WO2023074283A1 - 健康状態判定方法、及び、健康状態判定システム - Google Patents
健康状態判定方法、及び、健康状態判定システム Download PDFInfo
- Publication number
- WO2023074283A1 WO2023074283A1 PCT/JP2022/037199 JP2022037199W WO2023074283A1 WO 2023074283 A1 WO2023074283 A1 WO 2023074283A1 JP 2022037199 W JP2022037199 W JP 2022037199W WO 2023074283 A1 WO2023074283 A1 WO 2023074283A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- health condition
- subject
- condition determination
- amount
- Prior art date
Links
- 230000036541 health Effects 0.000 title claims abstract description 204
- 238000000034 method Methods 0.000 title claims abstract description 69
- 230000000694 effects Effects 0.000 claims description 74
- 238000004364 calculation method Methods 0.000 claims description 26
- 230000007958 sleep Effects 0.000 claims description 11
- 230000000474 nursing effect Effects 0.000 claims description 7
- 230000003796 beauty Effects 0.000 claims description 6
- 230000035882 stress Effects 0.000 claims description 6
- 230000032683 aging Effects 0.000 claims description 4
- 230000037237 body shape Effects 0.000 claims description 4
- 201000010099 disease Diseases 0.000 claims description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 4
- 230000008921 facial expression Effects 0.000 claims description 4
- 230000003863 physical function Effects 0.000 claims description 4
- 235000012054 meals Nutrition 0.000 description 58
- 238000004891 communication Methods 0.000 description 27
- 238000010586 diagram Methods 0.000 description 23
- 238000012545 processing Methods 0.000 description 10
- 230000010365 information processing Effects 0.000 description 9
- 230000008859 change Effects 0.000 description 8
- 235000013305 food Nutrition 0.000 description 8
- 208000010877 cognitive disease Diseases 0.000 description 5
- 238000004590 computer program Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 208000027061 mild cognitive impairment Diseases 0.000 description 5
- 230000036772 blood pressure Effects 0.000 description 4
- 230000036760 body temperature Effects 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000029058 respiratory gaseous exchange Effects 0.000 description 4
- 238000012549 training Methods 0.000 description 4
- 208000036119 Frailty Diseases 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 206010003549 asthenia Diseases 0.000 description 3
- 235000019577 caloric intake Nutrition 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 230000003862 health status Effects 0.000 description 3
- 201000001421 hyperglycemia Diseases 0.000 description 3
- 238000010801 machine learning Methods 0.000 description 3
- 208000020925 Bipolar disease Diseases 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 208000028683 bipolar I disease Diseases 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000003205 fragrance Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000036544 posture Effects 0.000 description 2
- 230000000246 remedial effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000002792 vascular Effects 0.000 description 2
- 210000000707 wrist Anatomy 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 230000036528 appetite Effects 0.000 description 1
- 235000019789 appetite Nutrition 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000010219 correlation analysis Methods 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000036449 good health Effects 0.000 description 1
- 230000003054 hormonal effect Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000016087 ovulation Effects 0.000 description 1
- 230000005195 poor health Effects 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 208000019116 sleep disease Diseases 0.000 description 1
- 208000022925 sleep disturbance Diseases 0.000 description 1
- 230000003860 sleep quality Effects 0.000 description 1
- 230000004622 sleep time Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
Definitions
- the present invention relates to a health condition determination method and a health condition determination system.
- Patent Literature 1 discloses a biological information measuring device capable of quickly determining the condition of a person to be measured in a simple manner.
- the present invention provides a health condition determination method and a health condition determination system that can generate information that can be used for health condition determination.
- a health condition determination method includes a data acquisition step of acquiring first data and second data for a plurality of persons, each of which indicates an index related to a person's health or comfort felt by the person; Based on the first data and the second data for a plurality of people, a first index indicated by the first data and a second index indicated by the second data, which are reference characteristics for determining the health condition of the subject, The method includes a calculating step of calculating a reference characteristic indicating the relationship with the index, and a setting step of setting a criterion of the health condition of the subject with respect to the reference characteristic.
- a program according to one aspect of the present invention is a program for causing a computer to execute the health condition determination method.
- a health condition determination system includes an acquisition unit that acquires first data and second data for a plurality of people, each of which indicates an index related to a person's health or comfort felt by the person; Based on the first data and the second data for a person, a first index indicated by the first data of the person and a second index indicated by the second data are reference characteristics for determining the health condition of the subject. a calculation unit that calculates a reference characteristic indicating the relationship between the two indices and sets a criterion for determining the health condition of the subject with respect to the reference characteristic.
- a health condition determination method and a health condition determination system can generate information that can be used for health condition determination.
- FIG. 1 is a diagram showing a functional configuration of a health condition determination system according to an embodiment.
- FIG. 2 is a diagram showing a first example of a master curve.
- FIG. 3 is a flowchart of a master curve generation operation of the health condition determination system according to the embodiment.
- FIG. 4 is a first diagram for explaining another example of the master curve x and the master curve y.
- FIG. 5 is a second diagram for explaining another example of the master curve x and the master curve y.
- FIG. 6 is a diagram showing a second example of the master curve.
- FIG. 7 is a diagram showing a third example of the master curve.
- FIG. 8 is a diagram showing a fourth example of the master curve.
- FIG. 1 is a diagram showing a functional configuration of a health condition determination system according to an embodiment.
- FIG. 2 is a diagram showing a first example of a master curve.
- FIG. 3 is a flowchart of a master curve generation operation of the health condition determination system
- FIG. 9 is a flowchart of example 1 of the health condition determination operation of the health condition determination system according to the embodiment.
- FIG. 10 is a diagram showing an example of a notification screen.
- FIG. 11 is a flowchart of a health condition determination operation example 2 of the health condition determination system according to the embodiment.
- FIG. 12 is a diagram for explaining a method for predicting future health conditions.
- FIG. 13 is a diagram showing another example of the notification screen.
- FIG. 14 is a diagram for explaining a method of calculating a master curve for each class.
- FIG. 15 is a flow chart of a method for judging the state of health using the master curve calculated for each class.
- FIG. 16 is a flow chart of a method for judging the state of health using master curves calculated for each group.
- each figure is a schematic diagram and is not necessarily strictly illustrated. Moreover, in each figure, the same code
- FIG. 1 is a block diagram showing the functional configuration of the health condition determination system according to the embodiment.
- the health condition determination system 10 is a system for determining a subject's health condition. As shown in FIG. 1, the health condition determination system 10 includes a server device 20, a plurality of sensors 31, a first information terminal 40, a control device 51, an environment adjustment device 52, a sensor 53, a second An information terminal 60 and a third information terminal 70 are provided. Also shown in FIG. 1 are a plurality of facilities 30 and 50 . The facility 30 and the facility 50 are distinguished for convenience of explanation, but the facility 50 may be included in a plurality of facilities 30 .
- the server device 20 is a computer that performs information processing for determining the health condition of the subject.
- the server device 20 includes a communication section 21 , an information processing section 22 and a storage section 23 .
- the communication unit 21 enables the server device 20 to communicate with the plurality of sensors 31, the first information terminal 40, the control device 51, the second information terminal 60, and the third information terminal 70 via a wide area communication network 80 such as the Internet.
- a communication circuit (communication module) for performing The communication unit 21 is, for example, a wireless communication circuit that performs wireless communication, but may be a wired communication circuit that performs wired communication.
- a communication standard for communication performed by the communication unit 21 is not particularly limited.
- the information processing section 22 performs information processing for determining the health condition of the subject.
- the information processing section 22 is implemented by, for example, a microcomputer, but may be implemented by a processor.
- the information processing unit 22 includes an acquisition unit 24, a calculation unit 25, a determination unit 26, a notification unit 27, an update unit 28, and a control unit 29 as functional components.
- the functions of the acquisition unit 24, the calculation unit 25, the determination unit 26, the notification unit 27, the update unit 28, and the control unit 29 are obtained by, for example, the microcomputer or processor constituting the information processing unit 22 being stored in the storage unit 23. implemented by executing a computer program.
- the storage unit 23 is a storage device in which computer programs and the like executed by the information processing unit 22 are stored.
- the storage unit 23 is implemented by, for example, a semiconductor memory.
- the sensor 31 is provided in each of the plurality of facilities 30 and senses a person located within the facility 30 in a non-contact manner.
- the sensor 31 is, for example, a non-contact vital sensor such as a radio wave sensor, but may be a camera (image sensor) or the like.
- the sensor 31 may be a contact-type vital sensor such as a mat-shaped (sheet-shaped) sensor that performs sensing by contacting a person located in the facility 30, and the specific aspect of the sensor 31 is not particularly limited. .
- the sensor 31 is not a person but an environment. It may also be a sensor that senses the As a supplement to the method of acquiring parameters related to comfort, the parameters related to comfort may be acquired by manually inputting subjective evaluation results, or may be acquired based on the fact that the person feels uncomfortable that the setting of the environment adjustment device 52 has been changed. may be regarded as At least one sensor 31 may be provided for each of the plurality of facilities 30 , and two or more sensors 31 may be provided for one facility 30 .
- the first information terminal 40 is held by a person and measures the person's biometric data.
- the first information terminal 40 has, for example, a pulse wave sensor, a blood pressure sensor, a perspiration sensor, a body temperature sensor, a respiration sensor, an activity sensor, an electroencephalogram sensor, and the like.
- the first information terminal 40 measures biological data such as the subject's pulse wave, blood pressure, amount of perspiration, body temperature, respiration, amount of activity, and electroencephalogram.
- the first information terminal 40 is, for example, a wristband-type or wristwatch-type information terminal worn on the wrist of the subject, but may be an ear hook-type information terminal. Further, the first information terminal 40 is not limited to such a wearable information terminal, and may be a portable information terminal such as a smart phone or a tablet terminal having a sensor as described above.
- the control device 51 is provided in the facility 50 where the subject is located, and controls the environment adjustment device 52 based on the determination result of the subject's health condition.
- the control device 51 for example, an EMS (Energy Management System) controller having a function of managing power consumption in the facility 50 is used, but other controllers not having a function of managing power consumption are used. good too.
- EMS Electronicgy Management System
- the environment adjustment device 52 is provided in the facility 50 where the subject is located, and controls the environment around the subject.
- the environment adjustment device 52 is a lighting device, an air conditioner, a blower, a ventilator, a fragrance generator, a speaker device, and the like.
- the environment adjustment device 52 adjusts (controls) the light, temperature, airflow, carbon dioxide concentration, fragrance, sound, etc. around the subject.
- the facility 50 is a house
- the environment adjustment device 52 is installed in an indoor space such as a living room, a bathroom, a bedroom, or a toilet within the facility 50, and adjusts the environment in these indoor spaces.
- the sensor 53 is provided in the facility 50 where the subject is located, and senses the subject.
- the sensor 53 is, for example, a non-contact vital sensor such as a radio wave sensor, but may be a camera (image sensor) or the like.
- the sensor 53 may be a contact-type vital sensor such as a mat-shaped (sheet-shaped) sensor that performs sensing by contacting a person located in the facility 50, and the specific aspect of the sensor 53 is not particularly limited. .
- the sensor 53 may be a sensor that senses the environment instead of the person. At least one sensor 53 may be provided in the facility 50 , and two or more sensors 53 may be provided in one facility 50 .
- the second information terminal 60 is held by the subject and measures the biological data of the subject.
- the second information terminal 60 has, for example, a pulse wave sensor, a blood pressure sensor, a perspiration sensor, a body temperature sensor, a respiration sensor, an activity sensor, an electroencephalogram sensor, and the like. That is, the second information terminal 60 measures biological data such as the subject's pulse wave, blood pressure, amount of perspiration, body temperature, respiration, amount of activity, and electroencephalogram.
- the second information terminal 60 is, for example, a wristband-type or wristwatch-type information terminal that is worn on the wrist of the subject, but may be an ear hook-type information terminal. Further, the second information terminal 60 is not limited to such a wearable information terminal, and may be a portable information terminal such as a smart phone or a tablet terminal having the sensor as described above.
- the third information terminal 70 is an information terminal used by the subject as a user interface of the health condition determination system 10. Specifically, the third information terminal 70 is used by the subject to receive notification of the health condition determination result from the server device 20. It is an information terminal.
- the third information terminal 70 is, for example, a portable information terminal such as a smart phone or a tablet terminal, but may be a stationary information terminal such as a personal computer.
- the third information terminal 70 is, for example, a general-purpose information terminal, and by installing a dedicated application program, can receive notification (notification information described later) of the health condition determination result from the server device 20. .
- the second information terminal 60 and the third information terminal 70 are distinguished as separate information terminals, but the second information terminal 60 and the third information terminal 70 are separate information terminals. It is not necessary and may be a single information terminal.
- the health condition determination system 10 calculates a reference characteristic called a master curve in advance and stores the calculated master curve in the storage unit 23 of the server device 20 in order to determine the health condition of the subject.
- FIG. 2 is a diagram showing an example of a master curve.
- the master curve shown in FIG. 2 has a two-dimensional coordinate (in other words, a coordinate space ) is a curve showing the relationship between the amount of activity and the amount of meals. An operation for generating such a master curve will be described below.
- FIG. 3 is a flowchart of a master curve generation operation.
- the acquisition unit 24 of the server device 20 acquires the amount of activity of each of the plurality of people (S11).
- the amount of activity is an example of first data indicating a first index related to the subject's health or the subject's perceived comfort.
- the amount of activity can be rephrased as calorie consumption.
- the acquisition unit 24 acquires the amount of activity measured by the first information terminal 40 and received by the communication unit 21 from the first information terminal 40 .
- the acquisition unit 24 may acquire the amount of activity sensed by the sensor 31 (the amount of activity determined by the sensing result).
- the acquisition unit 24 acquires the amount of activity received by the communication unit 21 from the sensor 31 .
- the amount of activity here is, for example, the amount of activity in a predetermined period such as several hours or one day (24 hours).
- Meal quantity is an example of second data indicative of a second indicator of the subject's health or perceived comfort.
- the amount of meals can be rephrased as calorie intake.
- the acquisition unit 24 acquires the amount of meal measured by the first information terminal 40 and received by the communication unit 21 from the first information terminal 40 .
- a technology for estimating calorie intake by measuring the movement of bodily fluids into and out of body cells using a bioimpedance sensor possessed by a wristwatch-shaped wearable terminal is known. Use technology to measure (estimate) the amount of food you eat.
- the acquisition unit 24 detects the amount of meal sensed by the sensor 31 (meal determined by the sensing result). ) may be obtained. In this case, the acquisition unit 24 acquires the amount of meal received by the communication unit 21 from the sensor 31 . It should be noted that the amount of meals here is, for example, the amount of meals per meal or per day.
- the acquisition unit 24 acquires the amount of activity and the amount of meals at the same time (during the same communication), thereby obtaining the same It is possible to associate the amount of activity of a person with the amount of food consumed.
- the first information terminal 40 transmits the amount of activity and the amount of meals to which the identification information of the first information terminal 40 is assigned, the acquiring unit 24 acquires the amount of activity and the amount of meals of the same person based on the identification information. can be associated with the amount of
- the acquiring unit 24 acquires the amount of activity and the amount of meals at the same time (at the time of the same communication), thereby determining the amount of activity of the same person. Amount and amount of meal can be linked.
- the sensor 31 is provided in a private room or the like so that the sensor 31 senses the amount of activity and the amount of meals of a specific individual. Further, under such a premise, if the sensor 31 transmits the amount of activity and the amount of meals to which the identification information of the sensor 31 is assigned, the acquiring unit 24 can determine the activity of the same person based on the identification information. Amount and amount of meal can be linked.
- the identification information of the first information terminal 40 held by a person and the person are regarded as sensing targets.
- the amount of activity and the amount of meals can be linked.
- the amount of activity and the amount of meals be acquired from the first information terminal 40 or the sensor 31.
- another server device that manages information in which the amount of activity and the amount of meals are paired may provide the information to the server device 20, and the acquisition unit 24 may acquire the information.
- the acquisition unit 24 may acquire information in which the amount of activity and the amount of meals are paired and manually input to the server device 20 through a user interface device (not shown).
- the calculation unit 25 calculates a master curve based on the acquired amounts of activity and amounts of meals for a plurality of people (S13).
- a master curve is a reference characteristic for determining the health condition of a subject, and is an example of a reference characteristic indicating the relationship between a first index indicated by master curve x and a second index indicated by master curve y.
- the calculation unit 25 plots points determined by the linked activity amount and meal amount on the two-dimensional coordinates by the number of data of the acquired activity amount and meal amount (that is, by the number of people), A master curve is calculated by applying an approximation formula to the plotted points. There is no particular limitation on what kind of approximation formula is applied, and existing various approximation formulas may be applied.
- the calculation unit 25 sets an upper limit curve and a lower limit curve (shown in FIG. 3) with respect to the master curve (S14). For example, the calculation unit 25 determines that the upper limit curve and the lower limit curve are criteria used to determine the state of health using the master curve. The calculation unit 25 sets the upper limit curve and the lower limit curve for the master curve based on, for example, the variation (standard deviation) of the data on which the master curve is based.
- the calculator 25 may be manually input to the server device 20 by a designer of the health condition determination system 10 through a user interface device (not shown). Only one of the upper limit curve and the lower limit curve may be set depending on the type of master curve.
- the calculation unit 25 also stores the calculated master curve, the set upper limit curve, and the set lower limit curve in the storage unit 23 (S15).
- the health condition determination system 10 can calculate a master curve based on the amount of activity and the amount of meals for a plurality of people and store it in the storage unit 23.
- sensing is performed in a plurality of types of facilities 30 to determine the health condition. It is possible to calculate a master curve suitable for
- the multiple types of facilities 30 include hospitals, nursing care facilities, general housing, and training facilities, people hospitalized in hospitals, people living in nursing facilities, people living in houses, and training It is possible to acquire the amount of activity and the amount of meals of people who use the facility.
- the data on the amount of activity and the amount of food consumed by a person in good health to a person in poor health is available.
- a person requiring nursing care, a person undergoing treatment for an illness, an unaffected person, a healthy person, a person undergoing training (a healthier person), and an athlete Data on the amount of activity and the amount of food eaten (and even healthy people) are available. It can be said that the master curve calculated based on the amount of activity and the amount of food consumed by people in various health conditions is suitable for determining the health condition.
- the amount of activity is an example of master curve x (first data), and the amount of meals is an example of master curve y (second data).
- Other first health or comfort indicators may be used as master curve x, and other second health or comfort indicators may be used as master curve y.
- the master curve x and the master curve y it is sufficient to use two types of indexes that are not the same but have a certain degree of correlation.
- FIG. 4 is a diagram for explaining another example of the master curve x and the master curve y.
- the acquisition unit 24 acquires a plurality of types of parameters that can be used as the master curve x from the sensing results of the sensor 31. Specifically, LF (Low Frequency)/HF (High Frequency), heart rate variability parameters, and heart rate can be obtained based on RRI (RR Interval), which is the sensing result of the radio wave sensor.
- LF Low Frequency
- HF High Frequency
- RRI RR Interval
- LF/HF is the LF component (eg, 0.05 Hz to 0.15 Hz component) and HF component (eg, 0.15 Hz to 0.40 Hz component) of the power spectrum obtained by frequency analysis of RRI. is a parameter that indicates the ratio of
- the acquiring unit 24 acquires LF/HF as the master curve x, as the master curve y, the parameters related to comfort, the parameters related to the degree of relaxation, the parameters related to stress, the parameters related to manic depression, and the degree of concentration parameters related to sleep, parameters related to frailty, parameters related to MCI (Mild Cognitive Impairment), parameters related to vascular age, or parameters related to ovulation day.
- MCI Mild Cognitive Impairment
- parameters related to vascular age or parameters related to ovulation day.
- These parameters may be acquired based on the sensing results of the sensor 31, measured by the first information terminal 40, the results of subjective evaluations (questionnaire etc.), the results of predetermined tests, etc. may be obtained based on
- the heart rate variability parameter is a time domain parameter determined based on the RRI.
- the heart rate variability parameter here is SDNN (Standard deviation of all RR interval) or RMSSD (Root Mean Square of Successive Differences).
- SDNN Standard deviation of all RR interval
- RMSSD Root Mean Square of Successive Differences
- the acquisition unit 24 acquires a parameter related to hypertension, a parameter related to hyperglycemia, or a parameter related to high lipids as a master curve y. These parameters may be obtained based on the sensing results of the sensor 31, measured by the first information terminal 40, or obtained based on the results of subjective evaluation (questionnaire, etc.).
- the heart rate is a parameter that indicates the number of times the heart beats per minute, determined based on the RRI.
- the acquisition unit 24 acquires a parameter related to the amount of activity, a parameter related to the quality of meals, or the like as the master curve y. These parameters may be obtained based on the sensing results of the sensor 31, measured by the first information terminal 40, or obtained based on the results of subjective evaluation (questionnaire, etc.).
- FIG. 5 is a diagram for explaining still another example of the master curve x and the master curve y.
- FIG. 5 shows a set of two parameters that can be used as a master curve x and a master curve y (either can be the master curve x(y)).
- Such parameter sets include comfort-related and relaxation-related parameter sets.
- a set of parameters includes any one of sleep-related parameters, activity level, food quality, stress, MCI, hyperglycemia (diabetes), and hormonal cancer (prostate cancer, breast cancer). contains a set of parameters related to
- the set of parameters as described above also includes a set of parameters related to any of MCI and hyperglycemia and a set of parameters related to frailty.
- FIG. 6 is a diagram showing an example of a master curve showing the relationship between LF/HF and sleep quality (sleep depth).
- FIG. 7 is a diagram showing an example of a master curve showing the relationship between the number of hours of sleep per day for a person in their 50s or younger and the incidence of MCI when the person reaches the age of 60 or older. , the horizontal axis indicates that the sleep time is shorter toward the right side.
- FIG. 8 is a diagram showing an example of a master curve showing the relationship between LF/HF and the incidence of manic depression.
- the master curve x may be a parameter indicating the first index related to human health (including beauty) or comfort felt by a person.
- a parameter relating to at least one of skin, skin, and facial expression may be used.
- the master curve x may be a parameter indicating a human physiological index.
- the master curve y may be a parameter indicating a second index related to human health (including beauty) or comfort felt by a person.
- a parameter relating to at least one of function, body type, aging, pre-disease, disease, treatment, and nursing may be used.
- the health condition determination system 10 acquires the first data and the second data for a plurality of people, each indicating an index related to the health of a person or the comfort felt by a person, and Based on the first data and the second data, a master curve ( Reference characteristics) are calculated, and an upper limit curve and a lower limit curve, which are criteria for judging the subject's health condition, are set with respect to the master curve.
- the calculated master curve, the set upper limit curve, and the set lower limit curve are stored in the storage unit 23 .
- the reference characteristic does not necessarily have to be a curve (curve), and may be a straight line. The same applies to the judgment criteria.
- the master curve may also be calculated (generated) by a designer or the like of the health condition determination system 10 and stored (registered) in the storage unit 23 .
- Health condition determination operation example 1 The health condition determination system 10 can use the calculated master curve to determine the health condition of the subject. An example 1 of the health condition determination operation will be described below.
- FIG. 9 is a flow chart of Example 1 of the health condition determination operation.
- the acquisition unit 24 of the server device 20 acquires the subject's activity level (S21).
- the amount of activity here is an example of the first determination target data.
- the acquisition unit 24 acquires the amount of activity measured by the second information terminal 60 and received by the communication unit 21 from the second information terminal 60 .
- the acquisition unit 24 may acquire the amount of activity sensed by the sensor 53 (the amount of activity determined by the sensing result).
- the acquisition unit 24 acquires the amount of activity received by the communication unit 21 from the sensor 53 .
- the acquisition unit 24 may acquire from the third information terminal 70 the amount of activity manually input to the third information terminal 70 by the subject.
- the acquisition unit 24 acquires the amount of food eaten by the subject (S22).
- the amount of meals here is an example of the second determination target data.
- the acquisition unit 24 acquires the amount of meal measured by the second information terminal 60 and received by the communication unit 21 from the second information terminal 60 .
- the sensor 53 is a camera or the like installed at the dining area of the facility 50 and can sense (estimate) the amount of meal
- the acquisition unit 24 detects the amount of meal sensed by the sensor 53 (meal determined by the sensing result). ) may be obtained.
- the acquisition unit 24 acquires the amount of meal received by the communication unit 21 from the sensor 53 .
- the acquisition unit 24 may acquire from the third information terminal 70 the meal amount manually input to the third information terminal 70 by the subject.
- the determination unit 26 determines the subject's A health condition is determined (S23). For example, the determination unit 26 determines whether the position of the target point indicating the acquired amount of activity and meal of the subject is within a predetermined range between the upper limit curve and the lower limit curve set for the master curve. determine whether
- the determination unit 26 determines that the subject's health condition is good when the position of the target point is within the predetermined range, and determines that the subject's health is good when the target point is outside the predetermined range. It is determined that the condition is not good (for example, the health needs attention). If a plurality of sets of upper limit curves and lower limit curves are set for one master curve, the determination unit 26 can finely determine the subject's health condition in three stages or more.
- the notification unit 27 notifies (in other words, alerts) the subject of the health condition based on the determination result in step S23 (S24). Specifically, the notification unit 27 generates notification information and causes the communication unit 21 to transmit the generated notification information to the third information terminal 70 .
- a notification screen as shown in FIG. 10 is displayed on the display unit (display) of the third information terminal 70 that has received the notification information.
- FIG. 10 is a diagram showing an example of a notification screen.
- the notification screen includes recommendation information for the target person.
- the recommendation information is information for recommending at least one of exercise, meals, relaxation, hospital referral, behavior before bed, and bedding to the subject.
- a plurality of types of recommendation information are prepared in the storage unit 23 in advance, and selected from a plurality of types based on, for example, the position of the target point in two-dimensional coordinates (in which range of two-dimensional coordinates the target point is located).
- the processing in which the third information terminal 70 receives the notification information and displays the notification screen based on the received notification information is realized, for example, by pre-installing a dedicated application program in the third information terminal 70 .
- the master curve and target points may be displayed on the notification screen. This allows the subject to easily grasp the difference between the target point and the master curve.
- the notification in step S24 is performed regardless of the determination result (good or bad health condition) in step S23, but is selectively performed only when it is determined in step S23 that the subject's health condition is not good. may be broken.
- the amount of activity acquired in step S21 is the new first data after the master curve is calculated based on the flowchart of FIG.
- the amount of meal acquired in step S22 can be said to be new second data after the master curve is calculated based on the flowchart of FIG.
- the update unit 28 updates the master curve based on the acquired new first data and new second data (S25). For example, the update unit 28 recalculates the master curve by processing all the data obtained by adding the new first data and second data to the previous first data and second data. Note that the update of the master curve may be performed each time new first data and new second data are accumulated to some extent, and is performed each time new first data and new second data are obtained. is not required.
- the health condition determination system 10 acquires the first determination target data and the second determination target data, each indicating an index related to the subject's health or comfort felt by the subject.
- the health condition determination system 10 determines the health condition of the subject based on the acquired first determination target data and second determination target data and a predetermined master curve, and determines the subject's health condition based on the determination result. can be notified to
- the determination of the subject's health condition and notification to the subject are performed at predetermined time intervals.
- the predetermined time interval at this time is changed, for example, according to the parameter employed as the master curve y (second data).
- determination of the subject's health condition and notification to the subject using a master curve in which parameters related to comfort are adopted as the master curve y are performed at time intervals of, for example, about one to several hours.
- determination of the subject's health condition and notification to the subject using a master curve in which parameters related to physical condition, concentration, relaxation, stress, beauty, or slimming are adopted as the master curve y , for example, at intervals of about one day to one week.
- FIG. 11 is a flowchart of a health condition determination operation example 2.
- Steps S21 to S23 are the same as in example 1 of the health condition determination operation.
- the control unit 29 of the server device 20 controls the surrounding environment of the subject based on the determination result in step S23 (S26). Specifically, the control unit 29 generates control information for controlling the environment adjustment device 52 and causes the communication unit 21 to transmit the generated control information to the control device 51 .
- the control device 51 controls the environment adjustment device 52 based on the received control information. That is, the control unit 29 (control device 51) controls the environment around the subject. Algorithms indicating how to control the environment adjustment device 52 based on the determination result are stored in advance in the storage unit 23 .
- the control unit 29 causes the environment adjusting device 52 to Generates a scent that is said to have the effect of enhancing In other words, the control unit 29 (control device 51) attempts to increase the subject's appetite with the scent.
- the control of the environment adjustment device 52 is performed to improve the health condition of the subject. Therefore, when it is determined in step S23 that the subject's health condition is good (when it is determined that the target point is within the predetermined range), the process of controlling the environment adjustment device 52 may be omitted. .
- step S25 updates the master curve as necessary (S25).
- the processing in step S25 is the same as in the health condition determination operation example 1.
- the health condition determination system 10 determines the health condition of the subject based on the obtained first determination target data and second determination target data, and a predetermined master curve, and determines The subject's surrounding environment can be controlled based on the results.
- the health condition determination operation example 1 and the health condition determination operation example 2 may be combined. For example, as a result of one determination process, both the notification to the subject described in the example 1 of the health condition determination operation and the control of the environment around the subject described in the example 2 of the health condition determination operation are performed. may be broken.
- FIG. 12 is a diagram for explaining a method for predicting future health conditions.
- the acquisition unit 24 of the server device 20 acquires the subject's activity level and meal amount at predetermined time intervals.
- the determination unit 26 identifies a plurality of target points (groups of activity amount and meal amount) on the two-dimensional coordinates, and predicts the subject's future health condition based on the time-series change of the target points. can be done.
- the target point (2) later in the time series is closer to the predetermined range near the master curve than the target point (1), and if this trend continues, the target point will be It is considered that it is located within the predetermined range of (3). In such a case, the determination unit 26 can predict that improvement will be seen even if the health condition is not good at present.
- the determination unit 26 can also predict that even if the health condition is good at present, there is a tendency for deterioration (the target point will deviate from the predetermined range in the future).
- a method of predicting (determining) the health condition based on the slope of the master curve by comparing the slope of the change in the health condition (change in the target point) with the slope of the master curve is also conceivable.
- the health condition determination system 10 determines the future health condition of the subject based on the master curve and the plurality of target points determined by the plurality of sets of the first data and the second data acquired at mutually different timings. can be predicted.
- the notification unit 27 may notify the prediction result of the future health condition, and the control unit 29 controls the environment to suppress the deterioration of the health condition when the future deterioration of the health condition is predicted.
- supplementary recommendation information is provided when a target point such as (1) in FIG. 12 is obtained.
- Subjects whose points of interest are located at locations such as (1) in FIG. 12 and who have symptoms of sleep disturbance are at great health risk in the future if their health conditions do not improve.
- a notification screen as shown in FIG. 13 is displayed on the display unit of the third information terminal 70 used by such a subject.
- FIG. 13 is a diagram showing an example of a notification screen.
- the health condition determination system 10 has the advantage of being able to immediately provide specific remedial measures.
- the calculation unit 25 may classify the sets of the first data and the second data for a plurality of persons into classes, and calculate the master curve for each class.
- FIG. 14 is a diagram for explaining a method of calculating a master curve for each class.
- the calculation unit 25 divides the sets of the amount of activity and the amount of meals for a plurality of people into a plurality of classes (class A to class O in the example of FIG. 14) according to the activity amount (second data), A master curve is calculated for each class and stored in the storage unit 23 .
- Each master curve for each class is a curve showing the relationship between the amount of activity and the amount of meals.
- FIG. 15 is a flow chart of a method for judging the state of health using the master curve calculated for each class.
- the acquisition unit 24 of the server device 20 acquires the subject's activity level (S31) and acquires the subject's meal amount (S32).
- the processing of steps S31 and S32 is the same as the processing of steps S21 and S22.
- the determining unit 26 determines which of class A to class O the subject belongs to (S33). Then, the determination unit 26 selects the master curve corresponding to the subject's class from among the master curves (a plurality of master curves) for each class stored in advance in the storage unit 23 (S34), and the master curve acquired in step S31. Based on the subject's activity level obtained, the subject's meal amount obtained in step S32, and the master curve selected in step S34, the subject's health condition is determined (S35).
- the health condition determination method is the same as the method described in step S23.
- the health condition determination system 10 selects one master curve from a plurality of predetermined master curves based on the acquired second data, and selects the acquired first data and the first data.
- the health condition of the subject is determined based on the two data and one selected master curve.
- the health condition determination system 10 selects a master curve suitable for the subject from among a plurality of master curves prepared for each class determined according to the second data, and uses the selected reference characteristics to determine the health condition of the subject. By determining, it is possible to improve the determination accuracy of the health condition.
- the calculation unit 25 may divide them into a plurality of classes according to the first data. .
- the health condition determination system 10 may select one master curve from a plurality of predetermined master curves based on one of the acquired first data and second data.
- a master curve class may also correspond to, for example, an age group.
- each of Class A to Class O in FIG. 14 may correspond to an age group.
- the method for determining the state of health in such a case will be supplemented below.
- the subject's position on the master curve belongs to the 55-59 year old class even though the subject's actual age is equivalent to 40-44 years old.
- the notification unit 27 sets the age range to 40 to 44 years old.
- a notification including recommended information for corresponding amount of meals or amount of activity is provided.
- the recommendation information in this case is information for making at least one of a recommendation to increase or decrease the amount of meals, and a recommendation to increase or decrease the amount of activity.
- the notification unit 27 Notification including recommended information is provided so that the amount of meals or the amount of activity of a person aged 40 to 44 is appropriate.
- Classification may also be based on lifestyle.
- the lifestyle can be determined, for example, by clustering analysis based on the daily variation of LF/HF. Also, the frequency of going out, the family type such as the number of family members living together, or the occupation may be used as an indicator of lifestyle, and classification may be performed based on these indicators.
- the calculation unit 25 calculates a master curve for each class, an upper limit curve for each class (for example, master curve + 1 ⁇ ), and a lower limit curve for each class (for example, , master curve -1 ⁇ ).
- the calculation unit 25 calculates a master curve by connecting the master curves for each class using a curve fitting technique.
- the calculation unit 25 calculates the upper limit curve by connecting the upper limit curve for each class using the curve fitting method, and calculates the lower limit curve by connecting the lower limit curve for each class using the curve fitting method. can be done.
- the calculator 25 may apply the above method only to the master curve.
- the calculation unit 25 can calculate curves of 1 ⁇ above and below as the upper limit curve and the lower limit curve based on the calculated master curve.
- the calculator 25 adds the items in FIG. 4 or 5 as parameters and performs multiple regression analysis, partial correlation analysis, or the like to identify the change factor.
- the calculation unit 25 removes the identified change factor and calculates (reconstructs) the master curve again. If the change factor has a correlation with an environmental change or the like, it can be a finding for a new improvement menu or recommendation.
- the first data and second data of the same person for calculating the master curve are linked by at least one of the identification information of the sensor 31 and the identification information of the first information terminal 40. rice field.
- the calculation unit 25 calculates a plurality of persons for each attribute indicated by the attribute information. It is possible to group them and calculate a master curve for each group.
- the groups here are, for example, groups classified by age group and sex.
- Each master curve for each group is a curve indicating the relationship between the amount of activity and the amount of meals, and is stored in the storage unit 23 in advance.
- FIG. 16 is a flow chart of a method for judging the state of health using master curves calculated for each group.
- the acquisition unit 24 of the server device 20 acquires the subject's activity level (S41) and acquires the subject's meal amount (S42).
- the processing of steps S41 and S42 is the same as the processing of steps S21 and S22.
- the acquisition unit 24 acquires the subject's attribute information (S43). For example, a subject performs user registration in advance in order to receive health status notification or environment control services.
- the acquisition unit 24 can acquire the subject's attribute information from the storage unit 23 .
- the determination unit 26 determines the target person's group based on the target person's attribute information acquired in step S43 (S44). Then, the determination unit 26 selects the master curve corresponding to the group of the subject from among the master curves (a plurality of master curves) for each group stored in advance in the storage unit 23 (S45), and the master curve acquired in step S41. Based on the subject's activity level obtained, the subject's meal amount obtained in step S42, and the master curve selected in step S45, the subject's health condition is determined (S46).
- the health condition determination method is the same as the method described in step S23. Although not shown in FIG. 16, thereafter, notification to the subject by the notification unit 27, control of the environment for the subject by the control unit 29, updating of the master curve by the updating unit 28, and the like are performed as appropriate.
- the health condition determination system 10 selects one master curve from a plurality of predetermined master curves based on the acquired attribute information, and acquires the first data and the second data. Based on the data and one selected master curve, the subject's health is determined.
- the health condition determination system 10 selects a master curve suitable for the subject from a plurality of master curves prepared for each attribute, and determines the health condition of the subject using the selected reference characteristics. It is possible to improve the state determination accuracy.
- the storage unit 23 may store a plurality of types of master curves in which at least one of the master curve x (first data) and the master curve y (second data) is different.
- the multiple types of master curves are calculated individually, but they can also be calculated using the sensing result of one sensor 31 .
- the calculation unit 25 uses this to obtain a plurality of types of first data.
- a plurality of types of master curves corresponding to the first data can be calculated.
- the determination unit 26 can determine the subject's health condition using each of the multiple types of master curves. At this time, the subject's health condition is determined at predetermined time intervals (units such as hours/days/weeks/months/years) suitable for determination using the master curve according to the type of master curve. .
- the health condition determination system 10 may store (accumulate) the first data of the subject, the second data of the subject, and the determination result of the health condition of the subject in the storage unit 23 in association with each other. Once the data for multiple subjects is accumulated, these data can be used as training data for building machine learning models for determining health status.
- the present invention may be implemented as a learning data generation method for building a machine learning model.
- the health condition determination system 10 uses the machine learning model constructed in this way to determine the health condition of the subject, and notifies the determination result, or controls the environment based on the determination result. may be implemented.
- the health condition determination method executed by a computer such as the health condition determination system 10 collects first data and second data, each of which indicates an index related to the health of a person or the comfort felt by a person, for a plurality of persons.
- a data acquisition step for acquiring It includes a calculation step of calculating a reference characteristic indicating the relationship with the second index indicated by the 2 data, and a setting step of setting the criteria for judging the health condition of the subject with respect to the reference characteristic.
- the reference characteristic corresponds to the master curve in the above embodiment
- the criterion corresponds to the upper limit curve and the lower limit curve in the above embodiment.
- Such a health condition determination method can calculate a reference characteristic indicating the relationship between the first index indicated by the first data and the second index indicated by the second data. It can be said that such a reference characteristic is information that can be used to determine a health condition. That is, the health condition determination method can generate information that can be used to determine the health condition.
- each of the plurality of persons is sensed by the sensor 31 provided in each of the plurality of types of facilities 30 when positioned inside one of the plurality of types of facilities 30, and the first data is the sensor 31 sensing results.
- Such a health condition determination method can calculate a reference characteristic based on the sensing result of the sensor 31.
- the first data is measured by the first information terminal 40 held by each of the plurality of people.
- Such a health condition determination method can calculate the reference characteristics measured by the first information terminal 40 .
- multiple types of first data are acquired based on the sensing results of the sensor 31, and in the calculation step, multiple reference characteristics corresponding to the multiple types of first data are calculated.
- Such a health condition determination method can efficiently calculate reference characteristics.
- the first data relates to at least one of heartbeat, pulse, flow line, amount of activity, sleep, posture, skin, skin, and facial expression.
- Such a health condition determination method can calculate reference characteristics related to at least one of heart rate, pulse, flow line, amount of activity, sleep, posture, skin, skin, and facial expression.
- the health condition determination method further includes an attribute information acquisition step of acquiring attribute information for each of a plurality of persons.
- attribute information acquisition step a plurality of persons are grouped by attributes indicated by the attribute information, and the reference characteristics are calculated for each group.
- Such a health condition determination method can calculate reference characteristics for each group based on attribute information.
- the health condition determination method further includes, after the reference characteristics are calculated, a new data acquisition step of acquiring new first data and new second data; and an updating step of updating the reference characteristic based on the second data.
- Such a health condition determination method can update the calculated reference characteristics.
- the health condition determination method further includes a determination target data acquisition step of acquiring first determination target data that is the first data of the subject and second determination target data that is the second data of the subject; A determination step of determining the health condition of the subject based on the acquired first determination target data and second determination target data and the calculated reference characteristics.
- Such a health condition determination method can determine the subject's health condition based on the calculated reference characteristics.
- the health condition determination method further includes a control step of controlling the surrounding environment of the subject based on the determination result in the determination step.
- Such a health condition determination method can control the surrounding environment of the subject based on the determination result of the subject's health condition.
- the health condition determination method further includes a notification step of notifying the subject based on the determination result in the determination step.
- Such a health condition determination method can notify the subject based on the determination result of the subject's health condition.
- the notification includes recommendation information for the target person.
- Such a health condition determination method can make recommendations to the target person.
- the second data relates to at least one of comfort, physical condition, stress, beauty, slimming, sleep, physical function, body shape, aging, pre-disease, illness, treatment, and nursing.
- Such a health condition determination method calculates a reference characteristic related to at least one of comfort, physical condition, stress, beauty, slimming, sleep, physical function, body shape, aging, pre-illness, illness, treatment, and nursing. can be done.
- the health condition determination system 10 includes an acquisition unit 24 for acquiring first data and second data for a plurality of people, each of which indicates an index related to a person's health or comfort felt by a person; Based on the first data and the second data, a reference characteristic for determining the health condition of the subject, which indicates the relationship between the first index indicated by the first data and the second index indicated by the second data. a calculation unit 25 for calculating and setting criteria for determining the health condition of the subject with respect to the reference characteristics.
- Such a health condition determination system 10 can calculate a reference characteristic indicating the relationship between the index indicated by the first data and the index indicated by the second data. Such reference characteristics can be said to be information that can be used to determine the state of health. In other words, the health condition determination system 10 can generate information that can be used for health condition determination.
- the health condition determination system was realized by a plurality of devices, but it may be realized as a single device.
- the health condition determination system may be implemented as a single device corresponding to the server device.
- the components (especially functional components) included in the health condition determination system may be distributed to the multiple devices in any way.
- the processing executed by a specific processing unit may be executed by another processing unit.
- the order of multiple processes may be changed, and multiple processes may be executed in parallel.
- each component may be realized by executing a software program suitable for each component.
- Each component may be realized by reading and executing a software program recorded in a recording medium such as a hard disk or a semiconductor memory by a program execution unit such as a CPU or processor.
- each component may be realized by hardware.
- Each component may be a circuit (or integrated circuit). These circuits may form one circuit as a whole, or may be separate circuits. These circuits may be general-purpose circuits or dedicated circuits.
- the present invention may be implemented as a health condition determination method, or may be implemented as a program (in other words, a computer program product) for causing a computer to execute the health condition determination method, or such a program may be implemented as a computer-readable non-transitory recording medium on which is recorded.
Landscapes
- Medical Informatics (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Health & Medical Sciences (AREA)
- Pathology (AREA)
- Databases & Information Systems (AREA)
- Data Mining & Analysis (AREA)
- Biomedical Technology (AREA)
- Epidemiology (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Medical Treatment And Welfare Office Work (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
健康状態判定方法は、各々が人の健康または人が感じる快適性に関する指標を示す第1データ及び第2データを複数人分取得するデータ取得ステップ(S11、S12)と、取得された複数人分の第1データ及び第2データに基づいて、対象者の健康状態を判定するための基準特性であって第1データが示す第1指標と第2データが示す第2指標との関係を示す基準特性を算出する算出ステップ(S13)と、対象者の健康状態の判定基準を、基準特性に対して設定する設定ステップ(S14)とを含む。
Description
本発明は、健康状態判定方法、及び、健康状態判定システムに関する。
近年、健康への関心が高まっている。人の健康状態を把握するための技術として、特許文献1には、簡易な方式で被測定者の状態を早期に判断することが可能な生体情報測定装置が開示されている。
本発明は、健康状態の判定に使用可能な情報を生成することができる健康状態判定方法及び健康状態判定システムを提供する。
本発明の一態様に係る健康状態判定方法は、各々が人の健康または前記人が感じる快適性に関する指標を示す第1データ及び第2データを複数人分取得するデータ取得ステップと、取得された複数人分の前記第1データ及び前記第2データに基づいて、対象者の健康状態を判定するための基準特性であって前記第1データが示す第1指標と前記第2データが示す第2指標との関係を示す基準特性を算出する算出ステップと、前記対象者の健康状態の判定基準を、前記基準特性に対して設定する設定ステップとを含む。
本発明の一態様に係るプログラムは、前記健康状態判定方法をコンピュータに実行させるためのプログラムである。
本発明の一態様に係る健康状態判定システムは、各々が人の健康または前記人が感じる快適性に関する指標を示す第1データ及び第2データを複数人分取得する取得部と、取得された複数人分の前記第1データ及び前記第2データに基づいて、対象者の健康状態を判定するための基準特性であって人の前記第1データが示す第1指標と前記第2データが示す第2指標との関係を示す基準特性を算出し、対象者の健康状態の判定基準を、基準特性に対して設定する算出部とを備える。
本発明の一態様に係る健康状態判定方法及び健康状態判定システムは、健康状態の判定に使用可能な情報を生成することができる。
以下、実施の形態について、図面を参照しながら具体的に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
なお、各図は模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付し、重複する説明は省略または簡略化される場合がある。
(実施の形態)
[構成]
まず、実施の形態に係る健康状態判定システムの構成について説明する。図1は、実施の形態に係る健康状態判定システムの機能構成を示すブロック図である。
[構成]
まず、実施の形態に係る健康状態判定システムの構成について説明する。図1は、実施の形態に係る健康状態判定システムの機能構成を示すブロック図である。
健康状態判定システム10は、対象者の健康状態を判定するためのシステムである。図1に示されるように、健康状態判定システム10は、サーバ装置20と、複数のセンサ31と、第1情報端末40と、制御装置51と、環境調整装置52と、センサ53と、第2情報端末60と、第3情報端末70とを備える。また、図1では複数の施設30及び施設50も図示されている。施設30及び施設50は説明の便宜上区別されているが、複数の施設30に施設50が含まれてもよい。
サーバ装置20は、対象者の健康状態を判定するための情報処理を行うコンピュータである。サーバ装置20は、通信部21と、情報処理部22と、記憶部23とを備える。
通信部21は、サーバ装置20が、複数のセンサ31、第1情報端末40、制御装置51、第2情報端末60、及び、第3情報端末70とインターネットなどの広域通信ネットワーク80を介して通信を行うための通信回路(通信モジュール)である。通信部21は、例えば、無線通信を行う無線通信回路であるが、有線通信を行う有線通信回路であってもよい。通信部21が行う通信の通信規格については特に限定されない。
情報処理部22は、対象者の健康状態を判定するための情報処理を行う。情報処理部22は、例えば、マイクロコンピュータによって実現されるが、プロセッサによって実現されてもよい。情報処理部22は、機能的な構成要素として、取得部24、算出部25、判定部26、通知部27、更新部28、及び、制御部29を備える。取得部24、算出部25、判定部26、通知部27、更新部28、及び、制御部29の機能は、例えば、情報処理部22を構成するマイクロコンピュータまたはプロセッサ等が記憶部23に記憶されたコンピュータプログラムを実行することによって実現される。
記憶部23は、情報処理部22によって実行されるコンピュータプログラムなどが記憶される記憶装置である。記憶部23は、例えば、半導体メモリによって実現される。
センサ31は、複数の施設30のそれぞれに設けられ、施設30内に位置する人を非接触でセンシングする。センサ31は、例えば、電波センサなどの非接触型のバイタルセンサであるが、カメラ(画像センサ)などであってもよい。センサ31は、マット状(シート状)のセンサなど、施設30内に位置する人に接触してセンシングを行う接触型のバイタルセンサであってもよく、センサ31の具体的態様については特に限定されない。後述のように、マスターカーブの生成等に人が感じる快適性に関するパラメータ(例えば、人が快適か不快かを2段階以上で示すパラメータ)が用いられるような場合、センサ31は、人ではなく環境をセンシングするセンサであることもある。快適性に関するパラメータの取得方法について補足すると、快適性に関するパラメータは、主観評価結果の手動入力によって取得されてもよいし、環境調整装置52が設定変更されたことを人が不快と感じたこととみなしてもよい。なお、センサ31は、複数の施設30のそれぞれに少なくとも1つ設けられればよく、1つの施設30に対して2つ以上設けられてもよい。
第1情報端末40は、人に保持され、当該人の生体データを計測する。第1情報端末40は、例えば、脈波センサ、血圧センサ、発汗センサ、体温センサ、呼吸センサ、活動量センサ、及び、脳波センサなどを有する。つまり、第1情報端末40は、対象者の脈波、血圧、発汗量、体温、呼吸、活動量、及び、脳波などの生体データを計測する。第1情報端末40は、例えば、対象者の手首に装着されるリストバンド形または腕時計形の情報端末であるが、イヤーフック形の情報端末であってもよい。また、第1情報端末40は、このようなウェアラブル型の情報端末に限定されず、上記のようなセンサを有する、スマートフォンまたはタブレット端末などの携帯型の情報端末であってもよい。
制御装置51は、対象者が位置する施設50に設けられ、対象者の健康状態の判定結果に基づいて環境調整装置52を制御する。制御装置51としては、例えば、施設50における消費電力量を管理する機能を有するEMS(Energy Management System)コントローラなどが使用されるが、消費電力を管理する機能を有しない他のコントローラが使用されてもよい。
環境調整装置52は、対象者が位置する施設50に設けられ、対象者の周囲の環境を制御する。環境調整装置52は、具体的には、照明装置、空調装置、送風装置、換気装置、香り発生装置、及び、スピーカ装置などである。つまり、環境調整装置52は、対象者の周囲の、光、温度、気流、二酸化炭素濃度、香り、及び、音などを調整(制御)する。施設50が住宅である場合、環境調整装置52は、施設50内のリビング、浴室、寝室、または、トイレなどの室内空間に設けられ、これらの室内空間における環境を調整する。
センサ53は、対象者が位置する施設50に設けられ、対象者をセンシングする。センサ53は、例えば、電波センサなどの非接触型のバイタルセンサであるが、カメラ(画像センサ)などであってもよい。センサ53は、マット状(シート状)のセンサなど、施設50内に位置する人に接触してセンシングを行う接触型のバイタルセンサであってもよく、センサ53の具体的態様については特に限定されない。後述のように、マスターカーブの生成等に人が感じる快適性に関するパラメータが用いられるような場合、センサ53は、人ではなく環境をセンシングするセンサであることもある。なお、センサ53は、施設50に少なくとも1つ設けられればよく、1つの施設50に対して2つ以上設けられてもよい。
第2情報端末60は、対象者に保持され、当該対象者の生体データを計測する。第2情報端末60は、例えば、脈波センサ、血圧センサ、発汗センサ、体温センサ、呼吸センサ、活動量センサ、及び、脳波センサなどを有する。つまり、第2情報端末60は、対象者の脈波、血圧、発汗量、体温、呼吸、活動量、及び、脳波などの生体データを計測する。第2情報端末60は、例えば、対象者の手首に装着されるリストバンド形または腕時計形の情報端末であるが、イヤーフック形の情報端末であってもよい。また、第2情報端末60は、このようなウェアラブル型の情報端末に限定されず、上記のようなセンサを有する、スマートフォンまたはタブレット端末などの携帯型の情報端末であってもよい。
第3情報端末70は、対象者が健康状態判定システム10のユーザインターフェースとして使用する情報端末であり、具体的には、対象者がサーバ装置20から健康状態の判定結果についての通知を受けるための情報端末である。第3情報端末70は、例えば、スマートフォンまたはタブレット端末などの携帯型の情報端末であるが、パーソナルコンピュータなどの据え置き型の情報端末であってもよい。
第3情報端末70は、例えば、汎用の情報端末であり、専用のアプリケーションプログラムがインストールされることにより、サーバ装置20から健康状態の判定結果についての通知(後述の通知情報)を受けることができる。なお、本明細書中では、便宜上、第2情報端末60及び第3情報端末70を別の情報端末として区別しているが、第2情報端末60及び第3情報端末70は別の情報端末である必要はなく、単一の情報端末であってもよい。
[マスターカーブの生成動作]
健康状態判定システム10は、対象者の健康状態を判定するために、あらかじめマスターカーブと呼ばれる基準特性を算出し、算出したマスターカーブをサーバ装置20の記憶部23に記憶しておく。図2は、マスターカーブの一例を示す図である。
健康状態判定システム10は、対象者の健康状態を判定するために、あらかじめマスターカーブと呼ばれる基準特性を算出し、算出したマスターカーブをサーバ装置20の記憶部23に記憶しておく。図2は、マスターカーブの一例を示す図である。
図2に示されるマスターカーブは、横軸(x軸とも記載される)が活動量を示し、縦軸(y軸とも記載される)が食事の量を示す二次元座標(言い換えれば、座標空間)において、活動量と食事の量との関係性を示す曲線である。以下、このようなマスターカーブの生成動作について説明する。図3は、マスターカーブの生成動作のフローチャートである。
まず、サーバ装置20の取得部24は、複数の人それぞれの活動量を取得する(S11)。活動量は、対象者の健康または対象者が感じる快適性に関する第1指標を示す第1データの一例である。活動量は、カロリーの消費量などと言い換えることができる。例えば、取得部24は、通信部21が第1情報端末40から受信した、第1情報端末40によって計測された活動量を取得する。センサ31によって活動量がセンシングできる場合には、取得部24は、センサ31によってセンシングされた活動量(センシング結果によって定まる活動量)を取得してもよい。この場合、取得部24は、通信部21がセンサ31から受信した活動量を取得する。なお、ここでの活動量は、例えば、数時間程度、あるいは、1日(24時間)などの所定期間における活動量である。
次に、取得部24は、複数の人それぞれの食事の量を取得する(S12)。食事の量は、対象者の健康または対象者が感じる快適性に関する第2指標を示す第2データの一例である。食事の量は、カロリーの摂取量などと言い換えることができる。
例えば、取得部24は、通信部21が第1情報端末40から受信した、第1情報端末40によって計測された食事の量を取得する。腕時計形のウェアラブル端末が有する生体インピーダンスセンサを用いて、体細胞内外への体液の移動を計測することでカロリーの摂取量を推定する技術が知られており、第1情報端末40はこのような技術を用いて食事の量を計測(推定)する。
センサ31が施設30の食事場所に設置されたカメラなどであり、食事の量がセンシング(推定)できる場合には、取得部24は、センサ31によってセンシングされた食事の量(センシング結果によって定まる食事の量)を取得してもよい。この場合、取得部24は、通信部21がセンサ31から受信した食事の量を取得する。なお、ここでの食事の量は、例えば、食事1回あたり、あるいは、1日あたりなどにおける食事の量である。
マスターカーブを生成するためには、同一人の活動量と食事の量とを紐づける必要がある。例えば、活動量及び食事の量がいずれも第1情報端末40から取得される場合には、取得部24は、活動量及び食事の量を同時(同一の通信時)に取得することで、同一人の活動量と食事の量とを紐づけることができる。第1情報端末40により、第1情報端末40の識別情報が付与された状態の活動量及び食事の量が送信されれば、取得部24は、識別情報に基づいて同一人の活動量と食事の量とを紐づけることができる。
また、活動量及び食事の量がいずれもセンサ31から取得される場合には、取得部24は、活動量及び食事の量を同時(同一の通信時)に取得することで、同一人の活動量と食事の量とを紐づけることができる。この場合、センサ31が個室等に設けられることにより、センサ31が特定の個人の活動量及び食事の量をセンシングすることが前提となる。また、このような前提の下、センサ31により、センサ31の識別情報が付与された状態の活動量及び食事の量が送信されれば、取得部24は、識別情報に基づいて同一人の活動量と食事の量とを紐づけることができる。
活動量及び食事の量の一方が第1情報端末40から取得され、他方がセンサ31から取得される場合には、ある人が保持する第1情報端末40の識別情報と当該人をセンシング対象とするセンサ31の識別情報との対応関係を示す情報を記憶部23にあらかじめ記憶しておくことにより、活動量及び食事の量を紐づけることができる。
なお、活動量及び食事の量が第1情報端末40またはセンサ31から取得されることは必須ではない。例えば、活動量及び食事の量が対になった情報を管理する他のサーバ装置から当該情報をサーバ装置20へ提供し、取得部24はこれを取得してもよい。また、取得部24は、図示されないユーザインターフェース装置を通じてサーバ装置20へ手動入力された、活動量及び食事の量が対になった情報を取得してもよい。
ステップS12の次に、算出部25は、取得された複数人分の活動量及び食事の量に基づいて、マスターカーブを算出する(S13)。マスターカーブは、対象者の健康状態を判定するための基準特性であってマスターカーブxが示す第1指標とマスターカーブyが示す第2指標との関係を示す基準特性の一例である。
算出部25は、上記の二次元座標に、紐づけられた活動量及び食事の量によって定まる点を、取得された活動量及び食事の量のデータ数だけ(つまり、人数分だけ)プロットし、プロットされた複数の点に近似式を適用することにより、マスターカーブを算出する。どのような近似式を適用するかについては、特に限定されず、既存の各種近似式が適用されればよい。
次に、算出部25は、マスターカーブを基準とした、上限カーブ、及び、下限カーブ(図3に図示)をマスターカーブに対して設定する(S14)。算出部25は、例えば、上限カーブ、及び、下限カーブは、マスターカーブを用いた健康状態の判定に用いられる判定基準である。算出部25は、例えば、マスターカーブの元となったデータのばらつき(標準偏差)などに基づいて上限カーブ、及び、下限カーブをマスターカーブに対して設定する。算出部25は、健康状態判定システム10の設計者によって、図示されないユーザインターフェース装置を通じてサーバ装置20へ手動入力されてもよい。なお、マスターカーブの種類によっては、上限カーブ、及び、下限カーブの一方のみが設定される場合もある。
また、算出部25は、算出したマスターカーブ、設定した上限カーブ、及び、設定した下限カーブを記憶部23に記憶する(S15)。
このように、健康状態判定システム10は、複数人分の活動量及び食事の量に基づいて、マスターカーブを算出し、記憶部23に記憶することができる。
なお、活動量、及び、食事の量の少なくとも一方が、施設30に設けられたセンサ31のセンシング結果に基づいて定められる場合、複数種類の施設30においてセンシングが行われることで、健康状態の判定に適したマスターカーブを算出することができる。
例えば、複数種類の施設30に、病院、介護施設、一般の住宅、及び、トレーニング施設が含まれれば、病院に入院中の人、介護施設に居住する人、住宅に居住する人、及び、トレーニング施設を利用する人の活動量及び食事の量を取得することができる。すなわち、健康状態が良くない人から、健康状態が良好である人までの活動量及び食事の量のデータが揃う。より具体的には、図3に示されるように要介護の人、病気を治療中の人、未病の人、健康な人、トレーニングをしている人(より健康な人)、及び、アスリート(さらに健康な人)の活動量及び食事の量のデータが揃う。このように多種多様な健康状態の人の活動量及び食事の量に基づいて算出されたマスターカーブは、健康状態の判定に適しているといえる。
なお、活動量は、マスターカーブx(第1データ)の一例であり、食事の量は、マスターカーブy(第2データ)の一例である。マスターカーブxとして健康または快適性に関する他の第1指標が用いられてもよいし、及び、マスターカーブyとして健康または快適性に関する他の第2指標が用いられてもよい。マスターカーブxとマスターカーブyとしてはある程度の相関性を有する、同一ではない2種類の指標が用いられればよい。図4は、マスターカーブx及びマスターカーブyの別の例を説明するための図である。
図4の例では、センサ31として電波センサを使用することで、取得部24は、センサ31のセンシング結果からマスターカーブxとして使用可能な複数種類のパラメータを取得する。具体的には、電波センサのセンシング結果であるRRI(R-R Interval)に基づいて、LF(Low Frequency)/HF(High Frequency)、心拍変動パラメータ、及び、心拍数を取得することができる。
LF/HFは、RRIを周波数解析することによって得られるパワースペクトルの、LF成分(例えば、0.05Hz~0.15Hzの成分)とHF成分(例えば、0.15Hz~0.40Hzの成分)との比を示すパラメータである。取得部24は、マスターカーブxとしてLF/HFを取得した場合、マスターカーブyとして、快適性に関連するパラメータ、リラックス度に関連するパラメータ、ストレスに関連するパラメータ、躁鬱に関連するパラメータ、集中度に関連するパラメータ、睡眠に関連するパラメータ、フレイルに関連するパラメータ、MCI(Mild Cognitive Impairment)に関連するパラメータ、血管年齢に関連するパラメータ、または、排卵日に関連するパラメータなどを取得する。これらのパラメータは、センサ31のセンシング結果に基づいて取得されてもよいし、第1情報端末40によって計測されてもよいし、主観評価(アンケート等)の結果、または、所定のテストの結果等に基づいて取得されてもよい。
心拍変動パラメータは、RRIに基づいて定まる、時間領域のパラメータである。ここでの心拍変動パラメータは、具体的には、SDNN(Standard deviation of all R-R interval)またはRMSSD(Root Mean Square of Successive Differences)などである。取得部24は、マスターカーブxとしてこれらの心拍変動パラメータを取得した場合、マスターカーブyとして、高血圧に関連するパラメータ、高血糖に関するパラメータ、または、高脂質に関連するパラメータなどを取得する。これらのパラメータは、センサ31のセンシング結果に基づいて取得されてもよいし、第1情報端末40によって計測されてもよいし、主観評価(アンケート等)の結果に基づいて取得されてもよい。
心拍数は、RRIに基づいて定まる、1分間あたりに心臓が拍動する回数を示すパラメータである。取得部24は、マスターカーブxとして心拍数を取得した場合、マスターカーブyとして、活動量に関連するパラメータ、または、食事の質に関連するパラメータなどを取得する。これらのパラメータは、センサ31のセンシング結果に基づいて取得されてもよいし、第1情報端末40によって計測されてもよいし、主観評価(アンケート等)の結果に基づいて取得されてもよい。
また、図5は、マスターカーブx、及び、マスターカーブyのさらに別の例を説明するための図である。図5には、マスターカーブx、及び、マスターカーブyとして使用できる2つのパラメータの組(どちらがマスターカーブx(y)とされてもよい)が示されている。このようなパラメータの組には、快適性に関連するパラメータとリラックス度に関連するパラメータとの組が含まれる。また、このようなパラメータの組には、睡眠に関連するパラメータと、活動量、食事の質、ストレス、MCI、高血糖(糖尿病)、及び、ホルモン系癌(前立腺癌、乳癌)のいずれか1つに関連するパラメータとの組が含まれる。また、上記のようなパラメータの組には、MCI及び高血糖のいずれかに関連するパラメータとフレイルに関連するパラメータとの組が含まれる。
図4及び図5に示されるようなパラメータを用いたマスターカーブの具体例として、図6~図8に示されるようなマスターカーブが挙げられる。図6は、LF/HFと睡眠の質(睡眠の深さ)との関係を示すマスターカーブの一例を示す図である。図7は、50歳代以下の人の一日の睡眠時間と、当該人が60歳以上になったときのMCIの発症率との関係を示すマスターカーブの一例を示す図であり、図7における横軸は、右側ほど睡眠時間が短いことを示す。図8は、LF/HFと躁鬱の発症率との関係を示すマスターカーブの一例を示す図である。
また、以上説明したマスターカーブx(第1データ)として使用できるパラメータは一例である。マスターカーブxは、人の健康(美容を含む)または人が感じる快適性に関する第1指標を示すパラメータであればよく、具体的には、心拍、脈拍、動線、活動量、睡眠、姿勢、皮膚、肌、及び、表情の少なくとも1つに関するパラメータであればよい。なお、マスターカーブxは、人の生理指標を示すパラメータであってもよい。
同様に、以上説明したマスターカーブy(第2データ)として使用できるパラメータは一例である。マスターカーブyは、人の健康(美容を含む)または人が感じる快適性に関する第2指標を示すパラメータであればよく、具体的には、快適性、体調、ストレス、美容、痩身、睡眠、身体機能、体型、老化、未病、病気、治療、及び、看護の少なくとも1つに関するパラメータであればよい。
以上説明したように、健康状態判定システム10は、各々が人の健康または人が感じる快適性に関する指標を示す第1データ及び第2データを複数人分取得し、取得された複数人分の第1データ及び第2データに基づいて、対象者の健康状態を判定するための基準特性であって第1データが示す第1指標と第2データが示す第2指標との関係を示すマスターカーブ(基準特性)を算出し、対象者の健康状態の判定基準である上限カーブ及び下限カーブを、マスターカーブに対して設定すする。算出されたマスターカーブ、設定された上限カーブ、及び、設定された下限カーブは記憶部23に記憶される。
なお、基準特性は必ずしもカーブ(曲線)である必要はなく、直線であってもよい。判定基準についても同様である。また、マスターカーブは、健康状態判定システム10の設計者等によって算出(生成)され、記憶部23に記憶(登録)されてもよい。
[健康状態の判定動作例1]
健康状態判定システム10は、算出されたマスターカーブを用いて、対象者の健康状態を判定することができる。以下、健康状態の判定動作例1について説明する。図9は、健康状態の判定動作例1のフローチャートである。
健康状態判定システム10は、算出されたマスターカーブを用いて、対象者の健康状態を判定することができる。以下、健康状態の判定動作例1について説明する。図9は、健康状態の判定動作例1のフローチャートである。
まず、サーバ装置20の取得部24は、対象者の活動量を取得する(S21)。ここでの活動量は、第1判定対象データの一例である。例えば、取得部24は、通信部21が第2情報端末60から受信した、第2情報端末60によって計測された活動量を取得する。センサ53によって活動量がセンシングできる場合には、取得部24は、センサ53によってセンシングされた活動量(センシング結果によって定まる活動量)を取得してもよい。この場合、取得部24は、通信部21がセンサ53から受信した活動量を取得する。取得部24は、対象者によって第3情報端末70へ手動入力された活動量を第3情報端末70から取得してもよい。
次に、取得部24は、対象者の食事の量を取得する(S22)。ここでの食事の量は、第2判定対象データの一例である。例えば、取得部24は、通信部21が第2情報端末60から受信した、第2情報端末60によって計測された食事の量を取得する。センサ53が施設50の食事場所に設置されたカメラなどであり、食事の量がセンシング(推定)できる場合には、取得部24は、センサ53によってセンシングされた食事の量(センシング結果によって定まる食事の量)を取得してもよい。この場合、取得部24は、通信部21がセンサ53から受信した食事の量を取得する。取得部24は、対象者によって第3情報端末70へ手動入力された食事の量を第3情報端末70から取得してもよい。
次に、判定部26は、取得された対象者の活動量及び食事の量と、記憶部23にあらかじめ記憶されたマスターカーブ(算出部25によって算出されたマスターカーブ)に基づいて、対象者の健康状態を判定する(S23)。判定部26は、例えば、取得された対象者の活動量及び食事の量を示す対象点の位置が、マスターカーブに対して設定された上限カーブと下限カーブの間の所定範囲内であるか否かを判定する。
判定部26は、対象点の位置が上記所定範囲内である場合には、対象者の健康状態が良いと判定し、対象点の位置が上記所定範囲外である場合には、対象者の健康状態が良くない(例えば、健康に関して要注意である)と判定する。なお、1つのマスターカーブに対して上限カーブ及び下限カーブが複数組設定されれば、判定部26は、対象者の健康状態を3段階以上に細かく判定することができる。
次に、通知部27は、ステップS23における判定結果に基づいて、対象者へ健康状態に関する通知(言い換えれば、アラート)を行う(S24)。通知部27は、具体的には、通知情報を生成し、生成した通知情報を通信部21に第3情報端末70へ送信させる。通知情報を受信した第3情報端末70の表示部(ディスプレイ)には、例えば、図10のような通知画面が表示される。図10は、通知画面の一例を示す図である。
図10の例では、通知画面(通知情報)には対象者へのリコメンド情報が含まれる。リコメンド情報は、具体的には、運動、食事、リラクゼーション、病院紹介、就寝前行動、及び、寝具の少なくとも1つを対象者へリコメンドするための情報である。リコメンド情報は、あらかじめ記憶部23に複数種類準備され、例えば、二次元座標における対象点の位置(二次元座標のどの範囲に対象点があるか)に基づいて複数種類の中から選択される。第3情報端末70が通知情報を受信し、受信した通知情報に基づいて通知画面を表示する処理は、例えば、第3情報端末70に専用のアプリケーションプログラムがあらかじめインストールされることによって実現される。
なお、通知画面においては、マスターカーブ及び対象点が表示されてもよい。これにより、対象者は、対象点とマスターカーブとの差を容易に把握することができる。
また、ステップS24の通知は、ステップS23における判定結果(健康状態の良し悪し)によらずに行われるが、ステップS23において対象者の健康状態が良くないと判定されたときにのみ選択的に行われてもよい。
ここで、ステップS21において取得された活動量は、図3のフローチャートに基づいてマスターカーブが算出された後の新たな第1データであるといえる。同様に、ステップS22において取得された食事の量は、図3のフローチャートに基づいてマスターカーブが算出された後の新たな第2データであるといえる。
そこで、更新部28は、取得された新たな第1データ及び新たな第2データに基づいて、マスターカーブを更新する(S25)。例えば、更新部28は、従前の第1データ及び第2データに新たな第1データ及び第2データを加えた全データを処理対象としてマスターカーブを再度算出する。なお、マスターカーブの更新は、ある程度新たな第1データ及び新たな第2データが蓄積されるごとに行われればよく、新たな第1データ及び新たな第2データが取得されるごとに行われることは必須ではない。
以上説明したように、健康状態判定システム10は、各々が対象者の健康または対象者が感じる快適性に関する指標を示す第1判定対象データ及び第2判定対象データを取得する。健康状態判定システム10は、取得された第1判定対象データ及び第2判定対象データと、あらかじめ定められたマスターカーブとに基づいて、対象者の健康状態を判定し、判定結果に基づいて対象者へ通知を行うことができる。
なお、対象者の健康状態の判定及び対象者への通知は、所定の時間間隔で行われる。このときの所定の時間間隔は、例えば、マスターカーブy(第2データ)として採用されたパラメータに応じて変更される。例えば、マスターカーブyとして快適性に関連するパラメータが採用されたマスターカーブを用いた、対象者の健康状態の判定及び対象者への通知は、例えば、1~数時間程度の時間間隔で行われる。また、マスターカーブyとして体調、集中度、リラックス度、ストレス、美容、または、痩身などに関連するパラメータが採用されたマスターカーブを用いた、対象者の健康状態の判定及び対象者への通知は、例えば、1日~1週間程度の時間間隔で行われる。
マスターカーブyとして睡眠、活動量、身体機能、または、体型などに関連するパラメータが採用されたマスターカーブを用いた、対象者の健康状態の判定及び対象者への通知は、例えば、1か月~6か月程度の時間間隔で行われる。マスターカーブyとして血管年齢またはフレイルなどに関連するパラメータが採用されたマスターカーブを用いた、対象者の健康状態の判定及び対象者への通知は、例えば、1年単位などの時間間隔で行われる。なお、所定の時間間隔は、マスターカーブx(第1データ)が示す第1指標(パラメータ)の種類に応じて変更されてもよい。
[健康状態の判定動作例2]
次に、健康状態の判定動作例2について説明する。図11は、健康状態の判定動作例2のフローチャートである。
次に、健康状態の判定動作例2について説明する。図11は、健康状態の判定動作例2のフローチャートである。
ステップS21~ステップS23については健康状態の判定動作例1と同様である。ステップS23の後、サーバ装置20の制御部29は、ステップS23における判定結果に基づいて、対象者の周囲の環境を制御する(S26)。制御部29は、具体的には、環境調整装置52を制御するための制御情報を生成し、生成した制御情報を通信部21に制御装置51へ送信させる。制御装置51は、受信した制御情報に基づいて、環境調整装置52を制御する。つまり、制御部29(制御装置51)は、対象者の周囲の環境を制御する。判定結果に基づいてどのように環境調整装置52を制御するかを示すアルゴリズムについては、あらかじめ記憶部23に記憶されている。
例えば、環境調整装置52が香り発生装置であり、対象者の食事の量が少ない(対象点が所定の範囲外である)場合、制御部29(制御装置51)は、環境調整装置52に食欲を増進する効果があるとされている香りを発生させる。つまり、制御部29(制御装置51)は、香りによって対象者の食欲増進を図る。なお、環境調整装置52の制御は、対象者の健康状態を良くするために行われる。したがって、ステップS23において対象者の健康状態が良いと判定された場合(対象点が所定の範囲内であると判定された場合)には、環境調整装置52を制御する処理は省略されてもよい。
その後、更新部28は、必要に応じてマスターカーブを更新する(S25)。ステップS25における処理は、健康状態の判定動作例1と同様である。
以上説明したように、健康状態判定システム10は、取得された第1判定対象データ及び第2判定対象データと、あらかじめ定められたマスターカーブとに基づいて、対象者の健康状態を判定し、判定結果に基づいて対象者の周囲の環境を制御することができる。
なお、健康状態の判定動作例1と健康状態の判定動作例2とは組み合わされてもよい。例えば、1回の判定処理の結果、健康状態の判定動作例1で説明した対象者への通知と、健康状態の判定動作例2で説明した対象者の周囲の環境の制御とがどちらも行われてもよい。
[健康状態の予測]
判定動作例1及び判定動作例2のステップS23では、対象者の現在の健康状態を判定したが、健康状態判定システム10は、将来の健康状態を予測することもできる。図12は、将来の健康状態の予測方法を説明するための図である。
判定動作例1及び判定動作例2のステップS23では、対象者の現在の健康状態を判定したが、健康状態判定システム10は、将来の健康状態を予測することもできる。図12は、将来の健康状態の予測方法を説明するための図である。
サーバ装置20の取得部24は、所定の時間間隔で対象者の活動量及び食事の量を取得する。これにより、判定部26は、二次元座標において複数の対象点(活動量及び食事の量の組)を特定し、対象点の時系列変化に基づいて対象者の将来の健康状態を予測することができる。図12の例では、対象点(1)よりも、時系列で後の対象点(2)のほうがマスターカーブ付近の所定の範囲に近づいており、この傾向が続けば、対象点は、将来は(3)の所定範囲内に位置すると考えられる。このような場合に、判定部26は、現在は健康状態が良くない状態であっても、改善がみられるといった予測を行うことができる。また、図示されないが、判定部26は、現在は健康状態が良くても悪化の傾向がみられる(将来に対象点が所定の範囲から逸脱する)といった予測を行うこともできる。なお、健康状態の変化(対象点の変化)の傾きと、マスターカーブの傾きとを比較することにより、マスターカーブの傾きを基準に健康状態を予測(判定)する方法も考えられる。
このように、健康状態判定システム10は、互いに異なるタイミングで取得された複数組の第1データ及び第2データによって定まる複数の対象点と、マスターカーブとに基づいて、対象者の将来の健康状態を予測することができる。通知部27は、将来の健康状態の予測結果を通知してもよく、制御部29は、将来の健康状態の悪化が予測された場合に健康状態の悪化を抑制するための環境の制御を行ってもよい。
ここで、図12の(1)のような対象点が得られた場合のリコメンド情報について補足する。対象点が図12の(1)のような場所に位置する対象者であって、睡眠障害の徴候を有する対象者には、健康状態が改善されないと今後は健康上の大きなリスクがある。このような対象者が使用する第3情報端末70の表示部には、例えば、図13のような通知画面が表示される。図13は、通知画面の一例を示す図である。図13に示されるように、健康状態判定システム10は、具体的な改善策を即時に提供できる利点を有する。
[マスターカーブのクラス分け]
算出部25は、複数人分の第1データ及び第2データの組をクラス分けし、クラスごとにマスターカーブを算出してもよい。図14は、クラスごとにマスターカーブを算出する方法を説明するための図である。
算出部25は、複数人分の第1データ及び第2データの組をクラス分けし、クラスごとにマスターカーブを算出してもよい。図14は、クラスごとにマスターカーブを算出する方法を説明するための図である。
例えば、算出部25は、複数人分の活動量及び食事の量の組を、活動量(第2データ)に応じて複数のクラス(図14の例では、クラスA~クラスO)に分け、クラスごとにマスターカーブを算出し、記憶部23に記憶しておく。クラスごとのマスターカーブは、いずれも活動量と食事の量との関係を示すカーブである。
以下、クラスごとに算出されたマスターカーブを用いた健康状態の判定方法について説明する。図15は、クラスごとに算出されたマスターカーブを用いた健康状態の判定方法のフローチャートである。
サーバ装置20の取得部24は、対象者の活動量を取得し(S31)、対象者の食事の量を取得する(S32)。ステップS31及びステップS32の処理は、ステップS21及びステップS22の処理と同様である。
次に、判定部26は、ステップS31において取得された対象者の活動量に基づいて、対象者のクラスがクラスA~クラスOのいずれであるかを判定する(S33)。そして、判定部26は、記憶部23にあらかじめ記憶されたクラスごとのマスターカーブ(複数のマスターカーブ)の中から対象者のクラスに対応するマスターカーブを選択し(S34)、ステップS31において取得された対象者の活動量、ステップS32において取得された対象者の食事の量、及び、ステップS34において選択したマスターカーブに基づいて、対象者の健康状態を判定する(S35)。健康状態の判定方法については、ステップS23で説明した方法と同様である。なお、図15では図示されないが、その後、通知部27による対象者への通知、制御部29による対象者への環境の制御、及び、更新部28によるマスターカーブの更新などが適宜行われる。
以上説明したように、健康状態判定システム10は、取得された第2データに基づいて、あらかじめ定められた複数のマスターカーブの中から1つのマスターカーブを選択し、取得された第1データ及び第2データと、選択した1つのマスターカーブとに基づいて、対象者の健康状態を判定する。健康状態判定システム10は、第2データに応じて定まるクラスごとに準備された複数のマスターカーブの中から対象者に適したマスターカーブを選択し、選択した基準特性を用いて対象者の健康状態を判定することで、健康状態の判定精度の向上を図ることができる。
なお、算出部25は、複数人分の第1データ及び第2データの組を、第2データに応じて複数のクラスに分けたが、第1データに応じて複数のクラスに分けてもよい。つまり、健康状態判定システム10は、取得された第1データ及び第2データの一方に基づいて、あらかじめ定められた複数のマスターカーブの中から1つのマスターカーブを選択すればよい。
[マスターカーブのクラス分けについての補足]
また、マスターカーブのクラスは、例えば、年齢層に相当する場合がある。例えば、図14のクラスA~クラスOのそれぞれが年齢層に相当する場合がある。以下、このような場合の健康状態の判定方法について補足する。
また、マスターカーブのクラスは、例えば、年齢層に相当する場合がある。例えば、図14のクラスA~クラスOのそれぞれが年齢層に相当する場合がある。以下、このような場合の健康状態の判定方法について補足する。
対象者の実年齢が40~44歳に相当するにもかかわらず、当該対象者のマスターカーブ上のポジションが55~59歳のクラスに属する場合が考えられる。判定部26により、対象点の位置が所定範囲内であるが、対象者の実年齢と対象点によって定まる年齢層とに差異があると判定されると、通知部27は、40~44歳に相当する食事の量または活動量になるようなリコメンド情報を含む通知を行う。この場合のリコメンド情報は、食事の量の増量または減量等のリコメンド、及び、活動量の増量または減量のリコメンドの少なくとも一方を行うための情報である。
また、判定部26により、対象点の位置が上記所定範囲外であり、かつ、対象者の実年齢と対象点によって定まる年齢層とに差異があると判定されると、通知部27は、対象者の食事の量または活動量が40~44歳の適切な食事の量または活動量になるようなリコメンド情報を含む通知を行う。
また、クラス分けは、生活スタイルに基づいて行われてもよい。生活スタイルは、例えば、LF/HFの一日の変動値に基づくクラスタリング分析により求めることができる。また、外出の頻度、同居家族の人数などの家族形態、または、職業などを生活スタイルを示す指標として、これらの指標に基づいてクラス分けが行われてもよい。
また、各クラスにおいて算出したマスターカーブから、全体(全クラス)のマスターカーブを算出することもできる。例えば、算出部25は、各クラスのそれぞれにおいて、当該クラスに属するデータに基づいて、クラスごとのマスターカーブ、クラスごとの上限カーブ(例えば、マスターカーブ+1σ)、及び、クラスごとの下限カーブ(例えば、マスターカーブ-1σ)を算出する。算出部25は、クラスごとのマスターカーブをカーブフィッテング手法を用いてつなげることでマスターカーブを算出する。同様に、算出部25は、クラスごとの上限カーブをカーブフィッテング手法を用いてつなげることで上限カーブを算出し、クラスごとの下限カーブをカーブフィッテング手法を用いてつなげることで下限カーブを算出することができる。
なお、このような方法で、マスターカーブ、上限カーブ、及び、下限カーブを算出すると、これら3つの一部が交差する可能性がある。そこで、算出部25は、上記方法をマスターカーブにのみ適用してもよい。この場合、算出部25は、算出されたマスターカーブを基準として、上下1σのカーブを、上限カーブ、下限カーブとして算出することができる。
ところで、判定動作が数多く行われ、新たな第1データ及び第2データ(対象点)が蓄積すると、マスターカーブの傾向が変化する場合もある。このような場合、算出部25は、図4または図5の項目をパラメータとして追加して、重回帰分析、または、偏相関分析などを行うことにより、変化因子を特定する。また、算出部25は、特定した変化因子を除去して、マスターカーブを再度算出する(再構築する)。変化因子が環境変化などとの相関性を有する場合には、新たな改善メニューまたはリコメンドの知見となり得る。
また、分析データから当てはまりがよいマスターカーブを選択出来れば、各クラスにおける、特徴や固有の特徴因子をAIなどで解析することが可能となる。また、各クラス特有の特徴因子をリスク因子と特定して、さらに詳細な改善策を作成することも可能となる。
[マスターカーブのグループ分け]
上述のように、マスターカーブを算出するための同一人の第1データ及び第2データは、センサ31の識別情報、及び、第1情報端末40の識別情報の少なくとも一方の識別情報によって紐づけられた。ここで、記憶部23において、少なくとも一方の識別情報に人の属性情報(例えば、年齢及び性別など)がさらに紐づけられていれば、算出部25は、属性情報が示す属性ごとに複数人をグループ化し、グループごとにマスターカーブを算出することができる。ここでのグループは、例えば、年齢層及び性別によって区分されたグループである。グループごとのマスターカーブは、いずれも活動量と食事の量との関係を示すカーブであり、あらかじめ記憶部23に記憶される。
上述のように、マスターカーブを算出するための同一人の第1データ及び第2データは、センサ31の識別情報、及び、第1情報端末40の識別情報の少なくとも一方の識別情報によって紐づけられた。ここで、記憶部23において、少なくとも一方の識別情報に人の属性情報(例えば、年齢及び性別など)がさらに紐づけられていれば、算出部25は、属性情報が示す属性ごとに複数人をグループ化し、グループごとにマスターカーブを算出することができる。ここでのグループは、例えば、年齢層及び性別によって区分されたグループである。グループごとのマスターカーブは、いずれも活動量と食事の量との関係を示すカーブであり、あらかじめ記憶部23に記憶される。
以下、グループごとに算出されたマスターカーブを用いた健康状態の判定方法について説明する。図16は、グループごとに算出されたマスターカーブを用いた健康状態の判定方法のフローチャートである。
サーバ装置20の取得部24は、対象者の活動量を取得し(S41)、対象者の食事の量を取得する(S42)。ステップS41及びステップS42の処理は、ステップS21及びステップS22の処理と同様である。
次に、取得部24は、対象者の属性情報を取得する(S43)。例えば、対象者は、健康状態の通知または環境の制御のサービスを受けるためにあらかじめユーザ登録を行うが、このときに対象者の属性情報がサーバ装置20の記憶部23に登録されていれば、取得部24は、記憶部23から対象者の属性情報を取得することができる。
判定部26は、ステップS43において取得された対象者の属性情報に基づいて、対象者のグループを判定する(S44)。そして、判定部26は、記憶部23にあらかじめ記憶されたグループごとのマスターカーブ(複数のマスターカーブ)の中から対象者のグループに対応するマスターカーブを選択し(S45)、ステップS41において取得された対象者の活動量、ステップS42において取得された対象者の食事の量、及び、ステップS45において選択したマスターカーブに基づいて、対象者の健康状態を判定する(S46)。健康状態の判定方法については、ステップS23で説明した方法と同様である。なお、図16では図示されないが、その後、通知部27による対象者への通知、制御部29による対象者への環境の制御、更新部28によるマスターカーブの更新などが適宜行われる。
以上説明したように、健康状態判定システム10は、取得された属性情報に基づいて、あらかじめ定められた複数のマスターカーブの中から1つのマスターカーブを選択し、取得された第1データ及び第2データと、選択した1つのマスターカーブとに基づいて、対象者の健康状態を判定する。健康状態判定システム10は、属性ごとに準備された複数のマスターカーブの中から対象者に適したマスターカーブを選択し、選択した基準特性を用いて対象者の健康状態を判定することで、健康状態の判定精度の向上を図ることができる。
[変形例]
記憶部23には、マスターカーブx(第1データ)及びマスターカーブy(第2データ)の少なくとも一方が異なる複数種類のマスターカーブが記憶されてもよい。複数種類のマスターカーブは、例えば、個別に算出されるが、1つのセンサ31のセンシング結果を利用して算出することもできる。具体的には、上記図4を用いて説明したように、センサ31のセンシング結果に基づいて複数種類の第1データが取得できる場合には、算出部25は、これを利用して複数種類の第1データに対応する複数種類のマスターカーブを算出することができる。
記憶部23には、マスターカーブx(第1データ)及びマスターカーブy(第2データ)の少なくとも一方が異なる複数種類のマスターカーブが記憶されてもよい。複数種類のマスターカーブは、例えば、個別に算出されるが、1つのセンサ31のセンシング結果を利用して算出することもできる。具体的には、上記図4を用いて説明したように、センサ31のセンシング結果に基づいて複数種類の第1データが取得できる場合には、算出部25は、これを利用して複数種類の第1データに対応する複数種類のマスターカーブを算出することができる。
このように記憶部23に複数種類のマスターカーブが記憶される場合、判定部26は、複数種類のマスターカーブのそれぞれを用いて対象者の健康状態を判定することができる。このとき、対象者の健康状態の判定は、マスターカーブの種類に応じて当該マスターカーブを用いた判定に適した所定の時間間隔(時間/日/週/月/年などの単位)で行われる。
また、健康状態判定システム10は、対象者の第1データ、対象者の第2データ、及び、対象者の健康状態の判定結果を対応付けて記憶部23に記憶(蓄積)してもよい。複数の対象者のデータが蓄積されれば、これらのデータは、健康状態を判定するための機械学習モデルを構築するための学習データとして使用することができる。このように、本発明は、機械学習モデルを構築するための学習データの生成方法として実現されてもよい。また、健康状態判定システム10は、このように構築された機械学習モデルを用いて対象者の健康状態の判定を行い、判定結果の通知、または、判定結果に基づく環境の制御などを行うシステムとして実現されてもよい。
[効果等]
以上説明したように、健康状態判定システム10などのコンピュータによって実行される健康状態判定方法は、各々が人の健康または人が感じる快適性に関する指標を示す第1データ及び第2データを複数人分取得するデータ取得ステップと、取得された複数人分の第1データ及び第2データに基づいて、対象者の健康状態を判定するための基準特性であって第1データが示す第1指標と第2データが示す第2指標との関係を示す基準特性を算出する算出ステップと、対象者の健康状態の判定基準を、基準特性に対して設定する設定ステップとを含む。基準特性は、上記実施の形態におけるマスターカーブに相当し、判定基準は、上記実施の形態における上限カーブ及び下限カーブに相当する。
以上説明したように、健康状態判定システム10などのコンピュータによって実行される健康状態判定方法は、各々が人の健康または人が感じる快適性に関する指標を示す第1データ及び第2データを複数人分取得するデータ取得ステップと、取得された複数人分の第1データ及び第2データに基づいて、対象者の健康状態を判定するための基準特性であって第1データが示す第1指標と第2データが示す第2指標との関係を示す基準特性を算出する算出ステップと、対象者の健康状態の判定基準を、基準特性に対して設定する設定ステップとを含む。基準特性は、上記実施の形態におけるマスターカーブに相当し、判定基準は、上記実施の形態における上限カーブ及び下限カーブに相当する。
このような健康状態判定方法は、第1データが示す第1指標と第2データが示す第2指標との関係性を示す基準特性を算出することができる。このような基準特性は、健康状態の判定に使用可能な情報であるといえる。つまり、健康状態判定方法は、健康状態の判定に使用可能な情報を生成することができる。
また、例えば、複数の人のそれぞれは、複数種類の施設30のいずれかの内部に位置するときに、複数種類の施設30のそれぞれに設けられたセンサ31によってセンシングされ、第1データは、センサ31のセンシング結果に基づいて定められる。
このような健康状態判定方法は、センサ31のセンシング結果に基づいて基準特性を算出することができる。
また、例えば、第1データは、複数の人のそれぞれが保持する第1情報端末40によって計測される。
このような健康状態判定方法は、第1情報端末40によって計測された基準特性を算出することができる。
また、例えば、データ取得ステップにおいては、センサ31のセンシング結果に基づいて複数種類の第1データを取得し、算出ステップにおいては、複数種類の第1データに対応する複数の基準特性を算出する。
このような健康状態判定方法は、効率的に基準特性を算出することができる。
また、例えば、第1データは、心拍、脈拍、動線、活動量、睡眠、姿勢、皮膚、肌、及び、表情の少なくとも1つに関する。
このような健康状態判定方法は、心拍、脈拍、動線、活動量、睡眠、姿勢、皮膚、肌、及び、表情の少なくとも1つに関する基準特性を算出することができる。
また、例えば、健康状態判定方法は、さらに、複数人それぞれの属性情報を取得する属性情報取得ステップを含む。算出ステップにおいては、属性情報が示す属性ごとに複数人をグループ化し、グループごとに基準特性を算出する。
このような健康状態判定方法は、属性情報に基づくグループごとに基準特性を算出することができる。
また、例えば、健康状態判定方法は、さらに、基準特性が算出された後に、新たな第1データ及び新たな第2データを取得する新データ取得ステップと、取得された新たな第1データ及び新たな第2データに基づいて、基準特性を更新する更新ステップとを含む。
このような健康状態判定方法は、算出した基準特性を更新することができる。
また、例えば、健康状態判定方法は、さらに、対象者の第1データである第1判定対象データと、対象者の第2データである第2判定対象データを取得する判定対象データ取得ステップと、取得された第1判定対象データ及び第2判定対象データと、算出された基準特性とに基づいて、対象者の健康状態を判定する判定ステップとを含む。
このような健康状態判定方法は、算出した基準特性に基づいて対象者の健康状態を判定することができる。
また、例えば、健康状態判定方法は、さらに、判定ステップにおける判定結果に基づいて、対象者の周囲の環境を制御する制御ステップを含む。
このような健康状態判定方法は、対象者の健康状態の判定結果に基づいて、対象者の周囲の環境を制御することができる。
また、例えば、健康状態判定方法は、さらに、判定ステップにおける判定結果に基づいて、対象者へ通知を行う通知ステップを含む。
このような健康状態判定方法は、対象者の健康状態の判定結果に基づいて、対象者への通知を行うことができる。
また、例えば、通知には、対象者へのリコメンド情報が含まれる。
このような健康状態判定方法は、対象者へのリコメンドを行うことができる。
また、例えば、第2データは、快適性、体調、ストレス、美容、痩身、睡眠、身体機能、体型、老化、未病、病気、治療、及び、看護の少なくとも1つに関する。
このような健康状態判定方法は、快適性、体調、ストレス、美容、痩身、睡眠、身体機能、体型、老化、未病、病気、治療、及び、看護の少なくとも1つに関する基準特性を算出することができる。
また、健康状態判定システム10は、各々が人の健康または人が感じる快適性に関する指標を示す第1データ及び第2データを複数人分取得する取得部24と、取得された複数人分の第1データ及び第2データに基づいて、対象者の健康状態を判定するための基準特性であって第1データが示す第1指標と第2データが示す第2指標との関係を示す基準特性を算出し、対象者の健康状態の判定基準を、基準特性に対して設定する算出部25とを備える。
このような健康状態判定システム10は、第1データが示す指標と第2データが示す指標との関係性を示す基準特性を算出することができる。このような基準特性は、健康状態の判定に使用可能な情報であるといえる。つまり、健康状態判定システム10は、健康状態の判定に使用可能な情報を生成することができる。
(その他の実施の形態)
以上、実施の形態について説明したが、本発明は、上記実施の形態に限定されるものではない。
以上、実施の形態について説明したが、本発明は、上記実施の形態に限定されるものではない。
例えば、上記実施の形態では、健康状態判定システムは、複数の装置によって実現されたが、単一の装置として実現されてもよい。例えば、健康状態判定システムは、サーバ装置に相当する単一の装置として実現されてもよい。健康状態判定システムが複数の装置によって実現される場合、健康状態判定システムが備える構成要素(特に、機能的な構成要素)は、複数の装置にどのように振り分けられてもよい。
例えば、上記実施の形態において、特定の処理部が実行する処理を別の処理部が実行してもよい。また、複数の処理の順序が変更されてもよいし、複数の処理が並行して実行されてもよい。
また、上記実施の形態において、各構成要素は、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。
また、各構成要素は、ハードウェアによって実現されてもよい。各構成要素は、回路(または集積回路)でもよい。これらの回路は、全体として1つの回路を構成してもよいし、それぞれ別々の回路でもよい。また、これらの回路は、それぞれ、汎用的な回路でもよいし、専用の回路でもよい。
また、本発明の全般的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよい。また、システム、装置、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。
例えば、本発明は、健康状態判定方法として実現されてもよいし、健康状態判定方法をコンピュータに実行させるためのプログラム(言い換えれば、コンピュータプログラムプロダクト)として実現されてもよいし、このようなプログラムが記録されたコンピュータ読み取り可能な非一時的な記録媒体として実現されてもよい。
その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態、または、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
10 健康状態判定システム
20 サーバ装置
21 通信部
22 情報処理部
23 記憶部
24 取得部
25 算出部
26 判定部
27 通知部
28 更新部
29 制御部
30、50 施設
31、53 センサ
40 第1情報端末
51 制御装置
52 環境調整装置
60 第2情報端末
70 第3情報端末
80 広域通信ネットワーク
20 サーバ装置
21 通信部
22 情報処理部
23 記憶部
24 取得部
25 算出部
26 判定部
27 通知部
28 更新部
29 制御部
30、50 施設
31、53 センサ
40 第1情報端末
51 制御装置
52 環境調整装置
60 第2情報端末
70 第3情報端末
80 広域通信ネットワーク
Claims (14)
- 各々が人の健康または前記人が感じる快適性に関する指標を示す第1データ及び第2データを複数人分取得するデータ取得ステップと、
取得された複数人分の前記第1データ及び前記第2データに基づいて、対象者の健康状態を判定するための基準特性であって前記第1データが示す第1指標と前記第2データが示す第2指標との関係を示す基準特性を算出する算出ステップと、
前記対象者の健康状態の判定基準を、前記基準特性に対して設定する設定ステップとを含む
健康状態判定方法。 - 複数の前記人のそれぞれは、複数種類の施設のいずれかの内部に位置するときに、前記複数種類の施設のそれぞれに設けられたセンサによってセンシングされ、
前記第1データは、前記センサのセンシング結果に基づいて定められる
請求項1に記載の健康状態判定方法。 - 前記第1データは、複数の前記人のそれぞれが保持する情報端末によって計測される
請求項1に記載の健康状態判定方法。 - 前記データ取得ステップにおいては、前記センサのセンシング結果に基づいて複数種類の前記第1データを取得し、
前記算出ステップにおいては、複数種類の前記第1データに対応する複数の前記基準特性を算出する
請求項2に記載の健康状態判定方法。 - 前記第1データは、心拍、脈拍、動線、活動量、睡眠、姿勢、皮膚、肌、及び、表情の少なくとも1つに関する
請求項1に記載の健康状態判定方法。 - さらに、前記複数人それぞれの属性情報を取得する属性情報取得ステップを含み、
前記算出ステップにおいては、属性情報が示す属性ごとに前記複数人をグループ化し、グループごとに前記基準特性を算出する
請求項1に記載の健康状態判定方法。 - さらに、
前記基準特性が算出された後に、新たな第1データ及び新たな第2データを取得する新データ取得ステップと、
取得された前記新たな第1データ及び前記新たな第2データに基づいて、前記基準特性を更新する更新ステップとを含む
請求項1に記載の健康状態判定方法。 - さらに、
対象者の前記第1データである第1判定対象データと、前記対象者の前記第2データである第2判定対象データを取得する判定対象データ取得ステップと、
取得された前記第1判定対象データ及び前記第2判定対象データと、算出された前記基準特性とに基づいて、前記対象者の健康状態を判定する判定ステップとを含む
請求項1に記載の健康状態判定方法。 - さらに、前記判定ステップにおける判定結果に基づいて、前記対象者の周囲の環境を制御する制御ステップを含む
請求項8に記載の健康状態判定方法。 - さらに、前記判定ステップにおける判定結果に基づいて、前記対象者へ通知を行う通知ステップを含む
請求項8に記載の健康状態判定方法。 - 前記通知には、前記対象者へのリコメンド情報が含まれる
請求項10に記載の健康状態判定方法。 - 前記第2データは、快適性、体調、ストレス、美容、痩身、睡眠、身体機能、体型、老化、未病、病気、治療、及び、看護の少なくとも1つに関する
請求項1に記載の健康状態判定方法。 - 請求項1~12のいずれか1項に記載の健康状態判定方法をコンピュータに実行させるためのプログラム。
- 各々が人の健康または前記人が感じる快適性に関する指標を示す第1データ及び第2データを複数人分取得する取得部と、
取得された複数人分の前記第1データ及び前記第2データに基づいて、対象者の健康状態を判定するための基準特性であって人の前記第1データが示す第1指標と前記第2データが示す第2指標との関係を示す基準特性を算出し、対象者の健康状態の判定基準を、基準特性に対して設定する算出部とを備える
健康状態判定システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023556251A JPWO2023074283A1 (ja) | 2021-10-29 | 2022-10-05 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021177373 | 2021-10-29 | ||
JP2021-177373 | 2021-10-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023074283A1 true WO2023074283A1 (ja) | 2023-05-04 |
Family
ID=86159846
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/037199 WO2023074283A1 (ja) | 2021-10-29 | 2022-10-05 | 健康状態判定方法、及び、健康状態判定システム |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2023074283A1 (ja) |
TW (1) | TW202334991A (ja) |
WO (1) | WO2023074283A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014130096A (ja) * | 2012-12-28 | 2014-07-10 | Kri Inc | 生活習慣病判定支援装置および生活習慣病判定支援システム |
JP2016001838A (ja) * | 2014-06-12 | 2016-01-07 | シャープ株式会社 | 制御システム、制御装置、家電、家電制御方法、およびプログラム |
JP2016064125A (ja) * | 2014-09-19 | 2016-04-28 | シナノケンシ株式会社 | 脳血管疾患の発症危険度予測システム |
JP2017113382A (ja) * | 2015-12-25 | 2017-06-29 | 大阪瓦斯株式会社 | 複数生体指標を用いた健康管理システム |
JP2020135132A (ja) * | 2019-02-14 | 2020-08-31 | 積水化学工業株式会社 | 情報処理装置、情報処理方法及びプログラム |
-
2022
- 2022-10-05 JP JP2023556251A patent/JPWO2023074283A1/ja active Pending
- 2022-10-05 WO PCT/JP2022/037199 patent/WO2023074283A1/ja active Application Filing
- 2022-10-21 TW TW111139998A patent/TW202334991A/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014130096A (ja) * | 2012-12-28 | 2014-07-10 | Kri Inc | 生活習慣病判定支援装置および生活習慣病判定支援システム |
JP2016001838A (ja) * | 2014-06-12 | 2016-01-07 | シャープ株式会社 | 制御システム、制御装置、家電、家電制御方法、およびプログラム |
JP2016064125A (ja) * | 2014-09-19 | 2016-04-28 | シナノケンシ株式会社 | 脳血管疾患の発症危険度予測システム |
JP2017113382A (ja) * | 2015-12-25 | 2017-06-29 | 大阪瓦斯株式会社 | 複数生体指標を用いた健康管理システム |
JP2020135132A (ja) * | 2019-02-14 | 2020-08-31 | 積水化学工業株式会社 | 情報処理装置、情報処理方法及びプログラム |
Also Published As
Publication number | Publication date |
---|---|
TW202334991A (zh) | 2023-09-01 |
JPWO2023074283A1 (ja) | 2023-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11521748B2 (en) | Health risk score for risk stratification and compliance monitoring for next best action | |
Chaudhuri et al. | Random forest based thermal comfort prediction from gender-specific physiological parameters using wearable sensing technology | |
US11568993B2 (en) | System and method of predicting a healthcare event | |
CN113069096B (zh) | 一种用于血压监测的系统和方法 | |
JP7376265B2 (ja) | ほてりの予測モデリングを含むシステム及び方法 | |
WO2012025622A2 (en) | Monitoring method and system for assessment of prediction of mood trends | |
WO2022115701A1 (en) | Method and system for detecting mood | |
JP2022542181A (ja) | 呼吸器疾患を常時モニタリングするためのシステムおよび方法 | |
JP2014039586A (ja) | 睡眠改善支援装置 | |
Dorosh et al. | Measurement modules of digital biometrie medical systems based on sensory electronics and mobile-health applications | |
US20210193324A1 (en) | Evaluating patient risk using an adjustable weighting parameter | |
WO2020235509A1 (ja) | 熱ストレスの影響推定装置、熱ストレスの影響推定方法、及び、コンピュータプログラム | |
US10888224B2 (en) | Estimation model for motion intensity | |
WO2023074283A1 (ja) | 健康状態判定方法、及び、健康状態判定システム | |
WO2023074284A1 (ja) | 健康状態判定方法、及び、健康状態判定システム | |
Lim et al. | Developing a mobile wellness management system for healthy lifestyle by analyzing daily living activities | |
WO2023189853A1 (ja) | 健康状態判定方法、及び、健康状態判定システム | |
US20240188883A1 (en) | Hypnodensity-based sleep apnea monitoring system and method of operation thereof | |
JP7405352B2 (ja) | 認知機能改善ソリューション推定システム、認知機能改善ソリューション推定方法及びプログラム | |
JP7361327B2 (ja) | 環境制御システム及び環境制御方法 | |
US20240087701A1 (en) | Systems and methods for wellness-enabled multi-resident community | |
US20230307142A1 (en) | Fall risk analysis using balance profiles | |
WO2022208873A1 (ja) | ストレス推定装置、ストレス推定方法及び記憶媒体 | |
Fallmann et al. | A Home-Based IoT-Enabled Framework for Sleep Behaviour Assessment | |
WO2023192481A1 (en) | Methods and systems for an overall health score |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22886615 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023556251 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |