WO2023074013A1 - Method and system for photodecomposition of carbon dioxide - Google Patents

Method and system for photodecomposition of carbon dioxide Download PDF

Info

Publication number
WO2023074013A1
WO2023074013A1 PCT/JP2022/009946 JP2022009946W WO2023074013A1 WO 2023074013 A1 WO2023074013 A1 WO 2023074013A1 JP 2022009946 W JP2022009946 W JP 2022009946W WO 2023074013 A1 WO2023074013 A1 WO 2023074013A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
carbon dioxide
processing chamber
photolysis
water
Prior art date
Application number
PCT/JP2022/009946
Other languages
French (fr)
Japanese (ja)
Inventor
優一 大塚
貴紀 鮫島
章弘 島本
謙介 中村
良徳 相浦
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Publication of WO2023074013A1 publication Critical patent/WO2023074013A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/28Selection of materials for use as drying agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • C01B32/55Solidifying

Definitions

  • the present invention relates to a carbon dioxide photodecomposition method and a photodecomposition system.
  • CO 2 carbon dioxide
  • CO2 carbon monoxide
  • Patent Document 1 a gas containing CO2 is irradiated with excimer light emitted from a light source using a dielectric barrier discharge, thereby photolyzing CO2 into carbon monoxide (hereinafter, "CO"). ) and reacting this CO with sodium hydroxide to immobilize it on sodium formate.
  • CO carbon monoxide
  • the present invention provides a CO2 photolysis method and photolysis system that can decompose more CO2 with less input energy.
  • the method for photodegradation of CO2 to solve the above problems is (1) a method comprising the steps of reducing water from a gas containing CO2 and water, and irradiating the water-reduced gas with excimer light; (2) A method of irradiating a gas containing CO 2 and 5% or more and 25% or less oxygen (hereinafter sometimes referred to as “O 2 ”) with excimer light, and (3) CO 2 and 0.4% or more and 4.0% or less hydrogen (hereinafter sometimes referred to as “H 2 ”), a method of irradiating excimer light to a gas, includes at least one method among
  • the details of the method (1) including the step of reducing water from the gas containing CO 2 and water and the step of irradiating the water-reduced gas with excimer light will be described later, but the present inventors It has been found that when water is included in the photolytic gas, the water interferes with the photolysis of CO2 . Therefore, they devised a way to reduce the amount of water in the gas before performing photolysis. This increases the photodegradation efficiency of CO2 .
  • the method of irradiating excimer light to the gas containing CO2 and 5% or more and 25% or less of O2 in (2) above will be described in detail later, but the excimer light emits a large amount of O2 .
  • the decomposition increases O( 1 D), which is atomic oxygen in an excited state.
  • O( 1 D) reacts with CO 2 to increase the production rate of CO. That is, the photodecomposition efficiency of CO2 is increased.
  • the gas obtained by reducing water from the gas containing CO 2 and water may contain 5% or more and 25% or less of O 2 .
  • the value of the oxygen concentration of 25% is a value close to the oxygen concentration in the air, but the gas to be photodecomposed may have a composition ratio close to that of the air in the atmosphere. However, gases containing more CO 2 than atmospheric air are more efficient at photodegradation.
  • the CO 2 concentration of the photodecomposed gas is, for example, preferably 1% or more, more preferably 5% or more, and even more preferably
  • H 2 is CO combines with OH in preference to combining with OH originating from water. Therefore, the reverse reaction of returning to CO2 due to the combination of CO and OH can be suppressed. Suppression of the reverse reaction leads to improved photodecomposition efficiency of CO2 .
  • the water in the “water originated OH” is contained in the supplied CO2 gas itself. Furthermore, even if the supplied CO2 gas itself does not contain water, water vapor contained in the atmosphere can enter from the outside and mix with the CO2 gas, resulting in unintentionally trace amounts of water. ( details below). Therefore, even if the supplied CO 2 gas itself does not contain water, H 2 may substantially contribute to improving the photolysis efficiency of CO 2 by suppressing the reverse reaction.
  • a water-reduced gas containing 0.4% or more and 4.0% or less H2 after the water-reducing step. may be photolyzed with excimer light. Also, by setting the upper limit of the hydrogen concentration to 4.0%, the risk of explosion due to the oxidation reaction of hydrogen can be reduced.
  • the temperature of the gas in the atmosphere irradiated with the excimer light may be 400K or lower.
  • O 3 the production rate of ozone
  • the thermal decomposition of O 3 is suppressed.
  • the generation of O( 3 P) and CO recombine and CO returns to CO 2 is suppressed.
  • Suppression of the reverse reaction leads to improved photodecomposition efficiency of CO2 .
  • the main wavelength of the excimer light may be 172 nm or around 172 nm. Since CO 2 molecules absorb light with a dominant wavelength around 172 nm well, excimer light with a dominant wavelength around 172 nm can efficiently decompose CO 2 . Also, excimer light whose main wavelength is around 172 nm is obtained by lighting a xenon excimer lamp. Since the xenon excimer lamp is a light source that can be stably mass-produced, light with a dominant wavelength near 172 nm is highly cost-effective.
  • the term “main wavelength” means that when a wavelength region Z( ⁇ ) of ⁇ 10 nm for a certain wavelength ⁇ is defined on the emission spectrum, the total integrated intensity in the emission spectrum is 40% or more. indicates the wavelength ⁇ i in the wavelength region Z( ⁇ i) indicating the integrated intensity of .
  • a light source that emits light of the "principal wavelength” such as a xenon excimer lamp, has an extremely narrow half-value width and exhibits high light intensity only at a specific wavelength, usually the light intensity is relatively The highest wavelength (the dominant peak wavelength) may be considered the dominant wavelength.
  • the concentration of water contained in the gas after reducing the water may be 100 ppm or less.
  • the amount of water contained in the gas may be reduced by allowing zeolite to adsorb the water.
  • the excimer light may be irradiated while sending the gas to the space irradiated with the excimer light. This allows a large amount of CO2 to be photolyzed.
  • a CO 2 photolysis system for solving the above problems is (4) a device for reducing water from a gas containing carbon dioxide and water prior to photolysis; (5) a supply source for supplying oxygen to a gas containing carbon dioxide before photolysis so that the oxygen concentration is 5% or more and 25% or less; (6) a supply source for supplying hydrogen to a gas containing carbon dioxide before photolysis so that the hydrogen concentration is 0.4% or more and 4.0% or less; At least one of
  • the CO 2 photolysis system comprising (4) above is a first processing chamber including an inlet for introducing the gas containing carbon dioxide and water, a water removal device for removing water from the gas, and an outlet for discharging the gas from the water removal device; a second processing chamber connected to the discharge port of the first processing chamber and into which the gas discharged from the discharge port is introduced; an excimer lamp that irradiates the gas in the second processing chamber with excimer light, In the second processing chamber, the excimer light photolyzes the carbon dioxide contained in the gas present therein.
  • the CO2 photolysis system further comprises, upstream from the second processing chamber, a hydrogen source for supplying hydrogen to the gas; a hydrogen regulating valve that adjusts the supply amount of the hydrogen; and a control unit that controls the hydrogen adjustment valve so that the hydrogen concentration in the gas is 0.4% or more and 4.0% or less. That is, the CO 2 photolysis system provided with (4) above may be combined with the elements (6) above.
  • the CO2 photolysis system further comprises, upstream from the second processing chamber, an oxygen source for supplying oxygen to the gas; an oxygen regulating valve that adjusts the amount of oxygen supplied; A control unit that controls the oxygen control valve so that the oxygen concentration in the gas is 5% or more and 25% or less. That is, the CO 2 photolysis system provided with (4) may be combined with the elements of (5) above.
  • the CO 2 photolysis system comprising (5) above is an inlet for introducing the gas containing carbon dioxide; an excimer lamp for emitting excimer light; a processing chamber connected to the inlet, wherein the excimer light photolyzes the carbon dioxide present therein; an oxygen supply source upstream from the processing chamber for supplying oxygen to the gas; an oxygen regulating valve that adjusts the amount of oxygen supplied; and a control unit that controls the oxygen regulating valve so that the oxygen concentration in the gas is 5% or more and 25% or less.
  • the CO 2 photolysis system comprising (6) above is an inlet for introducing the gas containing carbon dioxide; an excimer lamp for emitting excimer light; a processing chamber connected to the inlet, wherein the excimer light photolyzes the carbon dioxide present therein; a hydrogen supply source upstream from the processing chamber for supplying hydrogen to the gas; a hydrogen regulating valve that adjusts the supply amount of the hydrogen; a control unit that controls the hydrogen adjustment valve so that the hydrogen concentration in the gas is 0.4% or more and 4.0% or less.
  • the excimer lamp may be arranged inside the processing chamber or the second processing chamber that photolyzes the carbon dioxide.
  • the photolysis system is arranged upstream of the processing chamber or the second processing chamber that photolyzes the carbon dioxide, and a cooler that cools the gas; a temperature sensor that measures the temperature of the gas cooled by the cooler; and a control unit that controls the cooler so that the measured value of the temperature sensor is 400K or less.
  • the luminous gas enclosed in the arc tube may be xenon gas.
  • the water removal device may include zeolite.
  • FIG. 1 shows a first embodiment of a carbon dioxide photolysis system
  • FIG. 4 is a graph showing the relationship between water content in gas and CO production rate.
  • 4 is a graph showing the relationship between hydrogen concentration in gas and CO production rate.
  • 4 is a graph showing the relationship between gas temperature and CO production rate.
  • Fig. 3 is a modified example of the second processing chamber of the photolysis system;
  • Fig. 2 shows a second embodiment of a carbon dioxide photolysis system;
  • FIG. 13 illustrates a third embodiment of a carbon dioxide photodecomposition system; 4 is a graph showing the relationship between oxygen concentration in gas and CO production rate.
  • FIG. 2 is a flow diagram from CO2 capture to immobilization.
  • FIG. 1 shows a first embodiment of a CO 2 photolysis system.
  • the photolysis system 10 has a first processing chamber 1 and a second processing chamber 2 connected downstream of the first processing chamber 1 .
  • This photodecomposition system 10 has a function of decomposing carbon dioxide contained in the gas G1.
  • the first processing chamber 1 is a processing chamber for reducing the amount of water contained in the gas G1.
  • Gas G1 is a gas containing CO2 and water.
  • the first processing chamber 1 includes an inlet 4 i for introducing gas G ⁇ b>1 , a water removal device 3 , and an outlet 4 o for discharging the gas from the water removal device 3 .
  • the water removal device 3 removes at least part of the water contained in the gas G1. This makes the gas G1 a dry gas with a reduced amount of water in it.
  • FIG. 1 different symbols are used to distinguish between the gas treated by the water removal device 3 and the gas before treatment.
  • gas G1 the gas before being treated by the water removal device 3
  • gas G2 the gas after being treated by the water removal device 3
  • gas G3 the gas after being processed in the second processing chamber 2
  • a specific aspect of the water removal device 3 will be described later.
  • the water to be removed is a concept that includes gaseous and liquid mist water.
  • the gas G1 before being treated by the water removal device 3 may contain, for example, liquid water in the form of mist in addition to water vapor.
  • the gas G2 after being treated by the dewatering device 3 contains only water vapor or does not contain water vapor and liquid water at all.
  • the content of carbon dioxide in the gas G1 is not particularly limited, but is preferably 50% or more, more preferably 70% or more, and even more preferably 80% or more.
  • “vol%” is intended when the ratio of the fluid is displayed using "%”.
  • the gas contained in the gas G1 other than carbon dioxide is preferably inert to the light with which the gas is irradiated, except for the gas of the same kind as the additional gas G4 or the additional gas G5, which will be described later.
  • nitrogen gas can be used as the inert gas.
  • the second processing chamber 2 is connected to the discharge port 4 o of the first processing chamber 1 through a connecting pipe 7 . That is, the second processing chamber 2 is connected to the rear stage of the first processing chamber 1 .
  • the second processing chamber 2 is supplied with a gas G2 obtained by reducing water in the gas G1 in the first processing chamber 1 .
  • the second processing chamber 2 is a processing chamber for photolyzing the gas G2.
  • the excimer lamp 5 is arranged inside the second processing chamber 2 , and when the excimer lamp 5 is turned on, the gas G2 in the second processing chamber 2 is irradiated with the excimer light L1. As a result, the CO 2 contained in the gas G2 is photolyzed to produce CO. Details of the excimer lamp 5 will be described later.
  • the treated gas G3 containing CO produced in the second processing chamber 2 is discharged from the outlet 6 of the second processing chamber 2.
  • Photolysis can be continuously performed by irradiating the excimer light L1 while sending the gas G2 to the space (that is, the second processing chamber 2) irradiated with the excimer light L1.
  • a supply pipe 8 for supplying additional gas G4 is connected to a connection pipe 7 connecting the first processing chamber 1 and the second processing chamber 2 .
  • a supply source 11 of the additional gas G4 is connected to the supply pipe 8 .
  • a flow valve 12 and a flow meter are arranged in the middle of the supply pipe 8 .
  • the flow valve 12 is controlled by the controller 14 .
  • Additional gas G4 will be described later. Since the additional gas G4 may be supplied to the upstream of the second processing chamber 2, the additional gas G4 may be supplied not only between the first processing chamber 1 and the second processing chamber 2 but also between the first processing chamber 1 and the upstream of the first processing chamber 1. may be supplied to
  • CO generation mechanism The photolysis system and photolysis method of the present invention photolyzes CO2 with excimer light to produce CO.
  • the mechanism of generating CO from CO2 by photolysis will be described.
  • Equations (1) and (2) express that excimer light h ⁇ directly produces CO from CO 2 .
  • O( 3 P), generated in equation (1), represents atomic oxygen in the ground state.
  • O( 1 D) produced in equation (2) represents atomic oxygen in an excited state.
  • Equation (3) expresses that the excimer light h ⁇ indirectly produces CO from CO2 .
  • the ground-state atomic oxygen O( 3 P) produced by formula (1) may undergo the following reactions.
  • CO+O( 3 P)+M ⁇ CO 2 +M (4) Equation (4) indicates that even if CO is generated by decomposing CO 2 according to Equation (1), a reverse reaction occurs in which CO combines with O( 3 P) to form CO 2 .
  • M indicates the third body.
  • O( 1 D) and O( 3 P) are generated by the formulas (1) and (2), as well as generated from the O 2 generated by the formula (3), or It may also be produced during the HO X cycle chain reaction.
  • FIG. 2 is a graph obtained by simulation of the relationship between the content of water in gas containing CO 2 and the production rate of CO produced by photolysis.
  • the CO production rate is the ratio of the amount of CO in the total mixed gas, and is intended as "vol%".
  • the simulation conditions were set as follows.
  • Gas G2 was a gas composed of CO 2 and water vapor.
  • the gas temperature was 400K.
  • photolysis the use of a xenon excimer lamp that emits excimer light with a peak wavelength of 172 nm was assumed.
  • the average distance between the xenon excimer lamp and the gas to be photolyzed and the flow rate of gas G2 were assumed to have constant values during the simulation.
  • OH represented in formula (5) originates from water (sometimes referred to as “H 2 O”). However, it is considered that most of the OH represented in the formula (5) is OH generated by a chain reaction rather than simply H 2 O ⁇ OH+H. OH produced by the chain reaction is typically thought to be produced by the following four reaction formulae. O 3 +H ⁇ OH + O 2 (6) HO 2 +H ⁇ OH + OH (7) HO2 + O3- >OH+ O2 + O2 (8) H 2 O 2 +H ⁇ H 2 O + OH (9)
  • the water removal device 3 is used to reduce the water from the gas G1 to generate the gas G2 before the photolysis of CO2 .
  • the water removal device 3 uses synthetic zeolite with high water absorption performance (for example, Union Carbide's "Molecular Sieve") to adsorb and reduce water.
  • the type of zeolite is not particularly limited.
  • a water absorbing material other than zeolite for example, silica gel, calcium chloride, MOF (metal organic framework), etc.
  • the gas G1 contains a mist of water
  • the water may be reduced by using a filter that allows water vapor to pass but blocks the passage of the mist.
  • the water removal device 3 may combine a plurality of water removal mechanisms described above.
  • the concentration of water contained in the gas G2 after reducing the water is preferably 100 ppm or less.
  • the photodegradation efficiency is high. Note that the concentration of water contained in the gas G2 can be detected by a moisture meter.
  • the photolysis system 10 of this embodiment supplies hydrogen gas as the additional gas G4.
  • Source 11 is a source of hydrogen gas. The significance of adding hydrogen gas to gas G2 will be described with reference to FIG.
  • FIG. 3 is a graph obtained by simulation of the relationship between the concentration of hydrogen in gas and the production rate of CO produced by photolysis.
  • the CO production rate is the ratio of the amount of CO in the entire mixed gas, and is intended to be "vol%".
  • the simulation conditions were set as follows.
  • the gas was a mixed gas containing N 2 and CO 2 , the ratio of CO 2 in the total gas being 4%, and water vapor of 500 ppm.
  • the temperature of the mixed gas was set at 500K.
  • a xenon excimer lamp that emits excimer light with a peak wavelength of 172 nm was used for photolysis, and it was assumed that the gas was irradiated with the excimer light at a light intensity of 30 mW/cm 2 for 1000 seconds.
  • the average distance between the xenon excimer lamp and the gas to be photolyzed and the flow rate of gas G2 were assumed to have constant values during the simulation.
  • the gas should contain 0.4% or more of hydrogen.
  • the lower limit of the explosion limit of hydrogen is 4.0%, it is preferable to set the hydrogen concentration to 4.0% or less in order to reduce the risk of explosion.
  • the concentration of hydrogen contained in the gas G2 can be detected by, for example, a commercially available portable hydrogen concentration meter.
  • the photolysis system 10 of this embodiment has a gas cooler 9 and a temperature sensor 13 .
  • the gas cooler 9 is provided in the middle of the connecting pipe 7 and cools the gas G2 passing through the connecting pipe 7 .
  • the configuration of the gas cooler 9 is not particularly limited.
  • the gas cooler 9 is composed of, for example, a heat exchanger that air-cools the gas by flowing the gas through piping built in a large number of fins.
  • a temperature sensor 13 is attached to the second processing chamber 2 and measures the temperature of the gas G2 inside the second processing chamber 2 .
  • the controller 14 is electrically connected to the temperature sensor 13 and the gas cooler 9 respectively.
  • the controller 14 cools the gas G ⁇ b>2 with the gas cooler 9 according to the measurement result of the temperature sensor 13 .
  • the temperature sensor 13 measures the temperature in the second processing chamber 2, but it may also measure the temperature of the gas G2 in the connecting pipe 7, or the gas in the upstream of the water removal device 3. The temperature of G1 may be measured.
  • the gas after mixing with the additional gas G4 may be cooled by pre-cooling the additional gas G4 before mixing with the gas G2.
  • FIG. 4 is a graph obtained by simulation of the relationship between the temperature of gas containing CO 2 and the ratio of the amount of CO produced, that is, the CO production rate.
  • the CO production rate is the ratio of the amount of CO in the entire mixed gas, and is intended as "vol%".
  • the simulation conditions were set as follows. Gas G2 was 100% CO2 gas and was taken as a gas without water and hydrogen. For photolysis, a xenon excimer lamp that emits excimer light with a wavelength of 172 nm was used, and it was assumed that the gas was irradiated with the excimer light at a light intensity of 30 mW/cm 2 for 1000 seconds. At 300 K, which is near room temperature, the CO production rate reaches 69%.
  • the CO production rate decreases as the temperature of the gas increases.
  • the CO yield is 57%. It was found that at a gas temperature of 500K, the CO yield was below 10%. From FIG. 4, it was found that if the gas temperature is 400 K or less, the CO production rate exceeding 50% can be maintained.
  • Equations (1) and (2) are shown below.
  • O3 is less likely to be produced.
  • O3 is thermally decomposed into O2 and O( 3P ). Since O( 3 P) consumes CO and increases CO 2 as shown in the formula (4), it is thought that the decomposition rate of CO 2 decreases. Therefore, the lower the temperature of the gas, the better.
  • the excimer lamp 5 (see FIG. 1) is a xenon excimer lamp that emits excimer light with a main wavelength of 172 nm. Light with a dominant wavelength of 172 nm can dissociate the C ⁇ O bonds of CO 2 molecules.
  • a xenon excimer lamp has xenon gas as a light emission gas inside an arc tube. The xenon gas is excited by a dielectric barrier discharge. Then, when the excited state xenon gas returns to the ground state xenon gas, excimer light L1 having a main wavelength of 172 nm is emitted.
  • the power supplied to the excimer lamp 5 is controlled by a control unit 14, and the control unit 14 controls lighting and extinguishing of the excimer lamp.
  • [Modification] 2 shows a variant of the second processing chamber 2 of the photolysis system.
  • FIG. 5 is an enlarged view of the second processing chamber 2 of the photolysis system.
  • two second processing chambers (2a, 2b) are arranged outside the excimer lamp 5 so as to sandwich the excimer lamp 5 therebetween.
  • the excimer light emitted from the excimer lamp 5 is irradiated toward the interior of each of the second processing chambers (2a, 2b) to process the gas G2 flowing inside the second processing chambers (2a, 2b).
  • a gas for example, nitrogen
  • FIG. By introducing the gas for cooling the excimer lamp 5, the excimer lamp 5 is cooled and the temperature rise of the gas G2 can be suppressed.
  • FIG. 6 is a diagram showing a second embodiment of a CO2 photolysis system. It should be noted that in the following description, descriptions of parts common to the above-described first embodiment will be omitted as appropriate.
  • the photolysis system 20 of the present embodiment differs from the photolysis system 10 of the first embodiment in that the first processing chamber 1 having the water removal device 3 is not provided.
  • the photolysis system 20 is common to the photolysis system 10 of the first embodiment in that it includes a second processing chamber 2 for photolysis in which the excimer lamp 5 is arranged.
  • the photolysis system 20 of this embodiment includes a connection pipe 7 that connects the introduction port 4i of the gas G1 and the inlet of the second processing chamber 2 for photolysis.
  • the connection pipe 7 is connected to a supply pipe 8 for supplying an additional gas G4 (that is, hydrogen) to the gas G1, and the supply pipe 8 is connected to a supply source 11 of the additional gas G4.
  • the gas G1 itself supplied to the inlet 4i contains water.
  • the gas G1 in the second processing chamber 2 contains a small amount of water (for example, 10 ppm or less) due to infiltration of atmospheric water vapor. .
  • a flow valve 12 and a flow meter are arranged in the middle of the supply pipe 8 .
  • the flow valve 12 is controlled by the controller 14 .
  • This embodiment shows that the photodecomposition efficiency of CO 2 increases with the addition of hydrogen gas even without a water removal device.
  • FIG. 7 shows a third embodiment of a CO2 photolysis system. It should be noted that in the following description, descriptions of portions common to the above-described first embodiment or second embodiment will be omitted as appropriate.
  • the photolysis system 30 of the present embodiment does not include the first processing chamber 1 having the water removal device 3, and the photolysis system 20 of the second embodiment , in that hydrogen gas is not added.
  • the photolysis system 30 is similar to the photolysis system 10 of the first embodiment in that it includes a second processing chamber 2 for photolysis in which the excimer lamp 5 is arranged.
  • the photolysis system 30 of this embodiment includes a connection pipe 7 that connects the introduction port 4i of the gas G1 and the inlet of the second processing chamber 2 for photolysis.
  • a supply pipe 28 for supplying an additional gas G5 to the gas G1 is connected to the connection pipe 7, and the supply pipe 28 is connected to a supply source 21 of the additional gas G5.
  • a flow valve 22 and a flow meter are arranged in the middle of the supply pipe 28 . The flow valve 22 is controlled by the controller 14 .
  • the additional gas G5 is oxygen gas.
  • the supply source 21 is an oxygen gas supply source.
  • the significance of adding oxygen gas to gas G1 will be described with reference to FIG.
  • FIG. 8 is a graph obtained by simulation of the relationship between the oxygen concentration in gas and the production rate of CO produced by photolysis.
  • the simulation conditions were set as follows.
  • the gas was CO 2 gas with 500 ppm water vapor and was taken as a hydrogen-free gas.
  • the gas temperature was 300K.
  • a case was assumed in which a xenon excimer lamp that emits excimer light with a peak wavelength of 172 nm was used and the gas was irradiated with the excimer light at a light intensity of 30 mW/cm 2 for 1000 seconds.
  • the average distance between the xenon excimer lamp and the gas to be photolyzed and the flow rate of gas G2 were assumed to have constant values during the simulation.
  • Equation (3) is shown again below.
  • the CO production rate when irradiated with ultraviolet rays increases compared to when the gas does not contain oxygen. Therefore, it is preferable to add oxygen gas in order to increase the CO production rate by irradiating the gas with ultraviolet rays.
  • CO production increases with increasing oxygen concentration until the oxygen concentration reaches 25%.
  • Air may be used as the additional gas G5.
  • the concentration of oxygen contained in the gas can be detected by, for example, a commercially available portable oximeter.
  • the photolysis system 10 of the first embodiment may not include at least one of the supply source 11 for supplying hydrogen and the gas cooler 9 .
  • the photolysis system 20 of the second embodiment may not have the gas cooler 9 .
  • the photolysis system 30 of the third embodiment may not have the gas cooler 9 or may additionally have the water removal device 3 . Any one of the following: reducing water from a gas containing carbon dioxide and water, adding hydrogen to the gas, adding oxygen to the gas, and cooling the temperature of the gas Decomposition efficiency is improved.
  • FIG. 9 is a flow diagram from CO 2 capture to immobilization. An example of a CO 2 fixation method to which the above-described CO 2 photolysis system 10 can be applied will be described with reference to FIG. 9 .
  • step S1 a fossil fuel combustion engine (eg, a thermal power plant) emits CO2 .
  • a fossil fuel combustion engine eg, a thermal power plant
  • step S2 the high-concentration CO2 generator converts the emitted low-concentration CO2 into high-concentration CO2 .
  • CO 2 can be efficiently decomposed in the post-process. It is known that high concentrations of CO2 can be achieved with adsorbents and physical membranes. Moreover, as described above, it may be left in order to improve the decomposition efficiency of CO 2 in the post-process.
  • the step S2 for enriching CO2 is not a mandatory step.
  • step S3 the high-concentration CO 2 is guided to the photolysis system (10, 20, 30) described above as the gas G1 to be treated, and the CO 2 is decomposed in the system (10, 20, 30), produces CO.
  • the treated gas G3 after photolysis includes CO produced, residual CO 2 and O 2 , and H 2 or O 2 .
  • the treated gas G3 is separated to remove carbon monoxide.
  • a method for separating carbon monoxide for example, a method of adsorbing carbon monoxide to a porous material can be used.
  • the gas from which carbon monoxide has been removed is again led to the high-concentration CO 2 generator (step S2), and the same process is repeated thereafter.
  • step S5 CO is led to a liquid containing sodium hydroxide.
  • the CO is then reacted with NaOH to produce sodium formate.
  • Formic acid produced from sodium formate is an organic substance with a very simple structure, and is used as a raw material in synthetic organic chemistry as well as a hydrogen source in fuel cells.
  • first treatment chamber 2 first treatment chamber 2, 2a, 2b: second treatment chamber or treatment chamber (for photolysis) 3: dewatering device 4i: (of first treatment chamber or treatment chamber for photolysis)
  • Inlet 4o Outlet 5 (of first treatment chamber): Excimer lamp 6: Outlet 7 (of treatment chamber for photolysis or second treatment chamber):
  • Connection pipe 8 Supply pipe 9: Gas cooler 10: photolysis system 11: supply source 12: flow valve 13: temperature sensor 14: controller 20: photolysis system 21: supply source 22: flow valve 28: supply pipe 30: photolysis system G1, G2, G3: gas G4, G5: additional gas L1: excimer light

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Drying Of Gases (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Provided is a method for photodecomposition of carbon dioxide, whereby it becomes possible to decompose a larger amount of carbon dioxide with a smaller input energy. The method for photodecomposition of carbon dioxide includes at least one method selected from a method including a step for reducing water from a gas containing the carbon dioxide and water and a step for irradiating the water-reduced gas with excimer light, a method including irradiating a gas containing the carbon dioxide and 5% to 20% inclusive of oxygen with excimer light, and a method including irradiating a gas containing the carbon dioxide and 0.4% to 4.0% inclusive of hydrogen with excimer light.

Description

二酸化炭素の光分解方法及び光分解システムCarbon dioxide photodecomposition method and photodecomposition system
 この発明は、二酸化炭素の光分解方法及び光分解システムに関する。 The present invention relates to a carbon dioxide photodecomposition method and a photodecomposition system.
 近年、石油や石炭など化石燃料の燃焼量の増加に伴い、大気中における二酸化炭素(以下、「CO」ということがある。)の濃度が上昇し、地球温暖化が進行している。そのため、特に、工業化の進んだ国においては、COの排出量の削減が喫緊の課題である。 In recent years, as the amount of fossil fuels such as petroleum and coal burned has increased, the concentration of carbon dioxide (hereinafter sometimes referred to as “CO 2 ”) in the atmosphere has increased, and global warming is progressing. Therefore, the reduction of CO2 emissions is an urgent issue, especially in industrialized countries.
 COの排出量を削減する方法のひとつが、COを有機物に変換し、化学的に固定化する方法である。下記特許文献1には、誘電体バリア放電を利用した光源から放射されるエキシマ光を、COを含むガスに照射することで、COを光分解して一酸化炭素(以下、「CO」ということがある。)に変化させ、このCOを水酸化ナトリウムと反応させてギ酸ナトリウムに固定化する方法が開示されている。 One method of reducing CO2 emissions is to convert CO2 into organic matter and chemically fix it. In Patent Document 1 below, a gas containing CO2 is irradiated with excimer light emitted from a light source using a dielectric barrier discharge, thereby photolyzing CO2 into carbon monoxide (hereinafter, "CO"). ) and reacting this CO with sodium hydroxide to immobilize it on sodium formate.
特開2021-011407号公報Japanese Patent Application Laid-Open No. 2021-011407
 エキシマ光をCOに照射しCOを光分解する技術において、重要な要素は、COの光分解効率である。COの光分解効率が向上すると、少ない投入エネルギーでより多くのCOを分解できる。 In the technology of irradiating excimer light to CO2 to photodecompose CO2 , an important factor is the photodecomposition efficiency of CO2 . As the photodegradation efficiency of CO2 improves, more CO2 can be decomposed with less input energy.
 本発明は、少ない投入エネルギーでより多くのCOを分解できる、COの光分解方法及び光分解システムを提供する。 The present invention provides a CO2 photolysis method and photolysis system that can decompose more CO2 with less input energy.
 上記課題を解決するためのCOの光分解方法は、
(1)COと水を含むガスから水を減らす工程と、水を減らしたガスに、エキシマ光を照射する工程とを含む方法、
(2)COと、5%以上、かつ、25%以下の酸素(以下、「O」ということがある。)と、を含むガスに、エキシマ光を照射する方法、及び
(3)COと、0.4%以上、かつ、4.0%以下の水素(以下、「H」ということがある。)と、を含むガスに、エキシマ光を照射する方法、
のうち、少なくともいずれか一つの方法を含む。
The method for photodegradation of CO2 to solve the above problems is
(1) a method comprising the steps of reducing water from a gas containing CO2 and water, and irradiating the water-reduced gas with excimer light;
(2) A method of irradiating a gas containing CO 2 and 5% or more and 25% or less oxygen (hereinafter sometimes referred to as “O 2 ”) with excimer light, and (3) CO 2 and 0.4% or more and 4.0% or less hydrogen (hereinafter sometimes referred to as “H 2 ”), a method of irradiating excimer light to a gas,
includes at least one method among
 上記(1)の、COと水を含むガスから水を減らす工程と、水を減らしたガスにエキシマ光を照射する工程とを含む方法について、詳細は後述するが、本発明者らは、光分解するガスに水が含まれていると、水がCOの光分解を妨げることを突き止めた。そこで、光分解を行う前に、ガスに含まれる水の量を減らすことを編み出した。これにより、COの光分解効率が高まる。 The details of the method (1) including the step of reducing water from the gas containing CO 2 and water and the step of irradiating the water-reduced gas with excimer light will be described later, but the present inventors It has been found that when water is included in the photolytic gas, the water interferes with the photolysis of CO2 . Therefore, they devised a way to reduce the amount of water in the gas before performing photolysis. This increases the photodegradation efficiency of CO2 .
 上記(2)のCOと、5%以上、かつ、25%以下のOとを含むガスに、エキシマ光を照射する方法について、詳細は後述するが、エキシマ光が多量のOを光分解することにより、励起状態の原子状酸素であるO(D)を増加させる。O(D)がCOと反応してCOの生成率が増加する。つまり、COの光分解効率が高まる。また、COと水を含むガスから水を減らしたガスが、5%以上、かつ、25%以下のOを含んでいても構わない。なお、この25%という酸素濃度の数値は、空気中の酸素濃度に近い値であるが、光分解されるガスは、大気中の空気に近い成分比のガスであっても構わない。ただし、大気中の空気よりも多量のCOを含むガスであると、光分解効率がより高まる。光分解されるガスのCO濃度は、例えば、1%以上であるとよく、5%以上であるとより好ましく、10%以上であるとさらに好ましい。 The method of irradiating excimer light to the gas containing CO2 and 5% or more and 25% or less of O2 in (2) above will be described in detail later, but the excimer light emits a large amount of O2 . The decomposition increases O( 1 D), which is atomic oxygen in an excited state. O( 1 D) reacts with CO 2 to increase the production rate of CO. That is, the photodecomposition efficiency of CO2 is increased. Also, the gas obtained by reducing water from the gas containing CO 2 and water may contain 5% or more and 25% or less of O 2 . The value of the oxygen concentration of 25% is a value close to the oxygen concentration in the air, but the gas to be photodecomposed may have a composition ratio close to that of the air in the atmosphere. However, gases containing more CO 2 than atmospheric air are more efficient at photodegradation. The CO 2 concentration of the photodecomposed gas is, for example, preferably 1% or more, more preferably 5% or more, and even more preferably 10% or more.
 上記(3)のCOと、0.4%以上、かつ、4.0%以下のHとを含むガスに、エキシマ光を照射する方法について、詳細は後述するが、Hは、COが、水を起源とするOHと化合することに優先して、OHと化合する。そのため、COとOHの化合によりCOに戻る逆反応を抑制できる。逆反応の抑制は、COの光分解効率の向上に繋がる。 A method of irradiating excimer light to the gas containing CO 2 and 0.4% or more and 4.0% or less H 2 in (3) above will be described in detail later, but H 2 is CO combines with OH in preference to combining with OH originating from water. Therefore, the reverse reaction of returning to CO2 due to the combination of CO and OH can be suppressed. Suppression of the reverse reaction leads to improved photodecomposition efficiency of CO2 .
 「水を起源とするOH」における水は、供給されるCOガス自体に含まれる。さらに、供給されるCOガス自体が水を含まない場合であっても、大気中に含まれる水蒸気が外から浸入してCOガスと混合され、その結果、意図しなくても微量の水を有するCOガスになることがある(詳細は後述する)。そのため、供給されるCOガス自体に水を含まない場合であっても、Hは、上記逆反応の抑制によるCOの光分解効率の向上に実質的に寄与する場合がある。 The water in the “water originated OH” is contained in the supplied CO2 gas itself. Furthermore, even if the supplied CO2 gas itself does not contain water, water vapor contained in the atmosphere can enter from the outside and mix with the CO2 gas, resulting in unintentionally trace amounts of water. ( details below). Therefore, even if the supplied CO 2 gas itself does not contain water, H 2 may substantially contribute to improving the photolysis efficiency of CO 2 by suppressing the reverse reaction.
 供給されるCOガス自体に多量の水を含む場合には、水を減らした工程の後で、水を減らした、0.4%以上、かつ、4.0%以下のHを含むガスをエキシマ光で光分解しても構わない。また、水素濃度の上限を4.0%に設定することにより、水素の酸化反応による爆発リスクを低減できる。 If the supplied CO2 gas itself contains a large amount of water, a water-reduced gas containing 0.4% or more and 4.0% or less H2 after the water-reducing step. may be photolyzed with excimer light. Also, by setting the upper limit of the hydrogen concentration to 4.0%, the risk of explosion due to the oxidation reaction of hydrogen can be reduced.
 前記エキシマ光が照射される雰囲気にある前記ガスの温度は、400K以下であっても構わない。詳細は後述するが、ガスの温度が低下すると、オゾン(以下、「O」ということがある。)の生成率が上昇したり、Oの熱分解が抑制されたりする。そうすると、基底状態の原子状酸素であるO(P)の生成が抑制される。その結果、O(P)とCOとが再結合し、COがCOに戻ってしまう反応を抑制できる。逆反応の抑制は、COの光分解効率の向上に繋がる。 The temperature of the gas in the atmosphere irradiated with the excimer light may be 400K or lower. Although the details will be described later, when the temperature of the gas decreases, the production rate of ozone (hereinafter sometimes referred to as “O 3 ”) increases and the thermal decomposition of O 3 is suppressed. Then, the generation of O( 3 P), which is atomic oxygen in the ground state, is suppressed. As a result, the reaction in which O( 3 P) and CO recombine and CO returns to CO 2 can be suppressed. Suppression of the reverse reaction leads to improved photodecomposition efficiency of CO2 .
 前記エキシマ光の主たる波長は172nm又は172nm近傍であっても構わない。CO分子は、主たる波長が172nm近傍の光をよく吸収するため、主たる波長が172nm近傍のエキシマ光は、効率よくCOを分解できる。また、主たる波長が172nm近傍のエキシマ光は、キセノンエキシマランプを点灯させて得られる。キセノンエキシマランプは安定的に大量生産できる光源であるため、主たる波長が172nm近傍の光は、高いコスト効果を有する。 The main wavelength of the excimer light may be 172 nm or around 172 nm. Since CO 2 molecules absorb light with a dominant wavelength around 172 nm well, excimer light with a dominant wavelength around 172 nm can efficiently decompose CO 2 . Also, excimer light whose main wavelength is around 172 nm is obtained by lighting a xenon excimer lamp. Since the xenon excimer lamp is a light source that can be stably mass-produced, light with a dominant wavelength near 172 nm is highly cost-effective.
 本明細書において、「172nm近傍」とは、172nm±5nmの範囲内の領域を指す。本明細書において、「主たる波長」とは、ある波長λに対して±10nmの波長域Z(λ)を発光スペクトル上で規定した場合において、発光スペクトル内における全積分強度に対して40%以上の積分強度を示す波長域Z(λi)における、波長λiを指す。「主たる波長」の光を出射する光源が、キセノンエキシマランプのように、半値幅が極めて狭く、且つ、特定の波長においてのみ高い光強度を示す光源においては、通常は、光強度が相対的に最も高い波長(主たるピーク波長)を、主たる波長とみなして構わない。 In this specification, "near 172 nm" refers to a region within the range of 172 nm ± 5 nm. As used herein, the term “main wavelength” means that when a wavelength region Z(λ) of ±10 nm for a certain wavelength λ is defined on the emission spectrum, the total integrated intensity in the emission spectrum is 40% or more. indicates the wavelength λi in the wavelength region Z(λi) indicating the integrated intensity of . In a light source that emits light of the "principal wavelength", such as a xenon excimer lamp, has an extremely narrow half-value width and exhibits high light intensity only at a specific wavelength, usually the light intensity is relatively The highest wavelength (the dominant peak wavelength) may be considered the dominant wavelength.
 前記水を減らした後のガスに含まれる水の濃度は100ppm以下であっても構わない。 The concentration of water contained in the gas after reducing the water may be 100 ppm or less.
 前記ガスに含まれる水をゼオライトに吸着させることにより、前記水を減らしても構わない。 The amount of water contained in the gas may be reduced by allowing zeolite to adsorb the water.
 前記ガスを前記エキシマ光が照射される空間に送りながら、前記エキシマ光を照射しても構わない。これにより、多量のCOを光分解できる。 The excimer light may be irradiated while sending the gas to the space irradiated with the excimer light. This allows a large amount of CO2 to be photolyzed.
 上記課題を解決するためのCOの光分解システムは、
(4)光分解前の、二酸化炭素と水を含むガスから水を減らす装置と、
(5)光分解前の、二酸化炭素を含むガスに、5%以上、かつ、25%以下の酸素濃度となるように酸素を供給するための供給源と、
(6)光分解前の、二酸化炭素を含むガスに、0.4%以上、かつ、4.0%以下の水素濃度となるように水素を供給するための供給源と、
のうち、少なくともいずれか一つを備える。
A CO 2 photolysis system for solving the above problems is
(4) a device for reducing water from a gas containing carbon dioxide and water prior to photolysis;
(5) a supply source for supplying oxygen to a gas containing carbon dioxide before photolysis so that the oxygen concentration is 5% or more and 25% or less;
(6) a supply source for supplying hydrogen to a gas containing carbon dioxide before photolysis so that the hydrogen concentration is 0.4% or more and 4.0% or less;
At least one of
 上記(4)を備えるCOの光分解システムは、具体的には、
 前記二酸化炭素と水を含むガスを導入する導入口と、前記ガスから水を減らす除水装置と、前記除水装置から前記ガスを排出する排出口とを含む第一処理室と、
 前記第一処理室の前記排出口に接続され、前記排出口から排出された前記ガスが導入される第二処理室と、
 前記第二処理室内の前記ガスに対してエキシマ光を照射するエキシマランプと、を備え、
 前記第二処理室は、前記エキシマ光がその内部に存在する前記ガスに含まれる前記二酸化炭素を光分解する。
Specifically, the CO 2 photolysis system comprising (4) above is
a first processing chamber including an inlet for introducing the gas containing carbon dioxide and water, a water removal device for removing water from the gas, and an outlet for discharging the gas from the water removal device;
a second processing chamber connected to the discharge port of the first processing chamber and into which the gas discharged from the discharge port is introduced;
an excimer lamp that irradiates the gas in the second processing chamber with excimer light,
In the second processing chamber, the excimer light photolyzes the carbon dioxide contained in the gas present therein.
 COの光分解システムは、さらに、前記第二処理室より上流で、前記ガスに水素を供給する水素供給源と、
 前記水素の供給量を調整する水素調整弁と、
 前記ガス中の水素濃度が0.4%以上、かつ、4.0%以下になるように前記水素調整弁を制御する制御部と、を備えていても構わない。すなわち、上記(4)を備えるCOの光分解システムについて上記(6)の要素を組み合わせた形態としても構わない。
The CO2 photolysis system further comprises, upstream from the second processing chamber, a hydrogen source for supplying hydrogen to the gas;
a hydrogen regulating valve that adjusts the supply amount of the hydrogen;
and a control unit that controls the hydrogen adjustment valve so that the hydrogen concentration in the gas is 0.4% or more and 4.0% or less. That is, the CO 2 photolysis system provided with (4) above may be combined with the elements (6) above.
 COの光分解システムは、さらに、前記第二処理室より上流で、前記ガスに酸素を供給する酸素供給源と、
 前記酸素の供給量を調整する酸素調整弁と、
 前記ガス中の酸素濃度が5%以上、かつ、25%以下になるように前記酸素調整弁を制御する制御部と、を備えていても構わない。すなわち、上記(4)を備えるCOの光分解システムについて上記(5)の要素を組み合わせた形態としても構わない。
The CO2 photolysis system further comprises, upstream from the second processing chamber, an oxygen source for supplying oxygen to the gas;
an oxygen regulating valve that adjusts the amount of oxygen supplied;
A control unit that controls the oxygen control valve so that the oxygen concentration in the gas is 5% or more and 25% or less. That is, the CO 2 photolysis system provided with (4) may be combined with the elements of (5) above.
 上記(5)を備えるCOの光分解システムは、具体的には、
 前記二酸化炭素を含むガスを導入する導入口と、
 エキシマ光を出射するエキシマランプと、
 前記導入口に接続され、かつ、前記エキシマ光がその内部に存在する前記二酸化炭素を光分解する、処理室と、
 前記処理室より上流で、前記ガスに酸素を供給する酸素供給源と、
 前記酸素の供給量を調整する酸素調整弁と、
 前記ガス中の酸素濃度が5%以上、かつ、25%以下になるように前記酸素調整弁を制御する制御部と、を備える。
Specifically, the CO 2 photolysis system comprising (5) above is
an inlet for introducing the gas containing carbon dioxide;
an excimer lamp for emitting excimer light;
a processing chamber connected to the inlet, wherein the excimer light photolyzes the carbon dioxide present therein;
an oxygen supply source upstream from the processing chamber for supplying oxygen to the gas;
an oxygen regulating valve that adjusts the amount of oxygen supplied;
and a control unit that controls the oxygen regulating valve so that the oxygen concentration in the gas is 5% or more and 25% or less.
 上記(6)を備えるCOの光分解システムは、具体的には、
 前記二酸化炭素を含むガスを導入する導入口と、
 エキシマ光を出射するエキシマランプと、
 前記導入口に接続され、かつ、前記エキシマ光がその内部に存在する前記二酸化炭素を光分解する、処理室と、
 前記処理室より上流で、前記ガスに水素を供給する水素供給源と、
 前記水素の供給量を調整する水素調整弁と、
 前記ガス中の水素濃度が0.4%以上、かつ、4.0%以下になるように前記水素調整弁を制御する制御部と、を備える。
Specifically, the CO 2 photolysis system comprising (6) above is
an inlet for introducing the gas containing carbon dioxide;
an excimer lamp for emitting excimer light;
a processing chamber connected to the inlet, wherein the excimer light photolyzes the carbon dioxide present therein;
a hydrogen supply source upstream from the processing chamber for supplying hydrogen to the gas;
a hydrogen regulating valve that adjusts the supply amount of the hydrogen;
a control unit that controls the hydrogen adjustment valve so that the hydrogen concentration in the gas is 0.4% or more and 4.0% or less.
 前記エキシマランプは、前記二酸化炭素を光分解する前記処理室又は前記第二処理室の内部に配置されても構わない。 The excimer lamp may be arranged inside the processing chamber or the second processing chamber that photolyzes the carbon dioxide.
 前記光分解システムは、前記二酸化炭素を光分解する前記処理室又は前記第二処理室の上流に配置され、前記ガスを冷却する冷却器と、
 前記冷却器で冷却された前記ガスの温度を測定する温度センサと、
 前記温度センサの測定値が400K以下になるように前記冷却器を制御する制御部と、を備えていても構わない。
The photolysis system is arranged upstream of the processing chamber or the second processing chamber that photolyzes the carbon dioxide, and a cooler that cools the gas;
a temperature sensor that measures the temperature of the gas cooled by the cooler;
and a control unit that controls the cooler so that the measured value of the temperature sensor is 400K or less.
 前記エキシマランプは、発光管内に封入された発光ガスがキセノンガスであっても構わない。 In the excimer lamp, the luminous gas enclosed in the arc tube may be xenon gas.
 前記除水装置は、ゼオライトを備えていても構わない。 The water removal device may include zeolite.
 これにより、少ない投入エネルギーでより多くの二酸化炭素を分解できる、二酸化炭素の光分解方法及び光分解システムを提供できる。 As a result, it is possible to provide a carbon dioxide photodecomposition method and a photodecomposition system that can decompose a larger amount of carbon dioxide with less input energy.
 少ない投入エネルギーでより多くの二酸化炭素を分解できる、二酸化炭素の光分解方法及び光分解システムを提供することは、国連が主導する持続可能な開発目標(SDGs)の目標13「気候変動及びその影響を軽減するための緊急対策を講じる」に大きく貢献するものである。 Providing a carbon dioxide photolysis method and photolysis system that can decompose more carbon dioxide with less input energy is one of the United Nations Sustainable Development Goals (SDGs) Goal 13 "Climate change and its impacts. This will make a significant contribution to “taking urgent measures to mitigate
二酸化炭素の光分解システムの第一実施形態を示す図である。1 shows a first embodiment of a carbon dioxide photolysis system; FIG. ガス中の水の含有量とCO生成率との関係を示すグラフである。4 is a graph showing the relationship between water content in gas and CO production rate. ガス中の水素濃度とCO生成率との関係を示すグラフである。4 is a graph showing the relationship between hydrogen concentration in gas and CO production rate. ガスの温度とCO生成率との関係を示すグラフである。4 is a graph showing the relationship between gas temperature and CO production rate. 光分解システムの第二処理室の変形例である。Fig. 3 is a modified example of the second processing chamber of the photolysis system; 二酸化炭素の光分解システムの第二実施形態を示す図である。Fig. 2 shows a second embodiment of a carbon dioxide photolysis system; 二酸化炭素の光分解システムの第三実施形態を示す図である。FIG. 13 illustrates a third embodiment of a carbon dioxide photodecomposition system; ガス中の酸素濃度とCO生成率との関係を示すグラフである。4 is a graph showing the relationship between oxygen concentration in gas and CO production rate. COの回収から固定化までのフロー図である。FIG. 2 is a flow diagram from CO2 capture to immobilization.
 適宜、図面を参照しながら実施形態を説明する。なお、グラフ又はフロー図を除く図面は、いずれも模式的に図示されたものであり、当該図面上の寸法比は必ずしも実際の寸法比と一致しておらず、各図面間においても寸法比は必ずしも一致していない。 The embodiment will be described with reference to the drawings as appropriate. In addition, all drawings other than graphs or flow diagrams are schematic illustrations, and the dimensional ratios on the drawings do not necessarily match the actual dimensional ratios, and the dimensional ratios between the drawings are not the same. not necessarily match.
<第一実施形態>
[光分解システムの概要]
 図1は、COの光分解システムの第一実施形態を示す図である。光分解システム10は、第一処理室1と、第一処理室1の後段に接続された第二処理室2とを有する。この光分解システム10は、ガスG1に含まれる二酸化炭素を分解する機能を有する。
<First Embodiment>
[Outline of photolysis system]
FIG. 1 shows a first embodiment of a CO 2 photolysis system. The photolysis system 10 has a first processing chamber 1 and a second processing chamber 2 connected downstream of the first processing chamber 1 . This photodecomposition system 10 has a function of decomposing carbon dioxide contained in the gas G1.
 第一処理室1は、ガスG1中に含有する水の量を減らす処理室である。ガスG1は、COと水を含むガスである。第一処理室1は、ガスG1を導入する導入口4iと、除水装置3と、除水装置3から前記ガスを排出する排出口4oと、を含む。除水装置3は、ガスG1に含まれる水の少なくとも一部を除去する。これにより、ガスG1は、含有する水の量の減少した、乾燥ガスになる。図1では、除水装置3で処理されたガスと、処理前のガスとを区別するために、異なる符号が付されている。すなわち、除水装置3で処理する前のガスを「ガスG1」と称し、除水装置3で処理された後のガスを「ガスG2」と称する。さらに、後述するように、ガスG2と区別する観点から、第二処理室2内で処理された後のガスを「ガスG3」と称する。除水装置3の具体的な態様については、後述される。 The first processing chamber 1 is a processing chamber for reducing the amount of water contained in the gas G1. Gas G1 is a gas containing CO2 and water. The first processing chamber 1 includes an inlet 4 i for introducing gas G<b>1 , a water removal device 3 , and an outlet 4 o for discharging the gas from the water removal device 3 . The water removal device 3 removes at least part of the water contained in the gas G1. This makes the gas G1 a dry gas with a reduced amount of water in it. In FIG. 1, different symbols are used to distinguish between the gas treated by the water removal device 3 and the gas before treatment. That is, the gas before being treated by the water removal device 3 is called "gas G1", and the gas after being treated by the water removal device 3 is called "gas G2". Furthermore, as will be described later, the gas after being processed in the second processing chamber 2 will be referred to as "gas G3" from the viewpoint of distinguishing it from gas G2. A specific aspect of the water removal device 3 will be described later.
 本明細書において、除去される水は、気体及び霧状の液体の水を含む概念である。つまり、除水装置3で処理される前のガスG1には、水蒸気以外に、例えば、液体としての水が霧状に含まれていても構わない。除水装置3で処理された後のガスG2には、水蒸気のみが含まれているか、又は、水蒸気及び液体としての水を全く含まない。 In this specification, the water to be removed is a concept that includes gaseous and liquid mist water. In other words, the gas G1 before being treated by the water removal device 3 may contain, for example, liquid water in the form of mist in addition to water vapor. The gas G2 after being treated by the dewatering device 3 contains only water vapor or does not contain water vapor and liquid water at all.
 ガスG1における二酸化炭素の含有割合は、特に限定されないが、50%以上であると好ましく、70%以上であるとより好ましく、80%以上であるとさらに好ましい。なお、本明細書において、流体の割合を「%」を用いて表示するとき、「vol%」を意図する。また、ガスG1において二酸化炭素以外に含まれるガスは、後述する追加ガスG4又は追加ガスG5と同種のガスを除き、ガスに照射する光に対して不活性なガスが好ましい。例えば、ガスに照射する光が波長172nm近傍の光である場合には、不活性なガスとして窒素ガスが挙げられる。 The content of carbon dioxide in the gas G1 is not particularly limited, but is preferably 50% or more, more preferably 70% or more, and even more preferably 80% or more. In addition, in this specification, "vol%" is intended when the ratio of the fluid is displayed using "%". Further, the gas contained in the gas G1 other than carbon dioxide is preferably inert to the light with which the gas is irradiated, except for the gas of the same kind as the additional gas G4 or the additional gas G5, which will be described later. For example, when the light with which the gas is irradiated has a wavelength of about 172 nm, nitrogen gas can be used as the inert gas.
 第二処理室2は、接続管7を介して第一処理室1の排出口4oに接続される。すなわち、第二処理室2は、第一処理室1の後段に接続される。第二処理室2には、第一処理室1においてガスG1中の水を減らしたガスG2が供給される。第二処理室2は、ガスG2を光分解する処理室である。本実施形態では、エキシマランプ5が第二処理室2の内部に配置されており、エキシマランプ5が点灯することにより、エキシマ光L1が第二処理室2内のガスG2に照射される。これにより、ガスG2に含まれるCOが光分解されて、COを生成する。エキシマランプ5の詳細については後述する。第二処理室2で生成されたCOを含む、処理済みガスG3は、第二処理室2の排出口6から排出される。ガスG2をエキシマ光L1が照射される空間(すなわち第二処理室2)に送りながら、エキシマ光L1を照射すると、光分解を連続的に行うことができる。 The second processing chamber 2 is connected to the discharge port 4 o of the first processing chamber 1 through a connecting pipe 7 . That is, the second processing chamber 2 is connected to the rear stage of the first processing chamber 1 . The second processing chamber 2 is supplied with a gas G2 obtained by reducing water in the gas G1 in the first processing chamber 1 . The second processing chamber 2 is a processing chamber for photolyzing the gas G2. In this embodiment, the excimer lamp 5 is arranged inside the second processing chamber 2 , and when the excimer lamp 5 is turned on, the gas G2 in the second processing chamber 2 is irradiated with the excimer light L1. As a result, the CO 2 contained in the gas G2 is photolyzed to produce CO. Details of the excimer lamp 5 will be described later. The treated gas G3 containing CO produced in the second processing chamber 2 is discharged from the outlet 6 of the second processing chamber 2. Photolysis can be continuously performed by irradiating the excimer light L1 while sending the gas G2 to the space (that is, the second processing chamber 2) irradiated with the excimer light L1.
 図1に戻り、本実施形態の光分解システム10は、第一処理室1と第二処理室2とを接続する接続管7に、追加ガスG4を供給する供給管8が接続されている。供給管8には、追加ガスG4の供給源11が接続されている。供給管8の途中には、流量弁12と流量計(不図示)が配置されている。流量弁12は制御部14により制御される。追加ガスG4については後述する。なお、追加ガスG4は第二処理室2の上流に供給すればよいため、追加ガスG4は、第一処理室1と第二処理室2との間だけでなく、第一処理室1の上流に供給しても構わない。 Returning to FIG. 1, in the photolysis system 10 of this embodiment, a supply pipe 8 for supplying additional gas G4 is connected to a connection pipe 7 connecting the first processing chamber 1 and the second processing chamber 2 . A supply source 11 of the additional gas G4 is connected to the supply pipe 8 . A flow valve 12 and a flow meter (not shown) are arranged in the middle of the supply pipe 8 . The flow valve 12 is controlled by the controller 14 . Additional gas G4 will be described later. Since the additional gas G4 may be supplied to the upstream of the second processing chamber 2, the additional gas G4 may be supplied not only between the first processing chamber 1 and the second processing chamber 2 but also between the first processing chamber 1 and the upstream of the first processing chamber 1. may be supplied to
[COの生成メカニズム]
 本発明の光分解システム及び光分解方法は、COをエキシマ光で光分解して、COを生成する。光分解によりCOからCOを生成するメカニズムについて説明する。COにエキシマ光hν(例えば、主たる波長が172nmの光)が照射されると、COはエキシマ光hνを吸収して、CO分子のC=O結合を解離し、以下の反応が起こる。
   CO+hν → CO +O(P)   …(1)
   CO+hν → CO +O(D)   …(2)
[CO generation mechanism]
The photolysis system and photolysis method of the present invention photolyzes CO2 with excimer light to produce CO. The mechanism of generating CO from CO2 by photolysis will be described. When CO2 is irradiated with excimer light hν (for example, light with a main wavelength of 172 nm), CO2 absorbs the excimer light hν and dissociates the C=O bond of the CO2 molecule, causing the following reactions: .
CO 2 + hν → CO + O( 3 P) (1)
CO 2 + hv → CO + O ( 1 D) (2)
 (1)式及び(2)式は、エキシマ光hνがCOからCOを直接的に生成することを表す。(1)式で生成された、O(P)は基底状態の原子状酸素を表す。(2)式で生成されたO(D)は、励起状態の原子状酸素を表す。 Equations (1) and (2) express that excimer light hν directly produces CO from CO 2 . O( 3 P), generated in equation (1), represents atomic oxygen in the ground state. O( 1 D) produced in equation (2) represents atomic oxygen in an excited state.
 励起状態の原子状酸素であるO(D)は高活性である。よって、O(D)は、COと反応して、COを生成する。
   CO+O(D) → CO +O   …(3)
 (3)式は、エキシマ光hνがCOからCOを間接的に生成することを表す。
The excited state of atomic oxygen, O( 1 D), is highly active. Thus, O( 1 D) reacts with CO 2 to produce CO.
CO 2 + O ( 1 D) → CO + O 2 (3)
Equation (3) expresses that the excimer light hν indirectly produces CO from CO2 .
 (1)式で生成された、基底状態の原子状酸素であるO(P)は、以下の反応を起こすことがある。
   CO+O(P)+M → CO+M   …(4)
 (4)式は、(1)式によりCOを分解してCOを生成したとしても、COがO(P)と結合してCOになる、逆反応を発生させることを表す。なお、この(4)式において、Mは、第三体を示す。
The ground-state atomic oxygen O( 3 P) produced by formula (1) may undergo the following reactions.
CO+O( 3 P)+M→CO 2 +M (4)
Equation (4) indicates that even if CO is generated by decomposing CO 2 according to Equation (1), a reverse reaction occurs in which CO combines with O( 3 P) to form CO 2 . In addition, in this formula (4), M indicates the third body.
 (1)式と(2)式の生じる割合は、エキシマ光hνの波長によって異なる。波長が短くなるほど光エネルギーが高くなるため、(1)式の反応が少なくなり(2)式の反応が増えていく。そのため、波長が短いほど、O(D)が増えてCOの分解が進む傾向にある。 The rate at which formulas (1) and (2) occur differs depending on the wavelength of the excimer light hν. Since the shorter the wavelength, the higher the light energy, the reaction of formula (1) decreases and the reaction of formula (2) increases. Therefore, the shorter the wavelength, the more O( 1 D) tends to increase and the decomposition of CO 2 progresses.
 なお、O(D)及びO(P)は、(1)式及び(2)式により生成される他に、(3)式により生成されたOから生成されたり、又は、後述するHOサイクル連鎖反応の過程で生成されたりすることもある。 Note that O( 1 D) and O( 3 P) are generated by the formulas (1) and (2), as well as generated from the O 2 generated by the formula (3), or It may also be produced during the HO X cycle chain reaction.
[光分解における水の影響]
 本発明者らはCOの光分解について鋭意研究した結果、光分解のためのガスにおける水の含有量と、光分解によるCOの生成率との間には、図2に示す関係があることを発見した。
[Effect of water on photolysis]
As a result of intensive research on the photolysis of CO 2 by the present inventors, it was found that there is a relationship shown in FIG. discovered.
 図2は、COを含むガス中の水の含有量と、光分解により生成したCOの生成率との関係をシミュレーションにより求めたグラフである。CO生成率とは、全体の混合ガスに占めるCOの量の割合であり、「vol%」を意図する。シミュレーション条件は、以下のように設定された。ガスG2は、COと、水蒸気とで構成されるガスとされた。ガス温度は400Kとされた。また、光分解には、ピーク波長172nmのエキシマ光を出射するキセノンエキシマランプの使用が想定された。キセノンエキシマランプと光分解されるガスとの平均距離と、ガスG2の流量は、シミュレーションの間、一定値をとると想定された。 FIG. 2 is a graph obtained by simulation of the relationship between the content of water in gas containing CO 2 and the production rate of CO produced by photolysis. The CO production rate is the ratio of the amount of CO in the total mixed gas, and is intended as "vol%". The simulation conditions were set as follows. Gas G2 was a gas composed of CO 2 and water vapor. The gas temperature was 400K. For photolysis, the use of a xenon excimer lamp that emits excimer light with a peak wavelength of 172 nm was assumed. The average distance between the xenon excimer lamp and the gas to be photolyzed and the flow rate of gas G2 were assumed to have constant values during the simulation.
 図2より、水を全く含まない(水の含有量が0ppm)ガスのCO生成率が8%であるのに対し、6ppmの水を含むガスのCO生成率が3%しかないことが確認される。つまり、ガスが水を6ppm含むだけで、CO生成率が5%低下したことが分かる。 From FIG. 2, it is confirmed that the CO production rate of gas containing 6 ppm of water is only 3%, while the CO production rate of gas containing no water (water content is 0 ppm) is 8%. be. In other words, it can be seen that the CO production rate decreased by 5% when the gas contained only 6 ppm of water.
 よって、上記検証の結果を踏まえると、二酸化炭素含有ガスから水を減らすと、光分解効率の向上に繋がりやすいことが理解される。また、仮に、供給される二酸化炭素含有ガス自体が水を含まない場合であっても、大気中に含まれる水蒸気が、処理室又は処理室に繋がる配管経路の微小な隙間から浸入することがわかった。その結果、浸入した水蒸気が二酸化炭素含有ガスと混合され、僅かな水を含む二酸化炭素含有ガスになる。そして、上述したように、10ppmに満たない僅かな量の水であっても、CO生成率が低下する。つまり、水によりCOの光分解が妨げられるリスクは、二酸化炭素含有ガス自体に水を含む可能性がない場合にあっても、存在する。 Therefore, based on the results of the above verification, it is understood that reducing water from the carbon dioxide-containing gas tends to lead to an improvement in the photolysis efficiency. Moreover, even if the supplied carbon dioxide-containing gas itself does not contain water, it has been found that water vapor contained in the atmosphere penetrates through minute gaps in the processing chamber or the piping route leading to the processing chamber. rice field. As a result, the infiltrated water vapor is mixed with the carbon dioxide-containing gas, resulting in a carbon dioxide-containing gas containing a small amount of water. Then, as described above, even a small amount of water less than 10 ppm lowers the CO production rate. Thus, the risk that water interferes with the photodegradation of CO2 exists even if the carbon dioxide-containing gas itself may not contain water.
 本発明者らの鋭意研究によれば、COの光分解が妨げられる現象は、概ね以下の化学反応によって生じるものと考察される。
   CO+OH → CO+H   …(5)
 (5)式は、(3)式によりCOを分解してCOを生成したとしても、OHがCOと反応し、COをCOに戻してしまうことを表す。つまり、(5)式の反応を生じさせないように、OHの生成を抑制することが重要である。
According to the intensive research of the present inventors, it is considered that the phenomenon in which the photodecomposition of CO 2 is hindered is generally caused by the following chemical reaction.
CO + OH → CO 2 + H (5)
Equation (5) expresses that even if CO is generated by decomposing CO 2 by Equation (3), OH reacts with CO to return CO to CO 2 . In other words, it is important to suppress the generation of OH so as not to cause the reaction of formula (5).
 (5)式に表れるOHは、水(「HO」ということがある。)を起源としている。ただ、(5)式に表れるOHは、単純にHO→OH+Hを経て生成されるOHよりも、連鎖反応によって生成されるOHが大半を占めると考えられる。連鎖反応によって生成されるOHは、代表的には、以下の4つの反応式によって生じると考えられる。
   O+H → OH+O   …(6)
   HO+H → OH+OH   …(7)
   HO+O → OH+O+O   …(8)
   H+H → HO+OH   …(9)
OH represented in formula (5) originates from water (sometimes referred to as “H 2 O”). However, it is considered that most of the OH represented in the formula (5) is OH generated by a chain reaction rather than simply H 2 O→OH+H. OH produced by the chain reaction is typically thought to be produced by the following four reaction formulae.
O 3 +H → OH + O 2 (6)
HO 2 +H → OH + OH (7)
HO2 + O3- >OH+ O2 + O2 (8)
H 2 O 2 +H → H 2 O + OH (9)
 このうち、(9)式のHの生成に寄与しているのは、
   H+HO → H+H   ・・・(10)
であると考えられる。
Of these, what contributes to the generation of H 2 O 2 in formula (9) is
H2 + HO2- > H2O2 +H (10 )
It is considered to be
 (7)式、(8)式及び(10)式のHO生成に寄与しているのは、
   HCO+O → CO+HO   ・・・(11)
であると考えられる。
(7), (8) and (10) contribute to the generation of HO 2 by
HCO+O 2 →CO+HO 2 (11)
It is considered to be
(11)式のHCO生成に寄与しているのは、概ね、
   CO+H+M → HCO+M   ・・・(12)
であると考えられる。なお、(12)式において、Mは、第三体を示す。
(11) Contributing to HCO generation in the formula is generally
CO + H + M → HCO + M (12)
It is considered to be In addition, in (12) Formula, M shows a third body.
 つまり、HOがCOと混在する中で光エネルギーを与えると、(6)~(12)式を経て、多量のOHが生成される。そして、上述の機序によって生成された多量のOHは、(5)式の反応により、COの光分解を妨げる。よって、水が、10ppmに満たない、僅かな量だけ混入した場合であっても、COの光分解が妨げられると考えられる。 In other words, when H 2 O is mixed with CO 2 and light energy is applied, a large amount of OH is produced via the formulas (6) to (12). Then, a large amount of OH produced by the above mechanism hinders the photodecomposition of CO 2 through the reaction of formula (5). Therefore, it is believed that even a minute amount of water, less than 10 ppm, would interfere with the photodegradation of CO 2 .
[除水装置]
 本発明者らは、上記分析の結果、光分解雰囲気下に存在するガスに含まれる水を減らすことで、COの生成率を高める方法を発見した。
[Water removal device]
As a result of the above analysis, the present inventors discovered a method of increasing the CO production rate by reducing the amount of water contained in the gas present in the photolysis atmosphere.
 本実施形態では、COの光分解をする前に、除水装置3を使用してガスG1から水を減らし、ガスG2を生成する。本実施形態において、除水装置3は、吸水性能の高い合成ゼオライト(例えば、ユニオンカーバイド社の「モレキュラーシーブ」)を使用し、水を吸着させて減らしている。しかしながら、ゼオライトの種類は特に限定されない。また、ゼオライト以外の吸水材(例えば、シリカゲル、塩化カルシウム、又はMOF(金属有機構造体)など)を使用しても構わない。また、吸水材を使用した除水装置に限定されず、例えば、コンプレッサーを使用した除水装置を使用しても構わない。ガスG1が霧状の水を含む場合には、水蒸気を通過させ、霧状の水の通過を妨げるフィルタを使用して、水を減らしても構わない。また、除水装置3は、上述した複数の除水機構を組み合わせても構わない。 In this embodiment, the water removal device 3 is used to reduce the water from the gas G1 to generate the gas G2 before the photolysis of CO2 . In this embodiment, the water removal device 3 uses synthetic zeolite with high water absorption performance (for example, Union Carbide's "Molecular Sieve") to adsorb and reduce water. However, the type of zeolite is not particularly limited. Also, a water absorbing material other than zeolite (for example, silica gel, calcium chloride, MOF (metal organic framework), etc.) may be used. Moreover, it is not limited to the water removing device using the water absorbing material, and for example, a water removing device using a compressor may be used. If the gas G1 contains a mist of water, the water may be reduced by using a filter that allows water vapor to pass but blocks the passage of the mist. Moreover, the water removal device 3 may combine a plurality of water removal mechanisms described above.
 水を減らした後のガスG2に含まれる水の濃度は100ppm以下であるとよい。水の濃度が100ppm以下である場合は、光分解効率が高い。なお、ガスG2に含まれる水の濃度は、水分計によって検出することができる。 The concentration of water contained in the gas G2 after reducing the water is preferably 100 ppm or less. When the water concentration is 100 ppm or less, the photodegradation efficiency is high. Note that the concentration of water contained in the gas G2 can be detected by a moisture meter.
[水素ガスの添加]
 本実施形態の光分解システム10は、追加ガスG4として水素ガスを供給する。供給源11は水素ガスの供給源である。ガスG2に水素ガスを添加することの意義を、図3を用いて説明する。
[Addition of hydrogen gas]
The photolysis system 10 of this embodiment supplies hydrogen gas as the additional gas G4. Source 11 is a source of hydrogen gas. The significance of adding hydrogen gas to gas G2 will be described with reference to FIG.
 図3は、ガス中の水素濃度と、光分解により生成したCOの生成率との関係をシミュレーションにより求めたグラフである。本明細書において、CO生成率とは、混合ガス全体に占めるCOの量の割合であり、「vol%」を意図する。シミュレーション条件は、以下のように設定された。ガスは、NとCOとを含み、全ガス中のCOの割合が4%である混合ガスと、水蒸気500ppmと、で構成される混合ガスとされた。混合ガスの温度は500Kとされた。また、光分解には、ピーク波長172nmのエキシマ光を出射するキセノンエキシマランプを使用し、光強度30mW/cmで、1000秒間にわたってガスに対してエキシマ光が照射される場合が想定された。キセノンエキシマランプと光分解されるガスとの平均距離と、ガスG2の流量は、シミュレーションの間、一定値をとると想定された。 FIG. 3 is a graph obtained by simulation of the relationship between the concentration of hydrogen in gas and the production rate of CO produced by photolysis. As used herein, the CO production rate is the ratio of the amount of CO in the entire mixed gas, and is intended to be "vol%". The simulation conditions were set as follows. The gas was a mixed gas containing N 2 and CO 2 , the ratio of CO 2 in the total gas being 4%, and water vapor of 500 ppm. The temperature of the mixed gas was set at 500K. A xenon excimer lamp that emits excimer light with a peak wavelength of 172 nm was used for photolysis, and it was assumed that the gas was irradiated with the excimer light at a light intensity of 30 mW/cm 2 for 1000 seconds. The average distance between the xenon excimer lamp and the gas to be photolyzed and the flow rate of gas G2 were assumed to have constant values during the simulation.
 図3より、ガスに水素(以下、「H」ということがある。)が入っていない0%の状態から、水素濃度を0.2%程度添加することにより、CO生成率が一時的に低下する。この現象は、下に示す(13)式、又は(14)式によりOHの量が増えて、(5)式の反応により、COをCOに戻したことに起因するものと考察される。
   H+O(P) → OH+H   ・・・(13)
   H+O(D) → OH+H   ・・・(14)
From FIG. 3, by adding hydrogen concentration of about 0.2% from a state of 0% in which hydrogen (hereinafter sometimes referred to as “H 2 ”) is not contained in the gas, the CO generation rate temporarily descend. It is considered that this phenomenon is caused by the increase in the amount of OH according to formula (13) or (14) shown below and the reaction of formula (5) returning CO to CO 2 .
H 2 +O( 3 P)→OH+H (13)
H 2 +O( 1 D)→OH+H (14)
 しかしながら、図3から、0.4%以上の水素をガスに添加すると、光分解に伴ってCO生成率が上昇することがわかった。この現象は、主として、(5)式の、COがOHと化合する反応に優先して、HがOHと化合しOHを消費したことに起因するものと考察される。HがOHと化合しOHを消費する反応を以下に示す。
   H+OH → HO+H   ・・・(15)
 (15)式の反応が増加すると、OHが減少し、(5)の反応が抑制される。つまり、COの分解効率の低下を抑制する。
However, from FIG. 3, it was found that the addition of 0.4% or more hydrogen to the gas increased the CO production rate with photolysis. This phenomenon is considered to be mainly due to the fact that H 2 combined with OH and consumed OH prior to the reaction in which CO combined with OH in formula (5). The reaction in which H2 combines with OH and consumes OH is shown below.
H 2 +OH → H 2 O + H (15)
As the reaction of formula (15) increases, OH decreases and the reaction of (5) is suppressed. That is, it suppresses the deterioration of the decomposition efficiency of CO 2 .
 よって、ガスは、0.4%以上の水素を含んでいるとよい。また、水素の爆発限界の下限は4.0%であるから、爆発リスク低減のため、水素濃度を4.0%以下に設定するとよい。ガスG2に含まれる水素の濃度は、例えば、市販の携帯型水素濃度計によって検出できる。 Therefore, the gas should contain 0.4% or more of hydrogen. Moreover, since the lower limit of the explosion limit of hydrogen is 4.0%, it is preferable to set the hydrogen concentration to 4.0% or less in order to reduce the risk of explosion. The concentration of hydrogen contained in the gas G2 can be detected by, for example, a commercially available portable hydrogen concentration meter.
[ガスの温度制御]
 図1に戻り、本実施形態の光分解システム10は、ガス冷却器9と、温度センサ13とを有する。本実施形態において、ガス冷却器9は接続管7の途中に設けられ、接続管7を通過するガスG2を冷却する。ガス冷却器9の構成は特に限定されない。ガス冷却器9は、例えば、多数のフィンに内蔵された配管にガスを流し、ガスを空冷する熱交換器で構成される。温度センサ13は、第二処理室2に取り付けられ、第二処理室2内のガスG2の温度を測定する。制御部14は、温度センサ13及びガス冷却器9と、それぞれ電気的に接続されている。制御部14は、温度センサ13の測定結果にしたがい、ガス冷却器9によりガスG2を冷却する。本実施形態において、温度センサ13は、第二処理室2内の温度を測定しているが、接続管7内のガスG2の温度を測定しても構わないし、除水装置3の上流におけるガスG1の温度を測定しても構わない。また、追加ガスG4を、ガスG2と混合する前に、予め冷却することで、追加ガスG4と混合した後のガスを冷却しても構わない。
[Gas temperature control]
Returning to FIG. 1 , the photolysis system 10 of this embodiment has a gas cooler 9 and a temperature sensor 13 . In this embodiment, the gas cooler 9 is provided in the middle of the connecting pipe 7 and cools the gas G2 passing through the connecting pipe 7 . The configuration of the gas cooler 9 is not particularly limited. The gas cooler 9 is composed of, for example, a heat exchanger that air-cools the gas by flowing the gas through piping built in a large number of fins. A temperature sensor 13 is attached to the second processing chamber 2 and measures the temperature of the gas G2 inside the second processing chamber 2 . The controller 14 is electrically connected to the temperature sensor 13 and the gas cooler 9 respectively. The controller 14 cools the gas G<b>2 with the gas cooler 9 according to the measurement result of the temperature sensor 13 . In this embodiment, the temperature sensor 13 measures the temperature in the second processing chamber 2, but it may also measure the temperature of the gas G2 in the connecting pipe 7, or the gas in the upstream of the water removal device 3. The temperature of G1 may be measured. Moreover, the gas after mixing with the additional gas G4 may be cooled by pre-cooling the additional gas G4 before mixing with the gas G2.
 図4は、COを含むガスの温度と、COの生成量の割合、すなわちCO生成率との関係をシミュレーションにより求めたグラフである。CO生成率とは、混合ガス全体に占めるCOの量の割合であり、「vol%」を意図する。シミュレーション条件は、以下のように設定された。ガスG2は、COガス100%であり、水及び水素を含まないガスとされた。光分解には、波長172nmのエキシマ光を出射するキセノンエキシマランプを使用し、光強度30mW/cmで、1000秒間にわたってガスに対してエキシマ光が照射される場合が想定された。室温付近である300KではCOの生成率は69%に達する。しかし、ガスの温度が上昇するにしたがってCO生成率が低下する。ガスの温度が400Kの場合には、CO生成率が57%になる。ガスの温度が500Kの場合には、CO生成率が10%を下回ることがわかった。図4より、ガスの温度が400K以下であれば、50%を超えるCO生成率を維持できることがわかった。 FIG. 4 is a graph obtained by simulation of the relationship between the temperature of gas containing CO 2 and the ratio of the amount of CO produced, that is, the CO production rate. The CO production rate is the ratio of the amount of CO in the entire mixed gas, and is intended as "vol%". The simulation conditions were set as follows. Gas G2 was 100% CO2 gas and was taken as a gas without water and hydrogen. For photolysis, a xenon excimer lamp that emits excimer light with a wavelength of 172 nm was used, and it was assumed that the gas was irradiated with the excimer light at a light intensity of 30 mW/cm 2 for 1000 seconds. At 300 K, which is near room temperature, the CO production rate reaches 69%. However, the CO production rate decreases as the temperature of the gas increases. At a gas temperature of 400K, the CO yield is 57%. It was found that at a gas temperature of 500K, the CO yield was below 10%. From FIG. 4, it was found that if the gas temperature is 400 K or less, the CO production rate exceeding 50% can be maintained.
 ガスの温度が上昇するとCO生成率が低下する理由を考察する。上述したように、(1)式及び(2)式により、COが分解されるとO(P)及びO(D)を生成し、O(P)及びO(D)は、Oの生成に使用される。以下に(1)式及び(2)式を再掲する。
   CO+hν → CO +O(P)   …(1)
   CO+hν → CO +O(D)   …(2)
 しかしながら、ガスの温度が上昇すると、Oが生成され難くなる。または、一時的にOが生成されたとしても、OがOとO(P)に熱分解される。O(P)は、(4)式に示すように、COを消費してCOを増やすため、COの分解率が低下すると考えられる。よって、ガスの温度は、低い方が好ましい。
Consider why the CO production rate decreases as the temperature of the gas increases. As described above, according to equations (1) and (2), CO 2 is decomposed to produce O( 3 P) and O( 1 D), and O( 3 P) and O( 1 D) are , used for the production of O3 . Equations (1) and (2) are shown below.
CO 2 + hν → CO + O( 3 P) (1)
CO 2 + hv → CO + O ( 1 D) (2)
However, as the temperature of the gas rises, O3 is less likely to be produced. Alternatively, even if O3 is produced temporarily, O3 is thermally decomposed into O2 and O( 3P ). Since O( 3 P) consumes CO and increases CO 2 as shown in the formula (4), it is thought that the decomposition rate of CO 2 decreases. Therefore, the lower the temperature of the gas, the better.
[エキシマランプ]
 本実施形態において、エキシマランプ5(図1参照)には、主たる波長が172nmのエキシマ光を出射するキセノンエキシマランプが使用されている。主たる波長が172nmの光は、CO分子のC=O結合を解離できる。キセノンエキシマランプは、発光管の内部に発光ガスとしてキセノンガスを有する。キセノンガスは、誘電体バリア放電により励起状態にされる。そして、励起状態のキセノンガスが基底状態のキセノンガスに戻るとき、主たる波長が172nmのエキシマ光L1を発光する。エキシマランプ5に供給される電力は制御部14によって制御され、制御部14はエキシマランプの点灯及び消灯を制御する。
[Excimer lamp]
In this embodiment, the excimer lamp 5 (see FIG. 1) is a xenon excimer lamp that emits excimer light with a main wavelength of 172 nm. Light with a dominant wavelength of 172 nm can dissociate the C═O bonds of CO 2 molecules. A xenon excimer lamp has xenon gas as a light emission gas inside an arc tube. The xenon gas is excited by a dielectric barrier discharge. Then, when the excited state xenon gas returns to the ground state xenon gas, excimer light L1 having a main wavelength of 172 nm is emitted. The power supplied to the excimer lamp 5 is controlled by a control unit 14, and the control unit 14 controls lighting and extinguishing of the excimer lamp.
[変形例]
 光分解システムの第二処理室2の変形例を示す。図5は、光分解システムの第二処理室2の拡大図である。この変形例では、二つの第二処理室(2a,2b)が、エキシマランプ5の外部で、エキシマランプ5を挟むように配置されている。エキシマランプ5から出射されるエキシマ光は、それぞれの第二処理室(2a,2b)の内部に向かって照射され、第二処理室(2a,2b)の内部を流れるガスG2を処理する。また、二つの第二処理室(2a,2b)とエキシマランプ5の間に、エキシマランプ5を冷却するためのガス(例えば、窒素)を導入して、エキシマランプ5を冷却してもよい。エキシマランプ5を冷却するためのガスを導入することで、エキシマランプ5が冷却されるとともに、ガスG2の温度上昇も抑制できる。
[Modification]
2 shows a variant of the second processing chamber 2 of the photolysis system. FIG. 5 is an enlarged view of the second processing chamber 2 of the photolysis system. In this modification, two second processing chambers (2a, 2b) are arranged outside the excimer lamp 5 so as to sandwich the excimer lamp 5 therebetween. The excimer light emitted from the excimer lamp 5 is irradiated toward the interior of each of the second processing chambers (2a, 2b) to process the gas G2 flowing inside the second processing chambers (2a, 2b). Alternatively, a gas (for example, nitrogen) for cooling the excimer lamps 5 may be introduced between the two second processing chambers (2a, 2b) and the excimer lamps 5 to cool the excimer lamps 5. FIG. By introducing the gas for cooling the excimer lamp 5, the excimer lamp 5 is cooled and the temperature rise of the gas G2 can be suppressed.
<第二実施形態>
 図6は、COの光分解システムの第二実施形態を示す図である。なお、以下の説明では、上述した第一実施形態と共通する箇所については、適宜説明が割愛される。本実施形態の光分解システム20は、第一実施形態の光分解システム10と比較して、除水装置3を有する第一処理室1を備えていない点が異なる。なお、光分解システム20は、エキシマランプ5が内部に配置された光分解の第二処理室2を備えている点については、第一実施形態の光分解システム10と共通する。
<Second embodiment>
FIG. 6 is a diagram showing a second embodiment of a CO2 photolysis system. It should be noted that in the following description, descriptions of parts common to the above-described first embodiment will be omitted as appropriate. The photolysis system 20 of the present embodiment differs from the photolysis system 10 of the first embodiment in that the first processing chamber 1 having the water removal device 3 is not provided. The photolysis system 20 is common to the photolysis system 10 of the first embodiment in that it includes a second processing chamber 2 for photolysis in which the excimer lamp 5 is arranged.
 本実施形態の光分解システム20は、ガスG1の導入口4iと光分解の第二処理室2の入口とを接続する接続管7を備えている。第一実施形態と同様に、接続管7には、ガスG1に追加ガスG4(すなわち、水素)を供給する供給管8が接続され、供給管8には、追加ガスG4の供給源11が接続されている。ガスG1について、導入口4iに供給されるガスG1自体に水を含む。または、導入口4iに供給されるガスG1自体に水を含まないとしても、第二処理室2内のガスG1は、大気中の水蒸気の浸入により、微量(例えば、10ppm以下)の水を含む。供給管8の途中には、流量弁12と流量計(不図示)が配置されている。流量弁12は制御部14により制御される。本実施形態は、除水装置がなくても、水素ガスの添加があれば、COの光分解効率が高まることを表している。 The photolysis system 20 of this embodiment includes a connection pipe 7 that connects the introduction port 4i of the gas G1 and the inlet of the second processing chamber 2 for photolysis. As in the first embodiment, the connection pipe 7 is connected to a supply pipe 8 for supplying an additional gas G4 (that is, hydrogen) to the gas G1, and the supply pipe 8 is connected to a supply source 11 of the additional gas G4. It is As for the gas G1, the gas G1 itself supplied to the inlet 4i contains water. Alternatively, even if the gas G1 itself supplied to the inlet 4i does not contain water, the gas G1 in the second processing chamber 2 contains a small amount of water (for example, 10 ppm or less) due to infiltration of atmospheric water vapor. . A flow valve 12 and a flow meter (not shown) are arranged in the middle of the supply pipe 8 . The flow valve 12 is controlled by the controller 14 . This embodiment shows that the photodecomposition efficiency of CO 2 increases with the addition of hydrogen gas even without a water removal device.
<第三実施形態>
 図7は、COの光分解システムの第三実施形態を示す図である。なお、以下の説明では、上述した第一実施形態又は第二実施形態と共通する箇所については、適宜説明が割愛される。本実施形態の光分解システム30は、第一実施形態の光分解システム10と比較して、除水装置3を有する第一処理室1を備えていない点、第二実施形態の光分解システム20と比較して、水素ガスを添加しない点が異なる。なお、光分解システム30は、エキシマランプ5が内部に配置された光分解の第二処理室2を備えている点については、第一実施形態の光分解システム10と共通する。
<Third Embodiment>
FIG. 7 shows a third embodiment of a CO2 photolysis system. It should be noted that in the following description, descriptions of portions common to the above-described first embodiment or second embodiment will be omitted as appropriate. Unlike the photolysis system 10 of the first embodiment, the photolysis system 30 of the present embodiment does not include the first processing chamber 1 having the water removal device 3, and the photolysis system 20 of the second embodiment , in that hydrogen gas is not added. The photolysis system 30 is similar to the photolysis system 10 of the first embodiment in that it includes a second processing chamber 2 for photolysis in which the excimer lamp 5 is arranged.
 本実施形態の光分解システム30は、ガスG1の導入口4iと光分解の第二処理室2の入口とを接続する接続管7を備えている。接続管7には、ガスG1に追加ガスG5を供給する供給管28が接続され、供給管28には、追加ガスG5の供給源21が接続されている。供給管28の途中には、流量弁22と流量計(不図示)が配置されている。流量弁22は制御部14により制御される。 The photolysis system 30 of this embodiment includes a connection pipe 7 that connects the introduction port 4i of the gas G1 and the inlet of the second processing chamber 2 for photolysis. A supply pipe 28 for supplying an additional gas G5 to the gas G1 is connected to the connection pipe 7, and the supply pipe 28 is connected to a supply source 21 of the additional gas G5. A flow valve 22 and a flow meter (not shown) are arranged in the middle of the supply pipe 28 . The flow valve 22 is controlled by the controller 14 .
[酸素ガスの添加]
 本実施形態において、追加ガスG5は酸素ガスである。供給源21は酸素ガスの供給源である。ガスG1に酸素ガスを添加することの意義を、図8を用いて説明する。図8は、ガス中の酸素濃度と、光分解により生成したCOの生成率との関係をシミュレーションにより求めたグラフである。シミュレーション条件は、以下のように設定された。ガスは、500ppmの水蒸気を含むCOガスであり、水素を含まないガスとされた。ガスの温度は300Kとされた。ピーク波長172nmのエキシマ光を出射するキセノンエキシマランプを使用し、光強度30mW/cmで、1000秒間にわたってガスに対してエキシマ光が照射される場合が想定された。キセノンエキシマランプと光分解されるガスとの平均距離と、ガスG2の流量は、シミュレーションの間、一定値をとると想定された。
[Addition of oxygen gas]
In this embodiment, the additional gas G5 is oxygen gas. The supply source 21 is an oxygen gas supply source. The significance of adding oxygen gas to gas G1 will be described with reference to FIG. FIG. 8 is a graph obtained by simulation of the relationship between the oxygen concentration in gas and the production rate of CO produced by photolysis. The simulation conditions were set as follows. The gas was CO 2 gas with 500 ppm water vapor and was taken as a hydrogen-free gas. The gas temperature was 300K. A case was assumed in which a xenon excimer lamp that emits excimer light with a peak wavelength of 172 nm was used and the gas was irradiated with the excimer light at a light intensity of 30 mW/cm 2 for 1000 seconds. The average distance between the xenon excimer lamp and the gas to be photolyzed and the flow rate of gas G2 were assumed to have constant values during the simulation.
 以下において、図8を参照しながら、酸素濃度とCO生成率の関係について考察する。図8によれば、ガスG1にOが含まれていない状態(酸素濃度0%の状態)から、ガスG1に2%の酸素を添加することで、CO生成率が一時的に低下することが確認された。この低下は、次の機序に起因して生じると考えられる。まず、HCOと結合するOが増えるため、(11)式によりHOが増える。増えたHOは、多量のOHを生成し、(5)式の反応により、生成したCOをCOに戻すと考えられる。以下に関係する各式を再掲する。
   HCO+O → CO+HO   ・・・(11)
   HO+H → OH+OH   …(7)
   HO+O → OH+O+O   …(8)
   CO+OH → CO+H   …(5)
The relationship between the oxygen concentration and the CO production rate will be discussed below with reference to FIG. According to FIG. 8, by adding 2% oxygen to the gas G1 from the state where the gas G1 does not contain O2 (the state where the oxygen concentration is 0%), the CO production rate temporarily decreases. was confirmed. This decrease is believed to occur due to the following mechanism. First, since the amount of O 2 that bonds with HCO increases, the amount of HO 2 increases according to equation (11). It is thought that the increased HO 2 produces a large amount of OH, and the produced CO is returned to CO 2 by the reaction of formula (5). Relevant formulas are listed below.
HCO+O 2 →CO+HO 2 (11)
HO 2 +H → OH + OH (7)
HO2 + O3- >OH+ O2 + O2 (8)
CO + OH → CO 2 + H (5)
 しかしながら、ガスG1に含まれる酸素濃度が2%を超えるように酸素ガスを添加すると、ガス中のO又はOの量が増える。そして、これらのO又はOがエキシマ光hνを吸収して、O分子又はO分子を解離し、多量のO(D)を生成する。O(D)はCOと結合して、(3)式によりCOが生成される。以下に(3)式を再掲する。
   CO+O(D) → CO +O   …(3)
However, when oxygen gas is added so that the oxygen concentration contained in gas G1 exceeds 2%, the amount of O2 or O3 in the gas increases. Then, these O 2 or O 3 absorb the excimer light hν, dissociate the O 2 molecules or O 3 molecules, and generate a large amount of O( 1 D). O( 1 D) combines with CO 2 to produce CO according to equation (3). Equation (3) is shown again below.
CO 2 + O ( 1 D) → CO + O 2 (3)
 ガス中の酸素濃度が5%以上になると、ガスが酸素を含まない場合に比べて、紫外線が照射されたときのCO生成率が上昇する。よって、ガスへの紫外線照射によってCO生成率を高めるためには、酸素ガスを添加することが好ましい。酸素濃度が25%に到達するまで、酸素濃度が高くなるに従いCO生成率が高まる。追加ガスG5として、空気を使用しても構わない。ガスに含まれる酸素の濃度は、例えば、市販の携帯型酸素濃度計によって検出できる。 When the oxygen concentration in the gas is 5% or more, the CO production rate when irradiated with ultraviolet rays increases compared to when the gas does not contain oxygen. Therefore, it is preferable to add oxygen gas in order to increase the CO production rate by irradiating the gas with ultraviolet rays. CO production increases with increasing oxygen concentration until the oxygen concentration reaches 25%. Air may be used as the additional gas G5. The concentration of oxygen contained in the gas can be detected by, for example, a commercially available portable oximeter.
 以上で、COの光分解方法及び光分解システムの各実施形態を説明した。上記実施形態は、本発明の一例を示すものにすぎず、本発明は、上記した実施形態に何ら限定されるものではない。本発明の趣旨を逸脱しない範囲内で、上記の実施形態に種々の変更又は改良を加えたり、上記実施形態を組み合わせたりすることができる。 Embodiments of the CO2 photolysis method and photolysis system have been described above. The above-described embodiment is merely an example of the present invention, and the present invention is not limited to the above-described embodiment. Various modifications or improvements can be made to the above-described embodiments, and the above-described embodiments can be combined without departing from the spirit of the present invention.
 例えば、第一実施形態の光分解システム10は、水素を供給する供給源11及びガス冷却器9の少なくともいずれか一つを備えていなくても構わない。第二実施形態の光分解システム20は、ガス冷却器9を備えていなくても構わない。第三実施形態の光分解システム30は、ガス冷却器9を備えていなくても構わないし、追加的に除水装置3を備えていても構わない。二酸化炭素と水を含むガスから水を減らすこと、ガスに水素を加えること、ガスに酸素を加えること、及び、ガスの温度を冷却することのうち、いずれか一つを行った場合でも、光分解効率は向上する。 For example, the photolysis system 10 of the first embodiment may not include at least one of the supply source 11 for supplying hydrogen and the gas cooler 9 . The photolysis system 20 of the second embodiment may not have the gas cooler 9 . The photolysis system 30 of the third embodiment may not have the gas cooler 9 or may additionally have the water removal device 3 . Any one of the following: reducing water from a gas containing carbon dioxide and water, adding hydrogen to the gas, adding oxygen to the gas, and cooling the temperature of the gas Decomposition efficiency is improved.
[光分解システムの適用方法]
 図9は、COの回収から固定化までのフロー図である。図9を参照しながら、上述したCOの光分解システム10を適用可能な、COの固定化法の一例を説明する。
[How to apply the photolysis system]
FIG. 9 is a flow diagram from CO 2 capture to immobilization. An example of a CO 2 fixation method to which the above-described CO 2 photolysis system 10 can be applied will be described with reference to FIG. 9 .
 ステップS1で、化石燃料の燃焼機関(例えば、火力発電所)が、COを排出する。 In step S1, a fossil fuel combustion engine (eg, a thermal power plant) emits CO2 .
 ステップS2で、高濃度CO生成装置で、排出された低濃度のCOを、高濃度のCOにする。高濃度のCOにすることで、後工程でCOを効率的に分解できる。高濃度のCOは吸着剤や物理膜により達成できることが知られている。また、上述したように、後工程におけるCOの分解効率を向上させるため、残留させても構わない。高濃度のCOにするためのステップS2は、必須のステップではない。 In step S2, the high-concentration CO2 generator converts the emitted low-concentration CO2 into high-concentration CO2 . By increasing the concentration of CO 2 , CO 2 can be efficiently decomposed in the post-process. It is known that high concentrations of CO2 can be achieved with adsorbents and physical membranes. Moreover, as described above, it may be left in order to improve the decomposition efficiency of CO 2 in the post-process. The step S2 for enriching CO2 is not a mandatory step.
 ステップS3で、高濃度のCOを、処理対象のガスG1として上述した光分解システム(10,20,30)に導き、同システム(10,20,30)内においてCOを分解して、COを生成する。光分解後の処理済みガスG3には、生成されたCOの他、残留しているCOやO、光分解システム(10,20,30)において、追加ガスとして投入されたH又はOを含む。 In step S3, the high-concentration CO 2 is guided to the photolysis system (10, 20, 30) described above as the gas G1 to be treated, and the CO 2 is decomposed in the system (10, 20, 30), produces CO. The treated gas G3 after photolysis includes CO produced, residual CO 2 and O 2 , and H 2 or O 2 .
 ステップS4で、処理済みガスG3を分離して、一酸化炭素を取出す。一酸化炭素の分離方法としては、例えば多孔性材料に一酸化炭素を吸着させる方法などが利用できる。一酸化炭素が取り除かれたガスは、再び高濃度CO生成装置に導かれ(ステップS2)、以下同様のプロセスを繰り返す。 At step S4, the treated gas G3 is separated to remove carbon monoxide. As a method for separating carbon monoxide, for example, a method of adsorbing carbon monoxide to a porous material can be used. The gas from which carbon monoxide has been removed is again led to the high-concentration CO 2 generator (step S2), and the same process is repeated thereafter.
 ステップS5で、COを、水酸化ナトリウムを含有する液体に導く。そして、COをNaOHと反応させてギ酸ナトリウムを生成する。ギ酸ナトリウムから生成されるギ酸は非常に簡単な構造の有機物であり、有機合成化学における原料として利用されるほか、燃料電池における水素源などとしても利用される。 In step S5, CO is led to a liquid containing sodium hydroxide. The CO is then reacted with NaOH to produce sodium formate. Formic acid produced from sodium formate is an organic substance with a very simple structure, and is used as a raw material in synthetic organic chemistry as well as a hydrogen source in fuel cells.
 COの固定化法で固定化した後の有機化合物が社会で消費され、再びCOとして排出されても構わない。また、上述したCOの固定化法は一例にすぎず、他の有機化合物等に固定化しても構わない。 It does not matter if the organic compound after being immobilized by the CO 2 immobilization method is consumed by society and discharged again as CO 2 . In addition, the above-described CO 2 fixation method is merely an example, and other organic compounds may be used for fixation.
1   :第一処理室
2、2a,2b:第二処理室、又は(光分解のための)処理室
3   :除水装置
4i  :(第一処理室、又は光分解のための処理室の)導入口
4o  :(第一処理室の)排出口
5   :エキシマランプ
6  :(光分解のための処理室、又は第二処理室の)排出口
7   :接続管
8   :供給管
9   :ガス冷却器
10  :光分解システム
11  :供給源
12  :流量弁
13  :温度センサ
14  :制御部
20  :光分解システム
21  :供給源
22  :流量弁
28  :供給管
30  :光分解システム
G1、G2、G3:ガス
G4、G5  :追加ガス
L1  :エキシマ光
 
1: first treatment chamber 2, 2a, 2b: second treatment chamber or treatment chamber (for photolysis) 3: dewatering device 4i: (of first treatment chamber or treatment chamber for photolysis) Inlet 4o: Outlet 5 (of first treatment chamber): Excimer lamp 6: Outlet 7 (of treatment chamber for photolysis or second treatment chamber): Connection pipe 8: Supply pipe 9: Gas cooler 10: photolysis system 11: supply source 12: flow valve 13: temperature sensor 14: controller 20: photolysis system 21: supply source 22: flow valve 28: supply pipe 30: photolysis system G1, G2, G3: gas G4, G5: additional gas L1: excimer light

Claims (18)

  1.  二酸化炭素の光分解方法であって、
     前記二酸化炭素と水を含むガスから水を減らす工程と、
     水を減らしたガスにエキシマ光を照射することにより、前記二酸化炭素を光分解する工程と、を備えることを特徴とする光分解方法。
    A method for photolysis of carbon dioxide, comprising:
    reducing water from the gas comprising carbon dioxide and water;
    and a step of photolyzing the carbon dioxide by irradiating a water-reduced gas with excimer light.
  2.  前記ガスは、0.4%以上、かつ、4.0%以下の水素を含むことを特徴とする、請求項1に記載の光分解方法。 The photolysis method according to claim 1, wherein the gas contains 0.4% or more and 4.0% or less of hydrogen.
  3.  前記ガスは、5%以上、かつ、25%以下の酸素を含むことを特徴とする、請求項1に記載の光分解方法。 The photolysis method according to claim 1, wherein the gas contains 5% or more and 25% or less of oxygen.
  4.  二酸化炭素の光分解方法であって、
     前記二酸化炭素と、5%以上、かつ、25%以下の酸素とを含むガスに、エキシマ光を照射することにより、前記二酸化炭素を光分解する工程を備えることを特徴とする光分解方法。
    A method for photolysis of carbon dioxide, comprising:
    A photodecomposition method, comprising the step of photolyzing carbon dioxide by irradiating a gas containing carbon dioxide and 5% or more and 25% or less of oxygen with excimer light.
  5.  二酸化炭素の光分解方法であって、
     前記二酸化炭素と、0.4%以上、かつ、4.0%以下の水素とを含むガスに、エキシマ光を照射することにより、前記二酸化炭素を光分解する工程を備えることを特徴とする光分解方法。
    A method for photolysis of carbon dioxide, comprising:
    A light characterized by comprising a step of photolyzing the carbon dioxide by irradiating the gas containing the carbon dioxide and 0.4% or more and 4.0% or less of hydrogen with excimer light. decomposition method.
  6.  前記エキシマ光が照射される雰囲気にある前記ガスの温度は、400K以下であることを特徴とする、請求項1~5のいずれか一項に記載の光分解方法。 The photodecomposition method according to any one of claims 1 to 5, wherein the temperature of the gas in the atmosphere irradiated with the excimer light is 400K or less.
  7.  前記エキシマ光の主たる波長は172nmであることを特徴とする、請求項1~5のいずれか一項に記載の光分解方法。 The photodecomposition method according to any one of claims 1 to 5, characterized in that the main wavelength of the excimer light is 172 nm.
  8.  前記水を減らした後のガスに含まれる水の濃度は100ppm以下であることを特徴とする、請求項1~3のいずれか一項に記載の光分解方法。 The photolysis method according to any one of claims 1 to 3, characterized in that the concentration of water contained in the gas after reducing the water is 100 ppm or less.
  9.  前記ガスを前記エキシマ光が照射される空間に送りながら、前記エキシマ光を照射することを特徴とする、請求項1~5のいずれか一項に記載の光分解方法。 The photolysis method according to any one of claims 1 to 5, characterized in that the excimer light is irradiated while sending the gas into a space irradiated with the excimer light.
  10.  二酸化炭素の光分解システムであって、
     前記二酸化炭素と水を含むガスを導入する導入口と、前記ガスから水を減らす除水装置と、前記除水装置から前記ガスを排出する排出口とを含む第一処理室と、
     前記第一処理室の前記排出口に接続され、前記排出口から排出された前記ガスが導入される第二処理室と、
     前記第二処理室内の前記ガスに対してエキシマ光を照射するエキシマランプと、を備え、
     前記第二処理室は、前記エキシマ光がその内部に存在する前記ガスに含まれる前記二酸化炭素を光分解することを特徴とする、光分解システム。
    A carbon dioxide photolysis system comprising:
    a first processing chamber including an inlet for introducing the gas containing carbon dioxide and water, a water removal device for removing water from the gas, and an outlet for discharging the gas from the water removal device;
    a second processing chamber connected to the discharge port of the first processing chamber and into which the gas discharged from the discharge port is introduced;
    an excimer lamp that irradiates the gas in the second processing chamber with excimer light,
    The photolysis system, wherein the second processing chamber photolyzes the carbon dioxide contained in the gas present therein with the excimer light.
  11.  前記第二処理室より上流で、前記ガスに水素を供給する水素供給源と、
     前記水素の供給量を調整する水素調整弁と、
     前記ガス中の水素濃度が0.4%以上、かつ、4.0%以下になるように前記水素調整弁を制御する制御部と、を備えることを特徴とする、請求項10に記載の光分解システム。
    a hydrogen supply source that supplies hydrogen to the gas upstream from the second processing chamber;
    a hydrogen regulating valve that adjusts the supply amount of the hydrogen;
    11. The light according to claim 10, further comprising a control unit that controls the hydrogen adjustment valve so that the hydrogen concentration in the gas is 0.4% or more and 4.0% or less. decomposition system.
  12.  前記第二処理室より上流で、前記ガスに酸素を供給する酸素供給源と、
     前記酸素の供給量を調整する酸素調整弁と、
     前記ガス中の酸素濃度が5%以上、かつ、25%以下になるように前記酸素調整弁を制御する制御部と、を備えることを特徴とする、請求項10に記載の光分解システム。
    an oxygen supply source upstream from the second processing chamber for supplying oxygen to the gas;
    an oxygen regulating valve that adjusts the amount of oxygen supplied;
    11. The photolysis system according to claim 10, further comprising a control unit that controls the oxygen regulating valve so that the oxygen concentration in the gas is 5% or more and 25% or less.
  13.  二酸化炭素の光分解システムであって、
     前記二酸化炭素を含むガスを導入する導入口と、
     エキシマ光を出射するエキシマランプと、
     前記導入口に接続され、かつ、前記エキシマ光がその内部に存在する前記二酸化炭素を光分解する、処理室と、
     前記処理室より上流で、前記ガスに酸素を供給する酸素供給源と、
     前記酸素の供給量を調整する酸素調整弁と、
     前記ガス中の酸素濃度が5%以上、かつ、25%以下になるように前記酸素調整弁を制御する制御部と、を備えることを特徴とする、光分解システム。
    A carbon dioxide photolysis system comprising:
    an inlet for introducing the gas containing carbon dioxide;
    an excimer lamp for emitting excimer light;
    a processing chamber connected to the inlet, wherein the excimer light photolyzes the carbon dioxide present therein;
    an oxygen supply source upstream from the processing chamber for supplying oxygen to the gas;
    an oxygen regulating valve that adjusts the amount of oxygen supplied;
    and a controller that controls the oxygen control valve so that the oxygen concentration in the gas is 5% or more and 25% or less.
  14.  二酸化炭素の光分解システムであって、
     前記二酸化炭素を含むガスを導入する導入口と、
     エキシマ光を出射するエキシマランプと、
     前記導入口に接続され、かつ、前記エキシマ光がその内部に存在する前記二酸化炭素を光分解する、処理室と、
     前記処理室より上流で、前記ガスに水素を供給する水素供給源と、
     前記水素の供給量を調整する水素調整弁と、
     前記ガス中の水素濃度が0.4%以上、かつ、4.0%以下になるように前記水素調整弁を制御する制御部と、を備えることを特徴とする、光分解システム。
    A carbon dioxide photolysis system comprising:
    an inlet for introducing the gas containing carbon dioxide;
    an excimer lamp for emitting excimer light;
    a processing chamber connected to the inlet, wherein the excimer light photolyzes the carbon dioxide present therein;
    a hydrogen supply source upstream from the processing chamber for supplying hydrogen to the gas;
    a hydrogen regulating valve that adjusts the supply amount of the hydrogen;
    and a control unit that controls the hydrogen adjustment valve so that the hydrogen concentration in the gas is 0.4% or more and 4.0% or less.
  15.  請求項10~12のいずれか一項に記載の第二処理室の内部、又は、請求項13若しくは14に記載の処理室の内部に、前記エキシマランプが配置されることを特徴とする、光分解システム。 The excimer lamp is arranged inside the second processing chamber according to any one of claims 10 to 12 or inside the processing chamber according to claim 13 or 14. decomposition system.
  16.  請求項10~12のいずれか一項に記載の第二処理室の上流、又は、請求項13若しくは14に記載の処理室の上流に配置された、前記ガスを冷却する冷却器と、
     前記冷却器で冷却された前記ガスの温度を測定する温度センサと、
     前記温度センサの測定値が400K以下になるように前記冷却器を制御する制御部と、を備えることを特徴とする、光分解システム。
    a cooler for cooling the gas, arranged upstream of the second processing chamber according to any one of claims 10 to 12 or upstream of the processing chamber according to claim 13 or 14;
    a temperature sensor that measures the temperature of the gas cooled by the cooler;
    and a controller that controls the cooler so that the measured value of the temperature sensor is 400K or less.
  17.  前記エキシマランプは、発光管内に封入された発光ガスがキセノンガスであることを特徴とする、請求項10~14のいずれか一項に記載の光分解システム。 The photolysis system according to any one of claims 10 to 14, characterized in that the excimer lamp is characterized in that the luminous gas enclosed in the arc tube is xenon gas.
  18.  前記除水装置は、ゼオライトを備えることを特徴とする、請求項10~12のいずれか一項に記載の光分解システム。
     
    Photolysis system according to any one of claims 10 to 12, characterized in that the water removal device comprises zeolite.
PCT/JP2022/009946 2021-10-29 2022-03-08 Method and system for photodecomposition of carbon dioxide WO2023074013A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-177309 2021-10-29
JP2021177309A JP2023066624A (en) 2021-10-29 2021-10-29 Photolysis method and photolysis system of carbon dioxide

Publications (1)

Publication Number Publication Date
WO2023074013A1 true WO2023074013A1 (en) 2023-05-04

Family

ID=86159668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009946 WO2023074013A1 (en) 2021-10-29 2022-03-08 Method and system for photodecomposition of carbon dioxide

Country Status (2)

Country Link
JP (1) JP2023066624A (en)
WO (1) WO2023074013A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027241A (en) * 2001-07-16 2003-01-29 Korona Kk Method for converting carbon dioxide to combustible gas by plasma gaseous phase reaction
US20030155228A1 (en) * 1999-11-30 2003-08-21 Mills John Brian Method and apparatus for air treatment
JP2007216100A (en) * 2006-02-14 2007-08-30 Tokai Univ Method for dryly fixing/removing carbon dioxide in gas
JP2011056191A (en) * 2009-09-14 2011-03-24 Kyushu Univ Method and apparatus for decomposing floating organic compound
JP2020188897A (en) * 2019-05-21 2020-11-26 ウシオ電機株式会社 Gas treatment device
JP2021011407A (en) * 2019-07-08 2021-02-04 ウシオ電機株式会社 Photolysis method and apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030155228A1 (en) * 1999-11-30 2003-08-21 Mills John Brian Method and apparatus for air treatment
JP2003027241A (en) * 2001-07-16 2003-01-29 Korona Kk Method for converting carbon dioxide to combustible gas by plasma gaseous phase reaction
JP2007216100A (en) * 2006-02-14 2007-08-30 Tokai Univ Method for dryly fixing/removing carbon dioxide in gas
JP2011056191A (en) * 2009-09-14 2011-03-24 Kyushu Univ Method and apparatus for decomposing floating organic compound
JP2020188897A (en) * 2019-05-21 2020-11-26 ウシオ電機株式会社 Gas treatment device
JP2021011407A (en) * 2019-07-08 2021-02-04 ウシオ電機株式会社 Photolysis method and apparatus

Also Published As

Publication number Publication date
JP2023066624A (en) 2023-05-16

Similar Documents

Publication Publication Date Title
US7794608B2 (en) Apparatus and method for treating water with ozone
JP4699784B2 (en) Method and apparatus for concentrating oxygen isotopes
WO2003094273A1 (en) Fuel cell power generation system and method for operating the same
CN207227001U (en) Utilize MOCVD tail gas co-producing high-purity hydrogen and the device of high-purity ammon
JP5824062B2 (en) Nitrogen-free ozone generation unit
Snoeckx et al. Suppressing the formation of NO x and N 2 O in CO 2/N 2 dielectric barrier discharge plasma by adding CH 4: scavenger chemistry at work
WO2023074013A1 (en) Method and system for photodecomposition of carbon dioxide
KR101097240B1 (en) Method and apparatus for treating exhaust gas
JP5199076B2 (en) Drain water treatment method and hydrogen production system in hydrogen production
JP2004261776A (en) Method and apparatus for concentrating isotope of oxygen
JP5392676B2 (en) Exhaust gas treatment method and treatment apparatus
EP3865856A1 (en) Device and method for simultaneously measuring mercury, cadmium, zinc and lead
JP5183099B2 (en) Ozone gas concentration method
JP7377448B2 (en) Photolysis method and apparatus
JP5927074B2 (en) Gas processing method and gas processing apparatus
JP6379339B2 (en) Gas purification method
TWI391326B (en) Production method of high purity liquefied chlorine
JPS63111930A (en) Decomposing and removing method for nitrous oxide contained in gaseous mixture
JP2007021384A (en) Decomposition method of low-concentration methane
JP2009057279A (en) Ozone generator
JP2016150888A (en) Method and apparatus for producing nitric acid
WO2024029219A1 (en) Gas decomposition device and gas decomposition method
CN103140438B (en) Produce nitric oxide production method
JP7488518B2 (en) Gas decomposition method and gas decomposition device
WO2024029318A1 (en) Gas decomposition method and gas decomposition device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886350

Country of ref document: EP

Kind code of ref document: A1