution
JP2020186208A (en) * 2019-05-15 2020-11-19 ユニチカ株式会社 Diimide dicarboxylic acid and epoxy resin cured product based on the same

Also Published As

Publication number Publication date
TW202328070A (en) 2023-07-16

Similar Documents

Publication Publication Date Title
TWI814907B (en) Resin compositions, films, laminates and semiconductor devices
US6949619B2 (en) Phenolic hydroxyl-bearing polyimide resin, making method and polyimide resin composition
KR101579312B1 (en) Solvent-free polyimide silicone resin composition and cured product thereof
KR102467955B1 (en) Curable resin composition, adhesive, imide oligomer, imide oligomer composition, and curing agent
JP5719562B2 (en) High molecular weight epoxy resin, resin film using the high molecular weight epoxy resin, resin composition, and cured product
CN109923176B (en) Resin composition, thermosetting film using same, cured resin, laminate, printed wiring board, and semiconductor device
KR102501343B1 (en) Curable resin composition, cured product, adhesive, adhesive film, coverlay film, flexible copper-clad laminate, and circuit board
TWI829983B (en) Imide group-containing compound, imide group-containing curing agent, and epoxy resin cured product and electrical insulating material using the same
JP7253300B1 (en) Amide compound and curable resin composition containing the same
TWI424004B (en) Polyimide silicone resin and thermosetting composition containing the same
JP2020045446A (en) Thermosetting resin composition
JP2020007397A (en) Curable resin composition, imide compound, adhesive, adhesive film, coverlay film, and flexible copper-clad laminate
WO2023074481A1 (en) Amide compound and curable resin composition containing same
JP2008277768A (en) Insulative heat conductive sheet
TWI826633B (en) Ester compounds, resin compositions, hardened materials and build-up films
KR20240087791A (en) Amide compound and curable resin composition containing the same
JP2024032438A (en) Long-chain aliphatic compound and curable resin composition using the same
JP2013006972A (en) Epoxy resin composition, and cured material obtained by curing the same
TWI832614B (en) Resin compositions, laminate sheets, prepregs, cured products, substrates with cured products, and electronic devices
TWI837297B (en) Ester compounds, resin compositions, hardeners, and build-up films
CN111417683A (en) Curable resin composition, adhesive film, coverlay film, and flexible copper-clad laminate
JP7480040B2 (en) Polyfunctional active ester compound, resin composition, cured product, and build-up film
CN113272358B (en) Ester compound, resin composition, cured product, and laminate film
JP2024070240A (en) Bismaleimide and its manufacturing method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022580167

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886809

Country of ref document: EP

Kind code of ref document: A1