WO2023074258A1 - Active ester compound - Google Patents

Active ester compound Download PDF

Info

Publication number
WO2023074258A1
WO2023074258A1 PCT/JP2022/036769 JP2022036769W WO2023074258A1 WO 2023074258 A1 WO2023074258 A1 WO 2023074258A1 JP 2022036769 W JP2022036769 W JP 2022036769W WO 2023074258 A1 WO2023074258 A1 WO 2023074258A1
Authority
WO
WIPO (PCT)
Prior art keywords
active ester
ester compound
epoxy resin
compound
acid
Prior art date
Application number
PCT/JP2022/036769
Other languages
French (fr)
Japanese (ja)
Inventor
和貴 木坂
達彦 入江
豪太 瀧本
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Publication of WO2023074258A1 publication Critical patent/WO2023074258A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof

Definitions

  • the present invention relates to an active ester compound and a composition and cured product using the same.
  • Epoxy resin is used as an insulating material with excellent electrical properties for printed wiring boards and sealants.
  • it is necessary to further reduce the dielectric loss tangent in order to suppress transmission loss. It has been demanded.
  • Patent Document 1 discloses the presence or absence of a catalyst in an epoxy resin, polyvalent carboxylic acid, phenols, naphthol esters with compounds containing hydroxy groups or mercapto groups selected from heterocyclic compounds having N, O and/or S atoms, or benzoic acid and aromatic hydroxy compounds, aromatic sulfur compounds, hydroquinone, polyhydric alcohols, phenols
  • An epoxy resin curable composition is disclosed which comprises one or more esters with a compound containing a hydroxy group or a mercapto group selected from resins and polyvinylphenols.
  • Insulating layers formed on multilayer printed wiring boards and the like in recent years are required to have a low dielectric loss tangent.
  • it is effective to use an active ester curing agent as the curing agent.
  • the epoxy resin curable composition disclosed in Patent Document 1 does not have a sufficient dielectric loss tangent, and is difficult to use as an electric/electronic material for high frequencies.
  • the present invention combines an active ester compound having a dimer acid skeleton and/or a dimer diol skeleton as a curing agent with another active ester compound to produce a cured product with an epoxy resin having excellent dielectric properties and heat resistance. intended to provide
  • the present inventors have found that a compound in which a dimer acid skeleton and/or a dimer diol skeleton is incorporated in the molecule of an active ester compound and an active ester compound having an aromatic skeleton are combined.
  • the inventors have found that the epoxy resin cured product can be imparted with excellent dielectric loss tangent and heat resistance, and have completed the present invention.
  • the present invention includes the following configurations.
  • [1] Contains an epoxy resin (A), a first active ester compound (B-1) and a second active ester compound (B-2), wherein the first active ester compound (B-1) is a dimer
  • An epoxy resin composition characterized by being an active ester compound having an acid skeleton and/or a dimer diol skeleton in its molecule.
  • the second active ester compound (B-2) is a reaction product of an aromatic polyhydroxy compound, an aromatic polycarboxylic acid compound or its acid halide, and an aromatic monohydroxy compound.
  • the terminal structure of the first active ester compound (B-1) is represented by formula (1) or formula (2) (In the formula, each R is independently an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, or an aralkyl group, n is an integer of 0 to 5, and m is an integer of 0 to 7. .)
  • the aromatic polyhydroxy compound constituting the second active ester compound (B-2) is the following (X-1) to (X-4) (In the formula, each X is independently hydrogen or a methyl group. i is 1 or 2.)
  • the epoxy resin composition comprises an epoxy resin, an active ester compound (B-1) having a dimer acid skeleton and/or a dimer diol skeleton in the molecule, and another active ester compound (B-2). It is characterized by containing A cured product of the epoxy resin composition has excellent dielectric loss tangent and heat resistance.
  • the epoxy resin composition of the present invention contains an epoxy resin (A), a first active ester compound (B-1) and a second active ester compound (B-2), and the first active ester compound ( B-1) is characterized in that it is an active ester compound having a dimer acid skeleton and/or a dimer diol skeleton in its molecule.
  • the first active ester compound (B-1) and the second active ester compound (B-2) act as a curing agent for the epoxy resin (A), and the cured product of the epoxy resin composition (hereinafter referred to as epoxy resin curing Also called a thing.) can be obtained.
  • the ratio of the active ester compound (B-1) to the total active ester compound is preferably in the range of 20 to 80% by mass, preferably 25 to 80% by mass. It is more preferably in the range of 60% by mass.
  • the first active ester compound (B-1) of the present invention (hereinafter also simply referred to as active ester compound (B-1)) has a function as a curing agent for epoxy resins. Furthermore, by having a dimer acid skeleton and/or a dimer diol skeleton (hereinafter also collectively referred to as a dimer skeleton) in the molecule (in the structure), a cured product excellent in dielectric loss tangent can be obtained. Although the reason is not necessarily clear, it is presumed to be due to the following reasons. That is, having a dimer skeleton in the molecule significantly reduces the polarity of the active ester compound (B-1). Therefore, it is possible to lower the polarity of the cured product with the epoxy resin, and to lower the dielectric properties.
  • the dimer acid is not particularly limited, it is preferably a C20-60 aliphatic dicarboxylic acid produced by dimerization of a C10-30 unsaturated fatty acid made from vegetable oil.
  • the number of carbon atoms in the dimer acid is not particularly limited, it is preferably in the range of 30-50, more preferably in the range of 36-44.
  • the dimer diol is not particularly limited, it is preferably a diol produced by hydrogenating an acid group of an aliphatic carboxylic acid produced by dimerization of an unsaturated fatty acid.
  • the number of carbon atoms in the dimer diol is not particularly limited, it is preferably in the range of 30-50, more preferably in the range of 36-44.
  • the active ester compound (B-1) may have one dimer skeleton in its molecule, or may have two or more. One is preferable.
  • the dimer skeleton may be either a dimer acid skeleton or a dimer diol skeleton, but a dimer diol skeleton is preferred. Further, the dimer acid skeleton exists in the active ester compound (B-1) as a dimer acid residue, and the dimer diol skeleton exists as a dimer diol residue.
  • the ester bond possessed by the active ester compound is preferably a reaction product of a phenolic hydroxyl group and a carboxylic acid (an esterified product of a phenolic hydroxyl group and a carboxylic acid). By having such an ester bond, it has high reactivity with the epoxy group of the epoxy resin described later. This high reactivity can prevent or suppress the generation of hydroxy groups caused by ring-opening of epoxy groups.
  • the active ester compound preferably has two or more of the ester bonds. More preferably, it is four or more. Also, the number is preferably 10 or less, more preferably 6 or less. By having the ester bond within the above range, it becomes easy to suppress the generation of hydroxy groups, and the dielectric loss tangent of the cured product with the epoxy resin is further improved.
  • the active ester compound of the present invention preferably has no hydroxyl group in the molecule or has a hydroxyl value of 30 eq/ton or less, more preferably 15 eq/ton or less. Therefore, the hydroxy group derived from the active ester compound does not exist or hardly exists in the cured product obtained by the reaction of the active ester compound.
  • the active ester compound of the present invention generation of hydroxy groups during curing can be prevented or suppressed. It is generally known that a highly polar hydroxy group increases the dielectric loss tangent, but the use of the active ester compound of the present invention makes it possible to achieve a low dielectric loss tangent in a cured product.
  • the active ester compound (B-1) of the present invention has a dimer acid skeleton and/or a dimer diol skeleton, the molar volume of the molecule is increased.
  • the dimer acid skeleton and/or the dimer diol skeleton have a low polarity structure, the polarity in the molecule becomes small. For this reason, the polarity of the cured product as a whole is also lowered, and it is presumed that a low dielectric loss tangent was achieved.
  • the active ester compound (B-1) is liquid at room temperature (25° C.) from the viewpoint of better balance between handleability during the curing reaction with the epoxy resin and heat resistance and dielectric properties of the cured product.
  • it preferably has a softening point or melting point in the range of 40°C to 200°C.
  • the number average molecular weight of the active ester compound (B-1) is preferably 500 or more, more preferably 800 or more, still more preferably 1000 or more. Also, it is preferably 5,000 or less, more preferably 4,000 or less, and still more preferably 3,000 or less. By setting it within the above range, the dielectric loss tangent of the cured product with the epoxy resin can be improved.
  • the terminal structure of the active ester compound (B-1) is preferably of formula (1) or formula (2).
  • the terminal structures of formulas (1) and (2) are preferably those obtained by the reaction between the phenolic hydroxyl group and the carboxylic acid.
  • the terminal structure has the formula (1) or formula (2), it has high reactivity with the epoxy resin and can prevent or suppress generation of hydroxy groups caused by ring-opening of the epoxy groups.
  • the active ester compound preferably has a total of two or more terminal structures of formula (1) and formula (2), and may have three or more. Also, the number is preferably 6 or less, more preferably 4 or less.
  • the active ester compound (B-1) may contain both the terminal structure of formula (1) and the terminal structure of formula (2) in the molecule. preferably have the same terminal structure.
  • Each R in Formula (1) and Formula (2) is independently an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, or an aralkyl group.
  • the aliphatic hydrocarbon group is not particularly limited, it is preferably an aliphatic hydrocarbon group having 1 to 30 carbon atoms. Specifically, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, tert-pentyl group, neopentyl group , 1,2-dimethylpropyl group, n-hexyl group, isohexyl group, n-nonyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group and the like. Among them, a methyl group is preferred.
  • Alkoxy groups include methoxy, ethoxy, propoxy, butoxy, pentyloxy, hexyloxy, octyloxy, 2-ethylhexyloxy, nonyloxy, decyloxy, and undecyloxy groups.
  • the halogen atom includes a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and the like.
  • the aryl group is not particularly limited, but is preferably an optionally substituted aryl group having 5 to 30 carbon atoms or an optionally substituted heteroaryl group having 3 to 30 carbon atoms.
  • Substituents include the aforementioned aliphatic hydrocarbon groups, alkoxy groups, and halogen atoms.
  • the number of carbon atoms includes the carbon of the substituent.
  • one hydrogen atom is removed from monocyclic aromatic compounds such as benzene, furan, pyrrole, thiophene, imidazole, pyrazole, oxazole, isoxazole, thiazole, isothiazole, pyridine, pyrimidine, pyridazine, pyrazine, and triazine.
  • monocyclic aromatic compounds such as benzene, furan, pyrrole, thiophene, imidazole, pyrazole, oxazole, isoxazole, thiazole, isothiazole, pyridine, pyrimidine, pyridazine, pyrazine, and triazine.
  • condensed aromatic compounds such as naphthalene, anthracene, phenalene, phenanthrene, quinoline, isoquinoline, quinazoline, phthalazine, pteridine, coumarin, indole, benz
  • a combination of a plurality of these aromatic compounds may also be used, for example, ring-assembled aromatic compounds such as biphenyl, binaphthalene, bipyridine, bithiophene, phenylpyridine, phenylthiophene, terphenyl, diphenylthiophene, and quaterphenyl.
  • ring-assembled aromatic compounds such as biphenyl, binaphthalene, bipyridine, bithiophene, phenylpyridine, phenylthiophene, terphenyl, diphenylthiophene, and quaterphenyl.
  • Aralkyl groups include benzyl, phenethyl, phenylpropyl, naphthylmethyl and naphthylethyl groups.
  • R is more preferably an aryl group, more preferably benzene, toluene, naphthalene, or anthracene from which one hydrogen atom has been removed, and benzene or naphthalene from which one hydrogen atom has been removed. is particularly preferred, and benzene from which one hydrogen atom has been removed is most preferred.
  • n in formula (1) and formula (2) is an integer of 0 to 5, preferably an integer of 1 to 4, more preferably an integer of 1 to 3, more preferably 1 or 2 Yes, preferably 1.
  • m is an integer of 0 to 7, preferably an integer of 1 to 4, more preferably an integer of 1 to 3, still more preferably 1 or 2, and particularly preferably 1. * indicates a bond with the active ester compound (B-1).
  • the second active ester compound (B-2) of the present invention (hereinafter also simply referred to as active ester compound (B-2)) has a function as a curing agent for epoxy resins.
  • the active ester compound (B-2) is not particularly limited as long as it has an active ester group, but is an aromatic polyhydroxy compound, an aromatic polycarboxylic acid compound or its acid halide, and an aromatic monohydroxy compound. is preferably a reactant of
  • the aromatic polyhydroxy compound is not particularly limited, but catechol, resorcinol, benzenediol such as hydroquinone; bisphenol A, bisphenol F, bisphenol M, bisphenol P and other bisphenol compounds; bisphenol fluorene, 1,1'-bi- Compounds having two phenolic hydroxyl groups in one compound such as 2-naphthol, 4,4′-biphenol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone; Compounds having three phenolic hydroxyl groups in one compound such as 2,3,4-trihydroxybenzophenone, 2,4,6-trihydroxybenzophenone, 4,4′,4′′-methylidynetrisphenol; compounds having four phenolic hydroxyl groups in one compound such as hydroxybenzophenone and tetrakis(4-hydroxyphenyl)methane; and compounds in which two or more phenols are crosslinked with an
  • bisphenol A, bisphenol F, bisphenol M, bisphenol P, bisphenol fluorene, 1,1'-bi-2-naphthol, and compounds in which two or more phenols are crosslinked with an alicyclic compound are preferred.
  • bisphenol A, bisphenolfluorene, 1,1'-bi-2-naphthol, a compound in which two or more phenols are crosslinked with an alicyclic compound more preferably bisphenol A, 1,1'- B-2-naphthol.
  • the aromatic polyhydric hydroxy compounds may be used alone or in combination of two or more.
  • the aromatic polyhydroxy compound is preferably any one of (X-1), (X-2), (X-3) or (X-4) below.
  • each X is independently hydrogen or a methyl group, preferably two X's are both methyl groups.
  • i is 1 or 2 in (X-4).
  • the aromatic polyhydric hydroxy compound may be used alone or in combination of two or more.
  • the aromatic monohydroxy compound may be any compound as long as it has a substituted or unsubstituted aromatic ring group and one hydroxyl group on the aromatic ring, and other specific structures are particularly Not limited. Moreover, an aromatic monohydroxy compound may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the monohydroxy compounds are specifically phenol, 4-tert-butylphenol, 1-naphthol, 2-naphthol, o-cresol, m-cresol, p-cresol, 1-anthracenol, 2-anthracenol. , 9-anthracenol, 4-phenylphenol and the like. Furthermore, compounds having one or more substituents on these aromatic nuclei are included.
  • Substituents on the aromatic nucleus include aliphatic hydrocarbons such as methyl group, ethyl group, vinyl group, propyl group, butyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group and nonyl group.
  • Alkoxy groups such as methoxy, ethoxy, propyloxy, and butoxy; halogen atoms such as fluorine, chlorine, and bromine; phenyl, naphthyl, and anthryl groups; A group hydrocarbon group, an alkoxy group, an aryl group substituted with a halogen atom, etc.; Examples thereof include aralkyl groups substituted with halogen atoms and the like.
  • phenol, 4-tert-butylphenol, 1-naphthol, 2-naphthol and 4-phenylphenol are preferred, and phenol, 1-naphthol, 2-naphthol and 4-phenylphenol are more preferred.
  • phenol, 1-naphthol and 2-naphthol are more preferred.
  • phenolic compounds and naphthol compounds are preferable because they improve the curability, the dielectric properties of the cured product, and the heat resistance.
  • the aromatic monohydroxy compound forms a terminal structure of the active ester compound.
  • the above aromatic monohydroxy compounds may be used alone or in combination of two or more.
  • the aromatic polycarboxylic acid or acid halide thereof is a compound capable of forming an ester bond by reacting with the phenolic hydroxyl group of the aromatic monohydroxy compound and the aromatic polyhydroxy compound
  • the specific structure is not particularly limited.
  • Specific examples include benzenedicarboxylic acids such as orthophthalic acid, isophthalic acid, and terephthalic acid; benzenetricarboxylic acids such as trimellitic acid; naphthalene-1,4-dicarboxylic acid, naphthalene-1,5-dicarboxylic acid, and naphthalene-2,3.
  • naphthalenedicarboxylic acids such as dicarboxylic acids, naphthalene-2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid; triazinecarboxylic acids such as 1,3,5-triazine-2,4,6-tricarboxylic acid; and
  • acid halides and the like are included.
  • compounds in which the above-described aliphatic hydrocarbon groups, alkoxy groups, halogen atoms, etc. are substituted on these aromatic nuclei are included.
  • Acid halides include, for example, acid chlorides, acid bromides, acid fluorides, acid iodides and the like.
  • benzenedicarboxylic acid and benzenetricarboxylic acid are preferred, and isophthalic acid, terephthalic acid, isophthalic acid dichloride, terephthalic acid dichloride, 1,3,5-benzenetricarboxylic acid and 1,3,5-benzenetricarbonyl Trichloride is more preferred, and isophthalic acid dichloride, terephthalic acid dichloride, and 1,3,5-benzenetricarbonyltrichloride are even more preferred.
  • Benzenecarboxylic acids, such as isophthalic acid and terephthalic acid, or acid halides thereof are preferred because of their excellent curability and the dielectric properties of the resulting cured product.
  • the active ester compound (B-2) has a softening point or a melting point of 40° C. to 200° C. from the viewpoint of better balance between handleability during the curing reaction with the epoxy resin, heat resistance of the cured product, and dielectric properties. is preferably in the range of
  • the number average molecular weight of the active ester compound (B-2) is preferably 300 or more, more preferably 600 or more. Also, it is preferably 4000 or less, more preferably 3000 or less. By setting it within the above range, the dielectric loss tangent of the cured product with the epoxy resin can be improved.
  • the method for producing the active ester compound (B-1) is not particularly limited, and it can be produced by a known method as appropriate.
  • the method for producing the active ester compound (B-1) of the present invention preferably includes a step of reacting a dimer acid and/or dimer diol with a compound having a phenolic hydroxyl group and a polycarboxylic acid compound or an acid halide thereof. .
  • the active ester compound (B-1) can be obtained by reacting the dimer acid with a compound having a phenolic hydroxyl group.
  • an active ester compound (B-1) can be obtained by reacting a compound obtained by reacting a polycarboxylic acid compound or an acid halide thereof with a compound having a phenolic hydroxyl group with dimer diol. .
  • polycarboxylic acid compounds or acid halides thereof are not particularly limited, but orthophthalic acid, isophthalic acid, benzenedicarboxylic acids such as terephthalic acid; benzenetricarboxylic acids such as trimellitic acid; naphthalene-1,5-dicarboxylic acid; acid, naphthalene-2,3-dicarboxylic acid, naphthalene-2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid and the like naphthalenedicarboxylic acids; 2,4,5-pyridinetricarboxylic acid and the like pyridinetricarboxylic acids;1 , 3,5-triazine-2,4,6-tricarboxylic acid; and acid halides thereof.
  • benzenedicarboxylic acid and benzenetricarboxylic acid are preferred, and isophthalic acid, terephthalic acid, isophthalic acid dichloride, terephthalic acid dichloride, 1,3,5-benzenetricarboxylic acid and 1,3,5-benzenetricarbonyl Trichloride is more preferred, and isophthalic acid dichloride, terephthalic acid dichloride, and 1,3,5-benzenetricarbonyltrichloride are even more preferred.
  • the above polycarboxylic acid compounds or acid halides thereof may be used alone, or two or more of them may be used in combination.
  • a compound having a phenolic hydroxyl group has a substituted or unsubstituted aromatic ring group.
  • Specific compounds having a phenolic hydroxyl group are not particularly limited, but phenol, 4-tert-butylphenol, 1-naphthol, 2-naphthol, 1-anthrol, 2-anthrol, 9-anthrol, 4- Phenylphenol etc. are mentioned. Among these, phenol, 4-tert-butylphenol, 1-naphthol, 2-naphthol and 4-phenylphenol are preferred, and phenol, 1-naphthol, 2-naphthol and 4-phenylphenol are more preferred.
  • phenol, 1-naphthol and 2-naphthol are more preferred. It is preferable that the compound having the phenolic hydroxyl group forms the terminal structure of the active ester compound.
  • the above-mentioned compounds having phenolic hydroxyl groups may be used alone or in combination of two or more.
  • the molar ratio of the polycarboxylic acid compound or its acid halide and the compound having a phenolic hydroxyl group is not particularly limited, but the polycarboxylic acid compound or its acid halide relative to the number of moles of hydroxyl groups in the compound having a phenolic hydroxyl group
  • the molar ratio of the total number of moles of carboxy groups and acid halide groups [(total of carboxy groups and acyl halide groups)/(hydroxy groups)] is preferably 0.6 to 3.0, and 0 .8 to 2.0 is more preferred, and 1.0 to 1.2 is even more preferred.
  • the amount of the compound having a phenolic hydroxyl group is preferably 1 mol or more, more preferably 1.5 mol or more, and still more preferably 2 mol or more, relative to 1 mol of the dimer skeleton. Also, it is preferably 10 mol or less, more preferably 8 mol or less, and still more preferably 4 mol or less.
  • reaction conditions for the active ester compound (B-1) are not particularly limited, and known techniques can be employed as appropriate.
  • the pH during the reaction is not particularly limited, it is preferably 11 or higher.
  • a base such as sodium hydroxide, potassium hydroxide, calcium hydroxide, or ammonia can be used to adjust the pH.
  • the reaction temperature is also not particularly limited, preferably 20 to 100°C, more preferably 40 to 80°C.
  • the reaction pressure is also not particularly limited, and normal pressure is more preferable.
  • the reaction time is also not particularly limited, preferably 0.5 to 12 hours, more preferably 1 to 6 hours.
  • the method for producing the active ester compound (B-2) is not particularly limited, and it can be produced by a known method as appropriate.
  • the method for producing the active ester compound (B-2) of the present invention comprises a step of reacting an aromatic polyhydroxy compound, an aromatic polycarboxylic acid compound or an acid halide thereof, and an aromatic monohydroxy compound.
  • the steps include step 1 of reacting an aromatic polycarboxylic acid compound or an acid halide thereof with an aromatic monohydroxy compound, and the product obtained in step 1 (hereinafter also referred to as step 1 product). It is more preferable to include step 2 of reacting an aromatic polyhydric hydroxy compound.
  • the step 1 is a step of reacting an aromatic polycarboxylic acid compound or its acid halide with an aromatic monohydroxy compound.
  • the molar ratio of the aromatic polycarboxylic acid compound or its acid halide and the aromatic monohydroxy compound is not particularly limited, but the aromatic polycarboxylic acid compound or The molar ratio of the total number of moles of carboxy groups and acid halide groups in the acid halide [(total of carboxy groups and acyl halide groups)/(hydroxy groups)] is 0.6 to 3.0. is preferred, 0.8 to 2.0 is more preferred, and 1.0 to 1.2 is even more preferred.
  • aromatic polycarboxylic acid compound or its acid halide When used as a solvent and reagent, it is preferable to remove excess (unreacted) aromatic polycarboxylic acid compound or its acid halide after the reaction.
  • the above molar ratio of the aromatic polycarboxylic acid compound or acid halide thereof and the aromatic monohydroxy compound is based on the amount (excluding the solvent) used as the reagent.
  • the reaction conditions in step 1 are not particularly limited, but the reaction temperature is preferably 80 to 180°C, more preferably 100 to 150°C.
  • the reaction pressure is also not particularly limited, and normal pressure is more preferable.
  • the reaction time is also not particularly limited, preferably 0.5 to 12 hours, more preferably 1 to 6 hours.
  • the step 2 is a step of reacting the product of the step 1 with an aromatic polyhydric hydroxy compound.
  • the molar ratio between the step 1 product and the aromatic polyhydroxy compound is preferably 1.5 mol or more, more preferably 1.8, of the step 1 product per 1 mol of the aromatic polyhydroxy compound. It is mol or more, more preferably 2 mol or more. Also, it is preferably 5 mol or less, more preferably 4 mol or less, and still more preferably 3 mol or less.
  • the pH during the step 2 reaction is not particularly limited, but is preferably 11 or higher.
  • a base such as sodium hydroxide, potassium hydroxide, calcium hydroxide, ammonia, or triethylamine can be used to adjust the pH.
  • the reaction temperature in step 2 is also not particularly limited, preferably 20 to 100°C, more preferably 40 to 80°C.
  • the reaction pressure is also not particularly limited, and normal pressure is more preferable.
  • the reaction time is also not particularly limited, preferably 0.5 to 12 hours, more preferably 1 to 6 hours.
  • the epoxy resin preferably contains two or more epoxy groups in the molecule and is a curable resin that can be cured by forming a crosslinked network with the epoxy groups.
  • the number of epoxy groups contained in the molecule is preferably 3 or more, more preferably 4 or more. Also, it is preferably 10 or less, more preferably 6 or less.
  • the epoxy resin is not particularly limited, but phenol novolak type epoxy resin, cresol novolak type epoxy resin, ⁇ -naphthol novolak type epoxy resin, ⁇ -naphthol novolak type epoxy resin, bisphenol A novolak type epoxy resin, biphenyl novolak type epoxy resin.
  • Novolak type epoxy resins such as resins; aralkyl type epoxy resins such as phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, phenol biphenyl aralkyl type epoxy resin; bisphenol A type epoxy resin, bisphenol AP type epoxy resin, bisphenol AF type epoxy resin , bisphenol B type epoxy resin, bisphenol BP type epoxy resin, bisphenol C type epoxy resin, bisphenol E type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, tetrabromobisphenol A type epoxy resin, etc.
  • biphenyl-type epoxy resins such as biphenyl-type epoxy resins, tetramethylbiphenyl-type epoxy resins, epoxy resins having a biphenyl skeleton and diglycidyloxybenzene skeleton; naphthalene-type epoxy resins; binaphthol-type epoxy resins; binaphthyl-type epoxy resins; dicyclopentadiene dicyclopentadiene-type epoxy resins such as phenol-type epoxy resins; glycidylamine-type epoxy resins such as tetraglycidyldiaminodiphenylmethane-type epoxy resins, triglycidyl-p-aminophenol-type epoxy resins, and diaminodiphenylsulfone glycidylamine-type epoxy resins;2 , 6-naphthalene dicarboxylic acid diglycidyl ester type epoxy resin, hexahydrophthalic anhydride
  • the epoxy resin composition of the present invention (hereinafter also simply referred to as composition) comprises the active ester compound (B-1), the active ester compound (B-2) and the epoxy resin.
  • the active ester compound (B-1) and the active ester compound (B-2) are collectively referred to as an active ester compound.
  • the content of the active ester compound in the composition is not particularly limited, it is preferably 1 to 90% by mass, more preferably 5 to 80% by mass, based on the solid content of the composition.
  • the content of the active ester compound is 1% by mass or more or 90% by mass or less, it is preferable because the cured product can have a low dielectric loss tangent.
  • the term "solid content of the composition” means the total mass of the components excluding the solvent in the composition.
  • the mass ratio of the content of the active ester compound to the content of the epoxy resin is preferably 1 or more, more preferably greater than 1, and preferably 1.1 or more. More preferably, it is particularly preferably 1.2 or more. It is preferable that the mass ratio is 1 or more because the cured product can have a lower dielectric loss tangent. Also, it is preferably 5 or less, more preferably 2 or less. Curability becomes favorable because the said mass ratio is 5 or less. In general, when the content of the active ester compound exceeds the content of the epoxy resin, the dielectric loss tangent becomes low as the content of the active ester compound relatively increases.
  • ⁇ Other curing agents In the composition, other curing agents may be used together with the active ester compound according to the present invention.
  • Other curing agents include, but are not particularly limited to, other active ester compounds, amine curing agents, imidazole curing agents, acid anhydride curing agents, phenolic curing agents, and the like.
  • the other active ester compounds are not particularly limited, but include active ester compounds other than the active ester compounds described above.
  • the amine curing agent is not particularly limited, but diethylenetriamine (DTA), triethylenetetramine (TTA), tetraethylenepentamine (TEPA), dipropylenediamine (DPDA), diethylaminopropylamine (DEAPA), N-aminoethyl Aliphatic amines such as piperazine, mencenediamine (MDA), isophoronediamine (IPDA), 1,3-bisaminomethylcyclohexane (1,3-BAC), piperidine, N,N,-dimethylpiperazine, triethylenediamine; m-xylylenediamine (XDA), metaphenylenediamine (MPDA), diaminodiphenylmethane (DDM), diaminodiphenylsulfone (DDS), benzylmethylamine, 2-(dimethylaminomethyl)phenol, 2,4,6-tris(dimethyl and aromatic amines such as aminomethyl)phenol.
  • DTA diethylenetriamine
  • imidazole curing agent examples include 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, and epoxy-imidazole adducts.
  • the acid anhydride curing agent examples include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, ethylene glycol bis trimellitate, glycerol tri trimellitate, maleic anhydride, tetrahydro phthalic anhydride, methyltetrahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, methylendomethylenetetrahydrophthalic anhydride, methylbutenyltetrahydrophthalic anhydride, dodecenylsuccinic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, succinic anhydride, and methylcyclohexenedicarboxylic anhydride.
  • phenol-based curing agent examples include phenol novolak resin, cresol novolak resin, naphthol novolak resin, bisphenol novolak resin, biphenyl novolak resin, dicyclopentadiene-phenol addition type resin, phenol aralkyl resin, naphthol aralkyl resin, and triphenol methane type resin. , tetraphenol ethane type resin, aminotriazine-modified phenol resin, and the like.
  • the above-mentioned other curing agents may be used alone or in combination of two or more.
  • the composition of the invention may contain a solvent.
  • the solvent does not react with the active ester compound, the epoxy resin, or the like, and has a function of adjusting the viscosity of the composition.
  • the solvent include, but are not limited to, ketones such as acetone, methyl ethyl ketone, and cyclohexanone; esters such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, and carbitol acetate; Examples include carbitols, aromatic hydrocarbons such as toluene and xylene, amides such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone. These solvents may be used alone or in combination of two or more.
  • the amount of solvent used is preferably 10 to 80% by mass, more preferably 20 to 70% by mass, relative to the total mass of the composition. It is preferable that the amount of the solvent used is 10% by mass or more because the handleability is excellent. On the other hand, when the amount of the solvent used is 80% by mass or less, the impregnating property with other substrates is excellent, which is preferable.
  • composition of the present invention may contain additives.
  • additives include curing accelerators, flame retardants, fillers, and the like.
  • the curing accelerator is not particularly limited as long as it accelerates the curing reaction between the active ester compound and the epoxy resin.
  • Examples of the phosphorus curing accelerator include organic phosphine compounds such as triphenylphosphine, tributylphosphine, tripparatolylphosphine, diphenylcyclohexylphosphine and tricyclohexylphosphine; organic phosphine compounds such as trimethylphosphite and triethylphosphite; ethyltriphenyl phosphonium bromide, benzyltriphenylphosphonium chloride, butylphosphonium tetraphenylborate, tetraphenylphosphonium tetraphenylborate, tetraphenylphosphonium tetra-p-tolylborate, triphenylphosphine triphenylborane, tetraphenylphosphonium thiocyanate, tetraphenylphosphonium dicyanamide, Examples include phosphonium salts such as butylpheny
  • Amine curing accelerators include triethylamine, tributylamine, N,N-dimethyl-4-aminopyridine (DMAP), 2,4,6-tris(dimethylaminomethyl)phenol, 1,8-diazabicyclo[5,4 ,0]-undecene-7 (DBU), 1,5-diazabicyclo[4,3,0]-nonene-5 (DBN) and the like.
  • DMAP N,N-dimethyl-4-aminopyridine
  • DBU 1,8-diazabicyclo[5,4 ,0]-undecene-7
  • DBN 1,5-diazabicyclo[4,3,0]-nonene-5
  • imidazole curing accelerators examples include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl- 4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-ethyl- 4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-4,5-d
  • Guanidine curing accelerators include dicyandiamide, 1-methylguanidine, 1-ethylguanidine, 1-cyclohexylguanidine, 1-phenylguanidine, dimethylguanidine, diphenylguanidine, trimethylguanidine, tetramethylguanidine, pentamethylguanidine, 1,5 , 7-triazabicyclo[4.4.0]dec-5-ene, 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene, 1-methylbiguanide, 1-ethylbiguanide, 1-butylbiguanide, 1-cyclohexylbiguanide, 1-allylbiguanide, 1-phenylbiguanide and the like.
  • urea curing accelerator examples include 3-phenyl-1,1-dimethylurea, 3-(4-methylphenyl)-1,1-dimethylurea, chlorophenylurea, 3-(4-chlorophenyl)-1,1 -dimethylurea, 3-(3,4-dichlorophenyl)-1,1-dimethylurea and the like.
  • the above curing accelerators it is preferable to use 2-ethyl-4-methylimidazole and 4-dimethylaminopyridine (DMAP).
  • DMAP 4-dimethylaminopyridine
  • the above curing accelerators may be used alone or in combination of two or more.
  • the amount of curing accelerator used is preferably 0.01 to 5 parts by mass, more preferably 0.1 to 3 parts by mass, based on 100 parts by mass of the epoxy resin. It is preferable that the amount of the curing accelerator used is 0.01 parts by mass or more because the curability is excellent. On the other hand, when the amount of the curing accelerator used is 5 parts by mass or less, the moldability is excellent, which is preferable.
  • the flame retardant is not particularly limited, but includes inorganic phosphorus flame retardants, organic phosphorus flame retardants, halogen flame retardants, and the like.
  • the inorganic phosphorus-based flame retardant is not particularly limited, but includes red phosphorus; ammonium phosphates such as monoammonium phosphate, diammonium phosphate, triammonium phosphate, and ammonium polyphosphate; and phosphate amides.
  • the organic phosphorus flame retardant is not particularly limited, but methyl acid phosphate, ethyl acid phosphate, isopropyl acid phosphate, dibutyl phosphate, monobutyl phosphate, butoxyethyl acid phosphate, 2-ethylhexyl acid phosphate, bis(2-ethylhexyl) phosphate, monoisodecyl acid phosphate, lauryl acid phosphate, tridecyl acid phosphate, stearyl acid phosphate, isostearyl acid phosphate, oleyl acid phosphate, butylpyrophosphate, tetracosyl acid phosphate, ethylene glycol acid phosphate, (2-hydroxyethyl ) Phosphate esters such as methacrylate acid phosphate; 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, diphenylphosphine oxide and the like diphenylpho
  • the halogen-based flame retardant is not particularly limited, but brominated polystyrene, bis(pentabromophenyl)ethane, tetrabromobisphenol A bis(dibromopropyl ether), 1,2-bis(tetrabromophthalimide), 2,4 ,6-tris(2,4,6-tribromophenoxy)-1,3,5-triazine, tetrabromophthalic acid and the like.
  • the above flame retardants may be used alone or in combination of two or more.
  • the amount of the flame retardant used is preferably 0.1 to 50 parts by mass, more preferably 1 to 30 parts by mass, based on 100 parts by mass of the epoxy resin. It is preferable that the amount of the flame retardant used is 0.1 parts by mass or more because flame retardancy can be imparted. On the other hand, when the amount of the flame retardant used is 50 parts by mass or less, it is preferable because flame retardancy can be imparted while maintaining dielectric properties.
  • fillers examples include organic fillers and inorganic fillers.
  • a filler has a function of improving elongation, a function of improving mechanical strength, and the like.
  • the organic filler is not particularly limited, but may include polyamide particles and the like.
  • the inorganic filler is not particularly limited, but silica, alumina, glass, cordierite, silicon oxide, barium sulfate, barium carbonate, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, magnesium oxide, nitride Boron, aluminum nitride, manganese nitride, aluminum borate, strontium carbonate, strontium titanate, calcium titanate, magnesium titanate, bismuth titanate, titanium oxide, zirconium oxide, barium titanate, barium zirconate titanate, barium zirconate , calcium zirconate, zirconium phosphate, zirconium tungstate phosphate, talc, clay, mica powder, zinc oxide, hydrotalcite, boehmite, carbon black and the like.
  • silica it is preferable to use silica.
  • silica amorphous silica, fused silica, crystalline silica, synthetic silica, hollow silica, and the like can be used.
  • the filler may be surface-treated as necessary.
  • Surface treatment agents that can be used at this time are not particularly limited, but aminosilane coupling agents, epoxysilane coupling agents, mercaptosilane coupling agents, silane coupling agents, organosilazane compounds, and titanate coupling agents. agents and the like can be used.
  • Specific examples of surface treatment agents include 3-glycidoxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, hexamethyldimethoxysilane, silazane and the like.
  • the above fillers may be used alone or in combination of two or more.
  • the average particle size of the filler is not particularly limited, and is preferably 0.01 to 10 ⁇ m, more preferably 0.03 to 5 ⁇ m, even more preferably 0.05 to 3 ⁇ m.
  • particle size means the maximum length of the distances between two points on the contour line of the particle.
  • average particle size is measured by measuring the particle size of arbitrary 100 particles in one screen in an image obtained by a scanning electron microscope (SEM) and calculating the average value. shall be adopted.
  • the amount of filler used is preferably 0.5 to 95 parts by mass, more preferably 5 to 80 parts by mass, based on 100 parts by mass of the epoxy resin. It is preferable that the amount of the filler used is 0.5 parts by mass or more because low thermal expansion can be imparted. On the other hand, when the amount of filler used is 95 parts by mass or less, it is preferable because the balance between properties and moldability is excellent.
  • the cured product of the present invention is a cured product obtained by curing the composition described above. That is, it is obtained by curing at least the active ester compound and the epoxy resin. Since the cured product of the present invention is excellent in dielectric loss tangent, it can be used for electronic material applications such as semiconductor package substrates, printed wiring boards, build-up adhesive films, and semiconductor sealing materials. In addition, it can also be applied to uses such as adhesives and paints.
  • the heating temperature for heat-curing the composition is not particularly limited, but is preferably 150 to 300°C. It is more preferably 175 to 250°C, still more preferably 180 to 200°C. Further, the heating time depends on the heating temperature, but is preferably 30 minutes to 10 hours, more preferably 1 to 5 hours.
  • the dielectric loss tangent (tan ⁇ ) of the cured product of the present invention at a frequency of 10 GHz is preferably 0.007 or less. It is more preferably 0.006 or less, still more preferably 0.005 or less, because it is suitable for electronic material applications.
  • the lower limit of the dielectric loss tangent (tan ⁇ ) is not particularly limited, it may be industrially 0.001 or more, or 0.002 or more.
  • the dielectric constant ( ⁇ c ) of the cured product of the present invention at a frequency of 10 GHz is preferably 2.85 or less. It is more preferably 2.82 or less, still more preferably 2.80 or less, because it is suitable for electronic material applications.
  • the lower limit of the dielectric constant ( ⁇ c ) is not particularly limited, but may be industrially 2.00 or more, or 2.50 or more.
  • Example 1 32 parts by mass of jER (registered trademark) 152 (manufactured by Mitsubishi Chemical Corporation), 18 parts by mass of active ester compound 1, 50 parts by mass of active ester compound 3, 0.05 parts by mass of 4-dimethylaminopyridine, a mixer and dispersed uniformly to obtain a resin composition.
  • the resulting resin composition was poured into a mold (100 mm ⁇ 3 mm ⁇ 1 mm) and cured by heating at 110° C. for 1 hour. Then, after heat pressing at 180° C. and 3 MPa for 10 minutes, heat curing was performed at 180° C. for 3 hours to obtain a cured product (measurement sample) 1.
  • compositions 2 to 10 and cured products 2 to 10 were prepared in the same manner as in Example 1, and Examples 2 to 8 and Comparative Examples 1 and 2 were performed.
  • jER registered trademark
  • 152 manufactured by Mitsubishi Chemical Corporation
  • jER registered trademark 828
  • Tetrad registered trademark
  • X manufactured by Mitsubishi Gas Chemical Company, Inc.
  • Heat-resistant Heat resistance was measured from 0° C. to 300° C. using DVA-200 (manufactured by IT Keisoku Co., Ltd.) at a frequency of 1 Hz and a heating rate of 3° C./min to determine the glass transition temperature (Tg). .
  • Tg glass transition temperature

Abstract

The present invention provides: an epoxy resin composition having excellent dielectric loss tangent and heat resistance; and a cured object thereof. This epoxy resin composition is characterized by being an active ester compound that contains an epoxy resin (A), a first active ester compound (B-1), and a second active ester compound (B-2), and is characterized in that the first active ester compound (B-1) has a dimer acid backbone and/or a dimer diol backbone in the molecule thereof.

Description

活性エステル化合物Active ester compound
 本発明は、活性エステル化合物並びにこれを用いた組成物および硬化物に関する。 The present invention relates to an active ester compound and a composition and cured product using the same.
 近年、通信情報量の増加にともない高周波数帯域での情報送信が盛んに行われており、通信用絶縁材料の伝送損失を抑えることが重要となっている。エポキシ樹脂は、電気特性の優れた絶縁材料としてプリント配線基板や封止剤などに用いられているが、高周波通信用絶縁材料として用いるには、伝送損失を抑えるために、誘電正接のさらなる低減が求められている。 In recent years, with the increase in the amount of communication information, information transmission in high frequency bands has become popular, and it has become important to suppress the transmission loss of insulating materials for communication. Epoxy resin is used as an insulating material with excellent electrical properties for printed wiring boards and sealants. However, in order to use it as an insulating material for high-frequency communication, it is necessary to further reduce the dielectric loss tangent in order to suppress transmission loss. It has been demanded.
 従来、エポキシ樹脂の硬化剤としては、第一アミン、第二アミン、多官能性カルボン酸、フェノール樹脂などの活性水素を有する化合物が用いられていたが、これら硬化剤によりエポキシ樹脂を硬化させた場合には、エポキシ樹脂とこれら硬化剤の反応により分子鎖末端に極性の高いヒドロキシ基が生じるため低い誘電正接が得られなかった。 Conventionally, compounds with active hydrogen, such as primary amines, secondary amines, polyfunctional carboxylic acids, and phenolic resins, have been used as curing agents for epoxy resins. In some cases, a low dielectric loss tangent could not be obtained due to the reaction between the epoxy resin and these curing agents to generate highly polar hydroxy groups at the ends of the molecular chains.
 極性の高いヒドロキシ基を抑制し、それに起因する電気特性の低下をなくす試みとして、例えば、特許文献1には、エポキシ樹脂に触媒の存在下又は不存在下、多価カルボン酸とフェノール類、ナフトール類、N,O及び/又はS原子を有する複素環化合物より選ばれたヒドロキシ基又はメルカプト基含有化合物とのエステル又は安息香酸と芳香族ヒドロキシ化合物、芳香族イオウ化合物、ヒドロキノン、多価アルコール、フェノール樹脂、ポリビニルフェノールより選ばれたヒドロキシ基又はメルカプト基含有化合物とのエステルの1種以上を加えてなるエポキシ樹脂硬化性組成物が開示されている。 As an attempt to suppress the highly polar hydroxyl group and eliminate the deterioration of the electrical properties caused by it, for example, Patent Document 1 discloses the presence or absence of a catalyst in an epoxy resin, polyvalent carboxylic acid, phenols, naphthol esters with compounds containing hydroxy groups or mercapto groups selected from heterocyclic compounds having N, O and/or S atoms, or benzoic acid and aromatic hydroxy compounds, aromatic sulfur compounds, hydroquinone, polyhydric alcohols, phenols An epoxy resin curable composition is disclosed which comprises one or more esters with a compound containing a hydroxy group or a mercapto group selected from resins and polyvinylphenols.
特開昭62-53327号公報JP-A-62-53327
 近年の多層プリント配線板等に形成される絶縁層には、誘電正接が低いことが要求されている。エポキシ樹脂硬化物の誘電正接を低くするために、硬化剤として活性エステル硬化剤を使用することが有効である。しかしながら、特許文献1に開示されたエポキシ樹脂硬化性組成物では誘電正接が十分ではなく、高周波用の電気電子材料として使用することが困難である。 Insulating layers formed on multilayer printed wiring boards and the like in recent years are required to have a low dielectric loss tangent. In order to reduce the dielectric loss tangent of the epoxy resin cured product, it is effective to use an active ester curing agent as the curing agent. However, the epoxy resin curable composition disclosed in Patent Document 1 does not have a sufficient dielectric loss tangent, and is difficult to use as an electric/electronic material for high frequencies.
 そこで、本発明は、硬化剤としてダイマー酸骨格および/またはダイマージオール骨格を有する活性エステル化合物と他の活性エステル化合物を組み合わせることで、優れた誘電特性かつ耐熱性のあるエポキシ樹脂との硬化物を提供することを目的とする。 Therefore, the present invention combines an active ester compound having a dimer acid skeleton and/or a dimer diol skeleton as a curing agent with another active ester compound to produce a cured product with an epoxy resin having excellent dielectric properties and heat resistance. intended to provide
 本発者らは、上記課題を解決するために鋭意検討した結果、活性エステル化合物の分子内にダイマー酸骨格および/またはダイマージオール骨格を組み込んだ化合物と芳香族骨格を有する活性エステル化合物を組み合わせることによって、エポキシ樹脂硬化物に優れた誘電正接と耐熱性を付与することができることを見出し、本発明は完成するに至ったものである。 As a result of intensive studies to solve the above problems, the present inventors have found that a compound in which a dimer acid skeleton and/or a dimer diol skeleton is incorporated in the molecule of an active ester compound and an active ester compound having an aromatic skeleton are combined. The inventors have found that the epoxy resin cured product can be imparted with excellent dielectric loss tangent and heat resistance, and have completed the present invention.
 すなわち、本発明は以下の構成を含むものである。
[1] エポキシ樹脂(A)、第1の活性エステル化合物(B-1)及び第2の活性エステル化合物(B-2)を含有し、前記第1の活性エステル化合物(B-1)がダイマー酸骨格および/またはダイマージオール骨格を分子内に有する活性エステル化合物であることを特徴とするエポキシ樹脂組成物。
[2] 前記第1の活性エステル化合物(B-1)の活性エステル化合物全体に対する割合が20~80質量%であることを特徴とする[1]に記載のエポキシ樹脂組成物。
[3] 前記第2の活性エステル化合物(B-2)が、芳香族多価ヒドロキシ化合物と、芳香族多価カルボン酸化合物またはその酸ハロゲン化物と、芳香族モノヒドロキシ化合物の反応物であることを特徴とする[1]または[2]に記載のエポキシ樹脂組成物。
[4] 前記第1の活性エステル化合物(B-1)の末端構造が式(1)又は式(2)
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 (式中Rはそれぞれ独立して、脂肪族炭化水素基、アルコキシ基、ハロゲン原子、アリール基、アラルキル基のいずれかであり、nは0~5の整数、mは0~7の整数である。) で表される活性エステル化合物であることを特徴とする[1]から[3]いずれか一項に記載のエポキシ樹脂組成物。
[5] 前記第1の活性エステル化合物(B-1)の分子量が500~5000であることを特徴とする[1]から[4]いずれか一項に記載のエポキシ樹脂組成物。
[6] 前記第2の活性エステル化合物(B-2)を構成する芳香族多価ヒドロキシ化合物が下記(X-1)~(X-4)
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 (式中Xは、それぞれ独立に水素またはメチル基である。iは1又は2である。)のいずれかであることを特徴とする[3]から[5]いずれか一項に記載のエポキシ樹脂組成物。
[7] [1]~[6]のいずれかに記載のエポキシ樹脂組成物の硬化物。
That is, the present invention includes the following configurations.
[1] Contains an epoxy resin (A), a first active ester compound (B-1) and a second active ester compound (B-2), wherein the first active ester compound (B-1) is a dimer An epoxy resin composition characterized by being an active ester compound having an acid skeleton and/or a dimer diol skeleton in its molecule.
[2] The epoxy resin composition according to [1], wherein the ratio of the first active ester compound (B-1) to the total active ester compound is 20 to 80% by mass.
[3] The second active ester compound (B-2) is a reaction product of an aromatic polyhydroxy compound, an aromatic polycarboxylic acid compound or its acid halide, and an aromatic monohydroxy compound. The epoxy resin composition according to [1] or [2], characterized by:
[4] The terminal structure of the first active ester compound (B-1) is represented by formula (1) or formula (2)
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
(In the formula, each R is independently an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, or an aralkyl group, n is an integer of 0 to 5, and m is an integer of 0 to 7. .) The epoxy resin composition according to any one of [1] to [3], which is an active ester compound represented by:
[5] The epoxy resin composition according to any one of [1] to [4], wherein the first active ester compound (B-1) has a molecular weight of 500 to 5,000.
[6] The aromatic polyhydroxy compound constituting the second active ester compound (B-2) is the following (X-1) to (X-4)
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
(In the formula, each X is independently hydrogen or a methyl group. i is 1 or 2.) The epoxy according to any one of [3] to [5], Resin composition.
[7] A cured product of the epoxy resin composition according to any one of [1] to [6].
 本発明によれば、エポキシ樹脂組成物は、エポキシ樹脂と、分子内にダイマー酸骨格および/またはダイマージオール骨格を有する活性エステル化合物(B-1)と、他の活性エステル化合物(B-2)を含有することを特徴としている。前記エポキシ樹脂組成物の硬化物は優れた誘電正接と耐熱性を有する。 According to the present invention, the epoxy resin composition comprises an epoxy resin, an active ester compound (B-1) having a dimer acid skeleton and/or a dimer diol skeleton in the molecule, and another active ester compound (B-2). It is characterized by containing A cured product of the epoxy resin composition has excellent dielectric loss tangent and heat resistance.
 <エポキシ樹脂組成物>
 本発明のエポキシ樹脂組成物は、エポキシ樹脂(A)、第1の活性エステル化合物(B-1)及び第2の活性エステル化合物(B-2)を含有し、前記第1の活性エステル化合物(B-1)がダイマー酸骨格および/またはダイマージオール骨格を分子内に有する活性エステル化合物であることを特徴とする。第1の活性エステル化合物(B-1)及び第2の活性エステル化合物(B-2)は、エポキシ樹脂(A)の硬化剤として作用し、エポキシ樹脂組成物の硬化物(以下、エポキシ樹脂硬化物ともいう。)を得ることができる。エポキシ樹脂硬化物の誘電特性と耐熱性がともに良好になることから、前記活性エステル化合物(B-1)の活性エステル化合物全体に対する割合が20~80質量%の範囲であることが好ましく、25~60質量%の範囲であることがより好ましい。
<Epoxy resin composition>
The epoxy resin composition of the present invention contains an epoxy resin (A), a first active ester compound (B-1) and a second active ester compound (B-2), and the first active ester compound ( B-1) is characterized in that it is an active ester compound having a dimer acid skeleton and/or a dimer diol skeleton in its molecule. The first active ester compound (B-1) and the second active ester compound (B-2) act as a curing agent for the epoxy resin (A), and the cured product of the epoxy resin composition (hereinafter referred to as epoxy resin curing Also called a thing.) can be obtained. Since both dielectric properties and heat resistance of the epoxy resin cured product are improved, the ratio of the active ester compound (B-1) to the total active ester compound is preferably in the range of 20 to 80% by mass, preferably 25 to 80% by mass. It is more preferably in the range of 60% by mass.
<第1の活性エステル化合物(B-1)>
 本発明の第1の活性エステル化合物(B-1)(以下、単に活性エステル化合物(B-1)ともいう。)は、エポキシ樹脂の硬化剤としての機能等を有する。さらに、ダイマー酸骨格および/またはダイマージオール骨格(以下、両者を合わせてダイマー骨格ともいう。)を分子内(構造中)に有することにより、誘電正接に優れた硬化物が得られる。その理由は必ずしも明らかではないが以下の理由によるものと推察される。すなわち、ダイマー骨格を分子内に有することにより、活性エステル化合物(B-1)の極性が大幅に低下する。そのため、エポキシ樹脂との硬化物においても極性を低くすることが可能となり、誘電特性を低下させることができる。
<First active ester compound (B-1)>
The first active ester compound (B-1) of the present invention (hereinafter also simply referred to as active ester compound (B-1)) has a function as a curing agent for epoxy resins. Furthermore, by having a dimer acid skeleton and/or a dimer diol skeleton (hereinafter also collectively referred to as a dimer skeleton) in the molecule (in the structure), a cured product excellent in dielectric loss tangent can be obtained. Although the reason is not necessarily clear, it is presumed to be due to the following reasons. That is, having a dimer skeleton in the molecule significantly reduces the polarity of the active ester compound (B-1). Therefore, it is possible to lower the polarity of the cured product with the epoxy resin, and to lower the dielectric properties.
 ダイマー酸は、特に限定されないが、植物系油脂を原料とする炭素数10~30の不飽和脂肪酸の二量化によって生成された炭素数20~60の脂肪族ジカルボン酸であることが好ましい。ダイマー酸の炭素数は特に限定されないが、30~50の範囲であることが好ましく、より好ましくは36~44の範囲である。またダイマージオールは、特に限定されないが、不飽和脂肪酸の二量化によって生成された脂肪族カルボン酸の酸基を水素化することによって製造されたジオールであることが好ましい。ダイマージオールの炭素数は特に限定されないが、30~50の範囲であることが好ましく、より好ましくは36~44の範囲である。 Although the dimer acid is not particularly limited, it is preferably a C20-60 aliphatic dicarboxylic acid produced by dimerization of a C10-30 unsaturated fatty acid made from vegetable oil. Although the number of carbon atoms in the dimer acid is not particularly limited, it is preferably in the range of 30-50, more preferably in the range of 36-44. Although the dimer diol is not particularly limited, it is preferably a diol produced by hydrogenating an acid group of an aliphatic carboxylic acid produced by dimerization of an unsaturated fatty acid. Although the number of carbon atoms in the dimer diol is not particularly limited, it is preferably in the range of 30-50, more preferably in the range of 36-44.
 ダイマー骨格は、活性エステル化合物(B-1)の分子内に1個有していればよく、2個以上有していてもよい。好ましくは1個である。ダイマー骨格としては、ダイマー酸骨格またはダイマージオール骨格のいずれでもよいが、ダイマージオール骨格であることが好ましい。また、ダイマー酸骨格は活性エステル化合物(B-1)にダイマー酸の残基として存在し、ダイマージオール骨格はダイマージオールの残基として存在する。 The active ester compound (B-1) may have one dimer skeleton in its molecule, or may have two or more. One is preferable. The dimer skeleton may be either a dimer acid skeleton or a dimer diol skeleton, but a dimer diol skeleton is preferred. Further, the dimer acid skeleton exists in the active ester compound (B-1) as a dimer acid residue, and the dimer diol skeleton exists as a dimer diol residue.
 活性エステル化合物が有するエステル結合は、フェノール性水酸基とカルボン酸との反応物(フェノール性水酸基とカルボン酸とがエステル化したもの)であることが好ましい。このようなエステル結合を有することで、後述するエポキシ樹脂が有するエポキシ基と高い反応性を有する。この高い反応性により、エポキシ基の開環により生じるヒドロキシ基の発生を防止または抑制することができる。活性エステル化合物は前記エステル結合を2つ以上有することが好ましい。より好ましくは4つ以上である。また、10個以下が好ましく、より好ましくは6個以下である。前記エステル結合を前記範囲内で有することで、ヒドロキシ基の発生を抑制しやすくなり、エポキシ樹脂との硬化物の誘電正接がさらに良好となる。 The ester bond possessed by the active ester compound is preferably a reaction product of a phenolic hydroxyl group and a carboxylic acid (an esterified product of a phenolic hydroxyl group and a carboxylic acid). By having such an ester bond, it has high reactivity with the epoxy group of the epoxy resin described later. This high reactivity can prevent or suppress the generation of hydroxy groups caused by ring-opening of epoxy groups. The active ester compound preferably has two or more of the ester bonds. More preferably, it is four or more. Also, the number is preferably 10 or less, more preferably 6 or less. By having the ester bond within the above range, it becomes easy to suppress the generation of hydroxy groups, and the dielectric loss tangent of the cured product with the epoxy resin is further improved.
 また、本発明の活性エステル化合物は、分子中にヒドロキシ基を有さない、または水酸基価が30eq/tоn以下であることが好ましく、さらに好ましくは15eq/tоn以下である。このため、活性エステル化合物が反応して得られる硬化物中に、活性エステル化合物由来のヒドロキシ基は存在しない、またはほとんど存在しない。 In addition, the active ester compound of the present invention preferably has no hydroxyl group in the molecule or has a hydroxyl value of 30 eq/ton or less, more preferably 15 eq/ton or less. Therefore, the hydroxy group derived from the active ester compound does not exist or hardly exists in the cured product obtained by the reaction of the active ester compound.
 このように、本発明の活性エステル化合物によれば、硬化時におけるヒドロキシ基の発生を防止または抑制することができる。一般に、極性が高いヒドロキシ基は、誘電正接を上昇させることが知られているが、本発明の活性エステル化合物を用いることで硬化物における低誘電正接を実現することができる。 Thus, according to the active ester compound of the present invention, generation of hydroxy groups during curing can be prevented or suppressed. It is generally known that a highly polar hydroxy group increases the dielectric loss tangent, but the use of the active ester compound of the present invention makes it possible to achieve a low dielectric loss tangent in a cured product.
 また、本発明の活性エステル化合物(B-1)は、ダイマー酸骨格および/またはダイマージオール骨格を有することから、分子のモル体積が大きくなる。また、ダイマー酸骨格および/またはダイマージオール骨格は極性の小さい構造であることから分子内の極性が小さくなる。そのため、硬化物全体としての極性も低下し低誘電正接を実現することができたと推察される。 In addition, since the active ester compound (B-1) of the present invention has a dimer acid skeleton and/or a dimer diol skeleton, the molar volume of the molecule is increased. In addition, since the dimer acid skeleton and/or the dimer diol skeleton have a low polarity structure, the polarity in the molecule becomes small. For this reason, the polarity of the cured product as a whole is also lowered, and it is presumed that a low dielectric loss tangent was achieved.
 前記活性エステ化合物(B-1)は、エポキシ樹脂と硬化反応する際のハンドリング性や、その硬化物の耐熱性、誘電特性とのバランスにより優れる観点から、常温(25℃)で液体であるか、あるいは、その軟化点又は融点が40℃~200℃の範囲であることが好ましい。 The active ester compound (B-1) is liquid at room temperature (25° C.) from the viewpoint of better balance between handleability during the curing reaction with the epoxy resin and heat resistance and dielectric properties of the cured product. Alternatively, it preferably has a softening point or melting point in the range of 40°C to 200°C.
 活性エステル化合物(B-1)の数平均分子量は500以上であることが好ましく、より好ましくは800以上であり、さらに好ましくは1000以上である。また、5000以下であることが好ましく、より好ましくは4000以下であり、さらに好ましくは3000以下である。前記範囲内とすることでエポキシ樹脂との硬化物の誘電正接が良好となり得る。 The number average molecular weight of the active ester compound (B-1) is preferably 500 or more, more preferably 800 or more, still more preferably 1000 or more. Also, it is preferably 5,000 or less, more preferably 4,000 or less, and still more preferably 3,000 or less. By setting it within the above range, the dielectric loss tangent of the cured product with the epoxy resin can be improved.
 活性エステル化合物(B-1)の末端構造は、式(1)または式(2)であることが好ましい。式(1)および式(2)の末端構造は、前記フェノール性水酸基とカルボン酸との反応により得られるものであることが好ましい。末端構造が式(1)または式(2)であることで、エポキシ樹脂と高い反応性を有し、エポキシ基の開環により生じるヒドロキシ基の発生を防止または抑制することができる。また、活性エステル化合物は式(1)および式(2)の末端構造が合計で2個以上有していることが好ましく、3個以上でも構わない。また、6個以下が好ましく、より好ましくは4個以下である。式(1)または式(2)の末端構造を複数有することでエポキシ樹脂との反応性をさらに高めることができ、エポキシ基の開環により生じるヒドロキシ基の発生をより効果的に防止または抑制することができる。活性エステル化合物(B-1)は分子中に式(1)の末端構造と式(2)の末端構造の両方が含まれていても良いが、製造の簡便性から複数含まれる場合は、すべてが同じ末端構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 式(1)、および式(2)中のRはそれぞれ独立して、脂肪族炭化水素基、アルコキシ基、ハロゲン原子、アリール基、アラルキル基のいずれかである。
The terminal structure of the active ester compound (B-1) is preferably of formula (1) or formula (2). The terminal structures of formulas (1) and (2) are preferably those obtained by the reaction between the phenolic hydroxyl group and the carboxylic acid. When the terminal structure has the formula (1) or formula (2), it has high reactivity with the epoxy resin and can prevent or suppress generation of hydroxy groups caused by ring-opening of the epoxy groups. In addition, the active ester compound preferably has a total of two or more terminal structures of formula (1) and formula (2), and may have three or more. Also, the number is preferably 6 or less, more preferably 4 or less. Having a plurality of terminal structures of formula (1) or formula (2) can further increase the reactivity with epoxy resins, and more effectively prevent or suppress the generation of hydroxy groups caused by ring-opening of epoxy groups. be able to. The active ester compound (B-1) may contain both the terminal structure of formula (1) and the terminal structure of formula (2) in the molecule. preferably have the same terminal structure.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Each R in Formula (1) and Formula (2) is independently an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, or an aralkyl group.
 脂肪族炭化水素基としては、特に限定されないが、炭素数1~30の脂肪族炭化水素基であることが好ましい。具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、tert-ペンチル基、ネオペンチル基、1,2-ジメチルプロピル基、n-ヘキシル基、イソヘキシル基、n-ノニル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基等が挙げられる。中でもメチル基が好ましい。 Although the aliphatic hydrocarbon group is not particularly limited, it is preferably an aliphatic hydrocarbon group having 1 to 30 carbon atoms. Specifically, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, tert-pentyl group, neopentyl group , 1,2-dimethylpropyl group, n-hexyl group, isohexyl group, n-nonyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group and the like. Among them, a methyl group is preferred.
 アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、ウンデシルオキシ基等が挙げられる。 Alkoxy groups include methoxy, ethoxy, propoxy, butoxy, pentyloxy, hexyloxy, octyloxy, 2-ethylhexyloxy, nonyloxy, decyloxy, and undecyloxy groups.
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。  The halogen atom includes a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and the like.
 アリール基としては、特に限定されないが、炭素数5~30の置換基を有してもよいアリール基、または炭素数3~30の置換基を有してもよいヘテロアリール基であることが好ましい。置換基としては前記脂肪族炭化水素基、アルコキシ基、またはハロゲン原子が挙げられる。また、置換基を有する場合の前記炭素数は置換基の炭素を含めるものとする。具体的には、ベンゼン、フラン、ピロール、チオフェン、イミダゾール、ピラゾール、オキサゾール、イソキサゾール、チアゾール、イソチアゾール、ピリジン、ピリミジン、ピリダジン、ピラジン、トリアジン等の単環芳香族化合物から水素原子が1つ除かれたもの;ナフタレン、アントラセン、フェナレン、フェナントレン、キノリン、イソキノリン、キナゾリン、フタラジン、プテリジン、クマリン、インドール、ベンゾイミダゾール、ベンゾフラン、アクリジン等の縮環芳香族化合物から水素原子が1つ除かれたもの等が挙げられる。また、これらの芳香族化合物を複数組み合わせたものであってもよく、例えば、ビフェニル、ビナフタレン、ビピリジン、ビチオフェン、フェニルピリジン、フェニルチオフェン、テルフェニル、ジフェニルチオフェン、クアテルフェニル等の環集合芳香族化合物から水素原子が1つ除かれたもの;ジフェニルメタン、ジフェニルエタン、1,1-ジフェニルエタン、2,2-ジフェニルプロパン、ナフチルフェニルメタン、トリフェニルメタン、ジナフチルメタン、ジナフチルプロパン、フェニルピリジルメタン、フルオレン、ジフェニルシクロペンタン等のアルキレンにより連結される芳香族化合物から水素原子が1つ除かれたもの等が挙げられる。 The aryl group is not particularly limited, but is preferably an optionally substituted aryl group having 5 to 30 carbon atoms or an optionally substituted heteroaryl group having 3 to 30 carbon atoms. . Substituents include the aforementioned aliphatic hydrocarbon groups, alkoxy groups, and halogen atoms. Moreover, when having a substituent, the number of carbon atoms includes the carbon of the substituent. Specifically, one hydrogen atom is removed from monocyclic aromatic compounds such as benzene, furan, pyrrole, thiophene, imidazole, pyrazole, oxazole, isoxazole, thiazole, isothiazole, pyridine, pyrimidine, pyridazine, pyrazine, and triazine. condensed aromatic compounds such as naphthalene, anthracene, phenalene, phenanthrene, quinoline, isoquinoline, quinazoline, phthalazine, pteridine, coumarin, indole, benzimidazole, benzofuran, and acridine from which one hydrogen atom has been removed mentioned. A combination of a plurality of these aromatic compounds may also be used, for example, ring-assembled aromatic compounds such as biphenyl, binaphthalene, bipyridine, bithiophene, phenylpyridine, phenylthiophene, terphenyl, diphenylthiophene, and quaterphenyl. from which one hydrogen atom is removed; diphenylmethane, diphenylethane, 1,1-diphenylethane, 2,2-diphenylpropane, naphthylphenylmethane, triphenylmethane, dinaphthylmethane, dinaphthylpropane, phenylpyridylmethane, Examples thereof include aromatic compounds such as fluorene and diphenylcyclopentane, which are linked by alkylene and have one hydrogen atom removed.
 アラルキル基としては、ベンジル基、フェネチル基、フェニルプロピル基、ナフチルメチル基及びナフチルエチル基等が挙げられる。 Aralkyl groups include benzyl, phenethyl, phenylpropyl, naphthylmethyl and naphthylethyl groups.
 上記のうちRはアリール基がより好ましく、その中でもベンゼン、トルエン、ナフタレン、アントラセンから水素原子が1つ除かれたものであることがさらに好ましく、ベンゼン、ナフタレンから水素原子が1つ除かれたものであることが特に好ましく、ベンゼンから水素原子が1つ除かれたものであることが最も好ましい。 Among the above, R is more preferably an aryl group, more preferably benzene, toluene, naphthalene, or anthracene from which one hydrogen atom has been removed, and benzene or naphthalene from which one hydrogen atom has been removed. is particularly preferred, and benzene from which one hydrogen atom has been removed is most preferred.
 式(1)、および式(2)中のnは0~5の整数であり、好ましくは1~4の整数であり、より好ましくは1~3の整数であり、さらに好ましくは1または2であり、特に好ましくは1である。また、mは0~7の整数であり、好ましくは1~4の整数であり、より好ましくは1~3の整数であり、さらに好ましくは1または2であり、特に好ましくは1である。*は活性エステル化合物(B-1)との結合手を示す。 n in formula (1) and formula (2) is an integer of 0 to 5, preferably an integer of 1 to 4, more preferably an integer of 1 to 3, more preferably 1 or 2 Yes, preferably 1. Also, m is an integer of 0 to 7, preferably an integer of 1 to 4, more preferably an integer of 1 to 3, still more preferably 1 or 2, and particularly preferably 1. * indicates a bond with the active ester compound (B-1).
<第2の活性エステル化合物(B-2)>
 本発明の第2の活性エステル化合物(B-2)(以下、単に活性エステル化合物(B-2)ともいう。)は、エポキシ樹脂の硬化剤としての機能等を有する。
<Second active ester compound (B-2)>
The second active ester compound (B-2) of the present invention (hereinafter also simply referred to as active ester compound (B-2)) has a function as a curing agent for epoxy resins.
 活性エステル化合物(B-2)は活性エステル基を有していれば特に限定されないが、芳香族多価ヒドロキシ化合物と、芳香族多価カルボン酸化合物またはその酸ハロゲン化物と、芳香族モノヒドロキシ化合物の反応物であることが好ましい。 The active ester compound (B-2) is not particularly limited as long as it has an active ester group, but is an aromatic polyhydroxy compound, an aromatic polycarboxylic acid compound or its acid halide, and an aromatic monohydroxy compound. is preferably a reactant of
 前記芳香族多価ヒドロキシ化合物は、特に限定されないが、カテコール、レゾルシノール、ハイドロキノン等のベンゼンジオール;ビスフェノールA、ビスフェノールF、ビスフェノールM、ビスフェノールP等のビスフェノール化合物;ビスフェノールフルオレン、1,1’-ビ-2-ナフトール、4,4'-ビフェノール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン等の1つの化合物中に2つのフェノール性水酸基を有する化合物;2,3,4-トリヒドロキシベンゾフェノン、2,4,6-トリヒドロキシベンゾフェノン、4,4’,4’’-メチリジントリスフェノール等の1つの化合物中に3つのフェノール性水酸基を有する化合物;テトラヒドロキシベンゾフェノン、テトラキス(4-ヒドロキシフェニル)メタン等の1つの化合物中に4つのフェノール性水酸基を有する化合物;2つ以上のフェノールが脂環式化合物で架橋された化合物等が挙げられる。これらのうち、ビスフェノールA、ビスフェノールF、ビスフェノールM、ビスフェノールP、ビスフェノールフルオレン、1,1'-ビ-2-ナフトール、2つ以上のフェノールが脂環式化合物で架橋された化合物であることが好ましく、より好ましくはビスフェノールA、ビスフェノールフルオレン、1,1'-ビ-2-ナフトール、2つ以上のフェノールが脂環式化合物で架橋された化合物であり、さらに好ましくはビスフェノールA、1,1'-ビ-2-ナフトールである。前記芳香族多価ヒドロキシ化合物を前記化合物にすることで、エポキシ樹脂硬化物の誘電特性と耐熱性がさらに良好になる。前記芳香族多価ヒドロキシ化合物は単独で用いても、2種以上を組み合わせて用いてもよい。 The aromatic polyhydroxy compound is not particularly limited, but catechol, resorcinol, benzenediol such as hydroquinone; bisphenol A, bisphenol F, bisphenol M, bisphenol P and other bisphenol compounds; bisphenol fluorene, 1,1'-bi- Compounds having two phenolic hydroxyl groups in one compound such as 2-naphthol, 4,4′-biphenol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone; Compounds having three phenolic hydroxyl groups in one compound such as 2,3,4-trihydroxybenzophenone, 2,4,6-trihydroxybenzophenone, 4,4′,4″-methylidynetrisphenol; compounds having four phenolic hydroxyl groups in one compound such as hydroxybenzophenone and tetrakis(4-hydroxyphenyl)methane; and compounds in which two or more phenols are crosslinked with an alicyclic compound. Among these, bisphenol A, bisphenol F, bisphenol M, bisphenol P, bisphenol fluorene, 1,1'-bi-2-naphthol, and compounds in which two or more phenols are crosslinked with an alicyclic compound are preferred. , more preferably bisphenol A, bisphenolfluorene, 1,1'-bi-2-naphthol, a compound in which two or more phenols are crosslinked with an alicyclic compound, more preferably bisphenol A, 1,1'- B-2-naphthol. By using the aromatic polyhydric hydroxy compound as the above compound, the dielectric properties and heat resistance of the epoxy resin cured product are further improved. The aromatic polyhydric hydroxy compounds may be used alone or in combination of two or more.
 芳香族多価ヒドロキシ化合物は、下記(X-1)、(X-2)、(X-3)または(X-4)のいずれかであることが好ましい。(X-1)中、Xはそれぞれ独立に水素またはメチル基であり、好ましくは2個のXがともにメチル基である。また、(X-4)中、iは1又は2である。前記芳香族多価ヒドロキシ化合物は、1種類を単独で用いても良いし、2種類以上を併用しても構わない。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
The aromatic polyhydroxy compound is preferably any one of (X-1), (X-2), (X-3) or (X-4) below. In (X-1), each X is independently hydrogen or a methyl group, preferably two X's are both methyl groups. Also, i is 1 or 2 in (X-4). The aromatic polyhydric hydroxy compound may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 前記芳香族モノヒドロキシ化合物は、置換または非置換の芳香族環基を有し、前記芳香族環上に水酸基を一つ有する芳香族化合物であれば何れの化合物でもよく、その他の具体構造は特に限定されない。また、芳香族モノヒドロキシ化合物は一種類を単独で用いてもよいし、2種類以上を併用して用いてもよい。前記モノヒドロキシ化合物は、具体的には、フェノール、4-tert-ブチルフェノール、1-ナフトール、2-ナフトール、o-クレゾール、m-クレゾール、p-クレゾール、1-アントラセノール、2-アントラセノール、9-アントラセノール、4-フェニルフェノール等が挙げられる。さらにこれらの芳香核上に一つまたは複数の置換基を有する化合物が挙げられる。芳香核上の置換基としては、メチル基、エチル基、ビニル基、プロピル基、ブチル基、ペンチル基、へキシル基、シクロへキシル基、ヘプチル基、オクチル基、ノニル基等の脂肪族炭化水素基;メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基等のアルコキシ基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;フェニル基、ナフチル基、アントリル基、及びこれらの芳香核上に前記脂肪族炭化水素基やアルコキシ基、ハロゲン原子等が置換したアリール基;フェニルメチル基、フェニルエチル基、ナフチルメチル基、ナフチルエチル基、及びこれらの芳香核上に前記脂肪族炭化水素基やアルコキシ基、ハロゲン原子等が置換したアラルキル基等が挙げられる。これらのうち、フェノール、4-tert-ブチルフェノール、1-ナフトール、2-ナフトール、4-フェニルフェノールであることが好ましく、フェノール、1-ナフトール、2-ナフトール、4-フェニルフェノールであることがより好ましく、フェノール、1-ナフトール、2-ナフトールであることがさらに好ましい。これらの中でも、硬化性や硬化物の誘電特性、耐熱性が良好になることから、フェノール化合物やナフトール化合物が好ましい。また、前記芳香族モノヒドロキシ化合物が活性エステル化合物の末端構造となることが好ましい。上述の芳香族モノヒドロキシ化合物は単独で用いても、2種以上を組み合わせて用いてもよい。 The aromatic monohydroxy compound may be any compound as long as it has a substituted or unsubstituted aromatic ring group and one hydroxyl group on the aromatic ring, and other specific structures are particularly Not limited. Moreover, an aromatic monohydroxy compound may be used individually by 1 type, and may be used in combination of 2 or more types. The monohydroxy compounds are specifically phenol, 4-tert-butylphenol, 1-naphthol, 2-naphthol, o-cresol, m-cresol, p-cresol, 1-anthracenol, 2-anthracenol. , 9-anthracenol, 4-phenylphenol and the like. Furthermore, compounds having one or more substituents on these aromatic nuclei are included. Substituents on the aromatic nucleus include aliphatic hydrocarbons such as methyl group, ethyl group, vinyl group, propyl group, butyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group and nonyl group. Alkoxy groups such as methoxy, ethoxy, propyloxy, and butoxy; halogen atoms such as fluorine, chlorine, and bromine; phenyl, naphthyl, and anthryl groups; A group hydrocarbon group, an alkoxy group, an aryl group substituted with a halogen atom, etc.; Examples thereof include aralkyl groups substituted with halogen atoms and the like. Among these, phenol, 4-tert-butylphenol, 1-naphthol, 2-naphthol and 4-phenylphenol are preferred, and phenol, 1-naphthol, 2-naphthol and 4-phenylphenol are more preferred. , phenol, 1-naphthol and 2-naphthol are more preferred. Among these, phenolic compounds and naphthol compounds are preferable because they improve the curability, the dielectric properties of the cured product, and the heat resistance. Moreover, it is preferable that the aromatic monohydroxy compound forms a terminal structure of the active ester compound. The above aromatic monohydroxy compounds may be used alone or in combination of two or more.
 前記芳香族多価カルボン酸又はその酸ハロゲン化物は、前記芳香族モノヒドロキシ化合物及び前記芳香族多価ヒドロキシ化合物が有するフェノール性水酸基と反応してエステル結合を形成し得る化合物であれば、具体構造は特に限定されない。具体例として、オルソフタル酸、イソフタル酸、テレフタル酸等のベンゼンジカルボン酸;トリメリット酸等のベンゼントリカルボン酸;ナフタレン-1,4-ジカルボン酸、ナフタレン-1,5-ジカルボン酸、ナフタレン-2,3-ジカルボン酸、ナフタレン-2,6-ジカルボン酸、ナフタレン-2,7-ジカルボン酸等のナフタレンジカルボン酸;1,3,5-トリアジン-2,4,6-トリカルボン酸等のトリアジンカルボン酸;及びこれらの酸ハロゲン化物等が挙げられる。さらに、これらの芳香核上に前記脂肪族炭化水素基やアルコキシ基、ハロゲン原子等が置換した化合物等が挙げられる。酸ハロゲン化物は、例えば、酸塩化物、酸臭化物、酸フッ化物、酸ヨウ化物等が挙げられる。これらのうち、ベンゼンジカルボン酸、ベンゼントリカルボン酸であることが好ましく、イソフタル酸、テレフタル酸、イソフタル酸ジクロリド、テレフタル酸ジクロリド、1,3,5-ベンゼントリカルボン酸、1,3,5-ベンゼントリカルボニルトリクロリドであることがより好ましく、イソフタル酸ジクロリド、テレフタル酸ジクロリド、1,3,5-ベンゼントリカルボニルトリクロリドであることがさらに好ましい。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。硬化性や得られる硬化物の誘電特性が優れることから、イソフタル酸やテレフタル酸等のベンゼンカルボン酸またはその酸ハロゲン化物が好ましい。 If the aromatic polycarboxylic acid or acid halide thereof is a compound capable of forming an ester bond by reacting with the phenolic hydroxyl group of the aromatic monohydroxy compound and the aromatic polyhydroxy compound, the specific structure is not particularly limited. Specific examples include benzenedicarboxylic acids such as orthophthalic acid, isophthalic acid, and terephthalic acid; benzenetricarboxylic acids such as trimellitic acid; naphthalene-1,4-dicarboxylic acid, naphthalene-1,5-dicarboxylic acid, and naphthalene-2,3. - naphthalenedicarboxylic acids such as dicarboxylic acids, naphthalene-2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid; triazinecarboxylic acids such as 1,3,5-triazine-2,4,6-tricarboxylic acid; and These acid halides and the like are included. Furthermore, compounds in which the above-described aliphatic hydrocarbon groups, alkoxy groups, halogen atoms, etc. are substituted on these aromatic nuclei are included. Acid halides include, for example, acid chlorides, acid bromides, acid fluorides, acid iodides and the like. Among these, benzenedicarboxylic acid and benzenetricarboxylic acid are preferred, and isophthalic acid, terephthalic acid, isophthalic acid dichloride, terephthalic acid dichloride, 1,3,5-benzenetricarboxylic acid and 1,3,5-benzenetricarbonyl Trichloride is more preferred, and isophthalic acid dichloride, terephthalic acid dichloride, and 1,3,5-benzenetricarbonyltrichloride are even more preferred. Each of these may be used alone, or two or more of them may be used in combination. Benzenecarboxylic acids, such as isophthalic acid and terephthalic acid, or acid halides thereof are preferred because of their excellent curability and the dielectric properties of the resulting cured product.
 前記活性エステ化合物(B-2)は、エポキシ樹脂と硬化反応する際のハンドリング性や、その硬化物の耐熱性、誘電特性とのバランスにより優れる観点から、軟化点又は融点が40℃~200℃の範囲であることが好ましい。 The active ester compound (B-2) has a softening point or a melting point of 40° C. to 200° C. from the viewpoint of better balance between handleability during the curing reaction with the epoxy resin, heat resistance of the cured product, and dielectric properties. is preferably in the range of
 活性エステル化合物(B-2)の数平均分子量は300以上であることが好ましく、より好ましくは600以上である。また、4000以下であることが好ましく、より好ましくは3000以下である。前記範囲内とすることでエポキシ樹脂との硬化物の誘電正接が良好となり得る。 The number average molecular weight of the active ester compound (B-2) is preferably 300 or more, more preferably 600 or more. Also, it is preferably 4000 or less, more preferably 3000 or less. By setting it within the above range, the dielectric loss tangent of the cured product with the epoxy resin can be improved.
 <活性エステル化合物(B-1)の製造方法>
 活性エステル化合物(B-1)の製造方法は特に制限されず、適宜公知の方法により製造することができる。
<Method for producing active ester compound (B-1)>
The method for producing the active ester compound (B-1) is not particularly limited, and it can be produced by a known method as appropriate.
 本発明の活性エステル化合物(B-1)の製造方法は、ダイマー酸および/またはダイマージオールとフェノール性水酸基を有する化合物とポリカルボン酸化合物またはその酸ハロゲン化物とを反応させる工程を含むことが好ましい。具体的には、ダイマー酸を使用する場合、ダイマー酸とフェノール性水酸基を有する化合物とを反応させて活性エステル化合物(B-1)を得ることができる。また、ダイマージオールを使用する場合、ポリカルボン酸化合物またはその酸ハロゲン化物とフェノール性水酸基を有する化合物を反応させた化合物をダイマージオールと反応させて活性エステル化合物(B-1)を得ることができる。 The method for producing the active ester compound (B-1) of the present invention preferably includes a step of reacting a dimer acid and/or dimer diol with a compound having a phenolic hydroxyl group and a polycarboxylic acid compound or an acid halide thereof. . Specifically, when a dimer acid is used, the active ester compound (B-1) can be obtained by reacting the dimer acid with a compound having a phenolic hydroxyl group. Further, when dimer diol is used, an active ester compound (B-1) can be obtained by reacting a compound obtained by reacting a polycarboxylic acid compound or an acid halide thereof with a compound having a phenolic hydroxyl group with dimer diol. .
 具体的なポリカルボン酸化合物またはその酸ハロゲン化物としては、特に制限されないが、オルソフタル酸、イソフタル酸、テレフタル酸等のベンゼンジカルボン酸;トリメリット酸等のベンゼントリカルボン酸;ナフタレン-1,5-ジカルボン酸、ナフタレン-2,3-ジカルボン酸、ナフタレン-2,6-ジカルボン酸、ナフタレン-2,7-ジカルボン酸等のナフタレンジカルボン酸;2,4,5-ピリジントリカルボン酸等のピリジントリカルボン酸;1,3,5-トリアジン-2,4,6-トリカルボン酸等のトリアジンカルボン酸;これらの酸ハロゲン化物等が挙げられる。これらのうち、ベンゼンジカルボン酸、ベンゼントリカルボン酸であることが好ましく、イソフタル酸、テレフタル酸、イソフタル酸ジクロリド、テレフタル酸ジクロリド、1,3,5-ベンゼントリカルボン酸、1,3,5-ベンゼントリカルボニルトリクロリドであることがより好ましく、イソフタル酸ジクロリド、テレフタル酸ジクロリド、1,3,5-ベンゼントリカルボニルトリクロリドであることがさらに好ましい。上述のポリカルボン酸化合物またはその酸ハロゲン化物は単独で用いても、2種以上を組み合わせて用いてもよい。 Specific polycarboxylic acid compounds or acid halides thereof are not particularly limited, but orthophthalic acid, isophthalic acid, benzenedicarboxylic acids such as terephthalic acid; benzenetricarboxylic acids such as trimellitic acid; naphthalene-1,5-dicarboxylic acid; acid, naphthalene-2,3-dicarboxylic acid, naphthalene-2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid and the like naphthalenedicarboxylic acids; 2,4,5-pyridinetricarboxylic acid and the like pyridinetricarboxylic acids;1 , 3,5-triazine-2,4,6-tricarboxylic acid; and acid halides thereof. Among these, benzenedicarboxylic acid and benzenetricarboxylic acid are preferred, and isophthalic acid, terephthalic acid, isophthalic acid dichloride, terephthalic acid dichloride, 1,3,5-benzenetricarboxylic acid and 1,3,5-benzenetricarbonyl Trichloride is more preferred, and isophthalic acid dichloride, terephthalic acid dichloride, and 1,3,5-benzenetricarbonyltrichloride are even more preferred. The above polycarboxylic acid compounds or acid halides thereof may be used alone, or two or more of them may be used in combination.
 フェノール性水酸基を有する化合物は、置換または非置換の芳香族環基を有している。具体的なフェノール性水酸基を有する化合物としては、特に制限されないが、フェノール、4-tert―ブチルフェノール、1-ナフトール、2-ナフトール、1-アントロール、2-アントロール、9-アントロール、4-フェニルフェノール等が挙げられる。これらのうち、フェノール、4-tert―ブチルフェノール、1-ナフトール、2-ナフトール、4-フェニルフェノールであることが好ましく、フェノール、1-ナフトール、2-ナフトール、4-フェニルフェノールであることがより好ましく、フェノール、1-ナフトール、2-ナフトールであることがさらに好ましい。前記フェノール性水酸基を有する化合物が活性エステル化合物の末端構造となることが好ましい。上述のフェノール性水酸基を有する化合物は単独で用いても、2種以上を組み合わせて用いてもよい。 A compound having a phenolic hydroxyl group has a substituted or unsubstituted aromatic ring group. Specific compounds having a phenolic hydroxyl group are not particularly limited, but phenol, 4-tert-butylphenol, 1-naphthol, 2-naphthol, 1-anthrol, 2-anthrol, 9-anthrol, 4- Phenylphenol etc. are mentioned. Among these, phenol, 4-tert-butylphenol, 1-naphthol, 2-naphthol and 4-phenylphenol are preferred, and phenol, 1-naphthol, 2-naphthol and 4-phenylphenol are more preferred. , phenol, 1-naphthol and 2-naphthol are more preferred. It is preferable that the compound having the phenolic hydroxyl group forms the terminal structure of the active ester compound. The above-mentioned compounds having phenolic hydroxyl groups may be used alone or in combination of two or more.
 ポリカルボン酸化合物またはその酸ハロゲン化物、およびフェノール性水酸基を有する化合物のモル比率としては、特に制限されないが、フェノール性水酸基を有する化合物のヒドロキシ基のモル数に対するポリカルボン酸化合物またはその酸ハロゲン化物のカルボキシ基と酸ハロゲン化物基の合計のモル数のモル比〔(カルボキシ基とハロゲン化アシル基の合計)/(ヒドロキシ基)〕が、0.6~3.0であることが好ましく、0.8~2.0であることがより好ましく、1.0~1.2であることがさらに好ましい。 The molar ratio of the polycarboxylic acid compound or its acid halide and the compound having a phenolic hydroxyl group is not particularly limited, but the polycarboxylic acid compound or its acid halide relative to the number of moles of hydroxyl groups in the compound having a phenolic hydroxyl group The molar ratio of the total number of moles of carboxy groups and acid halide groups [(total of carboxy groups and acyl halide groups)/(hydroxy groups)] is preferably 0.6 to 3.0, and 0 .8 to 2.0 is more preferred, and 1.0 to 1.2 is even more preferred.
 フェノール性水酸基を有する化合物は、ダイマー骨格1モルに対して、1モル以上であることが好ましく、より好ましくは1.5モル以上であり、さらに好ましくは2モル以上である。また、10モル以下であることが好ましく、より好ましくは8モル以下であり、さらに好ましくは4モル以下である。 The amount of the compound having a phenolic hydroxyl group is preferably 1 mol or more, more preferably 1.5 mol or more, and still more preferably 2 mol or more, relative to 1 mol of the dimer skeleton. Also, it is preferably 10 mol or less, more preferably 8 mol or less, and still more preferably 4 mol or less.
 活性エステル化合物(B-1)の反応条件については特に制限されず、適宜公知の手法が採用されうる。 The reaction conditions for the active ester compound (B-1) are not particularly limited, and known techniques can be employed as appropriate.
 反応時のpHは、特に制限されないが、11以上であることが好ましい。この際、pHの調整は、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、アンモニア等の塩基が使用されうる。 Although the pH during the reaction is not particularly limited, it is preferably 11 or higher. At this time, a base such as sodium hydroxide, potassium hydroxide, calcium hydroxide, or ammonia can be used to adjust the pH.
 反応温度も特に制限されず、20~100℃であることが好ましく、40~80℃であることがより好ましい。反応圧力も特に制限されず、常圧であることがより好ましい。反応時間も特に制限されず、0.5~12時間であることが好ましく、1~6時間であることがより好ましい。 The reaction temperature is also not particularly limited, preferably 20 to 100°C, more preferably 40 to 80°C. The reaction pressure is also not particularly limited, and normal pressure is more preferable. The reaction time is also not particularly limited, preferably 0.5 to 12 hours, more preferably 1 to 6 hours.
 <活性エステル化合物(B-2)の製造方法>
 活性エステル化合物(B-2)の製造方法は特に制限されず、適宜公知の方法により製造することができる。
<Method for producing active ester compound (B-2)>
The method for producing the active ester compound (B-2) is not particularly limited, and it can be produced by a known method as appropriate.
 本発明の活性エステル化合物(B-2)の製造方法は、芳香族多価ヒドロキシ化合物と、芳香族多価カルボン酸化合物またはその酸ハロゲン化物と、芳香族モノヒドロキシ化合物を反応させる工程を含むことが好ましい。前記工程は、芳香族多価カルボン酸化合物またはその酸ハロゲン化物と芳香族モノヒドロキシ化合物を反応させる工程1と、前記工程1で得られた生成物(以下、工程1生成物ともいう。)と芳香族多価ヒドロキシ化合物を反応させる工程2を含むことがより好ましい。 The method for producing the active ester compound (B-2) of the present invention comprises a step of reacting an aromatic polyhydroxy compound, an aromatic polycarboxylic acid compound or an acid halide thereof, and an aromatic monohydroxy compound. is preferred. The steps include step 1 of reacting an aromatic polycarboxylic acid compound or an acid halide thereof with an aromatic monohydroxy compound, and the product obtained in step 1 (hereinafter also referred to as step 1 product). It is more preferable to include step 2 of reacting an aromatic polyhydric hydroxy compound.
 前記工程1は、芳香族多価カルボン酸化合物またはその酸ハロゲン化物と、芳香族モノヒドロキシ化合物を反応させる工程である。芳香族多価カルボン酸化合物またはその酸ハロゲン化物、および芳香族モノヒドロキシ化合物のモル比率としては、特に制限されないが、芳香族モノヒドロキシ化合物のヒドロキシ基のモル数に対する芳香族多価カルボン酸化合物またはその酸ハロゲン化物のカルボキシ基と酸ハロゲン化物基の合計のモル数のモル比〔(カルボキシ基とハロゲン化アシル基の合計)/(ヒドロキシ基)〕が、0.6~3.0であることが好ましく、0.8~2.0であることがより好ましく、1.0~1.2であることがさらに好ましい。前記工程1では、芳香族多価カルボン酸化合物またはその酸ハロゲン化物を溶剤兼試剤として用いることが好ましい。芳香族多価カルボン酸化合物またはその酸ハロゲン化物を溶剤兼試剤として用いた場合、反応後に、過剰(未反応)の芳香族多価カルボン酸化合物またはその酸ハロゲン化物を除去することが好ましい。芳香族多価カルボン酸化合物またはその酸ハロゲン化物と、芳香族モノヒドロキシ化合物の前記モル比率は、試剤として用いる(溶剤分を除いた)量を基準とする。 The step 1 is a step of reacting an aromatic polycarboxylic acid compound or its acid halide with an aromatic monohydroxy compound. The molar ratio of the aromatic polycarboxylic acid compound or its acid halide and the aromatic monohydroxy compound is not particularly limited, but the aromatic polycarboxylic acid compound or The molar ratio of the total number of moles of carboxy groups and acid halide groups in the acid halide [(total of carboxy groups and acyl halide groups)/(hydroxy groups)] is 0.6 to 3.0. is preferred, 0.8 to 2.0 is more preferred, and 1.0 to 1.2 is even more preferred. In step 1, it is preferable to use an aromatic polycarboxylic acid compound or an acid halide thereof as a solvent and reagent. When the aromatic polycarboxylic acid compound or its acid halide is used as a solvent and reagent, it is preferable to remove excess (unreacted) aromatic polycarboxylic acid compound or its acid halide after the reaction. The above molar ratio of the aromatic polycarboxylic acid compound or acid halide thereof and the aromatic monohydroxy compound is based on the amount (excluding the solvent) used as the reagent.
 工程1の反応条件は特に限定されないが、反応温度は80~180℃であることが好ましく、100~150℃であることがより好ましい。反応圧力も特に制限されず、常圧であることがより好ましい。反応時間も特に制限されず、0.5~12時間であることが好ましく、1~6時間であることがより好ましい。 The reaction conditions in step 1 are not particularly limited, but the reaction temperature is preferably 80 to 180°C, more preferably 100 to 150°C. The reaction pressure is also not particularly limited, and normal pressure is more preferable. The reaction time is also not particularly limited, preferably 0.5 to 12 hours, more preferably 1 to 6 hours.
 前記工程2は、前記工程1生成物と芳香族多価ヒドロキシ化合物を反応させる工程である。工程1生成物と芳香族多価ヒドロキシ化合物のモル比率は、芳香族多価ヒドロキシ化合物1モルに対して、工程1生成物が1.5モル以上であることが好ましく、より好ましくは1.8モル以上であり、さらに好ましくは2モル以上である。また、5モル以下であることが好ましく、より好ましくは4モル以下であり、さらに好ましくは3モル以下である。 The step 2 is a step of reacting the product of the step 1 with an aromatic polyhydric hydroxy compound. The molar ratio between the step 1 product and the aromatic polyhydroxy compound is preferably 1.5 mol or more, more preferably 1.8, of the step 1 product per 1 mol of the aromatic polyhydroxy compound. It is mol or more, more preferably 2 mol or more. Also, it is preferably 5 mol or less, more preferably 4 mol or less, and still more preferably 3 mol or less.
 工程2反応時のpHは、特に制限されないが、11以上であることが好ましい。この際、pHの調整は、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、アンモニア、トリエチルアミン等の塩基が使用されうる。 The pH during the step 2 reaction is not particularly limited, but is preferably 11 or higher. At this time, a base such as sodium hydroxide, potassium hydroxide, calcium hydroxide, ammonia, or triethylamine can be used to adjust the pH.
 工程2の反応温度も特に制限されず、20~100℃であることが好ましく、40~80℃であることがより好ましい。反応圧力も特に制限されず、常圧であることがより好ましい。反応時間も特に制限されず、0.5~12時間であることが好ましく、1~6時間であることがより好ましい。 The reaction temperature in step 2 is also not particularly limited, preferably 20 to 100°C, more preferably 40 to 80°C. The reaction pressure is also not particularly limited, and normal pressure is more preferable. The reaction time is also not particularly limited, preferably 0.5 to 12 hours, more preferably 1 to 6 hours.
<エポキシ樹脂>
 エポキシ樹脂は、分子中に2以上のエポキシ基を含み、前記エポキシ基で架橋ネットワークを形成することで硬化させることができる硬化性樹脂であるであることが好ましい。分子中に含まれるエポキシ基は3以上であることが好ましく、より好ましくは4以上である。また、10以下が好ましく、より好ましくは6以下である。前記範囲内のエポキシ基を有することで活性エステル化合物との反応性が向上し、硬化性が良好となる。
<Epoxy resin>
The epoxy resin preferably contains two or more epoxy groups in the molecule and is a curable resin that can be cured by forming a crosslinked network with the epoxy groups. The number of epoxy groups contained in the molecule is preferably 3 or more, more preferably 4 or more. Also, it is preferably 10 or less, more preferably 6 or less. By having an epoxy group within the above range, the reactivity with the active ester compound is improved and the curability is improved.
 前記エポキシ樹脂としては、特に制限されないが、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、α-ナフトールノボラック型エポキシ樹脂、β-ナフトールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、フェノールビフェニルアラルキル型エポキシ樹脂等のアラルキル型エポキシ樹脂;ビスフェノールA型エポキシ樹脂、ビスフェノールAP型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ビスフェノールB型エポキシ樹脂、ビスフェノールBP型エポキシ樹脂、ビスフェノールC型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂等のビスフェノール型エポキシ樹脂;ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、ビフェニル骨格およびジグリシジルオキシベンゼン骨格を有するエポキシ樹脂等のビフェニル型エポキシ樹脂;ナフタレン型エポキシ樹脂;ビナフトール型エポキシ樹脂;ビナフチル型エポキシ樹脂;ジシクロペンタジエンフェノール型エポキシ樹脂等のジシクロペンタジエン型エポキシ樹脂;テトラグリシジルジアミノジフェニルメタン型エポキシ樹脂、トリグリシジル-p-アミノフェノール型エポキシ樹脂、ジアミノジフェニルスルホンのグリシジルアミン型エポキシ樹脂等のグリシジルアミン型エポキシ樹脂;2,6-ナフタレンジカルボン酸ジグリシジルエステル型エポキシ樹脂、ヘキサヒドロ無水フタル酸のグリシジルエステル型エポキシ樹脂等のジグリシジルエステル型エポキシ樹脂;ジベンゾピラン、ヘキサメチルジベンゾピラン、7-フェニルヘキサメチルジベンゾピラン等のベンゾピラン型エポキシ樹脂等が挙げられる。上述のエポキシ樹脂は単独で用いても、2種以上を組み合わせて用いてもよい。 The epoxy resin is not particularly limited, but phenol novolak type epoxy resin, cresol novolak type epoxy resin, α-naphthol novolak type epoxy resin, β-naphthol novolak type epoxy resin, bisphenol A novolak type epoxy resin, biphenyl novolak type epoxy resin. Novolak type epoxy resins such as resins; aralkyl type epoxy resins such as phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, phenol biphenyl aralkyl type epoxy resin; bisphenol A type epoxy resin, bisphenol AP type epoxy resin, bisphenol AF type epoxy resin , bisphenol B type epoxy resin, bisphenol BP type epoxy resin, bisphenol C type epoxy resin, bisphenol E type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, tetrabromobisphenol A type epoxy resin, etc. biphenyl-type epoxy resins such as biphenyl-type epoxy resins, tetramethylbiphenyl-type epoxy resins, epoxy resins having a biphenyl skeleton and diglycidyloxybenzene skeleton; naphthalene-type epoxy resins; binaphthol-type epoxy resins; binaphthyl-type epoxy resins; dicyclopentadiene dicyclopentadiene-type epoxy resins such as phenol-type epoxy resins; glycidylamine-type epoxy resins such as tetraglycidyldiaminodiphenylmethane-type epoxy resins, triglycidyl-p-aminophenol-type epoxy resins, and diaminodiphenylsulfone glycidylamine-type epoxy resins;2 , 6-naphthalene dicarboxylic acid diglycidyl ester type epoxy resin, hexahydrophthalic anhydride glycidyl ester type epoxy resin, etc.; dibenzopyran, hexamethyldibenzopyran, 7-phenylhexamethyldibenzopyran, etc. benzopyran type epoxy resin and the like. The above epoxy resins may be used alone or in combination of two or more.
<エポキシ樹脂組成物>
 本発明のエポキシ樹脂組成物(以下、単に組成物ともいう。)は、前記活性エステル化合物(B-1)、活性エステル化合物(B-2)および前記エポキシ樹脂を含むものである。その他、必要に応じて、他の樹脂、溶媒、他の硬化剤、添加剤等をさらに含んでいてもよい。以下、活性エステル化合物(B-1)および活性エステル化合物(B-2)を合わせて、活性エステル化合物ともいう。
<Epoxy resin composition>
The epoxy resin composition of the present invention (hereinafter also simply referred to as composition) comprises the active ester compound (B-1), the active ester compound (B-2) and the epoxy resin. In addition, other resins, solvents, other curing agents, additives and the like may be further included as necessary. Hereinafter, the active ester compound (B-1) and the active ester compound (B-2) are collectively referred to as an active ester compound.
 前記組成物における活性エステル化合物の含有量は、特に制限されないが、組成物の固形分に対して、1~90質量%であることが好ましく、5~80質量%であることがより好ましい。活性エステル化合物の含有量が1質量%以上または90質量%以下であると、硬化物での低誘電正接化できることから好ましい。なお、本明細書において、「組成物の固形分」とは、組成物中において、溶媒を除いた成分の総質量を意味する。 Although the content of the active ester compound in the composition is not particularly limited, it is preferably 1 to 90% by mass, more preferably 5 to 80% by mass, based on the solid content of the composition. When the content of the active ester compound is 1% by mass or more or 90% by mass or less, it is preferable because the cured product can have a low dielectric loss tangent. As used herein, the term "solid content of the composition" means the total mass of the components excluding the solvent in the composition.
 エポキシ樹脂の含有量に対する活性エステル化合物の含有量の質量比(活性エステル化合物/エポキシ樹脂)は、1以上であることが好ましく、1超であることがより好ましく、1.1以上であることがさらに好ましく、1.2以上であることが特に好ましい。前記質量比が1以上であると、硬化物でより低誘電正接となりうることから好ましい。また、5以下であることが好ましく、2以下であることがより好ましい。前記質量比が5以下であることで硬化性が良好となる。なお、一般的には、活性エステル化合物の含有量がエポキシ樹脂の含有量を上回ると、活性エステル化合物の含有量の相対的な増加に伴い低誘電正接となる。 The mass ratio of the content of the active ester compound to the content of the epoxy resin (active ester compound/epoxy resin) is preferably 1 or more, more preferably greater than 1, and preferably 1.1 or more. More preferably, it is particularly preferably 1.2 or more. It is preferable that the mass ratio is 1 or more because the cured product can have a lower dielectric loss tangent. Also, it is preferably 5 or less, more preferably 2 or less. Curability becomes favorable because the said mass ratio is 5 or less. In general, when the content of the active ester compound exceeds the content of the epoxy resin, the dielectric loss tangent becomes low as the content of the active ester compound relatively increases.
<他の硬化剤>
 前記組成物には、本発明に係る活性エステル化合物とともに、他の硬化剤を併用してもよい。他の硬化剤としては、特に制限されないが、他の活性エステル化合物、アミン硬化剤、イミダゾール硬化剤、酸無水物硬化剤、フェノール系硬化剤等が挙げられる。
<Other curing agents>
In the composition, other curing agents may be used together with the active ester compound according to the present invention. Other curing agents include, but are not particularly limited to, other active ester compounds, amine curing agents, imidazole curing agents, acid anhydride curing agents, phenolic curing agents, and the like.
 前記他の活性エステル化合物としては、特に制限されないが、上述の活性エステル化合物以外の活性エステル化合物が挙げられる。 The other active ester compounds are not particularly limited, but include active ester compounds other than the active ester compounds described above.
 前記アミン硬化剤としては、特に制限されないが、ジエチレントリアミン(DTA)、トリエチレンテトラミン(TTA)、テトラエチレンペンタミン(TEPA)、ジプロプレンジアミン(DPDA)、ジエチルアミノプロピルアミン(DEAPA)、N-アミノエチルピペラジン、メンセンジアミン(MDA)、イソフオロンジアミン(IPDA)、1,3-ビスアミノメチルシクロヘキサン(1,3-BAC)、ピペリジン、N,N,-ジメチルピペラジン、トリエチレンジアミン等の脂肪族アミン;m-キシレンジアミン(XDA)、メタフェニレンジアミン(MPDA)、ジアミノジフェニルメタン(DDM)、ジアミノジフェニルスルホン(DDS)、ベンジルメチルアミン、2-(ジメチルアミノメチル)フェノール、2,4,6-トリス(ジメチルアミノメチル)フェノール等の芳香族アミン等が挙げられる。 The amine curing agent is not particularly limited, but diethylenetriamine (DTA), triethylenetetramine (TTA), tetraethylenepentamine (TEPA), dipropylenediamine (DPDA), diethylaminopropylamine (DEAPA), N-aminoethyl Aliphatic amines such as piperazine, mencenediamine (MDA), isophoronediamine (IPDA), 1,3-bisaminomethylcyclohexane (1,3-BAC), piperidine, N,N,-dimethylpiperazine, triethylenediamine; m-xylylenediamine (XDA), metaphenylenediamine (MPDA), diaminodiphenylmethane (DDM), diaminodiphenylsulfone (DDS), benzylmethylamine, 2-(dimethylaminomethyl)phenol, 2,4,6-tris(dimethyl and aromatic amines such as aminomethyl)phenol.
 前記イミダゾール硬化剤としては、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテート、エポキシ-イミダゾールアダクト等が挙げられる。 Examples of the imidazole curing agent include 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, and epoxy-imidazole adducts.
 前記酸無水物硬化剤としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水ベンゾフェノンテトラカルボン酸、エチレングリコールビストリメリテート、グリセロールトリストリメリテート、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、メチルエンドメチレンテトラヒドロ無水フタル酸、メチルブテニルテトラヒドロ無水フタル酸、ドデセニル無水コハク酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水コハク酸、メチルシクロヘキセンジカルボン酸無水物等が挙げられる。 Examples of the acid anhydride curing agent include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, ethylene glycol bis trimellitate, glycerol tri trimellitate, maleic anhydride, tetrahydro phthalic anhydride, methyltetrahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, methylendomethylenetetrahydrophthalic anhydride, methylbutenyltetrahydrophthalic anhydride, dodecenylsuccinic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, succinic anhydride, and methylcyclohexenedicarboxylic anhydride.
 前記フェノール系硬化剤としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトールノボラック樹脂、ビスフェノールノボラック樹脂、ビフェニルノボラック樹脂、ジシクロペンタジエン-フェノール付加型樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、トリフェノールメタン型樹脂、テトラフェノールエタン型樹脂、アミノトリアジン変性フェノール樹脂等が挙げられる。 Examples of the phenol-based curing agent include phenol novolak resin, cresol novolak resin, naphthol novolak resin, bisphenol novolak resin, biphenyl novolak resin, dicyclopentadiene-phenol addition type resin, phenol aralkyl resin, naphthol aralkyl resin, and triphenol methane type resin. , tetraphenol ethane type resin, aminotriazine-modified phenol resin, and the like.
 上述の他の硬化剤は、単独で用いても、2種以上を組み合わせて用いてもよい。 The above-mentioned other curing agents may be used alone or in combination of two or more.
<溶媒>
 本発明の組成物は溶媒を含んでいてもよい。前記溶媒は、前記活性エステル化合物や前記エポキシ樹脂等と反応せず、組成物の粘度を調整する機能等を有するものであることが好ましい。
<Solvent>
The composition of the invention may contain a solvent. Preferably, the solvent does not react with the active ester compound, the epoxy resin, or the like, and has a function of adjusting the viscosity of the composition.
 溶媒の具体例としては、特に制限されないが、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン;酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等のエステル;セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド等が挙げられる。これらの溶媒は単独で用いても、2種以上を組み合わせて用いてもよい。 Specific examples of the solvent include, but are not limited to, ketones such as acetone, methyl ethyl ketone, and cyclohexanone; esters such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, and carbitol acetate; Examples include carbitols, aromatic hydrocarbons such as toluene and xylene, amides such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone. These solvents may be used alone or in combination of two or more.
 溶媒の使用量としては、組成物の全質量に対して、10~80質量%であることが好ましく、20~70質量%であることがより好ましい。溶媒の使用量が10質量%以上であると、ハンドリング性に優れることから好ましい。一方、溶媒の使用量が80質量%以下であると、他基材との含浸性に優れることから好ましい。 The amount of solvent used is preferably 10 to 80% by mass, more preferably 20 to 70% by mass, relative to the total mass of the composition. It is preferable that the amount of the solvent used is 10% by mass or more because the handleability is excellent. On the other hand, when the amount of the solvent used is 80% by mass or less, the impregnating property with other substrates is excellent, which is preferable.
<添加剤>
 本発明の組成物は添加剤を含んでいてもよい。当該添加剤としては、硬化促進剤、難燃剤、充填剤等が挙げられる。
<Additive>
The composition of the present invention may contain additives. Such additives include curing accelerators, flame retardants, fillers, and the like.
<硬化促進剤>
 硬化促進剤としては、前記活性エステル化合物とエポキシ樹脂との硬化反応を促進させるものであれば特に制限されないが、リン系硬化促進剤、アミン系硬化促進剤、イミダゾール系硬化促進剤、グアニジン系硬化促進剤、尿素系硬化促進剤等が挙げられる。
<Curing accelerator>
The curing accelerator is not particularly limited as long as it accelerates the curing reaction between the active ester compound and the epoxy resin. Phosphorus curing accelerators, amine curing accelerators, imidazole curing accelerators, and guanidine curing accelerators. Accelerators, urea-based curing accelerators, and the like.
 前記リン系硬化促進剤としては、トリフェニルホスフィン、トリブチルホスフィン、トリパラトリルホスフィン、ジフェニルシクロヘキシルホスフィン、トリシクロヘキシルホスフィン等の有機ホスフィン化合物;トリメチルホスファイト、トリエチルホスファイト等の有機ホスファイト化合物;エチルトリフェニルホスホニウムブロミド、ベンジルトリフェニルホスホニウムクロリド、ブチルホスホニウムテトラフェニルボレート、テトラフェニルホスホニウムテトラフェニルボレート、テトラフェニルホスホニウムテトラ-p-トリルボレート、トリフェニルホスフィントリフェニルボラン、テトラフェニルホスホニウムチオシアネート、テトラフェニルホスホニウムジシアナミド、ブチルフェニルホスホニウムジシアナミド、テトラブチルホスホニウムデカン酸塩等のホスホニウム塩等が挙げられる。 Examples of the phosphorus curing accelerator include organic phosphine compounds such as triphenylphosphine, tributylphosphine, tripparatolylphosphine, diphenylcyclohexylphosphine and tricyclohexylphosphine; organic phosphine compounds such as trimethylphosphite and triethylphosphite; ethyltriphenyl phosphonium bromide, benzyltriphenylphosphonium chloride, butylphosphonium tetraphenylborate, tetraphenylphosphonium tetraphenylborate, tetraphenylphosphonium tetra-p-tolylborate, triphenylphosphine triphenylborane, tetraphenylphosphonium thiocyanate, tetraphenylphosphonium dicyanamide, Examples include phosphonium salts such as butylphenylphosphonium dicyanamide and tetrabutylphosphonium decanoate.
 アミン系硬化促進剤としては、トリエチルアミン、トリブチルアミン、N,N-ジメチル-4-アミノピリジン(DMAP)、2,4,6-トリス(ジメチルアミノメチル)フェノール、1,8-ジアザビシクロ[5,4,0]-ウンデセン-7(DBU)、1,5-ジアザビシクロ[4,3,0]-ノネン-5(DBN)等が挙げられる。 Amine curing accelerators include triethylamine, tributylamine, N,N-dimethyl-4-aminopyridine (DMAP), 2,4,6-tris(dimethylaminomethyl)phenol, 1,8-diazabicyclo[5,4 ,0]-undecene-7 (DBU), 1,5-diazabicyclo[4,3,0]-nonene-5 (DBN) and the like.
 イミダゾール系硬化促進剤としては、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテート、1-シアノエチル-2-フェニルイミダゾリウムトリメリテート、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5ヒドロキシメチルイミダゾール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール、1-ドデシル-2-メチル-3-ベンジルイミダゾリウムクロライド、2-メチルイミダゾリン等が挙げられる。 Examples of imidazole curing accelerators include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl- 4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-ethyl- 4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5hydroxymethylimidazole, 2,3-dihydro-1H-pyrrolo[1,2-a]benzimidazole, 1-dodecyl-2- methyl-3-benzylimidazolium chloride, 2-methylimidazoline and the like.
 グアニジン系硬化促進剤としては、ジシアンジアミド、1-メチルグアニジン、1-エチルグアニジン、1-シクロヘキシルグアニジン、1-フェニルグアニジン、ジメチルグアニジン、ジフェニルグアニジン、トリメチルグアニジン、テトラメチルグアニジン、ペンタメチルグアニジン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、1-メチルビグアニド、1-エチルビグアニド、1-ブチルビグアニド、1-シクロヘキシルビグアニド、1-アリルビグアニド、1-フェニルビグアニド等が挙げられる。 Guanidine curing accelerators include dicyandiamide, 1-methylguanidine, 1-ethylguanidine, 1-cyclohexylguanidine, 1-phenylguanidine, dimethylguanidine, diphenylguanidine, trimethylguanidine, tetramethylguanidine, pentamethylguanidine, 1,5 , 7-triazabicyclo[4.4.0]dec-5-ene, 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene, 1-methylbiguanide, 1-ethylbiguanide, 1-butylbiguanide, 1-cyclohexylbiguanide, 1-allylbiguanide, 1-phenylbiguanide and the like.
 前記尿素系硬化促進剤としては、3-フェニル-1,1-ジメチル尿素、3-(4-メチルフェニル)-1,1-ジメチル尿素、クロロフェニル尿素、3-(4-クロロフェニル)-1,1-ジメチル尿素、3-(3,4-ジクロルフェニル)-1,1-ジメチル尿素等が挙げられる。 Examples of the urea curing accelerator include 3-phenyl-1,1-dimethylurea, 3-(4-methylphenyl)-1,1-dimethylurea, chlorophenylurea, 3-(4-chlorophenyl)-1,1 -dimethylurea, 3-(3,4-dichlorophenyl)-1,1-dimethylurea and the like.
 上述の硬化促進剤のうち、2-エチル-4-メチルイミダゾール、4-ジメチルアミノピリジン(DMAP)を用いることが好ましい。なお、上述の硬化促進剤は、単独で用いても、2種以上を組み合わせて用いてもよい。 Of the above curing accelerators, it is preferable to use 2-ethyl-4-methylimidazole and 4-dimethylaminopyridine (DMAP). In addition, the above curing accelerators may be used alone or in combination of two or more.
 硬化促進剤の使用量は、エポキシ樹脂100質量部に対して、0.01~5質量部であることが好ましく、0.1~3であることがさらに好ましい。硬化促進剤の使用量が0.01質量部以上であると、硬化性に優れることから好ましい。一方、硬化促進剤の使用量が5質量部以下であると、成形性に優れることから好ましい。 The amount of curing accelerator used is preferably 0.01 to 5 parts by mass, more preferably 0.1 to 3 parts by mass, based on 100 parts by mass of the epoxy resin. It is preferable that the amount of the curing accelerator used is 0.01 parts by mass or more because the curability is excellent. On the other hand, when the amount of the curing accelerator used is 5 parts by mass or less, the moldability is excellent, which is preferable.
<難燃剤>
 難燃剤としては、特に制限されないが、無機リン系難燃剤、有機リン系難燃剤、ハロゲン系難燃剤等が挙げられる。
<Flame retardant>
The flame retardant is not particularly limited, but includes inorganic phosphorus flame retardants, organic phosphorus flame retardants, halogen flame retardants, and the like.
 前記無機リン系難燃剤としては、特に制限されないが、赤リン;リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム;リン酸アミド等が挙げられる。 The inorganic phosphorus-based flame retardant is not particularly limited, but includes red phosphorus; ammonium phosphates such as monoammonium phosphate, diammonium phosphate, triammonium phosphate, and ammonium polyphosphate; and phosphate amides.
 前記有機リン系難燃剤としては、特に制限されないが、メチルアシッドホスフェート、エチルアシッドホスフェート、イソプロピルアシッドホスフェート、ジブチルホスフェート、モノブチルホスフェート、ブトキシエチルアシッドホスフェート、2-エチルヘキシルアシッドホスフェート、ビス(2-エチルヘキシル)ホスフェート、モノイソデシルアシッドホスフェート、ラウリルアシッドホスフェート、トリデシルアシッドホスフェート、ステアリルアシッドホスフェート、イソステアリルアシッドホスフェート、オレイルアシッドホスフェート、ブチルピロホスフェート、テトラコシルアシッドホスフェート、エチレングリコールアシッドホスフェート、(2-ヒドロキシエチル)メタクリレートアシッドホスフェート等のリン酸エステル;9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド、ジフェニルホスフィンオキシド等ジフェニルホスフィン;10-(2,5-ジヒドロキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(1,4-ジオキシナフタレン)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド、ジフェニルホスフィニルヒドロキノン、ジフェニルホスフェニル-1,4-ジオキシナフタリン、1,4-シクロオクチレンホスフィニル-1,4-フェニルジオール、1,5-シクロオクチレンホスフィニル-1,4-フェニルジオール等のリン含有フェノール;9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(2,5-ジヒドロオキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(2,7-ジヒドロオキシナフチル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド等の環状リン化合物;前記リン酸エステル、前記ジフェニル
ホスフィン、前記リン含有フェノールと、エポキシ樹脂やアルデヒド化合物、フェノール化合物と反応させて得られる化合物等が挙げられる。
The organic phosphorus flame retardant is not particularly limited, but methyl acid phosphate, ethyl acid phosphate, isopropyl acid phosphate, dibutyl phosphate, monobutyl phosphate, butoxyethyl acid phosphate, 2-ethylhexyl acid phosphate, bis(2-ethylhexyl) phosphate, monoisodecyl acid phosphate, lauryl acid phosphate, tridecyl acid phosphate, stearyl acid phosphate, isostearyl acid phosphate, oleyl acid phosphate, butylpyrophosphate, tetracosyl acid phosphate, ethylene glycol acid phosphate, (2-hydroxyethyl ) Phosphate esters such as methacrylate acid phosphate; 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, diphenylphosphine oxide and the like diphenylphosphine; 9-oxa-10-phosphaphenanthrene-10-oxide, 10-(1,4-dioxynaphthalene)-10H-9-oxa-10-phosphaphenanthrene-10-oxide, diphenylphosphinylhydroquinone, diphenylphosphine Phosphorus-containing phenols such as phenyl-1,4-dioxynaphthalene, 1,4-cyclooctylenephosphinyl-1,4-phenyldiol and 1,5-cyclooctylenephosphinyl-1,4-phenyldiol 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10-(2,5-dihydroxyphenyl)-10H-9-oxa-10-phosphaphenanthrene-10-oxide, 10 Cyclic phosphorus compounds such as -(2,7-dihydroxynaphthyl)-10H-9-oxa-10-phosphaphenanthrene-10-oxide; Aldehyde compounds, compounds obtained by reacting with phenol compounds, and the like.
 前記ハロゲン系難燃剤としては、特に制限されないが、臭素化ポリスチレン、ビス(ペンタブロモフェニル)エタン、テトラブロモビスフェノールAビス(ジブロモプロピルエーテル)、1,2-ビス(テトラブロモフタルイミド)、2,4,6-トリス(2,4,6-トリブロモフェノキシ)-1,3,5-トリアジン、テトラブロモフタル酸等が挙げられる。 The halogen-based flame retardant is not particularly limited, but brominated polystyrene, bis(pentabromophenyl)ethane, tetrabromobisphenol A bis(dibromopropyl ether), 1,2-bis(tetrabromophthalimide), 2,4 ,6-tris(2,4,6-tribromophenoxy)-1,3,5-triazine, tetrabromophthalic acid and the like.
 上述の難燃剤は、単独で用いても、2種以上を組み合わせて用いてもよい。 The above flame retardants may be used alone or in combination of two or more.
 難燃剤の使用量は、エポキシ樹脂100質量部に対して、0.1~50質量部であることが好ましく、1~30であることがより好ましい。難燃剤の使用量が0.1質量部以上であると、難燃性を付与できることから好ましい。一方、難燃剤の使用量が50質量部以下であると、誘電特性を維持しながら難燃性を付与できることから好ましい。 The amount of the flame retardant used is preferably 0.1 to 50 parts by mass, more preferably 1 to 30 parts by mass, based on 100 parts by mass of the epoxy resin. It is preferable that the amount of the flame retardant used is 0.1 parts by mass or more because flame retardancy can be imparted. On the other hand, when the amount of the flame retardant used is 50 parts by mass or less, it is preferable because flame retardancy can be imparted while maintaining dielectric properties.
<充填剤>
 充填剤としては、有機充填剤、無機充填剤が挙げられる。充填剤は、伸びを向上させる機能、機械的強度を向上させる機能等を有する。
<Filler>
Examples of fillers include organic fillers and inorganic fillers. A filler has a function of improving elongation, a function of improving mechanical strength, and the like.
 前記有機充填剤としては、特に制限されないが、ポリアミド粒子等が挙げられる。 The organic filler is not particularly limited, but may include polyamide particles and the like.
 前記無機充填剤としては、特に制限されないが、シリカ、アルミナ、ガラス、コーディエライト、シリコン酸化物、硫酸バリウム、炭酸バリウム、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、窒化アルミニウム、窒化マンガン、ホウ酸アルミニウム、炭酸ストロンチウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、酸化ジルコニウム、チタン酸バリウム、チタン酸ジルコン酸バリウム、ジルコン酸バリウム、ジルコン酸カルシウム、リン酸ジルコニウム、リン酸タングステン酸ジルコニウム、タルク、クレー、雲母粉、酸化亜鉛、ハイドロタルサイト、ベーマイト、カーボンブラック等が挙げられる。 The inorganic filler is not particularly limited, but silica, alumina, glass, cordierite, silicon oxide, barium sulfate, barium carbonate, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, magnesium oxide, nitride Boron, aluminum nitride, manganese nitride, aluminum borate, strontium carbonate, strontium titanate, calcium titanate, magnesium titanate, bismuth titanate, titanium oxide, zirconium oxide, barium titanate, barium zirconate titanate, barium zirconate , calcium zirconate, zirconium phosphate, zirconium tungstate phosphate, talc, clay, mica powder, zinc oxide, hydrotalcite, boehmite, carbon black and the like.
 これらのうち、シリカを用いることが好ましい。この際、シリカとしては、無定形シリカ、溶融シリカ、結晶シリカ、合成シリカ、中空シリカ等が用いられうる。 Of these, it is preferable to use silica. At this time, as silica, amorphous silica, fused silica, crystalline silica, synthetic silica, hollow silica, and the like can be used.
 また、上記充填剤は、必要に応じて表面処理されていてもよい。この際使用されうる表面処理剤としては、特に制限されないが、アミノシラン系カップリング剤、エポキシシラン系カップリング剤、メルカプトシラン系カップリング剤、シラン系カップリング剤、オルガノシラザン化合物、チタネート系カップリング剤等が使用されうる。表面処理剤の具体例としては、3-グリシドキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、ヘキサメチルジシラザン等が挙げられる。 In addition, the filler may be surface-treated as necessary. Surface treatment agents that can be used at this time are not particularly limited, but aminosilane coupling agents, epoxysilane coupling agents, mercaptosilane coupling agents, silane coupling agents, organosilazane compounds, and titanate coupling agents. agents and the like can be used. Specific examples of surface treatment agents include 3-glycidoxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, hexamethyldimethoxysilane, silazane and the like.
 なお、上述の充填剤は、単独で用いても、2種以上を組み合わせて用いてもよい。 The above fillers may be used alone or in combination of two or more.
 充填剤の平均粒径は、特に制限されず、0.01~10μmであることが好ましく、0.03~5μmであることがより好ましく、0.05~3μmであることがさらに好ましい。なお、本明細書において「粒径」とは、粒子の輪郭線上の2点間の距離のうち、最大の長さを意味する。また、「平均粒径」は、走査型電子顕微鏡(SEM)により得られたイメージにおいて、1画面中の任意の100個の粒子の粒径を測定し、その平均値を算出の方法により測定された値を採用するものとする。 The average particle size of the filler is not particularly limited, and is preferably 0.01 to 10 µm, more preferably 0.03 to 5 µm, even more preferably 0.05 to 3 µm. As used herein, the term "particle size" means the maximum length of the distances between two points on the contour line of the particle. In addition, the "average particle size" is measured by measuring the particle size of arbitrary 100 particles in one screen in an image obtained by a scanning electron microscope (SEM) and calculating the average value. shall be adopted.
 充填剤の使用量は、エポキシ樹脂100質量部に対して、0.5~95質量部であることが好ましく、5~80質量部であることがより好ましい。充填剤の使用量が0.5質量部以上であると、低熱膨張性を付与できることから好ましい。一方、充填剤の使用量が95質量部以下であると、特性と成形性のバランスに優れることから好ましい。 The amount of filler used is preferably 0.5 to 95 parts by mass, more preferably 5 to 80 parts by mass, based on 100 parts by mass of the epoxy resin. It is preferable that the amount of the filler used is 0.5 parts by mass or more because low thermal expansion can be imparted. On the other hand, when the amount of filler used is 95 parts by mass or less, it is preferable because the balance between properties and moldability is excellent.
<硬化物(エポキシ樹脂組成物の硬化物)>
 本発明の硬化物は、上述の組成物を硬化してなる硬化物である。すなわち、少なくとも前記活性エステル化合物と前記エポキシ樹脂とを硬化したものである。本発明の硬化物は、誘電正接に優れることから、半導体パッケージ基板、プリント配線基板、ビルドアップ接着フィルム、半導体封止材料等の電子材用途に使用することができる。また、その他、接着剤、塗料等の用途にも適用することができる。
<Cured product (cured product of epoxy resin composition)>
The cured product of the present invention is a cured product obtained by curing the composition described above. That is, it is obtained by curing at least the active ester compound and the epoxy resin. Since the cured product of the present invention is excellent in dielectric loss tangent, it can be used for electronic material applications such as semiconductor package substrates, printed wiring boards, build-up adhesive films, and semiconductor sealing materials. In addition, it can also be applied to uses such as adhesives and paints.
 前記組成物を加熱硬化する際の加熱温度は、特に制限されないが、150~300℃であることが好ましい。より好ましくは175~250℃であり、さらに好ましくは180~200℃である。また、加熱時間は加熱温度との兼ね合いになるが、30分~10時間であることが好ましく、1~5時間であることがより好ましい。 The heating temperature for heat-curing the composition is not particularly limited, but is preferably 150 to 300°C. It is more preferably 175 to 250°C, still more preferably 180 to 200°C. Further, the heating time depends on the heating temperature, but is preferably 30 minutes to 10 hours, more preferably 1 to 5 hours.
 本発明の硬化物の周波数10GHzにおける誘電正接(tanδ)は0.007以下であることが好ましい。電子材料用途に好適であることから、より好ましくは、0.006以下であり、さらに好ましくは0.005以下である。誘電正接(tanδ)の下限は特に限定されないが、工業的には0.001以上であってもよく、0.002以上であっても差し支えない。 The dielectric loss tangent (tan δ) of the cured product of the present invention at a frequency of 10 GHz is preferably 0.007 or less. It is more preferably 0.006 or less, still more preferably 0.005 or less, because it is suitable for electronic material applications. Although the lower limit of the dielectric loss tangent (tan δ) is not particularly limited, it may be industrially 0.001 or more, or 0.002 or more.
 本発明の硬化物の周波数10GHzにおける比誘電率(εc)は2.85以下であることが好ましい。電子材料用途に好適であることから、より好ましくは、2.82以下であり、さらに好ましくは2.80以下である。比誘電率(εc)の下限は特に限定されないが、工業的には2.00以上であってもよく、2.50以上であっても差し支えない。 The dielectric constant (ε c ) of the cured product of the present invention at a frequency of 10 GHz is preferably 2.85 or less. It is more preferably 2.82 or less, still more preferably 2.80 or less, because it is suitable for electronic material applications. The lower limit of the dielectric constant (ε c ) is not particularly limited, but may be industrially 2.00 or more, or 2.50 or more.
 以下、実施例を用いて本発明を説明するが、本発明は実施例の記載に制限されるものではない。 The present invention will be described below using examples, but the present invention is not limited to the description of the examples.
 [合成例1]
 温度計、滴下ロート、冷却管、分留管、撹拌機を取り付けたフラスコにイソフタル酸ジクロリド250g(1.1mol)を仕込み、系内を減圧窒素置換した。次いで、系内を100℃に制御して、イソフタル酸ジクロリドを溶解させたのちフェノール12g(0.1mоl)をクロロホルム20mlに溶かし、15分間かけて滴下した。滴下終了後、140℃に昇温し、2.0時間撹拌した。反応終了後、未反応のイソフタル酸ジクロリドを加熱減圧濃縮により除去し、下記化学式で表される化合物(A-1)を得た。
Figure JPOXMLDOC01-appb-C000019
[Synthesis Example 1]
A flask equipped with a thermometer, a dropping funnel, a condenser, a fractionating tube and a stirrer was charged with 250 g (1.1 mol) of isophthalic acid dichloride, and the atmosphere in the system was replaced with nitrogen under reduced pressure. Next, the inside of the system was controlled at 100° C. to dissolve the isophthalic acid dichloride, and then 12 g (0.1 mol) of phenol was dissolved in 20 ml of chloroform and added dropwise over 15 minutes. After the dropwise addition was completed, the temperature was raised to 140° C. and the mixture was stirred for 2.0 hours. After completion of the reaction, unreacted isophthaloyl dichloride was removed by heating under reduced pressure to obtain a compound (A-1) represented by the following chemical formula.
Figure JPOXMLDOC01-appb-C000019
 [合成例2]
 フェノールに代えて、2-ナフトール18g(0.1mol)を用いたことを除いては、実施例1と同様の方法で、下記化学式で表される化合物(A-2)を得た。
Figure JPOXMLDOC01-appb-C000020
[Synthesis Example 2]
A compound (A-2) represented by the following chemical formula was obtained in the same manner as in Example 1, except that 18 g (0.1 mol) of 2-naphthol was used instead of phenol.
Figure JPOXMLDOC01-appb-C000020
 [製造例1]
 温度計、滴下ロート、冷却管、分留管、撹拌機を取り付けたフラスコにダイマージオール:P2033(CRODA社製)15g(29mmol)、THF100gを仕込み、系内を減圧窒素置換した。次いで、トリエチルアミン9g(86mmоl)を加えたのち、化合物(A-1)15g(58mmol)を滴下した。窒素ガスパージ処理を行いながら、系内を55℃に制御して、3.0時間撹拌した。反応終了後、水200gで3回洗浄し、加熱減圧乾燥によって有機溶媒除去し、活性エステル化合物1を得た。
[Production Example 1]
A flask equipped with a thermometer, a dropping funnel, a condenser, a fractionating tube and a stirrer was charged with 15 g (29 mmol) of dimer diol P2033 (manufactured by CRODA) and 100 g of THF, and the inside of the system was replaced with nitrogen under reduced pressure. After adding 9 g (86 mmol) of triethylamine, 15 g (58 mmol) of compound (A-1) was added dropwise. While purging with nitrogen gas, the inside of the system was controlled at 55° C. and stirred for 3.0 hours. After completion of the reaction, the product was washed with 200 g of water three times, and the organic solvent was removed by heating under reduced pressure to obtain an active ester compound 1.
 [製造例2]
 化合物(A-1)に代えて、化合物(A-2)18g(58mmol)を用いたことを除いては、製造例1と同様の方法で、活性エステル化合物2を得た。
[Production Example 2]
Active ester compound 2 was obtained in the same manner as in Production Example 1, except that 18 g (58 mmol) of compound (A-2) was used instead of compound (A-1).
 [製造例3]
 温度計、滴下ロート、冷却管、分留管、撹拌機を取り付けたフラスコにビスフェノールA9g(38mmol)、THF100gを仕込み、系内を減圧窒素置換した。次いで、トリエチルアミン9.3g(92mmоl)を加えたのち、化合物(A-1)20g(77mmol)を滴下した。窒素ガスパージ処理を行いながら、系内を60℃に制御して、3.0時間撹拌した。反応終了後、水200gで3回洗浄し、加熱減圧乾燥によって有機溶媒除去し、下記化学式で表される活性エステル化合物(A-3)を得た。
Figure JPOXMLDOC01-appb-C000021
[Production Example 3]
A flask equipped with a thermometer, a dropping funnel, a condenser, a fractionating tube and a stirrer was charged with 9 g (38 mmol) of bisphenol A and 100 g of THF, and the inside of the system was replaced with nitrogen under reduced pressure. After adding 9.3 g (92 mmol) of triethylamine, 20 g (77 mmol) of compound (A-1) was added dropwise. While purging with nitrogen gas, the inside of the system was controlled at 60° C. and stirred for 3.0 hours. After completion of the reaction, the product was washed with 200 g of water three times, and the organic solvent was removed by heating under reduced pressure to obtain an active ester compound (A-3) represented by the following chemical formula.
Figure JPOXMLDOC01-appb-C000021
 [製造例4]
 ビスフェノールAに代えて、1,1'-ビ-2-ナフトール11g(38mmol)を用いたことを除いては、製造例3と同様の方法で、下記化学式で表される活性エステル化合物(A-4)を得た。
Figure JPOXMLDOC01-appb-C000022
[Production Example 4]
An active ester compound represented by the following chemical formula (A- 4) was obtained.
Figure JPOXMLDOC01-appb-C000022
 [実施例1]
 jER(登録商標)152(三菱ケミカル株式会社製)を32質量部、活性エステル化合物1を18質量部、活性エステル化合物3を50質量部、4-ジメチルアミノピリジンを0.05質量部、ミキサーを用いて均一に分散して樹脂組成物を得た。得られた樹脂組成物を型枠(100mm×3mm×1mm)に流し込み、110℃で1時間加熱硬化させた。その後、180℃、3MPaで10分間ヒートプレスを行ったのち、180℃で3時間加熱硬化を行い、硬化物(測定サンプル)1を得た。
[Example 1]
32 parts by mass of jER (registered trademark) 152 (manufactured by Mitsubishi Chemical Corporation), 18 parts by mass of active ester compound 1, 50 parts by mass of active ester compound 3, 0.05 parts by mass of 4-dimethylaminopyridine, a mixer and dispersed uniformly to obtain a resin composition. The resulting resin composition was poured into a mold (100 mm×3 mm×1 mm) and cured by heating at 110° C. for 1 hour. Then, after heat pressing at 180° C. and 3 MPa for 10 minutes, heat curing was performed at 180° C. for 3 hours to obtain a cured product (measurement sample) 1.
 [実施例2]~[実施例8]、[比較例1]~[比較例2]
 表1に記載の試剤を用いて、実施例1と同様にして、組成物2~10および硬化物2~10を作製し、実施例2~8、比較例1~2を行った。
 なお、jER(登録商標)152(三菱ケミカル株式会社製)はフェノールノボラック型エポキシ樹脂であり、jER(登録商標)828(三菱ケミカル株式会社製)はビスフェノールA型エポキシ樹脂であり、Tetrad(登録商標)-X(三菱ガス化学株式会社製)は、N,N,N’,N’-テトラグリシジル-m-キシレンジアミンである。
[Example 2] to [Example 8], [Comparative Example 1] to [Comparative Example 2]
Using the reagents shown in Table 1, compositions 2 to 10 and cured products 2 to 10 were prepared in the same manner as in Example 1, and Examples 2 to 8 and Comparative Examples 1 and 2 were performed.
In addition, jER (registered trademark) 152 (manufactured by Mitsubishi Chemical Corporation) is a phenol novolak type epoxy resin, jER (registered trademark) 828 (manufactured by Mitsubishi Chemical Corporation) is a bisphenol A type epoxy resin, Tetrad (registered trademark) )-X (manufactured by Mitsubishi Gas Chemical Company, Inc.) is N,N,N',N'-tetraglycidyl-m-xylenediamine.
 (比誘電率及び誘電正接)
 比誘電率及び誘電正接は、ネットワークアナライザMS46122B(アンリツ株式会社製)を用いて空洞共振法で、温度23℃、周波数10GHzの条件で測定した。得られた結果を下記表1に示す。
(relative permittivity and dielectric loss tangent)
The dielectric constant and the dielectric loss tangent were measured by the cavity resonance method using a network analyzer MS46122B (manufactured by Anritsu Corporation) under conditions of a temperature of 23° C. and a frequency of 10 GHz. The results obtained are shown in Table 1 below.
 (耐熱性)
 耐熱性は、DVA-200(アイティー計測制御社製)を用いて、周波数1Hz、昇温速度3℃/minの条件で0℃から300℃まで測定し、ガラス転移温度(Tg)を求めた。得られた結果を下記表1に示す。
(Heat-resistant)
Heat resistance was measured from 0° C. to 300° C. using DVA-200 (manufactured by IT Keisoku Co., Ltd.) at a frequency of 1 Hz and a heating rate of 3° C./min to determine the glass transition temperature (Tg). . The results obtained are shown in Table 1 below.
 [評価]
 実施例1~8および比較例1~2で製造した硬化物1~10を用いて、比誘電率、誘電正接及び耐熱性を測定した。
[evaluation]
Cured products 1 to 10 produced in Examples 1 to 8 and Comparative Examples 1 to 2 were used to measure dielectric constant, dielectric loss tangent and heat resistance.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 表1の結果から、実施例1~8のように活性エステル(B-1)と(B-2)を組み合わせることで、比較例1~2の単独で使用したものに比べ誘電特性を大幅に低下し、耐熱性も向上する良好な結果が得られたことが分かる。 From the results in Table 1, by combining the active esters (B-1) and (B-2) as in Examples 1 to 8, the dielectric properties are significantly improved compared to those used alone in Comparative Examples 1 to 2. It can be seen that good results were obtained in which the heat resistance was reduced and the heat resistance was improved.

Claims (7)

  1.  エポキシ樹脂(A)、第1の活性エステル化合物(B-1)及び第2の活性エステル化合物(B-2)を含有し、
     前記第1の活性エステル化合物(B-1)がダイマー酸骨格および/またはダイマージオール骨格を分子内に有する活性エステル化合物であることを特徴とするエポキシ樹脂組成物。
    containing an epoxy resin (A), a first active ester compound (B-1) and a second active ester compound (B-2),
    An epoxy resin composition, wherein the first active ester compound (B-1) is an active ester compound having a dimer acid skeleton and/or a dimer diol skeleton in its molecule.
  2.  前記第1の活性エステル化合物(B-1)の活性エステル化合物全体に対する割合が20~80質量%であることを特徴とする請求項1に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, wherein the ratio of the first active ester compound (B-1) to the total active ester compound is 20 to 80% by mass.
  3.  前記第2の活性エステル化合物(B-2)が、芳香族多価ヒドロキシ化合物と、芳香族多価カルボン酸化合物またはその酸ハロゲン化物と、芳香族モノヒドロキシ化合物の反応物であることを特徴とする請求項1または2に記載のエポキシ樹脂組成物。 The second active ester compound (B-2) is a reaction product of an aromatic polyhydroxy compound, an aromatic polycarboxylic acid compound or its acid halide, and an aromatic monohydroxy compound. The epoxy resin composition according to claim 1 or 2.
  4.  前記第1の活性エステル化合物(B-1)の末端構造が式(1)または式(2)
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
     (式中Rはそれぞれ独立して、脂肪族炭化水素基、アルコキシ基、ハロゲン原子、アリール基、アラルキル基のいずれかであり、nは0~5の整数、mは0~7の整数である。) で表される活性エステル化合物であることを特徴とする請求項1または2に記載のエポキシ樹脂組成物。
    The terminal structure of the first active ester compound (B-1) is the formula (1) or the formula (2)
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, each R is independently an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, or an aralkyl group, n is an integer of 0 to 5, and m is an integer of 0 to 7. .) The epoxy resin composition according to claim 1 or 2, which is an active ester compound represented by:
  5.  前記第1の活性エステル化合物(B-1)の分子量が500~5000であることを特徴とする請求項1または2に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1 or 2, wherein the first active ester compound (B-1) has a molecular weight of 500 to 5,000.
  6.  前記第2の活性エステル化合物(B-2)を構成する芳香族多価ヒドロキシ化合物が下記(X-1)~(X-4) 
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
     (式中Xは、それぞれ独立に水素またはメチル基である。iは1又は2である。)のいずれかであることを特徴とする請求項3に記載のエポキシ樹脂組成物。
    The aromatic polyhydroxy compound constituting the second active ester compound (B-2) is the following (X-1) to (X-4)
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    (in the formula, each X is independently hydrogen or a methyl group; i is 1 or 2);
  7.  請求項1または2に記載のエポキシ樹脂組成物の硬化物。
     

     
    A cured product of the epoxy resin composition according to claim 1 or 2.


PCT/JP2022/036769 2021-10-28 2022-09-30 Active ester compound WO2023074258A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-176512 2021-10-28
JP2021176512 2021-10-28

Publications (1)

Publication Number Publication Date
WO2023074258A1 true WO2023074258A1 (en) 2023-05-04

Family

ID=86157858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036769 WO2023074258A1 (en) 2021-10-28 2022-09-30 Active ester compound

Country Status (2)

Country Link
TW (1) TW202323358A (en)
WO (1) WO2023074258A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100144977A1 (en) * 2008-11-20 2010-06-10 Designer Molecules, Inc. Curing agents for epoxy resins
JP2013510926A (en) * 2009-11-13 2013-03-28 ヘンケル コーポレイション Thermal interface materials containing phenyl esters
WO2019225166A1 (en) * 2018-05-24 2019-11-28 積水化学工業株式会社 Active ester compound, curable resin composition, adhesive, adhesive film, circuit substrate, interlayer insulation material, and multilayer printed wiring board
JP2020084108A (en) * 2018-11-29 2020-06-04 信越化学工業株式会社 Epoxy resin composition, and adhesive film, prepreg, multilayer printed wiring board, and semiconductor device manufactured using the resin composition
JP2020090615A (en) * 2018-12-06 2020-06-11 住友ベークライト株式会社 Semiconductor sealing resin composition and semiconductor device
JP2020172663A (en) * 2020-07-28 2020-10-22 味の素株式会社 Resin composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100144977A1 (en) * 2008-11-20 2010-06-10 Designer Molecules, Inc. Curing agents for epoxy resins
JP2013510926A (en) * 2009-11-13 2013-03-28 ヘンケル コーポレイション Thermal interface materials containing phenyl esters
WO2019225166A1 (en) * 2018-05-24 2019-11-28 積水化学工業株式会社 Active ester compound, curable resin composition, adhesive, adhesive film, circuit substrate, interlayer insulation material, and multilayer printed wiring board
JP2020084108A (en) * 2018-11-29 2020-06-04 信越化学工業株式会社 Epoxy resin composition, and adhesive film, prepreg, multilayer printed wiring board, and semiconductor device manufactured using the resin composition
JP2020090615A (en) * 2018-12-06 2020-06-11 住友ベークライト株式会社 Semiconductor sealing resin composition and semiconductor device
JP2020172663A (en) * 2020-07-28 2020-10-22 味の素株式会社 Resin composition

Also Published As

Publication number Publication date
TW202323358A (en) 2023-06-16

Similar Documents

Publication Publication Date Title
KR102388192B1 (en) Curable composition and cured product thereof
JP7068668B2 (en) Active ester compound and composition and cured product using it
JP7010288B2 (en) Active ester resin and compositions and cured products using it
US11873356B2 (en) Curable composition and cured product thereof
WO2023074258A1 (en) Active ester compound
JP7114987B2 (en) Curable composition and cured product thereof
WO2023021900A1 (en) Active ester compound
KR102453731B1 (en) Curable composition and cured product thereof
JP7057905B2 (en) Curable composition and its cured product
WO2022118723A1 (en) Epoxy resin, curable composition, cured product, semiconductor sealing material, semiconductor device, prepreg, circuit board and buildup film
KR20230073082A (en) Epoxy resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886590

Country of ref document: EP

Kind code of ref document: A1