WO2023073794A1 - Object-sensing device, object-sensing method, and program - Google Patents

Object-sensing device, object-sensing method, and program Download PDF

Info

Publication number
WO2023073794A1
WO2023073794A1 PCT/JP2021/039403 JP2021039403W WO2023073794A1 WO 2023073794 A1 WO2023073794 A1 WO 2023073794A1 JP 2021039403 W JP2021039403 W JP 2021039403W WO 2023073794 A1 WO2023073794 A1 WO 2023073794A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflection intensity
arbitrary position
detection
intensity
detection means
Prior art date
Application number
PCT/JP2021/039403
Other languages
French (fr)
Japanese (ja)
Inventor
慎吾 山之内
正行 有吉
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2023555919A priority Critical patent/JPWO2023073794A1/ja
Priority to PCT/JP2021/039403 priority patent/WO2023073794A1/en
Publication of WO2023073794A1 publication Critical patent/WO2023073794A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section

Definitions

  • the present invention relates to an object detection device, an object detection method, and a program for irradiating a detection target with radio waves and recognizing or identifying the existence of the detection target from the radio waves reflected from the target.
  • radio waves microwaves, millimeter waves, terahertz waves, etc.
  • An apparatus has been proposed that inspects the article based on the received radio waves.
  • the technique of measuring the physical properties of an object, such as its reflectance or dielectric constant, using radio waves is useful in detecting or identifying illegal chemical substances such as explosives and drugs.
  • Reflectance and dielectric constant are physical properties that are related to each other, and the value of one can be derived from the other.
  • Non-Patent Document 1 and Patent Document 1 a technique for remotely measuring the dielectric constant of an object using radio waves has been proposed as a method for detecting or identifying chemical substances using radio waves.
  • Non-Patent Document 1 an object is irradiated with radio waves from a radar device, the radio waves reflected from the object are received by the radar device, an intermediate frequency signal is generated based on the received radio waves, and the dielectric constant of the object is generated from the intermediate frequency signal
  • a method for estimating is proposed. Specifically, a geometric optics model is used in which the permittivity of the object to be measured is an unknown variable. The geometrical optics model can calculate the intermediate frequency signal by giving the value of the dielectric constant, which is an unknown variable. Then, the dielectric constant of the object is estimated from the dielectric constant value of the geometrical optics model that best reproduces the measured value of the intermediate frequency signal.
  • Non-Patent Document 1 a geometrical optics model is derived only for the case of dielectrics with a structure in which multiple layers are arranged in parallel, so there is a problem that the dielectric constant of an object of arbitrary shape cannot be measured. .
  • Patent Document 1 proposes a method of measuring the dielectric constant with an object detection device equipped with a radar and a camera. Specifically, radio waves are emitted from a radar device to an object and a background reflector, and a three-dimensional microwave image is generated based on the radio waves reflected from the object and the background reflector. The object detection device measures the distance from the object detection device to the object and the background reflector using the three-dimensional microwave image and the camera image, and further estimates the dielectric constant from the measured distance.
  • the dielectric constant of an arbitrary-shaped object can be measured when a predetermined distance can be measured using a three-dimensional microwave image and a camera image.
  • the present invention solves the following problems in a method of measuring the dielectric constant of an object as a means of detecting or identifying chemical substances with an object detection device.
  • Non-Patent Document 1 has the problem that the dielectric constant of an object of arbitrary shape cannot be measured.
  • Patent Document 1 is based on the premise that radio waves pass through an object. Therefore, when the reflectance or absorptivity of the object is high, the amount of radio waves transmitted through the object is reduced, and there is a problem that the dielectric constant of the object cannot be measured correctly. Moreover, the method of Patent Document 1 requires a camera in addition to the radar. In particular, since it is necessary to synchronize the operation of the radar and the camera, there is a problem that when the object to be measured moves, the deviation of the synchronization between the radar and the camera causes a measurement error of the dielectric constant.
  • One aspect of the present invention is an object detection device for detecting an object using radio waves, which includes transmitting means including a plurality of transmitting antennas for irradiating radio waves toward the object, and the radio waves reflected from the object. further, receiving means for generating an intermediate frequency signal from the received signal received by the receiving antenna, and the reflection intensity at an arbitrary position of the radio wave from the intermediate frequency signal (arbitrary position reflection intensity ); object position detection means for detecting the position of the object (object position) from the arbitrary position reflection intensity detected by the arbitrary position reflection intensity detection means; object reflection intensity detection means for detecting reflection intensity at the object position (object reflection intensity) from the arbitrary position reflection intensity detected by the position reflection intensity detection means; intensity correction amount calculation means for calculating a correction amount of the reflection intensity based on the position of the object; and the object reflection intensity detected by the object reflection intensity detection means and the correction calculated by the intensity correction amount calculation means. and a corrected reflection intensity calculation means for calculating the corrected reflection intensity based on the quantity.
  • an object detection method for detecting an object using radio waves comprising the steps of irradiating radio waves from a transmitting means having a plurality of transmitting antennas toward the object; receiving the radio waves reflected from the object and generating an intermediate frequency signal from the received signal received by the receiving antenna; and generating an intermediate frequency signal from the radio wave from the intermediate frequency signal by an arbitrary position reflection intensity detecting means.
  • the object position detecting the reflection intensity (object reflection intensity) at the position of the object from the arbitrary position reflection intensity detected by the arbitrary position reflection intensity detection means by the object reflection intensity detection means; calculating a correction amount of the reflection intensity based on the object position detected by the object position detection means by an intensity correction amount calculation means; and calculating a corrected reflection intensity based on the object reflection intensity and the correction amount calculated by the intensity correction amount calculation means.
  • one aspect of the present invention includes transmitting means having a plurality of transmitting antennas for radiating radio waves toward the object, and a plurality of receiving antennas for receiving the radio waves reflected from the object, and
  • an object detection device comprising: receiving means for generating an intermediate frequency signal from a received signal received by a receiving antenna; a step of detecting the position of the object (object position) from the arbitrary position reflection intensity detected by the arbitrary position reflection intensity detection means by an object position detection means; an object reflection intensity detection means detecting a reflection intensity (object reflection intensity) at the position of the object from the arbitrary position reflection intensity detected by the arbitrary position reflection intensity detection means; calculating a correction amount of the reflection intensity based on the object position detected by the object position detection means; and computing the object reflection intensity detected by the object reflection intensity detection means and the and calculating a corrected reflection intensity based on the correction amount calculated by the intensity correction amount calculation means.
  • the present invention it is possible to measure the dielectric constant of an object of arbitrary shape as a means of detecting or identifying chemical substances.
  • the material-specific characteristics are calculated using the reflected waves on the surface of the object, the material-specific characteristics of the object can be calculated even when the amount of radio waves transmitted through the dielectric (object) is small. There is an effect that can be calculated.
  • the dielectric constant of an object of arbitrary shape can be calculated only by a radar device without using a camera, so that it is effective in solving the problem of measurement errors due to desynchronization between the radar and the camera.
  • FIG. 1 is a configuration diagram showing the configuration of an object detection device according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing an example of the configuration of the object detection device according to the embodiment of the invention.
  • FIG. 3 is a block diagram showing an example of the configuration of the object detection device according to the embodiment of the invention.
  • FIG. 4 is a flow chart showing an object detection method according to an embodiment of the invention.
  • FIG. 5 is a diagram illustrating an example of the positional relationship between the object detection device and the target object according to the embodiment of the present invention.
  • FIG. 6 is a diagram illustrating an example of the positional relationship between the object detection device and the target object according to the embodiment of the present invention.
  • FIG. 7 is a block diagram showing an example of a computer that implements the object detection device according to the embodiment of the invention.
  • FIG. 1 An object detection device, an object detection method, and a program according to embodiments of the present invention will be described below with reference to FIGS. 1 to 7.
  • FIG. 1 In this embodiment, errors due to sensors other than radar are eliminated, and the characteristics (reflectance or dielectric constant) inherent in the material of an object of arbitrary shape are measured even for objects with little transmission of radio waves.
  • Disclosed is an object detection apparatus, an object detection method, and a program for enabling.
  • An object detection device 1000 according to Embodiment 1 shown in FIG. 1 is a device for detecting an object 1003 by radio waves. As shown in FIG. 1 , the object detection device 1000 includes a transmitter 1101 , a receiver 1102 and an arithmetic device 1211 .
  • FIG. 2 shows the internal configuration of the transmitting section 1101 and the receiving section 1102 in the first embodiment.
  • the transmitting section 1101 includes an oscillator 1201 and a transmitting antenna 1202 .
  • the receiving section 1102 includes a receiving antenna 1203 , a mixer 1204 and an interface circuit 1205 .
  • the transmitting section 1101 and the receiving section 1102 are connected via the terminal 1208 .
  • a transmitting antenna 1202 and a receiving antenna 1203 are antenna arrays each composed of a plurality of antennas.
  • FIG. 3 shows the internal configuration of the arithmetic unit 1211 according to the first embodiment.
  • the arithmetic device 1211 in Embodiment 1 includes an arbitrary position reflection intensity detection unit 1301, an object position detection unit 1302, an object reflection intensity detection unit 1303, and an intensity correction amount calculation unit 1304. , a corrected reflection intensity calculation unit 1305 , a feature amount calculation unit 1306 , and an object detection/identification unit 1307 .
  • FIG. 4 is a flowchart showing the operation of object detection device 1000 according to the first embodiment. 1 to 3 will be appropriately referred to in the following description. Further, in Embodiment 1, the object detection method is implemented by operating the object detection device 1000 . Therefore, the description of the object detection method in Embodiment 1 is replaced with the description of the operation of object detection apparatus 1000 below.
  • a transmitting unit 1101 irradiates a radio wave 1002 as a transmission signal toward an object to be detected (hereinafter referred to as "object") 1003 (step A1).
  • the receiving unit 1102 in FIG. 1 receives the radio wave 1004 reflected by the object 1003 as a received signal (step A2).
  • the receiving section 1102 further mixes the received signal with the transmission signal generated by the transmitting section 1101 to generate an intermediate frequency signal (hereinafter referred to as "IF (Intermediate Frequency) signal"). Further, the receiving unit 1102 outputs the generated IF signal to the arithmetic device 1211 (step A3).
  • IF Intermediate Frequency
  • Arbitrary position means that the position range to be measured is not limited to the position of the object and is an arbitrary position. Note that the position range (arbitrary position) to be measured is usually a three-dimensional space.
  • step A5 the object position detection unit 1302 in the arithmetic unit 1211 shown in FIG. (x, y) is detected.
  • Object reflection intensity detection unit 1303 in the arithmetic unit 1211 shown in FIG. Object reflection intensity p opj (x, y) is detected (step A6).
  • the intensity correction amount calculation unit 1304 in the arithmetic unit 1211 shown in FIG. 3 calculates the intensity correction amount based on the object position z(x, y) detected by the object position detection unit 1302 ( Step A7).
  • the intensity correction amount corresponds to the object reflection intensity depending on the object position z(x,y).
  • the corrected reflection intensity calculation unit 1305 in the arithmetic device 1211 shown in FIG. A corrected reflection intensity is calculated based on opj (x,y) (step A8).
  • the corrected reflection intensity corresponds to the reflection intensity that depends on the properties (permittivity or reflectance) inherent to the material of the object 1003 .
  • the feature amount calculation unit 1306 in the arithmetic unit 1211 shown in FIG. 3 calculates the feature amount based on the corrected reflection intensity calculated by the corrected reflection intensity calculation unit 1305 (step A9).
  • the object detection/identification unit 1307 in the arithmetic unit 1211 shown in FIG. 3 detects or identifies the object 1003 based on the feature amount calculated by the feature amount calculation unit 1306 (step A10).
  • Step A1 In transmitting section 1101 shown in the internal configuration in FIG. 2, oscillator 1201 generates an RF signal (radio waves). An RF signal (radio wave) generated by an oscillator 1201 is emitted from a transmitting antenna 1202 as a radio wave 1002 to an object 1003 .
  • Step A2 A radio wave 1004 reflected by an object 1003 is received by a receiving antenna 1203 in the receiving section 1102 shown in FIG.
  • Step A3 In the receiving section 1102 shown in the internal configuration in FIG. 2, the mixer 1204 mixes the RF signal input from the oscillator 1201 via the terminal 1208 and the radio wave (receiving signal) received by the receiving antenna 1203. Thus, an IF signal is generated.
  • the IF signal generated by mixer 1204 is transmitted to arithmetic unit 1211 via interface circuit 1205 .
  • the interface circuit 1205 has a function of converting an analog IF signal into a digital signal that can be handled by the arithmetic unit 1211 and outputs the obtained digital signal to the arithmetic unit 1211 .
  • the IF signal output from receiving section 1102 is input to arbitrary position reflection intensity detecting section 1301 .
  • Arbitrary position reflection intensity detection section 1301 detects reflection intensity defined as the intensity of a reflected wave reflected at an arbitrary position (x, y, z) based on the IF signal output from reception section 1102 . Detect as intensity p arb (x,y,z).
  • a method for detecting the reflection intensity at any position includes, for example, a beamformer method.
  • the coordinate axes of the position (x, y, z) may be set arbitrarily.
  • the x-axis and y-axis may be taken parallel to the antenna array plane composed of the transmitting antenna 1202 and the receiving antenna 1203, and the z-axis may be taken perpendicular to the antenna array plane.
  • Step A5 The arbitrary position reflection intensity parb (x, y, z) detected by the arbitrary position reflection intensity detection unit 1301 is input to the object position detection unit 1302 .
  • the object position detection unit 1302 calculates an object position z(x, y) indicating the position of the object 1003 in the z-axis direction using the two-dimensional position (x, y) as an argument. Specifically, as shown in Equation (1), it is calculated as the position in the z-axis direction that maximizes the arbitrary position reflection intensity parb (x, y, z) at each point of the two-dimensional position (x, y). be.
  • Step A6 The arbitrary position reflection intensity parb (x, y, z) detected by the arbitrary position reflection intensity detection unit 1301 is input to the object reflection intensity detection unit 1303 .
  • the object reflection intensity detection unit 1303 Based on the arbitrary position reflection intensity parb (x, y, z), the object reflection intensity detection unit 1303 detects the object 1003 at the object position z(x, y) using the two-dimensional position (x, y) as an argument.
  • the object reflection intensity p obj (x, y) is detected.
  • the object reflection intensity p obj (x, y) is the arbitrary position reflection intensity p arb ( x,y,z).
  • the object reflection intensity p obj (x, y) detected in step A6 depends on the reflectance, which is a material-specific value of the object 1003 present at the position z(x, y). Furthermore, the object reflection intensity p obj (x, y) depends not only on the reflectance of the object 1003 but also on the object position z(x, y) of the object 1003 .
  • the measured object reflection intensity p obj (x, y) is only the reflectance of the object 1003 at the object position z(x, y). and the object reflection intensity p loc (x, y).
  • FIG. 5 and 6 are conceptual diagrams explaining why the object reflection intensity p obj (x, y) also depends on the object position z(x, y) of the object 1003.
  • FIG. 5 and 6 are conceptual diagrams explaining why the object reflection intensity p obj (x, y) also depends on the object position z(x, y) of the object 1003.
  • a radio wave 1002 emitted from a transmitting antenna 1202 is reflected as a radio wave 1004 at a reflection point 1401a or 1401b on an object 1003.
  • the reflection direction of the radio wave 1004 is determined so that the angle of incidence and the angle of reflection are the same with respect to the tangential plane 1402 of the object 1003 at the reflection point 1401a or 1401b.
  • the object reflection intensity p obj (x,y ) is enhanced.
  • the receiving antenna 1203 does not exist in the traveling direction of the radio wave 1004 reflected by the reflection point 1401b as shown in FIG. 6, the radio wave 1004 cannot be received.
  • the object reflection intensity p obj (x,y) at decreases.
  • the intensity p obj (x, y) depends not only on the reflectance of the object 1003 but also on the shape of the object 1003, that is, the object position z(x, y).
  • An intensity correction amount calculation unit 1304 calculates an object reflection intensity component p loc (x, y) that depends only on the object position z(x, y) of the object 1003, and outputs it as an intensity correction amount.
  • the intensity correction amount calculation unit 1304 receives as input the position distribution z(x, y) of the object 1003 detected by the object position detection unit 1302 in step A5, and the object is the object position z(x , y) and the reflectance of the object does not depend on the position. Furthermore, the object reflection intensity p loc (x, y) calculated from the calculated arbitrary position reflection intensity through the same procedure as the formulas (1) and (2) is output as an intensity correction amount.
  • a corrected reflection intensity calculation unit 1305 calculates the object reflection intensity p obj (x, y) output from the object reflection intensity detection unit 1303 and the intensity correction amount p loc (x, y) is input, the object reflection intensity p mat (x, y) determined only by the reflectance is calculated by the following equation (4) and output as the corrected reflection intensity.
  • the corrected reflection intensity p mat (x, y) depends only on the reflectance, which is a material-specific value, the material-specific characteristics of the object 1003 can be correctly estimated from the corrected reflection intensity p mat (x, y). .
  • the object reflection intensity component p loc (x,y) causes errors in material-specific property estimates.
  • the error in the estimated value of the material-specific property is also removed.
  • a feature amount calculation unit 1306 calculates a material-specific feature amount based on the corrected reflection intensity p mat (x, y) output from the correction reflection intensity calculation unit 1305 .
  • the feature amount include (1) the corrected reflection intensity p mat (x, y) itself, (2) the reflectance of the object 1003, (3) the dielectric constant of the object, or (4) the corrected reflection An amount (value) calculated by a function using any one of the intensity, the reflectance of the object 1003, and the dielectric constant of the object as an argument can be used.
  • the reflectance of the object 1003 can be calculated from the corrected reflected intensity p mat (x,y) output from the corrected reflected intensity calculator 1305 .
  • the dielectric constant can be calculated from the reflectance of the object 1003 using the relational expression between the reflectance and the dielectric constant described in Non-Patent Document 1.
  • the object detection/identification unit 1307 detects or identifies the object 1003 based on the feature amount output from the feature amount calculation unit 1306 and outputs the detection result or identification result of the object 1003 .
  • the object detection/identification unit 1307 outputs, for example, the corrected reflection intensity, the feature amount, or the detection result or the identification result of the object.
  • the object 1003 may be detected from the change in the background of the feature amount peculiar to the material such as reflectance or dielectric constant.
  • the type of material may be identified by collating the measured value of the characteristic amount of the material, such as reflectance or dielectric constant, with a database.
  • FIG. 7 is a block diagram showing an example of a computer that implements the object detection device 1000 according to the first embodiment.
  • the computer 110 includes a CPU 111, a main memory 112, a storage device 113, an input interface 114, a display controller 115, a data reader/writer 116, and a communication interface 117. These units are connected to each other via a bus 121 so as to be able to communicate with each other.
  • the CPU 111 expands the programs (codes) in the first embodiment stored in the storage device 113 into the main memory 112 and executes them in a predetermined order to perform various calculations.
  • the main memory 112 is typically a volatile storage device such as DRAM (Dynamic Random Access Memory).
  • the program in the first embodiment is provided in a state stored in computer-readable recording medium 120 . Note that the program in the first embodiment may be distributed on the Internet connected via communication interface 117 .
  • Input interface 114 mediates data transmission between CPU 111 and input devices 118 such as a keyboard and mouse.
  • the display controller 115 is connected to the display device 119 and controls display on the display device 119 .
  • the computer 110 may include a GPU (Graphics Processing Unit) or an FPGA (Field-Programmable Gate Array) in addition to the CPU 111 or instead of the CPU 111 .
  • the display device 119 displays the result detected or calculated by the arithmetic device 1211 , that is, the arbitrary position reflection intensity parb (x, y, z) detected by the arbitrary position reflection intensity detection unit 1301 , or the object position detection unit 1302 .
  • the data reader/writer 116 mediates data transmission between the CPU 111 and the recording medium 120, reads programs from the recording medium 120, and writes processing results in the computer 110 to the recording medium 120.
  • Communication interface 117 mediates data transmission between CPU 111 and other computers.
  • the recording medium 120 include general-purpose semiconductor storage devices such as CF (Compact Flash (registered trademark)) and SD (Secure Digital), magnetic recording media such as flexible disks, and CD- Optical recording media such as ROM (Compact Disk Read Only Memory) can be mentioned.
  • CF Compact Flash
  • SD Secure Digital
  • magnetic recording media such as flexible disks
  • CD- Optical recording media such as ROM (Compact Disk Read Only Memory) can be mentioned.
  • the object detection device in Embodiment 1 can also be realized by using hardware corresponding to each part instead of a computer in which a program is installed. Furthermore, the object detection device may be partly implemented by a program and the rest by hardware.
  • the object reflection intensity p obj (x,y) of the object 1003 is detected by the object reflection intensity detection unit 1303 . Further, an intensity correction amount calculation unit 1304 calculates an object reflection intensity component that depends only on the object position z(x, y) of the object 1003 as an intensity correction amount p loc (x, y). A corrected reflection intensity calculator 1305 corrects the object reflection intensity p obj (x, y) with the intensity correction amount p loc (x, y) to calculate the corrected reflection intensity p mat (x, y).
  • the feature amount calculation unit 1306 calculates an arbitrary shape from the corrected reflection intensity p mat (x, y). It can calculate material-specific properties of objects (reflectance, permittivity, etc.).
  • the object detection device 1000 and the object detection method according to the first embodiment since the characteristic inherent to the material is calculated using the reflected wave on the surface of the object, unlike Patent Document 1, the radio waves in the dielectric (object) Even when the amount of transmission is small, there is an effect that the characteristics unique to the material of the object can be calculated.
  • the material-specific characteristics of an arbitrary-shaped object can be calculated only by a radar device that uses radio waves without using a camera. It is effective to solve the problem of measurement error due to synchronization deviation between radar and camera in
  • a transmitting means having a plurality of transmitting antennas for irradiating radio waves toward an object; a receiving means comprising a plurality of receiving antennas for receiving the radio waves reflected from the object, and further for generating intermediate frequency signals from the signals received by the receiving antennas; arbitrary position reflection intensity detection means for detecting an arbitrary position reflection intensity, which is the reflection intensity of the radio wave at an arbitrary position, from the intermediate frequency signal; an object position detection means for detecting an object position, which is the position of the object, from the arbitrary position reflection intensity detected by the arbitrary position reflection intensity detection means; object reflection intensity detection means for detecting an object reflection intensity, which is the reflection intensity at the object position, from the arbitrary position reflection intensity detected by the arbitrary position reflection intensity detection means; intensity correction amount calculation means for calculating a correction amount of reflection intensity based on the object position detected by the object position detection means; corrected reflection intensity calculation means for calculating a correction reflection
  • the object detection apparatus further comprising a feature quantity calculating means for calculating a feature quantity peculiar to the material of the object from the corrected reflection intensity. 3.
  • the feature amount is obtained from any one of the corrected reflection intensity, the reflectance calculated from the corrected reflection intensity, the dielectric constant calculated from the reflectance, or the corrected reflection intensity, the reflectance and the dielectric constant. 5.
  • the object detection device according to any one of 2 to 4, characterized by being a quantity. 6.
  • An object detection method for detecting an object by radio waves a step of irradiating a radio wave toward the object from a transmitting means having a plurality of transmitting antennas; a step of receiving the radio waves reflected from the object by a receiving means having a plurality of receiving antennas, and further generating an intermediate frequency signal from the received signals received by the receiving antennas; a step of detecting the reflection intensity at an arbitrary position (arbitrary position reflection intensity) of the radio wave from the intermediate frequency signal by an arbitrary position reflection intensity detection means; a step of detecting the position of the object (object position) from the arbitrary position reflection intensity detected by the arbitrary position reflection intensity detection means, with the object position detection means; a step of detecting a reflection intensity (object reflection intensity) at the position of the object from the arbitrary position reflection intensity detected by the arbitrary position reflection intensity detection means, with the object reflection intensity detection means; a step of calculating a correction amount of the reflection intensity based on the object position detected by the object position detection means, using an intensity correction amount calculation means;
  • a transmitting means having a plurality of transmitting antennas for irradiating radio waves toward an object; a receiving means comprising a plurality of receiving antennas for receiving the radio waves reflected from the object, and further for generating intermediate frequency signals from the signals received by the receiving antennas;
  • an object detection device comprising a processor, a step of detecting the reflection intensity at an arbitrary position (arbitrary position reflection intensity) of the radio wave from the intermediate frequency signal by an arbitrary position reflection intensity detection means; a step of detecting the position of the object (object position) from the arbitrary position reflection intensity detected by the arbitrary position reflection intensity detection means, with the object position detection means; a step of detecting a reflection intensity (object reflection intensity) at the position of the object from the arbitrary position reflection intensity detected by the arbitrary position reflection intensity detection means, with the object reflection intensity detection means; a step of calculating a correction amount of the reflection intensity based on the object position detected by the object position detection means, using an intensity correction amount calculation means; a step of calculating a corrected reflection
  • the feature quantity calculation means further executes a step of calculating a feature quantity peculiar to the material of the object from the corrected reflection intensity.
  • the program according to 10 further causing the object detection/identification means in the object detection device to detect or identify the object using the feature amount.
  • object detection device 1001 transmission/reception device 1002 radio wave (transmission signal) 1003 object (object to be detected) 1004 radio wave (received signal) 1101 transmitter 1102 receiver 1201 oscillator 1202 transmitter antenna 1203 receiver antenna 1204 mixer 1205 interface circuit 1208 terminal 1211 arithmetic device 1301 arbitrary position reflection intensity detector 1302 object position detector 1303 object reflection intensity detector 1304 intensity correction amount calculator 1305 corrected reflection intensity calculation unit 1306 feature amount calculation unit 1307 object detection/identification unit 1401a reflection point 1401b reflection point 1402 tangent plane

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

This object-sensing device (1000) comprises a transmission unit (1101) for irradiating a subject (1003) with electric waves (1002) using a transmission antenna, a reception unit (1102) for receiving an electric wave reflected by the subject (1003) using a reception antenna and generating an intermediate-frequency signal, and a computation device (1211). The computation device (1211) detects the reflection intensity of the subject (1003) from the intermediate-frequency signal, and furthermore detects the positional distribution of the subject (1003) from the reflection intensity. The computation device (1211) next calculates the dependence of the reflection intensity on the positional distribution of the subject as a reflection intensity correction amount from the detected positional distribution. The computation device (1211) corrects the reflection intensity using the reflection intensity correction amount, thereby removing the dependence on the positional distribution of the subject from the reflection intensity and calculating a corrected reflection intensity that depends on only characteristics (e.g., reflectance and permittivity) that are inherent to the material of the subject (1003).

Description

物体検知装置、物体検知方法及びプログラムOBJECT DETECTION DEVICE, OBJECT DETECTION METHOD AND PROGRAM
 本発明は、電波を検知対象物に照射し、対象物から反射された電波により検知対象物の存在を認識ないし識別するための物体検知装置、物体検知方法及びプログラムに関する。 The present invention relates to an object detection device, an object detection method, and a program for irradiating a detection target with radio waves and recognizing or identifying the existence of the detection target from the radio waves reflected from the target.
 電波(マイクロ波、ミリ波、テラヘルツ波など)は、光と異なり、物体を透過する能力が優れている。電波の透過能力の活用例として、衣服下や鞄内に隠された物体に対しレーダ装置から衣服や鞄を透過する電波を照射し、前記物体で反射された電波を前記レーダ装置で受信し、受信した電波に基づいて前記物品を検査する装置が提案されている。特に、物体の電波に対する反射率ないし誘電率に代表される物性値を電波で測定する手法は、爆発物や薬物など違法な化学物質の検出ないし同定において有用である。反射率と誘電率は互い関係がある物性値であり、片方の値からもう片方の値を導出できる。 Unlike light, radio waves (microwaves, millimeter waves, terahertz waves, etc.) have an excellent ability to penetrate objects. As an example of utilization of the radio wave transmission ability, an object hidden under clothes or in a bag is irradiated with radio waves that pass through the clothes or bag from a radar device, and the radio waves reflected by the object are received by the radar device, An apparatus has been proposed that inspects the article based on the received radio waves. In particular, the technique of measuring the physical properties of an object, such as its reflectance or dielectric constant, using radio waves is useful in detecting or identifying illegal chemical substances such as explosives and drugs. Reflectance and dielectric constant are physical properties that are related to each other, and the value of one can be derived from the other.
 非特許文献1および特許文献1において、電波で化学物質を検出ないし同定する手法として、電波で物体の誘電率を遠隔測定する技術が提案されている。 In Non-Patent Document 1 and Patent Document 1, a technique for remotely measuring the dielectric constant of an object using radio waves has been proposed as a method for detecting or identifying chemical substances using radio waves.
 非特許文献1では、レーダ装置から電波を物体に照射し、物体から反射された電波をレーダ装置で受信し、受信した電波に基づいて中間周波数信号を生成し、中間周波数信号から物体の誘電率を推定する方法が提案されている。具体的には、測定対象となる物体の誘電率を未知変数とした幾何光学モデル(geo optics modeling)が用いられる。幾何光学モデルは、未知変数である誘電率の値を与えれば中間周波数信号を算出できる。そして、中間周波数信号の測定値を最も良く再現する幾何光学モデルの誘電率の値から、前記物体の誘電率を推定する。ただし非特許文献1では、複数の層が平行に配置された構成の誘電体を前提とした場合のみの幾何光学モデルが導出されているため、任意形状の物体の誘電率を測定できない課題がある。 In Non-Patent Document 1, an object is irradiated with radio waves from a radar device, the radio waves reflected from the object are received by the radar device, an intermediate frequency signal is generated based on the received radio waves, and the dielectric constant of the object is generated from the intermediate frequency signal A method for estimating is proposed. Specifically, a geometric optics model is used in which the permittivity of the object to be measured is an unknown variable. The geometrical optics model can calculate the intermediate frequency signal by giving the value of the dielectric constant, which is an unknown variable. Then, the dielectric constant of the object is estimated from the dielectric constant value of the geometrical optics model that best reproduces the measured value of the intermediate frequency signal. However, in Non-Patent Document 1, a geometrical optics model is derived only for the case of dielectrics with a structure in which multiple layers are arranged in parallel, so there is a problem that the dielectric constant of an object of arbitrary shape cannot be measured. .
 特許文献1では、レーダとカメラを備えた物体検知装置で誘電率を測定する方法が提案されている。具体的にはレーダ装置から物体と背景反射体に電波を照射し、前記物体と背景反射体から反射された電波に基づいて3次元マイクロ波イメージを生成する。前記物体検知装置は、3次元マイクロ波イメージとカメラ画像を用いて、前記物体検知装置から物体及び背景反射体までの距離を測定し、さらに測定で得た距離から誘電率を推定する。特許文献1では、3次元マイクロ波イメージとカメラ画像で所定の距離を測定できる場合において、任意形状の物体の誘電率を測定できる。 Patent Document 1 proposes a method of measuring the dielectric constant with an object detection device equipped with a radar and a camera. Specifically, radio waves are emitted from a radar device to an object and a background reflector, and a three-dimensional microwave image is generated based on the radio waves reflected from the object and the background reflector. The object detection device measures the distance from the object detection device to the object and the background reflector using the three-dimensional microwave image and the camera image, and further estimates the dielectric constant from the measured distance. In Patent Literature 1, the dielectric constant of an arbitrary-shaped object can be measured when a predetermined distance can be measured using a three-dimensional microwave image and a camera image.
特許第5260799号Patent No. 5260799
 本発明では、物体検知装置で化学物質を検出ないし同定する手段として物体の誘電率を測定する方法における以下の課題を解決する。 The present invention solves the following problems in a method of measuring the dielectric constant of an object as a means of detecting or identifying chemical substances with an object detection device.
 非特許文献1の方法は、任意形状の物体の誘電率を測定できない課題がある。 The method of Non-Patent Document 1 has the problem that the dielectric constant of an object of arbitrary shape cannot be measured.
 特許文献1の方法は、電波が物体を透過する事を前提にしている。そのため、物体の反射率もしくは吸収率が高い場合においては物体における電波の透過量が少なくなり、物体の誘電率を正しく測定できない課題がある。また、特許文献1の方法はレーダに加えてカメラも必要となる。特にレーダとカメラの同期動作が必要となるため、測定対象物が移動する場合、レーダとカメラの同期ずれが誘電率の測定誤差となる課題がある。 The method of Patent Document 1 is based on the premise that radio waves pass through an object. Therefore, when the reflectance or absorptivity of the object is high, the amount of radio waves transmitted through the object is reduced, and there is a problem that the dielectric constant of the object cannot be measured correctly. Moreover, the method of Patent Document 1 requires a camera in addition to the radar. In particular, since it is necessary to synchronize the operation of the radar and the camera, there is a problem that when the object to be measured moves, the deviation of the synchronization between the radar and the camera causes a measurement error of the dielectric constant.
本発明の一態様は、電波によって物体を検知するための物体検知装置であって、前記物体に向けて電波を照射する複数の送信アンテナを備えた送信手段と、前記物体から反射された前記電波を受信する複数の受信アンテナを備え、更に、前記受信アンテナで受信した受信信号から中間周波数信号を生成する受信手段と、前記中間周波数信号から前記電波の任意の位置における反射強度(任意位置反射強度)を検出する任意位置反射強度検出手段と、前記任意位置反射強度検出手段において検出された前記任意位置反射強度から前記物体の位置(対象物位置)を検出する対象物位置検出手段と、前記任意位置反射強度検出手段において検出された前記任意位置反射強度から前記対象物位置における反射強度(対象物反射強度)を検出する対象物反射強度検出手段と、前記対象物位置検出手段において検出された前記対象物位置に基づいて反射強度の補正量を計算する強度補正量計算手段と、前記対象物反射強度検出手段において検出された前記対象物反射強度と前記強度補正量計算手段において計算された前記補正量に基づいて補正反射強度を計算する補正反射強度計算手段と、を備えた事と特徴とする物体検知装置である。 One aspect of the present invention is an object detection device for detecting an object using radio waves, which includes transmitting means including a plurality of transmitting antennas for irradiating radio waves toward the object, and the radio waves reflected from the object. further, receiving means for generating an intermediate frequency signal from the received signal received by the receiving antenna, and the reflection intensity at an arbitrary position of the radio wave from the intermediate frequency signal (arbitrary position reflection intensity ); object position detection means for detecting the position of the object (object position) from the arbitrary position reflection intensity detected by the arbitrary position reflection intensity detection means; object reflection intensity detection means for detecting reflection intensity at the object position (object reflection intensity) from the arbitrary position reflection intensity detected by the position reflection intensity detection means; intensity correction amount calculation means for calculating a correction amount of the reflection intensity based on the position of the object; and the object reflection intensity detected by the object reflection intensity detection means and the correction calculated by the intensity correction amount calculation means. and a corrected reflection intensity calculation means for calculating the corrected reflection intensity based on the quantity.
 また、本発明の一態様は、電波によって物体を検知するための物体検知方法であって、複数の送信アンテナを備えた送信手段から前記物体に向けて電波を照射するステップと、複数の受信アンテナを備えた受信手段で前記物体から反射された前記電波を受信し更に前記受信アンテナで受信した受信信号から中間周波数信号を生成するステップと、任意位置反射強度検出手段で前記中間周波数信号から前記電波の任意の位置における反射強度(任意位置反射強度)を検出するステップと、対象物位置検出手段で前記任意位置反射強度検出手段において検出された前記任意位置反射強度から前記物体の位置(対象物位置)を検出するステップと、対象物反射強度検出手段で前記任意位置反射強度検出手段において検出された前記任意位置反射強度から前記対象物位置における反射強度(対象物反射強度)を検出するステップと、強度補正量計算手段で前記対象物位置検出手段において検出された前記対象物位置に基づいて反射強度の補正量を計算するステップと、補正反射強度計算手段で前記対象物反射強度検出手段において検出された前記対象物反射強度と前記強度補正量計算手段において計算された前記補正量に基づいて補正反射強度を計算するステップと、を備えた事と特徴とする物体検知方法である。 According to another aspect of the present invention, there is provided an object detection method for detecting an object using radio waves, comprising the steps of irradiating radio waves from a transmitting means having a plurality of transmitting antennas toward the object; receiving the radio waves reflected from the object and generating an intermediate frequency signal from the received signal received by the receiving antenna; and generating an intermediate frequency signal from the radio wave from the intermediate frequency signal by an arbitrary position reflection intensity detecting means. and detecting the position of the object (object position ), detecting the reflection intensity (object reflection intensity) at the position of the object from the arbitrary position reflection intensity detected by the arbitrary position reflection intensity detection means by the object reflection intensity detection means; calculating a correction amount of the reflection intensity based on the object position detected by the object position detection means by an intensity correction amount calculation means; and calculating a corrected reflection intensity based on the object reflection intensity and the correction amount calculated by the intensity correction amount calculation means.
 また、本発明の一態様は、前記物体に向けて電波を照射する複数の送信アンテナを備えた送信手段と、前記物体から反射された前記電波を受信する複数の受信アンテナを備え、更に、前記受信アンテナで受信した受信信号から中間周波数信号を生成する受信手段と、プロセッサと、を備える物体検知装置において、任意位置反射強度検出手段で前記中間周波数信号から前記電波の任意の位置における反射強度(任意位置反射強度)を検出するステップと、対象物位置検出手段で前記任意位置反射強度検出手段において検出された前記任意位置反射強度から前記物体の位置(対象物位置)を検出するステップと、対象物反射強度検出手段で前記任意位置反射強度検出手段において検出された前記任意位置反射強度から前記対象物位置における反射強度(対象物反射強度)を検出するステップと、強度補正量計算手段で前記対象物位置検出手段において検出された前記対象物位置に基づいて反射強度の補正量を計算するステップと、補正反射強度計算手段で前記対象物反射強度検出手段において検出された前記対象物反射強度と前記強度補正量計算手段において計算された前記補正量に基づいて補正反射強度を計算するステップと、を実行させるプログラムである。 Further, one aspect of the present invention includes transmitting means having a plurality of transmitting antennas for radiating radio waves toward the object, and a plurality of receiving antennas for receiving the radio waves reflected from the object, and In an object detection device comprising: receiving means for generating an intermediate frequency signal from a received signal received by a receiving antenna; a step of detecting the position of the object (object position) from the arbitrary position reflection intensity detected by the arbitrary position reflection intensity detection means by an object position detection means; an object reflection intensity detection means detecting a reflection intensity (object reflection intensity) at the position of the object from the arbitrary position reflection intensity detected by the arbitrary position reflection intensity detection means; calculating a correction amount of the reflection intensity based on the object position detected by the object position detection means; and computing the object reflection intensity detected by the object reflection intensity detection means and the and calculating a corrected reflection intensity based on the correction amount calculated by the intensity correction amount calculation means.
 本発明によれば、化学物質を検出ないし同定する手段として任意形状の物体の誘電率を測定可能にする効果を奏する。また、本発明によれば、対象物表面における反射波を用いて素材固有の特性を算出するため、誘電体(対象物)における電波の透過量が少ない場合においても対象物の素材固有の特性を算出できる効果を奏する。また、本発明によれば、カメラを用いずレーダ装置のみで任意形状の対象物の誘電率を計算できるので、レーダとカメラの同期ずれによる測定誤差の課題を解決する効果を奏する。 According to the present invention, it is possible to measure the dielectric constant of an object of arbitrary shape as a means of detecting or identifying chemical substances. In addition, according to the present invention, since the material-specific characteristics are calculated using the reflected waves on the surface of the object, the material-specific characteristics of the object can be calculated even when the amount of radio waves transmitted through the dielectric (object) is small. There is an effect that can be calculated. Moreover, according to the present invention, the dielectric constant of an object of arbitrary shape can be calculated only by a radar device without using a camera, so that it is effective in solving the problem of measurement errors due to desynchronization between the radar and the camera.
図1は、本発明による実施の形態における物体検知装置の構成を示した構成図である。FIG. 1 is a configuration diagram showing the configuration of an object detection device according to an embodiment of the present invention. 図2は、本発明による実施の形態における物体検知装置の構成の一例を示すブロック図である。FIG. 2 is a block diagram showing an example of the configuration of the object detection device according to the embodiment of the invention. 図3は、本発明による実施の形態における物体検知装置の構成の一例を示すブロック図である。FIG. 3 is a block diagram showing an example of the configuration of the object detection device according to the embodiment of the invention. 図4は、本発明の実施の形態における物体検知方法を示すフローチャートである。FIG. 4 is a flow chart showing an object detection method according to an embodiment of the invention. 図5は、本発明の実施の形態における物体検知装置と対象物の位置関係の一例を説明する図である。FIG. 5 is a diagram illustrating an example of the positional relationship between the object detection device and the target object according to the embodiment of the present invention. 図6は、本発明の実施の形態における物体検知装置と対象物の位置関係の一例を説明する図である。FIG. 6 is a diagram illustrating an example of the positional relationship between the object detection device and the target object according to the embodiment of the present invention. 図7は、本発明の実施の形態における物体検知装置を実現するコンピュータの一例を示すブロック図である。FIG. 7 is a block diagram showing an example of a computer that implements the object detection device according to the embodiment of the invention.
 以下、本発明による送信装置および送信方法の好適な実施形態について添付図を参照して説明する。なお、以降に示す各図面において、同一または相当部分の部位については、同一符号を付して示すこととし、その説明は繰り返さないことにする。 Preferred embodiments of the transmission device and transmission method according to the present invention will be described below with reference to the accompanying drawings. In each of the drawings shown below, the same or corresponding portions are denoted by the same reference numerals, and the description thereof will not be repeated.
 以下、本発明の実施の形態における、物体検知装置、物体検知方法、及びプログラムについて、図1~図7を参照しながら説明する。本実施の形態では、レーダ以外の他センサに起因する誤差を無くし、かつ電波の透過が少ない対象物に対しても、任意形状の対象物の素材固有の特性(反射率ないし誘電率)を測定可能にする、物体検知装置、物体検知方法、及びプログラムが開示される。 An object detection device, an object detection method, and a program according to embodiments of the present invention will be described below with reference to FIGS. 1 to 7. FIG. In this embodiment, errors due to sensors other than radar are eliminated, and the characteristics (reflectance or dielectric constant) inherent in the material of an object of arbitrary shape are measured even for objects with little transmission of radio waves. Disclosed is an object detection apparatus, an object detection method, and a program for enabling.
(第一の実施の形態)
[装置構成]
 最初に図1を用いて本実施の形態1における物体検知装置の構成について説明する。
(First embodiment)
[Device configuration]
First, the configuration of the object detection device according to the first embodiment will be described with reference to FIG.
 図1に示す本実施の形態1における物体検知装置1000は、電波によって物体1003を検知するための装置である。図1に示すように、物体検知装置1000は、送信部1101と、受信部1102と、演算装置1211とを備えている。 An object detection device 1000 according to Embodiment 1 shown in FIG. 1 is a device for detecting an object 1003 by radio waves. As shown in FIG. 1 , the object detection device 1000 includes a transmitter 1101 , a receiver 1102 and an arithmetic device 1211 .
 次に、図2に本実施の形態1における送信部1101と受信部1102の内部構成を示す。図2に示すように、本実施の形態1では、送受信装置1001において、送信部1101は、発振器1201と、送信アンテナ1202とを備えている。また、受信部1102は、受信アンテナ1203と、ミキサ1204と、インターフェイス回路1205とを備えている。更に、図1でも示したように、送信部1101と受信部1102とは、端子1208を介して接続されている。送信アンテナ1202と受信アンテナ1203は、複数のアンテナで構成されたアンテナアレイである。 Next, FIG. 2 shows the internal configuration of the transmitting section 1101 and the receiving section 1102 in the first embodiment. As shown in FIG. 2 , in the transmitting/receiving apparatus 1001 according to the first embodiment, the transmitting section 1101 includes an oscillator 1201 and a transmitting antenna 1202 . Also, the receiving section 1102 includes a receiving antenna 1203 , a mixer 1204 and an interface circuit 1205 . Furthermore, as shown in FIG. 1, the transmitting section 1101 and the receiving section 1102 are connected via the terminal 1208 . A transmitting antenna 1202 and a receiving antenna 1203 are antenna arrays each composed of a plurality of antennas.
 次に、図3に本実施の形態1における演算装置1211の内部構成を示す。本実施の形態1における演算装置1211は、図3で示すように、任意位置反射強度検出部1301と、対象物位置検出部1302と、対象物反射強度検出部1303と、強度補正量計算部1304と、補正反射強度計算部1305と、特徴量計算部1306と、対象物検出・識別部1307とを備えている。 Next, FIG. 3 shows the internal configuration of the arithmetic unit 1211 according to the first embodiment. As shown in FIG. 3, the arithmetic device 1211 in Embodiment 1 includes an arbitrary position reflection intensity detection unit 1301, an object position detection unit 1302, an object reflection intensity detection unit 1303, and an intensity correction amount calculation unit 1304. , a corrected reflection intensity calculation unit 1305 , a feature amount calculation unit 1306 , and an object detection/identification unit 1307 .
[装置動作]
 図4は、本実施の形態1における物体検知装置1000の動作を示すフロー図である。以下の説明においては、適宜図1~図3を参酌する。また、本実施の形態1では、物体検知装置1000を動作させることによって、物体検知方法が実施される。よって、本実施の形態1における物体検知方法の説明は、以下の物体検知装置1000の動作説明に代える。
[Device operation]
FIG. 4 is a flowchart showing the operation of object detection device 1000 according to the first embodiment. 1 to 3 will be appropriately referred to in the following description. Further, in Embodiment 1, the object detection method is implemented by operating the object detection device 1000 . Therefore, the description of the object detection method in Embodiment 1 is replaced with the description of the operation of object detection apparatus 1000 below.
 まず、図4のフローの全体の流れを説明する。その後、各ステップを詳細に説明する。 First, the overall flow of the flow in FIG. 4 will be explained. Each step is then described in detail.
-全体の流れ-
 図1に示した装置構成において、送信部1101は、検知対象となる物体(以下、「対象物」と表記する)1003に向けて、送信信号となる電波1002を照射する(ステップA1)。
-Overall flow-
In the device configuration shown in FIG. 1, a transmitting unit 1101 irradiates a radio wave 1002 as a transmission signal toward an object to be detected (hereinafter referred to as "object") 1003 (step A1).
 図1における受信部1102は、対象物1003で反射された電波1004を受信信号として受信する(ステップA2)。 The receiving unit 1102 in FIG. 1 receives the radio wave 1004 reflected by the object 1003 as a received signal (step A2).
 受信部1102は、更に、受信した受信信号に、送信部1101で生成された送信信号をミキシングして、中間周波数信号(以下「IF(Intermediate Frequency)信号」と表記する。)を生成する。また、受信部1102は、生成したIF信号を演算装置1211に出力する(ステップA3)。 The receiving section 1102 further mixes the received signal with the transmission signal generated by the transmitting section 1101 to generate an intermediate frequency signal (hereinafter referred to as "IF (Intermediate Frequency) signal"). Further, the receiving unit 1102 outputs the generated IF signal to the arithmetic device 1211 (step A3).
 次に、図3で示した演算装置1211内の任意位置反射強度検出部1301は、IF信号に基づいて任意位置における反射強度(任意位置反射強度)を検出する(ステップA4)。任意位置とは、測定される位置範囲が対象物位置に限定されず任意の位置である事を意味する。なお、測定される位置範囲(任意位置)は通常3次元空間である。 Next, the arbitrary position reflection intensity detection unit 1301 in the arithmetic unit 1211 shown in FIG. 3 detects the reflection intensity at the arbitrary position (arbitrary position reflection intensity) based on the IF signal (step A4). Arbitrary position means that the position range to be measured is not limited to the position of the object and is an arbitrary position. Note that the position range (arbitrary position) to be measured is usually a three-dimensional space.
 次に、図3で示した演算装置1211内の対象物位置検出部1302は、任意位置反射強度検出部1301において検出した任意位置反射強度を用いて、対象物1003の位置である対象物位置z(x,y)を検出する(ステップA5)。 Next, the object position detection unit 1302 in the arithmetic unit 1211 shown in FIG. (x, y) is detected (step A5).
 更に、図3で示した演算装置1211内の対象物反射強度検出部1303は、任意位置反射強度検出部1301において検出した任意位置反射強度を用いて、対象物位置z(x,y)における対象物反射強度popj(x,y)を検出する(ステップA6)。 Furthermore, the object reflection intensity detection unit 1303 in the arithmetic unit 1211 shown in FIG. Object reflection intensity p opj (x, y) is detected (step A6).
 次に、図3で示した演算装置1211内の強度補正量計算部1304は、対象物位置検出部1302において検出した対象物位置z(x,y)に基づいて、強度補正量を計算する(ステップA7)。強度補正量は、対象物位置z(x,y)に依存する対象物反射強度に相当する。 Next, the intensity correction amount calculation unit 1304 in the arithmetic unit 1211 shown in FIG. 3 calculates the intensity correction amount based on the object position z(x, y) detected by the object position detection unit 1302 ( Step A7). The intensity correction amount corresponds to the object reflection intensity depending on the object position z(x,y).
 次に、図3で示した演算装置1211内の補正反射強度計算部1305は、強度補正量計算部1304において計算した強度補正量と、対象物反射強度検出部1303において検出した対象物反射強度popj(x,y)に基づいて、補正反射強度を計算する(ステップA8)。補正反射強度は、対象物1003の素材固有の特性(誘電率ないし反射率)に依存する反射強度に相当する。 Next, the corrected reflection intensity calculation unit 1305 in the arithmetic device 1211 shown in FIG. A corrected reflection intensity is calculated based on opj (x,y) (step A8). The corrected reflection intensity corresponds to the reflection intensity that depends on the properties (permittivity or reflectance) inherent to the material of the object 1003 .
 次に、図3で示した演算装置1211内の特徴量計算部1306は、補正反射強度計算部1305において計算した補正反射強度に基づいて、特徴量を計算する(ステップA9)。 Next, the feature amount calculation unit 1306 in the arithmetic unit 1211 shown in FIG. 3 calculates the feature amount based on the corrected reflection intensity calculated by the corrected reflection intensity calculation unit 1305 (step A9).
 次に、図3で示した演算装置1211内の対象物検出・識別部1307は、特徴量計算部1306において計算した特徴量に基づいて、対象物1003を検出ないし識別する(ステップA10)。 Next, the object detection/identification unit 1307 in the arithmetic unit 1211 shown in FIG. 3 detects or identifies the object 1003 based on the feature amount calculated by the feature amount calculation unit 1306 (step A10).
-各ステップの詳細-
 続いて、図4に示したステップの内、送受信装置1001によって実施されるステップA1~A3の詳細について説明する。
-Details of each step-
Next, among the steps shown in FIG. 4, details of steps A1 to A3 performed by the transmitting/receiving apparatus 1001 will be described.
[ステップA1]
 図2で内部構成に示した送信部1101において、発振器1201は、RF信号(電波)を生成する。発振器1201で生成されたRF信号(電波)は、送信アンテナ1202から電波1002として対象物1003に照射される。
[Step A1]
In transmitting section 1101 shown in the internal configuration in FIG. 2, oscillator 1201 generates an RF signal (radio waves). An RF signal (radio wave) generated by an oscillator 1201 is emitted from a transmitting antenna 1202 as a radio wave 1002 to an object 1003 .
[ステップA2]
 図2で内部構成に示した受信部1102において、対象物1003で反射された電波1004は、受信アンテナ1203によって受信される。
[Step A2]
A radio wave 1004 reflected by an object 1003 is received by a receiving antenna 1203 in the receiving section 1102 shown in FIG.
[ステップA3]
 図2で内部構成に示した受信部1102において、ミキサ1204は、発振器1201から端子1208を経由して入力されてきたRF信号と受信アンテナ1203で受信された電波(受信信号)とを、ミキシングする事で、IF信号を生成する。ミキサ1204で生成されたIF信号は、インターフェイス回路1205を経由して、演算装置1211へと送信される。インターフェイス回路1205は、アナログ信号であるIF信号を、演算装置1211で扱えるデジタル信号に変換する機能を持ち、得られたデジタル信号を演算装置1211へと出力する。
[Step A3]
In the receiving section 1102 shown in the internal configuration in FIG. 2, the mixer 1204 mixes the RF signal input from the oscillator 1201 via the terminal 1208 and the radio wave (receiving signal) received by the receiving antenna 1203. Thus, an IF signal is generated. The IF signal generated by mixer 1204 is transmitted to arithmetic unit 1211 via interface circuit 1205 . The interface circuit 1205 has a function of converting an analog IF signal into a digital signal that can be handled by the arithmetic unit 1211 and outputs the obtained digital signal to the arithmetic unit 1211 .
 続いて、図4に示したステップの内、図3で内部構成に示した演算装置1211によって実施されるステップA4~A10の詳細について説明する。 Next, among the steps shown in FIG. 4, details of steps A4 to A10 performed by the arithmetic device 1211 shown in the internal configuration of FIG. 3 will be described.
[ステップA4]
 演算装置1211において、受信部1102から出力されたIF信号は任意位置反射強度検出部1301に入力される。任意位置反射強度検出部1301は、受信部1102から出力されたIF信号に基づいて、任意の位置(x,y,z)で反射された反射波の強度として定義される反射強度を任意位置反射強度parb(x,y,z)として検出する。任意位置反射強度の検出方法としては、例えばビームフォーマ法が挙げられる。なお、位置(x,y,z)の座標軸の取り方は任意で良い。一つの例として、x軸とy軸を送信アンテナ1202と受信アンテナ1203で構成されたアンテナアレイ面と平行に取り、z軸をアンテナアレイ面と垂直に取っても良い。
[Step A4]
In arithmetic device 1211 , the IF signal output from receiving section 1102 is input to arbitrary position reflection intensity detecting section 1301 . Arbitrary position reflection intensity detection section 1301 detects reflection intensity defined as the intensity of a reflected wave reflected at an arbitrary position (x, y, z) based on the IF signal output from reception section 1102 . Detect as intensity p arb (x,y,z). A method for detecting the reflection intensity at any position includes, for example, a beamformer method. Note that the coordinate axes of the position (x, y, z) may be set arbitrarily. As an example, the x-axis and y-axis may be taken parallel to the antenna array plane composed of the transmitting antenna 1202 and the receiving antenna 1203, and the z-axis may be taken perpendicular to the antenna array plane.
[ステップA5]
 対象物位置検出部1302には、任意位置反射強度検出部1301で検出された任意位置反射強度parb(x,y,z)が入力される。対象物位置検出部1302は、2次元位置(x,y)を引数として対象物1003のz軸方向の位置を示す対象物位置z(x,y)を計算する。具体的には、式(1)で示すように2次元位置(x,y)の各点において任意位置反射強度parb(x,y,z)を最大化するz軸方向の位置として計算される。
[Step A5]
The arbitrary position reflection intensity parb (x, y, z) detected by the arbitrary position reflection intensity detection unit 1301 is input to the object position detection unit 1302 . The object position detection unit 1302 calculates an object position z(x, y) indicating the position of the object 1003 in the z-axis direction using the two-dimensional position (x, y) as an argument. Specifically, as shown in Equation (1), it is calculated as the position in the z-axis direction that maximizes the arbitrary position reflection intensity parb (x, y, z) at each point of the two-dimensional position (x, y). be.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
[ステップA6]
 対象物反射強度検出部1303には、任意位置反射強度検出部1301で検出された任意位置反射強度parb(x,y,z)が入力される。対象物反射強度検出部1303は、任意位置反射強度parb(x,y,z)に基づいて、2次元位置(x,y)を引数として対象物位置z(x,y)における対象物1003の対象物反射強度pobj(x,y)を検出する。具体的に対象物反射強度pobj(x,y)は、式(2)で示すように2次元位置(x,y)の各点においてzを変化させた場合における任意位置反射強度parb(x,y,z)の最大値として計算される。
[Step A6]
The arbitrary position reflection intensity parb (x, y, z) detected by the arbitrary position reflection intensity detection unit 1301 is input to the object reflection intensity detection unit 1303 . Based on the arbitrary position reflection intensity parb (x, y, z), the object reflection intensity detection unit 1303 detects the object 1003 at the object position z(x, y) using the two-dimensional position (x, y) as an argument. , the object reflection intensity p obj (x, y) is detected. Specifically, the object reflection intensity p obj (x, y) is the arbitrary position reflection intensity p arb ( x,y,z).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
[ステップA7]
 次に、強度補正量計算部1304の動作について説明する。
[Step A7]
Next, the operation of the intensity correction amount calculator 1304 will be described.
 ステップA6で検出した対象物反射強度pobj(x,y)は、位置z(x,y)に存在する対象物1003の素材固有の値である反射率に依存する。さらに対象物反射強度pobj(x,y)は対象物1003の反射率だけではなく、対象物1003の対象物位置z(x,y)にも依存する。 The object reflection intensity p obj (x, y) detected in step A6 depends on the reflectance, which is a material-specific value of the object 1003 present at the position z(x, y). Furthermore, the object reflection intensity p obj (x, y) depends not only on the reflectance of the object 1003 but also on the object position z(x, y) of the object 1003 .
 より具体的には、式(3)で示すように、測定で得られた対象物反射強度pobj(x,y)は、対象物1003の対象物位置z(x,y)における反射率のみで決まる対象物反射強度pmat(x,y)と、対象物1003の反射率とは無関係に対象物1003の対象物位置z(x,y)のみで決まる対象物反射強度ploc(x,y)の積で与えられる。 More specifically, as shown in Equation (3), the measured object reflection intensity p obj (x, y) is only the reflectance of the object 1003 at the object position z(x, y). and the object reflection intensity p loc (x, y).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 図5および図6は、対象物反射強度pobj(x,y)が対象物1003の対象物位置z(x,y)にも依存する理由を説明する概念図である。 5 and 6 are conceptual diagrams explaining why the object reflection intensity p obj (x, y) also depends on the object position z(x, y) of the object 1003. FIG.
 図5および図6において、送信アンテナ1202から照射された電波1002は対象物1003上の反射点1401a又は1401bにおいて電波1004として反射される。電波1004の反射方向は、反射点1401a又は1401bにおける対象物1003の接平面1402に対し、入射角と反射角が同じになるように定まる。 In FIGS. 5 and 6, a radio wave 1002 emitted from a transmitting antenna 1202 is reflected as a radio wave 1004 at a reflection point 1401a or 1401b on an object 1003. FIG. The reflection direction of the radio wave 1004 is determined so that the angle of incidence and the angle of reflection are the same with respect to the tangential plane 1402 of the object 1003 at the reflection point 1401a or 1401b.
 図5のように反射点1401aで反射された電波1004の進行方向に受信アンテナ1203が存在する場合、反射点1401aの対象物位置z(x,y)における対象物反射強度pobj(x,y)は増強される。その一方で、図6のように反射点1401bで反射された電波1004の進行方向に受信アンテナ1203が存在しない場合、電波1004を受信できないため、反射点1401bの対象物位置z(x,y)における対象物反射強度pobj(x,y)は低下する。このように、対象物1003の素材で決まる反射率とは無関係に、対象物1003の形状(位置分布)によって電波1004を受信できる反射点1401aと受信できない反射点1401bが存在するため、対象物反射強度pobj(x,y)は対象物1003の反射率だけではなく、対象物1003の形状すなわち対象物位置z(x,y)にも依存する事となる。 As shown in FIG. 5, when the receiving antenna 1203 exists in the traveling direction of the radio wave 1004 reflected by the reflection point 1401a, the object reflection intensity p obj (x,y ) is enhanced. On the other hand, if the receiving antenna 1203 does not exist in the traveling direction of the radio wave 1004 reflected by the reflection point 1401b as shown in FIG. 6, the radio wave 1004 cannot be received. The object reflection intensity p obj (x,y) at decreases. As described above, irrespective of the reflectance determined by the material of the object 1003, depending on the shape (position distribution) of the object 1003, there are reflection points 1401a that can receive the radio wave 1004 and reflection points 1401b that cannot receive the radio wave 1004. The intensity p obj (x, y) depends not only on the reflectance of the object 1003 but also on the shape of the object 1003, that is, the object position z(x, y).
 強度補正量計算部1304は、対象物1003の対象物位置z(x,y)のみに依存する対象物反射強度成分ploc(x,y)を計算し、強度補正量として出力する。 An intensity correction amount calculation unit 1304 calculates an object reflection intensity component p loc (x, y) that depends only on the object position z(x, y) of the object 1003, and outputs it as an intensity correction amount.
 具体的には、強度補正量計算部1304は、ステップA5において対象物位置検出部1302が検出した対象物1003の位置分布z(x,y)を入力として、対象物が対象物位置z(x,y)に分布し且つ対象物の反射率が位置依存性を持たない場合の任意位置反射強度を例えばビームフォーマ法によって計算する。さらに計算した任意位置反射強度から、式(1)および(2)と同じ手順を経由して計算した対象物反射強度ploc(x,y)を強度補正量として出力する。 Specifically, the intensity correction amount calculation unit 1304 receives as input the position distribution z(x, y) of the object 1003 detected by the object position detection unit 1302 in step A5, and the object is the object position z(x , y) and the reflectance of the object does not depend on the position. Furthermore, the object reflection intensity p loc (x, y) calculated from the calculated arbitrary position reflection intensity through the same procedure as the formulas (1) and (2) is output as an intensity correction amount.
[ステップA8]
 補正反射強度計算部1305は、対象物反射強度検出部1303から出力された対象物反射強度pobj(x,y)と、強度補正量計算部1304から出力された強度補正量ploc(x,y)を入力として、反射率のみで決まる対象物反射強度pmat(x,y)を以下の式(4)で計算し補正反射強度として出力する。
[Step A8]
A corrected reflection intensity calculation unit 1305 calculates the object reflection intensity p obj (x, y) output from the object reflection intensity detection unit 1303 and the intensity correction amount p loc (x, y) is input, the object reflection intensity p mat (x, y) determined only by the reflectance is calculated by the following equation (4) and output as the corrected reflection intensity.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 補正反射強度pmat(x,y)は素材固有の値である反射率のみに依存するので、補正反射強度pmat(x,y)から対象物1003の素材固有の特性を正しく見積もる事ができる。 Since the corrected reflection intensity p mat (x, y) depends only on the reflectance, which is a material-specific value, the material-specific characteristics of the object 1003 can be correctly estimated from the corrected reflection intensity p mat (x, y). .
 一方、補正前の対象物反射強度pobj(x,y)から反射率など素材固有の特性を直接見積もる場合、対象物1003の位置分布z(x,y)に依存する対象物反射強度成分ploc(x,y)のために素材固有特性の見積もり値に誤差が発生する。式(4)の処理で対象物1003の位置分布z(x,y)に依存する対象物反射強度成分ploc(x,y)を除去する事で、素材固有特性の見積もり値の誤差も除去できる。 On the other hand, when directly estimating material-specific characteristics such as reflectance from the object reflection intensity p obj (x, y) before correction, the object reflection intensity component p loc (x,y) causes errors in material-specific property estimates. By removing the object reflection intensity component p loc (x, y) that depends on the position distribution z(x, y) of the object 1003 in the processing of equation (4), the error in the estimated value of the material-specific property is also removed. can.
[ステップA9]
 特徴量計算部1306は、補正反射強度計算部1305から出力された補正反射強度pmat(x,y)に基づいて素材固有の特徴量を計算する。特徴量の具体的な例としては、(1)補正反射強度pmat(x,y)自体、(2)対象物1003の反射率、(3)対象物の誘電率、又は(4)補正反射強度、対象物1003の反射率及び対象物の誘電率のいずれかを引数とした関数で算出される量(値)が挙げられる。対象物1003の反射率は補正反射強度計算部1305の出力である補正反射強度pmat(x,y)から計算可能である。また非特許文献1に記載されている反射率と誘電率の関係式を用いて、対象物1003の反射率から誘電率を計算可能である。
[Step A9]
A feature amount calculation unit 1306 calculates a material-specific feature amount based on the corrected reflection intensity p mat (x, y) output from the correction reflection intensity calculation unit 1305 . Specific examples of the feature amount include (1) the corrected reflection intensity p mat (x, y) itself, (2) the reflectance of the object 1003, (3) the dielectric constant of the object, or (4) the corrected reflection An amount (value) calculated by a function using any one of the intensity, the reflectance of the object 1003, and the dielectric constant of the object as an argument can be used. The reflectance of the object 1003 can be calculated from the corrected reflected intensity p mat (x,y) output from the corrected reflected intensity calculator 1305 . Also, the dielectric constant can be calculated from the reflectance of the object 1003 using the relational expression between the reflectance and the dielectric constant described in Non-Patent Document 1.
[ステップA10]
 対象物検出・識別部1307は、特徴量計算部1306から出力された特徴量に基づいて対象物1003を検出ないし識別し、対象物1003の検出結果ないし識別結果を出力する。対象物検出・識別部1307は、例えば、補正反射強度ないし特徴量ないし物体の検出結果ないし識別結果を出力する。対象物1003の検出方法の例としては、反射率ないし誘電率など素材固有の特徴量の背景に対する変化から対象物1003を検出しても良い。また、対象物1003の識別の例としては、反射率ないし誘電率など素材固有の特徴量の測定値をデータベースと照合して、素材の種別を同定しても良い。
[Step A10]
The object detection/identification unit 1307 detects or identifies the object 1003 based on the feature amount output from the feature amount calculation unit 1306 and outputs the detection result or identification result of the object 1003 . The object detection/identification unit 1307 outputs, for example, the corrected reflection intensity, the feature amount, or the detection result or the identification result of the object. As an example of the detection method of the object 1003, the object 1003 may be detected from the change in the background of the feature amount peculiar to the material such as reflectance or dielectric constant. As an example of identification of the target object 1003, the type of material may be identified by collating the measured value of the characteristic amount of the material, such as reflectance or dielectric constant, with a database.
[プログラム]
 ここで、本実施の形態1におけるプログラムを実行することによって、物体検知装置1000を実現するコンピュータ(演算装置)について図7を用いて説明する。図7は本実施の形態1における物体検知装置1000を実現するコンピュータの一例を示すブロック図である。
[program]
Here, a computer (arithmetic device) that implements the object detection device 1000 by executing the program in the first embodiment will be described with reference to FIG. FIG. 7 is a block diagram showing an example of a computer that implements the object detection device 1000 according to the first embodiment.
 図7に示すように、コンピュータ110は、CPU111と、メインメモリ112と、記憶装置113と、入力インターフェイス114と、表示コントローラ115と、データリーダ/ライタ116と、通信インターフェイス117とを備える。これらの各部は、バス121を介して、互いにデータ通信可能に接続される。 As shown in FIG. 7, the computer 110 includes a CPU 111, a main memory 112, a storage device 113, an input interface 114, a display controller 115, a data reader/writer 116, and a communication interface 117. These units are connected to each other via a bus 121 so as to be able to communicate with each other.
 CPU111は、記憶装置113に格納された、本実施の形態1におけるプログラム(コード)をメインメモリ112に展開し、これらを所定順序で実行することにより、各種の演算を実施する。メインメモリ112は、典型的には、DRAM(Dynamic Random Access Memory)等の揮発性の記憶装置である。また、本実施の形態1におけるプログラムは、コンピュータ読み取り可能な記録媒体120に格納された状態で提供される。なお、本実施の形態1におけるプログラムは、通信インターフェイス117を介して接続されたインターネット上で流通するものであっても良い。 The CPU 111 expands the programs (codes) in the first embodiment stored in the storage device 113 into the main memory 112 and executes them in a predetermined order to perform various calculations. The main memory 112 is typically a volatile storage device such as DRAM (Dynamic Random Access Memory). Also, the program in the first embodiment is provided in a state stored in computer-readable recording medium 120 . Note that the program in the first embodiment may be distributed on the Internet connected via communication interface 117 .
 また、記憶装置113の具体例としては、ハードディスクドライブの他、フラッシュメモリ等の半導体記憶装置が挙げられる。入力インターフェイス114は、CPU111と、キーボード及びマウスといった入力機器118との間のデータ伝送を仲介する。表示コントローラ115は、ディスプレイ装置119と接続され、ディスプレイ装置119での表示を制御する。なお、コンピュータ110は、CPU111に加えて、又はCPU111に代えて、GPU(Graphics Processing Unit)、又はFPGA(Field-Programmable Gate Array)を備えていても良い。 Further, as a specific example of the storage device 113, in addition to a hard disk drive, a semiconductor storage device such as a flash memory can be cited. Input interface 114 mediates data transmission between CPU 111 and input devices 118 such as a keyboard and mouse. The display controller 115 is connected to the display device 119 and controls display on the display device 119 . Note that the computer 110 may include a GPU (Graphics Processing Unit) or an FPGA (Field-Programmable Gate Array) in addition to the CPU 111 or instead of the CPU 111 .
 またディスプレイ装置119は、演算装置1211において検出ないし計算された結果、すなわち任意位置反射強度検出部1301において検出された任意位置反射強度parb(x,y,z)、ないし対象物位置検出部1302において検出された位置分布z(x,y)、ないし対象物反射強度検出部1303において検出された対象物反射強度pobj(x,y)、ないし強度補正量計算部1304において計算された強度補正量ploc(x,y)、ないし補正反射強度計算部1305において計算された補正反射強度pmat(x,y)、ないし特徴量計算部1306において計算された特徴量、ないし対象物検出・識別部1307において得られる対象物1003の検出結果ないし識別結果を出力として表示しても良い。 Further, the display device 119 displays the result detected or calculated by the arithmetic device 1211 , that is, the arbitrary position reflection intensity parb (x, y, z) detected by the arbitrary position reflection intensity detection unit 1301 , or the object position detection unit 1302 . position distribution z(x, y) detected in , object reflection intensity p obj (x, y) detected by object reflection intensity detection unit 1303, or intensity correction calculated by intensity correction amount calculation unit 1304 Quantity p loc (x, y), corrected reflected intensity p mat (x, y) calculated in corrected reflected intensity calculation unit 1305, feature amount calculated in feature amount calculation unit 1306, or object detection/identification The detection result or identification result of the object 1003 obtained in the unit 1307 may be displayed as an output.
 データリーダ/ライタ116は、CPU111と記録媒体120との間のデータ伝送を仲介し、記録媒体120からのプログラムの読み出し、及びコンピュータ110における処理結果の記録媒体120への書き込みを実行する。通信インターフェイス117は、CPU111と、他のコンピュータとの間のデータ伝送を仲介する。 The data reader/writer 116 mediates data transmission between the CPU 111 and the recording medium 120, reads programs from the recording medium 120, and writes processing results in the computer 110 to the recording medium 120. Communication interface 117 mediates data transmission between CPU 111 and other computers.
 また、記録媒体120の具体例としては、CF(Compact Flash(登録商標))及びSD(Secure Digital)等の汎用的な半導体記憶デバイス、フレキシブルディスク(Flexible Disk)等の磁気記録媒体、又はCD-ROM(Compact Disk Read Only Memory)などの光学記録媒体が挙げられる。 Specific examples of the recording medium 120 include general-purpose semiconductor storage devices such as CF (Compact Flash (registered trademark)) and SD (Secure Digital), magnetic recording media such as flexible disks, and CD- Optical recording media such as ROM (Compact Disk Read Only Memory) can be mentioned.
 なお、本実施の形態1における物体検知装置は、プログラムがインストールされたコンピュータではなく、各部に対応したハードウェアを用いることによっても実現可能である。更に、物体検知装置は、一部がプログラムで実現され、残りの部分がハードウェアで実現されていてもよい。 It should be noted that the object detection device in Embodiment 1 can also be realized by using hardware corresponding to each part instead of a computer in which a program is installed. Furthermore, the object detection device may be partly implemented by a program and the rest by hardware.
[効果]
 以下において、本実施の形態1の効果を要約する。
[effect]
The effects of the first embodiment are summarized below.
 本実施の形態1による物体検知装置1000および物体検知方法によれば、対象物反射強度検出部1303において対象物1003の対象物反射強度pobj(x,y)を検出する。また、強度補正量計算部1304において対象物1003の対象物位置z(x,y)のみに依存する対象物反射強度成分を強度補正量ploc(x,y)として計算する。補正反射強度計算部1305において対象物反射強度pobj(x,y)を強度補正量ploc(x,y)で補正し補正反射強度pmat(x,y)を計算する。補正反射強度pmat(x,y)は対象物1003の素材固有の値である反射率のみに依存する事から、特徴量計算部1306において補正反射強度pmat(x,y)から任意形状の対象物の素材固有の特性(反射率、誘電率など)を計算できる。 According to the object detection apparatus 1000 and the object detection method according to the first embodiment, the object reflection intensity p obj (x,y) of the object 1003 is detected by the object reflection intensity detection unit 1303 . Further, an intensity correction amount calculation unit 1304 calculates an object reflection intensity component that depends only on the object position z(x, y) of the object 1003 as an intensity correction amount p loc (x, y). A corrected reflection intensity calculator 1305 corrects the object reflection intensity p obj (x, y) with the intensity correction amount p loc (x, y) to calculate the corrected reflection intensity p mat (x, y). Since the corrected reflection intensity p mat (x, y) depends only on the reflectance, which is a value peculiar to the material of the object 1003, the feature amount calculation unit 1306 calculates an arbitrary shape from the corrected reflection intensity p mat (x, y). It can calculate material-specific properties of objects (reflectance, permittivity, etc.).
 本実施の形態1による物体検知装置1000および物体検知方法によれば、対象物表面における反射波を用いて素材固有の特性を算出するため、特許文献1と異なり誘電体(対象物)における電波の透過量が少ない場合においても対象物の素材固有の特性を算出できる効果がある。 According to the object detection device 1000 and the object detection method according to the first embodiment, since the characteristic inherent to the material is calculated using the reflected wave on the surface of the object, unlike Patent Document 1, the radio waves in the dielectric (object) Even when the amount of transmission is small, there is an effect that the characteristics unique to the material of the object can be calculated.
 また、本実施の形態1による物体検知装置1000および物体検知方法によれば、カメラを用いず電波を使用するレーダ装置のみで任意形状の対象物の素材固有の特性を計算できるので、特許文献1におけるレーダとカメラの同期ずれによる測定誤差の課題を解決する効果がある。 Further, according to the object detection device 1000 and the object detection method according to the first embodiment, the material-specific characteristics of an arbitrary-shaped object can be calculated only by a radar device that uses radio waves without using a camera. It is effective to solve the problem of measurement error due to synchronization deviation between radar and camera in
 以上、本発明の好適な実施形態の構成を説明した。しかし、前述の各特許文献等に開示されている内容は、本発明に引用をもって繰り込むことも可能とする。本発明の全開示(特許請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施の形態の変更・調整が可能である。また、本発明の特許請求の範囲の枠内において種々の開示要素の多様な組み合わせあるいは選択も可能である。すなわち、本発明は、特許請求の範囲を含む全開示、技術的思想にしたがって、当業者であればなし得ることが可能な各種変形、修正を含むことは勿論である。 The configuration of the preferred embodiment of the present invention has been described above. However, the contents disclosed in each of the above patent documents can also be incorporated into the present invention by citation. Within the framework of the full disclosure of the present invention (including the scope of claims), modifications and adjustments of the embodiments are possible based on the basic technical concept thereof. Also, various combinations or selections of the various disclosed elements are possible within the scope of the claims of the present invention. That is, the present invention naturally includes various variations and modifications that can be made by those skilled in the art according to the entire disclosure including the scope of claims and technical ideas.
 上記の実施形態の一部または全部は、以下の付記のようにも記載されうるが、以下に限られない。
1. 物体に向けて電波を照射する複数の送信アンテナを備えた送信手段と、
 前記物体から反射された前記電波を受信する複数の受信アンテナを備え、更に、前記受信アンテナで受信した受信信号から中間周波数信号を生成する受信手段と、
 前記中間周波数信号から前記電波の任意の位置における反射強度である任意位置反射強度を検出する任意位置反射強度検出手段と、
 前記任意位置反射強度検出手段において検出された前記任意位置反射強度から前記物体の位置である対象物位置を検出する対象物位置検出手段と、
 前記任意位置反射強度検出手段において検出された前記任意位置反射強度から前記対象物位置における反射強度である対象物反射強度を検出する対象物反射強度検出手段と、
 前記対象物位置検出手段において検出された前記対象物位置に基づいて反射強度の補正量を計算する強度補正量計算手段と、
 前記対象物反射強度検出手段において検出された前記対象物反射強度と、前記強度補正量計算手段において計算された前記補正量に基づいて、補正反射強度を計算する補正反射強度計算手段と、
を備えた事と特徴とする物体検知装置。
2. 前記補正反射強度から前記物体の素材固有の特徴量を計算する特徴量計算手段をさらに備えた事を特徴とする1に記載の物体検知装置。
3. 前記特徴量を用いて、前記物体を検出ないし識別する対象物検出・識別手段をさらに備えた事を特徴とする2に記載の物体検知装置。
4. 前記対象物検出・識別手段は、前記補正反射強度ないし前記特徴量ないし前記物体の検出結果ないし識別結果を出力する事を特徴とする3に記載の物体検知装置。
5. 前記特徴量は、前記補正反射強度、前記補正反射強度から計算される反射率、前記反射率から計算される誘電率、又は前記補正反射強度、前記反射率及び前記誘電率のいずれかから得られる量である事を特徴とする2ないし4のいずれかに記載の物体検知装置。
6. 電波によって物体を検知するための物体検知方法であって、
 複数の送信アンテナを備えた送信手段から前記物体に向けて電波を照射するステップと、
 複数の受信アンテナを備えた受信手段で前記物体から反射された前記電波を受信し、更に前記受信アンテナで受信した受信信号から中間周波数信号を生成するステップと、
 任意位置反射強度検出手段で、前記中間周波数信号から前記電波の任意の位置における反射強度(任意位置反射強度)を検出するステップと、
 対象物位置検出手段で、前記任意位置反射強度検出手段において検出された前記任意位置反射強度から前記物体の位置(対象物位置)を検出するステップと、
 対象物反射強度検出手段で、前記任意位置反射強度検出手段において検出された前記任意位置反射強度から前記対象物位置における反射強度(対象物反射強度)を検出するステップと、
 強度補正量計算手段で、前記対象物位置検出手段において検出された前記対象物位置に基づいて反射強度の補正量を計算するステップと、
 補正反射強度計算手段で、前記対象物反射強度検出手段において検出された前記対象物反射強度と、前記強度補正量計算手段において計算された前記補正量に基づいて、補正反射強度を計算するステップと、
を備えた事と特徴とする物体検知方法。
7. 特徴量計算手段で、前記補正反射強度から前記物体の素材固有の特徴量を計算するステップをさらに備えた事を特徴とする6に記載の物体検知方法。
8. 対象物検出・識別手段で、前記特徴量を用いて前記物体を検出ないし識別するステップをさらに備えた事を特徴とする7に記載の物体検知方法。
9. 物体に向けて電波を照射する複数の送信アンテナを備えた送信手段と、
 前記物体から反射された前記電波を受信する複数の受信アンテナを備え、更に、前記受信アンテナで受信した受信信号から中間周波数信号を生成する受信手段と、
 プロセッサと、を備える物体検知装置において、
 任意位置反射強度検出手段で、前記中間周波数信号から前記電波の任意の位置における反射強度(任意位置反射強度)を検出するステップと、
 対象物位置検出手段で、前記任意位置反射強度検出手段において検出された前記任意位置反射強度から前記物体の位置(対象物位置)を検出するステップと、
 対象物反射強度検出手段で、前記任意位置反射強度検出手段において検出された前記任意位置反射強度から前記対象物位置における反射強度(対象物反射強度)を検出するステップと、
 強度補正量計算手段で、前記対象物位置検出手段において検出された前記対象物位置に基づいて反射強度の補正量を計算するステップと、
 補正反射強度計算手段で、前記対象物反射強度検出手段において検出された前記対象物反射強度と、前記強度補正量計算手段において計算された前記補正量に基づいて、補正反射強度を計算するステップと、
 を実行させるプログラム。
10. 前記物体検知装置において、特徴量計算手段で、前記補正反射強度から前記物体の素材固有の特徴量を計算するステップをさらに実行させる9に記載のプログラム。
11. 前記物体検知装置において、対象物検出・識別手段で、前記特徴量を用いて前記物体を検出ないし識別するステップをさらに実行させる10に記載のプログラム。
Some or all of the above embodiments can also be described as the following additional remarks, but are not limited to the following.
1. a transmitting means having a plurality of transmitting antennas for irradiating radio waves toward an object;
a receiving means comprising a plurality of receiving antennas for receiving the radio waves reflected from the object, and further for generating intermediate frequency signals from the signals received by the receiving antennas;
arbitrary position reflection intensity detection means for detecting an arbitrary position reflection intensity, which is the reflection intensity of the radio wave at an arbitrary position, from the intermediate frequency signal;
an object position detection means for detecting an object position, which is the position of the object, from the arbitrary position reflection intensity detected by the arbitrary position reflection intensity detection means;
object reflection intensity detection means for detecting an object reflection intensity, which is the reflection intensity at the object position, from the arbitrary position reflection intensity detected by the arbitrary position reflection intensity detection means;
intensity correction amount calculation means for calculating a correction amount of reflection intensity based on the object position detected by the object position detection means;
corrected reflection intensity calculation means for calculating a correction reflection intensity based on the object reflection intensity detected by the object reflection intensity detection means and the correction amount calculated by the intensity correction amount calculation means;
An object detection device characterized by comprising:
2. 2. The object detection apparatus according to 1, further comprising a feature quantity calculating means for calculating a feature quantity peculiar to the material of the object from the corrected reflection intensity.
3. 3. The object detection apparatus according to 2, further comprising object detection/identification means for detecting or identifying the object using the feature amount.
4. 4. The object detection apparatus according to 3, wherein the object detection/identification means outputs the corrected reflection intensity, the feature value, or the detection result or identification result of the object.
5. The feature amount is obtained from any one of the corrected reflection intensity, the reflectance calculated from the corrected reflection intensity, the dielectric constant calculated from the reflectance, or the corrected reflection intensity, the reflectance and the dielectric constant. 5. The object detection device according to any one of 2 to 4, characterized by being a quantity.
6. An object detection method for detecting an object by radio waves,
a step of irradiating a radio wave toward the object from a transmitting means having a plurality of transmitting antennas;
a step of receiving the radio waves reflected from the object by a receiving means having a plurality of receiving antennas, and further generating an intermediate frequency signal from the received signals received by the receiving antennas;
a step of detecting the reflection intensity at an arbitrary position (arbitrary position reflection intensity) of the radio wave from the intermediate frequency signal by an arbitrary position reflection intensity detection means;
a step of detecting the position of the object (object position) from the arbitrary position reflection intensity detected by the arbitrary position reflection intensity detection means, with the object position detection means;
a step of detecting a reflection intensity (object reflection intensity) at the position of the object from the arbitrary position reflection intensity detected by the arbitrary position reflection intensity detection means, with the object reflection intensity detection means;
a step of calculating a correction amount of the reflection intensity based on the object position detected by the object position detection means, using an intensity correction amount calculation means;
a step of calculating a corrected reflection intensity by a corrected reflection intensity calculation means based on the object reflection intensity detected by the object reflection intensity detection means and the correction amount calculated by the intensity correction amount calculation means; ,
An object detection method characterized by comprising:
7. 7. The object detection method according to 6, further comprising a step of calculating a feature amount specific to the material of the object from the corrected reflection intensity by a feature amount calculation means.
8. 8. The object detection method according to 7, further comprising a step of detecting or identifying the object using the feature amount by the object detection/identification means.
9. a transmitting means having a plurality of transmitting antennas for irradiating radio waves toward an object;
a receiving means comprising a plurality of receiving antennas for receiving the radio waves reflected from the object, and further for generating intermediate frequency signals from the signals received by the receiving antennas;
In an object detection device comprising a processor,
a step of detecting the reflection intensity at an arbitrary position (arbitrary position reflection intensity) of the radio wave from the intermediate frequency signal by an arbitrary position reflection intensity detection means;
a step of detecting the position of the object (object position) from the arbitrary position reflection intensity detected by the arbitrary position reflection intensity detection means, with the object position detection means;
a step of detecting a reflection intensity (object reflection intensity) at the position of the object from the arbitrary position reflection intensity detected by the arbitrary position reflection intensity detection means, with the object reflection intensity detection means;
a step of calculating a correction amount of the reflection intensity based on the object position detected by the object position detection means, using an intensity correction amount calculation means;
a step of calculating a corrected reflection intensity by a corrected reflection intensity calculation means based on the object reflection intensity detected by the object reflection intensity detection means and the correction amount calculated by the intensity correction amount calculation means; ,
program to run.
10. 10. The program according to 9, wherein in the object detection device, the feature quantity calculation means further executes a step of calculating a feature quantity peculiar to the material of the object from the corrected reflection intensity.
11. 11. The program according to 10, further causing the object detection/identification means in the object detection device to detect or identify the object using the feature amount.
 110 コンピュータ
 111 CPU
 112 メインメモリ
 113 記憶装置
 114 入力インターフェイス
 115 表示コントローラ
 116 データリーダ/ライタ
 117 通信インターフェイス
 118 入力機器
 119 ディスプレイ装置
 120 記録媒体
 121 バス
 1000 物体検知装置
 1001 送受信装置
 1002 電波(送信信号)
 1003 対象物(検知対象となる物体)
 1004 電波(受信信号)
 1101 送信部
 1102 受信部
 1201 発振器
 1202 送信アンテナ
 1203 受信アンテナ
 1204 ミキサ
 1205 インターフェイス回路
 1208 端子
 1211 演算装置
 1301 任意位置反射強度検出部
 1302 対象物位置検出部
 1303 対象物反射強度検出部
 1304 強度補正量計算部
 1305 補正反射強度計算部
 1306 特徴量計算部
 1307 対象物検出・識別部
 1401a 反射点
 1401b 反射点
 1402 接平面
110 computer 111 CPU
112 main memory 113 storage device 114 input interface 115 display controller 116 data reader/writer 117 communication interface 118 input device 119 display device 120 recording medium 121 bus 1000 object detection device 1001 transmission/reception device 1002 radio wave (transmission signal)
1003 object (object to be detected)
1004 radio wave (received signal)
1101 transmitter 1102 receiver 1201 oscillator 1202 transmitter antenna 1203 receiver antenna 1204 mixer 1205 interface circuit 1208 terminal 1211 arithmetic device 1301 arbitrary position reflection intensity detector 1302 object position detector 1303 object reflection intensity detector 1304 intensity correction amount calculator 1305 corrected reflection intensity calculation unit 1306 feature amount calculation unit 1307 object detection/identification unit 1401a reflection point 1401b reflection point 1402 tangent plane

Claims (11)

  1.  物体に向けて電波を照射する複数の送信アンテナを備えた送信手段と、
     前記物体から反射された前記電波を受信する複数の受信アンテナを備え、更に、前記受信アンテナで受信した受信信号から中間周波数信号を生成する受信手段と、
     前記中間周波数信号から前記電波の任意の位置における反射強度である任意位置反射強度を検出する任意位置反射強度検出手段と、
     前記任意位置反射強度検出手段において検出された前記任意位置反射強度から前記物体の位置である対象物位置を検出する対象物位置検出手段と、
     前記任意位置反射強度検出手段において検出された前記任意位置反射強度から前記対象物位置における反射強度である対象物反射強度を検出する対象物反射強度検出手段と、
     前記対象物位置検出手段において検出された前記対象物位置に基づいて反射強度の補正量を計算する強度補正量計算手段と、
     前記対象物反射強度検出手段において検出された前記対象物反射強度と、前記強度補正量計算手段において計算された前記補正量に基づいて、補正反射強度を計算する補正反射強度計算手段と、
    を備えた事と特徴とする物体検知装置。
    a transmitting means having a plurality of transmitting antennas for irradiating radio waves toward an object;
    a receiving means comprising a plurality of receiving antennas for receiving the radio waves reflected from the object, and further for generating intermediate frequency signals from the signals received by the receiving antennas;
    arbitrary position reflection intensity detection means for detecting an arbitrary position reflection intensity, which is the reflection intensity of the radio wave at an arbitrary position, from the intermediate frequency signal;
    an object position detection means for detecting an object position, which is the position of the object, from the arbitrary position reflection intensity detected by the arbitrary position reflection intensity detection means;
    object reflection intensity detection means for detecting an object reflection intensity, which is the reflection intensity at the object position, from the arbitrary position reflection intensity detected by the arbitrary position reflection intensity detection means;
    intensity correction amount calculation means for calculating a correction amount of reflection intensity based on the object position detected by the object position detection means;
    corrected reflection intensity calculation means for calculating a correction reflection intensity based on the object reflection intensity detected by the object reflection intensity detection means and the correction amount calculated by the intensity correction amount calculation means;
    An object detection device characterized by comprising:
  2.  前記補正反射強度から前記物体の素材固有の特徴量を計算する特徴量計算手段をさらに備えた事を特徴とする請求項1に記載の物体検知装置。 3. The object detection apparatus according to claim 1, further comprising a feature quantity calculation means for calculating a feature quantity peculiar to the material of the object from the corrected reflection intensity.
  3.  前記特徴量を用いて、前記物体を検出ないし識別する対象物検出・識別手段をさらに備えた事を特徴とする請求項2に記載の物体検知装置。 The object detection apparatus according to claim 2, further comprising object detection/identification means for detecting or identifying the object using the feature amount.
  4.  前記対象物検出・識別手段は、前記補正反射強度ないし前記特徴量ないし前記物体の検出結果ないし識別結果を出力する事を特徴とする請求項3に記載の物体検知装置。 The object detection device according to claim 3, wherein the object detection/identification means outputs the corrected reflection intensity, the feature amount, or the detection result or identification result of the object.
  5.  前記特徴量は、前記補正反射強度、前記補正反射強度から計算される反射率、前記反射率から計算される誘電率、又は前記補正反射強度、前記反射率及び前記誘電率のいずれかから得られる量である事を特徴とする請求項2ないし4のいずれか1項に記載の物体検知装置。 The feature amount is obtained from any one of the corrected reflection intensity, the reflectance calculated from the corrected reflection intensity, the dielectric constant calculated from the reflectance, or the corrected reflection intensity, the reflectance and the dielectric constant. 5. The object detection device according to any one of claims 2 to 4, characterized in that it is a quantity.
  6.  電波によって物体を検知するための物体検知方法であって、
     複数の送信アンテナを備えた送信手段から前記物体に向けて電波を照射するステップと、
     複数の受信アンテナを備えた受信手段で前記物体から反射された前記電波を受信し、更に前記受信アンテナで受信した受信信号から中間周波数信号を生成するステップと、
     任意位置反射強度検出手段で、前記中間周波数信号から前記電波の任意の位置における反射強度(任意位置反射強度)を検出するステップと、
     対象物位置検出手段で、前記任意位置反射強度検出手段において検出された前記任意位置反射強度から前記物体の位置(対象物位置)を検出するステップと、
     対象物反射強度検出手段で、前記任意位置反射強度検出手段において検出された前記任意位置反射強度から前記対象物位置における反射強度(対象物反射強度)を検出するステップと、
     強度補正量計算手段で、前記対象物位置検出手段において検出された前記対象物位置に基づいて反射強度の補正量を計算するステップと、
     補正反射強度計算手段で、前記対象物反射強度検出手段において検出された前記対象物反射強度と、前記強度補正量計算手段において計算された前記補正量に基づいて、補正反射強度を計算するステップと、
    を備えた事と特徴とする物体検知方法。
    An object detection method for detecting an object by radio waves,
    a step of irradiating a radio wave toward the object from a transmitting means having a plurality of transmitting antennas;
    a step of receiving the radio waves reflected from the object by a receiving means having a plurality of receiving antennas, and further generating an intermediate frequency signal from the received signals received by the receiving antennas;
    a step of detecting the reflection intensity at an arbitrary position (arbitrary position reflection intensity) of the radio wave from the intermediate frequency signal by an arbitrary position reflection intensity detection means;
    a step of detecting the position of the object (object position) from the arbitrary position reflection intensity detected by the arbitrary position reflection intensity detection means, with the object position detection means;
    a step of detecting a reflection intensity (object reflection intensity) at the position of the object from the arbitrary position reflection intensity detected by the arbitrary position reflection intensity detection means, with the object reflection intensity detection means;
    a step of calculating a correction amount of the reflection intensity based on the object position detected by the object position detection means, using an intensity correction amount calculation means;
    a step of calculating a corrected reflection intensity by a corrected reflection intensity calculation means based on the object reflection intensity detected by the object reflection intensity detection means and the correction amount calculated by the intensity correction amount calculation means; ,
    An object detection method characterized by comprising:
  7.  特徴量計算手段で、前記補正反射強度から前記物体の素材固有の特徴量を計算するステップをさらに備えた事を特徴とする請求項6に記載の物体検知方法。 7. The object detection method according to claim 6, further comprising a step of calculating a feature amount specific to the material of the object from the corrected reflection intensity by the feature amount calculation means.
  8.  対象物検出・識別手段で、前記特徴量を用いて前記物体を検出ないし識別するステップをさらに備えた事を特徴とする請求項7に記載の物体検知方法。 8. The object detection method according to claim 7, further comprising a step of detecting or identifying the object using the feature amount by the object detection/identification means.
  9.  物体に向けて電波を照射する複数の送信アンテナを備えた送信手段と、
     前記物体から反射された前記電波を受信する複数の受信アンテナを備え、更に、前記受信アンテナで受信した受信信号から中間周波数信号を生成する受信手段と、
     プロセッサと、を備える物体検知装置において、
     任意位置反射強度検出手段で、前記中間周波数信号から前記電波の任意の位置における反射強度(任意位置反射強度)を検出するステップと、
     対象物位置検出手段で、前記任意位置反射強度検出手段において検出された前記任意位置反射強度から前記物体の位置(対象物位置)を検出するステップと、
     対象物反射強度検出手段で、前記任意位置反射強度検出手段において検出された前記任意位置反射強度から前記対象物位置における反射強度(対象物反射強度)を検出するステップと、
     強度補正量計算手段で、前記対象物位置検出手段において検出された前記対象物位置に基づいて反射強度の補正量を計算するステップと、
     補正反射強度計算手段で、前記対象物反射強度検出手段において検出された前記対象物反射強度と、前記強度補正量計算手段において計算された前記補正量に基づいて、補正反射強度を計算するステップと、
     を実行させるプログラム。
    a transmitting means having a plurality of transmitting antennas for irradiating radio waves toward an object;
    a receiving means comprising a plurality of receiving antennas for receiving the radio waves reflected from the object, and further for generating intermediate frequency signals from the signals received by the receiving antennas;
    In an object detection device comprising a processor,
    a step of detecting the reflection intensity at an arbitrary position (arbitrary position reflection intensity) of the radio wave from the intermediate frequency signal by an arbitrary position reflection intensity detection means;
    a step of detecting the position of the object (object position) from the arbitrary position reflection intensity detected by the arbitrary position reflection intensity detection means, with the object position detection means;
    a step of detecting a reflection intensity (object reflection intensity) at the position of the object from the arbitrary position reflection intensity detected by the arbitrary position reflection intensity detection means, with the object reflection intensity detection means;
    a step of calculating a correction amount of the reflection intensity based on the object position detected by the object position detection means, using an intensity correction amount calculation means;
    a step of calculating a corrected reflection intensity by a corrected reflection intensity calculation means based on the object reflection intensity detected by the object reflection intensity detection means and the correction amount calculated by the intensity correction amount calculation means; ,
    program to run.
  10.  前記物体検知装置において、特徴量計算手段で、前記補正反射強度から前記物体の素材固有の特徴量を計算するステップをさらに実行させる請求項9に記載のプログラム。 The program according to claim 9, wherein in the object detection device, the feature quantity calculation means further executes a step of calculating a feature quantity peculiar to the material of the object from the corrected reflection intensity.
  11.  前記物体検知装置において、対象物検出・識別手段で、前記特徴量を用いて前記物体を検出ないし識別するステップをさらに実行させる請求項10に記載のプログラム。 The program according to claim 10, wherein the object detection/identification means in the object detection device further executes a step of detecting or identifying the object using the feature amount.
PCT/JP2021/039403 2021-10-26 2021-10-26 Object-sensing device, object-sensing method, and program WO2023073794A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023555919A JPWO2023073794A1 (en) 2021-10-26 2021-10-26
PCT/JP2021/039403 WO2023073794A1 (en) 2021-10-26 2021-10-26 Object-sensing device, object-sensing method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/039403 WO2023073794A1 (en) 2021-10-26 2021-10-26 Object-sensing device, object-sensing method, and program

Publications (1)

Publication Number Publication Date
WO2023073794A1 true WO2023073794A1 (en) 2023-05-04

Family

ID=86159217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039403 WO2023073794A1 (en) 2021-10-26 2021-10-26 Object-sensing device, object-sensing method, and program

Country Status (2)

Country Link
JP (1) JPWO2023073794A1 (en)
WO (1) WO2023073794A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004245742A (en) * 2003-02-14 2004-09-02 Kawasaki Heavy Ind Ltd Ground probing system
JP2005265817A (en) * 2004-03-22 2005-09-29 Mitsui Eng & Shipbuild Co Ltd Method and detector for detecting filling degree of pc grout
US20080079625A1 (en) * 2006-10-03 2008-04-03 William Weems System and method for stereoscopic anomaly detection using microwave imaging
JP2016138858A (en) * 2015-01-29 2016-08-04 防衛装備庁長官 Front and sides simultaneous monitoring type underground radar device
JP2017032455A (en) * 2015-08-04 2017-02-09 鹿島建設株式会社 Underground analysis method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004245742A (en) * 2003-02-14 2004-09-02 Kawasaki Heavy Ind Ltd Ground probing system
JP2005265817A (en) * 2004-03-22 2005-09-29 Mitsui Eng & Shipbuild Co Ltd Method and detector for detecting filling degree of pc grout
US20080079625A1 (en) * 2006-10-03 2008-04-03 William Weems System and method for stereoscopic anomaly detection using microwave imaging
JP2016138858A (en) * 2015-01-29 2016-08-04 防衛装備庁長官 Front and sides simultaneous monitoring type underground radar device
JP2017032455A (en) * 2015-08-04 2017-02-09 鹿島建設株式会社 Underground analysis method

Also Published As

Publication number Publication date
JPWO2023073794A1 (en) 2023-05-04

Similar Documents

Publication Publication Date Title
WO2018147025A1 (en) Object detection device, object detection method and computer-readable recording medium
CN108875099B (en) Baseline selection method based on long and short baseline interferometer direction-finding system
US20160216367A1 (en) Frequency Correction for Pulse Compression Radar
Baiyuan et al. Matching of attributed scattering center and its application to synthetic aperture radar automatic target recognition
US10366282B2 (en) Human detection apparatus and method using low-resolution two-dimensional (2D) light detection and ranging (LIDAR) sensor
US20230258790A1 (en) Method and apparatus with measuring of three-dimensional position using radar sensor
Wu et al. A highly accurate ultrasonic ranging method based on onset extraction and phase shift detection
WO2023071992A1 (en) Method and apparatus for multi-sensor signal fusion, electronic device and storage medium
Osipov et al. An improved image-based circular near-field-to-far-field transformation
TWI453415B (en) Method for detecting the motion of object by ultra-wideband radar imaging and system thereof
CN111398943A (en) Target posture determining method and terminal equipment
JP6838658B2 (en) Object detection device, object detection method, and program
CN110837079A (en) Target detection method and device based on radar
WO2023073794A1 (en) Object-sensing device, object-sensing method, and program
JP6849100B2 (en) Object detection device, object detection method and program
US10371813B2 (en) Systems and methods for using time of flight measurements for imaging target objects
JP2019100772A (en) Estimation program, estimation device and estimation method
US11609307B2 (en) Object detection apparatus, vehicle, object detection method, and computer readable medium
JP6939981B2 (en) Object detection device and object detection method
JP2022146207A (en) Object detection device, object detection method, and program
JP2004245742A (en) Ground probing system
Pidanic et al. Advanced targets association based on GPU computation of PHD function
CN116027288A (en) Method and device for generating data, electronic equipment and storage medium
JP6834593B2 (en) Measuring device and measuring method
JP7416275B2 (en) Object detection device, object detection method and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962344

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023555919

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE