WO2023074226A1 - Method for culturing chlamydomonas reinhardtii - Google Patents

Method for culturing chlamydomonas reinhardtii Download PDF

Info

Publication number
WO2023074226A1
WO2023074226A1 PCT/JP2022/035883 JP2022035883W WO2023074226A1 WO 2023074226 A1 WO2023074226 A1 WO 2023074226A1 JP 2022035883 W JP2022035883 W JP 2022035883W WO 2023074226 A1 WO2023074226 A1 WO 2023074226A1
Authority
WO
WIPO (PCT)
Prior art keywords
ppm
green alga
alga chlamydomonas
liquid medium
content
Prior art date
Application number
PCT/JP2022/035883
Other languages
French (fr)
Japanese (ja)
Inventor
のぞみ 塩原
翔平 木下
稔 後藤
瑞穂 土肥
諭 塩崎
賢司 町田
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Publication of WO2023074226A1 publication Critical patent/WO2023074226A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a method for culturing the green alga Chlamydomonas.
  • Algae biofuels are being developed as alternative fuels to fossil fuels. Specifically, a method in which the green alga Chlamydomonas reinhardtii immobilizes carbon dioxide (CO 2 ) to accumulate starch, and then the green alga Chlamydomonas reinhardtii self-ferments under dark anaerobic conditions to produce ethanol. is known (see, for example, Patent Document 1).
  • CO 2 carbon dioxide
  • An object of the present invention is to provide a method for culturing the green alga Chlamydomonas that can increase the amount of starch produced without exchanging the medium.
  • One aspect of the present invention is a method for cultivating the green alga Chlamydomonas, comprising a step of culturing the green alga Chlamydomonas in a liquid medium to accumulate starch in the green alga Chlamydomonas, wherein the liquid medium contains nitrogen element contained in a nitrogen source.
  • the content is 35 ppm or more and 70 ppm or less, and the content of elemental phosphorus is 420 ppm or more.
  • the nitrogen source may be urea.
  • the phosphorus element may be contained in the phosphate.
  • the phosphate may be dipotassium hydrogen phosphate and potassium dihydrogen phosphate.
  • the liquid medium may have a content of dipotassium hydrogen phosphate of 1440 ppm or more and a content of potassium dihydrogen phosphate of 720 ppm or more.
  • the green alga Chlamydomonas may be Hyundai DREAMO strain (accession number FERM BP-22306).
  • 1 is a graph showing the relationship of starch production to urea content in a liquid medium.
  • 1 is a graph showing the relationship between the production amount of Chlamydomonas green algae and the amount of accumulated starch in Chlamydomonas green algae with respect to the content of urea in a liquid medium.
  • 1 is a graph showing the relationship between the amount of phosphate in a liquid medium and the amount of production of the green alga Chlamydomonas.
  • 1 is a graph showing starch production amounts of Examples 1 and 2 and Comparative Examples 1 and 2.
  • the method for culturing the green alga Chlamydomonas of the present embodiment includes a step of culturing the green alga Chlamydomonas in a liquid medium to accumulate starch in the green alga Chlamydomonas. At this time, in order to increase the amount of starch produced, it is necessary to accumulate starch in the green alga Chlamydomonas and grow the green alga Chlamydomonas in a liquid medium.
  • the content of nitrogen element contained in the nitrogen source in the liquid medium is 35 ppm or more and 70 ppm or less. If the nitrogen element content in the nitrogen source in the liquid medium is less than 35 ppm, the growth of the green alga Chlamydomonas becomes difficult. On the other hand, when the nitrogen element content in the nitrogen source in the liquid medium exceeds 70 ppm, the amount of starch accumulated in the green alga Chlamydomonas decreases. That is, by setting the content of nitrogen element contained in the nitrogen source in the liquid medium to 70 ppm or less, more ethanol can be produced from the green alga Chlamydomonas, and bioethanol can be efficiently produced.
  • the nitrogen source is not particularly limited, but examples include inorganic nitrogen sources such as ammonium salts and nitrates, and organic nitrogen sources such as peptone and urea.
  • the content of urea in the liquid medium is preferably 150 ppm or less, more preferably 80 ppm or more and 150 ppm or less.
  • the content of elemental phosphorus in the liquid medium is 420 ppm or more, preferably 500 ppm or more. If the content of elemental phosphorus in the liquid medium is less than 420 ppm, the growth of the green alga Chlamydomonas becomes difficult.
  • the phosphorus element is preferably contained in the phosphate. This facilitates the growth of the green alga Chlamydomonas.
  • the phosphate is not particularly limited, but examples thereof include dipotassium hydrogen phosphate (K 2 HPO 4 ), potassium dihydrogen phosphate (KH 2 PO 4 ), calcium phosphate (Ca 3 (PO 4 ) 2 ), and the like. be done.
  • the content of dipotassium hydrogen phosphate in the liquid medium is preferably 1440 ppm or more, preferably 1730 ppm or more. More preferred. Also, the content of potassium dihydrogen phosphate in the liquid medium is preferably 720 ppm or more, more preferably 860 ppm or more.
  • the content of the sulfur source in the liquid medium is not particularly limited, but is, for example, 4.5 ppm or more.
  • the sulfur source is not particularly limited, but examples include magnesium sulfate, zinc sulfate, iron sulfate, copper sulfate, calcium sulfate, and the like.
  • the liquid medium may further contain minerals such as calcium chloride, boric acid, manganese chloride, hexaammonium heptamolybdate, zinc sulfate, iron sulfate, and copper sulfate.
  • minerals such as calcium chloride, boric acid, manganese chloride, hexaammonium heptamolybdate, zinc sulfate, iron sulfate, and copper sulfate.
  • the method for culturing the green alga Chlamydomonas in a liquid medium is not particularly limited, and examples include stationary culture, shaking culture, submerged culture, and aeration culture.
  • an artificial climate vessel can be used when culturing the green alga Chlamydomonas in a liquid medium.
  • the temperature for culturing the green alga Chlamydomonas in the liquid medium is not particularly limited, but is, for example, 2°C or higher and 38°C or lower.
  • the light-dark cycle when culturing the green algae Chlamydomonas in a liquid medium is not particularly limited, but is, for example, a 24-hour cycle with a light period of 6 hours or more and 24 hours or less.
  • the photosynthetically effective photon flux density in the light period is not particularly limited, but is, for example, 50 ⁇ mol/m 2 /s or more and 2000 ⁇ mol/m 2 /s or less.
  • the method of supplying the gas composition containing carbon dioxide is not particularly limited, and known methods can be used.
  • the content of carbon dioxide gas in the gas composition is not particularly limited, but is, for example, 0.5% by volume or more and 5% by volume or less.
  • the amount of permeation of the gas composition is not particularly limited, but is, for example, 0.05 vvm or more and 0.5 vvm or less.
  • the green alga Chlamydomonas is not particularly limited, but includes, for example, the Hyundai DREAMO strain (accession number FERM BP-22306).
  • the Honda DREAMO strain is a mutant strain that has the ability to produce ethanol under dark anaerobic conditions and has acquired the ability to grow while aggregating (see Patent Document 1).
  • the method for cultivating the green alga Chlamydomonas may further include a step of culturing the Hyundai DREAMO strain under dark anaerobic conditions to cause the Hyundai DREAMO strain to produce ethanol. good.
  • the method for collecting the cultured green alga Chlamydomonas is not particularly limited, but examples include centrifugation and filtration.
  • Starch, ethanol, etc. can be extracted from the collected Chlamydomonas algae.
  • the method of producing ethanol from the green alga Chlamydomonas is not particularly limited, but includes, for example, a method of self-fermentation using the inherent ethanol-producing ability of the green alga Chlamydomonas, and a method of saccharifying and fermenting starch extracted from the green alga Chlamydomonas.
  • the collected green alga Chlamydomonas may be dried if necessary.
  • the method for drying the green alga Chlamydomonas is not particularly limited, but includes, for example, a freeze-drying method.
  • Example 1 The content of nitrogen element contained in the nitrogen source in the liquid medium is 1/3 (43.6 ppm; urea 93.5 ppm), and the content of phosphorus element is 1.2 times (504 ppm; dipotassium hydrogen phosphate 1728 ppm, phosphorus).
  • the green alga Chlamydomonas was cultured in the same manner as in Comparative Example 1, except that the amount of potassium dihydrogen acid was 864 ppm).
  • Example 2 The green alga Chlamydomonas was cultured in the same manner as in Comparative Example 1, except that the nitrogen element content in the nitrogen source in the liquid medium was halved (65.5 ppm; urea: 140.3 ppm).
  • FIG. 1 shows the relationship between the amount of starch produced and the content of urea in a liquid medium in which the elemental phosphorus content was set to 420 ppm.
  • the contents of nitrogen elements contained in urea which is the nitrogen source in the liquid medium, are 32.7 ppm (70.1 ppm of urea), 43.6 ppm (93.5 ppm of urea), 65.5 ppm (140 ppm of urea). 3 ppm) and 130.9 ppm (urea 280.5 ppm), it can be seen that when the nitrogen element content is 43.6 ppm, the amount of starch production is maximized. In addition, when the nitrogen element content is 65.5 ppm, the starch production amount is the second largest, and when the nitrogen element content is 32.7 ppm and 130.9 ppm, the starch production amount decreases. It can be seen that
  • FIG. 2 shows the relationship between the production amount of green alga Chlamydomonas and the amount of starch accumulated in Chlamydomonas green algae with respect to the content of urea in a liquid medium in which the elemental phosphorus content was set to 420 ppm.
  • the contents of nitrogen elements contained in urea which is the nitrogen source in the liquid medium, are 32.7 ppm (urea 70.1 ppm), 43.6 ppm (urea 93.5 ppm), 65.5 ppm (urea 140.3 ppm). ), 130.9 ppm (urea 280.5 ppm), the production of the green alga Chlamydomonas decreased as the nitrogen element content decreased.
  • the accumulated amount of starch increases as the nitrogen element content decreases.
  • Fig. 3 shows the relationship between the production amount of the green alga Chlamydomonas and the phosphate content in the liquid medium.
  • FIG. 4 shows the production amounts of starch in Examples 1 and 2 and Comparative Examples 1 and 2.
  • Example 2 produced a large amount of starch compared to Comparative Examples 1 and 2. Moreover, it can be seen that in Example 1 in which the content of elemental phosphorus contained in urea in the liquid medium was adjusted to 1.2 times, the amount of starch produced was the highest.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Botany (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Microbiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Provided is a method for culturing Chlamydomonas reinhardtii, the method comprising a step for culturing Chlamydomonas reinhardtii in a liquid medium and causing Chlamydomonas reinhardtii to accumulate starch. This liquid culture medium has a nitrogen source having an elemental nitrogen content of 35 ppm to 70 ppm and has an elemental phosphorus content of 420 ppm or greater.

Description

緑藻クラミドモナスの培養方法Culturing method of green alga Chlamydomonas
 本発明は、緑藻クラミドモナスの培養方法に関する。 The present invention relates to a method for culturing the green alga Chlamydomonas.
 化石燃料の代替燃料として、藻類バイオ燃料の開発が進められている。具体的には、緑藻クラミドモナス(Chlamydomonas reinhardtii)が炭酸ガス(CO)を固定化することにより、デンプンを蓄積させた後、暗嫌気下で緑藻クラミドモナスに自己発酵させることにより、エタノールを産生する方法が知られている(例えば、特許文献1参照)。 Algae biofuels are being developed as alternative fuels to fossil fuels. Specifically, a method in which the green alga Chlamydomonas reinhardtii immobilizes carbon dioxide (CO 2 ) to accumulate starch, and then the green alga Chlamydomonas reinhardtii self-ferments under dark anaerobic conditions to produce ethanol. is known (see, for example, Patent Document 1).
 緑藻クラミドモナスにデンプンを蓄積させる方法としては、最小培地中で緑藻クラミドモナスを培養し、増殖させた後、窒素源が欠乏している欠乏培地中で緑藻クラミドモナスを培養し、緑藻クラミドモナスにデンプンを蓄積させる方法が知られている(例えば、特許文献2参照)。 As a method for accumulating starch in the green alga Chlamydomonas, after culturing the green alga Chlamydomonas in a minimal medium and growing it, the green alga Chlamydomonas is cultured in a nitrogen-deficient medium, and starch is accumulated in the green alga Chlamydomonas. A method is known (see, for example, Patent Document 2).
国際公開第2017/217116号WO2017/217116 特表2017-514493号公報Japanese Patent Publication No. 2017-514493
 しかしながら、培地を交換する際に、回収、遠心分離、洗浄等の工程が必要となるため、培地を交換せずに、デンプンの生産量を増大させることが望まれている。 However, since steps such as recovery, centrifugation, and washing are required when changing the medium, it is desired to increase the amount of starch produced without changing the medium.
 本発明は、培地を交換せずに、デンプンの生産量を増大させることが可能な緑藻クラミドモナスの培養方法を提供することを目的とする。 An object of the present invention is to provide a method for culturing the green alga Chlamydomonas that can increase the amount of starch produced without exchanging the medium.
 本発明の一態様は、緑藻クラミドモナスの培養方法において、液体培地中で緑藻クラミドモナスを培養して、前記緑藻クラミドモナスにデンプンを蓄積させる工程を含み、前記液体培地は、窒素源に含まれる窒素元素の含有量が35ppm以上70ppm以下であり、リン元素の含有量が420ppm以上である。 One aspect of the present invention is a method for cultivating the green alga Chlamydomonas, comprising a step of culturing the green alga Chlamydomonas in a liquid medium to accumulate starch in the green alga Chlamydomonas, wherein the liquid medium contains nitrogen element contained in a nitrogen source. The content is 35 ppm or more and 70 ppm or less, and the content of elemental phosphorus is 420 ppm or more.
 前記窒素源は、尿素であってもよい。 The nitrogen source may be urea.
 前記リン元素は、リン酸塩に含まれてもよい。 The phosphorus element may be contained in the phosphate.
 前記リン酸塩は、リン酸水素二カリウムおよびリン酸二水素カリウムであってもよい。 The phosphate may be dipotassium hydrogen phosphate and potassium dihydrogen phosphate.
 前記液体培地は、リン酸水素二カリウムの含有量が1440ppm以上であり、リン酸二水素カリウムの含有量が720ppm以上であってもよい。 The liquid medium may have a content of dipotassium hydrogen phosphate of 1440 ppm or more and a content of potassium dihydrogen phosphate of 720 ppm or more.
 前記緑藻クラミドモナスは、Honda DREAMO株(受託番号FERM BP-22306)であってもよい。 The green alga Chlamydomonas may be Honda DREAMO strain (accession number FERM BP-22306).
 本発明によれば、培地を交換せずに、デンプンの生産量を増大させることが可能な緑藻クラミドモナスの培養方法を提供することができる。 According to the present invention, it is possible to provide a method for culturing the green alga Chlamydomonas that can increase the amount of starch produced without exchanging the medium.
液体培地中の尿素の含有量に対するデンプンの生産量の関係を示すグラフである。1 is a graph showing the relationship of starch production to urea content in a liquid medium. 液体培地中の尿素の含有量に対する緑藻クラミドモナスの生産量および緑藻クラミドモナス中のデンプンの蓄積量の関係を示すグラフである。1 is a graph showing the relationship between the production amount of Chlamydomonas green algae and the amount of accumulated starch in Chlamydomonas green algae with respect to the content of urea in a liquid medium. 液体培地中のリン酸塩の含有量に対する緑藻クラミドモナスの生産量の関係を示すグラフである。1 is a graph showing the relationship between the amount of phosphate in a liquid medium and the amount of production of the green alga Chlamydomonas. 実施例1、2および比較例1、2のデンプンの生産量を示すグラフである。1 is a graph showing starch production amounts of Examples 1 and 2 and Comparative Examples 1 and 2. FIG.
 以下、本発明の実施形態について説明する。 Embodiments of the present invention will be described below.
 本実施形態の緑藻クラミドモナスの培養方法は、液体培地中で緑藻クラミドモナスを培養して、緑藻クラミドモナスにデンプンを蓄積させる工程を含む。このとき、デンプンの生産量を増大させるためには、液体培地中で、緑藻クラミドモナスにデンプンを蓄積させるとともに、緑藻クラミドモナスを増殖させる必要がある。 The method for culturing the green alga Chlamydomonas of the present embodiment includes a step of culturing the green alga Chlamydomonas in a liquid medium to accumulate starch in the green alga Chlamydomonas. At this time, in order to increase the amount of starch produced, it is necessary to accumulate starch in the green alga Chlamydomonas and grow the green alga Chlamydomonas in a liquid medium.
 液体培地中の窒素源に含まれる窒素元素の含有量は、35ppm以上70ppm以下である。液体培地中の窒素源に含まれる窒素元素の含有量が35ppm未満であると、緑藻クラミドモナスが増殖しにくくなる。一方、液体培地中の窒素源に含まれる窒素元素の含有量が70ppmを超えると、緑藻クラミドモナス中のデンプンの蓄積量が低下する。すなわち、液体培地中の窒素源に含まれる窒素元素の含有量を70ppm以下とすることで、緑藻クラミドモナスからより多くのエタノールを生成できるため、効率的にバイオエタノールを生産することができる。 The content of nitrogen element contained in the nitrogen source in the liquid medium is 35 ppm or more and 70 ppm or less. If the nitrogen element content in the nitrogen source in the liquid medium is less than 35 ppm, the growth of the green alga Chlamydomonas becomes difficult. On the other hand, when the nitrogen element content in the nitrogen source in the liquid medium exceeds 70 ppm, the amount of starch accumulated in the green alga Chlamydomonas decreases. That is, by setting the content of nitrogen element contained in the nitrogen source in the liquid medium to 70 ppm or less, more ethanol can be produced from the green alga Chlamydomonas, and bioethanol can be efficiently produced.
 窒素源としては、特に限定されないが、例えば、アンモニウム塩、硝酸塩等の無機窒素源、ペプトン、尿素等の有機窒素源が挙げられる。 The nitrogen source is not particularly limited, but examples include inorganic nitrogen sources such as ammonium salts and nitrates, and organic nitrogen sources such as peptone and urea.
 例えば、窒素源として、尿素を用いる場合、液体培地中の尿素の含有量は、150ppm以下であることが好ましく、80ppm以上150ppm以下であることがさらに好ましい。 For example, when urea is used as the nitrogen source, the content of urea in the liquid medium is preferably 150 ppm or less, more preferably 80 ppm or more and 150 ppm or less.
 液体培地中のリン元素の含有量は、420ppm以上であり、500ppm以上であることが好ましい。液体培地中のリン元素の含有量が420ppm未満であると、緑藻クラミドモナスが増殖しにくくなる。 The content of elemental phosphorus in the liquid medium is 420 ppm or more, preferably 500 ppm or more. If the content of elemental phosphorus in the liquid medium is less than 420 ppm, the growth of the green alga Chlamydomonas becomes difficult.
 リン元素は、リン酸塩に含まれることが好ましい。これにより、緑藻クラミドモナスが増殖しやすくなる。 The phosphorus element is preferably contained in the phosphate. This facilitates the growth of the green alga Chlamydomonas.
 リン酸塩としては、特に限定されないが、例えば、リン酸水素二カリウム(KHPO)、リン酸二水素カリウム(KHPO)、リン酸カルシウム(Ca(PO)等が挙げられる。 The phosphate is not particularly limited, but examples thereof include dipotassium hydrogen phosphate (K 2 HPO 4 ), potassium dihydrogen phosphate (KH 2 PO 4 ), calcium phosphate (Ca 3 (PO 4 ) 2 ), and the like. be done.
 例えば、リン酸塩として、リン酸水素二カリウムおよびリン酸二水素カリウムを用いる場合、液体培地中のリン酸水素二カリウムの含有量は、1440ppm以上であることが好ましく、1730ppm以上であることがさらに好ましい。また、液体培地中のリン酸二水素カリウムの含有量は、720ppm以上であることが好ましく、860ppm以上であることがさらに好ましい。 For example, when dipotassium hydrogen phosphate and potassium dihydrogen phosphate are used as phosphates, the content of dipotassium hydrogen phosphate in the liquid medium is preferably 1440 ppm or more, preferably 1730 ppm or more. More preferred. Also, the content of potassium dihydrogen phosphate in the liquid medium is preferably 720 ppm or more, more preferably 860 ppm or more.
 液体培地中の硫黄源の含有量は、特に限定されないが、例えば、4.5ppm以上である。 The content of the sulfur source in the liquid medium is not particularly limited, but is, for example, 4.5 ppm or more.
 硫黄源としては、特に限定されないが、例えば、硫酸マグネシウム、硫酸亜鉛、硫酸鉄、硫酸銅、硫酸カルシウム等が挙げられる。 The sulfur source is not particularly limited, but examples include magnesium sulfate, zinc sulfate, iron sulfate, copper sulfate, calcium sulfate, and the like.
 液体培地は、塩化カルシウム、ホウ酸、塩化マンガン、七モリブデン酸六アンモニウム、硫酸亜鉛、硫酸鉄、硫酸銅等のミネラルをさらに含んでいてもよい。 The liquid medium may further contain minerals such as calcium chloride, boric acid, manganese chloride, hexaammonium heptamolybdate, zinc sulfate, iron sulfate, and copper sulfate.
 液体培地中で緑藻クラミドモナスを培養する方法としては、特に限定されず、例えば、静置培養法、振盪培養法、深部培養法、通気培養法等が挙げられる。 The method for culturing the green alga Chlamydomonas in a liquid medium is not particularly limited, and examples include stationary culture, shaking culture, submerged culture, and aeration culture.
 液体培地中で緑藻クラミドモナスを培養する際に、例えば、人工気象器を用いることができる。 For example, an artificial climate vessel can be used when culturing the green alga Chlamydomonas in a liquid medium.
 液体培地中で緑藻クラミドモナスを培養する際の温度は、特に限定されないが、例えば、2℃以上38℃以下である。 The temperature for culturing the green alga Chlamydomonas in the liquid medium is not particularly limited, but is, for example, 2°C or higher and 38°C or lower.
 液体培地中で緑藻クラミドモナスを培養する際の明暗周期は、特に限定されないが、例えば、明期が6時間以上24時間以下の24時間周期である。 The light-dark cycle when culturing the green algae Chlamydomonas in a liquid medium is not particularly limited, but is, for example, a 24-hour cycle with a light period of 6 hours or more and 24 hours or less.
 明期の光合成有効光量子束密度は、特に限定されないが、例えば、50μmol/m/s以上2000μmol/m/s以下である。 The photosynthetically effective photon flux density in the light period is not particularly limited, but is, for example, 50 μmol/m 2 /s or more and 2000 μmol/m 2 /s or less.
 液体培地中で緑藻クラミドモナスを通気培養する際に、炭酸ガスを含むガス組成物を通気することが好ましい。 When aerating the green alga Chlamydomonas in a liquid medium, it is preferable to aerate a gas composition containing carbon dioxide gas.
 炭酸ガスを含むガス組成物の供給方法としては、特に限定されず、公知の方法を用いることができる。 The method of supplying the gas composition containing carbon dioxide is not particularly limited, and known methods can be used.
 ガス組成物中の炭酸ガスの含有量は、特に限定されないが、例えば、0.5体積%以上5体積%以下である。 The content of carbon dioxide gas in the gas composition is not particularly limited, but is, for example, 0.5% by volume or more and 5% by volume or less.
 ガス組成物の通気量は、特に限定されないが、例えば、0.05vvm以上0.5vvm以下である。 The amount of permeation of the gas composition is not particularly limited, but is, for example, 0.05 vvm or more and 0.5 vvm or less.
 緑藻クラミドモナスとしては、特に限定されないが、例えば、Honda DREAMO株(受託番号FERM BP-22306)等が挙げられる。 The green alga Chlamydomonas is not particularly limited, but includes, for example, the Honda DREAMO strain (accession number FERM BP-22306).
 ここで、Honda DREAMO株は、暗嫌気下において、エタノール産生能を有し、且つ、凝集しつつ、増殖する能力を獲得した変異株である(特許文献1参照)。 Here, the Honda DREAMO strain is a mutant strain that has the ability to produce ethanol under dark anaerobic conditions and has acquired the ability to grow while aggregating (see Patent Document 1).
 緑藻クラミドモナスとして、Honda DREAMO株を用いる場合、本実施形態の緑藻クラミドモナスの培養方法は、暗嫌気下において、Honda DREAMO株を培養して、Honda DREAMO株にエタノールを産生させる工程をさらに含んでいてもよい。 When the Honda DREAMO strain is used as the green alga Chlamydomonas, the method for cultivating the green alga Chlamydomonas according to the present embodiment may further include a step of culturing the Honda DREAMO strain under dark anaerobic conditions to cause the Honda DREAMO strain to produce ethanol. good.
 培養された緑藻クラミドモナスを回収する方法としては、特に限定されないが、例えば、遠心分離法、濾過法等が挙げられる。 The method for collecting the cultured green alga Chlamydomonas is not particularly limited, but examples include centrifugation and filtration.
 回収された緑藻クラミドモナスから、デンプン、エタノール等を抽出することができる。 Starch, ethanol, etc. can be extracted from the collected Chlamydomonas algae.
 緑藻クラミドモナスからエタノールを生成する方法としては、特に限定されないが、例えば、緑藻クラミドモナス固有のエタノール産生能によって自己発酵させる方法、緑藻クラミドモナスから抽出したデンプンを糖化発酵させる方法等が挙げられる。 The method of producing ethanol from the green alga Chlamydomonas is not particularly limited, but includes, for example, a method of self-fermentation using the inherent ethanol-producing ability of the green alga Chlamydomonas, and a method of saccharifying and fermenting starch extracted from the green alga Chlamydomonas.
 なお、回収された緑藻クラミドモナスは、必要に応じて、乾燥させてもよい。 The collected green alga Chlamydomonas may be dried if necessary.
 緑藻クラミドモナスを乾燥させる方法としては、特に限定されないが、例えば、凍結乾燥法等が挙げられる。 The method for drying the green alga Chlamydomonas is not particularly limited, but includes, for example, a freeze-drying method.
 以下、本発明の実施例を説明するが、本発明は、実施例に限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to the examples.
 [比較例1]
 人工気象器を用いて、所定の組成(表1参照)の液体培地中、以下に示す培養条件で緑藻クラミドモナス(Honda DREAMO株)を7日間通気培養した。ここで、液体培地は、窒素源(尿素)に含まれる窒素元素の含有量が130.9ppmであり、リン元素の含有量が420ppmである。
[Comparative Example 1]
Green alga Chlamydomonas (Honda DREAMO strain) was aerated for 7 days in a liquid medium having a predetermined composition (see Table 1) using an artificial climate chamber under the following culture conditions. Here, the liquid medium has a nitrogen element content of 130.9 ppm and a phosphorus element content of 420 ppm contained in the nitrogen source (urea).
 温度:25℃
 明暗周期:明期10時間、暗期14時間
 明期の光合成有効光量子束密度:440μmol/m/s
 光源:白色LED
 ガス組成物の通気量:0.15vvm
 ガス組成物中の炭酸ガスの含有量:5体積%
Temperature: 25°C
Light-dark cycle: light period 10 hours, dark period 14 hours Photosynthetically effective photon flux density in light period: 440 μmol/m 2 /s
Light source: White LED
Aeration amount of gas composition: 0.15 vvm
Carbon dioxide content in gas composition: 5% by volume
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [実施例1]
 液体培地中の窒素源に含まれる窒素元素の含有量を1/3(43.6ppm;尿素93.5ppm)、リン元素の含有量を1.2倍(504ppm;リン酸水素二カリウム1728ppm、リン酸二水素カリウム864ppm)とした以外は、比較例1と同様にして、緑藻クラミドモナスを培養した。
[Example 1]
The content of nitrogen element contained in the nitrogen source in the liquid medium is 1/3 (43.6 ppm; urea 93.5 ppm), and the content of phosphorus element is 1.2 times (504 ppm; dipotassium hydrogen phosphate 1728 ppm, phosphorus The green alga Chlamydomonas was cultured in the same manner as in Comparative Example 1, except that the amount of potassium dihydrogen acid was 864 ppm).
 [実施例2]
 液体培地中の窒素源に含まれる窒素元素の含有量を1/2(65.5ppm;尿素140.3ppm)とした以外は、比較例1と同様にして、緑藻クラミドモナスを培養した。
[Example 2]
The green alga Chlamydomonas was cultured in the same manner as in Comparative Example 1, except that the nitrogen element content in the nitrogen source in the liquid medium was halved (65.5 ppm; urea: 140.3 ppm).
 [比較例2]
 液体培地中の窒素源に含まれる窒素元素の含有量を1/4(32.7ppm;尿素70.1ppm)とした以外は、比較例1と同様にして、緑藻クラミドモナスを培養した。
[Comparative Example 2]
Green alga Chlamydomonas was cultured in the same manner as in Comparative Example 1, except that the nitrogen element content in the nitrogen source in the liquid medium was changed to 1/4 (32.7 ppm; urea: 70.1 ppm).
 [デンプンの生産量]
 回収した液体培地3mlにα-アミラーゼ1mlを添加した後、95℃の温水バスに30分間浸漬した。次に、空冷してからグルコアミラーゼ1mlを添加した後、50℃の温水バスに2時間浸漬した。次に、3mlになるよう純水でメスアップした後、酵素電極法により、グルコース濃度を測定し、液体培地1Lあたりのデンプンの生産量[g]を求めた。
[Starch production]
After adding 1 ml of α-amylase to 3 ml of the collected liquid medium, the mixture was immersed in a hot water bath at 95° C. for 30 minutes. Next, after cooling with air, 1 ml of glucoamylase was added, and the mixture was immersed in a warm water bath at 50°C for 2 hours. Next, after adding pure water to a volume of 3 ml, the glucose concentration was measured by the enzymatic electrode method, and the production amount [g] of starch per 1 L of liquid medium was determined.
 [緑藻クラミドモナスの生産量]
 回収した液体培地15mlを遠心分離した後、沈降物を純水で3回洗浄した。次に、G/Fろ紙でろ過した後、ろ紙を60℃の乾燥器で1時間以上乾燥させ、ろ紙の重量変化量から、液体培地1Lあたりの緑藻クラミドモナスの生産量[g/L]を求めた。
[Production volume of green alga Chlamydomonas]
After centrifuging 15 ml of the collected liquid medium, the sediment was washed with pure water three times. Next, after filtering with a G/F filter paper, the filter paper is dried in a dryer at 60°C for 1 hour or more, and the production amount [g/L] of the green alga Chlamydomonas per 1 L of the liquid medium is obtained from the weight change of the filter paper. rice field.
 [緑藻クラミドモナス中のデンプンの蓄積量]
 式
 (液体培地1Lあたりのデンプンの生産量[g/L])/(液体培地1Lあたりの緑藻クラミドモナスの生産量[g/L])×100
により、緑藻クラミドモナス中のデンプンの蓄積量[質量%]を算出した。
[Amount of accumulated starch in green alga Chlamydomonas]
Formula (Production amount of starch per 1 L of liquid medium [g/L])/(Production amount of green alga Chlamydomonas per 1 L of liquid medium [g/L]) x 100
The accumulation amount [% by mass] of starch in the green alga Chlamydomonas was calculated.
 [デンプンの生産量に及ぼす液体培地中の尿素に含まれる窒素元素の含有量の影響]
 図1に、リン元素の含有量が420ppmに設定された液体培地中の尿素の含有量に対するデンプンの生産量の関係を示す。
[Influence of content of nitrogen element contained in urea in liquid medium on starch production]
FIG. 1 shows the relationship between the amount of starch produced and the content of urea in a liquid medium in which the elemental phosphorus content was set to 420 ppm.
 図1から、液体培地中の窒素源である尿素に含まれる窒素元素の含有量を、32.7ppm(尿素70.1ppm)、43.6ppm(尿素93.5ppm)、65.5ppm(尿素140.3ppm)、130.9ppm(尿素280.5ppm)と変化させると、窒素元素の含有量が43.6ppmのときに、デンプンの生産量が最大となることがわかる。また、窒素元素の含有量が65.5ppmのときに、デンプンの生産量が2番目に大きくなり、窒素元素の含有量が32.7ppmおよび130.9ppmのときに、デンプンの生産量が減少していることがわかる。 From FIG. 1, the contents of nitrogen elements contained in urea, which is the nitrogen source in the liquid medium, are 32.7 ppm (70.1 ppm of urea), 43.6 ppm (93.5 ppm of urea), 65.5 ppm (140 ppm of urea). 3 ppm) and 130.9 ppm (urea 280.5 ppm), it can be seen that when the nitrogen element content is 43.6 ppm, the amount of starch production is maximized. In addition, when the nitrogen element content is 65.5 ppm, the starch production amount is the second largest, and when the nitrogen element content is 32.7 ppm and 130.9 ppm, the starch production amount decreases. It can be seen that
 [緑藻クラミドモナスの生産量および緑藻クラミドモナス中のデンプンの蓄積量に及ぼす液体培地中の尿素に含まれる窒素元素の含有量の影響]
 図2に、リン元素の含有量が420ppmに設定された液体培地中の尿素の含有量に対する緑藻クラミドモナスの生産量および緑藻クラミドモナス中のデンプンの蓄積量の関係を示す。
[Influence of content of nitrogen element contained in urea in liquid medium on production amount of green alga Chlamydomonas and accumulation of starch in green alga Chlamydomonas]
FIG. 2 shows the relationship between the production amount of green alga Chlamydomonas and the amount of starch accumulated in Chlamydomonas green algae with respect to the content of urea in a liquid medium in which the elemental phosphorus content was set to 420 ppm.
 図2から、液体培地中の窒素源である尿素に含まれる窒素元素の含有量を32.7ppm(尿素70.1ppm)、43.6ppm(尿素93.5ppm)、65.5ppm(尿素140.3ppm)、130.9ppm(尿素280.5ppm)と変化させると、緑藻クラミドモナスの生産量は、窒素元素の含有量が減少するのに伴い、減少していることがわかる。一方で、デンプンの蓄積量は、窒素元素の含有量が減少するのに伴い、増加していることがわかる。 From FIG. 2, the contents of nitrogen elements contained in urea, which is the nitrogen source in the liquid medium, are 32.7 ppm (urea 70.1 ppm), 43.6 ppm (urea 93.5 ppm), 65.5 ppm (urea 140.3 ppm). ), 130.9 ppm (urea 280.5 ppm), the production of the green alga Chlamydomonas decreased as the nitrogen element content decreased. On the other hand, it can be seen that the accumulated amount of starch increases as the nitrogen element content decreases.
 [緑藻クラミドモナスの生産量に及ぼす液体培地中のリン元素の含有量の影響]
 液体培地中のリン酸塩の含有量を変更した以外は、実施例1と同様にして、緑藻クラミドモナスを培養した。
[Effect of elemental phosphorus content in liquid medium on production of green alga Chlamydomonas]
The green alga Chlamydomonas was cultured in the same manner as in Example 1, except that the phosphate content in the liquid medium was changed.
 図3に、液体培地中のリン酸塩の含有量に対する緑藻クラミドモナスの生産量の関係を示す。 Fig. 3 shows the relationship between the production amount of the green alga Chlamydomonas and the phosphate content in the liquid medium.
 図3から、液体培地中のリン酸塩の含有量が2160ppm未満である、すなわち、液体培地中のリン元素の含有量が420ppm未満であると、緑藻クラミドモナスの生産量が低下することがわかる。 From FIG. 3, it can be seen that when the phosphate content in the liquid medium is less than 2160 ppm, that is, when the elemental phosphorus content in the liquid medium is less than 420 ppm, the production of the green alga Chlamydomonas decreases.
 [デンプンの生産量]
 図4に、実施例1、2および比較例1、2のデンプンの生産量を示す。
[Starch production]
FIG. 4 shows the production amounts of starch in Examples 1 and 2 and Comparative Examples 1 and 2.
 図4から、実施例2は、比較例1および比較例2と対比して、デンプンの生産量が多いことがわかる。また、液体培地中の尿素に含まれるリン元素の含有量を1.2倍に調整した実施例1では、デンプンの生産量が最も多いことがわかる。 From FIG. 4, it can be seen that Example 2 produced a large amount of starch compared to Comparative Examples 1 and 2. Moreover, it can be seen that in Example 1 in which the content of elemental phosphorus contained in urea in the liquid medium was adjusted to 1.2 times, the amount of starch produced was the highest.

Claims (6)

  1.  液体培地中で緑藻クラミドモナスを培養して、前記緑藻クラミドモナスにデンプンを蓄積させる工程を含み、
     前記液体培地は、窒素源に含まれる窒素元素の含有量が35ppm以上70ppm以下であり、リン元素の含有量が420ppm以上である、緑藻クラミドモナスの培養方法。
    culturing the green alga Chlamydomonas in a liquid medium to accumulate starch in the green alga Chlamydomonas;
    A method for cultivating green alga Chlamydomonas, wherein the liquid medium contains 35 ppm or more and 70 ppm or less of elemental nitrogen and a content of 420 ppm or more of elemental phosphorus contained in the nitrogen source.
  2.  前記窒素源は、尿素である、請求項1に記載の緑藻クラミドモナスの培養方法。 The method for culturing the green alga Chlamydomonas according to claim 1, wherein the nitrogen source is urea.
  3.  前記リン元素は、リン酸塩に含まれる、請求項1または2に記載の緑藻クラミドモナスの培養方法。 The method for culturing the green alga Chlamydomonas according to claim 1 or 2, wherein the elemental phosphorus is contained in a phosphate.
  4.  前記リン酸塩は、リン酸水素二カリウムおよびリン酸二水素カリウムである、請求項3に記載の緑藻クラミドモナスの培養方法。 The method for cultivating the green alga Chlamydomonas according to claim 3, wherein the phosphates are dipotassium hydrogen phosphate and potassium dihydrogen phosphate.
  5.  前記液体培地は、リン酸水素二カリウムの含有量が1440ppm以上であり、リン酸二水素カリウムの含有量が720ppm以上である、請求項4に記載の緑藻クラミドモナスの培養方法。 The method for cultivating the green alga Chlamydomonas according to claim 4, wherein the liquid medium has a content of dipotassium hydrogen phosphate of 1440 ppm or more and a content of potassium dihydrogen phosphate of 720 ppm or more.
  6.  前記緑藻クラミドモナスは、Honda DREAMO株(受託番号FERM BP-22306)である、請求項1から5のいずれか一項に記載の緑藻クラミドモナスの培養方法。 The method for culturing the green alga Chlamydomonas according to any one of claims 1 to 5, wherein the green alga Chlamydomonas is Honda DREAMO strain (accession number FERM BP-22306).
PCT/JP2022/035883 2021-10-27 2022-09-27 Method for culturing chlamydomonas reinhardtii WO2023074226A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021175538 2021-10-27
JP2021-175538 2021-10-27

Publications (1)

Publication Number Publication Date
WO2023074226A1 true WO2023074226A1 (en) 2023-05-04

Family

ID=86159754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035883 WO2023074226A1 (en) 2021-10-27 2022-09-27 Method for culturing chlamydomonas reinhardtii

Country Status (1)

Country Link
WO (1) WO2023074226A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025552A1 (en) * 2013-08-23 2015-02-26 国立大学法人神戸大学 Method for generating oil/fat component and method for producing higher unsaturated fatty acid
WO2017217116A1 (en) * 2016-06-17 2017-12-21 本田技研工業株式会社 Novel microalga having aggregation ability
JP2019527052A (en) * 2016-06-30 2019-09-26 クーンル アグロシステムズ,インコーポレイテッド Improved heterotrophic production method and bioproducts for microbial biomass

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025552A1 (en) * 2013-08-23 2015-02-26 国立大学法人神戸大学 Method for generating oil/fat component and method for producing higher unsaturated fatty acid
WO2015025553A1 (en) * 2013-08-23 2015-02-26 国立大学法人神戸大学 Method for generating oil/fat component, method for producing higher unsaturated fatty acid, and chlamydomonas species strain jsc4
WO2017217116A1 (en) * 2016-06-17 2017-12-21 本田技研工業株式会社 Novel microalga having aggregation ability
JP2019527052A (en) * 2016-06-30 2019-09-26 クーンル アグロシステムズ,インコーポレイテッド Improved heterotrophic production method and bioproducts for microbial biomass

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BARRETT MICHAEL R., KOCH ARTHUR R.: "Effects of Ammonium Sulfate and Urea on the Growth of Chlorophycean Algae From Rice Fields", JOURNAL OF ENVIRONMENTAL QUALITY, AMERICAN SOCIETY OF AGRONOMY, CROP SCIENCE SOCIETY OF AMERICA AND SOIL SCIENCE SOCIETY OF AMERICA, US, vol. 11, no. 2, 1 April 1982 (1982-04-01), US , pages 187 - 191, XP093060961, ISSN: 0047-2425, DOI: 10.2134/jeq1982.00472425001100020009x *
BATISTA ALINE D.; ROSA RINAMARA M.; MACHADO MARIANA; MAGALHãES ALAN S.; SHALAGUTI BáRBARA A.; GOMES PRISCILLA F.; COVELL: "Increased urea availability promotes adjustments in C/N metabolism and lipid content without impacting growth inChlamydomonas reinhardtii", METABOLOMICS, SPRINGER US, NEW YORK, vol. 15, no. 3, 28 February 2019 (2019-02-28), New York, pages 1 - 14, XP036762665, ISSN: 1573-3882, DOI: 10.1007/s11306-019-1496-3 *
GOPAL NIKHIL, SUDHAKAR KUMARASWAMY: "Ultraviolet modification of Chlamydomonas reinhardtii for carbon capture", RESEARCH AND REPORTS IN BIOLOGY, vol. 7, 1 April 2016 (2016-04-01), pages 41 - 46, XP093060955, DOI: 10.2147/RRB.S98536 *
YANG LEI, CHEN JUN, QIN SHAN, ZENG MIN, JIANG YONGGUANG, HU LANG, XIAO PENG, HAO WENLONG, HU ZHANGLI, LEI ANPING, WANG JIANGXIN: "Growth and lipid accumulation by different nutrients in the microalga Chlamydomonas reinhardtii", BIOTECHNOLOGY FOR BIOFUELS, vol. 11, no. 1, 1 December 2018 (2018-12-01), pages 40, XP093060960, DOI: 10.1186/s13068-018-1041-z *
YU QIAN, HE JIAYI, ZHAO QIANQIAN, WANG XIUFENG, ZHI YANNA, LI XIAONAN, LI XIANJUN, LI LONGJIAN, GE BAOSHENG: "Regulation of nitrogen source for enhanced photobiological H2 production by co-culture of Chlamydomonas reinhardtii and Mesorhizobium sangaii", ALGAL RESEARCH, ELSEVIER BV, NL, vol. 58, 1 October 2021 (2021-10-01), NL , pages 102422, XP093060962, ISSN: 2211-9264, DOI: 10.1016/j.algal.2021.102422 *

Similar Documents

Publication Publication Date Title
Xie et al. Biodiesel production with the simultaneous removal of nitrogen, phosphorus and COD in microalgal-bacterial communities for the treatment of anaerobic digestion effluent in photobioreactors
Park et al. Wastewater treatment high rate algal ponds for biofuel production
Ji et al. Effect of food wastewater on biomass production by a green microalga Scenedesmus obliquus for bioenergy generation
CN110656058B (en) Heterotrophic nitrification-aerobic denitrification pseudomonas strain, seed liquid, and preparation method and application thereof
CN102746992B (en) Method for culturing chlorella by heterotrophism with sludge hydrolysate
CN110655199A (en) Method for treating ammonia nitrogen wastewater by using heterotrophic nitrification-aerobic denitrification pseudomonas strain
JPWO2017217116A1 (en) New microalgae with aggregation ability
CN113174345A (en) Heterotrophic nitrification-aerobic denitrification strain for efficient denitrification and application thereof
CN109576314B (en) Method for preparing microalgae grease through mixed culture
CN109180251A (en) A kind of method of aerobic compost
CN106495893B (en) Rice cultivation method beneficial to carbon sequestration and emission reduction by using biochar
CN110627213A (en) Method for efficiently treating high-ammonia-nitrogen wastewater by microalgae photo-fermentation method
CN102746991B (en) Method for carrying out heterotrophic culture on chlorella with acid-producing wastewater
CN114480209A (en) Production process for producing autotrophic denitrifying bacteria agent through fermentation
CN114410695A (en) Hydroxyapatite, preparation method thereof and application thereof in hydrogen production by dark fermentation
WO2023074226A1 (en) Method for culturing chlamydomonas reinhardtii
CN109593015A (en) Utilize the water paddy soil modifying agent and preparation method thereof of solid waste preparation
Choi et al. Advances in microalgal biomass/bioenergy production with agricultural by-products: Analysis with various growth rate models
Dwivedi et al. Valuable product from water hyacinth–review paper
CN105441359B (en) One bacillus licheniformis and its application
CN114456942B (en) Chain belt algae for treating high-concentration molasses alcohol wastewater and application thereof
Onyancha et al. Enhancing Low-carbon Wastewaters with Flue Gas for the Optimal Cultivation of Desmodesmus Multivariabili
CN110885755B (en) Method for mixedly culturing and culturing chlorella by utilizing wheat starch processing wastewater
JPS5860992A (en) Preparation of hydrogen from green alga utilizing light and darkness cycle
CN112795485B (en) Method for improving oil content of microalgae

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886558

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE