WO2023074319A1 - ブレーキ装置健全性判断装置およびブレーキ装置健全性判断方法 - Google Patents

ブレーキ装置健全性判断装置およびブレーキ装置健全性判断方法 Download PDF

Info

Publication number
WO2023074319A1
WO2023074319A1 PCT/JP2022/037621 JP2022037621W WO2023074319A1 WO 2023074319 A1 WO2023074319 A1 WO 2023074319A1 JP 2022037621 W JP2022037621 W JP 2022037621W WO 2023074319 A1 WO2023074319 A1 WO 2023074319A1
Authority
WO
WIPO (PCT)
Prior art keywords
soundness
determination
train
brake pressure
air brake
Prior art date
Application number
PCT/JP2022/037621
Other languages
English (en)
French (fr)
Inventor
努 宮内
匠 工藤
瑳佳 北井
潤 小池
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2023074319A1 publication Critical patent/WO2023074319A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices

Definitions

  • the present invention relates to a brake device soundness determination device and a brake device soundness determination method, and more particularly to a brake device soundness determination device and brake device soundness determination method for determining the soundness of a brake device of a railway vehicle.
  • the soundness of the brake system is generally inspected at monthly inspections every three months and general inspections every four years.
  • the brake pressure is measured on the assumption that the car is empty in a garage or the like. This is used to check whether the brake pressure is sufficiently applied to the command.
  • Patent Literature 1 discloses a device that determines the validity of braking using running data.
  • Patent Document 1 requires a lot of data to make decisions based on AI (artificial intelligence) technology.
  • AI artificial intelligence
  • the braking force is dependent on the weight of the railcar and the operating command.
  • the brake operation command is varied, the braking force also varies, but there is a delay before the target braking force is reached. During this variation, the braking force does not remain constant, and the braking pressure becomes unstable for a predetermined period of time. Since the method of Patent Document 1 always makes a determination, such an unstable brake pressure state is also used, and there is a high possibility of erroneous detection.
  • the brake system of the railway system consists of both electric power regenerative brakes and air brakes.
  • braking force is exerted by both the power regeneration brake and the air brake.
  • the air braking force increases to compensate for the electric power regenerative braking force. In this case, it takes a predetermined time until the air braking force increases, and the state becomes unstable during that time.
  • Patent Document 1 does not assume these cases.
  • one of the typical braking device soundness determining devices of the present invention is a braking device soundness determining device for determining the soundness of the air brake pressure of a train.
  • a reference value calculation unit that calculates a signal, and a determination of the soundness of the air brake pressure of the train according to the content of the determination signal, the determination is made by comparing the air brake pressure reference value with the measured air brake pressure of the train.
  • a soundness determination unit that compares and determines the air brake pressure.
  • one of the brake system soundness determination methods of the present invention is a brake system soundness determination method for determining the soundness of the air brake pressure of a train, wherein the operation command of the train, the occupancy rate of the train, and the regeneration of the train a reference value calculating step of calculating an air brake pressure reference value of the train using the information of the brake force and calculating a decision propriety signal indicating whether the soundness of the air brake pressure of the train can be judged; , judging the soundness of the air brake pressure of the train according to the content of the judgment signal, and making the judgment by comparing the air brake pressure reference value and the measured air brake pressure of the train. and a soundness determination step.
  • FIG. 1 is a block diagram of a computer system for implementing aspects according to embodiments of the invention.
  • FIG. 2 is a block diagram showing an example of a brake system soundness determination device according to Embodiment 1 of the present invention.
  • FIG. 3 is a block diagram showing an example of a reference value calculator according to the first embodiment of the present invention;
  • FIG. 4 is a flow chart showing an example of processing of a determination determination unit according to the first embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating an example of processing of the soundness determination unit according to the first embodiment of the present invention;
  • FIG. 6 is a graph showing an example of air brake pressure abnormality degree display in the first embodiment of the present invention.
  • FIG. 1 is a block diagram of a computer system for implementing aspects according to embodiments of the invention.
  • FIG. 2 is a block diagram showing an example of a brake system soundness determination device according to Embodiment 1 of the present invention.
  • FIG. 3 is a block diagram showing an
  • FIG. 7 is a block diagram showing an example of a brake soundness determination device according to Embodiment 2 of the present invention.
  • FIG. 8 is a flow chart showing an example of processing of a determination yes/no signal calculation unit according to the second embodiment of the present invention.
  • FIG. 9 is a flow chart showing an example of processing of a soundness determination unit according to the second embodiment of the present invention.
  • FIG. 10 is a block diagram showing an example of a brake system soundness determination device according to Embodiment 3 of the present invention.
  • FIG. 11 is a block diagram showing an example of a reference value calculator in Example 3 of the present invention.
  • FIG. 12 is a flow chart showing an example of processing of a determination possibility determination unit according to the third embodiment of the present invention.
  • FIG. 13 is a flow chart showing an example of processing of the soundness determination unit according to the third embodiment of the present invention.
  • FIG. 14 is a block diagram showing an example of a brake system soundness determination device according to Embodiment 4 of the present invention.
  • FIG. 15 is a block diagram showing an example of a reference value calculator according to the fourth embodiment of the present invention;
  • FIG. 16 is a flow chart showing an example of processing of a determination possibility determination unit according to the fourth embodiment of the present invention.
  • FIG. 17 is a block diagram showing an example of a brake system soundness determination device according to Embodiment 5 of the present invention.
  • FIG. 18 shows an example of an air brake pressure determination threshold table according to Embodiment 5 of the present invention.
  • FIG. 19 is a flow chart showing an example of processing of a soundness determination unit according to the fifth embodiment of the present invention.
  • FIG. 20 is a block diagram showing an example of a railway system in Embodiment 6 of the present invention.
  • FIG. 21 is a block diagram showing an example of a brake system soundness determination device according to Embodiment 6 of the present invention.
  • FIG. 1 is a block diagram of a computer system 1 for implementing aspects according to embodiments of the invention.
  • the mechanisms and apparatus of various embodiments disclosed herein may be applied to any suitable computing system.
  • the main components of the computer system 1 include one or more processors 2, memory 4, terminal interface units 12, storage interface units 14, I/O (input/output) device interface units 16, and network interfaces 18. These components may be interconnected via memory bus 6 , I/O bus 8 , bus interface unit 9 and I/O bus interface unit 10 .
  • the computer system 1 may include one or more processing units 2A and 2B, collectively referred to as processors 2. Each processor 2 executes instructions stored in memory 4 and may include an on-board cache. In some embodiments, computer system 1 may include multiple processors, and in other embodiments, computer system 1 may be a single processing unit system. As the processing device, CPU (Central Processing Unit), FPGA (Field-Programmable Gate Array), GPU (Graphics Processing Unit), etc. can be applied.
  • CPU Central Processing Unit
  • FPGA Field-Programmable Gate Array
  • GPU Graphics Processing Unit
  • memory 4 may include random access semiconductor memory, storage devices, or storage media (either volatile or non-volatile) for storing data and programs.
  • memory 4 represents the entire virtual memory of computer system 1 and may include the virtual memory of other computer systems connected to computer system 1 via a network.
  • memory 4 may conceptually be considered a single entity, in other embodiments memory 4 may be a more complex arrangement, such as a hierarchy of caches and other memory devices.
  • memory may exist as multiple levels of caches, and these caches may be partitioned by function. As a result, one cache may hold instructions and another cache may hold non-instruction data used by the processor.
  • the memory may be distributed and associated with various different processing units, such as in the so-called NUMA (Non-Uniform Memory Access) computer architecture.
  • NUMA Non-Uniform Memory Access
  • Memory 4 may store all or part of the programs, modules, and data structures that implement the functions described herein.
  • memory 4 may store latent factor identification application 50 .
  • latent agent identification application 50 may include instructions or descriptions that perform the functions described below on processor 2, or may include instructions or descriptions that are interpreted by other instructions or descriptions.
  • latent factor identification application 50 may be implemented in semiconductor devices, chips, logic gates, circuits, circuit cards, and/or other physical hardware instead of or in addition to processor-based systems. It may be implemented in hardware via a device.
  • latent agent identification application 50 may include data other than instructions or descriptions.
  • a camera, sensor, or other data input device may be provided in direct communication with bus interface unit 9, processor 2, or other hardware of computer system 1. . Such a configuration may reduce the need for processor 2 to access memory 4 and the latent factor identification application.
  • the computer system 1 may include a bus interface unit 9 that provides communication between the processor 2 , memory 4 , display system 24 and I/O bus interface unit 10 .
  • I/O bus interface unit 10 may be coupled to I/O bus 8 for transferring data to and from various I/O units.
  • I/O bus interface unit 10 connects via I/O bus 8 to a plurality of I/O interface units 12, 14, 16, also known as I/O processors (IOPs) or I/O adapters (IOAs). and 18.
  • Display system 24 may include a display controller, a display memory, or both. The display controller can provide video, audio, or both data to display device 26 .
  • Computer system 1 may also include devices such as one or more sensors configured to collect data and provide such data to processor 2 .
  • computer system 1 may include environmental sensors that collect humidity data, temperature data, pressure data, etc., and motion sensors that collect acceleration data, motion data, etc., and the like. Other types of sensors can also be used.
  • the functions provided by bus interface unit 9 may be implemented by an integrated circuit including processor 2 .
  • the I/O interface unit has the function of communicating with various storage or I/O devices.
  • the terminal interface unit 12 may include user output devices such as video displays, speaker televisions, etc., and user input devices such as keyboards, mice, keypads, touch pads, trackballs, buttons, light pens, or other pointing devices.
  • user I/O devices 20 can be attached.
  • a user inputs input data and instructions to the user I/O device 20 and the computer system 1 by operating the user input device using the user interface, and receives output data from the computer system 1. good too.
  • the user interface may be displayed on a display device, played by a speaker, or printed via a printer, for example, via the user I/O device 20 .
  • the storage interface unit 14 may include one or more disk drives or direct access storage devices 22 (typically magnetic disk drive storage devices, but arrays of disk drives or other storage devices configured to appear as a single disk drive). device) can be attached.
  • storage device 22 may be implemented as any secondary storage device.
  • the contents of the memory 4 may be stored in the storage device 22 and read from the storage device 22 as needed.
  • I/O device interface unit 16 may provide an interface to other I/O devices such as printers, fax machines, and the like.
  • Network interface 18 may provide a communication path so that computer system 1 and other devices may communicate with each other. This communication path may be, for example, network 30 .
  • the computer system 1 shown in FIG. 1 includes a bus structure that provides a direct communication path between processor 2, memory 4, bus interface unit 9, display system 24, and I/O bus interface unit 10;
  • computer system 1 may include hierarchical, star, or web configurations of point-to-point links, multiple hierarchical buses, parallel or redundant communication paths.
  • I/O bus interface unit 10 and I/O bus 8 are shown as a single unit, in practice computer system 1 may include multiple I/O bus interface units 10 or multiple I/O buses.
  • a bus 8 may be provided.
  • multiple I/O interface units are shown for isolating the I/O bus 8 from the various communication paths leading to the various I/O devices, in other embodiments, one of the I/O devices Some or all may be directly connected to one system I/O bus.
  • computer system 1 is a device that receives requests from other computer systems (clients) that do not have a direct user interface, such as multi-user mainframe computer systems, single-user systems, or server computers. There may be. In other embodiments, computer system 1 may be a desktop computer, handheld computer, laptop, tablet computer, pocket computer, phone, smart phone, or any other suitable electronic device.
  • FIG. 2 is a block diagram showing an example of a brake system soundness determination device according to Embodiment 1 of the present invention.
  • the brake device soundness determination device 103 includes a reference value calculation section 101 and a soundness determination section 102 .
  • a railway vehicle braking system is installed in a train and uses regenerative braking and air braking.
  • a regenerative brake is an electric brake that performs braking with resistance generated by operating a motor as a generator.
  • an air brake is a brake that operates using compressed air as power, and has a structure such as a piston and a tank for this purpose.
  • the pressure required to operate the air brake is the air brake pressure.
  • Information on the operation command 151, the load factor 152, the regenerative braking force 153, and the air brake pressure 156 is input from the train to the braking device soundness determination device 103. These pieces of information are received every moment in real time at intervals of a predetermined time (for example, every 200 msec).
  • the brake device soundness determination device 103 performs the following processing using the information input for each cycle.
  • the operation command 151 is information that commands the moment-by-moment operation of the train, such as powering, coasting, and braking.
  • the braking is information related to braking, and is information in which the strength of the braking varies step by step for each notch. For example, the information may be divided into seven levels from B1 to B7, and the higher the numerical value, the stronger the braking.
  • the occupancy rate 152 is the occupancy rate of the train, and is a value that can be measured by using a sensor or the like on the train.
  • the regenerative braking force 153 is a regenerative braking force generated when the train is braked, and is a value that can be measured by using a sensor or the like on the train.
  • the air brake pressure 156 is the momentary air brake pressure of the train of the train, and this pressure is a value obtained by measuring the train using a sensor or the like.
  • the reference value calculation unit 101 acquires information on the driving command 151, the boarding ratio 152, and the regenerative braking force 153. Then, the reference value calculation unit 101 calculates and outputs an air brake pressure reference value 154, and also calculates and outputs a judgment signal 155 indicating whether it is permissible to judge the soundness of the air brake pressure.
  • the soundness determination unit 102 acquires information on the air brake pressure reference value 154, the determination acceptance/rejection signal 155, and the air brake pressure 156. Then, it judges the soundness of the brake pressure and outputs soundness judgment 157 .
  • the brake device soundness determination device 103 can be installed on the train. Moreover, you may install on the ground side other than a train. In this case, the information of run command 151, load factor 152, regenerative braking force 153, and air brake pressure 156 are transmitted remotely from the train in question.
  • FIG. 3 is a block diagram showing an example of the reference value calculation unit in Example 1 of the present invention. Details of the reference value calculation unit 101 will be described with reference to FIG.
  • the reference value calculation unit 101 includes a train characteristic table 201, a planned deceleration calculation unit 202, a brake force calculation unit 203, an air brake force calculation unit 204, an air brake pressure reference value calculation unit 205, and a judgment determination unit 206. .
  • the train characteristic table 201 has at least information on the deceleration characteristic 251 of the train, the weight characteristic 252 of the train, and the air brake pressure characteristic 253 of the train.
  • the train characteristic table 201 can be recorded in the storage unit.
  • the deceleration characteristic 251 is a characteristic set so that the deceleration is uniquely determined from the operation command 151.
  • the operation command 151 is a brake command (braking command) B1
  • it may be set in the form of 0.5 [km/h/s]. That is, if the deceleration for each operation command is determined in advance, it can be determined uniquely.
  • this deceleration is the deceleration in the case of a flat and straight line.
  • the weight characteristic 252 is a characteristic in which at least the empty weight of the train, the capacity of the train, and the weight corresponding to the inertial weight of the train are recorded. It can be registered in advance as a design value.
  • the air brake pressure characteristic 253 is a characteristic set so that the air brake force and the air brake pressure are uniquely determined. For example, when the air brake force is 300 [kN], the air brake pressure should be 345 [KPa]. In this case, these relationships may be recorded using specific numerical values, or the ratio between the air brake force and the air brake pressure may be recorded. For example, when the braking force is 300 [kN], a table format may be used in which a ratio of 1.15 is recorded.
  • the planned deceleration calculation unit 202 inputs the train deceleration characteristics 251 from the train characteristics table 201 and the operation command 151, and calculates and outputs the planned deceleration 254 of the train based on these.
  • the deceleration characteristic 251 is a characteristic set so that the deceleration is uniquely determined from the operation command 151, as described above. Therefore, the planned deceleration 254 is uniquely obtained based on the input operation command 151 .
  • the braking force calculation unit 203 inputs the boarding ratio 152, the weight characteristic 252 from the train characteristics table 201, and the planned deceleration 254 from the planned deceleration calculation unit 202, and calculates the braking force 255 based on these. Output.
  • the planned deceleration 254 is ⁇ [km/h/s]
  • the occupancy rate 152 is P [%]
  • the empty weight of the train included in the weight characteristics 252 is W [ton]
  • the capacity is N
  • the number of passengers is N.
  • the air brake pressure reference value calculator 205 inputs the air brake force 256 from the air brake force calculator 204 and the air brake pressure characteristic 253 from the train characteristic table 201, and calculates the air brake pressure of the train based on these.
  • a reference value 154 is calculated.
  • the air brake pressure characteristic 253 is a characteristic set so that the air brake force and the air brake pressure are uniquely determined, as described above. Therefore, the air brake pressure reference value 154 is uniquely obtained based on the input air brake force 256 .
  • the judgment propriety determination unit 206 determines and outputs a judgment propriety signal 155 indicating whether it is permissible to judge the soundness of the air brake pressure. Details of the processing will be described with reference to FIG.
  • FIG. 4 is a flow chart showing an example of the processing of the determination determination unit according to the first embodiment of the present invention. This processing is performed each time the information of the operation command 151 is input in the determination possibility determination unit 206 .
  • step 301 checks whether this process has been performed so far on the current day. If not (YES), go to step 302 . If implemented (No), go to step 303 .
  • the relevant day here can be the day, the time range from the first train to the last train, or the like. Moreover, it is good also as the period during which the power is turned on instead of the said day.
  • step 302 the same notch determination count is reset to 0, and the process proceeds to step 303. This process is to prevent erroneous detection that the previous data still remains when the power is turned on.
  • step 303 it is determined whether or not the operation command 151 input this time is the same as the operation command 151 input last time and is a brake command. If this condition is met (Yes), go to step 304 . If this condition is not met (No), go to step 305 . For example, when the input is performed at intervals of 200 msec, the previous run command 151 is compared with the previous run command 200 msec ago. If these drive commands 151 are, for example, the same brake command B1, they are determined to be the same brake command.
  • step 304 the same notch determination count is incremented by 1, and the process proceeds to step 306.
  • the same notch determination count is a value that indicates how many times the same notch continues. Since the notch here corresponds to a drive command (brake command), it indicates how long the same drive command (brake command) has continued. Also, since the operation command is input at every predetermined cycle, it corresponds to how long the same notch is maintained. For example, if the same notch determination count is "3" when input is performed at intervals of 200 msec, the same operation command (brake command) is maintained for 600 msec.
  • step 305 the same notch determination count is reset to 0, and the process proceeds to step 306.
  • the same notch determination count is reset to 0 because the same brake command is not maintained.
  • a step 306 determines whether or not the same notch determination count is equal to or greater than a predetermined value. If it is equal to or greater than the predetermined value (if Yes), the process proceeds to step 307 . If it is not equal to or greater than the predetermined value (if No), the process proceeds to step 308 .
  • An appropriate value is arbitrarily determined as the predetermined value. For example, it may be determined based on the time it takes for the output to stabilize after the brake command is issued. Examples of this time are 2 seconds or longer, 3 seconds or longer, 5 seconds or longer, and the like.
  • step 307 the judgment yes/no signal 155 is judged yes, and the process ends.
  • step 308 the decision yes/no signal 155 is set as no decision, and the process ends.
  • the determination determination unit 206 is processed so that the determination determination signal 155 can be determined when the brake command is the same for a predetermined time or longer. Then, the decision yes/no signal 155 is output together with the information about the decision yes/no.
  • FIG. 5 is a flow chart showing an example of processing of the soundness determination unit according to the first embodiment of the present invention. Processing of the soundness determination unit 102 shown in FIG. 2 will be described using FIG.
  • step 401 it is checked whether the judgment possible/impossible signal 155 is judgment possible. If the determination is possible (if Yes), the process proceeds to step 402 . If the determination is negative (if No), the process ends. That is, if the determination is negative, the soundness of the air brake pressure is not determined.
  • step 402 it is determined whether or not the absolute value of the difference between the air brake pressure reference value 154 calculated by the air brake pressure reference value calculation section 205 of the soundness determination section 102 and the air brake pressure 156 is equal to or less than the reference determination value. . If it is equal to or less than the reference judgment value (if Yes), the process proceeds to step 403 . If it is not equal to or less than the reference judgment value (if No), the process proceeds to step 404 .
  • the reference determination value is a predetermined constant that serves as a determination threshold, and may be set to 10 or 20, for example. Further, since it is considered that the air brake pressure also has a design tolerance, it may be determined using the design tolerance. Furthermore, if a railroad company or the like has thresholds for determination, they may be used.
  • the air brake pressure reference value 154 is the air brake pressure estimated from the expected deceleration 254 based on the operation command 151 as described above. Therefore, if the operation command 151 does not change, the air brake pressure reference value 154 basically does not change.
  • the air brake pressure 156 is the air brake pressure measured on the train. Since the air brake pressure 156 is a measured value, it changes moment by moment whenever data is acquired. If the air brake operates normally in response to the operation command 151, the absolute value of the difference between the air brake pressure reference value 154 and the air brake pressure 156 is assumed to be equal to or less than the reference judgment value.
  • Step 403 concludes with the determination result being normal. Therefore, if the difference between the measured air brake pressure 156 and the air brake pressure reference value 154 is within a predetermined range, it is determined that there is no abnormality.
  • Step 404 concludes with the determination result being abnormal.
  • the determination result in step 404 may be set as an anomaly sign rather than an anomaly immediately, and may be an anomaly when the anomaly sign is repeated several times. For example, two or more times, or three or more times.
  • the probability of being able to prevent erroneous detection increases if multiple times are set as a condition.
  • step 402 if the difference from the reference judgment value becomes greater than a certain value, it may be determined that there is a high possibility of an abnormality, and that an abnormality is judged. That is, when the difference between the air brake pressure reference value 154 and the air brake pressure 156 is greater than the reference judgment value by a certain amount or more, the abnormality is judged once.
  • the train characteristics table 201 is provided, and the deceleration characteristics 251, the weight characteristics 252, and the air brake pressure characteristics 253 are included therein.
  • the deceleration characteristics 251, the weight characteristics 252, and the air brake pressure characteristics 253 are included therein.
  • a method using those numerical values may be used.
  • the weight characteristics 252 may store the empty vehicle weight, the number of passengers, and the inertia weight in the braking force calculation unit 203 .
  • ⁇ , ⁇ , and ⁇ are not limited to constants, and may be in the form of functions. Further, some of the characteristics described above may be in the form of tables and the rest in the form of formulas.
  • FIG. 6 is a graph showing an example of an air brake pressure abnormality degree display in Embodiment 1 of the present invention. As shown in FIG. 6, by plotting the date and time on the abscissa and the degree of anomaly in the air brake pressure on the ordinate, it is possible to catch signs of anomaly. That is, if the degree of anomaly is higher than other periods, it can be known that some kind of anomaly has clearly occurred. Further, a threshold value for determining true abnormality may be provided, and when the ratio of the degree of abnormality exceeds the threshold value for determining true abnormality, it may be determined to be abnormal.
  • the first embodiment when the same brake command continues for a predetermined period of time, it is possible to prevent the determination in an unstable state by determining the soundness of the brake pressure. Furthermore, by comparing the difference between the air brake pressure reference value 154 assumed from the brake command and the actually measured air brake pressure 156, it is possible to determine the soundness of the air brake pressure while the train is running.
  • FIG. 7 is a block diagram showing an example of a brake soundness determination device according to Embodiment 2 of the present invention.
  • points different from the first embodiment will be mainly described, and the same reference numerals will be given to the same portions, and the same descriptions will be omitted for portions that have no particular description.
  • the brake device soundness determination device 603 includes a reference value calculation unit 101 , a determination availability signal calculation unit 601 , and a soundness determination unit 602 . As in the first embodiment, the brake device soundness determination device 603 receives information on the operation command 151, the passenger load ratio 152, the regenerative braking force 153, and the air brake pressure 156. FIG.
  • the reference value calculation unit 101 is similar to that of the first embodiment, but in this embodiment, the judgment yes/no signal 155 of the first embodiment is referred to as the first judgment yes/no signal 155 for convenience, but has the same content.
  • the determination signal calculation unit 601 acquires information on the air brake pressure 156 and outputs a second determination signal 651 based on this information.
  • the soundness determination unit 602 acquires information on the air brake pressure reference value 154, the first determination signal 155, the air brake pressure 156, and the second determination signal 651. Based on these, the soundness of the brake pressure is determined and a soundness determination 157 is output. Here, it is different from the soundness determination unit 102 of the first embodiment in that the second determination propriety signal 651 is taken into account.
  • the brake device soundness determination device 603 can be installed on the train in the same way as the brake device soundness determination device 103 of the first embodiment, or it may be installed on the ground side.
  • FIG. 8 is a flow chart showing an example of processing of the judgment yes/no signal calculation unit in the second embodiment of the present invention. This processing is performed each time the information on the air brake pressure 156 is input to the judgment propriety signal calculator 601 .
  • step 701 checks whether this process has been performed on the current day. If not (YES), go to step 702 . If implemented (No), go to step 703 .
  • the relevant day here can be the day, the time range from the first train to the last train, or the like. Moreover, it is good also as the period during which the power is turned on instead of the said day.
  • step 702 the brake pressure stagnation count is reset to 0, and the process proceeds to step 703. This process is for preventing erroneous determination that the previous data still remains when the power is turned on.
  • a step 703 determines whether the air brake pressure 156 input this time is the same as the previous air brake pressure and is greater than zero. If the condition is met (Yes), go to step 704 . If the conditions are not met (No), the process proceeds to step 705 .
  • the fact that the current air brake pressure 156 is the same as the previous air brake pressure 156 means that the air brake pressure is constant for a predetermined time. Also, if the air brake pressure 156 is greater than 0, it is determined that the air brake pressure has a value.
  • the second decision yes/no signal 651 is set to yes and the process ends.
  • the second decision yes/no signal 651 is set to no decision, and the process ends.
  • the accuracy of the obtained data is taken into consideration, for example, a determination threshold value ⁇ is set,
  • ⁇ ... (Formula 5) is established.
  • the condition is that the current air brake pressure 156 is the same as the previous air brake pressure.
  • the condition may be the case where the same notches are repeated a plurality of times in succession. That is, it is determined whether or not the air brake pressure 156 remains the same for a predetermined number of times or more and has a value greater than zero. If they match, in step 704, the second decision yes/no signal 651 is judged yes.
  • “same for a predetermined number of times or longer” corresponds to "same for a predetermined time or longer.”
  • the sameness in this case may be a predetermined range considered to be the same as in (Equation 5).
  • FIG. 9 is a flow chart showing an example of processing of the soundness determination unit according to the second embodiment of the present invention. 9 is the same except that step 401 in FIG. 5 of the first embodiment is replaced with step 801. FIG.
  • step 801 it is checked whether the first judgment yes/no signal 155 and the second judgment yes/no signal 651 are judged yes. If the condition is met (Yes), go to step 402 . If the conditions are not met (if No), the process ends.
  • a step 402 determines whether the absolute value of the difference between the air brake pressure reference value 154 and the air brake pressure 156 is equal to or less than the reference judgment value. If it is equal to or less than the reference judgment value (if Yes), the process proceeds to step 403 . If it is not equal to or less than the reference judgment value (if No), the process proceeds to step 404 .
  • Step 403 concludes with the determination result being normal.
  • Step 404 concludes with the determination result being abnormal.
  • step 801 the judgment of proceeding to step 402 when the first judgment yes/no signal 155 and the second judgment yes/no signal 651 indicate judgment has been explained.
  • the configuration is the same as the contents shown in the first embodiment.
  • the first determination signal 155 and the second determination signal 651 are calculated by the reference value calculation unit 101 and the determination signal calculation unit 601, respectively.
  • the calculation of the first judgment signal 155 and the second judgment signal 651 may be performed collectively by either the reference value calculation unit 101 or the judgment signal calculation unit 601 .
  • the brake pressure soundness determination is performed, thereby preventing the determination in an unstable state. Furthermore, by combining the conditions for the case where the same brake command shown in the first embodiment continues for a predetermined period of time, it is possible to make a more accurate determination. As in the first embodiment, it is possible to determine the soundness of the brake pressure while the train is running.
  • FIG. 10 is a block diagram showing an example of a brake system soundness determination device according to Embodiment 3 of the present invention.
  • Example 3 points different from Examples 1 and 2 will be mainly described, and the same reference numerals will be given to the same portions, and the same description will be omitted for portions that have no particular description.
  • the brake device soundness determination device 903 includes a reference value calculation unit 901 , a determination availability signal calculation unit 601 , and a soundness determination unit 902 .
  • the braking device soundness judging device 903 is similar to the braking device soundness judging device 103 of the first embodiment in that the information of the operation command 151, the riding ratio 152, the regenerative braking force 153, and the air brake pressure 156 are inputted. be.
  • the reference value calculation unit 901 acquires information on the driving command 151, the boarding ratio 152, and the regenerative braking force 153. Then, the reference value calculation unit 901 calculates and outputs the air brake pressure reference value 154, and also calculates a first determination signal 951 indicating whether the soundness of the air brake pressure can be determined. Output.
  • the judgment yes/no signal calculation unit 601 is the same as the judgment yes/no signal calculation unit 601 of the second embodiment.
  • the soundness determination unit 902 acquires information on the air brake pressure reference value 154, the first determination signal 951, the second determination signal 651, and the air brake pressure 156. Then, it judges the soundness of the brake pressure and outputs soundness judgment 157 .
  • the brake device soundness determination device 903 can be installed on the train in the same way as the brake device soundness determination device 103 of the first embodiment, or it may be installed on the ground side.
  • FIG. 11 is a block diagram showing an example of a reference value calculation unit in Example 3 of the present invention. Details of the reference value calculation unit 901 will be described with reference to FIG. 11 .
  • the reference value calculation unit 901 includes a train characteristic table 201, a planned deceleration calculation unit 202, a brake force calculation unit 203, an air brake force calculation unit 204, an air brake pressure reference value calculation unit 205, and a determination possibility determination unit 1001. .
  • a difference from the reference value calculation unit 101 described in the first embodiment is that the determination possibility determination unit 206 is replaced with a determination determination unit 1001 .
  • the judgment propriety judgment unit 1001 will be explained, and the explanation of other configurations will be omitted.
  • the determination determination unit 1001 inputs the information of the operation command 151 and the regenerative braking force 153, and based on these, determines and outputs the first determination determination signal 951. Details of the processing will be described with reference to FIG.
  • FIG. 12 is a flow chart showing an example of the processing of the determination determination unit according to the third embodiment of the present invention. This processing is performed each time the data of the operation command 151 and the regenerative braking force 153 are input to the judgment propriety judging section 1001 .
  • step 1101 it is checked whether this process has been performed on the current day. If not (YES), go to step 1102 . If it is executed (No), the process proceeds to step 1103 . This process is the same as step 301 in the first embodiment (FIG. 4).
  • step 1102 the same notch determination count is reset to 0, and the process proceeds to step 1103. This process is the same as step 302 in the first embodiment (FIG. 4).
  • step 1103 it is determined whether or not the operation command 151 input this time is the same as the previous operation command 151 and is a braking command. If this condition is met (Yes), go to step 1104 . If this condition is not met (No), go to step 1105 . This process is the same as step 303 in the first embodiment (FIG. 4).
  • step 1104 the same notch determination count is incremented by 1, and the process proceeds to step 1106.
  • This process is similar to step 304 in the first embodiment (FIG. 4).
  • step 1105 the same notch determination count is reset to 0, and the process proceeds to step 1106. This process is the same as step 305 in the first embodiment (FIG. 4).
  • step 1106 it is determined whether or not the same notch determination count is equal to or greater than a predetermined value. If it is equal to or greater than the predetermined value (if Yes), the process proceeds to step 1107 . If it is not equal to or greater than the predetermined value (if No), the process proceeds to step 1109 . This process is similar to step 306 in the first embodiment (FIG. 4).
  • step 1107 it is determined whether or not the regenerative braking force 153 input this time is the same as the previous regenerative braking force. If they are the same (Yes), go to step 1108 . If not the same (No), go to step 1109 .
  • the current regenerative braking force 153 being the same as the previous regenerative braking force 153 means that the regenerative braking force 153 is constant for a predetermined time.
  • the first decision yes/no signal 951 is set to yes, and the process ends.
  • the first decision yes/no signal 951 is set to no decision, and the process ends.
  • a determination threshold value ⁇ is provided in consideration of the accuracy of the obtained data.
  • ⁇ ... (Formula 6) is established.
  • the difference between the current regenerative braking force 153 and the previous regenerative braking force is within a predetermined range that is considered to be the same, the first judgment yes/no signal 951 is judged yes.
  • step 1107 is conditioned that the current regenerative braking force 153 is the same as the previous regenerative braking force 153 .
  • "same for a predetermined number of times or more” corresponds to a case of being the same for a predetermined time or longer. Also, the sameness in this case may be a predetermined range considered to be the same like (Equation 6).
  • FIG. 13 is a flow chart showing an example of processing of the soundness determination unit according to the third embodiment of the present invention.
  • FIG. 13 is the same except that step 401 in FIG.
  • step 1201 it is checked whether the first decision yes/no signal 951 and the second decision yes/no signal 651 are judgment yes. If the condition is met (Yes), go to step 402 . If the conditions are not met (if No), the process ends.
  • a step 402 determines whether the absolute value of the difference between the air brake pressure reference value 154 and the air brake pressure 156 is equal to or less than the reference judgment value. If it is equal to or less than the reference judgment value (if Yes), the process proceeds to step 403 . If it is not equal to or less than the reference judgment value (if No), the process proceeds to step 404 .
  • Step 403 concludes with the determination result being normal.
  • Step 404 concludes with the determination result being abnormal.
  • step 1201 the determination that the determination result is normal when the first determination yes/no signal 951 and the second determination yes/no signal 651 indicate yes has been described. However, other than this, it is also possible to proceed to step 402 when either the first judgment yes/no signal 951 or the second judgment yes/no signal 651 indicates yes.
  • the first determination signal 951 and the second determination signal 651 are calculated by the reference value calculation unit 901 and the determination signal calculation unit 601, respectively.
  • the first determination signal 951 and the second determination signal 651 may be calculated in either the reference value calculation section 901 or the determination signal calculation section 601 collectively.
  • the third embodiment in addition to determining the notch same determination count, it is possible to determine the stable state more accurately by making it a condition that the regenerative braking force is constant for a predetermined period of time. This is because if the regenerative braking force changes, the air braking force will also change, and the air braking pressure will not be stable.
  • Other effects are similar to those of the first and second embodiments.
  • FIG. 14 is a block diagram showing an example of a brake system soundness determination device according to Embodiment 4 of the present invention.
  • Example 4 points different from Examples 1 to 3 will be mainly described, and the same reference numerals will be given to the same portions, and the same description will be omitted for portions that do not have any particular description.
  • the brake device soundness determination device 1302 includes a reference value calculation section 1301 , a determination availability signal calculation section 601 and a soundness determination section 902 .
  • the brake device soundness determination device 1302 receives the slip/skid information 1351. is entered.
  • the reference value calculation unit 1301 inputs the driving command 151, the boarding ratio 152, the regenerative braking force 153, and the slip/skid information 1351. Then, the reference value calculation unit 1301 calculates and outputs the air brake pressure reference value 154, and also calculates a first determination signal 1352 indicating whether the soundness of the air brake pressure can be determined. Output.
  • the decision yes/no signal calculator 601 is the same as the decision yes/no signal calculator 601 of the second and third embodiments.
  • the soundness determination unit 902 is the same as the soundness determination unit 902 of the third embodiment, but differs in that a first determination signal 1352 is input instead of the first determination signal 951 of the third embodiment. That is, the soundness determination unit 902 acquires information on the air brake pressure reference value 154 , the first determination yes/no signal 1352 , the second determination yes/no signal 651 , and the air brake pressure 156 . Then, it judges the soundness of the brake pressure and outputs soundness judgment 157 . The contents of the processing are the same as those in FIG.
  • the brake device soundness determination device 1302 can be installed on the train. Moreover, you may install on the ground side other than a train. In this case, the information of the operation command 151, the load factor 152, the regenerative brake force 153, the air brake pressure 156, and the slip/skid information 1351 is transmitted remotely from the relevant train.
  • FIG. 15 is a block diagram showing an example of a reference value calculation unit in Example 4 of the present invention. Details of the reference value calculation unit 1301 will be described with reference to FIG. 15 .
  • the reference value calculation unit 1301 includes a train characteristic table 201, a planned deceleration calculation unit 202, a brake force calculation unit 203, an air brake force calculation unit 204, an air brake pressure reference value calculation unit 205, and a determination possibility determination unit 1401. .
  • a difference from the reference value calculation unit 101 described in the first embodiment is that the determination possibility determination unit 206 is replaced with a determination determination unit 1401 .
  • the judgment propriety judgment unit 1401 will be explained, and the explanation of other configurations will be omitted.
  • the judgment propriety determining unit 1401 determines and outputs the first judgment propriety signal 1352. Details of the processing will be described with reference to FIG.
  • FIG. 16 is a flow chart showing an example of the processing of the determination determination unit according to the fourth embodiment of the present invention. This processing is performed each time the information on the operation command 151 and the regenerative braking force 153 is input to the determination possibility/impossibility determination unit 1401 . As for the slip/skid information 1351, the information is input when slipping or skidding occurs.
  • step 1501 it is checked whether this process has been performed so far on that day. If not implemented (YES), go to step 1502 . If it is executed (No), the process proceeds to step 1503 . This process is the same as step 301 in the first embodiment (FIG. 4).
  • step 1502 the judgment count is reset to 0, and the process proceeds to step 1503. This process is the same as step 302 in the first embodiment (FIG. 4).
  • step 1503 it is determined whether or not there is slip/sliding information 1351. If there is no slip/skid information 1351 (Yes), it is assumed that the vehicle is not slipping/skidding, and the process proceeds to step 1504 . If there is slipping/slipping information 1351 (No), it is assumed that the vehicle is slipping/slipping.
  • the slip/skid information 1351 can be obtained from data measured in the train.
  • the slip/skid information 1351 is information when slipping or skidding occurs, and when there is no slip/skid information 1351, it is assumed that there is no slipping or skidding.
  • a step 1504 determines whether the operation command 151 input this time is the same as the previous operation command 151 and is a brake command. If this condition is satisfied (Yes), the process proceeds to step 1505 . If this condition is not met (No), go to step 1506 . This process is the same as step 303 in the first embodiment (FIG. 4).
  • step 1505 the same notch determination count is incremented by 1, and the process proceeds to step 1507. This process is similar to step 304 in the first embodiment (FIG. 4).
  • step 1506 the same notch determination count is reset to 0, and the process proceeds to step 1507. This process is the same as step 305 in the first embodiment (FIG. 4).
  • a step 1507 determines whether the same notch determination count is equal to or greater than a predetermined value. If it is equal to or greater than the predetermined value (Yes), the process proceeds to step 1508 . If it is not equal to or greater than the predetermined value (if No), the process proceeds to step 1511 . This process is similar to step 306 in the first embodiment (FIG. 4).
  • a step 1508 determines whether the regenerative braking force 153 input this time is the same as the previous regenerative braking force. If they are the same (Yes), go to step 1509 . If not the same (No), go to step 1511 . This process is the same as step 1107 in the third embodiment (FIG. 12).
  • Step 1509 is terminated after the first judgment yes/no signal 1352 is judged yes. This process is the same as step 307 in the first embodiment (FIG. 4).
  • step 1510 the determination count is reset to 0, and the process proceeds to step 1511.
  • step 1511 is terminated after the first decision yes/no signal 1352 is set to "no". This process is similar to step 308 in the first embodiment (FIG. 4).
  • the above-described processing of the judgment propriety determination unit 1401 of the present embodiment is processing that considers the slip/sliding information 1351 in contrast to the third embodiment.
  • a configuration in which the slip/skid information 1351 is taken into account in the first and second embodiments may be used.
  • the determination possibility determination unit 206 of the first and second embodiments is replaced with the determination determination unit 1401, and the like.
  • step of considering the regenerative braking force 153 in step 1508 may apply the modification described in step 1107 of FIG. 12 of the third embodiment.
  • FIG. 17 is a block diagram showing an example of a brake system soundness determination device according to Embodiment 5 of the present invention.
  • the points different from the first embodiment will be mainly described, and the same reference numerals will be given to the same portions, and the same descriptions will be omitted for portions that do not have any particular description.
  • FIG. 17 of the present embodiment is obtained by adding a determination threshold calculation unit 1601 to the configuration of FIG. 1 of the first embodiment.
  • the brake device soundness determination device 1603 includes a reference value calculation unit 101, a determination threshold value calculation unit 1601, and a soundness determination unit 1602. As in the first embodiment, the brake system soundness determination device 1603 is supplied with information on the operation command 151, the passenger load ratio 152, the regenerative braking force 153, and the air brake pressure 156. FIG.
  • the reference value calculation unit 101 is the same as in the first embodiment.
  • the determination threshold calculation unit 1601 acquires information on the driving command 151 and the passenger load ratio 152, calculates and outputs an air brake pressure determination threshold 1651 based on these.
  • the soundness determination unit 1602 determines and outputs a soundness determination 157 of the air brake pressure from the air brake pressure reference value 154, the determination propriety signal 155, the air brake pressure 156, and the air brake pressure determination threshold value 1651.
  • FIG. 18 shows an example of a brake pressure determination threshold table in Example 5 of the present invention.
  • the determination threshold calculation unit 1601 will be described using the table in FIG. 18 as an example.
  • the horizontal direction is the type of operation command.
  • "B” indicates that it is a brake command, and the number after it indicates strength. That is, the brakes are set to be stronger brakes (higher deceleration) in the order of B1, B2, B3, . . . , B7.
  • the vertical axis represents the occupancy rate (%). The higher the boarding rate, the larger the determination threshold is set.
  • the determination threshold calculation unit 1601 calculates an air brake pressure determination threshold 1651 using a table in which the driving command and the boarding ratio are set as axes, respectively, as shown in FIG. In the example of FIG. 18, when the driving command is "B3" and the passenger ratio is "10%", the numerical value is "20", so the air brake pressure determination threshold value 1651 is "20". If there is no applicable data, the data may be calculated by linear interpolation or the like, or the value of the data closest to the applicable data may be used.
  • FIG. 19 is a flow chart showing an example of processing of the soundness determination unit according to the fifth embodiment of the present invention. Processing of the soundness determination unit 1602 will be described with reference to FIG. 19 .
  • FIG. 19 is the same except that step 402 in FIG.
  • step 401 it is checked whether the judgment possible/impossible signal 155 is judgment possible. If the determination is possible (if Yes), the process proceeds to step 1801 . If the judgment is not possible (if No), the process ends.
  • step 1801 it is determined whether the absolute value of the difference between the air brake pressure reference value 154 and the air brake pressure 156 is equal to or less than the air brake pressure determination threshold value 1651. If it is equal to or less than the air brake pressure determination threshold value 1651 (if Yes), the process proceeds to step 403 . If it is not equal to or less than the air brake pressure determination threshold value 1651 (if No), the process proceeds to step 404 .
  • Step 403 concludes with the determination result being normal.
  • Step 404 concludes with the determination result being abnormal.
  • the determination method of the modified example of step 404 described in the first embodiment can be similarly applied to the present embodiment if the reference determination value is changed to the air brake pressure determination threshold value 1651.
  • the configuration using the air brake pressure determination threshold value 1651 is shown for the first embodiment, but the air brake pressure determination threshold value 1651 can also be used for the second to fourth embodiments.
  • a determination threshold value calculation unit 1601 is additionally provided in the brake system soundness determination devices 603, 903, 1302, and the reference determination value in the processing of the soundness determination units 602, 902 is changed to the air brake pressure determination threshold value 1651. good.
  • the air brake pressure determination threshold value 1651 as the reference determination value, it is possible to determine the soundness of the air brake pressure using a more appropriate threshold value that takes into consideration the content of the drive command and the passenger load factor. Become.
  • FIG. 20 is an example block diagram of the railway equipment in Embodiment 6 of the present invention.
  • Example 6 points different from Examples 1 to 5 will be mainly described, and the same reference numerals will be given to the same portions, and the same description will be omitted for portions that have no particular description.
  • the railway equipment of Example 6 includes a brake equipment soundness determination device 1901 and an automatic driving system 1902.
  • a brake system soundness determination device 1901 receives information on a drive command 151, a passenger load ratio 152, a regenerative braking force 153, and an air brake pressure 156, and outputs a brake pressure soundness determination 157 and a brake notch 1951.
  • the brake notch 1951 is information on the brake notch whose soundness is to be determined in the brake device of the train.
  • the automatic driving system 1902 is an automatic driving device that preferentially uses the brake notch 1951 to generate driving patterns.
  • An automatic operation device is a device that can operate a train automatically without a driver.
  • FIG. 21 is a block diagram showing an example of a braking device soundness determination device according to Embodiment 6 of the present invention. Details of the braking device soundness determination device 1901 will be described with reference to FIG. 20 .
  • the reference value calculation unit 101 is the same as in the first embodiment.
  • the soundness determination unit 102 is the same as in the first embodiment.
  • the planned pattern notch selection unit 2001 inputs the operation command 151 and the determination enable/disable signal 155 output by the reference value calculation unit 101 . Then, the planned pattern notch selection unit 2001 collects the data of the operation command 151 when the decision yes/no signal 155 indicates yes. Among the collected brake commands of the train operation command, the data of the brake notch corresponding to the brake command that is rarely executed or the brake command that is least judged is extracted. This extracted brake notch is output as the brake notch 1951 . In addition, when there are a plurality of brake notches that are rarely implemented, a plurality of brake notches may be output.
  • the automatic driving system 1902 inputs the brake notch 1951 output by the brake device soundness determination device 1901 . Then, a running pattern is created that preferentially uses the inputted brake notch 1951 . A known method may be used to create the running pattern.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
  • it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • AI artificial intelligence
  • FIG. 1 AI may be used to tune data collected for the value of air brake pressure reference 154 .
  • the soundness judgment 157 the difference between the air brake pressure 156 and the air brake pressure reference value 154 is taken for judgment, but it is also possible to tune using AI based on the data collected for the threshold used for the difference judgment. It is possible.
  • Reference Value calculation unit 102 Soundness determination unit 103 Brake device soundness determination device 151 Operation command 152 Boarding rate 153 Regenerative braking force 154 Air brake pressure reference value 155 Judgment availability signal ( 156 air brake pressure 157 soundness judgment 201 train characteristic table 202 scheduled deceleration calculation unit 203 brake force calculation unit 204 air brake force calculation unit 205 Air brake pressure reference value calculator 206 Judgment determination unit 251 Deceleration characteristics 252 Weight characteristics 253 Air brake pressure characteristics 254 Planned deceleration 255 Brake force 256 Air brake force , 345 Air brake pressure 601 Judgment propriety signal calculator 602 Soundness judging unit 603 Brake device soundness judging device 651 Second judging propriety signal 901 Reference value calculator 902 Healthy 1001 ...
  • Judgment availability determination unit 1301 Reference value calculation unit 1302 Brake device integrity determination device 1351 Gliding information 1352 First determination signal 1401 Determination determination unit 1601 Determination threshold calculation unit 1602 Soundness determination unit 1603 Brake device soundness determination device 1651 Air brake pressure determination threshold 1901 Brake Apparatus soundness determination device 1902 Automatic operation system 1951 Brake notch 2001 Planning pattern notch selection unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)

Abstract

ブレーキ圧力の健全性をより正確に判断し検査の手間を軽減することができるブレーキ装置健全性判断装置およびブレーキ装置健全性判断方法を提供することを目的とする。列車の空気ブレーキ圧の健全性を判定するブレーキ装置健全性判断装置(103)において、列車の運転指令と列車の乗車率と列車の回生ブレーキ力の情報を用いて列車の空気ブレーキ圧基準値(154)を算出するとともに、列車の空気ブレーキ圧の健全性の判定を実施してよいかを示す判断可否信号(155)を算出する基準値算出部(101)と、判断可否信号(155)の内容に応じて列車の空気ブレーキ圧の健全性の判定を実施し、判定は空気ブレーキ圧基準値(154)と測定された列車の空気ブレーキ圧(156)を比較して判定する健全性判定部(102)と、を備える。

Description

ブレーキ装置健全性判断装置およびブレーキ装置健全性判断方法
 本発明は、ブレーキ装置健全性判断装置およびブレーキ装置健全性判断方法に関し、特に、鉄道車両のブレーキ装置の健全性を判断するブレーキ装置健全性判断装置およびブレーキ装置健全性判断方法に関する。
 鉄道車両において、一般的に3ヶ月毎の月検査や4年毎の全般検査で、ブレーキ装置の健全性の検査を実施している。この検査は、車庫などにおいて、空車状態を想定してブレーキ圧力の測定を行っている。これにより、ブレーキ圧が指令に対して十分にかかるかどうかを調べている。
 しかし、従来の車庫などを行う定期検査は、ブレーキのバルブを人為的に開けてから、ブレーキ圧の指令を出して、実際のブレーキ圧を測定して行っている。このため、非常に時間と手間のかかる検査となる。この定期検査の工数低減のため、走行中データを用いた検査代用について検討されている。例えば、特許文献1では、走行中データを用いてブレーキの妥当性を判定する装置が開示されている。
特開2019-223206公報
 しかしながら、特許文献1の手法は、AI(人工知能)技術を基に判断するため多くのデータが必要である。また、ブレーキ力は、鉄道車両の重量と運転指令に依存している。ブレーキの運転指令を変動させるとブレーキ力も変動するが、目標のブレーキ力に達するまでに遅れが生じる。この変動中のブレーキ力は一定とならず、ブレーキ圧力は所定時間不安定な状態となる。特許文献1の手法では常時判断しているためこのような不安定なブレーキ圧力の状態も用いることとなり、誤検知をする可能性が高い。
 さらに、鉄道システムのブレーキ装置は、電力回生ブレーキと空気ブレーキの両者で構成されている。通常制動においては、電力回生ブレーキと空気ブレーキの両者によりブレーキ力が発揮される。一方、電力回生ブレーキ力が回生失効などにより出力を絞った場合は、電力回生ブレーキ力を補うために空気ブレーキ力が増加する。この場合は、空気ブレーキ力が増加するまでに所定時間を要し、その間は不安定な状態となる。さらに、通常制動と回生失効のケースが混在すると、正常な判断ができず誤検知をする可能性が高い。特許文献1ではこれらのケースについては想定されていない。
 本発明は、上記課題に鑑みて、ブレーキ圧力の健全性をより正確に判断し検査の手間を軽減することができるブレーキ装置健全性判断装置およびブレーキ装置健全性判断方法を提供することを目的とする。
 上記目的を達成するため、代表的な本発明のブレーキ装置健全性判断装置の一つは、列車の空気ブレーキ圧の健全性を判定するブレーキ装置健全性判断装置において、当該列車の運転指令と当該列車の乗車率と当該列車の回生ブレーキ力の情報を用いて当該列車の空気ブレーキ圧基準値を算出するとともに、当該列車の空気ブレーキ圧の健全性の判定を実施してよいかを示す判断可否信号を算出する基準値算出部と、前記判断可否信号の内容に応じて当該列車の空気ブレーキ圧の健全性の判定を実施し、前記判定は前記空気ブレーキ圧基準値と測定された当該列車の空気ブレーキ圧を比較して判定する健全性判定部と、を備えることを特徴とする。
 さらに本発明のブレーキ装置健全性判断方法の一つは、列車の空気ブレーキ圧の健全性を判定するブレーキ装置健全性判断方法において、当該列車の運転指令と当該列車の乗車率と当該列車の回生ブレーキ力の情報を用いて当該列車の空気ブレーキ圧基準値を算出するとともに、当該列車の空気ブレーキ圧の健全性の判定を実施してよいかを示す判断可否信号を算出する基準値算出ステップと、前記判断可否信号の内容に応じて当該列車の空気ブレーキ圧の健全性の判定を実施し、前記判定は前記空気ブレーキ圧基準値と測定された当該列車の空気ブレーキ圧を比較して判定する健全性判定ステップと、を有することを特徴とする。
 本発明によれば、ブレーキ装置健全性判断装置およびブレーキ装置健全性判断方法において、ブレーキ圧力の健全性をより正確に判断し検査の手間を軽減することができる。
 上記以外の課題、構成及び効果は、以下の実施形態により明らかにされる。
図1は、本発明の実施形態による態様を実施するためのコンピュータシステムのブロック図である。 図2は、本発明の実施例1におけるブレーキ装置健全性判断装置の例を示すブロック図である。 図3は、本発明の実施例1における基準値算出部の例を示すブロック図である。 図4は、本発明の実施例1における判断可否判定部の処理の例を示すフローチャートである。 図5は、本発明の実施例1における健全性判定部の処理の例を示すフローチャートである。 図6は、本発明の実施例1における空気ブレーキ圧異常度表示の例を示すグラフである。 図7は、本発明の実施例2におけるブレーキ健全性判断装置の例を示すブロック図である。 図8は、本発明の実施例2における判断可否信号算出部の処理の例を示すフローチャートである。 図9は、本発明の実施例2における健全性判定部の処理の例を示すフローチャートである。 図10は、本発明の実施例3におけるブレーキ装置健全性判断装置の例を示すブロック図である。 図11は、本発明の実施例3における基準値算出部の例を示すブロック図である。 図12は、本発明の実施例3における判断可否判定部の処理の例を示すフローチャートである。 図13は、本発明の実施例3における健全性判定部の処理の例を示すフローチャートである。 図14は、本発明の実施例4におけるブレーキ装置健全性判断装置の例を示すブロック図である。 図15は、本発明の実施例4における基準値算出部の例を示すブロック図である。 図16は、本発明の実施例4における判断可否判定部の処理の例を示すフローチャートである。 図17は、本発明の実施例5におけるブレーキ装置健全性判断装置の例を示すブロック図である。 図18は、本発明の実施例5における空気ブレーキ圧判定閾値テーブルの例を示す。 図19は、本発明の実施例5における健全性判定部の処理の例を示すフローチャートである。 図20は、本発明の実施例6における鉄道システムの例を示すブロック図である。 図21は、本発明の実施例6におけるブレーキ装置健全性判断装置の例を示すブロック図である。
 本発明を実施するための形態を説明する。
 図1は、本発明の実施形態による態様を実施するためのコンピュータシステム1のブロック図である。本明細書で開示される様々な実施形態の機構及び装置は、任意の適切なコンピューティングシステムに適用されてもよい。
 コンピュータシステム1の主要コンポーネントは、1つ以上のプロセッサ2、メモリ4、端末インターフェースユニット12、ストレージインターフェースユニット14、I/O(入出力)デバイスインターフェースユニット16、及びネットワークインターフェース18を含む。これらのコンポーネントは、メモリバス6、I/Oバス8、バスインターフェースユニット9、及びI/Oバスインターフェースユニット10を介して、相互的に接続されてもよい。
 コンピュータシステム1は、プロセッサ2と総称される1つ又は複数の処理装置2A及び2Bを含んでもよい。各プロセッサ2は、メモリ4に格納された命令を実行し、オンボードキャッシュを含んでもよい。ある実施形態では、コンピュータシステム1は複数のプロセッサを備えてもよく、また別の実施形態では、コンピュータシステム1は単一の処理装置によるシステムであってもよい。処理装置としては、CPU(Central Processing Unit)、FPGA(Field-Programmable Gate Array)、GPU(Graphics Processong Unit)等を適用できる。
 ある実施形態では、メモリ4は、データ及びプログラムを記憶するためのランダムアクセス半導体メモリ、記憶装置、又は記憶媒体(揮発性又は不揮発性のいずれか)を含んでもよい。ある実施形態では、メモリ4は、コンピュータシステム1の仮想メモリ全体を表しており、ネットワークを介してコンピュータシステム1に接続された他のコンピュータシステムの仮想メモリを含んでもよい。メモリ4は、概念的には単一のものとみなされてもよいが、他の実施形態では、メモリ4は、キャッシュおよび他のメモリデバイスの階層など、より複雑な構成となる場合がある。例えば、メモリは複数のレベルのキャッシュとして存在し、これらのキャッシュは機能毎に分割されてもよい。その結果、1つのキャッシュは命令を保持し、他のキャッシュはプロセッサによって使用される非命令データを保持する構成であってもよい。メモリは、いわゆるNUMA(Non-Uniform Memory Access)コンピュータアーキテクチャのように、分散され、種々の異なる処理装置に関連付けられてもよい。
 メモリ4は、本明細書で説明する機能を実施するプログラム、モジュール、及びデータ構造のすべて又は一部を格納してもよい。例えば、メモリ4は、潜在因子特定アプリケーション50を格納していてもよい。ある実施形態では、潜在因子特定アプリケーション50は、後述する機能をプロセッサ2上で実行する命令又は記述を含んでもよく、あるいは別の命令又は記述によって解釈される命令又は記述を含んでもよい。ある実施形態では、潜在因子特定アプリケーション50は、プロセッサベースのシステムの代わりに、またはプロセッサベースのシステムに加えて、半導体デバイス、チップ、論理ゲート、回路、回路カード、および/または他の物理ハードウェアデバイスを介してハードウェアで実施されてもよい。ある実施形態では、潜在因子特定アプリケーション50は、命令又は記述以外のデータを含んでもよい。ある実施形態では、カメラ、センサ、または他のデータ入力デバイス(図示せず)が、バスインターフェースユニット9、プロセッサ2、またはコンピュータシステム1の他のハードウェアと直接通信するように提供されてもよい。このような構成では、プロセッサ2がメモリ4及び潜在因子識別アプリケーションにアクセスする必要性が低減する可能性がある。
 コンピュータシステム1は、プロセッサ2、メモリ4、表示システム24、及びI/Oバスインターフェースユニット10間の通信を行うバスインターフェースユニット9を含んでもよい。I/Oバスインターフェースユニット10は、様々なI/Oユニットとの間でデータを転送するためのI/Oバス8と連結していてもよい。I/Oバスインターフェースユニット10は、I/Oバス8を介して、I/Oプロセッサ(IOP)又はI/Oアダプタ(IOA)としても知られる複数のI/Oインターフェースユニット12、14、16、及び18と通信してもよい。表示システム24は、表示コントローラ、表示メモリ、又はその両方を含んでもよい。表示コントローラは、ビデオ、オーディオ、又はその両方のデータを表示装置26に提供することができる。また、コンピュータシステム1は、データを収集し、プロセッサ2に当該データを提供するように構成された1つまたは複数のセンサ等のデバイスを含んでもよい。例えば、コンピュータシステム1は、湿度データ、温度データ、圧力データ等を収集する環境センサ、及び加速度データ、運動データ等を収集するモーションセンサ等を含んでもよい。これ以外のタイプのセンサも使用可能である。バスインターフェースユニット9が提供する機能は、プロセッサ2を含む集積回路によって実現されてもよい。
 I/Oインターフェースユニットは、様々なストレージ又はI/Oデバイスと通信する機能を備える。例えば、端末インターフェースユニット12は、ビデオ表示装置、スピーカテレビ等のユーザ出力デバイスや、キーボード、マウス、キーパッド、タッチパッド、トラックボール、ボタン、ライトペン、又は他のポインティングデバイス等のユーザ入力デバイスのようなユーザI/Oデバイス20の取り付けが可能である。ユーザは、ユーザインターフェースを使用して、ユーザ入力デバイスを操作することで、ユーザI/Oデバイス20及びコンピュータシステム1に対して入力データや指示を入力し、コンピュータシステム1からの出力データを受け取ってもよい。ユーザインターフェースは例えば、ユーザI/Oデバイス20を介して、表示装置に表示されたり、スピーカによって再生されたり、プリンタを介して印刷されたりしてもよい。
 ストレージインターフェースユニット14は、1つ又は複数のディスクドライブや直接アクセスストレージ装置22(通常は磁気ディスクドライブストレージ装置であるが、単一のディスクドライブとして見えるように構成されたディスクドライブのアレイ又は他のストレージ装置であってもよい)の取り付けが可能である。ある実施形態では、ストレージ装置22は、任意の二次記憶装置として実装されてもよい。メモリ4の内容は、ストレージ装置22に記憶され、必要に応じてストレージ装置22から読み出されてもよい。I/Oデバイスインターフェースユニット16は、プリンタ、ファックスマシン等の他のI/Oデバイスに対するインターフェースを提供してもよい。ネットワークインターフェース18は、コンピュータシステム1と他のデバイスが相互的に通信できるように、通信経路を提供してもよい。この通信経路は、例えば、ネットワーク30であってもよい。
 図1に示されるコンピュータシステム1は、プロセッサ2、メモリ4、バスインターフェースユニット9、表示システム24、及びI/Oバスインターフェースユニット10の間の直接通信経路を提供するバス構造を備えているが、他の実施形態では、コンピュータシステム1は、階層構成、スター構成、又はウェブ構成のポイントツーポイントリンク、複数の階層バス、平行又は冗長の通信経路を含んでもよい。さらに、I/Oバスインターフェースユニット10及びI/Oバス8が単一のユニットとして示されているが、実際には、コンピュータシステム1は複数のI/Oバスインターフェースユニット10又は複数のI/Oバス8を備えてもよい。また、I/Oバス8を様々なI/Oデバイスに繋がる各種通信経路から分離するための複数のI/Oインターフェースユニットが示されているが、他の実施形態では、I/Oデバイスの一部または全部が、1つのシステムI/Oバスに直接接続されてもよい。
 ある実施形態では、コンピュータシステム1は、マルチユーザメインフレームコンピュータシステム、シングルユーザシステム、又はサーバコンピュータ等の、直接的ユーザインターフェースを有しない、他のコンピュータシステム(クライアント)からの要求を受信するデバイスであってもよい。他の実施形態では、コンピュータシステム1は、デスクトップコンピュータ、携帯型コンピュータ、ノートパソコン、タブレットコンピュータ、ポケットコンピュータ、電話、スマートフォン、又は任意の他の適切な電子機器であってもよい。
<実施例1>
 図2は、本発明の実施例1におけるブレーキ装置健全性判断装置の例を示すブロック図である。ブレーキ装置健全性判断装置103は、基準値算出部101、健全性判定部102を備えている。
 鉄道車両におけるブレーキ装置について説明する。鉄道車両のブレーキ装置は列車に備えられ、回生ブレーキと空気ブレーキを用いる。回生ブレーキは、電気的なブレーキであり、モーターを発電機として働かせることによって生ずる抵抗で制動を行うブレーキである。一方、空気ブレーキは、圧縮された空気を動力として作動させるブレーキであり、このためのピストンやタンク等の構成を備える。空気ブレーキを作動させるために必要な圧力が空気ブレーキ圧となる。これらの構成により全体のブレーキ力は、回生ブレーキ力と空気ブレーキ力の合計で表すことができる。
 ブレーキ装置健全性判断装置103には、運転指令151、乗車率152、回生ブレーキ力153、空気ブレーキ圧156の情報が列車から入力される。これらの情報は、所定時間ごと(例えば200msecごと)の周期で、リアルタイムに時々刻々の情報が受信される。ブレーキ装置健全性判断装置103は、これらの周期毎に入力された情報を用いて以下に示す処理が行われる。
 運転指令151は、列車の時々刻々の力行、惰行、制動などの動作を指令する情報である。このうち、制動がブレーキに関する情報であり、ノッチ毎に段階的にブレーキの強さが異なる情報である。例えば、B1~B7の7段階に分けて数値が上がるほど強い制動を示す情報とする等である。乗車率152は、当該列車の乗車率であり、当該列車でセンサを用いる等して測定することが可能な値である。回生ブレーキ力153は、当該列車が制動する際に発生する回生ブレーキ力であり、当該列車でセンサを用いる等して測定することが可能な値である。空気ブレーキ圧156は、当該列車の当該列車の時々刻々の空気ブレーキ圧であり、この圧力は当該列車でセンサを用いる等して測定することで得られる値である。
 基準値算出部101は、運転指令151、乗車率152、回生ブレーキ力153の情報を取得する。そして、基準値算出部101は、空気ブレーキ圧基準値154を算出して出力するとともに、空気ブレーキ圧の健全性の判断を実施してよいかを示す判断可否信号155を算出して出力する。
 健全性判定部102は、空気ブレーキ圧基準値154、判断可否信号155、空気ブレーキ圧156の情報を取得する。そして、ブレーキ圧の健全性を判断して健全性判断157を出力する。
 ブレーキ装置健全性判断装置103は、列車に搭載することが可能である。また、列車以外の地上側に設置してもよい。この場合、運転指令151、乗車率152、回生ブレーキ力153、空気ブレーキ圧156の情報は、該当の列車から遠隔で送信される。
 図3は、本発明の実施例1における基準値算出部の例を示すブロック図である。基準値算出部101の詳細について図3を用いて説明する。
 基準値算出部101は、列車特性テーブル201、予定減速度算出部202、ブレーキ力算出部203、空気ブレーキ力算出部204、空気ブレーキ圧基準値計算部205、判断可否判定部206を備えている。
 列車特性テーブル201は、少なくとも、当該列車の減速度特性251、当該列車の重量特性252、当該列車の空気ブレーキ圧特性253の情報を有する。列車特性テーブル201は、記憶部に記録しておくことができる。
 減速度特性251は、運転指令151から減速度が一意に定まるように設定されている特性である。例えば、運転指令151がブレーキ指令(制動指令)のB1であれば、0.5[km/h/s]というような形で設定されていれば良い。つまり、各運転指令に対する減速度をあらかじめ定めておけば一意で定めることができる。なお、以降の説明において、本減速度は平坦かつ直線の場合の減速度としている。
 重量特性252は、少なくとも列車の空車重量と定員人数と列車の慣性重量に相当する重量が記録されている特性である。設計値としてあらかじめ登録しておくことができる。
 空気ブレーキ圧特性253は、空気ブレーキ力と空気ブレーキ圧が一意に定まるように設定されている特性である。例えば、空気ブレーキ力が300[kN]の場合、空気ブレーキ圧が345[KPa]というようになっていれば良い。この場合、具体的な数値でこれらの関係を記録して良いし、空気ブレーキ力と空気ブレーキ圧の比が記載されている形となっていても良い。例えば、ブレーキ力が300[kN]の場合、比率1.15という値が記録されたテーブルの形式でも良い。
 予定減速度算出部202は、列車特性テーブル201からの列車の減速度特性251と、運転指令151を入力して、これらを基に列車の予定減速度254を算出し出力する。減速度特性251は、上述したように、運転指令151から減速度が一意に定まるように設定されている特性である。このことから、入力された運転指令151を基に予定減速度254が一意に得られる。
 ブレーキ力算出部203は、乗車率152と、列車特性テーブル201からの重量特性252と、予定減速度算出部202からの予定減速度254を入力して、これらを基にブレーキ力255を算出し出力する。ここで、予定減速度254をβ[km/h/s]、乗車率152をP[%]、重量特性252に含まれる列車の空車重量をW[ton]と定員人数をN、乗客1人当たりの重量をX[ton]、列車の慣性重量に相当する重量をWi[ton]とすると、ブレーキ力BP[KN]は、
 BP = β/3.6×(W+N×P/100×X+Wi) ・・・(式1)
で計算可能である。このブレーキ力BPは全体のブレーキ力であり、これをブレーキ力255として出力する。
 空気ブレーキ力算出部204は、ブレーキ力算出部203からのブレーキ力255と、回生ブレーキ力153を入力して、これらを基に空気ブレーキ力256を算出し出力する。空気ブレーキ力256は、全体のブレーキ力であるブレーキ力255から回生ブレーキ力153を引いたものであることから、
 空気ブレーキ力256 = ブレーキ力255-回生ブレーキ力153
                           ・・・(式2)
で算出することができる。なお、空気ブレーキ力256が負の値になることは、実態としてはないが、データの計測精度によっては、計算上発生することもあるため、0以下はすべて0とするように制限する。
 空気ブレーキ圧基準値計算部205は、空気ブレーキ力算出部204からの空気ブレーキ力256と、列車特性テーブル201からの空気ブレーキ圧特性253を入力して、これらを基に当該列車の空気ブレーキ圧基準値154を算出する。空気ブレーキ圧特性253は、上述したように、空気ブレーキ力と空気ブレーキ圧が一意に定まるように設定されている特性である。このため、入力された空気ブレーキ力256を基に、一意に空気ブレーキ圧基準値154が得られる。
 判断可否判定部206は、運転指令151を基に、空気ブレーキ圧の健全性の判断を実施してよいかを示す判断可否信号155を決定して出力する。図4でその処理の詳細について説明する。
 図4は、本発明の実施例1における判断可否判定部の処理の例を示すフローチャートである。この処理は判断可否判定部206において運転指令151の情報が入力される毎に行う。
 まず、ステップ301は、本処理が当該日においてこれまで実施されていないかをチェックする。実施されていない(YES)ならばステップ302に進む。実施されている(No)ならばステップ303に進む。ここでの当該日は、その日や始発から終電までの時間範囲等とすることができる。また、当該日に代えて電源を入れている間の期間としてもよい。
 ステップ302では、ノッチ同一判定カウントを0にリセットして、ステップ303に進む。この処理は、電源を入れた時などにおいて、前のデータが仮に残っていると誤検知してしまうため、このようなことを防止するための処理である。
 ステップ303では、今回入力された運転指令151が前回入力された運転指令151と同一の運転指令で、かつブレーキ指令かどうかを判断する。この条件を満たす場合は(Yesであれば)、ステップ304に進む。この条件を満たさない場合は(Noであれば)、ステップ305に進む。例えば、200msecごと周期で入力される場合、前回の運転指令151と200msec前の前回の運転指令を比較する。これらの運転指令151が、例えば、同じブレーキ指令B1であれば、同一のブレーキ指令であると判定される。
 ステップ304では、ノッチ同一判定カウントを1増加して、ステップ306に進む。ノッチ同一判定カウントは、同じノッチがどれだけ連続したかを示す値である。ここでのノッチは、運転指令(ブレーキ指令)に該当するため、同じ運転指令(ブレーキ指令)がどれだけ連続したかを示す。また、所定の周期毎に運転指令が入力されるので、どれだけの時間、同じノッチが維持されているかに相当する。例えば、200msecごと周期で入力される場合、ノッチ同一判定カウントが「3」であれば、600msecは同じ運転指令(ブレーキ指令)を維持していることになる。
 ステップ305は、ノッチ同一判定カウントを0にリセットして、ステップ306に進む。ここでは、同じブレーキ指令が維持されていないため、ノッチ同一判定カウントを0にリセットする。
 ステップ306は、ノッチ同一判定カウントが所定値以上かどうかを判断する。所定値以上であれば(Yesであれば)、ステップ307に進む。所定値以上でなければ(Noであれば)、ステップ308に進む。所定値は任意に適切な値が決められる。例えば、ブレーキ指令が出てから出力が安定するまでにかかる時間を基に定めて良い。この時間の例として、2秒以上、3秒以上、5秒以上などである。
 ステップ307では、判断可否信号155を判断可として、終了となる。
 ステップ308では、判断可否信号155を判断否として、終了となる。
 このように判断可否判定部206は、所定時間以上、同じブレーキ指令である場合に判断可否信号155が判断可となるように処理される。そして、判断可否信号155は判断可否の情報を伴い出力される。
 図5は、本発明の実施例1における健全性判定部の処理の例を示すフローチャートである。図2で示した健全性判定部102の処理について、図5を用いて説明する。
 まず、ステップ401は、判断可否信号155が判断可になっているかをチェックする。判断可であれば(Yesであれば)、ステップ402に進む。判断否であれば(Noであれば)、終了となる。すなわち判断否の場合は空気ブレーキ圧の健全性の判断は行わない。
 ステップ402では、健全性判定部102の空気ブレーキ圧基準値計算部205で算出された空気ブレーキ圧基準値154と、空気ブレーキ圧156の差の絶対値が、基準判定値以下かどうかを判断する。基準判定値以下であれば(Yesであれば)、ステップ403に進む。基準判定値以下でなければ(Noであれば)、ステップ404に進む。基準判定値は、判定閾値となるようにあらかじめ定められた定数であり、例えば10とか20というように定めればよい。また、空気ブレーキ圧にも設計公差などがあると考えられることから、設計公差を用いて定めても良い。さらに、鉄道会社などで判定用の閾値があれば、それらを用いても良い。
 ここで、空気ブレーキ圧基準値154は上述したように運転指令151に基づく予定減速度254から推定される空気ブレーキ圧である。このため、運転指令151が変化しなければ空気ブレーキ圧基準値154は基本的には変化しない。また、空気ブレーキ圧156は、列車で測定される空気ブレーキ圧である。空気ブレーキ圧156は測定される値のためデータを取得するたびに時々刻々変化している。運転指令151に対して空気ブレーキが正常に作動していれば、空気ブレーキ圧基準値154と、空気ブレーキ圧156の差の絶対値が、基準判定値以下と想定される。
 ステップ403は、判定結果を正常として、終了となる。このため、空気ブレーキ圧基準値154に対する測定される空気ブレーキ圧156の差が所定以内の場合は異常がないと判断される。
 ステップ404は、判定結果を異常として、終了となる。
 変形例として、ステップ404において判定結果をすぐには異常とせず、異常予兆としておき、異常予兆が数回繰り返された場合に異常としても良い。例えば、2回以上、もしくは3回以上とするなどである。これにより、1回だけなら誤検知の可能性もある場合でも、複数回を条件とすれば、誤検知を防止できる確率が高くなる。その際において、例えば,ステップ402で、基準判定値との差分が一定以上大きくなった場合には、異常の可能性が高くなったとして、異常判定とする方法でも良い。すなわち、空気ブレーキ圧基準値154と空気ブレーキ圧156の差が、基準判定値よりも一定以上大きい場合は、1回で異常判定する。
 なお、本実施例では、列車特性テーブル201を設け、その中に減速度特性251、重量特性252、空気ブレーキ圧特性253があるとして説明した。しかし、入力に対して一意に定まる式あるいは数値があれば、それらの数値を用いる方法でも良い。
 例えば、減速度特性251は、
  減速度=運転指令から定まる減速度×η+勾配×ω  ・・・(式3)
と表現し、η、ωを予定減速度算出部202に格納して計算するという方法でも良い。
 例えば、重量特性252は、空車重量、定員人数、慣性重量をブレーキ力算出部203に格納しておいても良い。
 例えば、空気ブレーキ圧特性253は、
  空気ブレーキ圧基準値=γ×空気ブレーキ力   ・・・(式4)
と表現し、γを空気ブレーキ圧基準値計算部205に格納して計算しても良い。
 なお、上記のη、ω、γは定数に限らず関数の形であっても良い。さらに、上記で述べた特性について、一部分はテーブルとして、残りは計算式という形であっても良い。
 また、上述した構成を用いて、正常/異常の結果を基に、健全性の指標を出す方法も考えられる。例えば、1日毎あるいは1か月毎といった定期的な期間毎に、異常とされた判定回数/全判定回数で計算された異常度を表示する。このことで、異常と思われるブレーキ装置を抽出し、保守員が、作業する際に優先的かつ精査すべき装置を示すことができる。
 図6は、本発明の実施例1における空気ブレーキ圧異常度表示の例を示すグラフである。図6に示すように、横軸を日時、縦軸を空気ブレーキ圧の異常度として示すことで、異常の予兆をとらえることも可能となる。すなわち、異常度が他の期間よりも上昇していれば、何らかの異常が明らかに発生していることを知ることができる。さらに、真の異常と判定する閾値を設け、異常度の割合が真の異常と思われる閾値を超えたら異常と判定するようにしても良い。
 このように実施例1では、同じブレーキ指令が所定時間継続した場合に、ブレーキ圧健全性判定を行うことで、不安定な状態での判定を防止することができる。さらにブレーキ指令から想定される空気ブレーキ圧基準値154と実際に測定された空気ブレーキ圧156の差を比較することで、列車を走行させながら空気ブレーキ圧の健全性の判定が可能となる。
<実施例2>
 図7は、本発明の実施例2におけるブレーキ健全性判断装置の例を示すブロック図である。実施例2では、実施例1と異なる点について主に説明し、同一の箇所には同一の符号を付してあり、特に説明がない部分は同じ説明を省略している。
 ブレーキ装置健全性判断装置603は、基準値算出部101、判断可否信号算出部601、健全性判定部602を備えている。ブレーキ装置健全性判断装置603には、運転指令151、乗車率152、回生ブレーキ力153、空気ブレーキ圧156の情報が入力される点は、実施例1と同様である。
 基準値算出部101は、実施例1と同様であるが、本実施例では実施例1の判断可否信号155は便宜上、第1の判断可否信号155と記載するが同じ内容である。
 判断可否信号算出部601は、空気ブレーキ圧156の情報を取得し、これに基づき第2の判断可否信号651を出力する。
 健全性判定部602は、空気ブレーキ圧基準値154、第1の判断可否信号155、空気ブレーキ圧156、第2の判断可否信号651の情報を取得する。そして、これらに基づきブレーキ圧の健全性を判断して健全性判断157を出力する。ここでは、第2の判断可否信号651をふまえる点が実施例1の健全性判定部102とは異なる。
 ブレーキ装置健全性判断装置603は、実施例1のブレーキ装置健全性判断装置103と同様に列車に搭載することが可能であるし、地上側に設置してもよい。
 図8は、本発明の実施例2における判断可否信号算出部の処理の例を示すフローチャートである。この処理は判断可否信号算出部601において空気ブレーキ圧156の情報が入力される毎に行う。
 まず、ステップ701は、本処理が当該日においてこれまで実施されていないかをチェックする。実施されていない(YES)ならばステップ702に進む。実施されている(No)ならばステップ703に進む。ここでの当該日は、その日や始発から終電までの時間範囲等とすることができる。また、当該日に代えて電源を入れている間の期間としてもよい。
 ステップ702では、ブレーキ圧停滞カウントを0にリセットして、ステップ703に進む。この処理は、電源を入れた時などにおいて、前のデータが仮に残っていると誤判定してしまうため、このようなことを防止するための処理である。
 ステップ703は、今回入力された空気ブレーキ圧156が前回の空気ブレーキ圧と同一かつ0よりも大きい値となっているかどうかを判断する。条件に合致すれば(Yesであれば)、ステップ704に進む。条件に合致しなければ(Noであれば)、ステップ705に進む。ここで、今回の空気ブレーキ圧156が前回の空気ブレーキ圧156と同一であることは、空気ブレーキ圧が所定時間一定であると判断している。また、空気ブレーキ圧156が0よりも大きい値は、空気ブレーキ圧に値があることを判断している。
 ステップ704では、第2の判断可否信号651を判断可にし、終了となる。
 ステップ705では、第2の判断可否信号651を判断否にし、終了となる。
 なお、ステップ703で実施する空気ブレーキ圧156が前回の空気ブレーキ圧と同一の判定については、得られるデータの精度も考慮して、例えば、判定閾値εを設けて、
  ||今回の空気ブレーキ圧156-前回の空気ブレーキ圧||≦ε
                           ・・・(式5)
が成立した場合としても良い。これにより、空気ブレーキ圧156と前回の空気ブレーキ圧の差が、同一とみなされる所定の範囲内にある場合は、第2の判断可否信号651を判断可とする。
 また、ステップ703では、今回の空気ブレーキ圧156が前回の空気ブレーキ圧と同一であることを条件としている。しかし、これ以外に実施例1のノッチ同一判定カウントのように、複数回、連続して同一の場合を条件としてもよい。すなわち、空気ブレーキ圧156が所定回数以上同一で、かつ0よりも大きい値となっているかどうかを判断する。合致すれば、ステップ704で第2の判断可否信号651を判断可とする。ここでの所定回数以上同一は、所定時間以上同一の場合に相当する。また、この場合の同一は、(式5)のように同一とみなされる所定の範囲であってもよい。
 図9は、本発明の実施例2における健全性判定部の処理の例を示すフローチャートである。図9は実施例1の図5のステップ401がステップ801となっている以外は同一である。
 まず、ステップ801は、第1の判断可否信号155および第2の判断可否信号651が判断可になっているかをチェックする。条件に合致すれば(Yesであれば)、ステップ402に進む。条件に合致しなければ(Noであれば)、終了となる。
 ステップ402は、空気ブレーキ圧基準値154と、空気ブレーキ圧156の差の絶対値が、基準判定値以下かどうかを判断する。基準判定値以下であれば(Yesであれば)、ステップ403に進む。基準判定値以下でなければ(Noであれば)、ステップ404に進む。
 ステップ403は、判定結果を正常として、終了となる。
 ステップ404は、判定結果を異常として、終了となる。
 実施例1で説明したステップ402~404の変形例の判定方法は本実施例でも同様に適用できる。
 また、ステップ801では、第1の判断可否信号155および第2の判断可否信号651が判断可になっている場合にステップ402に進む判定を説明した。しかし、これ以外に、第1の判断可否信号155あるいは第2の判断可否信号651のいずれかが判断可になっている場合にステップ402に進む判定とすることもできる。第2の判断可否信号651のみを用いる場合は、図7に記載の基準値算出部101で第1の判断可否信号155を出力しなくてもよい。また、第2の判断可否信号651を用いずに第1の判断可否信号155のみを用いて実施する場合については、実施例1で示した内容と同じ構成となる。
 さらに、実施例2においては、第1の判断可否信号155は基準値算出部101にて、第2の判断可否信号651は判断可否信号算出部601にてそれぞれ算出としている。しかしながら、第1の判断可否信号155、第2の判断可否信号651の算出を基準値算出部101あるいは判断可否信号算出部601のいずれかにまとめて実施する構成としても良い。
 このように実施例2では、実際に測定されるブレーキ圧が前回と同一の場合に、ブレーキ圧健全性判定を行うことで、不安定な状態での判定を防止することができる。さらに、実施例1で示した同じブレーキ指令が所定時間継続した場合の条件と合わせることで、より的確な判定をすることができる。なお、列車を走行させながらブレーキ圧の健全性判定が可能となることは実施例1と同様である。
<実施例3>
 図10は、本発明の実施例3におけるブレーキ装置健全性判断装置の例を示すブロック図である。実施例3では、実施例1、2と異なる点について主に説明し、同一の箇所には同一の符号を付してあり、特に説明がない部分は同じ説明を省略している。
 ブレーキ装置健全性判断装置903は、基準値算出部901、判断可否信号算出部601、健全性判定部902を備えている。ブレーキ装置健全性判断装置903には、運転指令151、乗車率152、回生ブレーキ力153、空気ブレーキ圧156の情報が入力される点は、実施例1のブレーキ装置健全性判断装置103と同様である。
 基準値算出部901は、運転指令151、乗車率152、回生ブレーキ力153の情報を取得する。そして、基準値算出部901は、空気ブレーキ圧基準値154を算出して出力するとともに、空気ブレーキ圧の健全性の判断を実施してよいかを示す第1の判断可否信号951を算出して出力する。
 判断可否信号算出部601は、実施例2の判断可否信号算出部601と同様である。
 健全性判定部902は、空気ブレーキ圧基準値154、第1の判断可否信号951、第2の判断可否信号651、空気ブレーキ圧156の情報を取得する。そして、ブレーキ圧の健全性を判断して健全性判断157を出力する。
 ブレーキ装置健全性判断装置903は、実施例1のブレーキ装置健全性判断装置103と同様に列車に搭載することが可能であるし、地上側に設置してもよい。
 図11は、本発明の実施例3における基準値算出部の例を示すブロック図である。基準値算出部901の詳細について図11を用いて説明する。
 基準値算出部901は、列車特性テーブル201、予定減速度算出部202、ブレーキ力算出部203、空気ブレーキ力算出部204、空気ブレーキ圧基準値計算部205、判断可否判定部1001を備えている。実施例1で説明した基準値算出部101と異なる箇所は、判断可否判定部206に代えて判断可否判定部1001となっている点である。ここでは、判断可否判定部1001について説明しそれ以外の構成は説明を省略する。
 判断可否判定部1001は、運転指令151と回生ブレーキ力153の情報を入力してこれらを基に、第1の判断可否信号951を決定して、出力する。図12でその処理の詳細について説明する。
 図12は、本発明の実施例3における判断可否判定部の処理の例を示すフローチャートである。この処理は判断可否判定部1001において運転指令151と回生ブレーキ力153のデータが入力される毎に行う。
 まず、ステップ1101は、本処理が当該日においてこれまで実施されていないかをチェックする。実施されていない(YES)ならばステップ1102に進む。実施されている(No)ならばステップ1103に進む。この処理は実施例1(図4)のステップ301と同様である。
 ステップ1102では、ノッチ同一判定カウントを0にリセットして、ステップ1103に進む。この処理は実施例1(図4)のステップ302と同様である。
 ステップ1103では、今回入力された運転指令151が前回の運転指令151と同一かつブレーキ指令かどうかを判断する。この条件を満たす場合は(Yesであれば)、ステップ1104に進む。この条件を満たさない場合は(Noであれば)、ステップ1105に進む。この処理は実施例1(図4)のステップ303と同様である。
 ステップ1104では、ノッチ同一判定カウントを1増加して、ステップ1106に進む。この処理は実施例1(図4)のステップ304と同様である。
 ステップ1105では、ノッチ同一判定カウントを0にリセットして、ステップ1106に進む。この処理は実施例1(図4)のステップ305と同様である。
 ステップ1106では、ノッチ同一判定カウントが所定値以上かどうかを判断する。所定値以上であれば(Yesであれば)、ステップ1107に進む。所定値以上でなければ(Noであれば)、ステップ1109に進む。この処理は実施例1(図4)のステップ306と同様である。
 ステップ1107では、今回入力された回生ブレーキ力153が前回の回生ブレーキ力と同一となっているかどうかを判断する。同一であれば(Yesであれば)、ステップ1108に進む。同一でなければ(Noであれば)、ステップ1109に進む。今回の回生ブレーキ力153が前回の回生ブレーキ力153と同一であることは、回生ブレーキ力153が所定時間一定であると判断している。
 ステップ1108では、第1の判断可否信号951を判断可にして、終了となる。
 ステップ1109では、第1の判断可否信号951を判断否にして、終了となる。
 なお、変形例として、ステップ1107で実施する今回の回生ブレーキ力153が前回の回生ブレーキ力と同一の判定については、得られるデータの精度も考慮して、例えば、判定閾値εを設けて、
  ||今回の回生ブレーキ力153-前回の回生ブレーキ力||≦ε
                          ・・・(式6)
が成立した場合としても良い。これにより、今回の回生ブレーキ力153と前回の回生ブレーキ力の差が、同一とみなされる所定の範囲内にある場合は、第1の判断可否信号951を判断可とする。
 また、他の変形例として、ステップ1107では、今回の回生ブレーキ力153が前回の回生ブレーキ力153と同一であることを条件としている。しかし、これ以外にノッチ同一判定カウントのように、複数回、連続して同一の場合を条件としてもよい。すなわち、回生ブレーキ力153が所定回数以上同一かどうかを判断する。同一ならば、ステップ1107で第1の判断可否信号951を判断可とする。ここでの所定回数以上同一は所定時間以上同一の場合に相当する。また、この場合の同一は、(式6)のように同一とみなされる所定の範囲であってもよい。
 図13は、本発明の実施例3における健全性判定部の処理の例を示すフローチャートである。図13は実施例1の図5のステップ401がステップ1201となっている以外は同一である。
 ステップ1201は、第1の判断可否信号951および第2の判断可否信号651が判断可になっているかをチェックする。条件に合致すれば(Yesであれば)、ステップ402に進む。条件に合致しなければ(Noであれば)、終了となる。
 ステップ402は、空気ブレーキ圧基準値154と空気ブレーキ圧156の差の絶対値が、基準判定値以下かどうかを判断する。基準判定値以下であれば(Yesであれば)、ステップ403に進む。基準判定値以下でなければ(Noであれば)、ステップ404に進む。
 ステップ403は、判定結果を正常として、終了となる。
 ステップ404は、判定結果を異常として、終了となる。
 実施例1で説明したステップ402~404の変形例の判定方法は本実施例でも同様に適用できる。
 また、ステップ1201では、第1の判断可否信号951および第2の判断可否信号651が判断可になっている場合に判定結果を正常とする判定を説明した。しかし、これ以外に、第1の判断可否信号951あるいは第2の判断可否信号651のいずれかが判断可になっている場合にステップ402に進む判定とすることもできる。
 さらに、実施例3においては、第1の判断可否信号951は基準値算出部901にて、第2の判断可否信号651は判断可否信号算出部601にてそれぞれ算出としている。しかしながら、第1の判断可否信号951、第2の判断可否信号651の算出を基準値算出部901あるいは判断可否信号算出部601のどちらかにまとめて実施する構成としても良い。
 このように実施例3では、ノッチ同一判定カウントの判定に加えて、回生ブレーキ力が所定時間一定であることを条件とすることで、より正確に安定な状態を判断できる。これは、回生ブレーキ力が変化すると空気ブレーキ力も変わってしまい、空気ブレーキ圧は安定な状態にならないからである。それ以外の効果については、実施例1や2と同様である。
<実施例4>
 図14は、本発明の実施例4におけるブレーキ装置健全性判断装置の例を示すブロック図である。実施例4では、実施例1~3と異なる点について主に説明し、同一の箇所には同一の符号を付してあり、特に説明がない部分は同じ説明を省略している。
 ブレーキ装置健全性判断装置1302は、基準値算出部1301、判断可否信号算出部601、健全性判定部902を備えている。
 ブレーキ装置健全性判断装置1302には、実施例1と同様に運転指令151、乗車率152、回生ブレーキ力153、空気ブレーキ圧156の情報が入力されることに加えて、空転・滑走情報1351が入力される。
 基準値算出部1301は、運転指令151、乗車率152、回生ブレーキ力153、空転・滑走情報1351を入力する。そして、基準値算出部1301は、空気ブレーキ圧基準値154を算出して出力するとともに、空気ブレーキ圧の健全性の判断を実施してよいかを示す第1の判断可否信号1352を算出して出力する。
 判断可否信号算出部601は、実施例2、3の判断可否信号算出部601と同様である。
 健全性判定部902は、実施例3の健全性判定部902と同様であるが、実施例3の第1の判断可否信号951に代えて第1の判断可否信号1352を入力する点が異なる。すなわち、健全性判定部902は、空気ブレーキ圧基準値154、第1の判断可否信号1352、第2の判断可否信号651、空気ブレーキ圧156の情報を取得する。そして、ブレーキ圧の健全性を判断して健全性判断157を出力する。処理の内容は図13と同様である。
 ブレーキ装置健全性判断装置1302は、列車に搭載することが可能である。また、列車以外の地上側に設置してもよい。この場合、運転指令151、乗車率152、回生ブレーキ力153、空気ブレーキ圧156、空転・滑走情報1351の情報は、該当の列車から遠隔で送信される。
 図15は、本発明の実施例4における基準値算出部の例を示すブロック図である。基準値算出部1301の詳細について図15を用いて説明する。
 基準値算出部1301は、列車特性テーブル201、予定減速度算出部202、ブレーキ力算出部203、空気ブレーキ力算出部204、空気ブレーキ圧基準値計算部205、判断可否判定部1401を備えている。実施例1で説明した基準値算出部101と異なる箇所は、判断可否判定部206に代えて判断可否判定部1401となっている点である。ここでは、判断可否判定部1401について説明しそれ以外の構成は説明を省略する。
 判断可否判定部1401は、運転指令151と回生ブレーキ力153と空転・滑走情報1351のデータを基に、第1の判断可否信号1352を決定して、出力する。図16でその処理の詳細について説明する。
 図16は、本発明の実施例4における判断可否判定部の処理の例を示すフローチャートである。この処理は判断可否判定部1401において運転指令151と回生ブレーキ力153の情報が入力される毎に行う。また、空転・滑走情報1351は、空転や滑走が発生した場合にその情報が入力される。
 まず、ステップ1501は、本処理が当該日においてこれまで実施されていないかをチェックする。実施されていない(YES)のならばステップ1502に進む。実施されている(No)ならばステップ1503に進む。この処理は実施例1(図4)のステップ301と同様である。
 ステップ1502では、判定カウントを0にリセットして、ステップ1503に進む。この処理は実施例1(図4)のステップ302と同様である。
 ステップ1503では、空転・滑走情報1351がないかを判断する。空転・滑走情報1351がない場合(Yesの場合)は、空転・滑走していない状態が想定され、ステップ1504に進む。空転・滑走情報1351がある場合(Noの場合)には、空転・滑走している状態が想定されるため判定できないとして、ステップ1510に進む。
 空転は、鉄道車両の車輪がレール面上を滑って回転している状態である。また、滑走は、鉄道車両の車輪が回転せずにレール面を滑る状態である。このような状態は、不安定な状態のため、空気ブレーキ圧の健全性判定を行わないことが好ましい。空転・滑走情報1351は列車内で計測されているデータから取得することができる。空転・滑走情報1351は空転や滑走が生じた場合の情報であり、空転・滑走情報1351がない場合は、空転や滑走が生じていない状態であると想定される。
 ステップ1504は、今回入力された運転指令151が前回の運転指令151と同一かつブレーキ指令かどうかを判断する。この条件を満たす場合は(Yes)であれば、ステップ1505に進む。この条件を満たさない場合は(Noであれば)、ステップ1506に進む。この処理は実施例1(図4)のステップ303と同様である。
 ステップ1505では、ノッチ同一判定カウントを1増加して、ステップ1507に進む。この処理は実施例1(図4)のステップ304と同様である。
 ステップ1506では、ノッチ同一判定カウントを0にリセットして、ステップ1507に進む。この処理は実施例1(図4)のステップ305と同様である。
 ステップ1507は、ノッチ同一判定カウントが所定値以上かどうかを判断する。所定値以上であれば(Yes)であれば、ステップ1508に進む。所定値以上でなければ(Noであれば)、ステップ1511に進む。この処理は実施例1(図4)のステップ306と同様である。
 ステップ1508は、今回入力された回生ブレーキ力153が前回の回生ブレーキ力と同一となっているかどうかを判断する。同一であれば(Yes)であれば、ステップ1509に進む。同一でなければ(Noであれば)、ステップ1511に進む。この処理は実施例3(図12)のステップ1107と同様である。
 ステップ1509は、第1の判断可否信号1352を判断可にして、終了となる。この処理は実施例1(図4)のステップ307と同様である。
 ステップ1510は、判定カウントを0にリセットして、ステップ1511に進む。
 ステップ1511は、第1の判断可否信号1352を判断否にして、終了となる。この処理は実施例1(図4)のステップ308と同様である。
 以上で述べた本実施例の判断可否判定部1401処理は、実施例3に対して空転・滑走情報1351を考慮した処理となっている。これ以外に、実施例1、2に空転・滑走情報1351を考慮した構成としてもよい。具体的には実施例1、2の判断可否判定部206を判断可否判定部1401に置き換える等である。
 また、ステップ1508の回生ブレーキ力153を考慮するステップは、実施例3の図12のステップ1107で説明した変形例を適用してもよい。
 このように実施例4では、ノッチ同一判定カウントの判定に加えて、空転や滑走が生じていない場合を条件とすることで、より正確に安定な状態を判断できる。それ以外の効果については、実施例1~3と同様である。
<実施例5>
 図17は、本発明の実施例5におけるブレーキ装置健全性判断装置の例を示すブロック図である。実施例5では、実施例1と異なる点について主に説明し、同一の箇所には同一の符号を付してあり、特に説明がない部分は同じ説明を省略している。
 本実施例の図17の構成では実施例1の図1の構成に対して、判定閾値算出部1601を加えたものである。
 ブレーキ装置健全性判断装置1603は、基準値算出部101、判定閾値算出部1601、健全性判定部1602を備えている。ブレーキ装置健全性判断装置1603には、運転指令151、乗車率152、回生ブレーキ力153、空気ブレーキ圧156の情報が入力される点は、実施例1と同様である。
 基準値算出部101は、実施例1と同様である。
 判定閾値算出部1601は、運転指令151と乗車率152の情報を取得し、これらに基づき空気ブレーキ圧判定閾値1651を算出して出力する。
 健全性判定部1602は、空気ブレーキ圧基準値154と判断可否信号155と空気ブレーキ圧156と空気ブレーキ圧判定閾値1651から、空気ブレーキ圧の健全性判断157を判定して出力する。
 図18は、本発明の実施例5におけるブレーキ圧判定閾値テーブルの例を示す。図18のテーブルを例として、判定閾値算出部1601について説明する。
 図18のテーブルでは、横方向が運転指令の種類となる。「B」はブレーキ指令であることを表し、その後の数値は強さを表す。すなわちB1、B2、B3、・・・、B7の順に段階的に強いブレーキ(高い減速度)となるように設定される。また、縦軸が乗車率(%)を表す。乗車率が高いほど、判定閾値を大きく設定してある。
 判定閾値算出部1601では、図18に示すような運転指令と乗車率をそれぞれ軸として定めたテーブルを用いて空気ブレーキ圧判定閾値1651を算出する。図18の例では、運転指令が「B3」、乗車率が「10%」の場合は、数値が「20」となっているため、空気ブレーキ圧判定閾値1651は「20」となる。なお、該当するデータがない場合には線形補間などによりデータを算出するあるいは、該当データに最も近いデータの値を用いる構成とすればよい。
 なお、図18に用いたテーブルを、下記式のように
  空気ブレーキ圧判定閾値1651 = 運転指令×θ+乗車率×δ
                          ・・・(式7)
のような形で表しても良い。ここで、θやδは、定数である。なお、定数に限らず関数の形であっても良い。また(式7)の運転指令は、その運転指令の減速度に応じた値であればよく、θによって調整することが可能である。
 図19は、本発明の実施例5における健全性判定部の処理の例を示すフローチャートである。図19を用いて、健全性判定部1602の処理について説明する。図19は実施例1の図5のステップ402がステップ1801となっている以外は同一である。
 ステップ401は、判断可否信号155が判断可になっているかをチェックする。判断可であれば(Yesであれば)、ステップ1801に進む。判断可でなければ(Noであれば)、終了となる。
 ステップ1801は、空気ブレーキ圧基準値154、空気ブレーキ圧156の差の絶対値が、空気ブレーキ圧判定閾値1651以下かどうかを判断する。空気ブレーキ圧判定閾値1651以下であれば(Yesであれば)、ステップ403に進む。空気ブレーキ圧判定閾値1651以下でなければ(Noであれば)、ステップ404に進む。
 ステップ403は、判定結果を正常として、終了となる。
 ステップ404は、判定結果を異常として、終了となる。
 実施例1で説明したステップ404の変形例の判定方法は、基準判定値を空気ブレーキ圧判定閾値1651と変更すれば、本実施例でも同様に適用できる。
 なお、上述した実施例5では、実施例1に対して空気ブレーキ圧判定閾値1651を用いる構成を示したが、実施例2~4に対しても空気ブレーキ圧判定閾値1651を用いることができる。この場合は、ブレーキ装置健全性判断装置603、903、1302に判定閾値算出部1601を追加で設け、健全性判定部602、902の処理における基準判定値を空気ブレーキ圧判定閾値1651に変更すればよい。
 このように実施例4では、基準判定値を空気ブレーキ圧判定閾値1651とすることで、運転指令の内容と乗車率を考慮した、より適切な閾値による空気ブレーキ圧の健全性の判定が可能となる。
<実施例6>
 図20は、本発明の実施例6における鉄道装置の例ブロック図である。実施例6では、実施例1~5と異なる点について主に説明し、同一の箇所には同一の符号を付してあり、特に説明がない部分は同じ説明を省略している。
 実施例6の鉄道装置は、ブレーキ装置健全性判断装置1901と、自動運転システム1902を備えている。
 ブレーキ装置健全性判断装置1901は、運転指令151、乗車率152、回生ブレーキ力153、空気ブレーキ圧156の情報が入力され、ブレーキ圧の健全性判断157と、ブレーキノッチ1951を出力する。ブレーキノッチ1951は、当該列車のブレーキ装置において健全性を判定したいブレーキノッチの情報である。
 自動運転システム1902は、ブレーキノッチ1951を優先的に用いて走行パターンを生成する自動運転装置である。自動運転装置は、運転手なしで列車を自動運転することができる装置である。
 図21は、本発明の実施例6におけるブレーキ装置健全性判断装置の例を示すブロック図である。図20を用いてブレーキ装置健全性判断装置1901の詳細について説明する。
 図20に示すブレーキ装置健全性判断装置1901は、基準値算出部101と、健全性判定部102と、計画パターンノッチ選定部2001を備えている。
 基準値算出部101は実施例1と同様である。
 健全性判定部102は実施例1と同様である。
 計画パターンノッチ選定部2001は、運転指令151と、基準値算出部101が出力する判断可否信号155を入力する。そして、計画パターンノッチ選定部2001では、判断可否信号155が判断可となっている時の運転指令151のデータを収集する。収集した当該列車の運転指令のブレーキ指令の中で、実施が少ないもの、あるいは、最も判定を実施していないブレーキ指令に対応するブレーキノッチのデータを抽出する。この抽出したブレーキノッチをブレーキノッチ1951として出力する。なお、実施が少ないブレーキノッチが複数ある場合には、複数のブレーキノッチを出力しても良い。
 自動運転システム1902は、ブレーキ装置健全性判断装置1901が出力されたブレーキノッチ1951を入力する。そして、入力したブレーキノッチ1951を優先的に用いた走行パターン作成する。走行パターンの作成方法は、既知の手法を用いて実施すれば良い。
 なお、上述した実施例6では、実施例1のブレーキ装置健全性判断装置103の構成をベースにした計画パターンノッチ選定部2001や自動運転システム1902を付加する構成を示した。しかし、実施例2~5のブレーキ装置健全性判断装置603、903、1302、1603の構成をベースとした場合でも、計画パターンノッチ選定部2001や自動運転システム1902を付加する構成の鉄道システムとしても良い。
 このように実施例6では、自動運転システムにおいて、実施が少ないブレーキノッチの情報を収集して、このブレーキノッチを優先的に使用する走行パターンを作成する。このことで、走行しながら実施が少ないブレーキノッチにおける空気ブレーキ圧の健全性を判断することが可能となる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 
 例えば、上述した実施形態では、AI(人工知能)技術を適用してもよい。AI技術を適用する方法としては、実際に入力されているデータに対してAI技術でチューニングする等である。例えば、図1では、空気ブレーキ圧基準値154の値について収集したデータにAIを利用してチューニングすることも可能である。この他、健全性判断157では、空気ブレーキ圧156と空気ブレーキ圧基準値154の差分をとって判定をするが、差分判定に使う閾値について収集したデータに基づきAIを利用してチューニングすることも可能である。
1…コンピュータシステム、2…プロセッサ、2A…処理装置、4…メモリ、6…メモリバス、8…I/Oバス、9…バスインターフェースユニット、10…I/Oバスインターフェースユニット、12…端末インターフェースユニット、14…ストレージインターフェースユニット、16…I/Oデバイスインターフェースユニット、18…ネットワークインターフェース、22…ストレージ装置、24…表示システム、26…表示装置、30…ネットワーク、50…潜在因子特定アプリケーション、101…基準値算出部、102…健全性判定部、103…ブレーキ装置健全性判断装置、151…運転指令、152…乗車率、153…回生ブレーキ力、154…空気ブレーキ圧基準値、155…判断可否信号(第1の判断可否信号)、156…空気ブレーキ圧、157…健全性判断、201…列車特性テーブル、202…予定減速度算出部、203…ブレーキ力算出部、204…空気ブレーキ力算出部、205…空気ブレーキ圧基準値計算部、206…判断可否判定部、251…減速度特性、252…重量特性、253…空気ブレーキ圧特性、254…予定減速度、255…ブレーキ力、256…空気ブレーキ力、345…空気ブレーキ圧、601…判断可否信号算出部、602…健全性判定部、603…ブレーキ装置健全性判断装置、651…第2の判断可否信号、901…基準値算出部、902…健全性判定部、903…ブレーキ装置健全性判断装置、951…第1の判断可否信号、1001…判断可否判定部、1301…基準値算出部、1302…ブレーキ装置健全性判断装置、1351…滑走情報、1352…第1の判断可否信号、1401…判断可否判定部、1601…判定閾値算出部、1602…健全性判定部、1603…ブレーキ装置健全性判断装置、1651…空気ブレーキ圧判定閾値、1901…ブレーキ装置健全性判断装置、1902…自動運転システム、1951…ブレーキノッチ、2001…計画パターンノッチ選定部

Claims (15)

  1.  列車の空気ブレーキ圧の健全性を判定するブレーキ装置健全性判断装置において、
     当該列車の運転指令と当該列車の乗車率と当該列車の回生ブレーキ力の情報を用いて当該列車の空気ブレーキ圧基準値を算出するとともに、当該列車の空気ブレーキ圧の健全性の判定を実施してよいかを示す判断可否信号を算出する基準値算出部と、
     前記判断可否信号の内容に応じて当該列車の空気ブレーキ圧の健全性の判定を実施し、前記判定は前記空気ブレーキ圧基準値と測定された当該列車の空気ブレーキ圧を比較して判定する健全性判定部と、
    を備えることを特徴とするブレーキ装置健全性判断装置。
  2.  請求項1に記載のブレーキ装置健全性判断装置において、
     前記基準値算出部は、前記判断可否信号を判断可とする場合、前記運転指令がブレーキ指令でかつ所定時間以上変動することがないことを条件に含み、
     前記健全性判定部は、前記判断可否信号が判断可の場合に当該列車の空気ブレーキ圧の健全性の判定を実施することを特徴とするブレーキ装置健全性判断装置。
  3.  請求項2に記載のブレーキ装置健全性判断装置において、
     前記基準値算出部は、前記判断可否信号を判断可とする場合、前記回生ブレーキ力の変動が所定時間内において所定範囲内であることを条件に含むことを特徴とするブレーキ装置健全性判断装置。
  4.  請求項2に記載のブレーキ装置健全性判断装置において、
     前記基準値算出部は、前記判断可否信号を判断可とする場合、当該列車が空転及び滑走しない状態であることを条件に含むことを特徴とするブレーキ装置健全性判断装置。
  5.  請求項1に記載のブレーキ装置健全性判断装置において、
     前記基準値算出部は、空気ブレーキ圧基準値の算出に、当該列車の減速度特性と、当該列車の重量特性と、当該列車のブレーキ圧特性を用いることを特徴とするブレーキ装置健全性判断装置。
  6.  請求項1に記載のブレーキ装置健全性判断装置において、
     前記健全性判定部による前記判定は、前記空気ブレーキ圧基準値と空気ブレーキ圧の差分の絶対値が、判定閾値以下の場合に正常であると判定し、判定閾値を超えた場合に異常であると判定することを特徴とするブレーキ装置健全性判断装置。
  7.  請求項6に記載のブレーキ装置健全性判断装置において、
     前記判定閾値は、前記運転指令と前記乗車率に応じて算出されることを特徴とするブレーキ装置健全性判断装置。
  8.  請求項1に記載のブレーキ装置健全性判断装置において、
     前記健全性判定部による前記判定は、前記空気ブレーキ圧基準値と前記空気ブレーキ圧の差分の絶対値が判定閾値を超えた回数が複数回継続した場合に異常であると判定し、複数回継続しない場合は正常と判定することを特徴とするブレーキ装置健全性判断装置。
  9.  列車の空気ブレーキ圧の健全性を判定するブレーキ装置健全性判断装置において、
     当該列車の運転指令と当該列車の乗車率と当該列車の回生ブレーキ力の情報を用いて当該列車の空気ブレーキ圧基準値を算出するとともに、当該列車の空気ブレーキ圧の健全性の判定を実施してよいかを示す第1の判断可否信号を算出する基準値算出部と、
     測定された当該列車の空気ブレーキ圧から空気ブレーキ圧の健全性の判断を実施してよいかを示す第2の判断可否信号を算出する判断可否信号算出部と、
     前記第1の判断可否信号と前記第2の判断可否信号の内容に応じて当該列車の空気ブレーキ圧の健全性の判定を実施し、前記判定は前記空気ブレーキ圧基準値と測定された当該列車の空気ブレーキ圧を比較して判定する健全性判定部と、
    を備えることを特徴とするブレーキ装置健全性判断装置。
  10.  請求項9に記載のブレーキ装置健全性判断装置において、
     前記健全性判定部は、前記第1の判断可否信号と前記第2の判断可否信号のいずれかが判断可の場合に空気ブレーキ圧の健全性を判定することを特徴とするブレーキ装置健全性判断装置。
  11.  請求項9に記載のブレーキ装置健全性判断装置において、
     前記健全性判定部は、前記第1の判断可否信号と前記第2の判断可否信号のいずれも判断可の場合に空気ブレーキ圧の健全性を判定することを特徴とするブレーキ装置健全性判断装置。
  12.  請求項11に記載のブレーキ装置健全性判断装置において、
     前記判断可否信号算出部は、列車のブレーキ圧力が0よりも大きく、かつ列車のブレーキ圧力変動が所定時間内において所定範囲内の場合に、前記第2の判断可否信号を判断可とすることを特徴とするブレーキ装置健全性判断装置。
  13.  列車の空気ブレーキ圧の健全性を判定するブレーキ装置健全性判断方法において、
     当該列車の運転指令と当該列車の乗車率と当該列車の回生ブレーキ力の情報を用いて当該列車の空気ブレーキ圧基準値を算出するとともに、当該列車の空気ブレーキ圧の健全性の判定を実施してよいかを示す判断可否信号を算出する基準値算出ステップと、
     前記判断可否信号の内容に応じて当該列車の空気ブレーキ圧の健全性の判定を実施し、前記判定は前記空気ブレーキ圧基準値と測定された当該列車の空気ブレーキ圧を比較して判定する健全性判定ステップと、
    を有することを特徴とするブレーキ装置健全性判断方法。
  14.  請求項13に記載のブレーキ装置健全性判断方法において、
     前記基準値算出ステップは、前記判断可否信号を判断可とする場合、前記運転指令がブレーキ指令でかつ所定時間以上変動することがないことを条件に含み、
     前記健全性判定ステップは、前記判断可否信号が判断可の場合に当該列車の空気ブレーキ圧の健全性の判定を実施することを含むことを特徴とするブレーキ装置健全性判断方法。
  15.  請求項13に記載のブレーキ装置健全性判断方法において、
     前記健全性判定ステップによる前記判定は、前記空気ブレーキ圧基準値と空気ブレーキ圧の差分の絶対値が、判定閾値以下の場合に正常であると判定し、判定閾値を超えた場合に異常であると判定することを特徴とするブレーキ装置健全性判断方法。
PCT/JP2022/037621 2021-10-29 2022-10-07 ブレーキ装置健全性判断装置およびブレーキ装置健全性判断方法 WO2023074319A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-177268 2021-10-29
JP2021177268A JP2023066591A (ja) 2021-10-29 2021-10-29 ブレーキ装置健全性判断装置およびブレーキ装置健全性判断方法

Publications (1)

Publication Number Publication Date
WO2023074319A1 true WO2023074319A1 (ja) 2023-05-04

Family

ID=86159282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037621 WO2023074319A1 (ja) 2021-10-29 2022-10-07 ブレーキ装置健全性判断装置およびブレーキ装置健全性判断方法

Country Status (2)

Country Link
JP (1) JP2023066591A (ja)
WO (1) WO2023074319A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58218464A (ja) * 1982-06-10 1983-12-19 Japanese National Railways<Jnr> 電磁直通ブレ−キの故障検知方法
JPS63315361A (ja) * 1987-06-17 1988-12-23 Mitsubishi Electric Corp 電気車用ブレ−キ制御装置
JP2000272501A (ja) * 1999-03-25 2000-10-03 Railway Technical Res Inst 車両用ブレーキ制御装置
JP2005280516A (ja) * 2004-03-30 2005-10-13 Nabtesco Corp 鉄道車両用ブレーキ制御装置の保守時期検知機構
JP2007112293A (ja) * 2005-10-20 2007-05-10 Toyota Motor Corp ブレーキ制御装置
JP2009154721A (ja) * 2007-12-26 2009-07-16 Toyota Motor Corp ブレーキ装置
JP2017159742A (ja) * 2016-03-08 2017-09-14 公益財団法人鉄道総合技術研究所 鉄道車両のブレーキ制御方法、ブレーキ制御装置及びブレーキ制御プログラム
JP2021075233A (ja) * 2019-11-13 2021-05-20 ナブテスコ株式会社 ブレーキ異常判定装置、ブレーキ状態記憶装置、異常判定方法、異常判定プログラム、及びブレーキ制御装置
JP2021115928A (ja) * 2020-01-24 2021-08-10 ナブテスコ株式会社 鉄道車両の中継弁の状態判定装置、鉄道車両の常用電磁弁の状態判定装置、鉄道車両の中継弁の状態判定プログラム、鉄道車両の常用電磁弁の状態判定プログラム、及び鉄道車両のブレーキ制御装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58218464A (ja) * 1982-06-10 1983-12-19 Japanese National Railways<Jnr> 電磁直通ブレ−キの故障検知方法
JPS63315361A (ja) * 1987-06-17 1988-12-23 Mitsubishi Electric Corp 電気車用ブレ−キ制御装置
JP2000272501A (ja) * 1999-03-25 2000-10-03 Railway Technical Res Inst 車両用ブレーキ制御装置
JP2005280516A (ja) * 2004-03-30 2005-10-13 Nabtesco Corp 鉄道車両用ブレーキ制御装置の保守時期検知機構
JP2007112293A (ja) * 2005-10-20 2007-05-10 Toyota Motor Corp ブレーキ制御装置
JP2009154721A (ja) * 2007-12-26 2009-07-16 Toyota Motor Corp ブレーキ装置
JP2017159742A (ja) * 2016-03-08 2017-09-14 公益財団法人鉄道総合技術研究所 鉄道車両のブレーキ制御方法、ブレーキ制御装置及びブレーキ制御プログラム
JP2021075233A (ja) * 2019-11-13 2021-05-20 ナブテスコ株式会社 ブレーキ異常判定装置、ブレーキ状態記憶装置、異常判定方法、異常判定プログラム、及びブレーキ制御装置
JP2021115928A (ja) * 2020-01-24 2021-08-10 ナブテスコ株式会社 鉄道車両の中継弁の状態判定装置、鉄道車両の常用電磁弁の状態判定装置、鉄道車両の中継弁の状態判定プログラム、鉄道車両の常用電磁弁の状態判定プログラム、及び鉄道車両のブレーキ制御装置

Also Published As

Publication number Publication date
JP2023066591A (ja) 2023-05-16

Similar Documents

Publication Publication Date Title
CN109689470B (zh) 异常诊断装置、异常诊断方法和计算机程序
CA2663585C (en) Diagnostic system and method for monitoring a rail system
CN104325973A (zh) 用于监测制动作用力的系统和方法
JP5827598B2 (ja) 故障確率算出装置及び故障確率算出方法並びに鉄道保守システム
KR102527319B1 (ko) 철도 차량의 부품 및 운영 환경 특징 벡터 정보 기반의 기계 학습 고장 진단 시스템 및 그 방법
Cunillera et al. A literature review on train motion model calibration
Pires et al. Indirect identification of wheel rail contact forces of an instrumented heavy haul railway vehicle using machine learning
CN114065358A (zh) 基于变形监测的大跨公轨同层斜拉桥运行舒适性评价方法
WO2023074319A1 (ja) ブレーキ装置健全性判断装置およびブレーキ装置健全性判断方法
KR20200058132A (ko) 철도차량 주요부품 및 시스템 진단장치
Pires et al. Measuring vertical track irregularities from instrumented heavy haul railway vehicle data using machine learning
Hoseinnezhad et al. Fusion of redundant information in brake-by-wire systems using a fuzzy voter.
CN109883598B (zh) 一种轨道机车牵引力的检测方法
CN108981906B (zh) 一种轨道波磨故障综合诊断方法
CN112158237B (zh) 集成tcms和ato功能的深度融合系统和列车
CN112722003B (zh) 列车脱轨风险的监测方法与设备
CN112990329A (zh) 一种系统异常诊断方法和装置
Pugi et al. Hardware-in-the-loop testing of on-board subsystems: Some case studies and applications
WO2011099181A1 (ja) 保守計画策定システム、保守計画策定装置、制御方法、及び記録媒体
EP3862238B1 (en) Direct and indirect methods for aircraft brake wear estimation
CN115503499A (zh) 磁悬浮列车垂向滑橇磨损监测方法、装置及系统
CN110304108B (zh) 能够防止丢轴的计轴系统及计轴设备
CN114323706B (zh) 一种列车ato控车故障检测方法、装置、设备及介质
Mosleh et al. Condition Monitoring of Rolling Stock Supported by Artificial Intelligence Technique
US20220194445A1 (en) Information collection system and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22884772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22884772

Country of ref document: EP

Kind code of ref document: A1