WO2023074440A1 - Magnetoresistance effect element and magnetoresistance effect sensor - Google Patents

Magnetoresistance effect element and magnetoresistance effect sensor Download PDF

Info

Publication number
WO2023074440A1
WO2023074440A1 PCT/JP2022/038597 JP2022038597W WO2023074440A1 WO 2023074440 A1 WO2023074440 A1 WO 2023074440A1 JP 2022038597 W JP2022038597 W JP 2022038597W WO 2023074440 A1 WO2023074440 A1 WO 2023074440A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
ferromagnetic
magnetic
gmr
magnetoresistive
Prior art date
Application number
PCT/JP2022/038597
Other languages
French (fr)
Japanese (ja)
Inventor
雅彦 市村
直人 深谷
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Publication of WO2023074440A1 publication Critical patent/WO2023074440A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present disclosure relates to magnetoresistive elements and magnetoresistive sensors.
  • a typical giant magnetoresistive element has a GMR (Giant Magneto Resistance) laminated film consisting of a ferromagnetic pinned layer, a non-magnetic intermediate layer and a ferromagnetic free layer stacked in order from the bottom as a basic structure. are doing.
  • the magnetization direction of the free layer changes sensitively to changes in the external magnetic field.
  • Laminated structure is designed. In such a basic structure, a phenomenon in which the relative angle between the magnetization directions of the free layer and the fixed layer is changed by an external magnetic field and the electrical resistance is greatly changed is called a giant magnetoresistive effect (GMR effect).
  • GMR effect giant magnetoresistive effect
  • the GMR laminated film When the GMR laminated film is used as a GMR sensor, it is processed into a fine wire shape so that its electrical resistance value changes linearly with respect to an external magnetic field. In order to protect the processed GMR sensor from deterioration factors such as oxygen and moisture, it is generally necessary to protect the entire GMR sensor with an insulating film.
  • Patent Document 1 discloses that a magnetoresistive effect element processed into an elongated shape can prevent chattering and the like, obtain stable operation, and easily control the magnetic sensitivity according to the application. An enabling magnetic sensor is described. Further, Patent Document 2 describes a method of manufacturing a current-perpendicular-current-type GMR element in which a patterned GMR multilayer film is covered with an insulating film, which is used for a large-capacity magnetic recording/reproducing head.
  • Patent Document 1 a magnetoresistive element processed into an elongated shape is used as a GMR sensor.
  • the GMR disclosed in Patent Document 1 is a non-contact magnetic sensor, the magnetic material to be detected does not come into direct contact with the magnetic sensor. Therefore, when detecting a magnetic material that is in direct contact using the GMR according to Patent Document 1, signals with opposite polarities are generated depending on whether the detection target is directly above the sensor or next to the sensor, and the signals cancel each other out. becomes smaller.
  • Patent Document 2 discloses a current-perpendicular-type GMR element covered with an insulating film.
  • this is also a non-contact type magnetic sensor and is not processed into an elongated shape, the magnetic field range in which the electrical resistance value linearly changes with respect to the external magnetic field is extremely small.
  • the present disclosure proposes a technique that enables detection of the magnetic field of a magnetic material to be detected even when the magnetic material is in contact with the GMR sensor.
  • the embodiments disclosed in the present application have an antiferromagnetic layer, a ferromagnetic fixed layer, a nonmagnetic intermediate layer, a ferromagnetic free layer, and a protective layer on a substrate.
  • a magnetoresistive effect element which has an aspect ratio of width to length of the magnetoresistive effect element of 1:5 or more and 1:300 or less and a width of which is 190 nm or more and 620 nm or less. make a proposal about
  • the technology of the present disclosure it is possible to improve the performance of the GMR sensor.
  • FIG. 1 is a diagram showing a configuration example of a GMR laminated film according to a first embodiment
  • FIG. It is a figure which shows the cross section when the example of arrangement
  • FIG. 10 is a diagram showing a structural example of a GMR laminated film forming a GMR sensor according to the second embodiment
  • FIG. 10 is a diagram showing a structural example of a GMR laminated film forming a GMR sensor according to a third embodiment
  • FIG. 10 is a diagram showing signals obtained from leakage magnetic fields of top magnetic particles and side wall magnetic particles, respectively, and a total signal obtained by adding them together when magnetic particles are attached to the entire GMR sensor according to the conventional example.
  • FIG. 10 is a diagram showing signals obtained from leakage magnetic fields of top magnetic particles and side wall magnetic particles, respectively, and a total signal obtained by adding them together when magnetic particles are attached to the entire GMR sensor according to the conventional example.
  • FIG. 3 is a diagram showing evaluation results (signals with respect to GMR sensor line width) of experiments according to Example 1;
  • FIG. 10 is a diagram showing the relationship between the MR ratio that determines the magnitude of a sensor signal and the aspect ratio of a GMR thin line in Example 2;
  • FIG. 10 is a diagram showing the relationship between the operating magnetic field range (operating magnetic field region) in which the sensor operates and the aspect ratio of the GMR wire in Example 2;
  • FIG. 10 shows experimental results according to Example 3, showing the results of the same experiment as in Example 1 for aspect ratios of a plurality of GMR sensors.
  • the present disclosure relates to a magnetoresistive effect element, for example, a magnetoresistive effect element and a magnetoresistive effect device that cause a huge magnetoresistance change in a low magnetic field region.
  • a magnetoresistive effect element for example, a magnetoresistive effect element and a magnetoresistive effect device that cause a huge magnetoresistance change in a low magnetic field region.
  • GMR Green Magneto Resistance , giant magnetoresistive
  • a layer for preventing adhesion of magnetic particles is formed to improve the performance of the GMR sensor.
  • the main feature of this embodiment is that an upper limit is imposed on the fine line width corresponding to the aspect ratio of the GMR sensor processed into a fine line.
  • FIG. 1 is a diagram showing a configuration example of a GMR laminated film according to the first embodiment.
  • the GMR laminated film according to this embodiment has a substrate 101 and an underlying layer 102 formed on the substrate 101 .
  • the underlying layer 102 has a role of forming a flat GMR laminated film and a role of crystallizing the constituent films of the GMR laminated film formed on the underlying layer 102 .
  • Underlayer 102 contains a metal such as Ta (tantalum), Ti (titanium), Ni (nickel), Cr (chromium), or Fe (iron).
  • the underlying layer 102 contains one or more kinds of materials, and can be formed of a laminated film containing two layers, for example, a Ta layer and a NiCr (nickel chromium) layer. If the film thickness of the underlayer 102 is thin, it will not function as an underlayer. Therefore, the base layer 102 can be a layer having a thickness of 1 nm or more.
  • An antiferromagnetic layer 103 is formed on the underlayer 102 .
  • the antiferromagnetic layer 103 must maintain its magnetism at room temperature or higher at which the GMR laminated film operates. Therefore, the material forming the antiferromagnetic layer 103 can be an oxide containing at least one of Ni, Cr, Fe, Co (cobalt), and Mn (manganese). Alternatively, the material forming the antiferromagnetic layer 103 can be a metal containing one or more elements of Fe, Mn, Pt (platinum), and Ir (iridium). Antiferromagnetic layer 103 comprises a material that has no magnetic moment as a whole.
  • the antiferromagnetic layer 103 has, for example, only two kinds of magnetic moments that are directed along the upper surface of the substrate 101 and in opposite directions. As a result, since the spontaneous magnetization cancels each other, the spontaneous magnetization of the antiferromagnetic layer 103 is zero as a whole.
  • a ferromagnetic pinned layer 104 is formed on the antiferromagnetic layer 103 .
  • the ferromagnetic fixed layer 104 is a ferromagnetic layer whose magnetization direction is not fixed by itself.
  • the antiferromagnetic layer 103 and ferromagnetic pinned layer 104 are magnetically coupled at their interfaces. Thereby, the magnetization direction of the ferromagnetic fixed layer 104 is fixed.
  • the magnetization direction of the ferromagnetic pinned layer 104 must not change easily even when the external magnetic field (external magnetic field) is large.
  • the ferromagnetic pinned layer 104 material may include at least one of Fe, Ni, Co, or alloys thereof.
  • a nonmagnetic intermediate layer (nonmagnetic layer) 105 is formed on the ferromagnetic fixed layer 104 .
  • a ferromagnetic free layer 106 is formed on the nonmagnetic intermediate layer 105 .
  • the nonmagnetic intermediate layer 105 has a thickness sufficiently large to eliminate the magnetic coupling between the ferromagnetic free layer 106 above the nonmagnetic intermediate layer 105 and the ferromagnetic pinned layer 104 below the nonmagnetic intermediate layer 105 . must have.
  • the film thickness of the non-magnetic intermediate layer 105 can be, for example, 1 nm or more.
  • the GMR effect appears in a region including ferromagnetic fixed layer 104 , nonmagnetic intermediate layer 105 and ferromagnetic free layer 106 .
  • the non-magnetic intermediate layer 105 can contain a highly conductive material in order to efficiently pass current through the region.
  • a material for the non-magnetic intermediate layer 105 for example, Cu or the like can be used.
  • the ferromagnetic free layer 106 formed on the nonmagnetic intermediate layer 105 is a ferromagnetic layer whose magnetization direction is not fixed by itself.
  • the ferromagnetic free layer 106 is a sensing position where the magnetization direction changes when detecting a weak magnetic field generated from an object to be inspected above the magnetoresistance effect element. Therefore, the ferromagnetic free layer 106 must be made of a material whose magnetization direction can be easily changed in response to changes in the external magnetic field. In other words, the ferromagnetic free layer 106 should exhibit good soft magnetic properties.
  • the material of the ferromagnetic free layer 106 can include at least one of Fe, Ni, Co, or alloys thereof. In particular, the Ni ratio can be 50% or more.
  • the GMR multilayer film includes a substrate 101, an underlayer 102, an antiferromagnetic layer 103, a ferromagnetic pinned layer 104, a nonmagnetic intermediate layer 105, a ferromagnetic free layer 106 and a protective layer, which are sequentially stacked on the substrate 101. It has layer 107 .
  • the protective layer 107 is in contact with the upper surface of the ferromagnetic free layer 106 and covers the entire upper surface of the ferromagnetic free layer 106 .
  • the protective layer 107 has the role of preventing the ferromagnetic free layer 106 from deteriorating due to the external environment of the GMR laminated film. In other words, the protective layer 107 has the role of preventing the ferromagnetic free layer 106 from being altered by a chemical reaction such as oxidation, thereby reducing the reliability of the magnetoresistive element.
  • the protective layer 107 has a thickness of at least 0.5 nm because it is necessary to maintain its crystallinity.
  • the GMR laminated film is processed into a fine line.
  • the magnetization direction of the ferromagnetic fixed layer 104 is fixed in the short axis direction of the wire, and the magnetization direction of the ferromagnetic free layer is directed in the long axis direction of the wire due to shape magnetic anisotropy.
  • the shape of the fine wire is a fine wire shape with an aspect ratio of 1:5 or more and 1:300 or less. With an aspect ratio of 1:5 or more, the electrical resistance value changes linearly with respect to the external magnetic field.
  • the aspect ratio is 1:300 or less, it becomes possible to fix the magnetization direction of the ferromagnetic pinned layer in the minor axis direction of the thin wire, and the sensor functions as a GMR sensor.
  • the GMR sensor is composed of at least one fine wire, and may be electrically connected in series or in parallel.
  • a capturing substance of a target substance is previously immobilized on the outermost surface of the GMR sensor.
  • a label is prepared by previously binding a target substance and a substance that generates a leakage magnetic field.
  • the relationship between the label concentration and the signal intensity generated when the GMR sensor on which the label and capture substance are immobilized is allowed to react is recorded as a calibration curve.
  • a target substance sample of unknown concentration, a labeled substance of known concentration, and a GMR sensor preliminarily immobilized with a capture substance are allowed to react, and the concentration of the target substance sample can be calculated based on the difference from the calibration curve.
  • the crystal structure of the GMR sensor can be easily confirmed by X-ray diffraction (XRD). Further, the structure of the GMR sensor can be confirmed by observing it with an electron microscope such as a TEM (Transmission Electron Microscope) or a SEM (Scanning Electron Microscope). In addition, the single-crystal or polycrystalline crystal structure and laminated structure of the GMR laminated film can be confirmed by observing a spot-like pattern or a ring-like pattern in an electron beam diffraction image.
  • the composition distribution of each layer of the GMR sensor can be confirmed using EPMA (Electron Probe Micro Analyzer) such as EDX (Energy dispersive X-ray spectrometry). In addition, the composition distribution can be confirmed using techniques such as SIMS (Secondary Ion Mass Spectrometry), X-ray photoelectron spectroscopy, or ICP (Inductively Coupled Plasma) emission spectrometry. .
  • the GMR sensor consists of at least one fine wire, and may be electrically connected in series or in parallel.
  • FIG. 2 is a diagram showing a cross section of an example of arrangement configuration of a plurality of GMR sensors when viewed from the longitudinal direction.
  • the GMR sensor 201 detects an attachment such as a magnetic particle
  • the signal of the GMR sensor is opposite in positive and negative when the magnetic particle is attached to the upper part of the GMR sensor and when the magnetic particle is attached to the side wall of the GMR sensor.
  • signals cancel each other out and attenuate (conventional example).
  • the aspect ratio of the GMR sensor is 1:125, if the width is 440 nm or less, the sign of the GMR sensor signal will be the same when the magnetic particles adhere to the upper part of the GMR sensor and when the magnetic particles adhere to the side walls of the GMR sensor. In agreement, no signal cancellation occurs and the total signal of the GMR sensor can be improved.
  • FIG. 3 is a diagram showing a structural example of a GMR laminated film forming a GMR sensor according to a second embodiment.
  • the GMR laminated film can have a laminated structure as shown in FIG.
  • the GMR laminated film according to this embodiment includes an underlayer 302, an antiferromagnetic layer 303, a first ferromagnetic pinned layer 304, a nonmagnetic coupling layer 305, and a second ferromagnetic pinned layer 306, which are formed in order on a substrate 301. , a nonmagnetic intermediate layer 307 , a ferromagnetic free layer 308 and a protective layer 309 .
  • a first ferromagnetic pinned layer 304 and a second ferromagnetic pinned layer 306 are layered, with a non-magnetic coupling layer (non-magnetic layer) 305 between them. is formed.
  • the magnetization direction of the first ferromagnetic fixed layer 304 is fixed by the antiferromagnetic layer 303 .
  • the magnetization direction of the second ferromagnetic pinned layer 306 formed on the first ferromagnetic pinned layer 304 via the non-magnetic coupling layer 305 is pinned in the direction opposite to that of the first ferromagnetic pinned layer 304 .
  • the magnetization direction of the second ferromagnetic pinned layer 306 is determined by the film thickness of the non-magnetic coupling layer 305 , that is, the distance between the first ferromagnetic pinned layer 304 and the second ferromagnetic pinned layer 306 .
  • the magnetization directions of the first ferromagnetic pinned layer 304 and the second ferromagnetic pinned layer 306 are opposite to each other. In other words, the magnetization direction of the first ferromagnetic pinned layer 304 and the magnetization direction of the second ferromagnetic pinned layer 306 are antiparallel. Thus, the magnetic field emitted from each of the first ferromagnetic pinned layer 304 and the second ferromagnetic pinned layer 306 loops between the first ferromagnetic pinned layer 304 and the second ferromagnetic pinned layer 306. .
  • Such a structure is called a laminated antiferromagnetic structure.
  • the laminated antiferromagnetic structure reduces the magnetic field emanating from the GMR laminated film. For this reason, when detecting a very weak magnetic field of a magnetic material, it is possible to detect the magnetic field of the magnetic material without changing the magnetic state of the magnetic material to be detected before and after the detection, thereby detecting the magnetic state more accurately. can be done.
  • At least one of the first ferromagnetic fixed layer 304 and the second ferromagnetic fixed layer 306 contains either Co or a Co—Fe alloy, and the nonmagnetic coupling layer 305 contains Ru (ruthenium) and Ir.
  • Ru ruthenium
  • a laminated film consisting of the first ferromagnetic pinned layer 304, the non-magnetic coupling layer 305 and the second ferromagnetic pinned layer 306 can be regarded as one ferromagnetic pinned layer. That is, in the magnetoresistive element of the present embodiment, the ferromagnetic pinned layer 104 of the first embodiment consists of the first ferromagnetic pinned layer 304, the nonmagnetic coupling layer 305, and the second ferromagnetic pinned layer 306. can be considered to be composed of a laminated film composed of
  • FIG. 4 is a diagram showing a structural example of a GMR laminated film forming a GMR sensor according to a third embodiment.
  • the GMR laminated film can have a laminated structure as shown in FIG.
  • the GMR laminated film includes an underlying layer 402, a first antiferromagnetic layer 403, a first ferromagnetic pinned layer 404, a first nonmagnetic coupling layer 405, and a second antiferromagnetic layer 404, which are formed on a substrate 401 in this order.
  • antiferromagnetic layers 413 are layered. These reverse the first antiferromagnetic layer 403, the first ferromagnetic pinned layer 404, the first nonmagnetic coupling layer 405, the second ferromagnetic pinned layer 406, and the first nonmagnetic intermediate layer 407. They are stacked in order and have the same role. However, the constituent materials may not be the same. Such a structure is called a dual stacked antiferromagnetic structure. In the dual-type laminated antiferromagnetic structure, the amount of change in electrical resistivity due to an external magnetic field increases.
  • Example 1 The present inventors fabricated a GMR sensor and evaluated signals obtained from magnetic particles attached to the top and sidewalls of the GMR sensor.
  • the structure of the GMR laminated film used here is the same as that shown in FIG.
  • the underlying layer 102 which is a laminated film composed of a film containing Ta and having a thickness of 5 nm and a film containing NiCr and having a thickness of 5 nm, is formed on a Si substrate whose surface is covered with a thermal oxide film.
  • FIG. 5 is a diagram showing signals obtained from leakage magnetic fields of the upper magnetic particles and the side wall magnetic particles, respectively, and the total signal obtained by adding them when the magnetic particles are attached to the entire GMR sensor according to the conventional example. .
  • the signals obtained from the stray magnetic fields of the upper magnetic particles and the side wall magnetic particles are positive and negative, respectively. In other words, the signal obtained from the magnetic particles attached to the top of the GMR sensor is always negative.
  • the dimensions of the conventional GMR sensor are 800 nm in width and 100 ⁇ m in length, and the aspect ratio (width:length) is 1:125.
  • Example 1 GMR sensors were produced with the aspect ratio of the GMR sensor fixed at 1:125, and the widths were changed to 400, 500, and 700 nm, respectively, and the GMR sensor was attached near the center of the upper part of the GMR sensor.
  • the signal obtained from one magnetic particle was evaluated.
  • FIG. 6 is a diagram showing evaluation results of an experiment according to Example 1.
  • the sign of the signal is positive in the GMR sensor with a lateral width (line width) of 400 nm, and the sign of the signal is negative in the range of 500 nm to 800 nm. Also, from FIG.
  • the upper limit of the lateral width at which the signal sign of the side wall magnetic particles and that of the upper magnetic particles match can be estimated to be 440 nm (the limit at which a positive signal can be obtained). Therefore, when the aspect ratio of the GMR sensor is fixed at 1:125, the direction of the leakage magnetic field of the side wall magnetic particles and the direction of the leakage magnetic field of the upper magnetic particles can be matched by setting the lateral width of the GMR sensor to 440 nm or less. can be used to increase the total signal obtained.
  • Example 2 Regarding the GMR sensor according to Example 2, the dimensional ratio of the thin wire shape that can operate as a sensor will be described.
  • the structure of the GMR laminated film forming the GMR sensor used here is the same as the structure shown in FIG. However, as the structure of the GMR laminated film, not only the structure shown in FIG. 3 but also the structure shown in FIG. 1 or 4 may be employed.
  • the underlying layer 302 which is a laminated film composed of a film containing Ta and having a thickness of 5 nm and a film containing NiCr and having a thickness of 5 nm, is formed on a Si substrate whose surface is covered with a thermal oxide film. It is Also formed are an antiferromagnetic layer 303 containing Ir 20 Mn 80 and having a thickness of 6 nm, and a first ferromagnetic pinned layer 304 containing Co 90 Fe 10 and having a thickness of 1.6 nm.
  • a ferromagnetic free layer 308 is formed of a film containing Co 90 Fe 10 and having a thickness of 1.0 nm and a film containing Ni 81 Fe 19 and having a thickness of 3.5 nm.
  • a protective layer 309 containing Ru and Ta is formed on the ferromagnetic free layer 308 .
  • FIG. 7 is a diagram showing the relationship between the MR ratio that determines the magnitude of the sensor signal and the aspect ratio of the GMR thin line. It can be seen from FIG. 7 that the MR ratio decreases significantly as the aspect ratio increases. Therefore, in order to use it as a sensor for detecting magnetic particles, the MR ratio must exceed at least 1% and the GMR effect must be expressed, so it can be seen that the aspect ratio of the GMR thin wire must be 1:300 or less.
  • FIG. 8 is a diagram showing the relationship between the operating magnetic field range (operating magnetic field region) in which the sensor operates and the aspect ratio of the GMR wire. It can be seen from FIG. 8 that the operating magnetic field range (operating magnetic field region) decreases as the aspect ratio decreases.
  • the operating magnetic field range (operating magnetic field region) indicates the detectable magnetic field range, and at least 10 Oe or more is required to detect magnetic particles. Therefore, the aspect ratio should be 1:5 or less.
  • the aspect ratio of the GMR thin wire that can be used as a GMR sensor for detecting magnetic particles is 1:5 or more and 1:300 or less.
  • Example 3 In Example 1, as shown in FIG. 6, under the condition that the aspect ratio of the GMR sensor is fixed at 1:125, the upper limit of the width at which the signal sign of the side wall magnetic particles and that of the upper magnetic particles match is set to 440 nm. could be estimated.
  • FIG. 9 is a diagram showing the results of the same experiment as in Example 1 for multiple aspect ratios of GMR sensors. Looking at FIG. 9, the aspect ratio values of the GMR sensors used in the experiment are 1:300, 1:200, 1:50, and 1:5, and the corresponding upper limit values of the width are 190, 300, 550 and 620 nm could be estimated.
  • the lateral width equal to or less than the upper limit, the direction of the stray magnetic field of the side wall magnetic particles and the direction of the stray magnetic field of the upper magnetic particles can be matched, and the total obtained signal can be increased.
  • Example 4 In Example 4, a GMR sensor composed of a film having an amorphous structure and a film thickness of 3.5 nm containing Ni70Fe27B3 in the ferromagnetic free layer 106 of Example 1 (using the structure of FIG. 1) was formed. bottom. Further, a GMR sensor was produced by fixing the aspect ratio of the GMR sensor to 1:125 and changing the width, and the signal obtained from one magnetic particle attached near the center of the upper part of the GMR sensor was evaluated. Conventionally, an alloy (crystallized structure) called a permaalloy was used, but in Example 4, part of Fe and B in the alloy are replaced to make it amorphous (non-crystallized).
  • the upper limit of the lateral width at which the signal sign of the side wall magnetic particles and that of the upper magnetic particles match can be estimated to be 400 nm. Therefore, by fabricating the lateral width of the GMR sensor composed of the ferromagnetic free layer of the Ni70Fe27B3 amorphous structure to 400 nm or less, the direction of the stray magnetic field of the side wall magnetic grains and the direction of the stray magnetic field of the upper magnetic grains can be can be matched and the total signal obtained can be increased.
  • the above-described embodiment relates to a magnetoresistive effect element having an aspect ratio of width to length of 1:5 or more and 1:300 or less and a width of 190 nm or more and 620 nm or less.
  • a GMR sensor when configured with at least one magnetoresistive element, it can be stably operated in a minute magnetic field, and the upper and side portions of the magnetoresistive element can be stably operated. Since the magnetic particles adhering (contacting) to (the sidewall portion) align the directions of the local magnetic fields acting on the element, it is possible to detect the magnetic material with high accuracy. Therefore, it is possible to make the GMR sensor function as a chemical sensor.
  • the width is 440 nm or less
  • the width is 190 nm or less
  • the width is 300 nm or less
  • the aspect ratio is 1:1.
  • the width can be 550 nm or less.
  • the magnetoresistive element has an antiferromagnetic layer, a ferromagnetic fixed layer, a nonmagnetic intermediate layer, a ferromagnetic free layer, and a protective layer formed on a substrate.
  • the non-magnetic intermediate layer may be made of, for example, Cu
  • the ferromagnetic fixed layer or ferromagnetic free layer may be made of, for example, Fe, Ni, Co, or alloys thereof.
  • the antiferromagnetic layer may be composed of an oxide containing Ni, Cr, Fe, Co or Mn, or a metal containing Fe, Mn, Pt or Ir. By using such a material, the magnetism can be maintained in an environment of room temperature or higher in which the magnetoresistive effect element operates.
  • the underlayer formed under the antiferromagnetic layer may be composed of a metal containing Ta, Ti, Ni, Cr, Al or Fe, or an oxide.
  • the ferromagnetic free layer may be composed of Fe, Ni, B, or an alloy of these amorphous structures.
  • the magnetoresistive element has an antiferromagnetic layer, a first ferromagnetic pinned layer, a nonmagnetic coupling layer, and a second ferromagnetic pinned layer on the substrate.
  • a layer, a nonmagnetic intermediate layer, a ferromagnetic free layer, and a protective layer are formed. That is, in the structure shown in FIG. 3, the ferromagnetic pinned layer in the structure shown in FIG. 1 is the first ferromagnetic pinned layer, the second ferromagnetic pinned layer, and the and a non-magnetic coupling layer formed on the substrate.
  • the magnetoresistive effect element has a first antiferromagnetic layer, first and second ferromagnetic fixed layers, and the first and second ferromagnetic fixed layers on the substrate. a first nonmagnetic coupling layer formed between the ferromagnetic pinned layers; first and second nonmagnetic intermediate layers; and a ferromagnetic layer formed between the first and second nonmagnetic intermediate layers. a magnetic free layer, third and fourth ferromagnetic pinned layers, a second nonmagnetic coupling layer formed between the third and fourth ferromagnetic pinned layers, and a second antiferromagnetic layer and a protective layer are formed.
  • the second ferromagnetic pinned layer or the third ferromagnetic pinned layer contains Co or a Co--Fe alloy
  • the second non-magnetic coupling layer contains Ru or Ir.
  • the magnetization direction of the second ferromagnetic pinned layer and the magnetization direction of the third ferromagnetic pinned layer are antiparallel to each other. Thereby, the magnetic field emitted from each of the first ferromagnetic pinned layer and the second ferromagnetic pinned layer can be looped, and the influence of the magnetic field on the external environment can be suppressed.

Landscapes

  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

In order to be able to detect a magnetic field of a magnetic object to be detected, even if the magnetic object touches a GMR sensor, the present invention provides a magnetoresistance effect element that has, upon a substrate, an antiferromagnetic layer, a ferromagnetic fixed layer, a non-magnetic intermediate layer, a ferromagnetic free layer, and a protective layer. The aspect ratio between the horizontal width and the length of the magnetoresistance effect element is 1:5 to 1:300. The magnetoresistance effect element has a linear shape having a horizontal width of 190–620 nm.

Description

磁気抵抗効果素子、および磁気抵抗効果センサMagnetoresistive element and magnetoresistive sensor
 本開示は、磁気抵抗効果素子、および磁気抵抗効果センサに関する。 The present disclosure relates to magnetoresistive elements and magnetoresistive sensors.
 近年、磁気抵抗効果素子を用いた磁気センサは、微小な磁界の変化を検出することができ、ハードディスクドライブの読み取りヘッドに代表されるように様々な用途に用いられている。一般的な巨大磁気抵抗効果素子は、基本構造として、下側から順に積層された強磁性固定層、非磁性中間層および強磁性自由層から成るGMR(Giant Magneto Resistance、磁気抵抗)積層膜を有している。自由層は外部磁界の変化に対して磁化方向が敏感に変化するのに対して、固定層は外部磁界(外部磁場)により磁化方向が変化しないように、固定層自体の材料または固定層の下地の積層構造が設計されている。このような基本構造において、自由層と固定層の磁化方向の相対角が外部磁界により変化することによって電気抵抗が大きく変化する現象は、巨大磁気抵抗効果(GMR効果)と呼ばれている。 In recent years, magnetic sensors using magnetoresistive elements are capable of detecting minute changes in magnetic fields, and are used in various applications such as read heads of hard disk drives. A typical giant magnetoresistive element has a GMR (Giant Magneto Resistance) laminated film consisting of a ferromagnetic pinned layer, a non-magnetic intermediate layer and a ferromagnetic free layer stacked in order from the bottom as a basic structure. are doing. The magnetization direction of the free layer changes sensitively to changes in the external magnetic field. Laminated structure is designed. In such a basic structure, a phenomenon in which the relative angle between the magnetization directions of the free layer and the fixed layer is changed by an external magnetic field and the electrical resistance is greatly changed is called a giant magnetoresistive effect (GMR effect).
 GMR積層膜をGMRセンサとして用いる場合、外部磁界に対してその電気抵抗値が線形的に変化するように細線状に加工する。また加工したGMRセンサを酸素や湿気などの劣化要因から保護するために、一般的にGMRセンサ全体を絶縁膜で保護する必要がある。 When the GMR laminated film is used as a GMR sensor, it is processed into a fine wire shape so that its electrical resistance value changes linearly with respect to an external magnetic field. In order to protect the processed GMR sensor from deterioration factors such as oxygen and moisture, it is generally necessary to protect the entire GMR sensor with an insulating film.
 特許文献1には、細長形状に加工された磁気抵抗効果素子により、チャタリングの発生等を防止して安定した動作を得ることができ、また用途に合わせて磁気感度の制御を容易に行うことを可能とした磁気センサが記載されている。また、特許文献2には、大容量磁気記録再生用ヘッドに使用される、パターニングされたGMR多層膜を絶縁膜で被覆した垂直通電型GMR素子の製造方法が記載されている。 Patent Document 1 discloses that a magnetoresistive effect element processed into an elongated shape can prevent chattering and the like, obtain stable operation, and easily control the magnetic sensitivity according to the application. An enabling magnetic sensor is described. Further, Patent Document 2 describes a method of manufacturing a current-perpendicular-current-type GMR element in which a patterned GMR multilayer film is covered with an insulating film, which is used for a large-capacity magnetic recording/reproducing head.
特開2007-273528号公報JP 2007-273528 A 特開2010-87293号公報JP 2010-87293 A
 上述の特許文献1では、細長形状に加工した磁気抵抗効果素子をGMRセンサとして用いている。しかし、特許文献1で開示のGMRは、非接触式の磁気センサであるため、検出対象となる磁性体は当該磁気センサに直接接触することはない。そのため、特許文献1によるGMRを用いて直接接触する磁性体を検出する場合、検出対象がセンサ直上にあるか、またはセンサ横にあるかで正負反対のシグナルがそれぞれ発生し、互いに打ち消しあってシグナルが小さくなる。 In the above-mentioned Patent Document 1, a magnetoresistive element processed into an elongated shape is used as a GMR sensor. However, since the GMR disclosed in Patent Document 1 is a non-contact magnetic sensor, the magnetic material to be detected does not come into direct contact with the magnetic sensor. Therefore, when detecting a magnetic material that is in direct contact using the GMR according to Patent Document 1, signals with opposite polarities are generated depending on whether the detection target is directly above the sensor or next to the sensor, and the signals cancel each other out. becomes smaller.
 また、上述の特許文献2には、絶縁膜で被覆された垂直通電型GMR素子が開示されている。しかし、これも非接触式の磁気センサであり、また細長形状に加工されていないため、外部磁界に対してその電気抵抗値が線形的に変化する磁場範囲は極端に小さくなる。 このように、従来のGMRセンサでは、磁気センサに検出対象の磁性体が接触している場合、大きなシグナルを得ることは困難である。
 本開示は、このような状況に鑑み、検出対象の磁性体がGMRセンサに接触する場合であっても当該磁性体の磁界を検出することを可能にする技術を提案する。
Further, the above-mentioned Patent Document 2 discloses a current-perpendicular-type GMR element covered with an insulating film. However, since this is also a non-contact type magnetic sensor and is not processed into an elongated shape, the magnetic field range in which the electrical resistance value linearly changes with respect to the external magnetic field is extremely small. As described above, it is difficult for the conventional GMR sensor to obtain a large signal when the magnetic substance to be detected is in contact with the magnetic sensor.
In view of such circumstances, the present disclosure proposes a technique that enables detection of the magnetic field of a magnetic material to be detected even when the magnetic material is in contact with the GMR sensor.
 上記課題を解決するために、本願において開示される実施形態は、基板上に、反強磁性層と、強磁性固定層と、非磁性中間層と、強磁性自由層と、保護層とを有する磁気抵抗効果素子であって、磁気抵抗効果素子の横幅と長さのアスペクト比が1:5以上1:300以下で、横幅が190nm以上620nm以下の線状に構成されている、磁気抵抗効果素子について提案する。 In order to solve the above problems, the embodiments disclosed in the present application have an antiferromagnetic layer, a ferromagnetic fixed layer, a nonmagnetic intermediate layer, a ferromagnetic free layer, and a protective layer on a substrate. A magnetoresistive effect element, which has an aspect ratio of width to length of the magnetoresistive effect element of 1:5 or more and 1:300 or less and a width of which is 190 nm or more and 620 nm or less. make a proposal about
 本開示に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、本開示の態様は、要素及び多様な要素の組み合わせ及び以降の詳細な記述と添付される請求の範囲の様態により達成され実現される。なお、本明細書の記述は典型的な例示に過ぎず、請求の範囲又は適用例を如何なる意味においても限定するものではない。 Further features related to the present disclosure will become apparent from the description of the specification and the accompanying drawings. In addition, the aspects of the present disclosure are achieved and attained by means of the elements and combinations of various elements and aspects of the detailed description that follows and the claims that follow. It should be noted that the descriptions in this specification are merely typical examples, and are not intended to limit the scope of claims or application examples in any way.
 本開示の技術によれば、GMRセンサの性能を向上させることができる。特に、GMRセンサに接触する磁性体の磁界を効率的に検出することができる。 According to the technology of the present disclosure, it is possible to improve the performance of the GMR sensor. In particular, it is possible to efficiently detect the magnetic field of the magnetic material in contact with the GMR sensor.
第1の実施形態によるGMR積層膜の構成例を示す図である。1 is a diagram showing a configuration example of a GMR laminated film according to a first embodiment; FIG. 複数のGMRセンサの配置構成例を長軸方向から見たときの断面を示す図である。It is a figure which shows the cross section when the example of arrangement|positioning configuration of several GMR sensors is seen from a longitudinal direction. 第2の実施形態による、GMRセンサを構成するGMR積層膜の構造例を示す図である。FIG. 10 is a diagram showing a structural example of a GMR laminated film forming a GMR sensor according to the second embodiment; 第3の実施形態による、GMRセンサを構成するGMR積層膜の構造例を示す図である。FIG. 10 is a diagram showing a structural example of a GMR laminated film forming a GMR sensor according to a third embodiment; 従来例によるGMRセンサ全体に磁性粒子を付着させたときの、上部磁性粒子と側壁磁性粒子それぞれの漏洩磁場から得られるシグナル、またそれらを足し合わせた合計のシグナルを示す図である。FIG. 10 is a diagram showing signals obtained from leakage magnetic fields of top magnetic particles and side wall magnetic particles, respectively, and a total signal obtained by adding them together when magnetic particles are attached to the entire GMR sensor according to the conventional example. 実施例1による実験の評価結果(GMRセンサ線幅に対するシグナル)を示す図である。FIG. 3 is a diagram showing evaluation results (signals with respect to GMR sensor line width) of experiments according to Example 1; 実施例2における、センサシグナルの大きさを決定するMR比とGMR細線のアスペクト比との関係を示す図である。FIG. 10 is a diagram showing the relationship between the MR ratio that determines the magnitude of a sensor signal and the aspect ratio of a GMR thin line in Example 2; 実施例2における、センサが動作する動作磁場範囲(動作磁場領域)とGMR細線のアスペクト比との関係を示す図である。FIG. 10 is a diagram showing the relationship between the operating magnetic field range (operating magnetic field region) in which the sensor operates and the aspect ratio of the GMR wire in Example 2; 実施例3による実験結果であり、実施例1と同一の実験を、複数のGMRセンサのアスペクト比に対して行った結果を示す図である。FIG. 10 shows experimental results according to Example 3, showing the results of the same experiment as in Example 1 for aspect ratios of a plurality of GMR sensors.
 本開示は、磁気抵抗効果素子に関し、例えば、低磁界領域で巨大な磁気抵抗変化を起こす磁気抵抗効果素子および磁気抵抗効果デバイスに関する。以下、図面を参照して本開示の実施形態を詳細に説明する。なお、本実施形態を説明するための各図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。また、本実施形態では、特に必要なときを除き、同一または同様な部分の説明を原則として繰り返さない。 The present disclosure relates to a magnetoresistive effect element, for example, a magnetoresistive effect element and a magnetoresistive effect device that cause a huge magnetoresistance change in a low magnetic field region. Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. In each drawing for explaining this embodiment, members having the same function are denoted by the same reference numerals, and repeated description thereof will be omitted. Also, in this embodiment, the description of the same or similar parts will not be repeated in principle unless particularly necessary.
(1)第1の実施形態
 以下では、基板上に順に積層された下地層、反強磁性層、強磁性固定層、非磁性中間層、強磁性自由層および保護層を有するGMR(Giant Magneto Resistance、巨大磁気抵抗)積層膜を細線状に微細加工し、磁性粒子付着防止層を形成することでGMRセンサの性能を向上させることについて説明する。具体的には、GMRセンサ上部に付着した検出対象の磁性体から漏洩する磁界をより効率よく検出することについて説明する。本実施形態の主な特徴は、細線状に加工したGMRセンサのアスペクト比に対応して細線幅に上限値が課される点にある。
(1) First Embodiment In the following, GMR (Giant Magneto Resistance , giant magnetoresistive) is fine-fabricated into thin wires and a layer for preventing adhesion of magnetic particles is formed to improve the performance of the GMR sensor. Specifically, more efficient detection of the magnetic field leaking from the magnetic material to be detected attached to the upper portion of the GMR sensor will be described. The main feature of this embodiment is that an upper limit is imposed on the fine line width corresponding to the aspect ratio of the GMR sensor processed into a fine line.
 <磁気抵抗効果素子の構造例>
 図1は、第1の実施形態によるGMR積層膜の構成例を示す図である。本実施形態によるGMR積層膜は、基板101を有し、基板101上に形成された下地層102を有している。下地層102は、GMR積層膜を平坦に形成する役割と、下地層102上に形成されたGMR積層膜の構成膜を結晶化させる役割を持つ。下地層102は、Ta(タンタル)、Ti(チタン)、Ni(ニッケル)、Cr(クロム)、またはFe(鉄)などの属を含む。具体的には、下地層102は、1種類以上の材料を含み、例えば、Ta層およびNiCr(ニッケルクロム)層の2層を含む積層膜により形成することができる。下地層102の膜厚が薄い場合、下地層として機能しなくなる。このため、下地層102を1nm以上の膜厚を有する層とすることができる。
<Structure example of magnetoresistive element>
FIG. 1 is a diagram showing a configuration example of a GMR laminated film according to the first embodiment. The GMR laminated film according to this embodiment has a substrate 101 and an underlying layer 102 formed on the substrate 101 . The underlying layer 102 has a role of forming a flat GMR laminated film and a role of crystallizing the constituent films of the GMR laminated film formed on the underlying layer 102 . Underlayer 102 contains a metal such as Ta (tantalum), Ti (titanium), Ni (nickel), Cr (chromium), or Fe (iron). Specifically, the underlying layer 102 contains one or more kinds of materials, and can be formed of a laminated film containing two layers, for example, a Ta layer and a NiCr (nickel chromium) layer. If the film thickness of the underlayer 102 is thin, it will not function as an underlayer. Therefore, the base layer 102 can be a layer having a thickness of 1 nm or more.
 下地層102上には、反強磁性層103が形成されている。反強磁性層103はGMR積層膜が動作する室温以上で磁性を維持することが必要である。よって、反強磁性層103を構成する材料を、Ni、Cr、Fe、Co(コバルト)若しくはMn(マンガン)のいずれか1つ以上の元素を含む酸化物とすることができる。あるいは、反強磁性層103を構成する材料を、Fe、Mn、Pt(白金)若しくはIr(イリジウム)のいずれか1つ以上の元素を含む金属とすることもできる。反強磁性層103は、全体として磁気モーメントを持たない材料を含む。ただし、微細な観点において、反強磁性層103内では磁性原子の磁気モーメントが互い違いに逆向きに規則正しく並んでいる。本実施形態による反強磁性層103は、例えば、基板101の上面に沿う方向であって、互いに反対向きの2種類の磁気モーメントのみを有している。その結果、自発磁化は打消し合うため、反強磁性層103の自発磁化は全体としてゼロになっている。 An antiferromagnetic layer 103 is formed on the underlayer 102 . The antiferromagnetic layer 103 must maintain its magnetism at room temperature or higher at which the GMR laminated film operates. Therefore, the material forming the antiferromagnetic layer 103 can be an oxide containing at least one of Ni, Cr, Fe, Co (cobalt), and Mn (manganese). Alternatively, the material forming the antiferromagnetic layer 103 can be a metal containing one or more elements of Fe, Mn, Pt (platinum), and Ir (iridium). Antiferromagnetic layer 103 comprises a material that has no magnetic moment as a whole. However, from a microscopic point of view, the magnetic moments of the magnetic atoms in the antiferromagnetic layer 103 are regularly arranged alternately in opposite directions. The antiferromagnetic layer 103 according to this embodiment has, for example, only two kinds of magnetic moments that are directed along the upper surface of the substrate 101 and in opposite directions. As a result, since the spontaneous magnetization cancels each other, the spontaneous magnetization of the antiferromagnetic layer 103 is zero as a whole.
 反強磁性層103上には、強磁性固定層104が形成されている。強磁性固定層104は、単体では磁化の向きが固定されない強磁性層である。これら反強磁性層103および強磁性固定層104は、相互間の界面で磁気結合する。これにより、強磁性固定層104の磁化方向が固定される。強磁性固定層104の磁化方向は、外部磁界(外部磁場)が大きい場合であっても容易に変化しない必要がある。このため、強磁性固定層104の材料として、Fe、Ni、Coまたはこれらの合金のうちの少なくとも1つを含めることができる。 A ferromagnetic pinned layer 104 is formed on the antiferromagnetic layer 103 . The ferromagnetic fixed layer 104 is a ferromagnetic layer whose magnetization direction is not fixed by itself. The antiferromagnetic layer 103 and ferromagnetic pinned layer 104 are magnetically coupled at their interfaces. Thereby, the magnetization direction of the ferromagnetic fixed layer 104 is fixed. The magnetization direction of the ferromagnetic pinned layer 104 must not change easily even when the external magnetic field (external magnetic field) is large. Thus, the ferromagnetic pinned layer 104 material may include at least one of Fe, Ni, Co, or alloys thereof.
 強磁性固定層104上には、非磁性中間層(非磁性層)105が形成されている。また、非磁性中間層105上には、強磁性自由層106が形成されている。非磁性中間層105は、非磁性中間層105の上の強磁性自由層106と、非磁性中間層105の下の強磁性固定層104との磁気結合を消失させるために十分厚い膜厚を有している必要がある。非磁性中間層105の膜厚は、例えば1nm以上とすることができる。また、GMR効果は、強磁性固定層104、非磁性中間層105および強磁性自由層106を含む領域で発現する。このため、当該領域に効率よく電流を流すために、非磁性中間層105は伝導性の高い材料を含めることができる。非磁性中間層105の材料としては、例えば、Cuなどを用いることができる。 A nonmagnetic intermediate layer (nonmagnetic layer) 105 is formed on the ferromagnetic fixed layer 104 . A ferromagnetic free layer 106 is formed on the nonmagnetic intermediate layer 105 . The nonmagnetic intermediate layer 105 has a thickness sufficiently large to eliminate the magnetic coupling between the ferromagnetic free layer 106 above the nonmagnetic intermediate layer 105 and the ferromagnetic pinned layer 104 below the nonmagnetic intermediate layer 105 . must have. The film thickness of the non-magnetic intermediate layer 105 can be, for example, 1 nm or more. Also, the GMR effect appears in a region including ferromagnetic fixed layer 104 , nonmagnetic intermediate layer 105 and ferromagnetic free layer 106 . For this reason, the non-magnetic intermediate layer 105 can contain a highly conductive material in order to efficiently pass current through the region. As a material for the non-magnetic intermediate layer 105, for example, Cu or the like can be used.
 非磁性中間層105上に形成された強磁性自由層106は、単体では磁化の向きが固定されない強磁性層である。強磁性自由層106は、磁気抵抗効果素子の上部で検査対象物から発生する微弱な磁界を検出する際に磁化方向が変化するセンシング位置である。したがって、強磁性自由層106は、その磁化方向が、外部磁界の変化に対して容易に変わる材料により構成されている必要がある。つまり、強磁性自由層106は、良好な軟磁気特性を示す必要がある。このため、強磁性自由層106の材料として、Fe、Ni、Coまたはこれらの合金のうちの少なくとも1つを含めることができる。特に、Niの比率を50%以上とすることができる。 The ferromagnetic free layer 106 formed on the nonmagnetic intermediate layer 105 is a ferromagnetic layer whose magnetization direction is not fixed by itself. The ferromagnetic free layer 106 is a sensing position where the magnetization direction changes when detecting a weak magnetic field generated from an object to be inspected above the magnetoresistance effect element. Therefore, the ferromagnetic free layer 106 must be made of a material whose magnetization direction can be easily changed in response to changes in the external magnetic field. In other words, the ferromagnetic free layer 106 should exhibit good soft magnetic properties. Thus, the material of the ferromagnetic free layer 106 can include at least one of Fe, Ni, Co, or alloys thereof. In particular, the Ni ratio can be 50% or more.
 強磁性自由層106上には、保護層107が形成されている。このように、GMR積層膜は、基板101と、基板101上に順に積層された下地層102、反強磁性層103、強磁性固定層104、非磁性中間層105、強磁性自由層106および保護層107を有している。保護層107は、強磁性自由層106の上面に接し、強磁性自由層106の上面の全体を覆っている。 A protective layer 107 is formed on the ferromagnetic free layer 106 . Thus, the GMR multilayer film includes a substrate 101, an underlayer 102, an antiferromagnetic layer 103, a ferromagnetic pinned layer 104, a nonmagnetic intermediate layer 105, a ferromagnetic free layer 106 and a protective layer, which are sequentially stacked on the substrate 101. It has layer 107 . The protective layer 107 is in contact with the upper surface of the ferromagnetic free layer 106 and covers the entire upper surface of the ferromagnetic free layer 106 .
 保護層107は、強磁性自由層106がGMR積層膜の外部環境により劣化することを防ぐ役割を有している。すなわち、保護層107は、強磁性自由層106が酸化などの化学反応により変質し、これにより磁気抵抗効果素子の信頼性が低下することを防ぐ役割を有する。保護層107の膜厚は、その結晶性を維持する必要があるため、少なくとも0.5nmの膜厚を有する。 The protective layer 107 has the role of preventing the ferromagnetic free layer 106 from deteriorating due to the external environment of the GMR laminated film. In other words, the protective layer 107 has the role of preventing the ferromagnetic free layer 106 from being altered by a chemical reaction such as oxidation, thereby reducing the reliability of the magnetoresistive element. The protective layer 107 has a thickness of at least 0.5 nm because it is necessary to maintain its crystallinity.
 <GMRセンサの特徴>
 本実施形態の主な特徴の1つとして、GMR積層膜が細線状に加工されていることが挙げられる。このとき、強磁性固定層104の磁化方向は細線の短軸方向に固定し、強磁性自由層の磁化方向は形状磁気異方性により細線の長軸方向に向いている。細線の形状として、具体的には、アスペクト比1:5以上、1:300以下の細線形状である。アスペクト比1:5以上であることで、外部磁界に対してその電気抵抗値が線形的に変化する。またアスペクト比1:300以下であることで、強磁性固定層の磁化方向を細線の短軸方向に固定することが可能となり、GMRセンサとして機能するようになる。ここで、GMRセンサは少なくとも1本以上の細線で構成され、直列、または並列に電気的に複数本接続されていてもよい。
<Features of the GMR sensor>
One of the main features of this embodiment is that the GMR laminated film is processed into a fine line. At this time, the magnetization direction of the ferromagnetic fixed layer 104 is fixed in the short axis direction of the wire, and the magnetization direction of the ferromagnetic free layer is directed in the long axis direction of the wire due to shape magnetic anisotropy. Specifically, the shape of the fine wire is a fine wire shape with an aspect ratio of 1:5 or more and 1:300 or less. With an aspect ratio of 1:5 or more, the electrical resistance value changes linearly with respect to the external magnetic field. Further, since the aspect ratio is 1:300 or less, it becomes possible to fix the magnetization direction of the ferromagnetic pinned layer in the minor axis direction of the thin wire, and the sensor functions as a GMR sensor. Here, the GMR sensor is composed of at least one fine wire, and may be electrically connected in series or in parallel.
 <化学センサへの適用>
 本実施形態において、標的物質の化学センサへの適用が可能である。GMRセンサ最表面に標的物質の捕獲物質を予め固定しておく。標的物質と漏洩磁場を生じる物質とを予め結合させた標識物を用意する。標識物濃度と、標識物と捕獲物質を固定したGMRセンサを反応させた際に生じる信号強度との関係を検量線として記録しておく。濃度未知の標的物質試料、濃度既知の標識物、捕獲物質を予め固定したGMRセンサを反応させ、前記検量線との差異を基に、標的物質試料の濃度を算出することができる。
<Application to chemical sensors>
In this embodiment, application to chemical sensors of target substances is possible. A capturing substance of a target substance is previously immobilized on the outermost surface of the GMR sensor. A label is prepared by previously binding a target substance and a substance that generates a leakage magnetic field. The relationship between the label concentration and the signal intensity generated when the GMR sensor on which the label and capture substance are immobilized is allowed to react is recorded as a calibration curve. A target substance sample of unknown concentration, a labeled substance of known concentration, and a GMR sensor preliminarily immobilized with a capture substance are allowed to react, and the concentration of the target substance sample can be calculated based on the difference from the calibration curve.
 <GMRセンサの結晶構造の確認について>
 上記のGMRセンサの結晶構造は、X線回折(XRD:X-ray diffraction)によって容易に確認ができる。また、上記のGMRセンサの構造は、TEM(Transmission Electron Microscope、透過型電子顕微鏡)またはSEM(Scanning Electron Microscope、走査電子顕微鏡)などの電子顕微鏡により観察することで確認できる。また、上記のGMR積層膜の単結晶もしくは多結晶の結晶構造と積層構造とは、電子線回折像においてスポット状パターンまたはリング状パターンを観察することで確認することができる。GMRセンサの各層の組成分布はEDX(Energy dispersive X-ray spectrometry、エネルギー分散型X線分析)などのEPMA(Electron Probe Micro Analyzer、電子線マイクロアナライザー)を用いて確認できる。また、当該組成分布は、SIMS(Secondary Ion Mass Spectrometry、二次イオン質量分析法)、X線光電子分光法またはICP(Inductively Coupled Plasma、誘導結合プラズマ)発光分光分析法などの手法を用いて確認できる。
<Confirmation of the crystal structure of the GMR sensor>
The crystal structure of the GMR sensor can be easily confirmed by X-ray diffraction (XRD). Further, the structure of the GMR sensor can be confirmed by observing it with an electron microscope such as a TEM (Transmission Electron Microscope) or a SEM (Scanning Electron Microscope). In addition, the single-crystal or polycrystalline crystal structure and laminated structure of the GMR laminated film can be confirmed by observing a spot-like pattern or a ring-like pattern in an electron beam diffraction image. The composition distribution of each layer of the GMR sensor can be confirmed using EPMA (Electron Probe Micro Analyzer) such as EDX (Energy dispersive X-ray spectrometry). In addition, the composition distribution can be confirmed using techniques such as SIMS (Secondary Ion Mass Spectrometry), X-ray photoelectron spectroscopy, or ICP (Inductively Coupled Plasma) emission spectrometry. .
 <GMRセンサの効果>
 GMRセンサにおいて微弱な漏洩磁場を定量的に検出するには、外部磁界に対してセンサの電気抵抗値が線形的に変化する必要がある。そのためにGMR積層膜を細線状に加工している。このとき、強磁性固定層の磁化方向は細線の短軸方向に固定し、強磁性自由層の磁化方向は形状磁気異方性により細線の長軸方向に向いている。磁場のない初期状態では強磁性固定層と強磁性自由層の磁化方向の相対角は90°となる。磁性粒子が付着し漏洩磁場などの外部磁界が働くと強磁性固定層と強磁性自由層の磁化方向の相対角は90°からずれることになり、その相対角の増減に対して電気抵抗値も増減する。ここで、GMRセンサは少なくとも1本以上の細線から成り、直列、または並列に電気的に複数本接続されていてもよい。
<Effect of GMR sensor>
In order to quantitatively detect a weak leakage magnetic field in a GMR sensor, it is necessary that the electrical resistance value of the sensor changes linearly with respect to the external magnetic field. For this reason, the GMR laminated film is processed into a thin line. At this time, the magnetization direction of the ferromagnetic pinned layer is fixed in the short axis direction of the wire, and the magnetization direction of the ferromagnetic free layer is directed in the long axis direction of the wire due to shape magnetic anisotropy. In the initial state without a magnetic field, the relative angle between the magnetization directions of the ferromagnetic fixed layer and the ferromagnetic free layer is 90°. When magnetic particles adhere and an external magnetic field such as a leakage magnetic field acts, the relative angle between the magnetization directions of the ferromagnetic fixed layer and the ferromagnetic free layer deviates from 90°, and the electrical resistance value changes as the relative angle increases and decreases. Increase or decrease. Here, the GMR sensor consists of at least one fine wire, and may be electrically connected in series or in parallel.
 <GMRセンサの配置例>
 図2は、複数のGMRセンサの配置構成例を長軸方向から見たときの断面を示す図である。このGMRセンサ201において磁性粒子などの付着物を検出する場合、GMRセンサ上部に磁性粒子が付着した場合と、GMRセンサ側壁に磁性粒子が付着した場合でGMRセンサのシグナルが正負反対であるため、GMRセンサ全体に磁性粒子が付着した場合、シグナルは打ち消しあい減衰する(従来例)。GMRセンサのアスペクト比が1:125のとき、横幅を440nm以下で作製すれば、GMRセンサ上部に磁性粒子が付着した場合と、GMRセンサ側壁に磁性粒子が付着した場合でGMRセンサシグナルの符号が一致し、シグナルの打ち消しは起こらず、GMRセンサのトータルのシグナルを向上させることができる。
<Example of arrangement of GMR sensors>
FIG. 2 is a diagram showing a cross section of an example of arrangement configuration of a plurality of GMR sensors when viewed from the longitudinal direction. When the GMR sensor 201 detects an attachment such as a magnetic particle, the signal of the GMR sensor is opposite in positive and negative when the magnetic particle is attached to the upper part of the GMR sensor and when the magnetic particle is attached to the side wall of the GMR sensor. When magnetic particles adhere to the entire GMR sensor, signals cancel each other out and attenuate (conventional example). When the aspect ratio of the GMR sensor is 1:125, if the width is 440 nm or less, the sign of the GMR sensor signal will be the same when the magnetic particles adhere to the upper part of the GMR sensor and when the magnetic particles adhere to the side walls of the GMR sensor. In agreement, no signal cancellation occurs and the total signal of the GMR sensor can be improved.
(2)第2の実施形態
 図3は、第2の実施形態による、GMRセンサを構成するGMR積層膜の構造例を示す図である。当該GMR積層膜は、図3に示すような積層構造とすることができる。
(2) Second Embodiment FIG. 3 is a diagram showing a structural example of a GMR laminated film forming a GMR sensor according to a second embodiment. The GMR laminated film can have a laminated structure as shown in FIG.
 本実施形態によるGMR積層膜は、基板301上に順に形成された下地層302、反強磁性層303、第1の強磁性固定層304、非磁性結合層305、第2の強磁性固定層306、非磁性中間層307、強磁性自由層308および保護層309により構成されている。 The GMR laminated film according to this embodiment includes an underlayer 302, an antiferromagnetic layer 303, a first ferromagnetic pinned layer 304, a nonmagnetic coupling layer 305, and a second ferromagnetic pinned layer 306, which are formed in order on a substrate 301. , a nonmagnetic intermediate layer 307 , a ferromagnetic free layer 308 and a protective layer 309 .
 図1に示す構造とは異なり、ここでは、第1の強磁性固定層304および第2の強磁性固定層306が層形成されており、それらの中間に非磁性結合層(非磁性層)305が形成されている。第1の強磁性固定層304の磁化方向は、反強磁性層303によって固定されている。また、第1の強磁性固定層304上に非磁性結合層305を介して形成された第2の強磁性固定層306の磁化方向は、第1の強磁性固定層304と反対の方向で固定されている。第2の強磁性固定層306の磁化方向は、非磁性結合層305の膜厚、つまり、第1の強磁性固定層304と第2の強磁性固定層306との間の距離により決まる。 Unlike the structure shown in FIG. 1, here a first ferromagnetic pinned layer 304 and a second ferromagnetic pinned layer 306 are layered, with a non-magnetic coupling layer (non-magnetic layer) 305 between them. is formed. The magnetization direction of the first ferromagnetic fixed layer 304 is fixed by the antiferromagnetic layer 303 . The magnetization direction of the second ferromagnetic pinned layer 306 formed on the first ferromagnetic pinned layer 304 via the non-magnetic coupling layer 305 is pinned in the direction opposite to that of the first ferromagnetic pinned layer 304 . It is The magnetization direction of the second ferromagnetic pinned layer 306 is determined by the film thickness of the non-magnetic coupling layer 305 , that is, the distance between the first ferromagnetic pinned layer 304 and the second ferromagnetic pinned layer 306 .
 第1の強磁性固定層304および第2の強磁性固定層306のそれぞれの磁化方向は、互いに反対方向を向いている。言い換えれば、第1の強磁性固定層304の磁化方向と第2の強磁性固定層306の磁化方向とは、反平行の関係にある。これにより、第1の強磁性固定層304および第2の強磁性固定層306のそれぞれから出る磁界は、第1の強磁性固定層304と第2の強磁性固定層306との間をループする。つまり、第1の強磁性固定層304から出た漏れ磁界の殆どは第2の強磁性固定層306を通り、第2の強磁性固定層306から出た漏れ磁界の殆どは第1の強磁性固定層304を通る。このため、第1の強磁性固定層304および第2の強磁性固定層306のそれぞれから出る磁界は外部環境に影響を与えない。 The magnetization directions of the first ferromagnetic pinned layer 304 and the second ferromagnetic pinned layer 306 are opposite to each other. In other words, the magnetization direction of the first ferromagnetic pinned layer 304 and the magnetization direction of the second ferromagnetic pinned layer 306 are antiparallel. Thus, the magnetic field emitted from each of the first ferromagnetic pinned layer 304 and the second ferromagnetic pinned layer 306 loops between the first ferromagnetic pinned layer 304 and the second ferromagnetic pinned layer 306. . That is, most of the leakage magnetic field emitted from the first ferromagnetic pinned layer 304 passes through the second ferromagnetic pinned layer 306, and most of the leakage magnetic field emitted from the second ferromagnetic pinned layer 306 passes through the first ferromagnetic pinned layer 306. Through fixed layer 304 . Therefore, the magnetic field emitted from each of the first ferromagnetic pinned layer 304 and the second ferromagnetic pinned layer 306 does not affect the external environment.
 このような構造は積層反強磁性構造と呼ばれる。積層反強磁性構造ではGMR積層膜から出る磁界が減少する。このため、非常に微弱な磁性体の磁界を検出する際、検出前後で検出対象の磁性体の磁気状態を変えずに当該磁性体の磁界を検出し、磁気の状態をより正確に検知することができる。第1の強磁性固定層304および第2の強磁性固定層306のうち少なくとも一方は、CoまたはCo-Fe合金のいずれか一方を含み、非磁性結合層305は、Ru(ルテニウム)とIrとの少なくとも一方を含むことができる。 Such a structure is called a laminated antiferromagnetic structure. The laminated antiferromagnetic structure reduces the magnetic field emanating from the GMR laminated film. For this reason, when detecting a very weak magnetic field of a magnetic material, it is possible to detect the magnetic field of the magnetic material without changing the magnetic state of the magnetic material to be detected before and after the detection, thereby detecting the magnetic state more accurately. can be done. At least one of the first ferromagnetic fixed layer 304 and the second ferromagnetic fixed layer 306 contains either Co or a Co—Fe alloy, and the nonmagnetic coupling layer 305 contains Ru (ruthenium) and Ir. can include at least one of
 第1の強磁性固定層304、非磁性結合層305および第2の強磁性固定層306から成る積層膜は、1つの強磁性固定層とみなすことができる。すなわち、本実施の形態の磁気抵抗効果素子は、第1の実施形態の強磁性固定層104が、第1の強磁性固定層304、非磁性結合層305および第2の強磁性固定層306から成る積層膜により構成されているものと考えることができる。 A laminated film consisting of the first ferromagnetic pinned layer 304, the non-magnetic coupling layer 305 and the second ferromagnetic pinned layer 306 can be regarded as one ferromagnetic pinned layer. That is, in the magnetoresistive element of the present embodiment, the ferromagnetic pinned layer 104 of the first embodiment consists of the first ferromagnetic pinned layer 304, the nonmagnetic coupling layer 305, and the second ferromagnetic pinned layer 306. can be considered to be composed of a laminated film composed of
(3)第3の実施形態
 図4は、第3の実施形態による、GMRセンサを構成するGMR積層膜の構造例を示す図である。当該GMR積層膜は、図4に示すような積層構造とすることができる。
(3) Third Embodiment FIG. 4 is a diagram showing a structural example of a GMR laminated film forming a GMR sensor according to a third embodiment. The GMR laminated film can have a laminated structure as shown in FIG.
 本実施形態によるGMR積層膜は、基板401上に順に形成された下地層402、第1の反強磁性層403、第1の強磁性固定層404、第1の非磁性結合層405、第2の強磁性固定層406、第1の非磁性中間層407、強磁性自由層408、第2の非磁性中間層409、第3の強磁性固定層410、第2の非磁性結合層411、第4の強磁性固定層412、第2の反強磁性層413、および保護層414により構成されている。 The GMR laminated film according to this embodiment includes an underlying layer 402, a first antiferromagnetic layer 403, a first ferromagnetic pinned layer 404, a first nonmagnetic coupling layer 405, and a second antiferromagnetic layer 404, which are formed on a substrate 401 in this order. ferromagnetic pinned layer 406, first nonmagnetic intermediate layer 407, ferromagnetic free layer 408, second nonmagnetic intermediate layer 409, third ferromagnetic pinned layer 410, second nonmagnetic coupling layer 411, second 4 ferromagnetic pinned layer 412 , a second antiferromagnetic layer 413 and a protective layer 414 .
 図3に示す構造とは異なり、ここでは、第2の非磁性中間層409、第3の強磁性固定層410、第2の非磁性結合層411、第4の強磁性固定層412、および第2の反強磁性層413が層形成されている。これらは、第1の反強磁性層403、第1の強磁性固定層404、第1の非磁性結合層405、第2の強磁性固定層406、第1の非磁性中間層407を逆の順番で積層されたものであり、役割は同じである。ただし、構成する材料は同じでなくても良い。
 このような構造は、デュアル型積層反強磁性構造と呼ばれる。デュアル型積層反強磁性構造では外部磁界による電気抵抗率の変化量が大きくなる。
Unlike the structure shown in FIG. 2 antiferromagnetic layers 413 are layered. These reverse the first antiferromagnetic layer 403, the first ferromagnetic pinned layer 404, the first nonmagnetic coupling layer 405, the second ferromagnetic pinned layer 406, and the first nonmagnetic intermediate layer 407. They are stacked in order and have the same role. However, the constituent materials may not be the same.
Such a structure is called a dual stacked antiferromagnetic structure. In the dual-type laminated antiferromagnetic structure, the amount of change in electrical resistivity due to an external magnetic field increases.
(4)実施例
(i)実施例1
 本発明者らは、GMRセンサを作製し、GMRセンサ上部、また側壁に付着した磁性粒子から得られるシグナルを評価した。ここで使用したGMR積層膜の構造は、図1に示すものと同じである。実施例1では、表面が熱酸化膜で覆われたSi基板上に、Taを含み膜厚5nmの膜とNiCrを含み膜厚5nmの膜とにより構成された積層膜である下地層102が形成されている。また、Ir20Mn80を含み6nmの膜厚を有する反強磁性層103と、Co90Fe10を含み1.6nmの膜厚を有する強磁性固定層104とが形成されている。さらに、Cuを含み2.5nmの膜厚を有する非磁性中間層105と、Co90Fe10を含み1.0nmの膜厚を有する膜と、Ni81Fe19を含み3.5nmの膜厚を有する膜とにより構成された強磁性自由層106が形成されている。また、Ru、Taを含む保護層107が形成されている。なお、GMRセンサの形状は、SEM、TEMまたは光学顕微鏡を用いて容易に確認することができる。
(4) Example (i) Example 1
The present inventors fabricated a GMR sensor and evaluated signals obtained from magnetic particles attached to the top and sidewalls of the GMR sensor. The structure of the GMR laminated film used here is the same as that shown in FIG. In Example 1, the underlying layer 102, which is a laminated film composed of a film containing Ta and having a thickness of 5 nm and a film containing NiCr and having a thickness of 5 nm, is formed on a Si substrate whose surface is covered with a thermal oxide film. It is Also formed are an antiferromagnetic layer 103 containing Ir 20 Mn 80 and having a thickness of 6 nm, and a ferromagnetic pinned layer 104 containing Co 90 Fe 10 and having a thickness of 1.6 nm. Further, a non-magnetic intermediate layer 105 containing Cu and having a thickness of 2.5 nm, a film containing Co 90 Fe 10 and having a thickness of 1.0 nm, and a film containing Ni 81 Fe 19 and having a thickness of 3.5 nm. A ferromagnetic free layer 106 is formed by a film having a A protective layer 107 containing Ru and Ta is also formed. The shape of the GMR sensor can be easily confirmed using SEM, TEM, or an optical microscope.
 実施例1によるGMRセンサの断面は図2に示される通りである。図5は、従来例によるGMRセンサ全体に磁性粒子を付着させたときの、上部磁性粒子と側壁磁性粒子それぞれの漏洩磁場から得られるシグナル、またそれらを足し合わせた合計のシグナルを示す図である。図5から分かるように、上部磁性粒子と側壁磁性粒子それぞれの漏洩磁場から得られるシグナルは、それぞれ正、負と符号が反転している。つまり、GMRセンサの上部に付着した磁性粒子から得られるシグナルが常に負となっている。このとき、従来例によるGMRセンサの寸法は、横幅800nm、長さ100μmで、アスペクト比、横幅:長さは1:125である。 The cross section of the GMR sensor according to Example 1 is as shown in FIG. FIG. 5 is a diagram showing signals obtained from leakage magnetic fields of the upper magnetic particles and the side wall magnetic particles, respectively, and the total signal obtained by adding them when the magnetic particles are attached to the entire GMR sensor according to the conventional example. . As can be seen from FIG. 5, the signals obtained from the stray magnetic fields of the upper magnetic particles and the side wall magnetic particles are positive and negative, respectively. In other words, the signal obtained from the magnetic particles attached to the top of the GMR sensor is always negative. At this time, the dimensions of the conventional GMR sensor are 800 nm in width and 100 μm in length, and the aspect ratio (width:length) is 1:125.
 一方、実施例1では、GMRセンサのアスペクト比を1:125に固定した条件で、横幅をそれぞれ400、500、700nmと変化させたGMRセンサを作製し、GMRセンサ上部の中央部付近に付着した磁性粒子1個から得られるシグナルを評価した。図6は、実施例1による実験の評価結果を示す図である。図6に示されるように、横幅(線幅)が400nmのGMRセンサにおいてはシグナルの符号は正であり、500nm~800nmではシグナルの符号は負であることが分かる。また、図6からは、側壁磁性粒子のシグナル符号と上部磁性粒子のそれが一致する横幅の上限を440nm(正のシグナルが得られる限界)と見積もることができる。したがって、GMRセンサのアスペクト比を1:125に固定するときには、GMRセンサの横幅を440nm以下とすることにより、側壁磁性粒子の漏洩磁場の方向と上部磁性粒子の漏洩磁場の方向を一致させることができ、得られる合計のシグナルを増加させることができる。 On the other hand, in Example 1, GMR sensors were produced with the aspect ratio of the GMR sensor fixed at 1:125, and the widths were changed to 400, 500, and 700 nm, respectively, and the GMR sensor was attached near the center of the upper part of the GMR sensor. The signal obtained from one magnetic particle was evaluated. FIG. 6 is a diagram showing evaluation results of an experiment according to Example 1. FIG. As shown in FIG. 6, the sign of the signal is positive in the GMR sensor with a lateral width (line width) of 400 nm, and the sign of the signal is negative in the range of 500 nm to 800 nm. Also, from FIG. 6, the upper limit of the lateral width at which the signal sign of the side wall magnetic particles and that of the upper magnetic particles match can be estimated to be 440 nm (the limit at which a positive signal can be obtained). Therefore, when the aspect ratio of the GMR sensor is fixed at 1:125, the direction of the leakage magnetic field of the side wall magnetic particles and the direction of the leakage magnetic field of the upper magnetic particles can be matched by setting the lateral width of the GMR sensor to 440 nm or less. can be used to increase the total signal obtained.
(ii)実施例2
 実施例2によるGMRセンサについて、センサとして動作可能な細線形状の寸法比について説明する。ここで用いるGMRセンサを構成するGMR積層膜の構造は、図3に示す構造と同じである。ただし、GMR積層膜の構造としては、図3だけではなく、図1あるいは図4の構造を採用してもよい。
(ii) Example 2
Regarding the GMR sensor according to Example 2, the dimensional ratio of the thin wire shape that can operate as a sensor will be described. The structure of the GMR laminated film forming the GMR sensor used here is the same as the structure shown in FIG. However, as the structure of the GMR laminated film, not only the structure shown in FIG. 3 but also the structure shown in FIG. 1 or 4 may be employed.
 実施例2では、表面が熱酸化膜で覆われたSi基板上に、Taを含み膜厚5nmの膜とNiCrを含み膜厚5nmの膜とにより構成された積層膜である下地層302が形成されている。また、Ir20Mn80を含み6nmの膜厚を有する反強磁性層303と、Co90Fe10を含み1.6nmの膜厚を有する第1の強磁性固定層304とが形成されている。さらに、Ruを含み0.85nmの膜厚を有する非磁性結合層305と、Co90Fe10を含み1.6nmの膜厚を有する第2の強磁性固定層306と、Cuを含み2.5nmの膜厚を有する非磁性中間層307とが形成されている。また、Co90Fe10を含み1.0nmの膜厚を有する膜と、Ni81Fe19を含み3.5nmの膜厚を有する膜とにより構成された強磁性自由層308が形成されている。なお、強磁性自由層308の上にはRu、Taを含む保護層309が形成されている。 In Example 2, the underlying layer 302, which is a laminated film composed of a film containing Ta and having a thickness of 5 nm and a film containing NiCr and having a thickness of 5 nm, is formed on a Si substrate whose surface is covered with a thermal oxide film. It is Also formed are an antiferromagnetic layer 303 containing Ir 20 Mn 80 and having a thickness of 6 nm, and a first ferromagnetic pinned layer 304 containing Co 90 Fe 10 and having a thickness of 1.6 nm. Further, a non-magnetic coupling layer 305 containing Ru and having a thickness of 0.85 nm, a second ferromagnetic pinned layer 306 containing Co 90 Fe 10 and having a thickness of 1.6 nm, and a thickness of 2.5 nm containing Cu. A non-magnetic intermediate layer 307 having a thickness of . A ferromagnetic free layer 308 is formed of a film containing Co 90 Fe 10 and having a thickness of 1.0 nm and a film containing Ni 81 Fe 19 and having a thickness of 3.5 nm. A protective layer 309 containing Ru and Ta is formed on the ferromagnetic free layer 308 .
 図7は、センサシグナルの大きさを決定するMR比とGMR細線のアスペクト比との関係を示す図である。図7を見ると、アスペクト比が大きくなるにつれてMR比が大幅に減少していることが分かる。従って、磁性粒子を検出するセンサとして使用するには少なくともMR比1%を超えGMR効果が発現する必要があるため、GMR細線のアスペクト比は1:300以下である必要があることが分かる。 FIG. 7 is a diagram showing the relationship between the MR ratio that determines the magnitude of the sensor signal and the aspect ratio of the GMR thin line. It can be seen from FIG. 7 that the MR ratio decreases significantly as the aspect ratio increases. Therefore, in order to use it as a sensor for detecting magnetic particles, the MR ratio must exceed at least 1% and the GMR effect must be expressed, so it can be seen that the aspect ratio of the GMR thin wire must be 1:300 or less.
 図8は、センサが動作する動作磁場範囲(動作磁場領域)とGMR細線のアスペクト比との関係を示す図である。図8を見ると、動作磁場範囲(動作磁場領域)はアスペクト比が減少するにつれ減少していることが分かる。動作磁場範囲(動作磁場領域)は検出可能な磁場の範囲を示しており、磁性粒子を検出するには少なくとも10Oe以上必要となる。このため、アスペクト比は1:5以下である必要がある。
 以上より、磁性粒子を検出するGMRセンサとして使用可能なGMR細線のアスペクト比は1:5以上1:300以下となる。
FIG. 8 is a diagram showing the relationship between the operating magnetic field range (operating magnetic field region) in which the sensor operates and the aspect ratio of the GMR wire. It can be seen from FIG. 8 that the operating magnetic field range (operating magnetic field region) decreases as the aspect ratio decreases. The operating magnetic field range (operating magnetic field region) indicates the detectable magnetic field range, and at least 10 Oe or more is required to detect magnetic particles. Therefore, the aspect ratio should be 1:5 or less.
As described above, the aspect ratio of the GMR thin wire that can be used as a GMR sensor for detecting magnetic particles is 1:5 or more and 1:300 or less.
(iii)実施例3
 実施例1では、図6に示されるように、GMRセンサのアスペクト比を1:125に固定した条件下で、側壁磁性粒子のシグナル符号と上部磁性粒子のそれが一致する横幅の上限値を440nmと見積もることができた。図9は、実施例1と同一の実験を、複数のGMRセンサのアスペクト比に対して行った結果を示す図である。図9を見ると、実験で用いたGMRセンサのアスペクト比の値は1:300、1:200、1:50、1:5であり、それぞれに対応した横幅の上限値は、190、300、550、620nmと見積もることができた。
(iii) Example 3
In Example 1, as shown in FIG. 6, under the condition that the aspect ratio of the GMR sensor is fixed at 1:125, the upper limit of the width at which the signal sign of the side wall magnetic particles and that of the upper magnetic particles match is set to 440 nm. could be estimated. FIG. 9 is a diagram showing the results of the same experiment as in Example 1 for multiple aspect ratios of GMR sensors. Looking at FIG. 9, the aspect ratio values of the GMR sensors used in the experiment are 1:300, 1:200, 1:50, and 1:5, and the corresponding upper limit values of the width are 190, 300, 550 and 620 nm could be estimated.
 したがって、GMRセンサの各アスペクト比に対して、横幅を上限値以下で作製することにより、側壁磁性粒子の漏洩磁場の方向と上部磁性粒子の漏洩磁場の方向を一致させることができ、得られる合計のシグナルを増加させることができる。 Therefore, for each aspect ratio of the GMR sensor, by making the lateral width equal to or less than the upper limit, the direction of the stray magnetic field of the side wall magnetic particles and the direction of the stray magnetic field of the upper magnetic particles can be matched, and the total obtained signal can be increased.
(iv)実施例4
 実施例4では、実施例1(図1の構造を採用)における強磁性自由層106にNi70Fe27を含みアモルファス構造3.5nmの膜厚を有する膜より構成されたGMRセンサを形成した。また、GMRセンサのアスペクト比を1:125に固定し、横幅を変化させたGMRセンサを作製し、GMRセンサ上部の中央部付近に付着した磁性粒子1個から得られるシグナルを評価した。従来は、パーマアロイと言われる合金(結晶化構造)を用いていたが、実施例4では、合金におけるFeの一部とBを置き換え、アモルファス化(非結晶化)する。これにより、磁場(磁界)に対する追随性(強い磁場を掛けなくてもシグナルが取り易い)を向上させることができる。したがって、シグナルを得やすいアモルファスを用いるGMRセンサを用いることにより、より大きなシグナルを得ることができる。
(iv) Example 4
In Example 4, a GMR sensor composed of a film having an amorphous structure and a film thickness of 3.5 nm containing Ni70Fe27B3 in the ferromagnetic free layer 106 of Example 1 (using the structure of FIG. 1) was formed. bottom. Further, a GMR sensor was produced by fixing the aspect ratio of the GMR sensor to 1:125 and changing the width, and the signal obtained from one magnetic particle attached near the center of the upper part of the GMR sensor was evaluated. Conventionally, an alloy (crystallized structure) called a permaalloy was used, but in Example 4, part of Fe and B in the alloy are replaced to make it amorphous (non-crystallized). As a result, it is possible to improve the followability to a magnetic field (a signal can be easily obtained without applying a strong magnetic field). Therefore, a larger signal can be obtained by using a GMR sensor that uses an amorphous material from which signals can be easily obtained.
 上述の図6からは、側壁磁性粒子のシグナル符号と上部磁性粒子のそれが一致する横幅の上限を400nmと見積もることができる。したがって、Ni70Fe27アモルファス構造の強磁性自由層より構成されたGMRセンサの横幅を400nm以下で作製することにより、側壁磁性粒子の漏洩磁場の方向と上部磁性粒子の漏洩磁場の方向を一致させることができ、得られる合計のシグナルを増加させることができる。 From FIG. 6 described above, the upper limit of the lateral width at which the signal sign of the side wall magnetic particles and that of the upper magnetic particles match can be estimated to be 400 nm. Therefore, by fabricating the lateral width of the GMR sensor composed of the ferromagnetic free layer of the Ni70Fe27B3 amorphous structure to 400 nm or less, the direction of the stray magnetic field of the side wall magnetic grains and the direction of the stray magnetic field of the upper magnetic grains can be can be matched and the total signal obtained can be increased.
(5)まとめ
(i)上述の実施形態は、横幅と長さのアスペクト比が1:5以上1:300以下で、横幅が190nm以上620nm以下の線状に構成される、磁気抵抗効果素子について開示する。このような構造とすることにより、少なくとも1つの磁気抵抗効果素子でGMRセンサを構成した場合に、微小磁場猟奇で安定的に動作させることが可能となり、かつ、磁気抵抗効果素子の上部および側部(側壁部)に付着(接触)した磁性粒子によって素子に働く局所磁場の方向が揃うようになるため、高精度に磁性体を検出することが可能となる。従って、当該GMRセンサを化学センサとして機能させることが可能となる。
(5) Summary (i) The above-described embodiment relates to a magnetoresistive effect element having an aspect ratio of width to length of 1:5 or more and 1:300 or less and a width of 190 nm or more and 620 nm or less. Disclose. With such a structure, when a GMR sensor is configured with at least one magnetoresistive element, it can be stably operated in a minute magnetic field, and the upper and side portions of the magnetoresistive element can be stably operated. Since the magnetic particles adhering (contacting) to (the sidewall portion) align the directions of the local magnetic fields acting on the element, it is possible to detect the magnetic material with high accuracy. Therefore, it is possible to make the GMR sensor function as a chemical sensor.
 なお、具体的に、アスペクト比が1:125のときには横幅が440nm以下、アスペクト比が1:300のときには横幅が190nm以下、アスペクト比が1:200のときには横幅が300nm以下、アスペクト比が1:50のときには横幅が550nm以下とすることができる。 Specifically, when the aspect ratio is 1:125, the width is 440 nm or less, when the aspect ratio is 1:300, the width is 190 nm or less, and when the aspect ratio is 1:200, the width is 300 nm or less, and the aspect ratio is 1:1. When 50, the width can be 550 nm or less.
(ii)磁気抵抗効果素子は、図1に示されるように、基板上に、反強磁性層と、強磁性固定層と、非磁性中間層と、強磁性自由層と、保護層とが形成されている。ここで、非磁性中間層は、例えば、Cuで構成し、強磁性固定層または強磁性自由層は、例えば、Fe、Ni、Coまたはこれらの合金で構成してもよい。このようにすることにより、GMR効果を効率よく発現させることができる。つまり、強磁性固定層、非磁性中間層、強磁性自由層を含む領域に効率よく電流を流すことができるようになる。また、反強磁性層は、Ni、Cr、Fe、Co若しくはMnを含む酸化物、または、Fe、Mn、Pt若しくはIrを含む金属で構成してもよい。このような材料を用いることにより、磁気抵抗効果素子が動作する室温以上の環境で磁性を維持することができるようになる。 (ii) As shown in FIG. 1, the magnetoresistive element has an antiferromagnetic layer, a ferromagnetic fixed layer, a nonmagnetic intermediate layer, a ferromagnetic free layer, and a protective layer formed on a substrate. It is Here, the non-magnetic intermediate layer may be made of, for example, Cu, and the ferromagnetic fixed layer or ferromagnetic free layer may be made of, for example, Fe, Ni, Co, or alloys thereof. By doing so, the GMR effect can be efficiently expressed. In other words, it becomes possible to efficiently flow a current through the region including the ferromagnetic fixed layer, the nonmagnetic intermediate layer, and the ferromagnetic free layer. Also, the antiferromagnetic layer may be composed of an oxide containing Ni, Cr, Fe, Co or Mn, or a metal containing Fe, Mn, Pt or Ir. By using such a material, the magnetism can be maintained in an environment of room temperature or higher in which the magnetoresistive effect element operates.
(iii)磁気抵抗効果素子において、反強磁性層の下に形成された下地層を、Ta、Ti、Ni、Cr、AlまたはFeを含む金属、または酸化物で構成するようにしてもよい。これらの材料を下地層に用いることにより、磁気抵抗効果素子の構成積層膜を確実に結晶化することが可能となる。 (iii) In the magnetoresistive element, the underlayer formed under the antiferromagnetic layer may be composed of a metal containing Ta, Ti, Ni, Cr, Al or Fe, or an oxide. By using these materials for the underlying layer, it becomes possible to reliably crystallize the constituent laminated films of the magnetoresistive effect element.
(iv)磁気抵抗効果素子において、強磁性自由層を、Fe、Ni、Bまたはこれらのアモルファス構造の合金で構成するようにしてもよい。結晶化構造を有する強磁性自由層を非結晶化構造とすることにより、結晶化構造に対して掛けられる磁場よりも小さい磁場を掛けても磁場に対する追随性を担保あるいは向上させることが可能となる。 (iv) In the magnetoresistive element, the ferromagnetic free layer may be composed of Fe, Ni, B, or an alloy of these amorphous structures. By making the ferromagnetic free layer having a crystallized structure into an amorphous structure, it is possible to secure or improve the followability to the magnetic field even if a magnetic field smaller than the magnetic field applied to the crystallized structure is applied. .
(v)また、磁気抵抗効果素子は、図3に示されるように、基板上に、反強磁性層と、第1の強磁性固定層と、非磁性結合層と、第2の強磁性固定層と、非磁性中間層と、強磁性自由層と、保護層とが形成されている。つまり、図3に示す構造においては、図1示す構造における強磁性固定層が、第1の強磁性固定層と、第2の強磁性固定層と、第1および第2強磁性固定層の間に形成された非磁性結合層と、を含む構造となっている。 (v) As shown in FIG. 3, the magnetoresistive element has an antiferromagnetic layer, a first ferromagnetic pinned layer, a nonmagnetic coupling layer, and a second ferromagnetic pinned layer on the substrate. A layer, a nonmagnetic intermediate layer, a ferromagnetic free layer, and a protective layer are formed. That is, in the structure shown in FIG. 3, the ferromagnetic pinned layer in the structure shown in FIG. 1 is the first ferromagnetic pinned layer, the second ferromagnetic pinned layer, and the and a non-magnetic coupling layer formed on the substrate.
(vi)さらに、磁気抵抗効果素子は、図4に示されるように、基板上に、第1の反強磁性層と、第1および第2の強磁性固定層と、当該第1および第2の強磁性固定層の間に形成された第1の非磁性結合層と、第1および第2の非磁性中間層と、当該第1および第2の非磁性中間層の間に形成された強磁性自由層と、第3および第4の強磁性固定層と、当該第3および第4の強磁性固定層の間に形成された第2の非磁性結合層と、第2の反強磁性層と、保護層と、が形成されている。このように、デュアル型積層反強磁性構造を採用することにより、外部磁界による電気抵抗率の変化量を大きくすることが可能となる。 (vi) Furthermore, as shown in FIG. 4, the magnetoresistive effect element has a first antiferromagnetic layer, first and second ferromagnetic fixed layers, and the first and second ferromagnetic fixed layers on the substrate. a first nonmagnetic coupling layer formed between the ferromagnetic pinned layers; first and second nonmagnetic intermediate layers; and a ferromagnetic layer formed between the first and second nonmagnetic intermediate layers. a magnetic free layer, third and fourth ferromagnetic pinned layers, a second nonmagnetic coupling layer formed between the third and fourth ferromagnetic pinned layers, and a second antiferromagnetic layer and a protective layer are formed. By adopting the dual-type laminated antiferromagnetic structure in this manner, it is possible to increase the amount of change in electrical resistivity due to an external magnetic field.
 また、ここで、第2の強磁性固定層または第3の強磁性固定層は、CoまたはCo-Fe合金を含み、第2の非磁性結合層は、RuまたはIrを含む。このとき、第2の強磁性固定層の磁化方向と、第3の強磁性固定層の磁化方向とは、互いに反平行の関係にある。これにより、第1の強磁性固定層および第2の強磁性固定層のそれぞれから出る磁界をループさせることができ、当該磁界による外部環境への影響を抑えることが可能となる。 Also, here, the second ferromagnetic pinned layer or the third ferromagnetic pinned layer contains Co or a Co--Fe alloy, and the second non-magnetic coupling layer contains Ru or Ir. At this time, the magnetization direction of the second ferromagnetic pinned layer and the magnetization direction of the third ferromagnetic pinned layer are antiparallel to each other. Thereby, the magnetic field emitted from each of the first ferromagnetic pinned layer and the second ferromagnetic pinned layer can be looped, and the influence of the magnetic field on the external environment can be suppressed.
(vii)以上、本実施形態および実施例について具体的かつ詳細に説明したが、本開示の技術は上記実施形態および実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。 (vii) Although the present embodiments and examples have been described specifically and in detail above, the technology of the present disclosure is not limited to the above-described embodiments and examples, and various modifications can be made without departing from the scope of the present disclosure. is.
101、202、301、401  基板
102、302、402  下地層
103、303  反強磁性層
104  強磁性固定層
105、307  非磁性中間層
106、308、408  強磁性自由層
107、309、414  保護層
201  GMRセンサ
304、404  第1の強磁性固定層
305  非磁性結合層
306、406  第2の強磁性固定層
403  第1の反強磁性層
405  第1の非磁性結合層
407  第1の非磁性中間層
409  第2の非磁性中間層
410  第3の強磁性固定層
411  第2の非磁性結合層
412  第4の強磁性固定層
413  第2の反強磁性層
101, 202, 301, 401 substrates 102, 302, 402 underlayers 103, 303 antiferromagnetic layer 104 ferromagnetic fixed layers 105, 307 nonmagnetic intermediate layers 106, 308, 408 ferromagnetic free layers 107, 309, 414 protective layers 201 GMR sensor 304, 404 First ferromagnetic pinned layer 305 Non-magnetic coupling layer 306, 406 Second ferromagnetic pinned layer 403 First antiferromagnetic layer 405 First non-magnetic coupling layer 407 First non-magnetic Intermediate layer 409 Second nonmagnetic intermediate layer 410 Third ferromagnetic pinned layer 411 Second nonmagnetic coupling layer 412 Fourth ferromagnetic pinned layer 413 Second antiferromagnetic layer

Claims (15)

  1.  基板上に、反強磁性層と、強磁性固定層と、非磁性中間層と、強磁性自由層と、保護層とを有する磁気抵抗効果素子であって、
     前記磁気抵抗効果素子の横幅と長さのアスペクト比が1:5以上1:300以下で、前記横幅が190nm以上620nm以下の線状に構成されている、磁気抵抗効果素子。
    A magnetoresistive element having an antiferromagnetic layer, a ferromagnetic fixed layer, a nonmagnetic intermediate layer, a ferromagnetic free layer, and a protective layer on a substrate,
    A magnetoresistive element having an aspect ratio of width to length of 1:5 or more and 1:300 or less, and having a linear width of 190 nm or more and 620 nm or less.
  2.  請求項1において、
     前記アスペクト比が1:125のとき、前記横幅が440nm以下である、磁気抵抗効果素子。
    In claim 1,
    A magnetoresistive element, wherein the lateral width is 440 nm or less when the aspect ratio is 1:125.
  3.  請求項1において、
     前記アスペクト比が1:300のとき、前記横幅が190nm以下である、磁気抵抗効果素子。
    In claim 1,
    A magnetoresistive element, wherein the lateral width is 190 nm or less when the aspect ratio is 1:300.
  4.  請求項1において、
     前記アスペクト比が1:200のとき、前記横幅が300nm以下である、磁気抵抗効果素子。
    In claim 1,
    A magnetoresistive element, wherein the lateral width is 300 nm or less when the aspect ratio is 1:200.
  5.  請求項1において、
     前記アスペクト比が1:50のとき、前記横幅が550nm以下である、磁気抵抗効果素子。
    In claim 1,
    A magnetoresistive element, wherein the lateral width is 550 nm or less when the aspect ratio is 1:50.
  6.  請求項1において、
     前記非磁性中間層は、Cuを含み、
     前記強磁性固定層または前記強磁性自由層は、Fe、Ni、Coまたはこれらの合金を含む、磁気抵抗効果素子。
    In claim 1,
    The non-magnetic intermediate layer contains Cu,
    A magnetoresistance effect element, wherein the ferromagnetic fixed layer or the ferromagnetic free layer contains Fe, Ni, Co, or an alloy thereof.
  7.  請求項1において、
     前記強磁性固定層は、第1の強磁性固定層と、第2の強磁性固定層と、前記第1および第2の強磁性固定層の間に形成された非磁性結合層と、を含む、磁気抵抗効果素子。
    In claim 1,
    The ferromagnetic fixed layer includes a first ferromagnetic fixed layer, a second ferromagnetic fixed layer, and a nonmagnetic coupling layer formed between the first and second ferromagnetic fixed layers. , a magnetoresistive element.
  8.  請求項1において、
     前記基板上に、第1の反強磁性層と、第1および第2の強磁性固定層と、当該第1および第2の強磁性固定層の間に形成された第1の非磁性結合層と、第1および第2の非磁性中間層と、当該第1および第2の非磁性中間層の間に形成された前記強磁性自由層と、第3および第4の強磁性固定層と、当該第3および第4の強磁性固定層の間に形成された第2の非磁性結合層と、第2の反強磁性層と、前記保護層と、を有する、磁気抵抗効果素子。
    In claim 1,
    a first antiferromagnetic layer, first and second ferromagnetic pinned layers, and a first nonmagnetic coupling layer formed between the first and second ferromagnetic pinned layers on the substrate; and first and second nonmagnetic intermediate layers, the ferromagnetic free layer formed between the first and second nonmagnetic intermediate layers, and third and fourth ferromagnetic pinned layers; A magnetoresistive element comprising a second nonmagnetic coupling layer formed between the third and fourth ferromagnetic fixed layers, a second antiferromagnetic layer, and the protective layer.
  9.  請求項8において、
     前記第2の強磁性固定層または前記第3の強磁性固定層は、CoまたはCo-Fe合金を含み、
     前記第2の非磁性結合層は、RuまたはIrを含む、磁気抵抗効果素子。
    In claim 8,
    the second ferromagnetic pinned layer or the third ferromagnetic pinned layer comprises Co or a Co—Fe alloy;
    The magnetoresistive effect element, wherein the second non-magnetic coupling layer contains Ru or Ir.
  10.  請求項8において、
     前記第2の強磁性固定層の磁化方向と、前記第3の強磁性固定層の磁化方向とは、互いに反平行の関係にある、磁気抵抗効果素子。
    In claim 8,
    The magnetoresistive element, wherein the magnetization direction of the second ferromagnetic pinned layer and the magnetization direction of the third ferromagnetic pinned layer are antiparallel to each other.
  11.  請求項1において、
     前記反強磁性層は、Ni、Cr、Fe、Co若しくはMnを含む酸化物、または、Fe、Mn、Pt若しくはIrを含む金属で構成される、磁気抵抗効果素子。
    In claim 1,
    The antiferromagnetic layer is composed of an oxide containing Ni, Cr, Fe, Co or Mn, or a metal containing Fe, Mn, Pt or Ir.
  12.  請求項1において、さらに、
     前記反強磁性層の下に形成された下地層と、
     前記下地層の下に形成された基板と、を有し、
     前記下地層は、Ta、Ti、Ni、Cr、AlまたはFeを含む金属、または酸化物で構成される、磁気抵抗効果素子。
    In claim 1, further:
    an underlayer formed under the antiferromagnetic layer;
    a substrate formed under the underlying layer;
    The magnetoresistive effect element, wherein the underlayer is composed of a metal containing Ta, Ti, Ni, Cr, Al, or Fe, or an oxide.
  13.  請求項1において、
     前記強磁性自由層は、Fe、Ni、Bまたはこれらのアモルファス構造の合金で構成される、磁気抵抗効果素子。
    In claim 1,
    The ferromagnetic free layer is composed of Fe, Ni, B, or an amorphous structure alloy thereof, in the magnetoresistive effect element.
  14.  請求項1に記載の磁気抵抗効果素子を少なくとも1つ有する磁気抵抗効果センサ。 A magnetoresistive sensor having at least one magnetoresistive element according to claim 1.
  15.  請求項14において、
     複数の前記磁気抵抗効果素子を有し、
     前記複数の磁気抵抗効果素子が、直列、または並列に電気的に接続されて構成された磁気抵抗効果センサ。
    In claim 14,
    Having a plurality of the magnetoresistive effect elements,
    A magnetoresistive sensor comprising a plurality of magnetoresistive elements electrically connected in series or in parallel.
PCT/JP2022/038597 2021-11-01 2022-10-17 Magnetoresistance effect element and magnetoresistance effect sensor WO2023074440A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021178775A JP2023067488A (en) 2021-11-01 2021-11-01 Magnetoresistance effect element and magnetoresistance effect sensor
JP2021-178775 2021-11-01

Publications (1)

Publication Number Publication Date
WO2023074440A1 true WO2023074440A1 (en) 2023-05-04

Family

ID=86157753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038597 WO2023074440A1 (en) 2021-11-01 2022-10-17 Magnetoresistance effect element and magnetoresistance effect sensor

Country Status (2)

Country Link
JP (1) JP2023067488A (en)
WO (1) WO2023074440A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146614A (en) * 2002-10-24 2004-05-20 Sony Corp Magnetoresistance effect element and magnetic memory device
JP2005203774A (en) * 2001-04-24 2005-07-28 Matsushita Electric Ind Co Ltd Magnetoresistance effect element, magnetoresistance effect type magnetic head using the same, magnetic recording device, and magnetoresistance effect type memory device
JP2017133889A (en) * 2016-01-26 2017-08-03 株式会社東芝 Magnetic sensor and magnetic sensor device
WO2018155078A1 (en) * 2017-02-27 2018-08-30 Tdk株式会社 Spin current magnetization rotating element, magnetoresistive effect element and magnetic memory
JP2021027189A (en) * 2019-08-06 2021-02-22 株式会社日立ハイテク Magnetoresistive effect element and magnetoresistive effect device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203774A (en) * 2001-04-24 2005-07-28 Matsushita Electric Ind Co Ltd Magnetoresistance effect element, magnetoresistance effect type magnetic head using the same, magnetic recording device, and magnetoresistance effect type memory device
JP2004146614A (en) * 2002-10-24 2004-05-20 Sony Corp Magnetoresistance effect element and magnetic memory device
JP2017133889A (en) * 2016-01-26 2017-08-03 株式会社東芝 Magnetic sensor and magnetic sensor device
WO2018155078A1 (en) * 2017-02-27 2018-08-30 Tdk株式会社 Spin current magnetization rotating element, magnetoresistive effect element and magnetic memory
JP2021027189A (en) * 2019-08-06 2021-02-22 株式会社日立ハイテク Magnetoresistive effect element and magnetoresistive effect device

Also Published As

Publication number Publication date
JP2023067488A (en) 2023-05-16

Similar Documents

Publication Publication Date Title
US6295186B1 (en) Spin-valve magnetoresistive Sensor including a first antiferromagnetic layer for increasing a coercive force and a second antiferromagnetic layer for imposing a longitudinal bias
KR100288466B1 (en) Magnetoresistive element, magnetoresistive head, memory element and amplification element using the same
KR100192192B1 (en) Magnetoresistance effect film, a method of manufacturing the same, and magnetoresistance effect device
US7265948B2 (en) Magnetoresistive element with oxide magnetic layers and metal magnetic films deposited thereon
US7116532B2 (en) Stability-enhancing underlayer for exchange-coupled magnetic structures, magnetoresistive sensors, and magnetic disk drive systems
KR100266353B1 (en) Ferromagnetic tunnel-junction magnetic sensor
US20090161267A1 (en) Ferromagnetic tunnel junction device, magnetic head, and magnetic storage device
US6721144B2 (en) Spin valves with co-ferrite pinning layer
US5889640A (en) Magnetoresistive element and sensor having optimal cross point
JPH1041132A (en) Magnetic resistance effect film
US7367109B2 (en) Method of fabricating magnetic sensors with pinned layers with zero net magnetic moment
US7738218B2 (en) Magnetic detection head and method for manufacturing the same
US7535683B2 (en) Magnetoresistive head with improved in-stack longitudinal biasing layers
KR19980070402A (en) Magnetoresistive thin film and its manufacturing method
WO2021024870A1 (en) Magnetoresistive element and magnetoresistive device
JPH0935212A (en) Thin film magnetic head
WO2023074440A1 (en) Magnetoresistance effect element and magnetoresistance effect sensor
JP2000517484A (en) Magnetic field sensor
KR100363462B1 (en) Spin valve type magnetoresistive effect element and manufacturing method thereof
JP2011123944A (en) Method of manufacturing tmr read head, and tmr laminated body
JP2022011105A (en) Magnetoresistive effect device and method for manufacturing the same
JP2910409B2 (en) Magnetoresistance effect element
JP2001222804A (en) Magnetoresistive head and method for manufacturing the same
US20090147409A1 (en) Magnetoresistive element, magnetic sensor, and method of producing the magnetoresistive element
JPH09312005A (en) Magneto-resistive effect element and its production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886768

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)