WO2023073984A1 - Common-mode filter - Google Patents

Common-mode filter Download PDF

Info

Publication number
WO2023073984A1
WO2023073984A1 PCT/JP2021/040215 JP2021040215W WO2023073984A1 WO 2023073984 A1 WO2023073984 A1 WO 2023073984A1 JP 2021040215 W JP2021040215 W JP 2021040215W WO 2023073984 A1 WO2023073984 A1 WO 2023073984A1
Authority
WO
WIPO (PCT)
Prior art keywords
common mode
current
filter
circuit
voltage
Prior art date
Application number
PCT/JP2021/040215
Other languages
French (fr)
Japanese (ja)
Inventor
将幸 大石
泰章 古庄
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/040215 priority Critical patent/WO2023073984A1/en
Priority to JP2022520860A priority patent/JP7094473B1/en
Publication of WO2023073984A1 publication Critical patent/WO2023073984A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/04Frequency selective two-port networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Definitions

  • This application relates to common mode filters.
  • the common mode voltage which is the average value of the output voltage of each output terminal, fluctuates according to the operation of the power conversion circuit. Fluctuations in the common mode voltage generate common mode current in the common mode path formed between the power conversion circuit and the stray capacitance to ground. Common mode currents can cause various problems.
  • a common mode filter In order to reduce the common mode current flowing through the power supply line, a common mode filter has been proposed that injects into the power supply line a compensating voltage or a compensating current that reduces the value of the common mode current.
  • a noise reduction device as a common mode filter is connected to a power line between an AC power supply to be compensated and a power conversion circuit, and current flowing through the power line is passed through the main winding of a common mode transformer for detection.
  • the common mode current is detected by converting the voltage of the current generated in the auxiliary winding of the detection common mode transformer.
  • an amplified voltage is generated by the amplifier circuit so as to reduce the detected value, and the amplified voltage is applied to the injection common mode transformer to inject the compensation voltage into the power line.
  • compensation targets are not limited to AC power sources as in Patent Document 1, but include, for example, power systems and electric motors as typical examples.
  • the common mode filter (noise reduction device) of Patent Document 1 includes a detection common mode transformer whose main winding is connected to a power line, and a main circuit current flows through the main winding of the detection common mode transformer. ing.
  • the diameter of the main winding must be at least a certain thickness. For this reason, it is difficult to reduce the size of the detection common mode transformer, and there is a problem that the size reduction of the common mode filter is hindered.
  • the present application was made to solve the above-mentioned problems, and aims to provide a common mode filter that can be made smaller than before.
  • the common mode filter disclosed in the present application is a common mode filter connected to a power line between a compensation target and a power conversion circuit, and injects into the power line a compensation voltage or a compensation current that suppresses the common mode current flowing through the power line.
  • one or more injection circuits a first of the injection circuits having a main winding provided on the power line and an auxiliary winding magnetically coupled to the main winding; and a current detector for detecting the current flowing through the auxiliary winding, wherein at least one of the injection circuits injects into the power line a compensation voltage or current generated based on the current detected by the current detector. It is something to do.
  • FIG. 1 is a circuit diagram showing a common mode filter according to Embodiment 1;
  • FIG. 1 is a circuit diagram showing a power conversion circuit according to Embodiment 1;
  • FIG. 1 is a circuit diagram showing an amplifier circuit and a current detection section according to Embodiment 1, and is a diagram when a shunt resistor is used as the current detection section;
  • FIG. 1 is a circuit diagram showing an amplifier circuit and a current detection section according to Embodiment 1, and is a diagram when a CT is used as the current detection section;
  • FIG. 4A and 4B are diagrams for explaining the principle of operation of the common mode filter according to the first embodiment;
  • FIG. 4 is a circuit diagram showing an example in which a band limiting function is added to the amplifier circuit according to Embodiment 1;
  • FIG. 10 is a circuit diagram showing a common mode filter according to Embodiment 2;
  • FIG. 10 is a diagram showing the division of functions between two filter units according to the second embodiment;
  • FIG. 10 is a circuit diagram showing two filter units according to the second embodiment, and shows an example in which a Y capacitor is used as an injection circuit of the second filter unit;
  • FIG. 10 is a circuit diagram showing two filter units according to Embodiment 2, in the case of using a common mode transformer as an injection circuit of the second filter unit;
  • FIG. 10 is a circuit diagram showing a common mode filter according to Embodiment 3, and is a diagram showing an example in which a common mode transformer is used as a common mode detection circuit;
  • FIG. 10 is a circuit diagram showing a common mode filter according to Embodiment 3, and is a diagram showing an example in which a Y capacitor is used as a common mode detection circuit;
  • FIG. 1 is a circuit diagram showing a common mode filter according to Embodiment 1.
  • FIG. Common mode filter 100 is connected between power conversion circuit 2 and compensation object 3 .
  • the compensation target 3 is, for example, a three-phase (u-phase, v-phase, and w-phase) AC power supply, and the common mode filter 100 is connected via a u-phase power line 4u, a v-phase power line 4v, and a w-phase power line 4w.
  • the Common mode filter 100 is connected to power conversion circuit 2 via u-phase power line 5u, v-phase power line 5v, and w-phase power line 5w.
  • the power conversion circuit 2 and the compensation target 3 are connected on the ground side by a ground line 6 .
  • a power conversion system 1000 is configured by the power conversion circuit 2, the compensation target 3, and the common mode filter 100, which are connected to each other as described above.
  • the power lines 4u, 4v, and 4w may be collectively referred to as the power lines 4 below.
  • the power lines 5u, 5v, and 5w may also be collectively referred to as the power line 5 in some cases.
  • Common mode filter 100 includes common mode transformer 11 , amplifier circuit 12 , and current detector 13 .
  • the common mode transformer 11 is composed of main windings 111u, 111v, and 111w corresponding to the u-phase, v-phase, and w-phase, respectively, and an auxiliary winding 112 magnetically coupled to the main windings 111u, 111v, and 111w. be done.
  • " ⁇ " in the figure represents the polarity of each winding.
  • the main windings 111u, 111v, and 111w may be collectively referred to as the main winding 111 below.
  • the main winding 111 of each phase is connected to the power lines 4 and 5 corresponding to each phase.
  • An output terminal 125 s of the amplifier circuit 12 is connected to one end of the auxiliary winding 112 , and an output terminal 125 g of the amplifier circuit 12 is connected to the other end of the auxiliary winding 112 via the current detector 13 .
  • the current detection unit 13 converts the voltage of the current i o flowing through the auxiliary winding 112 to obtain a detection value i o *.
  • a detection value i o * of the current detection unit 13 is input to the amplifier circuit 12 .
  • the amplifier circuit 12 amplifies the detected value i o * input via the input terminals 124s and 124g (not shown in FIG. 1) so that the detected value i o * decreases for all bands or a specific band. It outputs the amplified voltage v o .
  • Amplified voltage v o is applied to auxiliary winding 112 , and compensation voltage v com corresponding to amplified voltage v o is injected from main winding 111 between power lines 4 and 5 . Since the compensating voltage v com functions to cancel the common mode voltage output by the power conversion circuit 2, the common mode current in all bands or a specific band is reduced. Since the first embodiment has only one filter section, the common mode filter 100 corresponds to the first filter section.
  • FIG. 2 is a circuit diagram showing a power conversion circuit according to Embodiment 1.
  • Embodiment 1 as an example of the power conversion circuit 2, a power conversion circuit having a configuration of a three-phase full bridge circuit is used.
  • the three-phase full-bridge circuit of the power conversion circuit 2 employs six self-extinguishing power semiconductor switches with anti-parallel diodes as the semiconductor switching elements 201 .
  • the semiconductor switching element 201 the semiconductor switching element 201 on the positive electrode side and the semiconductor switching element 201 on the negative electrode side are connected in series to form an arm. to form a three-phase full-bridge circuit.
  • Each arm is connected to output terminals 204u, 204v, and 204w corresponding to the u-phase, v-phase, and w-phase, respectively, and is connected to the power line 4 via the output terminals 204u, 204v, and 204w.
  • a DC section is provided in parallel with the three-phase full bridge circuit, and in this DC section, a smoothing DC capacitor 202 and a DC voltage source 203 are connected in parallel with each other.
  • a ground capacitance 205 exists between the three-phase full bridge circuit and the DC portion and the ground line 6 .
  • a ground terminal 206 is provided and a capacitor to ground 205 is connected between the three-phase full bridge circuit and the DC section and the ground terminal 206 .
  • the power conversion circuit 2, compensation target 3, power line 4, and power line 5 are not limited to the three-phase three-wire system, and three-phase four-wire, single-phase two-wire, and single-phase three-wire circuits are applied. You can also Further, in Embodiment 1, an example using a three-phase full bridge circuit is used as the power conversion circuit 2, but the circuit configuration of the power conversion circuit 2 only needs to have an AC/DC conversion function, and a three-level converter A circuit configuration such as a multi-level converter including
  • the power conversion circuit 2 When the compensation target 3 is a power system, the power conversion circuit 2 performs a forward conversion operation to receive power from the power system, or performs a reverse conversion operation to transmit power to the power system. Further, when the compensation target 3 is an electric motor, the power conversion circuit 2 performs a forward conversion operation when the electric motor is used as a generator, and performs an inverse conversion operation when the electric motor is used as a motor.
  • the power conversion circuit 2 changes the output voltage by the switching operation of the semiconductor switching element 201 when performing the forward conversion operation or the inverse conversion operation. Therefore, the average value of the output terminal voltage of the power conversion circuit 2 , that is, the common mode voltage varies for each switching operation of the semiconductor switching element 201 .
  • the common mode voltage fluctuates, a common mode current flows through a common mode path formed by power conversion circuit 2 , ground line 6 , compensation object 3 , power line 5 , common mode filter 100 and power line 4 .
  • the current i o flowing through the auxiliary winding 112 is voltage-converted by the current detection unit 13 to acquire the detected value i o *.
  • the current detection unit 13 it is conceivable to use a purely resistive shunt resistor 131 as shown in FIG.
  • the amplifier circuit 12 configured as an inverting amplifier circuit includes an operational amplifier 121 , an input resistor 122 and a negative feedback resistor 123 .
  • An input terminal 124 s of the amplifier circuit 12 forms an inverting input terminal of the operational amplifier 121
  • an input terminal 124 g forms a non-inverting input terminal of the operational amplifier 121
  • Output terminals 125 s and 125 g of the amplifier circuit 12 constitute output terminals of the operational amplifier 121 .
  • An input resistor 122 is provided at the input terminal 124s, and is connected to the output terminal 125s through a negative feedback resistor 123.
  • FIG. The input terminal 124g is connected to the output terminal 125g.
  • the output terminal of the operational amplifier 121 is divided by the auxiliary winding 112 of the common mode transformer 11 into an output terminal 125s and an output terminal 125g.
  • the auxiliary winding 112 has one end connected to the output terminal 125s and the other end connected to the output terminal 125g.
  • the output terminal 125 s connects the operational amplifier 121 and the auxiliary winding 112 and is also connected to the negative feedback resistor 123 .
  • the output terminal 125g connects the auxiliary winding 112 and the input terminal 124g and is provided with a shunt resistor 131 .
  • a connection point with the input terminal 124 s is provided between the shunt resistor 131 and the auxiliary winding 112 .
  • the resistance values of the input resistor 122, the negative feedback resistor 123, and the shunt resistor 131 are R1, R2, and R, respectively.
  • V cc and ⁇ V cc in FIG. 3 represent the positive power supply terminal and the negative power supply terminal of the operational amplifier 121 .
  • the amplifier circuit 12 is configured as an inverting amplifier circuit in the first embodiment, the input value of the amplifier circuit 12 in this case is -i o *.
  • the amplifier circuit 12 is configured as a non-inverting amplifier circuit, the input value of the amplifier circuit 12 with respect to the detection value i o * of the shunt resistor 131 is i o *.
  • the amplifier circuit 12 performs negative feedback control so that the current value of all the bands or a specific band of the input values inputted through the input terminals 124s and 124g is reduced.
  • the amplifier circuit 12 is configured as an inverting amplifier circuit
  • the input value inputted to the amplifier circuit 12 is amplified by the amplifier circuit 12 with a gain of -R2/R1.
  • the amplifier circuit 12 outputs an amplified voltage v o proportional to the current i o flowing through the auxiliary winding 112 .
  • the amplifier circuit 12 operates as a resistor whose resistance value is R2 ⁇ R/R1.
  • the current detection section 13 has an input terminal of the CT 132 provided at the output terminal 125g, which is provided at the output terminal 125g of the amplifier circuit 12, and a terminating circuit 133 at the output terminal of the CT 132.
  • the termination circuit 133 has a resistor with a resistance value R3. One end of the termination circuit 133 is connected to the input terminal 124s, and the other end of the termination circuit 133 is connected to the input terminal 124g. Unlike the case of using the shunt resistor 131 shown in FIG. 3, the output terminal 125g and the input terminal 124g are not connected.
  • the CT 132 transforms the current io flowing through the auxiliary winding 112 by k times, and the termination circuit 133 performs voltage conversion on the current transformed by the CT 132 .
  • the detected value i o * is input to the amplifier circuit 12 through the input terminals 124s and 124g, and is amplified by the amplifier circuit 12 with a gain of ⁇ R2/R1.
  • the amplifier circuit 12 when the CT 132 is used as the current detector 13, the amplifier circuit 12 outputs an amplified voltage vo proportional to the current io flowing through the auxiliary winding 112, similarly to when the shunt resistor 131 is used. This means that when the CT 132 is used as the current detection unit 13, the amplifier circuit 12 operates as a resistor whose resistance value is k ⁇ R2 ⁇ R3/R1.
  • FIG. 5A and 5B are diagrams for explaining the principle of operation of the common mode filter according to Embodiment 1.
  • FIG. Since the amplifier circuit 12 of the common mode filter 100 described above can be regarded as a resistor R*, the circuit of the common mode transformer 11 is equivalent to a circuit in which the auxiliary winding 112 is connected to the resistor R*.
  • the resistance value of the resistor R* is designed to be large, the common mode transformer 11 operates as a common mode choke coil having an inductance L, and the common mode transformer 11 suppresses the common mode current.
  • the common mode transformer 11 When the common mode transformer 11 is operated as a common mode choke coil, the magnetic coupling between the main winding 111 and the auxiliary winding 112 of the common mode transformer 11 produces a voltage corresponding to the amplified voltage vo generated by the amplifier circuit 12. Injected into the common mode path including the power lines 4, 5, the common mode current is suppressed. In this respect, the common mode transformer 11 is in common with a conventional "injection common mode transformer".
  • the common mode filter 100 of Embodiment 1 performs negative feedback control on the current io flowing through the auxiliary winding 112, the common mode current flowing only through the main winding 111 (common mode current flowing only through the main circuit) is cannot be suppressed. On the other hand, since the common mode current shunted to the auxiliary winding 112 is suppressed, the common mode current can be reduced as a whole.
  • FIG. 6 is a circuit diagram showing an example of adding a band limiting function to the amplifier circuit according to the first embodiment.
  • high-pass filters 126 and 127 are provided at input terminals 124s and 125s and output terminals 125s and 125g, respectively.
  • the high-pass filter 126 is composed of a capacitor connected in series with the input terminal 124s and a resistor provided in a circuit connecting the input terminal 124s and the input terminal 124g.
  • the high-pass filter 127 is composed of a capacitor connected in series with the output terminal 125s and a resistor provided in a circuit connecting the output terminal 125s and the output terminal 125g.
  • a high pass filter 126 removes low frequency components from the input value to the operational amplifier 121 .
  • a high-pass filter 127 removes low-frequency components from the amplified voltage vo , which is the output of the operational amplifier 121 .
  • the high-pass filter 126 and the high-pass filter 127 By providing the high-pass filter 126 and the high-pass filter 127, the components below the cutoff frequency of the high-pass filter 126 and the high-pass filter 127 are suppressed in the amplified voltage vo . If the cutoff frequency of high-pass filter 126 and high-pass filter 127 is 70 kHz, amplifier circuit 12 has high impedance for components above 150 kHz and low impedance for components below 70 kHz.
  • a common mode current flowing through the common mode path is split between the exciting inductance Lm of the common mode transformer 11 and the amplifier circuit 12 .
  • the amplifier circuit 12 is set to have a high impedance with respect to high frequency components of 150 kHz or higher, a large amount of the high frequency components of the common mode current flows through the exciting inductance Lm .
  • the impedance of the main winding 111 increases, so the common mode transformer 11 operates as a common mode choke coil that suppresses high frequency components of the common mode current.
  • the amplifier circuit 12 has a low impedance for low frequency components of less than 70 kHz. Mode current becomes dominant.
  • the main winding 111 can ideally be considered to be in a short-circuited state.
  • the common mode transformer 11 generates
  • the magnetic flux ⁇ is proportional to the current through the magnetizing inductance Lm .
  • the common mode choke coil operates only for the desired compensation band, the magnetic flux of the frequency component outside the compensation band is suppressed among the magnetic flux ⁇ generated in the common mode transformer 11. Compared to the case where the transformer 11 is operated as a common mode choke coil, the size of the common mode transformer 11 can be reduced.
  • the conventional common mode filter is provided with a separate common mode transformer for detection.
  • a current corresponding to the ratio is passed through the auxiliary winding, and the detected value is obtained by converting the current flowing through the auxiliary winding into a voltage.
  • the main circuit current flows through the main winding of the detection common mode transformer.
  • the size of the filter is also increased, which causes an increase in cost.
  • Embodiment 1 utilizes the fact that in a conventional common mode filter, the detection common mode transformer and the injection common mode transformer are connected by a power line and are on the same path.
  • the common mode currents flowing through the main windings of both the detection common mode transformer and the injection common mode transformer are the same.
  • the common mode transformer 11 is partially in common with the injection common mode transformer in the conventional common mode filter as described above, and the current io caused by the common mode current of the main winding 111 is supplied to the auxiliary winding 112. also flows.
  • the current i o flowing through the auxiliary winding 112 of the common mode transformer 11 is detected by the current detection unit 13 including the shunt resistor 131 and the like, and voltage-converted to obtain the detected value i o *.
  • the current io is sufficiently small compared to the main circuit current, and the rated current of the current detection section 13 can be set low. Therefore, when the shunt resistor 131 is used in the current detection section 13, a resistor with a low power rating can be used, and when the CT 132 and the termination circuit 133 are used, a CT with a low current rating can be used. Therefore, by omitting the common mode transformer for detection and realizing its function by the small and inexpensive current detection unit 13, the common mode filter 100 can be made smaller and the cost can be prevented from increasing.
  • the amplifier circuit 12 may be any device that can perform negative feedback control so as to reduce the detection value i o * in all bands or in a specific band.
  • the non-inverting amplifier circuit described above, or an amplifier circuit using a push-pull circuit composed of transistors may be used.
  • a common mode transformer having a main winding provided on a power line and an auxiliary winding magnetically coupled to the main winding, an amplifier circuit that outputs an amplified voltage to the auxiliary winding, and a current detector that detects the current flowing through the auxiliary winding, and the common mode transformer injects a compensation voltage generated based on the current flowing through the auxiliary winding into the power line. That is, the detected value obtained by voltage-converting the current flowing through the auxiliary winding is input to the amplifier circuit, and the amplifier circuit generates an amplified voltage so that the current flowing through the auxiliary winding becomes smaller. Output to auxiliary winding. An amplified voltage is applied to the auxiliary winding, and a compensation voltage corresponding to this amplified voltage is injected into the power line via the main winding, thereby suppressing the common mode current.
  • FIG. 7 is a circuit diagram showing a common mode filter according to Embodiment 2.
  • the common mode filter 200 is connected between the power conversion circuit 2 and the compensation target 3, like the common mode filter 100 of the first embodiment.
  • the common mode filter 200 is composed of a first filter section 101 and a second filter section 102 which are connected to each other via a u-phase power line 7u, a v-phase power line 7v, and a w-phase power line 7w. is different from the common mode filter 100 of the first embodiment.
  • the first filter unit 101 is connected via the compensation object 3 by the power line 5, as in the common mode filter 100 of the first embodiment, and includes a common mode transformer 11, an amplifier circuit 12, and a current detection unit 13. .
  • the detected value i o * of the current detection unit 13 in the second embodiment is input to the amplifier circuit 12 and is also input to the amplifier circuit 22 to be described later.
  • the second filter unit 102 is connected to the power conversion circuit 2 via the power line 4, and receives the injection circuit 21 connected to the power line 4 and the detection value i o * of the current detection unit 13. and an amplifier circuit 22 that outputs an amplified voltage vo2 .
  • the injection circuit 21 is configured using, for example, a Y capacitor. Like the amplifier circuit 12, the amplifier circuit 22 performs negative feedback control on the detected value i o *.
  • the Y capacitor of the injection circuit 21 is composed of a capacitor 21u connected to the power line 4u, a capacitor 21v connected to the power line 4v, and a capacitor 21w connected to the power line 4w.
  • the neutral point of this Y capacitor is connected to the output side of an amplifier circuit 22 , and the amplifier circuit 22 is connected between the neutral point and the ground line 6 .
  • the common mode voltage output from the power conversion circuit 2 is canceled by the compensation voltage v com .
  • a compensation current is injected into the power line 4 by the amplified voltage vo2 applied between the neutral point of the Y capacitor of the injection circuit 21 and the ground line 6 .
  • This compensating current is a current opposite in phase to the common mode current flowing through the common mode path, and cancels out the common mode current.
  • the common mode filter 200 shares functions between the first filter section 101 and the second filter section 102 .
  • FIG. 8 is a diagram showing the division of functions between two filter units according to the second embodiment.
  • the amplifier circuit (amplifier circuit 12) of the first filter unit 101 is set to have a large gain for high frequency components of 150 kHz or higher in the common mode current.
  • the amplifier circuit (amplifier circuit 22) of the second filter section 102 is set to have a large gain for low-frequency components around several tens of kHz, which is the frequency of general leakage current.
  • the first filter unit 101 has an auxiliary filter as shown in FIG. A resistor R* is connected to the winding 112, and operates as a common mode choke coil in which the exciting inductance Lm and the resistor R* are connected in parallel. Since the impedance of the exciting inductance Lm is ideally proportional to the frequency, the impedance of the common mode choke coil has frequency characteristics. Therefore, the first filter section 101 has low impedance in the low frequency band and high impedance in the high frequency band. For this reason, the amplifier circuit of the first filter unit 101 is given a large gain with respect to the high frequency component to suppress the high frequency component of the common mode current.
  • the gain of the amplifier circuit 22 in the low frequency band is set large. Thereby, the second filter section 102 suppresses the low frequency component of the common mode current.
  • FIG. 9 is a circuit diagram showing two filter units according to Embodiment 2, and shows a case where a Y capacitor is used as the injection circuit of the second filter unit.
  • a high-pass filter 126 is provided at the input terminals 124s and 125s.
  • the cutoff frequency of the high-pass filter 126 is set to 70 kHz, and the impedance of the amplifier circuit 12 is set low for frequency components below 70 kHz.
  • the amplifier circuit 22 of the second filter section 102 is configured as an inverting amplifier circuit and includes an operational amplifier 221 , an input resistor 222 and a negative feedback resistor 223 .
  • An input terminal 224 s of the amplifier circuit 22 is an inverting input terminal of the operational amplifier 221
  • an input terminal 224 g is a non-inverting input terminal of the operational amplifier 221 .
  • the output terminal 225 of the amplifier circuit 22 constitutes the output terminal of the operational amplifier 221 and is connected to the neutral point of the Y capacitor of the injection circuit 21 .
  • the operational amplifier 221 and the input terminal 224g are connected to the ground line 6 via an electric line 229.
  • the input terminal 224 s is connected to the connection point between the shunt resistor 131 and the auxiliary winding 112 .
  • a low-pass filter 226 is provided at the input terminals 224s and 224g.
  • the resistance values of the input resistor 222 and the negative feedback resistor 223 are R3 and R4, respectively.
  • Vcc2 and -Vcc2 in FIG. 9 represent the positive power supply terminal and negative power supply terminal of the operational amplifier 221, respectively.
  • the detected value i o * obtained by the shunt resistor 131 is input to the amplifier circuit 22 via the input terminals 224s and 224g.
  • the amplifier circuit 22 is an inverting amplifier circuit and the input terminals 224s and 224g are provided with a low-pass filter 226, the input value of the amplifier circuit 22 is only the low-frequency component of -i o *. . Therefore, the amplifier circuit 22 performs negative feedback control so that the current value of the low frequency component of the input value of the amplifier circuit 22 is reduced.
  • the input value of the amplifier circuit 22 is amplified by the amplifier circuit 22 with a gain of -R4/R3.
  • a cut-off frequency of the low-pass filter 226 is, for example, 40 kHz. Since the amplifier circuit 12 of the first filter section 101 has a low impedance with respect to the low frequency component, the impedance is also low with respect to the frequency component of 40 kHz. For this reason, the common mode transformer 11 operates as a CT with respect to low-frequency components, in which the current ratio between the main winding 111 and the auxiliary winding 112 is determined by the turns ratio of the common mode transformer 11, according to the equal ampere-turn theorem. do. Therefore, the first filter unit 101 can obtain the detection value i o * without lowering the detection gain for the low-frequency component.
  • the first filter unit 101 detects common mode current and suppresses the high frequency component of the common mode current, and the second filter unit 102 suppresses the low frequency component of the common mode current. In this way, the functions are shared according to the frequency component of the common mode current. As a result, both high frequency components and low frequency components of the common mode current are suppressed. Further, since the common mode current is detected by the first filter section 101, there is no need to separately provide a detection common mode transformer for detecting the common mode current.
  • the input terminals 124s and 124g of the amplifier circuit 12 are provided with the high-pass filters 126.
  • the high-pass filters are also provided at the output terminals 125s and 125g.
  • a filter may be provided.
  • high-pass filters may be provided only at the output terminals 125s and 125g.
  • a low-pass filter may be provided on the output side of the operational amplifier 221, or may be provided only on the output side.
  • the two filter units, the first filter unit 101 and the second filter unit 102 share the functions according to the frequency of the compensation band, and the two filter units are used to completely remove the common mode current. It suppresses the frequency components of the band. Therefore, the mode of sharing functions is not limited to the mode in which first filter section 101 suppresses high frequency components and second filter section 102 suppresses low frequency components, as described above. That is, the desired compensation band is divided into a first frequency band and a second frequency band, and only the frequency components of the first frequency band are passed through or blocked by the amplifier circuit 12 of the first filter section 101.
  • a circuit may be provided, and a band limiting circuit may be provided to pass or block only the frequency component of the second frequency band in the amplifier circuit 22 of the second filter section 102 .
  • the amplifier circuit 12 of the first filter section is provided with the high-pass filter 126
  • the amplifier circuit 22 of the second filter section is provided with the low-pass filter 226.
  • band-limiting circuits that is, high-pass filters, low-pass filters, band-pass filters, and band-elimination filters may be selected.
  • the first filter unit 101 A compensating voltage or compensating current is injected for the first frequency band (or the second frequency band), and the second filter section 102 injects the compensating voltage or the compensating current for the second frequency band (or the first frequency band). Any configuration is acceptable.
  • FIG. 10 is a circuit diagram showing two filter units according to Embodiment 2, and shows an example in which a common mode transformer is used as an injection circuit of the second filter unit.
  • the injection circuit 23 in the example shown in FIG. It consists of a common mode transformer with One end of the auxiliary winding 232 is connected to the output terminal 225 of the amplifier circuit 22 , and the other end of the auxiliary winding 232 is connected to the electric circuit 2291 of the amplifier circuit 22 .
  • the electric line 2291 is connected to the input terminal 224 g and the operational amplifier 221 .
  • FIG. 10 is a circuit diagram showing two filter units according to Embodiment 2, and shows an example in which a common mode transformer is used as an injection circuit of the second filter unit.
  • the injection circuit 23 in the example shown in FIG. It consists of a common mode transformer with One end of the auxiliary winding 232 is connected to the output terminal 225 of the amplifier circuit 22 , and the other end of the auxiliary winding 232 is connected to the electric circuit 2291
  • the frequency band corresponding to the iron core of each common mode transformer (the above function A magnetic material suitable for the frequency band in which the common mode current is suppressed in each filter section may be selected according to the assignment.
  • the common mode current can be suppressed in a wider frequency band than in the first embodiment while preventing each common mode transformer from increasing in size.
  • the common mode filter is provided with two filter sections, and the first filter section that ensures high impedance for high frequency components suppresses the high frequency components of the common mode current and suppresses the high frequency components for low frequency components.
  • the second filter section that ensures the impedance, the function of suppressing the low-frequency component of the common mode current is shared according to the frequency. If the impedance of the first filter section is also increased for low frequency components, a large common mode choke coil is required for the first filter section.
  • the low frequency component of the common mode current is suppressed by the second filter section without increasing the impedance. Therefore, it is possible to suppress the common mode current in a wide frequency band while preventing the common mode filter from increasing in size.
  • FIG. 11 is a circuit diagram showing a common mode filter according to Embodiment 3, and shows an example in which a common mode transformer is used as a common mode detection circuit.
  • the common mode filter 300 is connected between the power conversion circuit 2 and the compensation target 3 in the same manner as the common mode filter 100 of the first embodiment and the common mode filter 200 of the second embodiment. 301 and the second filter unit 102 .
  • the first filter section 301 is a current detection section having a common mode transformer 11, an amplifier circuit 32, and a shunt resistor 131, like the first filter section 101 of the second embodiment. 13. Further, the first filter section 301 is provided with a common mode detection circuit 14 and a termination circuit 15 between the compensation target 3 and the amplifier circuit 32 .
  • the common mode detection circuit 14, ie, the second common mode transformer has a main winding 141u connected to the power line 5u, a main winding 141v connected to the power line 5v, a main winding 141w connected to the power line 5w, and an auxiliary winding 141w connected to the power line 5w.
  • the main windings 141u, 141v, and 141w are composed of a common mode transformer having a winding 142, and a main circuit current flows through the main windings 141u, 141v, and 141w, thereby controlling the turns ratio between the main windings 141u, 141v, and 141w and the auxiliary winding 142.
  • a current i in flows through the auxiliary winding 142 .
  • the termination circuit 15 voltage-converts the current i in to obtain the detection value i in *.
  • the detected value i in * is input to the amplifier circuit 32 through the termination circuit 15 configured as a high-pass filter.
  • the amplifier circuit 32 performs negative feedback control on the detected value i in * so that the detected value i in * decreases for all bands or a specific band. That is, the amplifier circuit 32 amplifies the detected value i in * so that the detected value i in * decreases, and outputs the amplified voltage v o .
  • the amplified voltage v o is applied to the auxiliary winding 112 , and a compensation voltage v com (not shown in FIG.
  • the circuit configuration of amplifier circuit 32 other than the above is the same as that of amplifier circuit 12 of the first and second embodiments.
  • the impedance of the termination circuit 15 is greater than the impedance of the magnetizing inductance of the common mode transformer 14 for all frequency bands or a specific frequency band.
  • the second filter section 102 is similar to that of the second embodiment. That is, the detection value i o * of the current detection unit 13 (shunt resistor 131) is input to the amplification circuit 22, and the amplification circuit 22 amplifies the detection value i o * so that the detection value i o * decreases. Output voltage v o2 . As a result, the amplified voltage vo2 is applied between the neutral point of the Y capacitor of the injection circuit 21 and the ground line 6, and a compensation current corresponding to the amplified voltage vo2 is injected into the power line 4. FIG. As mentioned above, this compensating current cancels out the common mode current.
  • the amplifier circuit 32, the detected value i in *, and the amplified voltage v o in the third embodiment correspond to the first amplifier circuit, the first detected value, and the first amplified voltage, respectively.
  • the amplifier circuit 22, the detected value i o *, and the amplified voltage v o2 correspond to the second amplifier circuit, the second detected value, and the second amplified voltage, respectively.
  • the termination circuit 15 configured as a high-pass filter is provided between the common mode detection circuit 14 and the amplifier circuit 32 to remove the low frequency component from the detection value i in * input to the amplifier circuit 32. are doing.
  • the cutoff frequency of the termination circuit 15 high-pass filter
  • the compensation band of the first filter section 301 can be set to 150 kHz or higher.
  • the operation of the second filter unit 102 is the same as in the second embodiment. Therefore, in the third embodiment as well, the first filter section 301 and the second filter section 102 share the same functions as in the second embodiment. Thereby, common mode current can be suppressed in a wide frequency band.
  • the amplification circuit 32 and the common mode transformer 11 detect high frequency components of 150 kHz or higher. Suppresses common mode currents. Furthermore, as in the second embodiment, the input of the amplifier circuit 22 of the second filter section 102 is the detection value i o * of the current detection section 13 (shunt resistor 131) of the first filter section 301. . Therefore, the second filter section 102 does not require a dedicated common mode detection circuit.
  • a common detection circuit is sometimes provided for a plurality of filter units or injection circuits.
  • a plurality of filter units or injection circuits are connected to the output terminal of the circuit, respectively, and the current flowing through the auxiliary winding of the detection common mode transformer constituting the common detection circuit is detected by each of the plurality of filter units or injection circuits. voltage conversion was performed in each terminal circuit.
  • the common detection circuit is used as a common mode choke coil, part of the current flowing through the main winding of the common mode transformer for detection is excited. Consumed as current.
  • the impedance of the exciting inductance Lm is lower than the impedance of the termination circuit, so most of the common mode current flows through the excitation inductance Lm instead of the termination circuit.
  • the current value of the current flowing through the secondary side of the transformer is smaller than the current value obtained by the equal ampere-turn theorem, that is, the value obtained by multiplying the current value of the primary side current by the turns ratio of the transformer. value.
  • the detected value of the low frequency component of the common mode current becomes small, making it difficult to secure the feedback gain for the low frequency component.
  • the detection value i in * detected by the common mode detection circuit 14 is used to suppress the high frequency component of the common mode current, and the current detection unit 13 (shunt resistor 131) is used to suppress the low frequency component.
  • the detection value i o * detected in is used.
  • the detected value io * is obtained by voltage-converting the current io flowing through the auxiliary winding 112 of the common mode transformer 11 for suppressing the high frequency component of the common mode current.
  • a termination circuit 15 configured as a high-pass filter is provided between the amplifier circuit 32 and the common mode detection circuit 14 to prevent low frequency components from being input to the amplifier circuit 32 .
  • the common mode transformer 11 operates as a CT with respect to low frequency components, and the amplified voltage vo, which is the output of the amplifier circuit 32, contains almost no low frequency components.
  • the current io flowing through the auxiliary winding 112 for the low-frequency component is determined by the turns ratio between the main winding 111 and the auxiliary winding 112 of the common mode transformer 11, according to the equi-ampere-turn theorem. This means that it is possible to prevent mixing of detection disturbance such as excitation current in detection of the low-frequency component of the common mode current to be suppressed.
  • the low frequency component of the common mode current can be obtained with high accuracy, and the accuracy of the input value of the amplifier circuit 22 of the second filter unit 102 that suppresses the low frequency component is also improved. ing. As a result, the amount of attenuation of the low-frequency component of the common-mode current can be improved, and the low-frequency component can be further suppressed. It's becoming
  • a high resistance of about 100 ⁇ is connected to the auxiliary winding 142.
  • the configuration is not limited to this, and the detection value i in * can be obtained from the voltage drop corresponding to the current i in flowing through the auxiliary winding 142. Any passive circuit may be used as long as it is so long.
  • the common mode detection circuit 14 does not operate as a common mode choke coil, but operates as a CT. , this band is the entire band), the detection gain of the common mode detection circuit 14 is not lowered.
  • a circuit having characteristics of a high-pass filter, a low-pass filter, a band-pass filter, and a band-elimination filter may be connected to the auxiliary winding 142 according to the band to be compensated by the first filter unit. may be connected so that the auxiliary winding 142 does not limit the band.
  • the common mode detection circuit can be configured with a Y capacitor.
  • FIG. 12 is a circuit diagram showing a common mode filter according to Embodiment 3, and shows an example in which a Y capacitor is used as the common mode detection circuit.
  • first filter section 3011 includes common mode transformer 11 , amplifier circuit 32 , and current detection section 13 .
  • the first filter section 301 is provided with a common mode detection circuit 18 between the compensation target 3 and the amplifier circuit 32 .
  • the common mode detection circuit 18 is composed of a Y capacitor having a capacitor 181u connected to the power line 5u, a capacitor 181v connected to the power line 5v, and a capacitor 181w connected to the power line 5w.
  • the neutral point of this Y capacitor is connected to ground line 6 via circuit 182 . again.
  • Circuit 182 is connected to input terminal 124s and input terminal 124g of amplifier circuit 32 .
  • a voltage dividing capacitor 183 is provided between the connection point between the circuit 182 and the input terminal 124s and the connection point between the circuit 182 and the input terminal 124g.
  • the capacitor 183 detects, as a detection value v in *, a voltage according to the main circuit current flowing through the capacitors 181u, 181v, and 181w.
  • This detected value v in * is input to the amplifier circuit 32 through the input terminals 124s and 124g. Others are the same as the example shown in FIG. A detection value i o * detected by the current detection unit 13 is input to the amplifier circuit 22 of the second filter unit 102 .
  • common mode detection circuit 14 (or common mode detection circuit 18) is provided, and common mode detection circuit 14 (18) is provided in first filter section 301 (or first filter section 3011).
  • the second filter unit 102 uses the detected value i o * based on the current i in flowing through the auxiliary winding 112 of the common mode transformer 11 as an input. Since the common mode transformer 11 corresponds to the injection circuit of the first filter section 301 (3011), one detection circuit is provided for the two injection circuits (common mode transformer 11 and injection circuit 21). Therefore, in the third embodiment, it can be said that the common mode filter is made smaller than the conventional one. In addition, this also realizes cost reduction of the common mode filter.
  • the detected value i o * obtained by voltage-converting the current detected by the current detection unit 13, or the voltage-converted current detected by the common mode detection circuit 14 is Amplification circuits 12, 22, and 32 generate amplified voltages v o and v o2 using the obtained detection value i in * as an input, and the amplified voltages v o and v o2 are applied to the auxiliary winding 112, etc., so that the power line 5 Inject compensation voltage.
  • an A/D (analog/digital) converter a digital element such as a DSP or FPGA, a An analog) converter or an output circuit having a similar function (hereinafter "D/A converter, etc.") may be provided instead of the amplifier circuit 12.
  • D/A converter an analog/digital converter
  • the input signal taken in by the A/D converter is processed by the digital element, and the signal output from the digital element is converted to the output voltage by the D/A converter or the like so that the input signal is reduced.
  • a compensation voltage is injected into the power line 5 .
  • At least one of the plurality of filter units includes an amplifier circuit or the like that performs negative feedback control on the value i o * detected by the current detection unit 13, and detects
  • a configuration may be used in which a compensating voltage or compensating current is injected based on the value i o *.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Conversion In General (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

The purpose of the present invention is to provide a common-mode filter that can be more reduced in size than a conventional common-mode filter. A common-mode filter (100) is connected to power lines (4, 5) between an object (3) to be compensated and a power conversion circuit (2) and comprises: a common-mode transformer (11) having a main winding (111) provided in the power lines (4, 5) and an auxiliary winding (112) magnetically coupled to the main winding (111); an amplifier circuit (12) for outputting an amplified voltage (vo) to the auxiliary winding (112); and a current detection unit (13) for detecting the current (io) flowing through the auxiliary winding (112). The common-mode transformer (11) injects a compensation voltage (vcom), which is generated on the basis of the current (io), to the power lines (4, 5).

Description

コモンモードフィルタcommon mode filter
 本願は、コモンモードフィルタに関する。 This application relates to common mode filters.
 電圧形の電力変換回路において、各出力端子の出力電圧の平均値であるコモンモード電圧は、電力変換回路の動作に伴って変動する。コモンモード電圧の変動は、電力変換回路と対地間浮遊容量間に形成されるコモンモード経路にコモンモード電流を発生させる。コモンモード電流は、種々の問題を引き起こし得る。そこで、電源線を流れるコモンモード電流を低減するために、コモンモード電流の電流値を減少させる補償電圧または補償電流を電源線に注入するコモンモードフィルタが提案されている。特許文献1では、コモンモードフィルタとしてのノイズ低減装置を補償対象である交流電源と電力変換回路との間の電力線に接続し、電力線を流れる電流を検出用のコモンモードトランスの主巻線に通流させ、検出用コモンモードトランスの補助巻線に発生する電流を電圧変換してコモンモード電流を検出している。さらに、その検出値を低減させるように増幅回路で増幅電圧を生成し、この増幅電圧を注入用コモンモードトランスに印加することで電力線に補償電圧を注入する。なお、補償対象としては、特許文献1のような交流電源に限らず、例えば電力系統および電動機が代表的なものとして挙げられる。 In a voltage-type power conversion circuit, the common mode voltage, which is the average value of the output voltage of each output terminal, fluctuates according to the operation of the power conversion circuit. Fluctuations in the common mode voltage generate common mode current in the common mode path formed between the power conversion circuit and the stray capacitance to ground. Common mode currents can cause various problems. In order to reduce the common mode current flowing through the power supply line, a common mode filter has been proposed that injects into the power supply line a compensating voltage or a compensating current that reduces the value of the common mode current. In Patent Document 1, a noise reduction device as a common mode filter is connected to a power line between an AC power supply to be compensated and a power conversion circuit, and current flowing through the power line is passed through the main winding of a common mode transformer for detection. The common mode current is detected by converting the voltage of the current generated in the auxiliary winding of the detection common mode transformer. Further, an amplified voltage is generated by the amplifier circuit so as to reduce the detected value, and the amplified voltage is applied to the injection common mode transformer to inject the compensation voltage into the power line. Note that compensation targets are not limited to AC power sources as in Patent Document 1, but include, for example, power systems and electric motors as typical examples.
特開2019-80469号公報(図7)JP 2019-80469 A (Fig. 7)
 特許文献1のコモンモードフィルタ(ノイズ低減装置)は、主巻線が電力線に接続された検出用コモンモードトランスを備え、検出用コモンモードトランスの主巻線には主回路電流が流れる構成となっている。この場合、主巻線の電流定格の制約から、主巻線の径は一定以上の太さが必要となる。このためには、検出用コモンモードトランスの小型化は困難であり、コモンモードフィルタの小型化が妨げられているという問題点があった。 The common mode filter (noise reduction device) of Patent Document 1 includes a detection common mode transformer whose main winding is connected to a power line, and a main circuit current flows through the main winding of the detection common mode transformer. ing. In this case, due to restrictions on the current rating of the main winding, the diameter of the main winding must be at least a certain thickness. For this reason, it is difficult to reduce the size of the detection common mode transformer, and there is a problem that the size reduction of the common mode filter is hindered.
 本願は上述のような課題を解決するためになされたもので、従来よりも小型化が可能なコモンモードフィルタを提供することを目的とする。 The present application was made to solve the above-mentioned problems, and aims to provide a common mode filter that can be made smaller than before.
 本願に開示されるコモンモードフィルタは、補償対象と電力変換回路との間の電力線に接続されたコモンモードフィルタであって、電力線を流れるコモンモード電流を抑制する補償電圧または補償電流を電力線に注入する注入回路を1または複数備え、注入回路のうちの第1の注入回路は、電力線に設けられた主巻線と、主巻線と磁気的に結合された補助巻線とを有するコモンモードトランスと、補助巻線を流れる電流を検出する電流検出部とを含み、注入回路のうちの少なくとも1つは、電流検出部により検出された電流に基づいて生成される補償電圧または電流を電力線に注入するものである。 The common mode filter disclosed in the present application is a common mode filter connected to a power line between a compensation target and a power conversion circuit, and injects into the power line a compensation voltage or a compensation current that suppresses the common mode current flowing through the power line. one or more injection circuits, a first of the injection circuits having a main winding provided on the power line and an auxiliary winding magnetically coupled to the main winding; and a current detector for detecting the current flowing through the auxiliary winding, wherein at least one of the injection circuits injects into the power line a compensation voltage or current generated based on the current detected by the current detector. It is something to do.
 本願に開示されるコモンモードフィルタによれば、従来のコモンモードフィルタよりも小型化が可能となる。 According to the common mode filter disclosed in this application, it is possible to make it smaller than conventional common mode filters.
実施の形態1におけるコモンモードフィルタを示す回路図である。1 is a circuit diagram showing a common mode filter according to Embodiment 1; FIG. 実施の形態1に係る電力変換回路を示す回路図である。1 is a circuit diagram showing a power conversion circuit according to Embodiment 1; FIG. 実施の形態1に係る増幅回路および電流検出部を示す回路図であり、電流検出部としてシャント抵抗を用いた場合の図である。1 is a circuit diagram showing an amplifier circuit and a current detection section according to Embodiment 1, and is a diagram when a shunt resistor is used as the current detection section; FIG. 実施の形態1に係る増幅回路および電流検出部を示す回路図であり、電流検出部としてCTを用いた場合の図である。1 is a circuit diagram showing an amplifier circuit and a current detection section according to Embodiment 1, and is a diagram when a CT is used as the current detection section; FIG. 実施の形態1におけるコモンモードフィルタの動作原理を説明する図である。4A and 4B are diagrams for explaining the principle of operation of the common mode filter according to the first embodiment; FIG. 実施の形態1に係る増幅回路に帯域制限機能を加えた場合の例を示す回路図である。4 is a circuit diagram showing an example in which a band limiting function is added to the amplifier circuit according to Embodiment 1; FIG. 実施の形態2におけるコモンモードフィルタを示す回路図である。FIG. 10 is a circuit diagram showing a common mode filter according to Embodiment 2; 実施の形態2に係る2つのフィルタ部の機能分担を示す図である。FIG. 10 is a diagram showing the division of functions between two filter units according to the second embodiment; 実施の形態2に係る2つのフィルタ部を示す回路図であり、第2のフィルタ部の注入回路としてYコンデンサを用いた場合の例を示す図である。FIG. 10 is a circuit diagram showing two filter units according to the second embodiment, and shows an example in which a Y capacitor is used as an injection circuit of the second filter unit; 実施の形態2に係る2つのフィルタ部を示す回路図であり、第2のフィルタ部の注入回路としてコモンモードトランスを用いた場合の図である。FIG. 10 is a circuit diagram showing two filter units according to Embodiment 2, in the case of using a common mode transformer as an injection circuit of the second filter unit; 実施の形態3におけるコモンモードフィルタを示す回路図であり、コモンモード検出回路としてコモンモードトランスを用いた場合の例を示す図である。FIG. 10 is a circuit diagram showing a common mode filter according to Embodiment 3, and is a diagram showing an example in which a common mode transformer is used as a common mode detection circuit; 実施の形態3におけるコモンモードフィルタを示す回路図であり、コモンモード検出回路としてYコンデンサを用いた場合の例を示す図である。FIG. 10 is a circuit diagram showing a common mode filter according to Embodiment 3, and is a diagram showing an example in which a Y capacitor is used as a common mode detection circuit;
 以下、本願の各実施の形態に係るコモンモードフィルタについて、図面を参照しながら説明する。説明に用いる各図面において、同一の符号を付したものは、同一または相当するものであり、以下に記載する実施の形態の全文において共通することとする。また、以下で説明する構成は例示であって、説明中に記載された具体的構成に限定するものではない。特に構成の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、ある実施の形態に記載した構成を別の実施の形態に適用することができる。 A common mode filter according to each embodiment of the present application will be described below with reference to the drawings. In the drawings used for explanation, the same reference numerals denote the same or corresponding parts, and are common throughout the embodiments described below. Also, the configuration described below is an example, and is not limited to the specific configuration described in the description. In particular, the combination of configurations is not limited only to the combinations in each embodiment, and the configurations described in one embodiment can be applied to another embodiment.
実施の形態1.
 実施の形態1を図1から図6に基づいて説明する。図1は、実施の形態1におけるコモンモードフィルタを示す回路図である。コモンモードフィルタ100は、電力変換回路2と補償対象3との間に接続されている。補償対象3は、例えば三相(u相、v相、w相)の交流電源であり、コモンモードフィルタ100は、u相の電力線4u、v相の電力線4v、およびw相の電力線4wを介して補償対象3と接続されている。またコモンモードフィルタ100は、u相の電力線5u、v相の電力線5v、およびw相の電力線5wを介して電力変換回路2と接続されている。また、電力変換回路2と補償対象3は、接地線6のよってグランド側で接続されている。上記のように互いを接続した電力変換回路2、補償対象3、およびコモンモードフィルタ100により、電力変換システム1000が構成されている。なお、以下では電力線4u、4v、4wをまとめて電力線4と記載することがある。電力線5u、5v、5wについても同様に、まとめて電力線5と記載することがある。
Embodiment 1.
Embodiment 1 will be described with reference to FIGS. 1 to 6. FIG. FIG. 1 is a circuit diagram showing a common mode filter according to Embodiment 1. FIG. Common mode filter 100 is connected between power conversion circuit 2 and compensation object 3 . The compensation target 3 is, for example, a three-phase (u-phase, v-phase, and w-phase) AC power supply, and the common mode filter 100 is connected via a u-phase power line 4u, a v-phase power line 4v, and a w-phase power line 4w. is connected to the compensation object 3 through the Common mode filter 100 is connected to power conversion circuit 2 via u-phase power line 5u, v-phase power line 5v, and w-phase power line 5w. Also, the power conversion circuit 2 and the compensation target 3 are connected on the ground side by a ground line 6 . A power conversion system 1000 is configured by the power conversion circuit 2, the compensation target 3, and the common mode filter 100, which are connected to each other as described above. Note that the power lines 4u, 4v, and 4w may be collectively referred to as the power lines 4 below. Similarly, the power lines 5u, 5v, and 5w may also be collectively referred to as the power line 5 in some cases.
 コモンモードフィルタ100は、コモンモードトランス11と、増幅回路12と、電流検出部13とを備える。コモンモードトランス11は、それぞれu相、v相、w相に対応する主巻線111u、111v、111wと、主巻線111u、111v、111wと磁気的に結合された補助巻線112とで構成される。図中の「●」は、各巻線の極性を表している。なお、以下では主巻線111u、111v、111wをまとめて主巻線111と記載することがある。各相の主巻線111は、それぞれの相に対応する電力線4および電力線5に接続される。補助巻線112の一端には増幅回路12の出力端子125sが接続され、補助巻線112の他端には、電流検出部13を介して増幅回路12の出力端子125gが接続される。電流検出部13は、補助巻線112に流れる電流iを電圧変換して検出値i*を取得する。増幅回路12には電流検出部13の検出値i*が入力される。増幅回路12は、全ての帯域または特定帯域について検出値i*が減少するように、入力端子124s、124g(図1では図示省略)を介して入力される検出値i*を増幅して増幅電圧vを出力する。増幅電圧vは、補助巻線112に印加され、増幅電圧vに応じた補償電圧vcomが主巻線111から電力線4と電力線5の間に注入される。補償電圧vcomは、電力変換回路2が出力するコモンモード電圧を相殺するように機能するため、全ての帯域または特定帯域のコモンモード電流が減少することとなる。なお、実施の形態1はフィルタ部が1つのみの形態であるので、コモンモードフィルタ100が第1のフィルタ部に相当する。 Common mode filter 100 includes common mode transformer 11 , amplifier circuit 12 , and current detector 13 . The common mode transformer 11 is composed of main windings 111u, 111v, and 111w corresponding to the u-phase, v-phase, and w-phase, respectively, and an auxiliary winding 112 magnetically coupled to the main windings 111u, 111v, and 111w. be done. "●" in the figure represents the polarity of each winding. Note that the main windings 111u, 111v, and 111w may be collectively referred to as the main winding 111 below. The main winding 111 of each phase is connected to the power lines 4 and 5 corresponding to each phase. An output terminal 125 s of the amplifier circuit 12 is connected to one end of the auxiliary winding 112 , and an output terminal 125 g of the amplifier circuit 12 is connected to the other end of the auxiliary winding 112 via the current detector 13 . The current detection unit 13 converts the voltage of the current i o flowing through the auxiliary winding 112 to obtain a detection value i o *. A detection value i o * of the current detection unit 13 is input to the amplifier circuit 12 . The amplifier circuit 12 amplifies the detected value i o * input via the input terminals 124s and 124g (not shown in FIG. 1) so that the detected value i o * decreases for all bands or a specific band. It outputs the amplified voltage v o . Amplified voltage v o is applied to auxiliary winding 112 , and compensation voltage v com corresponding to amplified voltage v o is injected from main winding 111 between power lines 4 and 5 . Since the compensating voltage v com functions to cancel the common mode voltage output by the power conversion circuit 2, the common mode current in all bands or a specific band is reduced. Since the first embodiment has only one filter section, the common mode filter 100 corresponds to the first filter section.
 図2は、実施の形態1に係る電力変換回路を示す回路図である。実施の形態1では、電力変換回路2の一例として、三相フルブリッジ回路の構成を持つ電力変換回路を用いている。電力変換回路2の三相フルブリッジ回路は、半導体スイッチング素子201として逆並列ダイオードを備えた6つの自己消弧形パワー半導体スイッチを適用している。半導体スイッチング素子201は、正極側の半導体スイッチング素子201と負極側の半導体スイッチング素子201とが直列に接続されてアームを構成し、u相、v相、w相にそれぞれ対応する3つのアームが並列に接続されて三相フルブリッジ回路を構成する。各アームはu相、v相、w相にそれぞれ対応する出力端子204u、204v、204wに接続され、出力端子204u、204v、204wを介して電力線4に接続される。上記三相フルブリッジ回路と並列して直流部が設けられ、この直流部においては平滑化用の直流コンデンサ202および直流電圧源203が互いに並列に接続されている。上記三相フルブリッジ回路および直流部と接地線6間には、対地容量205が存在する。説明のため、接地端子206を設け、対地容量205は三相フルブリッジ回路および直流部と接地端子206間に接続されることとする。 FIG. 2 is a circuit diagram showing a power conversion circuit according to Embodiment 1. FIG. In Embodiment 1, as an example of the power conversion circuit 2, a power conversion circuit having a configuration of a three-phase full bridge circuit is used. The three-phase full-bridge circuit of the power conversion circuit 2 employs six self-extinguishing power semiconductor switches with anti-parallel diodes as the semiconductor switching elements 201 . In the semiconductor switching element 201, the semiconductor switching element 201 on the positive electrode side and the semiconductor switching element 201 on the negative electrode side are connected in series to form an arm. to form a three-phase full-bridge circuit. Each arm is connected to output terminals 204u, 204v, and 204w corresponding to the u-phase, v-phase, and w-phase, respectively, and is connected to the power line 4 via the output terminals 204u, 204v, and 204w. A DC section is provided in parallel with the three-phase full bridge circuit, and in this DC section, a smoothing DC capacitor 202 and a DC voltage source 203 are connected in parallel with each other. A ground capacitance 205 exists between the three-phase full bridge circuit and the DC portion and the ground line 6 . For the sake of explanation, a ground terminal 206 is provided and a capacitor to ground 205 is connected between the three-phase full bridge circuit and the DC section and the ground terminal 206 .
 なお、電力変換回路2、補償対象3、電力線4、および電力線5としては、三相3線式に限らず、三相4線式、単相2線式、単相3線式の回路を適用することもできる。また、実施の形態1では電力変換回路2として三相フルブリッジ回路を用いた例を用いているが、電力変換回路2の回路構成は、交直変換機能を備えていればよく、3レベル変換器を含むマルチレベル変換器等の回路構成でもよい。 The power conversion circuit 2, compensation target 3, power line 4, and power line 5 are not limited to the three-phase three-wire system, and three-phase four-wire, single-phase two-wire, and single-phase three-wire circuits are applied. You can also Further, in Embodiment 1, an example using a three-phase full bridge circuit is used as the power conversion circuit 2, but the circuit configuration of the power conversion circuit 2 only needs to have an AC/DC conversion function, and a three-level converter A circuit configuration such as a multi-level converter including
 補償対象3が電力系統である場合、電力変換回路2は、順変換動作を行って電力系統から電力を受電するか、逆変換動作を行って電力系統に電力を送電する。また、補償対象3が電動機である場合、電力変換回路2は、電動機を発電機として用いた時には順変換動作を行い、電動機として用いた時には逆変換動作を行う。電力変換回路2は、順変換動作または逆変換動作を行う際に、半導体スイッチング素子201のスイッチング動作により出力電圧を変化させる。このため、電力変換回路2の出力端子電圧の平均値、すなわちコモンモード電圧が半導体スイッチング素子201のスイッチング動作ごとに変動する。コモンモード電圧が変動すると、電力変換回路2、接地線6、補償対象3、電力線5、コモンモードフィルタ100、および電力線4で形成されるコモンモード経路にコモンモード電流が流れる。 When the compensation target 3 is a power system, the power conversion circuit 2 performs a forward conversion operation to receive power from the power system, or performs a reverse conversion operation to transmit power to the power system. Further, when the compensation target 3 is an electric motor, the power conversion circuit 2 performs a forward conversion operation when the electric motor is used as a generator, and performs an inverse conversion operation when the electric motor is used as a motor. The power conversion circuit 2 changes the output voltage by the switching operation of the semiconductor switching element 201 when performing the forward conversion operation or the inverse conversion operation. Therefore, the average value of the output terminal voltage of the power conversion circuit 2 , that is, the common mode voltage varies for each switching operation of the semiconductor switching element 201 . When the common mode voltage fluctuates, a common mode current flows through a common mode path formed by power conversion circuit 2 , ground line 6 , compensation object 3 , power line 5 , common mode filter 100 and power line 4 .
 次に、実施の形態1に係る増幅回路および電流検出部について説明する。実施の形態1では、補助巻線112を流れる電流iを電流検出部13で電圧変換して検出値i*を取得する。電流検出部13の1つの具体例としては、図3に示す例のような純抵抗のシャント抵抗131を用いることが考えられる。図3に示す例において、反転増幅回路として構成された増幅回路12は、オペレーショナルアンプ121と、入力抵抗122と、負帰還抵抗123とを備える。増幅回路12の入力端子124sは、オペレーショナルアンプ121の反転入力端子を構成し、入力端子124gは、オペレーショナルアンプ121の非反転入力端子を構成している。また、増幅回路12の出力端子125s、125gは、オペレーショナルアンプ121の出力端子を構成している。 Next, an amplifier circuit and a current detector according to the first embodiment will be described. In the first embodiment, the current i o flowing through the auxiliary winding 112 is voltage-converted by the current detection unit 13 to acquire the detected value i o *. As one specific example of the current detection unit 13, it is conceivable to use a purely resistive shunt resistor 131 as shown in FIG. In the example shown in FIG. 3 , the amplifier circuit 12 configured as an inverting amplifier circuit includes an operational amplifier 121 , an input resistor 122 and a negative feedback resistor 123 . An input terminal 124 s of the amplifier circuit 12 forms an inverting input terminal of the operational amplifier 121 , and an input terminal 124 g forms a non-inverting input terminal of the operational amplifier 121 . Output terminals 125 s and 125 g of the amplifier circuit 12 constitute output terminals of the operational amplifier 121 .
 入力端子124sには入力抵抗122が設けられ、負帰還抵抗123を介して出力端子125sと接続されている。入力端子124gは、出力端子125gと接続されている。オペレーショナルアンプ121の出力端子は、コモンモードトランス11の補助巻線112によって出力端子125sと出力端子125gに分割されている。これにより、補助巻線112は、一端が出力端子125sに接続され、他端が出力端子125gに接続される構成となっている。出力端子125sは、オペレーショナルアンプ121と補助巻線112を接続するとともに、負帰還抵抗123と接続されている。出力端子125gは、補助巻線112と入力端子124gを接続するとともに、シャント抵抗131が設けられている。シャント抵抗131と補助巻線112との間には、入力端子124sとの接続点が設けられている。なお、入力抵抗122、負帰還抵抗123、シャント抵抗131の抵抗値はそれぞれR1、R2、Rとなっている。また、図3におけるVccおよび―Vccは、オペレーショナルアンプ121の正側電源端子および負側電源端子を表している。 An input resistor 122 is provided at the input terminal 124s, and is connected to the output terminal 125s through a negative feedback resistor 123. FIG. The input terminal 124g is connected to the output terminal 125g. The output terminal of the operational amplifier 121 is divided by the auxiliary winding 112 of the common mode transformer 11 into an output terminal 125s and an output terminal 125g. Thus, the auxiliary winding 112 has one end connected to the output terminal 125s and the other end connected to the output terminal 125g. The output terminal 125 s connects the operational amplifier 121 and the auxiliary winding 112 and is also connected to the negative feedback resistor 123 . The output terminal 125g connects the auxiliary winding 112 and the input terminal 124g and is provided with a shunt resistor 131 . A connection point with the input terminal 124 s is provided between the shunt resistor 131 and the auxiliary winding 112 . The resistance values of the input resistor 122, the negative feedback resistor 123, and the shunt resistor 131 are R1, R2, and R, respectively. Also, V cc and −V cc in FIG. 3 represent the positive power supply terminal and the negative power supply terminal of the operational amplifier 121 .
 補助巻線112に電流iが流れるとき、電流検出部13としてのシャント抵抗131の端子間では検出値i*(=R×i)の電圧が得られる。上述したように、実施の形態1では増幅回路12を反転増幅回路として構成しているため、この場合の増幅回路12の入力値は、-i*となる。なお、増幅回路12を非反転増幅回路として構成した場合、シャント抵抗131の検出値i*に対する増幅回路12の入力値はi*となる。増幅回路12は、入力端子124s、124gを介して入力される上記入力値の全ての帯域または特定帯域の電流値が減少するように、ネガティブフィードバック制御を行う。増幅回路12を反転増幅回路として構成する場合、増幅回路12に入力される上記入力値は、増幅回路12により-R2/R1のゲインで増幅される。これにより、増幅回路12の出力として増幅電圧v(=R2×R×i/R1)が得られる。このように増幅回路12は、補助巻線112を流れる電流iに比例する増幅電圧vを出力する。このことは、抵抗値がR2×R/R1である抵抗として増幅回路12が動作することを意味している。 When the current i o flows through the auxiliary winding 112 , a voltage of the detected value i o * (=R×i o ) is obtained across the terminals of the shunt resistor 131 as the current detector 13 . As described above, since the amplifier circuit 12 is configured as an inverting amplifier circuit in the first embodiment, the input value of the amplifier circuit 12 in this case is -i o *. When the amplifier circuit 12 is configured as a non-inverting amplifier circuit, the input value of the amplifier circuit 12 with respect to the detection value i o * of the shunt resistor 131 is i o *. The amplifier circuit 12 performs negative feedback control so that the current value of all the bands or a specific band of the input values inputted through the input terminals 124s and 124g is reduced. When the amplifier circuit 12 is configured as an inverting amplifier circuit, the input value inputted to the amplifier circuit 12 is amplified by the amplifier circuit 12 with a gain of -R2/R1. As a result, an amplified voltage v o (=R2×R×i o /R1) is obtained as the output of the amplifier circuit 12 . Thus, the amplifier circuit 12 outputs an amplified voltage v o proportional to the current i o flowing through the auxiliary winding 112 . This means that the amplifier circuit 12 operates as a resistor whose resistance value is R2×R/R1.
 次に、電流検出部13の他の具体例として、図4に示すようなCT(Current Transformer)132を用いる場合について説明する。電流検出部13は、出力端子125gに設けたCT132の入力端子を増幅回路12の出力端子125gに設け、CT132の出力端子に終端回路133を設けたものである。終端回路133は、抵抗値R3を持つ抵抗を備えている。また、終端回路133の一端は入力端子124sに接続され、終端回路133の他端は入力端子124gに接続されている。図3に示したシャント抵抗131を用いる場合と異なり、出力端子125gと入力端子124gとは接続されていない。 Next, as another specific example of the current detection unit 13, a case where a CT (Current Transformer) 132 as shown in FIG. 4 is used will be described. The current detection section 13 has an input terminal of the CT 132 provided at the output terminal 125g, which is provided at the output terminal 125g of the amplifier circuit 12, and a terminating circuit 133 at the output terminal of the CT 132. FIG. The termination circuit 133 has a resistor with a resistance value R3. One end of the termination circuit 133 is connected to the input terminal 124s, and the other end of the termination circuit 133 is connected to the input terminal 124g. Unlike the case of using the shunt resistor 131 shown in FIG. 3, the output terminal 125g and the input terminal 124g are not connected.
 上記のように構成することにより、CT132は、補助巻線112を流れる電流iをk倍に変流し、終端回路133は、CT132によって変流された電流に対して電圧変換を行う。これにより、終端回路133の端子間では検出値i*(=-k×R3×i)の電圧が得られる。検出値i*は、入力端子124s、124gを介して増幅回路12に入力され、増幅回路12により、-R2/R1のゲインで増幅される。これにより、増幅回路12の出力として増幅電圧v(=k×R2×R3×i/R1)が得られる。すなわち、電流検出部13としてCT132を用いる場合もシャント抵抗131を用いる場合と同様に、増幅回路12は補助巻線112を流れる電流iに比例する増幅電圧vを出力する。このことは、電流検出部13としてCT132を用いる場合、増幅回路12は抵抗値がk×R2×R3/R1である抵抗として動作することを意味している。 With the above configuration, the CT 132 transforms the current io flowing through the auxiliary winding 112 by k times, and the termination circuit 133 performs voltage conversion on the current transformed by the CT 132 . As a result, a voltage of the detection value i o *(=−k×R3×i o ) is obtained across the terminals of the termination circuit 133 . The detected value i o * is input to the amplifier circuit 12 through the input terminals 124s and 124g, and is amplified by the amplifier circuit 12 with a gain of −R2/R1. As a result, an amplified voltage v o (=k×R2×R3×i o /R1) is obtained as the output of the amplifier circuit 12 . That is, when the CT 132 is used as the current detector 13, the amplifier circuit 12 outputs an amplified voltage vo proportional to the current io flowing through the auxiliary winding 112, similarly to when the shunt resistor 131 is used. This means that when the CT 132 is used as the current detection unit 13, the amplifier circuit 12 operates as a resistor whose resistance value is k×R2×R3/R1.
 図5は、実施の形態1におけるコモンモードフィルタの動作原理を説明する図である。上述したコモンモードフィルタ100の増幅回路12は抵抗R*とみなせるので、コモンモードトランス11の回路は、補助巻線112に抵抗R*を接続した回路と等価である。ここで、コモンモードトランス11の励磁インダクタンスのインピーダンス値よりも抵抗R*の抵抗値を大きく設定することで、補助巻線112を流れる電流iの電流値は零に近づき、補助巻線112の両端は開放状態と見做すことができる。このことから、抵抗R*の抵抗値を大きく設計すれば、コモンモードトランス11はインダクタンスLを持つコモンモードチョークコイルとして動作し、コモンモードトランス11はコモンモード電流を抑制する。 5A and 5B are diagrams for explaining the principle of operation of the common mode filter according to Embodiment 1. FIG. Since the amplifier circuit 12 of the common mode filter 100 described above can be regarded as a resistor R*, the circuit of the common mode transformer 11 is equivalent to a circuit in which the auxiliary winding 112 is connected to the resistor R*. Here, by setting the resistance value of the resistor R* to be greater than the impedance value of the magnetizing inductance of the common mode transformer 11, the current value of the current io flowing through the auxiliary winding 112 approaches zero. Both ends can be considered open. Therefore, if the resistance value of the resistor R* is designed to be large, the common mode transformer 11 operates as a common mode choke coil having an inductance L, and the common mode transformer 11 suppresses the common mode current.
 コモンモードトランス11をコモンモードチョークコイルとして動作させる場合、コモンモードトランス11の主巻線111と補助巻線112の磁気的結合により、増幅回路12によって生成された増幅電圧vに応じた電圧が電力線4、5を含むコモンモード経路に注入され、コモンモード電流が抑制される。この点では、コモンモードトランス11は従来の「注入用コモンモードトランス」と共通している。 When the common mode transformer 11 is operated as a common mode choke coil, the magnetic coupling between the main winding 111 and the auxiliary winding 112 of the common mode transformer 11 produces a voltage corresponding to the amplified voltage vo generated by the amplifier circuit 12. Injected into the common mode path including the power lines 4, 5, the common mode current is suppressed. In this respect, the common mode transformer 11 is in common with a conventional "injection common mode transformer".
 実施の形態1のコモンモードフィルタ100は、補助巻線112を流れる電流iに対しネガティブフィードバック制御を行うことから、主巻線111のみに流れるコモンモード電流(主回路のみに流れるコモンモード電流)は抑制できない。一方、補助巻線112に分流したコモンモード電流は抑制するので、全体としてコモンモード電流を低減することができる。 Since the common mode filter 100 of Embodiment 1 performs negative feedback control on the current io flowing through the auxiliary winding 112, the common mode current flowing only through the main winding 111 (common mode current flowing only through the main circuit) is cannot be suppressed. On the other hand, since the common mode current shunted to the auxiliary winding 112 is suppressed, the common mode current can be reduced as a whole.
 次に、(全ての帯域でなく、)特定帯域のコモンモード電流を抑制する場合について説明する。なお、ここではコモンモード電流を抑制する「特定帯域」の例として、150kHz以上を例に説明する。この例は、CISPR(国際無線障害特別委員会)による雑音端子電圧の規格に基づいた例となる。図6は、実施の形態1に係る増幅回路に帯域制限機能を加えた場合の例を示す回路図である。図6に示す増幅回路12においては、入力端子124s、125sおよび出力端子125s、125gに、それぞれハイパスフィルタ126およびハイパスフィルタ127が設けられている。ハイパスフィルタ126は、入力端子124sに直列に接続したコンデンサと、入力端子124sと入力端子124gとを接続する回路に設けられた抵抗とにより構成されている。ハイパスフィルタ127は、出力端子125sに直列に接続したコンデンサと、出力端子125sと出力端子125gとを接続する回路に設けられた抵抗とにより構成されている。ハイパスフィルタ126により、オペレーショナルアンプ121への入力値から低周波成分が除去される。またハイパスフィルタ127により、オペレーショナルアンプ121の出力である増幅電圧vから低周波成分が除去される。ハイパスフィルタ126およびハイパスフィルタ127を設けることにより、増幅電圧vのうち、ハイパスフィルタ126およびハイパスフィルタ127のカットオフ周波数以下の成分が抑制される。ハイパスフィルタ126およびハイパスフィルタ127のカットオフ周波数を70kHzとすれば、増幅回路12は、150kHz以上の成分に対して高インピーダンスとなり、70kHz未満の成分に対して低インピーダンスとなる。 Next, a case of suppressing common mode current in a specific band (not all bands) will be described. Note that here, as an example of the "specific band" for suppressing the common mode current, 150 kHz or higher will be described as an example. This example is based on the noise terminal voltage standard of CISPR (International Special Committee on Radio Interference). FIG. 6 is a circuit diagram showing an example of adding a band limiting function to the amplifier circuit according to the first embodiment. In the amplifier circuit 12 shown in FIG. 6, high- pass filters 126 and 127 are provided at input terminals 124s and 125s and output terminals 125s and 125g, respectively. The high-pass filter 126 is composed of a capacitor connected in series with the input terminal 124s and a resistor provided in a circuit connecting the input terminal 124s and the input terminal 124g. The high-pass filter 127 is composed of a capacitor connected in series with the output terminal 125s and a resistor provided in a circuit connecting the output terminal 125s and the output terminal 125g. A high pass filter 126 removes low frequency components from the input value to the operational amplifier 121 . A high-pass filter 127 removes low-frequency components from the amplified voltage vo , which is the output of the operational amplifier 121 . By providing the high-pass filter 126 and the high-pass filter 127, the components below the cutoff frequency of the high-pass filter 126 and the high-pass filter 127 are suppressed in the amplified voltage vo . If the cutoff frequency of high-pass filter 126 and high-pass filter 127 is 70 kHz, amplifier circuit 12 has high impedance for components above 150 kHz and low impedance for components below 70 kHz.
 コモンモード経路を流れるコモンモード電流は、コモンモードトランス11の励磁インダクタンスLと増幅回路12とに分流する。増幅回路12を150kHz以上の高周波成分に対して高インピーダンスに設定した場合、コモンモード電流の高周波成分は励磁インダクタンスLに多く流れる。この結果、主巻線111のインピーダンスが増加するので、コモンモードトランス11は、コモンモード電流の高周波成分を抑制するコモンモードチョークコイルとして動作する。 A common mode current flowing through the common mode path is split between the exciting inductance Lm of the common mode transformer 11 and the amplifier circuit 12 . When the amplifier circuit 12 is set to have a high impedance with respect to high frequency components of 150 kHz or higher, a large amount of the high frequency components of the common mode current flows through the exciting inductance Lm . As a result, the impedance of the main winding 111 increases, so the common mode transformer 11 operates as a common mode choke coil that suppresses high frequency components of the common mode current.
 一方、上記のとおり増幅回路12は70kHz未満の低周波成分に対して低インピーダンスとなるので、コモンモード電流の低周波成分は増幅回路12に多く流れ、低周波成分については増幅回路12を流れるコモンモード電流が支配的となる。この場合、理想的には主巻線111は短絡状態とみなすことができる。ここで、説明の便宜上、コモンモードトランス11の結合率を1、すなわち、コモンモードトランス11の自己インダクタンスLと励磁インダクタンスLが等しい(L=L)とすると、コモンモードトランス11に発生する磁束Φは、励磁インダクタンスLに流れる電流に比例する。上述したとおり、コモンモード電流の低周波成分は、その多くが増幅回路12を流れ、励磁インダクタンスLにはほとんど流れないので、磁束Φの低周波成分も抑制される。この場合、コモンモードトランス11に対応が要求される最大磁束も軽減されるので、コモンモードトランス11の小型化が可能となる。 On the other hand, as described above, the amplifier circuit 12 has a low impedance for low frequency components of less than 70 kHz. Mode current becomes dominant. In this case, the main winding 111 can ideally be considered to be in a short-circuited state. Here, for convenience of explanation, assuming that the coupling ratio of the common mode transformer 11 is 1, that is, the self-inductance L of the common mode transformer 11 and the excitation inductance L m are equal (L=L m ), the common mode transformer 11 generates The magnetic flux Φ is proportional to the current through the magnetizing inductance Lm . As described above, most of the low-frequency components of the common mode current flow through the amplifier circuit 12 and hardly flow through the exciting inductance Lm , so the low-frequency components of the magnetic flux Φ are also suppressed. In this case, since the maximum magnetic flux with which the common mode transformer 11 is required to cope is also reduced, the size of the common mode transformer 11 can be reduced.
 なお、ここではハイパスフィルタ126およびハイパスフィルタ127を用いる例を説明したが、ハイパスフィルタ126およびハイパスフィルタ127を所望の帯域制限回路に置き換えてもよい。すなわち、コモンモード電流を抑制する特定帯域(補償帯域)から外したい周波数成分に対してインピーダンスが高くなるように設計された帯域制限回路を増幅回路12に用いることで、主巻線111は、補償帯域に対してのみ高インピーダンスとなる。換言すると、所望の補償帯域のみに対してインピーダンスが増加するように設計された帯域制限回路を増幅回路12に適用することで、コモンモードトランス11は、上記所望の補償帯域に対してのみコモンモードチョークコイルとして動作する。上記所望の補償帯域に対してのみコモンモードチョークコイルとして動作する場合、コモンモードトランス11に発生する磁束Φのうち、補償帯域外の周波数成分の磁束が抑制されるため、全ての帯域についてコモンモードトランス11をコモンモードチョークコイルとして動作させる場合よりも、コモンモードトランス11の小型化を図ることができる。 Although an example using the high-pass filter 126 and the high-pass filter 127 has been described here, the high-pass filter 126 and the high-pass filter 127 may be replaced with a desired band-limiting circuit. That is, by using a band-limiting circuit in the amplifier circuit 12, which is designed to increase the impedance of frequency components to be excluded from a specific band (compensation band) for suppressing the common mode current, the main winding 111 can be compensated. High impedance only for the band. In other words, by applying a band-limiting circuit designed to increase the impedance only for the desired compensation band to the amplifier circuit 12, the common mode transformer 11 can control the common mode only for the desired compensation band. Works as a choke coil. When the common mode choke coil operates only for the desired compensation band, the magnetic flux of the frequency component outside the compensation band is suppressed among the magnetic flux Φ generated in the common mode transformer 11. Compared to the case where the transformer 11 is operated as a common mode choke coil, the size of the common mode transformer 11 can be reduced.
 上述したように、従来のコモンモードフィルタは、検出用コモンモードトランスを別途備えており、検出用コモンモードトランスの主巻線に主回路電流を流すことで、主巻線と補助巻線の巻数比に応じた電流を補助巻線に流し、補助巻線に流れた電流を電圧変換して検出値を得ていた。この構成では、検出用コモンモードトランスの主巻線には主回路電流が流れることから、主巻線の径が増加することで検出用コモンモードトランス全体の体積が大型化し、結果として、コモンモードフィルタも大型化し、コストが増加する原因にもなっていた。 As described above, the conventional common mode filter is provided with a separate common mode transformer for detection. A current corresponding to the ratio is passed through the auxiliary winding, and the detected value is obtained by converting the current flowing through the auxiliary winding into a voltage. In this configuration, the main circuit current flows through the main winding of the detection common mode transformer. The size of the filter is also increased, which causes an increase in cost.
 実施の形態1は、従来のコモンモードフィルタにおいて検出用コモンモードトランスと注入用コモンモードトランスが電力線で接続されて、同一経路上にあったことを利用している。検出用コモンモードトランスも注入用コモンモードトランスも、主巻線を流れるコモンモード電流は等しい。コモンモードトランス11は、上述のとおり従来のコモンモードフィルタにおける注入用コモンモードトランスと部分的に共通するものであり、主巻線111のコモンモード電流に起因した電流iが補助巻線112にも流れる。実施の形態1では、コモンモードトランス11の補助巻線112を流れる電流iをシャント抵抗131などで構成される電流検出部13で検出して電圧変換し、検出値i*を取得しているが、主回路電流と比べると電流iは十分小さく、電流検出部13の定格電流を低く設定できる。このため、電流検出部13にシャント抵抗131を用いた場合には電力定格の小さい抵抗を使用でき、またCT132と終端回路133を用いた場合には、電流定格の小さいCTを用いることができる。このため、検出用コモンモードトランスを省略し、その機能を小型で安価な電流検出部13によって実現することでコモンモードフィルタ100も小型化が可能であるとともに、コストの増加を防ぐことができる。 Embodiment 1 utilizes the fact that in a conventional common mode filter, the detection common mode transformer and the injection common mode transformer are connected by a power line and are on the same path. The common mode currents flowing through the main windings of both the detection common mode transformer and the injection common mode transformer are the same. The common mode transformer 11 is partially in common with the injection common mode transformer in the conventional common mode filter as described above, and the current io caused by the common mode current of the main winding 111 is supplied to the auxiliary winding 112. also flows. In the first embodiment, the current i o flowing through the auxiliary winding 112 of the common mode transformer 11 is detected by the current detection unit 13 including the shunt resistor 131 and the like, and voltage-converted to obtain the detected value i o *. However, the current io is sufficiently small compared to the main circuit current, and the rated current of the current detection section 13 can be set low. Therefore, when the shunt resistor 131 is used in the current detection section 13, a resistor with a low power rating can be used, and when the CT 132 and the termination circuit 133 are used, a CT with a low current rating can be used. Therefore, by omitting the common mode transformer for detection and realizing its function by the small and inexpensive current detection unit 13, the common mode filter 100 can be made smaller and the cost can be prevented from increasing.
 なお、実施の形態1では増幅回路12に反転増幅回路を適用したが、増幅回路12は検出値i*の全ての帯域あるいは特定帯域が減少するようにネガティブフィードバック制御を行えるものであればよく、上記した非反転増幅回路でもよいし、トランジスタで構成されるプッシュプル回路を用いた増幅回路であってもよい。 Although an inverting amplifier circuit is used as the amplifier circuit 12 in the first embodiment, the amplifier circuit 12 may be any device that can perform negative feedback control so as to reduce the detection value i o * in all bands or in a specific band. , the non-inverting amplifier circuit described above, or an amplifier circuit using a push-pull circuit composed of transistors may be used.
 また、電流検出部13の1つの具体例として純抵抗のシャント抵抗131を用いたが、補助巻線112を流れる電流iに応じた電圧降下から検出値i*を取得できるものであれば、他の受動回路で電流検出部13を構成してもよい。例えば、シャント抵抗131にインダクタンス成分を直列接続して電流検出部13を構成し、電流検出部13の高周波成分に対するインピーダンスを増加させることが考えられる。この場合、補助巻線112を流れる電流iの高周波成分に対する検出ゲインが大きくなるので、増幅回路12のゲインを低く設計することが可能となる。このため、オペレーショナルアンプ121の周波数特性による、高周波成分に対するゲインの低下と位相遅延を軽減することができる。 As a specific example of the current detection unit 13 , the pure shunt resistor 131 is used. , the current detection unit 13 may be configured by other passive circuits. For example, it is conceivable to configure the current detection section 13 by connecting an inductance component in series with the shunt resistor 131 to increase the impedance of the current detection section 13 with respect to the high frequency component. In this case, since the detection gain for the high-frequency component of the current i o flowing through the auxiliary winding 112 is increased, the gain of the amplifier circuit 12 can be designed to be low. Therefore, it is possible to reduce gain reduction and phase delay with respect to high-frequency components due to the frequency characteristics of the operational amplifier 121 .
 実施の形態1によれば、従来のコモンモードフィルタよりも小型化が可能となる。より具体的には、電力線に設けられた主巻線、および主巻線と磁気的に結合された補助巻線とを有するコモンモードトランスと、増幅電圧を補助巻線に出力する増幅回路と、補助巻線を流れる電流を検出する電流検出部とを備え、コモンモードトランスは、補助巻線を流れる電流に基づいて生成される補償電圧を電力線に注入する。すなわち、補助巻線を流れる電流を電流検出部にて電圧変換して得た検出値を増幅回路の入力とし、増幅回路は、補助巻線を流れる電流が小さくなるように増幅電圧を生成して補助巻線に出力する。補助巻線には増幅電圧が印加され、この増幅電圧に応じた補償電圧が主巻線を介して電力線に注入され、コモンモード電流が抑制される。 According to Embodiment 1, it is possible to make the filter smaller than the conventional common mode filter. More specifically, a common mode transformer having a main winding provided on a power line and an auxiliary winding magnetically coupled to the main winding, an amplifier circuit that outputs an amplified voltage to the auxiliary winding, and a current detector that detects the current flowing through the auxiliary winding, and the common mode transformer injects a compensation voltage generated based on the current flowing through the auxiliary winding into the power line. That is, the detected value obtained by voltage-converting the current flowing through the auxiliary winding is input to the amplifier circuit, and the amplifier circuit generates an amplified voltage so that the current flowing through the auxiliary winding becomes smaller. Output to auxiliary winding. An amplified voltage is applied to the auxiliary winding, and a compensation voltage corresponding to this amplified voltage is injected into the power line via the main winding, thereby suppressing the common mode current.
 補償電圧を生成するための増幅回路の入力は、補償電圧を注入するコモンモードトランスの補助巻線を流れる電流であるから、増幅回路の入力を得るための検出用コモンモードトランスを別途設ける必要がない。1つのコモンモードトランスが補償電圧の注入と、増幅回路の入力を得るためのコモンモード電流の検出を兼用していることとなる。このように、コモンモードトランスの小型化の妨げとなっていた検出用コモンモードトランスを省略可能としたので、従来のコモンモードフィルタよりも小型化が可能となっているのである。 Since the input of the amplifier circuit for generating the compensation voltage is the current flowing through the auxiliary winding of the common mode transformer that injects the compensation voltage, it is necessary to separately provide a common mode transformer for detection to obtain the input of the amplifier circuit. do not have. One common mode transformer is used both to inject the compensation voltage and to detect the common mode current for obtaining the input of the amplifier circuit. In this way, it is possible to omit the common mode transformer for detection, which has hindered the miniaturization of the common mode transformer.
実施の形態2.
 次に、実施の形態2を図7から図10に基づいて説明する。なお、図1から図6と同一または相当部分については同一符号を付し、その説明を省略する。図7は、実施の形態2におけるコモンモードフィルタを示す回路図である。コモンモードフィルタ200は、実施の形態1のコモンモードフィルタ100と同様に、電力変換回路2と補償対象3との間に接続されている。コモンモードフィルタ200は、u相の電力線7u、v相の電力線7v、およびw相の電力線7wを介して互いに接続された第1のフィルタ部101および第2のフィルタ部102により構成されている点が実施の形態1のコモンモードフィルタ100と異なる。第1のフィルタ部101は、実施の形態1のコモンモードフィルタ100と同様に、電力線5により補償対象3を介して接続され、コモンモードトランス11と、増幅回路12と、電流検出部13を備える。実施の形態2における電流検出部13の検出値i*は、増幅回路12に入力されるとともに、後述する増幅回路22にも入力される。
Embodiment 2.
Next, Embodiment 2 will be described with reference to FIGS. 7 to 10. FIG. 1 to 6 are denoted by the same reference numerals, and description thereof will be omitted. FIG. 7 is a circuit diagram showing a common mode filter according to Embodiment 2. FIG. The common mode filter 200 is connected between the power conversion circuit 2 and the compensation target 3, like the common mode filter 100 of the first embodiment. The common mode filter 200 is composed of a first filter section 101 and a second filter section 102 which are connected to each other via a u-phase power line 7u, a v-phase power line 7v, and a w-phase power line 7w. is different from the common mode filter 100 of the first embodiment. The first filter unit 101 is connected via the compensation object 3 by the power line 5, as in the common mode filter 100 of the first embodiment, and includes a common mode transformer 11, an amplifier circuit 12, and a current detection unit 13. . The detected value i o * of the current detection unit 13 in the second embodiment is input to the amplifier circuit 12 and is also input to the amplifier circuit 22 to be described later.
 第2のフィルタ部102は、電力線4を介して電力変換回路2と接続され、電力線4に接続された注入回路21と、電流検出部13の検出値i*が入力され、注入回路21に増幅電圧vo2を出力する増幅回路22とを備えている。注入回路21は、例えばYコンデンサを用いて構成される。増幅回路22は増幅回路12と同様に、検出値i*に対してネガティブフィードバック制御を行う。注入回路21のYコンデンサは、電力線4uに接続されたコンデンサ21u、電力線4vに接続されたコンデンサ21v、および電力線4wに接続されたコンデンサ21wにより構成される。また、このYコンデンサの中性点は増幅回路22の出力側に接続されており、上記中性点と接地線6との間に増幅回路22が接続される構成となっている。コモンモードフィルタ200においても、電力変換回路2が出力するコモンモード電圧を補償電圧vcomが相殺する。またコモンモードフィルタ200においては、注入回路21のYコンデンサの中性点と接地線6との間に印加される増幅電圧vo2により、補償電流が電力線4に注入される。この補償電流は、コモンモード経路を流れるコモンモード電流と逆位相の電流であり、コモンモード電流を相殺するものである。 The second filter unit 102 is connected to the power conversion circuit 2 via the power line 4, and receives the injection circuit 21 connected to the power line 4 and the detection value i o * of the current detection unit 13. and an amplifier circuit 22 that outputs an amplified voltage vo2 . The injection circuit 21 is configured using, for example, a Y capacitor. Like the amplifier circuit 12, the amplifier circuit 22 performs negative feedback control on the detected value i o *. The Y capacitor of the injection circuit 21 is composed of a capacitor 21u connected to the power line 4u, a capacitor 21v connected to the power line 4v, and a capacitor 21w connected to the power line 4w. The neutral point of this Y capacitor is connected to the output side of an amplifier circuit 22 , and the amplifier circuit 22 is connected between the neutral point and the ground line 6 . In the common mode filter 200 as well, the common mode voltage output from the power conversion circuit 2 is canceled by the compensation voltage v com . In the common mode filter 200 , a compensation current is injected into the power line 4 by the amplified voltage vo2 applied between the neutral point of the Y capacitor of the injection circuit 21 and the ground line 6 . This compensating current is a current opposite in phase to the common mode current flowing through the common mode path, and cancels out the common mode current.
 なお、後述するように、注入回路21はコモンモードトランスを用いて構成することもできる。 As will be described later, the injection circuit 21 can also be configured using a common mode transformer.
 コモンモードフィルタ200は、第1のフィルタ部101と第2のフィルタ部102とで機能分担を行う。図8は、実施の形態2に係る2つのフィルタ部の機能分担を示す図である。第1のフィルタ部101の増幅回路(増幅回路12)は、コモンモード電流のうち、150kHz以上の高周波成分に対して大きなゲインを持つように設定される。一方、第2のフィルタ部102の増幅回路(増幅回路22)は、一般的な漏洩電流の周波数である数10kHz近傍の低周波成分に対して大きなゲインを持つように設定される。 The common mode filter 200 shares functions between the first filter section 101 and the second filter section 102 . FIG. 8 is a diagram showing the division of functions between two filter units according to the second embodiment. The amplifier circuit (amplifier circuit 12) of the first filter unit 101 is set to have a large gain for high frequency components of 150 kHz or higher in the common mode current. On the other hand, the amplifier circuit (amplifier circuit 22) of the second filter section 102 is set to have a large gain for low-frequency components around several tens of kHz, which is the frequency of general leakage current.
 実施の形態1において説明したとおり、第1のフィルタ部101は、増幅回路12に帯域制限機能を設けない場合(図3、図4に示した例の場合)、図5に示したように補助巻線112に抵抗R*が接続され、励磁インダクタンスLと抵抗R*が並列接続されたコモンモードチョークコイルとして動作する。励磁インダクタンスLのインピーダンスは理想的には周波数に比例するため、コモンモードチョークコイルのインピーダンスは周波数特性を持つ。このため、第1のフィルタ部101は、低周波帯におけるインピーダンスが小さく、高周波帯におけるインピーダンスが大きい。このため、第1のフィルタ部101の増幅回路には高周波成分に対して大きなゲインを持たせ、コモンモード電流の高周波成分を抑制させる。 As described in Embodiment 1, when the amplifier circuit 12 is not provided with a band limiting function (in the case of the examples shown in FIGS. 3 and 4), the first filter unit 101 has an auxiliary filter as shown in FIG. A resistor R* is connected to the winding 112, and operates as a common mode choke coil in which the exciting inductance Lm and the resistor R* are connected in parallel. Since the impedance of the exciting inductance Lm is ideally proportional to the frequency, the impedance of the common mode choke coil has frequency characteristics. Therefore, the first filter section 101 has low impedance in the low frequency band and high impedance in the high frequency band. For this reason, the amplifier circuit of the first filter unit 101 is given a large gain with respect to the high frequency component to suppress the high frequency component of the common mode current.
 一方、第2のフィルタ部102は、低周波帯における増幅回路22のゲインが大きく設定される。これにより、第2のフィルタ部102は、コモンモード電流の低周波成分を抑制する。 On the other hand, in the second filter section 102, the gain of the amplifier circuit 22 in the low frequency band is set large. Thereby, the second filter section 102 suppresses the low frequency component of the common mode current.
 図9は、実施の形態2に係る2つのフィルタ部を示す回路図であり、第2のフィルタ部の注入回路としてYコンデンサを用いた場合の図である。第1のフィルタ部101の増幅回路12においては、入力端子124s、125sにハイパスフィルタ126が設けられている。実施の形態1と同様に、ハイパスフィルタ126のカットオフ周波数は70kHzとされており、70kHz未満の周波数成分に対しては、増幅回路12のインピーダンスが低く設定されている。 FIG. 9 is a circuit diagram showing two filter units according to Embodiment 2, and shows a case where a Y capacitor is used as the injection circuit of the second filter unit. In the amplifier circuit 12 of the first filter section 101, a high-pass filter 126 is provided at the input terminals 124s and 125s. As in the first embodiment, the cutoff frequency of the high-pass filter 126 is set to 70 kHz, and the impedance of the amplifier circuit 12 is set low for frequency components below 70 kHz.
 第2のフィルタ部102の増幅回路22は、反転増幅回路として構成され、オペレーショナルアンプ221と、入力抵抗222と、負帰還抵抗223とを備える。増幅回路22の入力端子224sは、オペレーショナルアンプ221の反転入力端子であり、入力端子224gは、オペレーショナルアンプ221の非反転入力端子となっている。増幅回路22の出力端子225はオペレーショナルアンプ221の出力端子を構成し、注入回路21のYコンデンサの中性点に接続されている。また、オペレーショナルアンプ221および入力端子224gは、電路229を介して接地線6と接続されている。入力端子224sは、シャント抵抗131と補助巻線112の接続点に接続されている。また、入力端子224s、224gには、ローパスフィルタ226が設けられている。なお、入力抵抗222および負帰還抵抗223の抵抗値はそれぞれR3およびR4となっている。また、図9におけるVcc2および―Vcc2は、オペレーショナルアンプ221の正側電源端子および負側電源端子を表している。 The amplifier circuit 22 of the second filter section 102 is configured as an inverting amplifier circuit and includes an operational amplifier 221 , an input resistor 222 and a negative feedback resistor 223 . An input terminal 224 s of the amplifier circuit 22 is an inverting input terminal of the operational amplifier 221 , and an input terminal 224 g is a non-inverting input terminal of the operational amplifier 221 . The output terminal 225 of the amplifier circuit 22 constitutes the output terminal of the operational amplifier 221 and is connected to the neutral point of the Y capacitor of the injection circuit 21 . Also, the operational amplifier 221 and the input terminal 224g are connected to the ground line 6 via an electric line 229. FIG. The input terminal 224 s is connected to the connection point between the shunt resistor 131 and the auxiliary winding 112 . A low-pass filter 226 is provided at the input terminals 224s and 224g. The resistance values of the input resistor 222 and the negative feedback resistor 223 are R3 and R4, respectively. Vcc2 and -Vcc2 in FIG. 9 represent the positive power supply terminal and negative power supply terminal of the operational amplifier 221, respectively.
 上記のように構成された増幅回路22において、シャント抵抗131によって得られる検出値i*は、入力端子224s、224gを介して増幅回路22に入力される。ただし、増幅回路22は反転増幅回路であり、また、入力端子224s、224gにはローパスフィルタ226が設けられているので、増幅回路22の入力値は、-i*の低周波成分のみとなる。このため、増幅回路22は、上記増幅回路22の入力値の低周波成分の電流値が減少するようにネガティブフィードバック制御を行う。上記増幅回路22の入力値は、増幅回路22により-R4/R3のゲインで増幅される。これにより、増幅回路22の出力として、低周波の増幅電圧vo2(=R4×R×i/R3)が得られる。 In the amplifier circuit 22 configured as described above, the detected value i o * obtained by the shunt resistor 131 is input to the amplifier circuit 22 via the input terminals 224s and 224g. However, since the amplifier circuit 22 is an inverting amplifier circuit and the input terminals 224s and 224g are provided with a low-pass filter 226, the input value of the amplifier circuit 22 is only the low-frequency component of -i o *. . Therefore, the amplifier circuit 22 performs negative feedback control so that the current value of the low frequency component of the input value of the amplifier circuit 22 is reduced. The input value of the amplifier circuit 22 is amplified by the amplifier circuit 22 with a gain of -R4/R3. As a result, a low-frequency amplified voltage v o2 (=R4×R×i o /R3) is obtained as the output of the amplifier circuit 22 .
 ローパスフィルタ226のカットオフ周波数は、例えば40kHzとする。なお、第1のフィルタ部101の増幅回路12は、低周波成分に対してインピーダンスが小さいので、40kHzの周波数成分に対してもインピーダンスが小さい。このため、コモンモードトランス11は、低周波成分に対して、等アンペアターンの定理のとおり、主巻線111と補助巻線112の電流比がコモンモードトランス11の巻き数比で決まるCTとして動作する。このことから、第1のフィルタ部101は、低周波成分について検出ゲインを低下させることなく検出値i*を取得できる。このように、実施の形態2では、第1のフィルタ部101がコモンモード電流の検出とコモンモード電流の高周波成分の抑制を担い、第2のフィルタ部102がコモンモード電流の低周波成分の抑制を担うという形でコモンモード電流の周波数成分に応じた機能分担を行う。この結果、コモンモード電流の高周波成分と低周波成分の抑制を両立している。また、コモンモード電流の検出を第1のフィルタ部101で行うことから、コモンモード電流を検出するための検出用コモンモードトランスを別途設ける必要がない。 A cut-off frequency of the low-pass filter 226 is, for example, 40 kHz. Since the amplifier circuit 12 of the first filter section 101 has a low impedance with respect to the low frequency component, the impedance is also low with respect to the frequency component of 40 kHz. For this reason, the common mode transformer 11 operates as a CT with respect to low-frequency components, in which the current ratio between the main winding 111 and the auxiliary winding 112 is determined by the turns ratio of the common mode transformer 11, according to the equal ampere-turn theorem. do. Therefore, the first filter unit 101 can obtain the detection value i o * without lowering the detection gain for the low-frequency component. As described above, in the second embodiment, the first filter unit 101 detects common mode current and suppresses the high frequency component of the common mode current, and the second filter unit 102 suppresses the low frequency component of the common mode current. In this way, the functions are shared according to the frequency component of the common mode current. As a result, both high frequency components and low frequency components of the common mode current are suppressed. Further, since the common mode current is detected by the first filter section 101, there is no need to separately provide a detection common mode transformer for detecting the common mode current.
 なお、実施の形態2では増幅回路12の入力端子124s、124gにハイパスフィルタ126を設けたが、第1のフィルタ部101の補償帯域を高周波に制限するために、出力端子125s、125gにもハイパスフィルタを設けてもよい。また、出力端子125s、125gのみにハイパスフィルタを設けてもよい。増幅回路22のローパスフィルタ226についても同様で、オペレーショナルアンプ221の出力側にもローパスフィルタを設けてもよいし、出力側のみにローパスフィルタを設けてもよい。 In Embodiment 2, the input terminals 124s and 124g of the amplifier circuit 12 are provided with the high-pass filters 126. However, in order to limit the compensation band of the first filter section 101 to high frequencies, the high-pass filters are also provided at the output terminals 125s and 125g. A filter may be provided. Alternatively, high-pass filters may be provided only at the output terminals 125s and 125g. The same applies to the low-pass filter 226 of the amplifier circuit 22. A low-pass filter may be provided on the output side of the operational amplifier 221, or may be provided only on the output side.
 また、実施の形態2は、第1のフィルタ部101と第2のフィルタ部102の2つのフィルタ部で、補償帯域の周波数に応じて機能分担を行い、2つのフィルタ部をもってコモンモード電流の全帯域の周波数成分を抑制するものである。したがって、機能分担の形態は、上述したように第1のフィルタ部101で高周波成分を抑制し、第2のフィルタ部102で低周波成分を抑制する形態に限定されない。すなわち、所望の補償帯域を第1の周波数帯と第2の周波数帯に分け、第1のフィルタ部101の増幅回路12に第1の周波数帯の周波成分のみを通過させる、または遮断する帯域制限回路を設け、第2のフィルタ部102の増幅回路22に第2の周波数帯の周波成分のみを通過させる、または遮断する帯域制限回路を設けるものであればよい。実施の形態2では、第1のフィルタ部の増幅回路12にハイパスフィルタ126を設け、第2のフィルタ部の増幅回路22にローパスフィルタ226を設けたが、上記所望の補償帯域を全て含むのであれば、ハイパスフィルタ126およびローパスフィルタ226に限らず、対応する帯域制限回路、すなわち、ハイパスフィルタ、ローパスフィルタ、バンドパスフィルタ、バンドエリミネーションフィルタを選択すればよい。要は、増幅回路12と増幅回路22とで、それぞれの入力値の周波数帯を第1の周波数帯と第2の周波数帯(またはこの逆)に分けることにより、第1のフィルタ部101は第1の周波数帯(または第2の周波数帯)について補償電圧または補償電流を注入し、第2のフィルタ部102は第2の周波数帯(または第1の周波数帯)について補償電圧または補償電流を注入する構成であればよい。 Further, in the second embodiment, the two filter units, the first filter unit 101 and the second filter unit 102, share the functions according to the frequency of the compensation band, and the two filter units are used to completely remove the common mode current. It suppresses the frequency components of the band. Therefore, the mode of sharing functions is not limited to the mode in which first filter section 101 suppresses high frequency components and second filter section 102 suppresses low frequency components, as described above. That is, the desired compensation band is divided into a first frequency band and a second frequency band, and only the frequency components of the first frequency band are passed through or blocked by the amplifier circuit 12 of the first filter section 101. A circuit may be provided, and a band limiting circuit may be provided to pass or block only the frequency component of the second frequency band in the amplifier circuit 22 of the second filter section 102 . In the second embodiment, the amplifier circuit 12 of the first filter section is provided with the high-pass filter 126, and the amplifier circuit 22 of the second filter section is provided with the low-pass filter 226. For example, not only the high-pass filter 126 and the low-pass filter 226, but also corresponding band-limiting circuits, that is, high-pass filters, low-pass filters, band-pass filters, and band-elimination filters may be selected. In short, by dividing the frequency band of each input value into the first frequency band and the second frequency band (or vice versa) in the amplifier circuit 12 and the amplifier circuit 22, the first filter unit 101 A compensating voltage or compensating current is injected for the first frequency band (or the second frequency band), and the second filter section 102 injects the compensating voltage or the compensating current for the second frequency band (or the first frequency band). Any configuration is acceptable.
 次に、第2のフィルタ部の注入回路をコモンモードトランスで構成する場合について説明する。図10は、実施の形態2に係る2つのフィルタ部を示す回路図であり、第2のフィルタ部の注入回路としてコモンモードトランスを用いた場合の例を示す図である。図10に示す例における注入回路23は、電力線4uに接続された主巻線231u、電力線4vに接続された主巻線231v、電力線4wに接続された主巻線231w、および補助巻線232を有するコモンモードトランスによって構成される。補助巻線232の一端には、増幅回路22の出力端子225が接続され、補助巻線232の他端には、増幅回路22の電路2291が接続されている。電路2291は、入力端子224gおよびオペレーショナルアンプ221に接続されている。図10に示す例でも、第1のフィルタ部101と第2のフィルタ部102とで周波数帯に応じた機能分担を行うことは可能である。具体的には、第1のフィルタ部101のコモンモードトランス11と、第2のフィルタ部102の注入回路23のコモンモードトランスのそれぞれについて、各コモンモードトランスの鉄心を対応する周波数帯域(上記機能分担により、それぞれのフィルタ部においてコモンモード電流を抑制する周波数帯域)に適した磁性材料を選定すればよい。これにより、それぞれのコモンモードトランスが大型化することを防ぎつつ、実施の形態1と比べて幅広い周波数帯域でコモンモード電流を抑制することができる。 Next, a case where the injection circuit of the second filter section is configured with a common mode transformer will be described. FIG. 10 is a circuit diagram showing two filter units according to Embodiment 2, and shows an example in which a common mode transformer is used as an injection circuit of the second filter unit. The injection circuit 23 in the example shown in FIG. It consists of a common mode transformer with One end of the auxiliary winding 232 is connected to the output terminal 225 of the amplifier circuit 22 , and the other end of the auxiliary winding 232 is connected to the electric circuit 2291 of the amplifier circuit 22 . The electric line 2291 is connected to the input terminal 224 g and the operational amplifier 221 . In the example shown in FIG. 10 as well, it is possible to share functions between the first filter section 101 and the second filter section 102 according to the frequency band. Specifically, for each of the common mode transformer 11 of the first filter section 101 and the common mode transformer of the injection circuit 23 of the second filter section 102, the frequency band corresponding to the iron core of each common mode transformer (the above function A magnetic material suitable for the frequency band in which the common mode current is suppressed in each filter section may be selected according to the assignment. As a result, the common mode current can be suppressed in a wider frequency band than in the first embodiment while preventing each common mode transformer from increasing in size.
 実施の形態2によれば、コモンモードフィルタが大型化することを防ぎつつ、幅広い周波数帯域でコモンモード電流を抑制することができる。より具体的には、コモンモードフィルタに2つのフィルタ部を設け、高周波成分に対して高インピーダンスを確保した第1のフィルタ部ではコモンモード電流の高周波成分を抑制し、低周波成分に対して高インピーダンスを確保した第2のフィルタ部ではコモンモード電流の低周波成分を抑制するという、周波数に応じた機能分担を行っている。第1のフィルタ部のインピーダンスを低周波成分についても高くする場合は第1のフィルタ部に大型のコモンモードチョークコイルが必要となるが、上記の機能分担により、第1のフィルタ部の低周波に対するインピーダンスを高くすることなく、第2のフィルタ部でコモンモード電流の低周波成分を抑制する。このため、コモンモードフィルタが大型化することを防ぎつつ、幅広い周波数帯域でコモンモード電流を抑制することができるのである。 According to Embodiment 2, common mode current can be suppressed in a wide frequency band while preventing the common mode filter from becoming large. More specifically, the common mode filter is provided with two filter sections, and the first filter section that ensures high impedance for high frequency components suppresses the high frequency components of the common mode current and suppresses the high frequency components for low frequency components. In the second filter section that ensures the impedance, the function of suppressing the low-frequency component of the common mode current is shared according to the frequency. If the impedance of the first filter section is also increased for low frequency components, a large common mode choke coil is required for the first filter section. The low frequency component of the common mode current is suppressed by the second filter section without increasing the impedance. Therefore, it is possible to suppress the common mode current in a wide frequency band while preventing the common mode filter from increasing in size.
実施の形態3.
 次に、実施の形態3を図11および図12に基づいて説明する。なお、図1から図10と同一または相当部分については同一符号を付し、その説明を省略する。図11は、実施の形態3におけるコモンモードフィルタを示す回路図であり、コモンモード検出回路としてコモンモードトランスを用いた場合の例を示す図である。コモンモードフィルタ300は、実施の形態1のコモンモードフィルタ100および実施の形態2のコモンモードフィルタ200と同様に、電力変換回路2と補償対象3との間に接続されており、第1のフィルタ部301と、第2のフィルタ部102とにより構成されている。第1のフィルタ部301は、第1のフィルタ部301は、実施の形態2の第1のフィルタ部101と同様に、コモンモードトランス11と、増幅回路32と、シャント抵抗131を有する電流検出部13とを備えている。また第1のフィルタ部301は、補償対象3と増幅回路32との間に、コモンモード検出回路14と終端回路15が設けられている。
Embodiment 3.
Next, Embodiment 3 will be described with reference to FIGS. 11 and 12. FIG. 1 to 10 are denoted by the same reference numerals, and description thereof will be omitted. FIG. 11 is a circuit diagram showing a common mode filter according to Embodiment 3, and shows an example in which a common mode transformer is used as a common mode detection circuit. The common mode filter 300 is connected between the power conversion circuit 2 and the compensation target 3 in the same manner as the common mode filter 100 of the first embodiment and the common mode filter 200 of the second embodiment. 301 and the second filter unit 102 . The first filter section 301 is a current detection section having a common mode transformer 11, an amplifier circuit 32, and a shunt resistor 131, like the first filter section 101 of the second embodiment. 13. Further, the first filter section 301 is provided with a common mode detection circuit 14 and a termination circuit 15 between the compensation target 3 and the amplifier circuit 32 .
 コモンモード検出回路14、すなわち第2のコモンモードトランスは、電力線5uに接続された主巻線141u、電力線5vに接続された主巻線141v、電力線5wに接続された主巻線141w、および補助巻線142を有するコモンモードトランスによって構成されており、主巻線141u、141v、141wに主回路電流が流れることで、主巻線141u、141v、141wと補助巻線142の巻数比に応じた電流iinが補助巻線142に流れる。終端回路15により電流iinを電圧変換し、検出値iin*が得られる。検出値iin*は、ハイパスフィルタとして構成された終端回路15を介して増幅回路32に入力される。増幅回路32は、全ての帯域または特定帯域について検出値iin*が減少するように、検出値iin*に対してネガティブフィードバック制御を行う。すなわち、増幅回路32は、検出値iin*が減少するように検出値iin*を増幅して増幅電圧vを出力する。増幅電圧vは、補助巻線112に印加され、増幅電圧vに応じた補償電圧vcom(図11では図示省略)が主巻線111から電力線4、5に注入される。補償電圧vcomは、電力変換回路2が出力するコモンモード電圧を相殺するように機能する。なお、増幅回路32の上記以外の回路構成は、実施の形態1および実施の形態2の増幅回路12と同様である。 The common mode detection circuit 14, ie, the second common mode transformer, has a main winding 141u connected to the power line 5u, a main winding 141v connected to the power line 5v, a main winding 141w connected to the power line 5w, and an auxiliary winding 141w connected to the power line 5w. The main windings 141u, 141v, and 141w are composed of a common mode transformer having a winding 142, and a main circuit current flows through the main windings 141u, 141v, and 141w, thereby controlling the turns ratio between the main windings 141u, 141v, and 141w and the auxiliary winding 142. A current i in flows through the auxiliary winding 142 . The termination circuit 15 voltage-converts the current i in to obtain the detection value i in *. The detected value i in * is input to the amplifier circuit 32 through the termination circuit 15 configured as a high-pass filter. The amplifier circuit 32 performs negative feedback control on the detected value i in * so that the detected value i in * decreases for all bands or a specific band. That is, the amplifier circuit 32 amplifies the detected value i in * so that the detected value i in * decreases, and outputs the amplified voltage v o . The amplified voltage v o is applied to the auxiliary winding 112 , and a compensation voltage v com (not shown in FIG. 11) corresponding to the amplified voltage v o is injected from the main winding 111 to the power lines 4 and 5 . The compensation voltage v com functions to cancel the common mode voltage output by the power conversion circuit 2 . The circuit configuration of amplifier circuit 32 other than the above is the same as that of amplifier circuit 12 of the first and second embodiments.
 終端回路15のインピーダンスは、全ての周波数帯または特定の周波数帯について、コモンモードトランス14の励磁インダクタンスのインピーダンスよりも大きい。 The impedance of the termination circuit 15 is greater than the impedance of the magnetizing inductance of the common mode transformer 14 for all frequency bands or a specific frequency band.
 第2のフィルタ部102は、実施の形態2と同様である。すなわち、電流検出部13(シャント抵抗131)の検出値i*が増幅回路22に入力され、増幅回路22は、検出値i*が減少するように検出値i*を増幅して増幅電圧vo2を出力する。これにより、注入回路21のYコンデンサの中性点と接地線6との間に増幅電圧vo2が印加されて、増幅電圧vo2に応じた補償電流が電力線4に注入される。上述したように、この補償電流は、コモンモード電流を相殺するものである。 The second filter section 102 is similar to that of the second embodiment. That is, the detection value i o * of the current detection unit 13 (shunt resistor 131) is input to the amplification circuit 22, and the amplification circuit 22 amplifies the detection value i o * so that the detection value i o * decreases. Output voltage v o2 . As a result, the amplified voltage vo2 is applied between the neutral point of the Y capacitor of the injection circuit 21 and the ground line 6, and a compensation current corresponding to the amplified voltage vo2 is injected into the power line 4. FIG. As mentioned above, this compensating current cancels out the common mode current.
 なお、実施の形態3における増幅回路32、検出値iin*、および増幅電圧vは、それぞれ第1の増幅回路、第1の検出値、および第1の増幅電圧に相当する。また、増幅回路22、検出値i*、および増幅電圧vo2は、それぞれ第2の増幅回路、第2の検出値、および第2の増幅電圧に相当する。 The amplifier circuit 32, the detected value i in *, and the amplified voltage v o in the third embodiment correspond to the first amplifier circuit, the first detected value, and the first amplified voltage, respectively. Also, the amplifier circuit 22, the detected value i o *, and the amplified voltage v o2 correspond to the second amplifier circuit, the second detected value, and the second amplified voltage, respectively.
 第1のフィルタ部301の動作について説明する。例として、終端回路15の抵抗を100Ω程度とした場合を考える。この場合、コモンモード検出回路14はコモンモード電流に対してインピーダンスを持つため、コモンモードチョークコイルとしても機能しつつ、補助巻線142を流れる電流iinを電圧変換して検出値iin*を得ることとなる。換言すると、コモンモード検出回路14は、コモンモード電流の検出回路とコモンモードチョークコイルを兼用できる。増幅回路32は、増幅回路12と同様に-R2/R1のゲインを持つが、このゲインの値を増加させても補助巻線142に接続されている終端回路15のインピーダンスは変化しない。これは、コモンモード検出回路14の検出特性は、増幅回路32のゲインに影響を受けないことを意味する。ここで、増幅回路32に入力される検出値iin*に低周波成分が含まれていると、増幅電圧vにも低周波成分が含まれる。 The operation of the first filter unit 301 will be described. As an example, consider a case where the resistance of the termination circuit 15 is about 100Ω. In this case, since the common mode detection circuit 14 has an impedance with respect to the common mode current, it also functions as a common mode choke coil, and voltage-converts the current i in flowing through the auxiliary winding 142 to obtain the detection value i in *. will be obtained. In other words, the common mode detection circuit 14 can serve as both a common mode current detection circuit and a common mode choke coil. The amplifier circuit 32 has a gain of −R2/R1 like the amplifier circuit 12, but the impedance of the terminating circuit 15 connected to the auxiliary winding 142 does not change even if the value of this gain is increased. This means that the detection characteristics of the common mode detection circuit 14 are not affected by the gain of the amplifier circuit 32 . Here, if the detected value i in * input to the amplifier circuit 32 contains low frequency components, the amplified voltage v o also contains low frequency components.
 低周波成分が含まれる増幅電圧vをコモンモードトランス11の補助巻線112に印加すると、コモンモードトランス11に発生する磁束Φが増加し、コモンモードトランス11の大型化を招く。このため、実施の形態3ではハイパスフィルタとして構成された終端回路15をコモンモード検出回路14と増幅回路32の間に設け、増幅回路32に入力される検出値iin*から低周波成分を除去している。なお、終端回路15(ハイパスフィルタ)のカットオフ周波数を70kHz程度に設定することにより、第1のフィルタ部301の補償帯域を150kHz以上とすることができる。また、上述したようなコモンモードトランス11の大型化も防ぐことができる。 When the amplified voltage vo containing a low-frequency component is applied to the auxiliary winding 112 of the common mode transformer 11, the magnetic flux Φ generated in the common mode transformer 11 increases, causing the common mode transformer 11 to become large. Therefore, in the third embodiment, the termination circuit 15 configured as a high-pass filter is provided between the common mode detection circuit 14 and the amplifier circuit 32 to remove the low frequency component from the detection value i in * input to the amplifier circuit 32. are doing. By setting the cutoff frequency of the termination circuit 15 (high-pass filter) to about 70 kHz, the compensation band of the first filter section 301 can be set to 150 kHz or higher. In addition, it is possible to prevent the common mode transformer 11 from increasing in size as described above.
 第2のフィルタ部102の動作は、実施の形態2と同様である。このため、実施の形態3でも、第1のフィルタ部301と第2のフィルタ部102とで実施の形態2と同様の機能分担が実現される。これにより、幅広い周波数帯域でコモンモード電流を抑制することができる。 The operation of the second filter unit 102 is the same as in the second embodiment. Therefore, in the third embodiment as well, the first filter section 301 and the second filter section 102 share the same functions as in the second embodiment. Thereby, common mode current can be suppressed in a wide frequency band.
 上記のように、実施の形態3の第1のフィルタ部301においては、コモンモード検出回路14をコモンモードチョークコイルとして動作させつつ、増幅回路32とコモンモードトランス11により、150kHz以上の高周波成分についてコモンモード電流を抑制する。さらに、実施の形態2と同様に、第2のフィルタ部102の増幅回路22の入力は、第1のフィルタ部301の電流検出部13(シャント抵抗131)の検出値i*となっている。このため、第2のフィルタ部102には専用のコモンモード検出回路が必要ない。 As described above, in the first filter unit 301 of the third embodiment, while operating the common mode detection circuit 14 as a common mode choke coil, the amplification circuit 32 and the common mode transformer 11 detect high frequency components of 150 kHz or higher. Suppresses common mode currents. Furthermore, as in the second embodiment, the input of the amplifier circuit 22 of the second filter section 102 is the detection value i o * of the current detection section 13 (shunt resistor 131) of the first filter section 301. . Therefore, the second filter section 102 does not require a dedicated common mode detection circuit.
 なお、従来のコモンモードフィルタにおいても、複数のフィルタ部ないし注入回路に対して共通の検出回路を設けることがあったが、従来の手法では、検出用のコモンモードトランスで構成された共通の検出回路の出力端に複数のフィルタ部ないし注入回路をそれぞれ接続し、上記共通の検出回路を構成する検出用のコモンモードトランスの補助巻線を流れる電流を、上記複数のフィルタ部ないし注入回路のそれぞれの終端回路においてそれぞれ電圧変換していた。この手法では、それぞれの終端回路に高抵抗を適用して上記共通の検出回路をコモンモードチョークコイルとして使用した場合に、上記検出用のコモンモードトランスの主巻線を流れる電流の一部が励磁電流として消費される。特に低周波成分については、終端回路のインピーダンスに対し励磁インダクタンスLのインピーダンスが低くなるため、コモンモード電流の大半が終端回路ではなく励磁インダクタンスLに流れてしまっていた。この結果、トランスの2次側に流れる電流の電流値が、等アンペアターンの定理で得られる電流値、すなわち、1次側の電流の電流値にトランスの巻き数比を乗じた値よりも小さい値となる。この場合、コモンモード電流の低周波成分の検出値が小さくなり、低周波成分に対するフィードバックゲインの確保が困難になっていた。換言すると、従来の手法では、コモンモード検出回路にコモンモードチョークコイルとしての機能を持たせつつ、増幅回路によりコモンモード電流の低周波成分の抑制を図ることが困難であった。 In conventional common mode filters, a common detection circuit is sometimes provided for a plurality of filter units or injection circuits. A plurality of filter units or injection circuits are connected to the output terminal of the circuit, respectively, and the current flowing through the auxiliary winding of the detection common mode transformer constituting the common detection circuit is detected by each of the plurality of filter units or injection circuits. voltage conversion was performed in each terminal circuit. In this method, when a high resistance is applied to each termination circuit and the common detection circuit is used as a common mode choke coil, part of the current flowing through the main winding of the common mode transformer for detection is excited. Consumed as current. Particularly for low-frequency components, the impedance of the exciting inductance Lm is lower than the impedance of the termination circuit, so most of the common mode current flows through the excitation inductance Lm instead of the termination circuit. As a result, the current value of the current flowing through the secondary side of the transformer is smaller than the current value obtained by the equal ampere-turn theorem, that is, the value obtained by multiplying the current value of the primary side current by the turns ratio of the transformer. value. In this case, the detected value of the low frequency component of the common mode current becomes small, making it difficult to secure the feedback gain for the low frequency component. In other words, in the conventional method, it is difficult to suppress the low-frequency component of the common mode current with the amplifier circuit while allowing the common mode detection circuit to function as a common mode choke coil.
 そこで、実施の形態3では、コモンモード電流の高周波成分の抑制についてはコモンモード検出回路14で検出した検出値iin*を用い、低周波成分の抑制については電流検出部13(シャント抵抗131)で検出した検出値i*を用いる。ここで、検出値io*はコモンモード電流の高周波成分を抑制するコモンモードトランス11の補助巻線112を流れる電流iを電圧変換したものである。なお、増幅回路32とコモンモード検出回路14との間にはハイパスフィルタとして構成した終端回路15を設け、増幅回路32には低周波成分が入力されることを防いでいる。このため、低周波成分については、コモンモードトランス11はCTとして動作し、増幅回路32の出力である増幅電圧vにも低周波成分はほとんど含まれない。この結果、低周波成分について、補助巻線112を流れる電流iは、等アンペアターンの定理どおり、コモンモードトランス11の主巻線111と補助巻線112の巻き数比で決まる。このことは、抑制すべきコモンモード電流の低周波成分の検出において、励磁電流などの検出外乱の混入を防ぐことができることを意味する。このため、検出値i*を取得することでコモンモード電流の低周波成分を精度よく取得でき、低周波成分を抑制する第2のフィルタ部102の増幅回路22の入力値の精度も向上している。この結果、コモンモード電流の低周波成分の減衰量を向上させ、低周波成分をより抑制することができるので、検出回路の削減と、幅広い周波数帯域でのコモンモード電流の抑制とが両立可能となっている。 Therefore, in Embodiment 3, the detection value i in * detected by the common mode detection circuit 14 is used to suppress the high frequency component of the common mode current, and the current detection unit 13 (shunt resistor 131) is used to suppress the low frequency component. The detection value i o * detected in is used. Here, the detected value io * is obtained by voltage-converting the current io flowing through the auxiliary winding 112 of the common mode transformer 11 for suppressing the high frequency component of the common mode current. A termination circuit 15 configured as a high-pass filter is provided between the amplifier circuit 32 and the common mode detection circuit 14 to prevent low frequency components from being input to the amplifier circuit 32 . Therefore, the common mode transformer 11 operates as a CT with respect to low frequency components, and the amplified voltage vo, which is the output of the amplifier circuit 32, contains almost no low frequency components. As a result, the current io flowing through the auxiliary winding 112 for the low-frequency component is determined by the turns ratio between the main winding 111 and the auxiliary winding 112 of the common mode transformer 11, according to the equi-ampere-turn theorem. This means that it is possible to prevent mixing of detection disturbance such as excitation current in detection of the low-frequency component of the common mode current to be suppressed. Therefore, by obtaining the detected value i o *, the low frequency component of the common mode current can be obtained with high accuracy, and the accuracy of the input value of the amplifier circuit 22 of the second filter unit 102 that suppresses the low frequency component is also improved. ing. As a result, the amount of attenuation of the low-frequency component of the common-mode current can be improved, and the low-frequency component can be further suppressed. It's becoming
 なお、上記説明では、補助巻線142に100Ω程度の高抵抗を接続するとしたがこの限りではなく、補助巻線142に流れる電流iinに応じた電圧降下から検出値iin*を取得できる構成であれば、任意の受動回路で構成してもよい。補助巻線142に低抵抗を接続する場合、コモンモード検出回路14はコモンモードチョークコイルとしては動作しないが、CTとして動作するため、終端回路のインピーダンスに対し励磁インダクタンスのインピーダンスが高い帯域(理想的には、この帯域は全ての帯域となる)において、コモンモード検出回路14の検出ゲインを低下させることがない。また、第1のフィルタ部で補償する帯域に応じて、ハイパスフィルタ、ローパスフィルタ、バンドパスフィルタ、バンドエリミネーションフィルタの特性を有する回路を補助巻線142に接続してもよく、また、純抵抗を接続して、補助巻線142では帯域制限を行わない構成としてもよい。 In the above description, a high resistance of about 100 Ω is connected to the auxiliary winding 142. However, the configuration is not limited to this, and the detection value i in * can be obtained from the voltage drop corresponding to the current i in flowing through the auxiliary winding 142. Any passive circuit may be used as long as it is so long. When a low resistance is connected to the auxiliary winding 142, the common mode detection circuit 14 does not operate as a common mode choke coil, but operates as a CT. , this band is the entire band), the detection gain of the common mode detection circuit 14 is not lowered. Further, a circuit having characteristics of a high-pass filter, a low-pass filter, a band-pass filter, and a band-elimination filter may be connected to the auxiliary winding 142 according to the band to be compensated by the first filter unit. may be connected so that the auxiliary winding 142 does not limit the band.
 また、コモンモード検出回路をYコンデンサで構成することもできる。図12は、実施の形態3におけるコモンモードフィルタを示す回路図であり、コモンモード検出回路としてYコンデンサを用いた場合の例を示す図である。コモンモードフィルタ3001において、第1のフィルタ部3011は、コモンモードトランス11と、増幅回路32と、電流検出部13とを備えている。また第1のフィルタ部301は、補償対象3と増幅回路32との間に、コモンモード検出回路18が設けられている。 Also, the common mode detection circuit can be configured with a Y capacitor. FIG. 12 is a circuit diagram showing a common mode filter according to Embodiment 3, and shows an example in which a Y capacitor is used as the common mode detection circuit. In common mode filter 3001 , first filter section 3011 includes common mode transformer 11 , amplifier circuit 32 , and current detection section 13 . Further, the first filter section 301 is provided with a common mode detection circuit 18 between the compensation target 3 and the amplifier circuit 32 .
 コモンモード検出回路18は、電力線5uに接続されたコンデンサ181u、電力線5vに接続されたコンデンサ181v、および電力線5wに接続されたコンデンサ181wを有するYコンデンサによって構成されている。このYコンデンサの中性点は、回路182を介して接地線6と接続されている。また。回路182は増幅回路32の入力端子124sおよび入力端子124gと接続されている。回路182と入力端子124sとの接続点、および回路182と入力端子124gとの接続点の間には、分圧用のコンデンサ183が設けられている。コンデンサ183は、コンデンサ181u、コンデンサ181v、およびコンデンサ181wを流れる主回路電流に応じた電圧を検出値vin*として検出する。この検出値vin*は、入力端子124s、124gを介して増幅回路32に入力される。その他については図11で示した例と同様である。第2のフィルタ部102の増幅回路22には、電流検出部13によって検出された検出値i*が入力される。 The common mode detection circuit 18 is composed of a Y capacitor having a capacitor 181u connected to the power line 5u, a capacitor 181v connected to the power line 5v, and a capacitor 181w connected to the power line 5w. The neutral point of this Y capacitor is connected to ground line 6 via circuit 182 . again. Circuit 182 is connected to input terminal 124s and input terminal 124g of amplifier circuit 32 . A voltage dividing capacitor 183 is provided between the connection point between the circuit 182 and the input terminal 124s and the connection point between the circuit 182 and the input terminal 124g. The capacitor 183 detects, as a detection value v in *, a voltage according to the main circuit current flowing through the capacitors 181u, 181v, and 181w. This detected value v in * is input to the amplifier circuit 32 through the input terminals 124s and 124g. Others are the same as the example shown in FIG. A detection value i o * detected by the current detection unit 13 is input to the amplifier circuit 22 of the second filter unit 102 .
 上述したように、実施の形態3ではコモンモード検出回路14(またはコモンモード検出回路18)を設け、第1のフィルタ部301(または第1のフィルタ部3011)ではコモンモード検出回路14(18)による検出値iin*を入力として用いるが、第2のフィルタ部102では、コモンモードトランス11の補助巻線112を流れる電流iinに基づく検出値i*を入力として用いる。コモンモードトランス11は第1のフィルタ部301(3011)の注入回路に相当するので、2つの注入回路(コモンモードトランス11および注入回路21)に対し、検出回路を1つにできている。このため、実施の形態3では、コモンモードフィルタを従来よりも小型化していると言える。またこれにより、コモンモードフィルタの低コスト化も実現している。 As described above, in the third embodiment, common mode detection circuit 14 (or common mode detection circuit 18) is provided, and common mode detection circuit 14 (18) is provided in first filter section 301 (or first filter section 3011). The second filter unit 102 uses the detected value i o * based on the current i in flowing through the auxiliary winding 112 of the common mode transformer 11 as an input. Since the common mode transformer 11 corresponds to the injection circuit of the first filter section 301 (3011), one detection circuit is provided for the two injection circuits (common mode transformer 11 and injection circuit 21). Therefore, in the third embodiment, it can be said that the common mode filter is made smaller than the conventional one. In addition, this also realizes cost reduction of the common mode filter.
 なお、上述した実施の形態1から3では、電流検出部13により検出された電流を電圧変換して得た検出値i*、あるいはコモンモード検出回路14により検出された電流を電圧変換して得た検出値iin*を入力として増幅回路12、22、32が増幅電圧v、vo2を生成し、増幅電圧v、vo2を補助巻線112に印加することなどで電力線5に補償電圧を注入する。ただし、このような構成に限られるものではなく、例えば、増幅回路12の代わりとして、A/D(アナログ/デジタル)変換器と、DSPまたはFPGAのようなデジタル素子と、D/A(デジタル/アナログ)変換器、またはこれと同様の機能を持つ出力回路(以下「D/A変換器等」)とを設けてもよい。この場合、A/D変換器で取り込まれた入力信号を上記デジタル素子で処理し、D/A変換器等により、上記入力信号が減少するように、上記デジタル素子から出力される信号から出力電圧を生成する。また、生成した上記出力電圧を補助巻線112に印加することで電力線5に補償電圧を注入する。 In the first to third embodiments described above, the detected value i o * obtained by voltage-converting the current detected by the current detection unit 13, or the voltage-converted current detected by the common mode detection circuit 14 is Amplification circuits 12, 22, and 32 generate amplified voltages v o and v o2 using the obtained detection value i in * as an input, and the amplified voltages v o and v o2 are applied to the auxiliary winding 112, etc., so that the power line 5 Inject compensation voltage. However, it is not limited to such a configuration. For example, instead of the amplifier circuit 12, an A/D (analog/digital) converter, a digital element such as a DSP or FPGA, a An analog) converter or an output circuit having a similar function (hereinafter "D/A converter, etc.") may be provided. In this case, the input signal taken in by the A/D converter is processed by the digital element, and the signal output from the digital element is converted to the output voltage by the D/A converter or the like so that the input signal is reduced. to generate Also, by applying the generated output voltage to the auxiliary winding 112 , a compensation voltage is injected into the power line 5 .
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
 従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
 例えば、コモンモードフィルタを構成するフィルタ部を3つ以上としてもよい。この場合、複数のフィルタ部のうちの1つを第1のフィルタ部とし、コモンモードトランス11と、コモンモードトランス11の補助巻線112を流れる電流iを検出する電流検出部13を設ける。そして、複数のフィルタ部(第1のフィルタ部も含む)のうちの少なくとも1つのフィルタ部は、電流検出部13による検出値i*に対してネガティブフィードバック制御を行う増幅回路等を備え、検出値i*に基づいて補償電圧または補償電流を注入する構成とすればよい。
While this application describes various exemplary embodiments and examples, various features, aspects, and functions described in one or more embodiments may not apply to particular embodiments. can be applied to the embodiments singly or in various combinations.
Therefore, countless modifications not illustrated are envisioned within the scope of the technology disclosed in the present application. For example, modification, addition or omission of at least one component, extraction of at least one component, and combination with components of other embodiments shall be included.
For example, there may be three or more filter units forming a common mode filter. In this case, one of the plurality of filter sections is used as a first filter section, and a common mode transformer 11 and a current detection section 13 for detecting a current io flowing through an auxiliary winding 112 of the common mode transformer 11 are provided. At least one of the plurality of filter units (including the first filter unit) includes an amplifier circuit or the like that performs negative feedback control on the value i o * detected by the current detection unit 13, and detects A configuration may be used in which a compensating voltage or compensating current is injected based on the value i o *.
2 電力変換回路、3 補償対象、4、4u、4v、4w、5、5u、5v、5w、7u、7v、7w 電力線、6 接地線、11 コモンモードトランス、12、22、32 増幅回路、13 電流検出部、14、18 コモンモード検出回路、15 終端回路、21、23 注入回路、100、200、300、3001 コモンモードフィルタ、101、301、3011 第1のフィルタ部、102 第2のフィルタ部、111、111u、111v、111w、141u、141v、141w 主巻線、112、142 補助巻線、121、221 オペレーショナルアンプ、122、222 入力抵抗、123、223 負帰還抵抗、124s、124g、224s、224g 入力端子、125s、125g、225 出力端子、126、127 ハイパスフィルタ、131 シャント抵抗、132 CT、 133、15 終端回路、14 コモンモード検出回路、224 入力端子、225 出力端子、226 ローパスフィルタ、1000 電力変換システム、i 電流、iin*、i*、vin* 検出値、v、vo2 増幅電圧 2 power conversion circuit 3 compensation target 4, 4u, 4v, 4w, 5, 5u, 5v, 5w, 7u, 7v, 7w power line 6 ground line 11 common mode transformer 12, 22, 32 amplifier circuit 13 Current detection section 14, 18 Common mode detection circuit 15 Termination circuit 21, 23 Injection circuit 100, 200, 300, 3001 Common mode filter 101, 301, 3011 First filter section 102 Second filter section , 111, 111u, 111v, 111w, 141u, 141v, 141w main winding, 112, 142 auxiliary winding, 121, 221 operational amplifier, 122, 222 input resistance, 123, 223 negative feedback resistance, 124s, 124g, 224s, 224g input terminal, 125s, 125g, 225 output terminal, 126, 127 high-pass filter, 131 shunt resistor, 132 CT, 133, 15 termination circuit, 14 common mode detection circuit, 224 input terminal, 225 output terminal, 226 low-pass filter, 1000 power conversion system, i o current, i in *, i o *, v in * detection value, v o , v o2 amplified voltage

Claims (6)

  1.  補償対象と電力変換回路との間の電力線に接続されたコモンモードフィルタであって、
     前記電力線を流れるコモンモード電流を抑制する補償電圧または補償電流を前記電力線に注入する注入回路を有するフィルタ部を1または複数備え、
     前記フィルタ部のうちの第1のフィルタ部は、
     前記電力線に設けられた主巻線と、前記主巻線と磁気的に結合された補助巻線とを有するコモンモードトランスと、
     前記補助巻線を流れる電流を検出する電流検出部とを含み、
     前記フィルタ部のうちの少なくとも1つは、
     前記電流検出部により検出された電流に基づいて生成される前記補償電圧または補償電流を前記電力線に注入するコモンモードフィルタ。
    A common mode filter connected to a power line between a compensation target and a power conversion circuit,
    one or more filter units each having an injection circuit for injecting a compensation voltage or a compensation current into the power line to suppress a common mode current flowing through the power line;
    The first filter unit of the filter units is
    a common mode transformer having a main winding provided on the power line and an auxiliary winding magnetically coupled to the main winding;
    a current detection unit that detects the current flowing through the auxiliary winding,
    at least one of the filter units,
    A common mode filter for injecting into the power line the compensation voltage or compensation current generated based on the current detected by the current detection unit.
  2.  前記フィルタ部は、前記第1のフィルタ部と、前記第1のフィルタ部とは異なる第2のフィルタ部とを含む複数のフィルタ部であって、
     前記第1のフィルタ部は、第1の周波数帯について前記コモンモード電流を抑制する前記補償電圧または補償電流を前記電力線に注入し、
     前記第2のフィルタ部は、前記第1の周波数帯とは異なる第2の周波数帯について前記コモンモード電流を抑制する前記補償電圧または補償電流を前記電力線に注入する請求項1に記載のコモンモードフィルタ。
    The filter section is a plurality of filter sections including the first filter section and a second filter section different from the first filter section,
    The first filter section injects into the power line the compensation voltage or compensation current that suppresses the common mode current for a first frequency band,
    2. The common mode according to claim 1, wherein the second filter section injects into the power line the compensation voltage or compensation current that suppresses the common mode current in a second frequency band different from the first frequency band. filter.
  3.  前記電力線を流れるコモンモード電流を検出するコモンモード検出回路をさらに備え、
     前記第1のフィルタ部は、前記コモンモード検出回路により検出されたコモンモード電流に基づいて生成される前記補償電圧を前記電力線に注入するとともに、
     前記第2のフィルタ部は、前記電流検出部により検出された電流に基づいて生成される前記補償電圧または補償電流を前記電力線に注入する請求項2に記載のコモンモードフィルタ。
    Further comprising a common mode detection circuit that detects a common mode current flowing through the power line,
    The first filter section injects into the power line the compensation voltage generated based on the common mode current detected by the common mode detection circuit,
    3. The common mode filter according to claim 2, wherein said second filter section injects said compensation voltage or compensation current generated based on the current detected by said current detection section into said power line.
  4.  前記コモンモード検出回路は、第2のコモンモードトランスを有し、前記第2のコモンモードトランスの補助巻線には、前記第1の周波数帯または全ての周波数帯について、前記第2のコモンモードトランスの励磁インダクタンスによるインピーダンスよりも大きいインピーダンスを持つ終端回路が接続されている請求項3に記載のコモンモードフィルタ。 The common mode detection circuit has a second common mode transformer, and an auxiliary winding of the second common mode transformer provides the second common mode for the first frequency band or all frequency bands. 4. A common mode filter according to claim 3, further comprising a terminating circuit having an impedance higher than the impedance due to the magnetizing inductance of the transformer.
  5.  前記フィルタ部は、前記注入回路に増幅電圧を出力する増幅回路を備え、
     前記増幅回路は、前記電流検出部により得られる検出値を入力として、前記検出値を減少させる前記増幅電圧を生成し、
     前記注入回路は、前記増幅電圧に応じた前記補償電圧または補償電流を前記電力線に注入する請求項1から3のいずれか1項に記載のコモンモードフィルタ。
    The filter unit includes an amplifier circuit that outputs an amplified voltage to the injection circuit,
    The amplifier circuit receives a detection value obtained by the current detection unit as an input and generates the amplified voltage that reduces the detection value,
    4. The common mode filter according to claim 1, wherein said injection circuit injects said compensation voltage or compensation current according to said amplified voltage into said power line.
  6.  前記第1のフィルタ部は、前記第1のフィルタ部の注入回路に第1の増幅電圧を出力する第1の増幅回路を備え、
     前記第1の増幅回路は、前記コモンモード検出回路により得られる第1の検出値を入力として、前記第1の検出値を減少させる前記第1の増幅電圧を生成し、
    前記第1のフィルタ部の注入回路は、前記第1の増幅電圧に応じた前記補償電圧または補償電流を前記電力線に注入するとともに、
     前記第2のフィルタ部は、前記第2のフィルタ部の注入回路に第2の増幅電圧を出力する第2の増幅回路を備え
     前記第2の増幅回路は、前記電流検出部により得られる第2の検出値を入力として、前記第2の検出値を減少させる前記第2の増幅電圧を生成し、
    前記第2のフィルタ部の注入回路は、前記第2の増幅電圧に応じた前記補償電圧または補償電流を前記電力線に注入する請求項3または4に記載のコモンモードフィルタ。
    The first filter section includes a first amplifier circuit that outputs a first amplified voltage to the injection circuit of the first filter section,
    The first amplification circuit receives as input a first detection value obtained by the common mode detection circuit, and generates the first amplification voltage that decreases the first detection value,
    The injection circuit of the first filter section injects the compensation voltage or the compensation current corresponding to the first amplified voltage into the power line,
    The second filter section includes a second amplifier circuit that outputs a second amplified voltage to the injection circuit of the second filter section. The second amplifier circuit is a second amplifier obtained by the current detection section. using the detected value of as an input to generate the second amplified voltage that decreases the second detected value;
    5. The common mode filter according to claim 3, wherein the injection circuit of said second filter section injects said compensation voltage or compensation current corresponding to said second amplified voltage into said power line.
PCT/JP2021/040215 2021-11-01 2021-11-01 Common-mode filter WO2023073984A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/040215 WO2023073984A1 (en) 2021-11-01 2021-11-01 Common-mode filter
JP2022520860A JP7094473B1 (en) 2021-11-01 2021-11-01 Common mode filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/040215 WO2023073984A1 (en) 2021-11-01 2021-11-01 Common-mode filter

Publications (1)

Publication Number Publication Date
WO2023073984A1 true WO2023073984A1 (en) 2023-05-04

Family

ID=82257958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040215 WO2023073984A1 (en) 2021-11-01 2021-11-01 Common-mode filter

Country Status (2)

Country Link
JP (1) JP7094473B1 (en)
WO (1) WO2023073984A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08279724A (en) * 1995-04-06 1996-10-22 Nec Corp Common mode cholk circuit
JP2000201044A (en) * 1999-01-07 2000-07-18 Mitsubishi Electric Corp Common mode noise reducing device
JP2001244770A (en) * 2000-12-27 2001-09-07 Mitsubishi Electric Corp Noise filter
JP2006033113A (en) * 2004-07-13 2006-02-02 Saga Univ Power line communication adapter
JP2019080469A (en) * 2017-10-27 2019-05-23 三菱電機株式会社 Noise reduction device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08279724A (en) * 1995-04-06 1996-10-22 Nec Corp Common mode cholk circuit
JP2000201044A (en) * 1999-01-07 2000-07-18 Mitsubishi Electric Corp Common mode noise reducing device
JP2001244770A (en) * 2000-12-27 2001-09-07 Mitsubishi Electric Corp Noise filter
JP2006033113A (en) * 2004-07-13 2006-02-02 Saga Univ Power line communication adapter
JP2019080469A (en) * 2017-10-27 2019-05-23 三菱電機株式会社 Noise reduction device

Also Published As

Publication number Publication date
JP7094473B1 (en) 2022-07-01
JPWO2023073984A1 (en) 2023-05-04

Similar Documents

Publication Publication Date Title
US9203296B2 (en) Power supply systems with filters
JP3428588B2 (en) Active filter to reduce common mode current
US9099945B2 (en) Leakage current reducing apparatus
CN104901521B (en) Noise filter
US20130010506A1 (en) Leakage current reducing apparatus
US11088614B2 (en) Conductive noise suppressor, power converter, and motor device
WO2011021485A1 (en) Output filter and electric motor drive system provided therewith
CN108377666B (en) Power conversion device
US9887641B2 (en) Power converter
JP6568743B2 (en) Conductive noise suppression circuit and inverter device
WO2013111360A1 (en) High-frequency current reduction device
JP6783214B2 (en) Noise reduction device
JP2004534500A (en) Active Common Mode EMI Filter for Eliminating Conducted Electromagnetic Interference for Eliminating Impedance of Conducted Electromagnetic Devices
KR100427465B1 (en) Power conversion device
JPH1094244A (en) Active common-mode canceler
US20090027136A1 (en) Active electromagnetic interference filter circuit for suppressing a line conducted interference signal
KR20030026977A (en) Active common mode filter connected in a-c line
CA3103081C (en) Power conversion device
US11355945B2 (en) Compensation device for discharge currents
WO2023073984A1 (en) Common-mode filter
JP2004357447A (en) Noise reduction device of power conversion apparatus
JP5317032B2 (en) Noise reduction device for power converter
JP5070929B2 (en) Active filter device and power conversion device
US6920053B2 (en) Active EMI filter having no inductive current sensing device
JP2001025242A (en) Switching power source

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022520860

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962523

Country of ref document: EP

Kind code of ref document: A1