WO2023073763A1 - Radar device - Google Patents

Radar device Download PDF

Info

Publication number
WO2023073763A1
WO2023073763A1 PCT/JP2021/039294 JP2021039294W WO2023073763A1 WO 2023073763 A1 WO2023073763 A1 WO 2023073763A1 JP 2021039294 W JP2021039294 W JP 2021039294W WO 2023073763 A1 WO2023073763 A1 WO 2023073763A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
velocity
target
compensation
candidate
Prior art date
Application number
PCT/JP2021/039294
Other languages
French (fr)
Japanese (ja)
Inventor
哲朗 古田
聡 影目
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/039294 priority Critical patent/WO2023073763A1/en
Priority to JP2022508979A priority patent/JP7090826B1/en
Publication of WO2023073763A1 publication Critical patent/WO2023073763A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/26Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave
    • G01S13/28Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems

Definitions

  • the technology disclosed herein relates to a radar device and a signal processing method for the radar device.
  • radar equipment there are various types of radar equipment.
  • a radar device of the pulse Doppler system that transmits a plurality of pulse waves toward a target based on a pulse repetition interval (PRI) and detects the distance and speed of the target.
  • PRI pulse repetition interval
  • Patent Literature 1 discloses a technique related to a radar apparatus that performs high-accuracy Doppler correction even when ambiguity occurs, and improves super-resolution ranging accuracy.
  • Velocity measurement by a radar device has a narrow velocity interval that can be solved without ambiguity if the PRI is long assuming a target that is far away and moves at high speed. For this reason, under such circumstances, it is necessary to widen the velocity interval between assumed targets. In addition, in order to obtain the maximum intensity of the target signal with high accuracy, it is necessary to finely divide the speed compensation candidates, which increases the computational load. In the method of resolving speed ambiguities by searching described in Patent Document 1, there is a trade-off relationship between the accuracy of solving without ambiguities and the amount of computation required for the search.
  • the disclosed technology is intended to solve the above problems, and aims to obtain a speed measuring means capable of achieving high accuracy and reducing the amount of calculation even if the speed interval is wide.
  • a radar device includes a PRI control unit that sets a predetermined pulse repetition period for each hit, a signal generation circuit that continuously generates a plurality of transmission pulse signals at timing based on the pulse repetition period, A transmitting/receiving unit that transmits a transmitted pulse signal to an external space and receives a plurality of reflected wave signals corresponding to each of the transmitted pulse signals from the external space; a receiving circuit for generating a plurality of received signals respectively corresponding to the transmitted pulse signals; a correlation processing unit for pulse-compressing the received signals by correlation calculation; a compensation processing unit for performing motion compensation based on preset speed candidates; A target candidate detector that detects a target candidate based on the processed signal of the processor, and a target processed using a plurality of motion compensation candidates that are spaced wider than an unambiguously measurable velocity interval ( ⁇ amb ). a velocimetry and range finder for estimating the unambiguous velocity and range of the target from the results from the candidate detectors.
  • the target speed can be estimated accurately while reducing the computational load based on a plurality of speed candidates in a wide range in which speed ambiguities appear. be able to.
  • FIG. 1 is a block diagram showing the functional configuration of a radar device according to the technology disclosed herein.
  • FIG. 2 is a block diagram showing the functional configuration of the radar signal processing circuit 160 of the radar device according to Embodiment 1.
  • FIG. 3 is a block diagram showing the functional configuration of the signal generation circuit 110 of the radar device according to the first embodiment.
  • FIG. 4 is a flow chart showing processing steps of the radar signal processing circuit 160 of the radar device according to the first embodiment.
  • FIG. 5 is a graph showing an image of the detected intensity distribution in the speed interval without ambiguity and the speed compensation candidate.
  • FIG. 6 is a graph representing an assumed velocity interval of a target, an ambiguity-free velocity interval, and an image of a target candidate.
  • FIG. 1 is a block diagram showing the functional configuration of a radar device according to the technology disclosed herein.
  • FIG. 2 is a block diagram showing the functional configuration of the radar signal processing circuit 160 of the radar device according to Embodiment 1.
  • FIG. 3 is a block diagram
  • FIG. 7 is a graph showing an image in which speed and distance of peak intensity of each speed compensation candidate are superimposed.
  • FIG. 8 is a graph showing an image of calculating an estimated target speed from the peak intensity of each speed compensation candidate.
  • FIG. 9 is a graph showing an image of calculating the estimated distance from the estimated speed of the target.
  • FIG. 10 is an image diagram showing the relationship between the ratio of sum signal to difference signal with respect to signal intensity and speed.
  • FIG. 11 is a hardware configuration diagram of the signal processing circuit 170 of the radar device according to the technology disclosed herein.
  • FIG. 12 is a block diagram showing the functional configuration of the radar signal processing circuit 160 (160B) of the radar device according to the second embodiment.
  • FIG. 13 is a flow chart showing processing steps of the radar signal processing circuit 160 (160B) of the radar device according to the second embodiment.
  • FIG. 14 is a flow chart showing the details of the CZT pulse Doppler processing step (ST165) in the flow chart shown in FIG.
  • FIG. 15 is a block diagram showing the functional configuration of the radar signal processing circuit 160 (160C) of the radar device according to the third embodiment.
  • FIG. 16 is a flow chart showing processing steps of the radar signal processing circuit 160 (160C) of the radar device according to the third embodiment.
  • FIG. 17 applies the image diagram shown in FIG. 8 to the third embodiment.
  • FIG. 18 is the image diagram shown in FIG. 9 applied to the third embodiment.
  • FIG. 19 is a block diagram showing the functional configuration of the radar signal processing circuit 160 (160D) of the radar device according to the fourth embodiment.
  • FIG. 20 is a flow chart showing processing steps of the radar signal processing circuit 160 (160D) of the radar device according to the fourth embodiment.
  • FIG. 21 is a reference diagram showing an image of integration performed by the pulse-to-pulse stagger integration unit 167 according to the fourth embodiment.
  • the radar device 100 is of a pulse Doppler system that transmits a plurality of pulse waves toward a target based on a pulse repetition interval (PRI) and detects the distance and speed of the target. .
  • the radar device 100 according to the technology disclosed herein will be clarified by the description along the drawings for each embodiment.
  • a proviso is shown after for. In almost all proviso variables are integer serial numbers and their ranges are given. Variables are shown as m, h, q, k, etc., but their usage and range are the same for one variable unless otherwise specified. Also, in some formulas, the proviso related to the explanation of the variables may be omitted.
  • FIG. 1 is a block diagram showing a functional configuration of a radar device 100 according to technology disclosed herein.
  • the radar device 100 includes a signal generation circuit 110 , a transmission/reception section 120 , an antenna 130 , a reception circuit 140 , a PRI control section 150 and a radar signal processing circuit 160 .
  • the radar device 100 may be connected to the display device 200 .
  • FIG. 2 is a block diagram showing the functional configuration of the radar signal processing circuit 160 of the radar device 100 according to Embodiment 1. As shown in FIG. As shown in FIG. 2, the radar signal processing circuit 160 includes a correlation processing section 161, a compensation processing section 162, a target candidate detection section 163, and a velocity/distance measurement section 164.
  • the radar device 100 may use the millimeter wave band or the microwave band as the operating frequency band.
  • a signal generation circuit 110 of the radar device 100 generates a plurality of transmission pulse signals.
  • a mathematical model of the transmitted pulse signal is represented by T x (h, t).
  • the argument h represents the pulse hit number (hereinafter simply referred to as "hit number").
  • h is an integer from 0 to H-1.
  • H represents the number of pulse hits.
  • the hit number h is derived from the initial letter of "hit” in English. That is, the radar apparatus 100 transmits H transmission pulse signals from 0 to H-1.
  • the argument t represents time.
  • a transmission pulse signal is generated at the timing of each pulse repetition interval (hereinafter referred to as “PRI”).
  • the design value of PRI is denoted by T pri (h) and has units of time. Thus, the PRI may be of different lengths of time in pulses with different hit numbers.
  • PRI is set by the PRI control unit 150 .
  • a transmission pulse signal generated by the signal generation circuit 110 is output to the transmission/reception section 120 .
  • the transmission pulse signal output to transmitting/receiving section 120 is further output to antenna 130 .
  • the antenna 130 may be a linear one called an aerial.
  • the transmitted pulse signal emitted to the external space is reflected by the target and becomes a reflected wave signal.
  • a mathematical model of the reflected wave signal is represented by R x (h, t).
  • a reflected wave signal is received by the antenna 130 and output to the transmitting/receiving section 120 .
  • the reflected wave signal is output to the receiving circuit 140 by the transmitting/receiving section 120 . That is, the transmitting/receiving section 120 outputs the transmission pulse signal from the signal generating circuit 110 to the antenna 130 and outputs the reflected wave signal from the antenna 130 to the receiving circuit 140 .
  • Transmitter/receiver 120 may be realized by a circulator having three ports.
  • the receiving circuit 140 performs analog signal processing on the multiple input reflected wave signals to generate multiple received analog signals.
  • a mathematical model of the received analog signal is represented by W 0 (h,t).
  • the receiving circuit 140 further converts the generated plurality of received analog signals into received digital signals.
  • a mathematical model of the received digital signal is represented by V 0 (h,t). Specifically, V 0 (h, t) will become clear from the description below.
  • FIG. 3 is a block diagram showing the functional configuration of the signal generation circuit 110 of the radar device 100 according to Embodiment 1. As shown in FIG. As shown in FIG. 3, signal generation circuit 110 includes local oscillator 111 , pulse generator 112 , intrapulse modulator 113 , and output 114 .
  • the local oscillator 111 of the signal generation circuit 110 generates a local oscillation signal in the used frequency band.
  • the generated local oscillation signal is output to pulse generator 112 and receiving circuit 140 .
  • the pulse generator 112, the intrapulse modulator 113 and the output section 114 may be of the prior art.
  • FIG. 4 is a flow chart showing processing steps of the radar signal processing circuit 160 of the radar device 100 according to the first embodiment.
  • the radar signal processing circuit 160 includes a step of performing correlation processing (ST161), a step of compensation processing using speed compensation candidates (ST162), a step of detecting target candidates (ST163), and a step of measuring speed and distance. and a step of processing (ST164).
  • the correlation processing section 161 of the radar signal processing circuit 160 modulates the reference signal and performs correlation processing for correlating the reference signal and the received digital signal (step indicated by ST161 in FIG. 3).
  • Correlation processing section 161 performs correlation processing on a plurality of received digital signals to generate a plurality of corresponding pulse-compressed signals.
  • the correlation processor 161 performs pulse compression. The details of the correlation processing performed by the correlation processing unit 161 will become clear from the description based on the mathematical model described later.
  • a mathematical model of the received digital signal is represented by V0 .
  • a mathematical model of the received digital signal is specifically represented by the following equation (1).
  • m is a serial number assigned to sampling within the PRI and is an integer from 0 to M ⁇ 1.
  • ⁇ t represents the sampling period within the PRI.
  • M represents the number of samplings in the PRI.
  • h is the hit number described above.
  • f 0 represents the transmission frequency.
  • R(h, m ⁇ t) represents the range, ie relative distance, to the target.
  • c represents the speed of light.
  • B 0 represents the modulation bandwidth.
  • T 0 represents the transmission pulse length.
  • a 0 is a constant representing the amplitude.
  • a mathematical model of the reference signal is represented by V ref (m).
  • the subscript ref is the first three characters of reference, which means reference.
  • a mathematical model of the reference signal is specifically represented by the following equation (2).
  • ⁇ can (q) represents a candidate value for speed compensation (hereinafter simply referred to as "speed compensation candidate").
  • the subscript can is the first three characters of candidate, which means candidate.
  • a ref on the right side of equation (2) is the amplitude of the reference signal.
  • the radar apparatus 100 according to Embodiment 1 includes a Doppler frequency term in the reference signal used, as shown in Equation (2). Including the Doppler frequency term in the reference signal has the effect of suppressing Doppler coupling in correlation processing. That is, including the Doppler frequency term in the reference signal has the effect of reducing the integration loss between the received signal and the reference signal.
  • the speed compensation candidate is specifically represented by the following formula (3).
  • ⁇ can_cri represents the reference value of the speed compensation candidate (hereinafter simply referred to as "speed compensation candidate reference”).
  • the subscript cri is the first three letters of the criterion representing the criterion.
  • q is a serial number assigned to the speed candidate (hereinafter referred to as "speed candidate number”) and is an integer from 0 to Q-1.
  • Q represents the total number of speed candidates (hereinafter simply referred to as "the number of speed candidates").
  • ⁇ can is the step size for changing the speed candidate.
  • the speed compensation candidate is preferably set within the speed range of the assumed target.
  • the radar device 100 can set Q, which is the number of speed candidates, and ⁇ can , which is an interval for changing the speed candidates.
  • speed candidate and “speed compensation candidate” may refer to the same variable, but strictly speaking, they have different meanings and should be used separately.
  • velocity candidate is used when referring to a candidate value of velocity to be detected for a target.
  • speed compensation candidate is used when referring to values used for speed compensation, which will be described later.
  • a velocity compensation candidate is selected from the velocity candidates. In particular, the speed candidate number q assigned to the speed candidate and the speed compensation candidate number qk assigned to the speed compensation candidate described later are used separately.
  • target needs to be clearly distinguished between when it is used in a dictionary sense as a general term and when it refers to a radar measurement target. Therefore, in the present specification, the term “target” is not used in the former dictionary sense, but other expressions such as "purpose” are used for distinction.
  • ⁇ amb represents the velocity interval measurable without ambiguity based on T pri (h) (hereafter simply referred to as “ambiguity-free velocity interval”).
  • the subscript amb is the first three letters of ambiguity, which is the English representation of ambiguity.
  • Ambiguity means ambiguity.
  • N ⁇ , amb is a positive integer.
  • ⁇ amb is given by the following equation (5).
  • Fig. 5 is a graph showing an image of the detected intensity distribution in the velocity interval without ambiguity and the velocity compensation candidate.
  • the vertical axis of the graph shown in FIG. 5 represents intensity, and the horizontal axis represents velocity.
  • plots with asterisks represent true values for the target, and plots with x marks represent target velocity candidates including velocity ambiguities.
  • the graph shown in FIG. 5 shows an example where the intensity is maximized at the true value of the target velocity. This phenomenon indicates that the more the velocity deviates from the true value, the more the range walk component remains after motion compensation, and the intensity of the integrated result decreases.
  • Equation (4) appears in the graph shown in FIG. 5 as N ⁇ ,amb times the plot interval between adjacent asterisks or crosses.
  • FIG. 5 shows that ⁇ can adopted by the disclosed technique is wider than ⁇ amb .
  • N ⁇ ,amb is set to 2, but N ⁇ ,amb may be an integer larger than 2.
  • qk represents the k-th speed compensation candidate number.
  • the graph shown in FIG. 5 shows an example in which qk+ 1 , which is the k+1th speed compensation candidate number, matches the true value of the target speed.
  • the modulation band, pulse width, and pitch of velocity compensation candidates may be determined such that the difference between P(q k ) and P(q k+1 ) is greater than a design value designed in advance.
  • ⁇ P des is the designed intensity difference (hereinafter referred to as “intensity difference design value”).
  • the subscript des is the first three letters of design.
  • ⁇ P des may be an empirically obtained value such as 3 [db]. In this way, the intensity difference design value may be used as a reference for deciding which value to set for Nv , amb , that is, how to set the interval between speed compensation candidates.
  • the correlation processing performed by the correlation processing unit 161 may be based on the following formula processing.
  • M P appearing in the summation interval on the right side of equation (7) represents the number of sampling points in the pulse.
  • the overscore appearing on the right side of equation (7) represents the operation of complex conjugation. That is, the overlined V ref (p) is the complex conjugate of V ref (p).
  • Equation (7) is a discrete-time convolution operation used for a typical correlation operation, but there are various styles of correlation operation.
  • the radar signal processing circuit 160 according to the technique of the present disclosure may use another known style of correlation calculation instead of Equation (7).
  • a pulse-compressed signal (hereinafter referred to as a “pulse-compressed signal”) is expressed as F v0vref (h, m) on the left side of Equation (7).
  • a compensation processing unit 162 of the radar signal processing circuit 160 performs motion compensation processing on the pulse compression signal.
  • the radar device 100 according to the technology of the present disclosure is assumed to be a monostatic radar using an antenna 130 for both transmission and reception.
  • the receive gate cannot be opened during pulse transmission, resulting in a so-called blind region due to lack of data in the received signal.
  • the motion compensation processing performed by the compensation processing unit 162 is to interpolate the blind region information from the received signal information of adjacent pulses on the time axis.
  • a pulse-compressed signal that has undergone motion compensation processing is referred to herein as a motion compensation candidate.
  • a compensation processing unit 162 of the radar signal processing circuit 160 performs Fourier transform on the pulse-compressed signal subjected to velocity compensation processing.
  • K in the script typeface on the left side of equation (8) represents an operation for performing speed compensation processing on the contents of the square brackets.
  • the script typeface F on the left side of equation (8) represents the operation of Fourier transforming the contents of the square brackets.
  • Motion compensation is a combination of velocity compensation and Fourier transform.
  • the function argument k appearing on the right side of Equation (8) is a serial number assigned to the spectrum obtained by performing the discrete Fourier transform.
  • the compensation processing performed by the compensation processing unit 162 it is preferable to determine in advance which velocity candidate is used for compensation.
  • the compensation process may be determined in advance to compensate with v can (q) of the velocity compensation candidate whose velocity candidate number is q.
  • FIG. 6 is a graph representing an assumed velocity interval of a target, an ambiguity-free velocity interval, and an image of a target candidate.
  • PRF Pulse Repetition Frequency
  • a velocity interval in which a so-called virtual image due to ambiguity does not appear (“velocity interval without ambiguity”)
  • the radar according to the conventional technology must select a large number of speed candidates and perform a speed search.
  • FIG. 6 represents a situation in which the target assumed speed interval is wide and the PRI is small. Also, FIG. 6 shows an example in which the intervals of speed compensation candidates are aligned with the interval of speeds that can be solved without ambiguity (this is also the same as the “speed interval without ambiguity”). FIG. 6 also shows that the velocity search must select the most probable value for the target from among the many candidates generated by the velocity ambiguity.
  • Equation (9) represents the compensation distance.
  • the alphabet R used is the initial letter of Range, which is an English notation for range, which means distance.
  • Argument h is the aforementioned hit number.
  • the mathematical model shown in Equation (9) simply expresses the relationship between velocity, time and distance. The reason why the minus sign is used on the right side of the equation (9) is that the speed axis and the distance axis are defined so that their directions are opposite to each other.
  • V RCAN (h) on the left side of equation (10) represents the compensation signal created from the compensation distance.
  • the mathematical model for the compensation signal may be such that the right side of Equation (10) is multiplied by a constant representing the amplitude.
  • Equation (11) details the speed compensation portion of Equation (8).
  • the subscript range of the script typeface F represents the operation of performing the Fourier transform in the distance direction on the contents of the square brackets.
  • a Fourier transform in the range direction means a transformation from the fast-time domain to the fast-time frequency domain.
  • the inverse Fourier transform in the range direction means the inverse transform, ie from the fast-time frequency domain to the fast-time domain.
  • Equation (12) details the Fourier transform portion of Equation (8).
  • Equation (12) is no different from what represents the general discrete Fourier transform.
  • the variable k is the sampling number when performing the discrete Fourier transform.
  • the example of equation (12) shows that from one sampling to the next, i.e., for each increment of h, the discrete Fourier transform with the fundamental wave advances in phase by 2 ⁇ k divided by K. ing.
  • the exp term on the right-hand side of equation (12) corresponding to the fundamental wave represents a point obtained by equally dividing the unit circle on the complex plane, and is therefore sometimes called a rotator.
  • the above is a general pulse Doppler technique with velocity compensation processing added, but the technique of the present disclosure is not limited to this.
  • the radar device 100 according to the technology disclosed herein may perform another process with a similar purpose.
  • the target candidate detection unit 163 of the radar signal processing circuit 160 calculates the relative distance and relative speed of the target candidate (step ST163 in FIG. 4).
  • the target candidate detection unit 163 may detect target candidates using an algorithm such as CA-CFAR (Cell Average-Constant False Alarm Rate).
  • CA-CFAR Cell Average-Constant False Alarm Rate
  • CA-CFAR can maximize the detection probability such that the false alarm probability is a constant value. That is, CA-CFAR has the characteristic of being able to control erroneous detection and detect target candidates based on signal strength while minimizing noise detection.
  • the radar signal processing circuit 160 repeats the processing steps of ST161, ST162, and ST163 by the number of speed candidates.
  • FIG. 7 is a graph in which peak intensities of speed candidates are arranged.
  • the horizontal axis represents speed and the vertical axis represents distance. If velocity candidates are set as integral multiples of velocities that can be unambiguously solved, integration is performed in the same velocity bin, so the peak intensities are equal in the velocity direction and aligned at distance intervals corresponding to the velocity candidates in the distance direction. Assuming that the speed interval of the speed candidates is ⁇ , the distance interval ⁇ r corresponding to the speed candidate is expressed by the following equation.
  • r_shift represents the process of distance-shifting the motion-compensated signal (F FFT ) by the product of the speed candidate number and the distance interval ( ⁇ r).
  • the incoherent integration of the peak intensity of multiple velocity candidates is expressed by the following equation.
  • the subscript IC attached to the variables is derived from the English notation of incoherent. Note that the expression (15) uses the summation symbol instead of the integral symbol, but this merely indicates that the integration is performed discretely.
  • Radar device 100 improves detection performance by using F FFT_IC (k, m) obtained by incoherent integration instead of using each of F′ FFT (k, m). There is an effect that it can be made.
  • the speed measurement/distance measurement unit 164 of the radar signal processing circuit 160 calculates the peak intensity of each of the speed candidates, and calculates the peak intensity corresponding to each of the speed compensation candidates. Velocity measurement/distance measurement unit 164 also calculates a plausible estimated value of the speed of the target from the information on the peak with the maximum intensity (step indicated by ST164 in FIG. 4).
  • FIG. 8 is a graph showing an image of calculating an estimated target speed from the peak intensity of each speed compensation candidate.
  • the horizontal axis of the graph in FIG. 8 represents the value of the speed compensation candidate, and the vertical axis of the graph represents the intensity.
  • FIG. 8 shows that the strength is greatest when the value of the velocity compensation candidate is closest to the true value of the target velocity. Being able to estimate a target velocity close to the true value means that the velocity ambiguity is resolved and the integration efficiency of the target velocity within the PRF of the range of velocity candidates is not degraded, i.e. improved. .
  • FIG. 8 also shows that the target velocity can be estimated from the trend of the plot using discrete velocity compensation candidates wider than the velocity ambiguity interval. In FIG. 8, the plot shows a linear trend, ie, a linear decrease in intensity as the velocity estimate deviates from the true value. However, even if the plot is not necessarily approximated by two straight lines, it is possible to estimate a plausible value.
  • the graph monotonically increases on the left and monotonically decreases on the right. More specifically, the graph monotonically increases up to p(q k ) and monotonically decreases after p(q k ).
  • the intensity is maximized at velocities between q k and q k+1 .
  • the plot changes from an increasing trend to a decreasing trend at a certain speed compensation candidate number.
  • the disclosed technique divides the first half group of plots that are on the increase and the second half group of the plots that are on the decrease, and mathematically models each of them.
  • the mathematical model shown in FIG. 8 uses linear approximation based on the method of least squares, it is not limited to this.
  • the mathematical model may be a higher dimensional curve approximation or may be based on other interpolation methods.
  • the target speed can be obtained as an intersection point between the curve, etc., which is the mathematical model of the first half group and the curve, etc., which is the mathematical model of the second half group.
  • Equation (16) An estimate of the target's velocity, determined as the intersection of the two mathematical models, can be expressed as follows.
  • ⁇ res on the left side of Equation (16) is the target speed estimation result.
  • the subscript res is the first three characters of result which means the result.
  • the dashed ⁇ in the first term on the right side of equation (16) is the strongest of the velocity compensation candidates.
  • the dashed ⁇ plot in FIG. 9 is referred to as the “nearest velocity plot”.
  • d ⁇ res in the second term on the right side of Equation (16) represents the velocity difference value obtained from the position of the intersection of the two mathematical models.
  • the radar device 100 divides the velocity candidates into a first half group that tends to increase and a second half group that tends to decrease, based on the detection strength of each of the speed candidates.
  • Approximate straight lines or curved lines are determined based on the method of least squares, respectively, and the speed of the target is determined as the point of intersection of the respective approximate straight lines or curved lines.
  • FIG. 9 is a graph showing an image of calculating the estimated distance from the estimated speed of the target.
  • the estimated distance is obtained from the relational expression between distance and speed.
  • ⁇ r can on the left side of equation (17) is the step size of the distance candidate corresponding to ⁇ can , which is the step size of the speed candidate.
  • the target range estimate is obtained as follows.
  • r res on the left side of equation (18) is the target range estimation result.
  • the dashed r in the first right-hand side of Eq. (18) is the distance corresponding to the dashed first v in the right-hand side of Eq. (16), i.e. the nearest velocity plot. be.
  • the radar apparatus 100 selects the maximum intensity and the second maximum intensity from the detection results of the velocity compensation candidates, and estimates the velocity of the target.
  • FIG. 10 is an image diagram showing the relationship between the ratio of sum signal to difference signal with respect to signal intensity and speed.
  • the curves in FIG. 10 are discricurves prepared in advance.
  • the sum signal and the difference signal regarding signal intensity are obtained as follows.
  • p ⁇ is the sum signal of the signal intensities
  • p ⁇ is the difference signal of the signal intensities.
  • the horizontal axis of the discricurve shown in FIG. 10 is velocity.
  • the vertical axis of the discricurve shown in FIG. 10 is the ratio of the sum signal to the difference signal with respect to the signal intensity, which is calculated as follows.
  • FIG. 10 shows the result of estimating the speed of the target, ⁇ res It shows that it is possible to obtain
  • FIG. 11 is a diagram showing an example of the hardware configuration of the signal processing circuit 170 of the radar device 100 according to the technology disclosed herein.
  • the signal processing circuit 170 is hardware that realizes the PRI control unit 150 and the radar signal processing circuit 160 that are the functional configuration of the radar device 100 .
  • the signal processing circuit 170 even if it is dedicated hardware, is also called a CPU (Central Processing Unit, processing unit, arithmetic unit, microprocessor, microprocessor, processor, DSP) that executes programs stored in memory. may be called).
  • FIG. 11 illustrates a case where the signal processing circuit 170 is realized by a CPU that executes a program stored in a memory.
  • Signal processing circuit 170 includes processor 171 , memory 172 , storage device 173 , input/output interface 174 , and signal path 175 .
  • the signal processing circuit 170 receives information from the receiving circuit 140 and is connected to the external display device 200 .
  • processor is used as a general noun
  • processor 171 which is a component of the signal processing circuit 170
  • memory is used as a general noun
  • memory 172 which is a component of the signal processing circuit 170, is used as a proper noun to distinguish between them.
  • signal processing circuitry 170 may be, for example, a single circuit, a decoding circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof. do.
  • the functions of the PRI control unit 150 and the radar signal processing circuit 160 may be realized by separate processing circuits, respectively, or may be collectively realized by one processing circuit.
  • the functions of the PRI control unit 150 and the radar signal processing circuit 160 are realized by software, firmware, or a combination of software and firmware. Both software and firmware are written as programs and stored in memory.
  • the signal processing circuit 170 realizes the function of each part by reading out and executing the program stored in the memory. That is, when the function is executed by the signal processing circuit 170, the radar apparatus 100 performs a process of setting a PRI, a step of performing a correlation process (ST161), a step of a compensation process using a speed compensation candidate (ST162), and a target A memory is provided for storing a program for executing the candidate detection step (ST163) and the speed measurement/distance measurement step (ST164). It can also be said that these programs cause a computer to execute the procedures and methods of the PRI control unit 150 and the radar signal processing circuit 160 .
  • the processor 171 that executes the program may be composed of, for example, an LSI.
  • the memory may be, for example, non-volatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM.
  • the memory may be a magnetic disk, flexible disk, compact disk, mini disk, DVD, or the like.
  • the memory may be in the form of HDD, SSD, and the like.
  • FIG. 11 includes memory 172 and storage 173 to illustrate that memory can take many forms.
  • the memory 172 and storage device 173 are a program memory for storing various program codes to be executed by the processor 171, a work memory used when the processor 171 executes digital signal processing, and a memory used for digital signal processing. and a temporary storage memory in which the data to be processed is stored.
  • the functions of the PRI control unit 150 and the radar signal processing circuit 160 may be partially realized by dedicated hardware and partially realized by software or firmware.
  • the function of the PRI control unit 150 is realized by a processing circuit as dedicated hardware, and the function of the radar signal processing circuit 160 is realized by reading and executing a program stored in the memory by the processing circuit. is also possible.
  • the signal processing circuit 170 can implement the functions of the PRI control section 150 and the radar signal processing circuit 160 by hardware, software, firmware, or a combination thereof.
  • the radar device 100 according to Embodiment 1 Since the radar device 100 according to Embodiment 1 has the above configuration, it is possible to estimate the speed of the target based on a plurality of speed candidates within a wide range in which speed ambiguity appears. Due to this effect, the radar device 100 according to the first embodiment can estimate the distance and speed of the target with a smaller amount of calculation than in the conventional art and without being affected by the speed ambiguity.
  • the radar apparatus 100 according to the second embodiment includes a radar signal processing circuit 160 (160B) having a configuration different from that of the radar signal processing circuit 160 according to the first embodiment.
  • 160B radar signal processing circuit
  • the same reference numerals as in the first embodiment are used, and overlapping descriptions are omitted as appropriate.
  • FIG. 12 is a block diagram showing the functional configuration of the radar signal processing circuit 160 (160B) of the radar device 100 according to the second embodiment.
  • radar signal processing circuit 160 (160B) includes CZT pulse Doppler processing section 165 instead of correlation processing section 161 and compensation processing section 162 .
  • the CZT pulse Doppler processing unit 165 is provided at the foremost stage in the radar signal processing circuit 160 (160B), followed by the target candidate detection unit 163, and further after the speed measurement/distance measurement unit 164. is provided.
  • CZT is an acronym for Chirp Z-Transform and means Chirp z-transform.
  • the chirp z-transform is an FFT algorithm proposed by Bluestein in 1968, and is also called Bluestein's FFT algorithm.
  • the chirp z-transform has the characteristic that it can fast Fourier transform any length of discrete data.
  • FIG. 13 is a flow chart showing processing steps of the radar signal processing circuit 160 (160B) of the radar device 100 according to the second embodiment.
  • the processing steps of radar signal processing circuit 160 (160B) include a CZT pulse Doppler processing step (ST165) performed by CZT pulse Doppler processing section 165 and a target candidate detection step (ST163) performed by target candidate detection section 163. ), and a speed measurement/distance measurement step (ST164) performed by the speed measurement/distance measurement unit 164 .
  • the radar signal processing circuit 160 (160B) performs correlation processing and velocity compensation using chirp z-transform. Specifically, the CZT pulse Doppler processing unit 165 of the radar signal processing circuit 160 (160B) performs CZT processing in the hit direction in consideration of velocity compensation on the received digital signal shown in Equation (1), and further performs correlation processing. (step indicated by ST165 in FIG. 13).
  • FIG. 14 is a flowchart showing details of the CZT pulse Doppler processing step (ST165) in the flowchart shown in FIG.
  • the CZT pulse Doppler processing step (ST165) includes an FFT processing step in the range direction (ST165A), a CZT processing step in the hit direction (ST165B), and a processing step of multiplying by a reference function (ST165C). and an IFFT processing step (ST165D) in the distance direction.
  • the CZT pulse Doppler processing unit 165 executes FFT processing in the distance direction exemplified by the following formula on the received digital signal (step indicated by ST165A in FIG. 14).
  • mp is the sampling number in one PRI.
  • M p is the total number of samplings in one PRI.
  • M fft is the total number of Fourier transform points.
  • kr is a serial number attached to the result of FFT in the range direction. In other words, kr is the bin number attached to the fast-time frequency spectrum. The details of the bin numbers will become clear from the description below.
  • the CZT pulse Doppler processing unit 165 executes CZT processing in the hit direction exemplified by the following formula (step indicated by ST165B in FIG. 14).
  • the subscript CZT of the script typeface F represents the operation of performing chirp z-conversion in the hit direction on the contents of the square brackets.
  • the hit direction can be imagined as the direction in which the hit number increases or decreases, and is synonymous with the distance direction or range direction. This can also be understood from the fact that equation (23) is a process performed on the result of FFT in the range direction of equation (22).
  • the radar apparatus 100 according to Embodiment 2 transforms the fast-time direction of the received signal into the frequency domain and uses chirp z-transform.
  • h czt represents the Doppler velocity bin number of the signal after CZT processing.
  • the bin number is a serial number given to the FFT bins.
  • FFT bins or bins are derived from the English word bin, and since the frequency spectrum is arranged like a strip, the term is used to refer to the strip shape.
  • H czt is the total number of bins obtained after CZT treatment.
  • k r may be referred to as the range bin number, in contrast to h czt being the Doppler velocity bin number.
  • the rotator term on the right side of equation (21) is specifically defined as follows.
  • a kr on the left side of equation (24) is the rotator associated with the starting phase of the transform corresponding to k r .
  • f kr is the fast-time frequency of the spectrum located at k r .
  • ⁇ st is the rate of conversion initiation.
  • the subscript st of ⁇ st is the first two characters of start, which means the start.
  • W kr (h czt ) on the left side of Equation (25) is the rotator related to the phase change width of the transform corresponding to k r .
  • ⁇ czt is the variation width of the velocity.
  • the compensation processing unit 162 performs phase compensation using chirp z-transform, and performs the motion compensation with the motion compensation candidate based on the preset velocity.
  • the FFT shown in Equation (22) is the first FFT and is sometimes called Range-FFT.
  • the FFT shown in Equation (23) is the second FFT for the result of the first FFT, and is also called Doppler-FFT.
  • Doppler-FFT In general, by performing two FFTs, Range-FFT and Doppler-FFT, it is possible to measure the velocity of each of multiple objects at the same distance.
  • the relative velocity sought by CZT processing appears in equations (24) and (25). Specifically, the relative velocity is a value according to the following formula. ⁇ czt (h czt ) on the left side of equation (26) represents the relative velocity when the Doppler velocity bin number is h czt .
  • Equation (25) has the following relationship with H czt .
  • ⁇ en is the rate of conversion completion.
  • the subscript en of ⁇ en is the first two characters of end, which means the end.
  • Equation (27) simply states that the step size is found by dividing the total width of the velocity by the number of sampling points.
  • ⁇ st and ⁇ en used in equation (27) have the following relationship with ⁇ can .
  • kv is a constant.
  • d v represents the velocity resolution, ie the smallest possible velocity step size.
  • dv can be shown as follows if it expresses with a numerical formula.
  • the reference signal used in Embodiment 2 has the same structure as the reference signal in Embodiment 1 shown in Equation (2), but the details are shown below. In this way, the reference signal shown in Equation (30) uses the relative velocity shown in Equation (26).
  • a Fourier transform performed on the reference signal is, for example, as follows. Note that the Fourier transform shown in Equation (31) is the same as that shown in Equation (22).
  • CZT pulse Doppler processing section 165 performs a process of multiplying the respective Fourier-transformed received digital signals by a reference function (step ST165C in FIG. 14).
  • CZT pulse Doppler processing section 165 performs inverse Fourier transform in the distance direction on the result of multiplying the two signals shown in equation (32) (step ST165D in FIG. 14).
  • R pc (h czt , l) obtained by Equation (33) is a signal that has undergone correlation processing and compensation processing.
  • R pc (h czt , l) is equivalent to F FFT (k, m) shown in equation (12) in the first embodiment. Therefore, the subsequent processing may be performed as described in the first embodiment.
  • the radar apparatus 100 according to the second embodiment has the above configuration, in addition to the effects shown in the first embodiment, the integration loss due to Doppler coupling is reduced, and the distance shift due to Doppler coupling is reduced. It has the effect of making it smaller.
  • the hardware of the radar device 100 according to the second embodiment may be implemented with the same configuration as that of the first embodiment.
  • the radar device 100 according to the third embodiment is based on the configuration of the radar device 100 according to the second embodiment, and includes a radar signal processing circuit 160 (160C) with a certain function added.
  • the radar device 100 according to Embodiment 3 has a configuration that is particularly effective when the radar device 100 employs a staggered PRI method in which PRIs are set at unequal intervals between pulses.
  • stagger is derived from the English staggered. Staggered originally meant “staggered” or “staggered”, but in this technical field it means uneven spacing.
  • Embodiment 3 uses the same reference numerals as those of the above-described embodiments, unless otherwise specified, and overlapping descriptions are omitted as appropriate.
  • FIG. 15 is a block diagram showing the functional configuration of the radar signal processing circuit 160 (160C) of the radar device 100 according to the third embodiment.
  • the radar signal processing circuit 160 (160C) includes an averaging section 166 in addition to a CZT pulse Doppler processing section 165, a target candidate detection section 163, a velocity/distance measurement section 164, and so on.
  • the staggered PRI scheme (simply called “staggered scheme”) is an effective means of resolving Doppler and range ambiguities.
  • the pulse repetition period changes for each hit number. Therefore, in Embodiment 3, the pulse repetition periods are expressed as T PRI (0), T PRI (1), . . . , T PRI ( h), .
  • PRI control section 150 has a pulse width of T 0 and pulse repetition periods of T PRI (0), T PRI (1), . . . , T PRI (h), . H-1) to generate a timing signal for generating a series of signals.
  • the generated timing signal is sent to signal generation circuit 110 .
  • a series of signals employed by the radar apparatus 100 according to Embodiment 3 may be created based on the concept of the reference period. In other words, a series of signals may be obtained by linearly increasing or decreasing the period starting from the reference period, for example.
  • FIG. 16 is a flow chart showing processing steps of the radar signal processing circuit 160 (160C) of the radar device 100 according to the third embodiment.
  • the processing flow of the radar signal processing circuit 160 (160C) has double processing loops, an inner processing loop for velocity candidates and an outer processing loop for pulse repetition periods.
  • the inner processing loop for speed candidates is the same as the processing loop for speed candidates in the flowchart shown in FIG.
  • the radar signal processing circuit 160 (160C) of the radar device 100 has pulse repetition periods of T PRI (0), T PRI (1), ..., T PRI (h), ..., T PRI (H-1), an estimate of the target's range and velocity is calculated.
  • the reason why the radar signal processing circuit 160 (160C) includes the averaging unit 166 is to calculate a more probable estimated value by averaging the estimated values calculated in each pulse repetition cycle.
  • Averaging section 166 calculates the average value of the estimated values calculated in each pulse repetition period (step ST166 in FIG. 16).
  • FIG. 17 is the image diagram shown in FIG. 8 applied to the third embodiment.
  • FIG. 18 is the image diagram shown in FIG. 9 applied to the third embodiment.
  • the staggered PRI method can be adopted, and the estimated value calculated at each pulse repetition period By taking the average of , it is possible to calculate a more probable estimated value.
  • the hardware of the radar device 100 according to the third embodiment may be implemented with the same configuration as that of the first embodiment.
  • the radar apparatus 100 according to the fourth embodiment is based on the configuration of the radar apparatus 100 according to the first embodiment, and includes a radar signal processing circuit 160 in which the correlation processing unit 161 and the compensation processing unit 162 are replaced with an inter-pulse stagger integration unit 167. (160D).
  • the radar device 100 according to Embodiment 4 has a configuration that is particularly effective when the radar device 100 employs the staggered PRI method.
  • the same reference numerals as in the previous embodiments are used, and duplicate descriptions are omitted as appropriate.
  • the staggered method assumed in the fourth embodiment is a special method in which several PRI pulses with the same interval are consecutively shot to form a group.
  • This is a staggered method in which a plurality of groups exist and different groups have different PRIs.
  • T PRI (0) to T PRI (3) constitute the first group and have the same value.
  • T PRI (4) to T PRI (7) constitute the second group, which is another common value different from the first group.
  • Subsequent groups are similarly grouped, and in the case of this example, one series is assumed to have a number of groups obtained by dividing H by 4.
  • T PRI (0) to T PRI (3) constitute the first group
  • T PRI (4) to T PRI (7) constitute the second group.
  • the radar device 100 according to the fourth embodiment repeats pulse irradiation in this manner.
  • the PRI control unit 150 generates timing signals for generating staggered signals that form the above groups.
  • the generated timing signal is sent to signal generation circuit 110 .
  • FIG. 20 is a flow chart showing processing steps of the radar signal processing circuit 160 (160D) of the radar device 100 according to the fourth embodiment.
  • the processing steps of the radar signal processing circuit 160 (160D) include the inter-pulse stagger integration step (ST167) performed by the inter-pulse stagger integration unit 167 and the target candidate detection step (ST167) performed by the target candidate detection unit 163. ST163) and a speed measurement/distance measurement step (ST164) performed by the speed measurement/distance measurement unit 164.
  • the radar signal processing circuit 160 (160D) according to the fourth embodiment includes the pulse-to-pulse stagger integration unit 167 is to achieve this effect.
  • FIG. 21 is a reference diagram showing an image of integration performed by the pulse-to-pulse stagger integration unit 167 according to the fourth embodiment. More specifically, FIG. 21 represents the PRI for each hit by describing the number of the group to which the PRI belongs. The right direction in FIG. 21 is the direction in which the hit number increases. FIG. 21 exemplifies a case where four pulses of PRI with the same interval continue to form a group. Also, FIG. 21 exemplifies a case where H is 16 and the number of groups is 4. In FIG. The downward direction in FIG. 21 represents the direction in which the number of series increases.
  • the pulse-to-pulse stagger integration unit 167 performs coherent integration on a plurality of series of reflected signals shown in the reference diagram of FIG. 21, for example.
  • the pulse-to-pulse stagger integrator 167 first performs coherent integration on reflected signals of PRIs with the same interval, and then coherently integrates reflected signals of PRIs with different intervals (step ST167 in FIG. 19).
  • the coherent integration performed by the pulse-to-pulse stagger integration unit 167 may be the above-described CZT or discrete Fourier transform of another style. Coherent integration may be enhanced by using a projection matrix or by applying a filter.
  • Coherent integration of reflected signals with the same PRI interval may be performed on reflected signals belonging to the same group in the same series (see “integration direction 1” in FIG. 21), or may be performed on reflections of the same group number in different series. It may be done for the signal (see “integration direction 2" in FIG. 21).
  • the radar apparatus 100 performs coherent integration on signals for each pulse included in the pulse repetition period of the same type, and then performs coherent integration in the pulse repetition period of a different type. to detect the target.
  • the radar apparatus 100 includes a pulse-to-pulse stagger integration section 167, and improves the SN ratio by post-detection integration. It is believed that SNR improvement can also be achieved by pre-detection integration.
  • the radar device 100 according to the technology disclosed herein may use a filter such as a matched filter to improve the SN ratio.
  • the radar apparatus 100 according to the fourth embodiment has the above configuration, in addition to the effects shown in the second embodiment, post-detection integration is performed for reflected signals with PRIs having the same interval, so the SN ratio can be improved.
  • Post-detection integration is expected to have the same effect as the averaging shown in the third embodiment. Therefore, it can be said that the radar device 100 according to Embodiment 4 has the effect of being able to calculate a more probable estimated value.
  • the radar device 100 can be used as a measuring device that measures the distance and speed of a target, and has industrial applicability.
  • 100 radar device 110 signal generation circuit, 111 local oscillator, 112 pulse generator, 113 intra-pulse modulator, 114 output section, 120 transmission/reception section, 130 antenna, 140 reception circuit, 150 PRI control section, 160, (160B), (160C), (160D) Radar signal processing circuit, 161 correlation processing unit, 162 compensation processing unit, 163 target candidate detection unit, 164 speed and distance measurement unit, 165 CZT pulse Doppler processing unit, 166 averaging unit, 167 pulse Inter-stagger integrator, 170 signal processing circuit, 171 processor, 172 memory, 173 storage device, 174 input/output interface, 175 signal path, 200 display.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

A radar device (100) according to the present disclosure comprises: a pulse repetition interval (PRI) controlling unit (150) which sets a predetermined PRI for each hit; a signal generating circuit (110) which continuously generates a plurality of transmission pulse signals at a timing based on the PRI; a transmitting and receiving unit (120) which transmits the transmission pulse signals to an exterior space and receives, from the exterior space, a plurality of reflected wave signals corresponding respectively to the transmission pulse signals; a receiving circuit (140) which generates a plurality of reception signals corresponding respectively to the transmission pulse signals by sampling each of the reflected wave signals received by the transmitting and receiving unit (120); a correlation processing unit (161) which carries out pulse compression on the reception signals by means of a correlation operation; a compensation processing unit (162) which performs motion compensation using a predetermined speed candidate; a target candidate detecting unit (163) which detects a target candidate on the basis of a signal after processing by the compensation processing unit (162); and a speed/distance measuring unit (164) which estimates an unambiguous speed and distance of a target using results from the target candidate detecting unit which were processed using a plurality of motion compensation candidates in an interval wider than a speed interval in which measurement without ambiguity is possible.

Description

レーダ装置radar equipment
 本開示技術は、レーダ装置、及びレーダ装置用の信号処理方法に関する。 The technology disclosed herein relates to a radar device and a signal processing method for the radar device.
 レーダ装置には、さまざまな方式のものがある。例えばレーダ装置には、パルス繰返し周期(Pulse Repetition Interval、PRI)に基づいて複数のパルス波を目標に向けて送信し、目標の距離及び速度を検出するパルスドップラ方式のものがある。 There are various types of radar equipment. For example, there is a radar device of the pulse Doppler system that transmits a plurality of pulse waves toward a target based on a pulse repetition interval (PRI) and detects the distance and speed of the target.
 パルスドップラ方式のレーダ装置に係る技術は、例えば特許文献1に見ることができる。特許文献1には、アンビギュイティが発生した場合にも、高精度ドップラ補正を行い、超分解能測距精度の改善を図るレーダ装置に係る技術が開示されている。 The technology related to the pulse Doppler radar device can be seen in Patent Document 1, for example. Patent Literature 1 discloses a technique related to a radar apparatus that performs high-accuracy Doppler correction even when ambiguity occurs, and improves super-resolution ranging accuracy.
特開2010-281605号公報JP 2010-281605 A
 レーダ装置による測速度は、遠距離にありかつ高速で移動する目標を想定してPRIが長くなる場合、アンビギュイティなく解ける速度間隔が狭い。このため、このような状況下では、想定目標の速度間隔を広くとって探索する必要がある。また、目標信号の最大強度を精度よく求めるために速度補償候補の刻みを細かくする必要があり、演算負荷が高くなる。特許文献1記載の探索による速度アンビギュイティを解く手法では、アンビギュイティなく解ける精度と探索に要する演算量とはトレードオフの関係にある。 Velocity measurement by a radar device has a narrow velocity interval that can be solved without ambiguity if the PRI is long assuming a target that is far away and moves at high speed. For this reason, under such circumstances, it is necessary to widen the velocity interval between assumed targets. In addition, in order to obtain the maximum intensity of the target signal with high accuracy, it is necessary to finely divide the speed compensation candidates, which increases the computational load. In the method of resolving speed ambiguities by searching described in Patent Document 1, there is a trade-off relationship between the accuracy of solving without ambiguities and the amount of computation required for the search.
 本開示技術は上記課題を解決するものであり、速度間隔が広くとも、精度よくかつ演算量低減が可能な測速度手段を得ることを目的とする。 The disclosed technology is intended to solve the above problems, and aims to obtain a speed measuring means capable of achieving high accuracy and reducing the amount of calculation even if the speed interval is wide.
 本開示技術に係るレーダ装置は、ヒット毎に予め定められたパルス繰返し周期を設定するPRI制御部と、パルス繰返し周期に基づくタイミングで複数の送信パルス信号を連続的に生成する信号生成回路と、送信パルス信号を外部空間に送出し、送信パルス信号のそれぞれに対応する複数の反射波信号を外部空間から受信する送受信部と、送受信部で受信された反射波信号の各々をサンプリングすることにより、送信パルス信号にそれぞれ対応する複数の受信信号を生成する受信回路と、受信信号を相関演算によりパルス圧縮する相関処理部と、予め設定された速度候補による運動補償を実施する補償処理部と、補償処理部の処理後の信号に基づいて目標候補を検出する目標候補検出部と、あいまいさなく計測可能な速度間隔(Δνamb)よりも広い間隔にある複数の運動補償候補を用いて処理した目標候補検出部からの結果から、目標のあいまいさのない速度と距離を推定する測速度・測距離部と、を備える。 A radar device according to the technology disclosed herein includes a PRI control unit that sets a predetermined pulse repetition period for each hit, a signal generation circuit that continuously generates a plurality of transmission pulse signals at timing based on the pulse repetition period, A transmitting/receiving unit that transmits a transmitted pulse signal to an external space and receives a plurality of reflected wave signals corresponding to each of the transmitted pulse signals from the external space; a receiving circuit for generating a plurality of received signals respectively corresponding to the transmitted pulse signals; a correlation processing unit for pulse-compressing the received signals by correlation calculation; a compensation processing unit for performing motion compensation based on preset speed candidates; A target candidate detector that detects a target candidate based on the processed signal of the processor, and a target processed using a plurality of motion compensation candidates that are spaced wider than an unambiguously measurable velocity interval (Δν amb ). a velocimetry and range finder for estimating the unambiguous velocity and range of the target from the results from the candidate detectors.
 本開示技術に係るレーダ装置は上記構成を備えるため、速度アンビギュイティが現れる広い範囲の中の複数の速度候補に基づいて、精度良くかつ演算負荷の低減を図りながら、目標の速度を推定することができる。 Since the radar device according to the technology disclosed herein has the above configuration, the target speed can be estimated accurately while reducing the computational load based on a plurality of speed candidates in a wide range in which speed ambiguities appear. be able to.
図1は、本開示技術に係るレーダ装置の機能構成を示すブロック図である。FIG. 1 is a block diagram showing the functional configuration of a radar device according to the technology disclosed herein. 図2は、実施の形態1に係るレーダ装置のレーダ信号処理回路160の機能構成を示すブロック図である。FIG. 2 is a block diagram showing the functional configuration of the radar signal processing circuit 160 of the radar device according to Embodiment 1. As shown in FIG. 図3は、実施の形態1に係るレーダ装置の信号生成回路110の機能構成を示すブロック図である。FIG. 3 is a block diagram showing the functional configuration of the signal generation circuit 110 of the radar device according to the first embodiment. 図4は、実施の形態1に係るレーダ装置のレーダ信号処理回路160の処理ステップを示すフローチャートである。FIG. 4 is a flow chart showing processing steps of the radar signal processing circuit 160 of the radar device according to the first embodiment. 図5は、アンビギュイティのない速度間隔と速度補償候補での検出強度分布のイメージを表すグラフである。FIG. 5 is a graph showing an image of the detected intensity distribution in the speed interval without ambiguity and the speed compensation candidate. 図6は、目標の想定速度間隔、アンビギュイティのない速度間隔、及び目標の候補のイメージを表すグラフである。FIG. 6 is a graph representing an assumed velocity interval of a target, an ambiguity-free velocity interval, and an image of a target candidate. 図7は、各速度補償候補のピーク強度の速度、距離を重ねたイメージを表すグラフである。FIG. 7 is a graph showing an image in which speed and distance of peak intensity of each speed compensation candidate are superimposed. 図8は、それぞれの速度補償候補のピーク強度から目標の速度の推定値を算出するイメージを表すグラフである。FIG. 8 is a graph showing an image of calculating an estimated target speed from the peak intensity of each speed compensation candidate. 図9は、目標の推定速度から推定距離を算出するイメージを表すグラフである。FIG. 9 is a graph showing an image of calculating the estimated distance from the estimated speed of the target. 図10は、信号強度に関する和信号対差信号の比と、速度と、の関係を示すイメージ図である。FIG. 10 is an image diagram showing the relationship between the ratio of sum signal to difference signal with respect to signal intensity and speed. 図11は、本開示技術に係るレーダ装置の信号処理回路170のハードウエア構成図である。FIG. 11 is a hardware configuration diagram of the signal processing circuit 170 of the radar device according to the technology disclosed herein. 図12は、実施の形態2に係るレーダ装置のレーダ信号処理回路160(160B)の機能構成を示すブロック図である。FIG. 12 is a block diagram showing the functional configuration of the radar signal processing circuit 160 (160B) of the radar device according to the second embodiment. 図13は、実施の形態2に係るレーダ装置のレーダ信号処理回路160(160B)の処理ステップを示すフローチャートである。FIG. 13 is a flow chart showing processing steps of the radar signal processing circuit 160 (160B) of the radar device according to the second embodiment. 図14は、図13に示されるフローチャートにおいて、CZTパルスドップラ処理ステップ(ST165)の詳細を示したフローチャートである。FIG. 14 is a flow chart showing the details of the CZT pulse Doppler processing step (ST165) in the flow chart shown in FIG. 図15は、実施の形態3に係るレーダ装置のレーダ信号処理回路160(160C)の機能構成を示すブロック図である。FIG. 15 is a block diagram showing the functional configuration of the radar signal processing circuit 160 (160C) of the radar device according to the third embodiment. 図16は、実施の形態3に係るレーダ装置のレーダ信号処理回路160(160C)の処理ステップを示すフローチャートである。FIG. 16 is a flow chart showing processing steps of the radar signal processing circuit 160 (160C) of the radar device according to the third embodiment. 図17は、図8に示すイメージ図を実施の形態3にあてはめたものである。FIG. 17 applies the image diagram shown in FIG. 8 to the third embodiment. 図18は、図9に示すイメージ図を実施の形態3にあてはめたものである。FIG. 18 is the image diagram shown in FIG. 9 applied to the third embodiment. 図19は、実施の形態4に係るレーダ装置のレーダ信号処理回路160(160D)の機能構成を示すブロック図である。FIG. 19 is a block diagram showing the functional configuration of the radar signal processing circuit 160 (160D) of the radar device according to the fourth embodiment. 図20は、実施の形態4に係るレーダ装置のレーダ信号処理回路160(160D)の処理ステップを示すフローチャートである。FIG. 20 is a flow chart showing processing steps of the radar signal processing circuit 160 (160D) of the radar device according to the fourth embodiment. 図21は、実施の形態4に係るパルス間スタガ積分部167が行う積分のイメージを示す参考図である。FIG. 21 is a reference diagram showing an image of integration performed by the pulse-to-pulse stagger integration unit 167 according to the fourth embodiment.
 本開示技術に係るレーダ装置100は、パルス繰返し周期(Pulse Repetition Interval、PRI)に基づいて複数のパルス波を目標に向けて送信し、目標の距離及び速度を検出するパルスドップラ方式のものである。
 本開示技術に係るレーダ装置100は、実施の形態ごとの図に沿った説明により明らかとなる。なお、説明に含まれる数式において、for以降に但し書(ただしがき)が示されている。ほぼすべての但し書において、変数は整数の通し番号であり、その範囲が示されている。変数には、m、h、q、k、等が示されているが、その使われ方及び範囲は、特に明記される場合を除き、1つの変数に対して1つの同一のものである。また、数式によっては、変数の説明に係る但し書が省略されている場合もある。
The radar device 100 according to the technique of the present disclosure is of a pulse Doppler system that transmits a plurality of pulse waves toward a target based on a pulse repetition interval (PRI) and detects the distance and speed of the target. .
The radar device 100 according to the technology disclosed herein will be clarified by the description along the drawings for each embodiment. In addition, in the formulas included in the explanation, a proviso is shown after for. In almost all proviso variables are integer serial numbers and their ranges are given. Variables are shown as m, h, q, k, etc., but their usage and range are the same for one variable unless otherwise specified. Also, in some formulas, the proviso related to the explanation of the variables may be omitted.
実施の形態1.
 図1は、本開示技術に係るレーダ装置100の機能構成を示すブロック図である。図1に示されるとおりレーダ装置100は、信号生成回路110と、送受信部120と、アンテナ130と、受信回路140と、PRI制御部150と、レーダ信号処理回路160と、を含む。またレーダ装置100は、表示器200と接続されていてよい。
Embodiment 1.
FIG. 1 is a block diagram showing a functional configuration of a radar device 100 according to technology disclosed herein. As shown in FIG. 1 , the radar device 100 includes a signal generation circuit 110 , a transmission/reception section 120 , an antenna 130 , a reception circuit 140 , a PRI control section 150 and a radar signal processing circuit 160 . Also, the radar device 100 may be connected to the display device 200 .
 図2は、実施の形態1に係るレーダ装置100のレーダ信号処理回路160の機能構成を示すブロック図である。図2に示されるとおりレーダ信号処理回路160は、相関処理部161と、補償処理部162と、目標候補検出部163と、測速度・測距離部164と、を含む。 FIG. 2 is a block diagram showing the functional configuration of the radar signal processing circuit 160 of the radar device 100 according to Embodiment 1. As shown in FIG. As shown in FIG. 2, the radar signal processing circuit 160 includes a correlation processing section 161, a compensation processing section 162, a target candidate detection section 163, and a velocity/distance measurement section 164.
 レーダ装置100は、ミリ波帯又はマイクロ波帯を使用周波数帯とするものであってよい。 The radar device 100 may use the millimeter wave band or the microwave band as the operating frequency band.
 レーダ装置100の信号生成回路110は、複数の送信パルス信号を生成する。送信パルス信号の数理モデルは、T(h,t)で表される。ここで引数のhは、パルスヒット番号(以降、単に「ヒット番号」と称する)を表す。hは、0からH-1までの整数である。Hは、パルスヒット数を表す。ヒット番号を表すhは、英語表記の“hit”の頭文字が由来である。すなわちレーダ装置100は、0からH-1までのH個の送信パルス信号を送信する。引数のtは、時間を表す。 A signal generation circuit 110 of the radar device 100 generates a plurality of transmission pulse signals. A mathematical model of the transmitted pulse signal is represented by T x (h, t). Here, the argument h represents the pulse hit number (hereinafter simply referred to as "hit number"). h is an integer from 0 to H-1. H represents the number of pulse hits. The hit number h is derived from the initial letter of "hit" in English. That is, the radar apparatus 100 transmits H transmission pulse signals from 0 to H-1. The argument t represents time.
 送信パルス信号は、パルス繰返し周期(Pulse Repetition Intervals、以降「PRI」と称する)ごとのタイミングで生成される。PRIの設計値は、Tpri(h)で表され、時間の単位を有する。このようにPRIは、異なるヒット番号のパルスにおいて、異なる時間長であってよい。PRIは、PRI制御部150により設定される。信号生成回路110で生成された送信パルス信号は、送受信部120へ出力される。 A transmission pulse signal is generated at the timing of each pulse repetition interval (hereinafter referred to as “PRI”). The design value of PRI is denoted by T pri (h) and has units of time. Thus, the PRI may be of different lengths of time in pulses with different hit numbers. PRI is set by the PRI control unit 150 . A transmission pulse signal generated by the signal generation circuit 110 is output to the transmission/reception section 120 .
 送受信部120へ出力された送信パルス信号は、さらにアンテナ130へ出力される。アンテナ130は、空中線と称される線状のものであってもよい。外部空間へ放射された送信パルス信号は、目標で反射し、反射波信号となる。反射波信号の数理モデルは、R(h,t)で表される。 The transmission pulse signal output to transmitting/receiving section 120 is further output to antenna 130 . The antenna 130 may be a linear one called an aerial. The transmitted pulse signal emitted to the external space is reflected by the target and becomes a reflected wave signal. A mathematical model of the reflected wave signal is represented by R x (h, t).
 反射波信号は、アンテナ130で受信され、送受信部120へ出力される。反射波信号は、送受信部120により、受信回路140へ出力される。すなわち送受信部120は、信号生成回路110からの送信パルス信号をアンテナ130へ出力し、アンテナ130からの反射波信号を受信回路140へ出力する。送受信部120は、3つのポートを有するサーキュレータにより実現されてよい。 A reflected wave signal is received by the antenna 130 and output to the transmitting/receiving section 120 . The reflected wave signal is output to the receiving circuit 140 by the transmitting/receiving section 120 . That is, the transmitting/receiving section 120 outputs the transmission pulse signal from the signal generating circuit 110 to the antenna 130 and outputs the reflected wave signal from the antenna 130 to the receiving circuit 140 . Transmitter/receiver 120 may be realized by a circulator having three ports.
 受信回路140は、入力された複数の反射波信号にアナログ信号処理を施し、複数の受信アナログ信号を生成する。受信アナログ信号の数理モデルは、W(h,t)で表される。受信回路140は、生成した複数の受信アナログ信号を、さらに受信ディジタル信号に変換する。受信ディジタル信号の数理モデルは、V(h,t)で表される。具体的にV(h,t)は、後述の説明により明らかとなる。 The receiving circuit 140 performs analog signal processing on the multiple input reflected wave signals to generate multiple received analog signals. A mathematical model of the received analog signal is represented by W 0 (h,t). The receiving circuit 140 further converts the generated plurality of received analog signals into received digital signals. A mathematical model of the received digital signal is represented by V 0 (h,t). Specifically, V 0 (h, t) will become clear from the description below.
 図3は、実施の形態1に係るレーダ装置100の信号生成回路110の機能構成を示すブロック図である。図3に示されるとおり信号生成回路110は、局部発振器111と、パルス生成器112と、パルス内変調器113と、出力部114と、を含む。 FIG. 3 is a block diagram showing the functional configuration of the signal generation circuit 110 of the radar device 100 according to Embodiment 1. As shown in FIG. As shown in FIG. 3, signal generation circuit 110 includes local oscillator 111 , pulse generator 112 , intrapulse modulator 113 , and output 114 .
 信号生成回路110の局部発振器111は、使用周波数帯域の局部発振信号を生成する。生成された局部発振信号は、パルス生成器112及び受信回路140へ出力される。 The local oscillator 111 of the signal generation circuit 110 generates a local oscillation signal in the used frequency band. The generated local oscillation signal is output to pulse generator 112 and receiving circuit 140 .
 パルス生成器112、パルス内変調器113及び出力部114は、従来技術のものが用いられてよい。 The pulse generator 112, the intrapulse modulator 113 and the output section 114 may be of the prior art.
 図4は、実施の形態1に係るレーダ装置100のレーダ信号処理回路160の処理ステップを示すフローチャートである。図4に示されるとおりレーダ信号処理回路160は、相関処理を行うステップ(ST161)と、速度補償候補による補償処理ステップ(ST162)と、目標候補検出ステップ(ST163)と、測速度・測距離の処理を行うステップ(ST164)と、を含む。 FIG. 4 is a flow chart showing processing steps of the radar signal processing circuit 160 of the radar device 100 according to the first embodiment. As shown in FIG. 4, the radar signal processing circuit 160 includes a step of performing correlation processing (ST161), a step of compensation processing using speed compensation candidates (ST162), a step of detecting target candidates (ST163), and a step of measuring speed and distance. and a step of processing (ST164).
 レーダ信号処理回路160の相関処理部161は、参照信号を変調し、参照信号と受信ディジタル信号との相関をとる相関処理を行う(図3のST161で示されるステップ)。相関処理部161は、複数の受信ディジタル信号に相関処理を実施し、対応する複数のパルス圧縮信号を生成する。言い換えれば相関処理部161は、パルス圧縮を行う。相関処理部161が行う相関処理の詳細は、後述の数式モデルに基づいた説明により明らかになる。 The correlation processing section 161 of the radar signal processing circuit 160 modulates the reference signal and performs correlation processing for correlating the reference signal and the received digital signal (step indicated by ST161 in FIG. 3). Correlation processing section 161 performs correlation processing on a plurality of received digital signals to generate a plurality of corresponding pulse-compressed signals. In other words, the correlation processor 161 performs pulse compression. The details of the correlation processing performed by the correlation processing unit 161 will become clear from the description based on the mathematical model described later.
 受信ディジタル信号の数理モデルは、Vで表される。受信ディジタル信号の数理モデルは、具体的には以下の式(1)で表される。

Figure JPOXMLDOC01-appb-I000001

 ここで、mはPRI内におけるサンプリングに付される通し番号であり、0からM-1までの整数である。Δtは、PRI内のサンプリング周期を表す。すなわちmΔtはサンプリング開始からの時間を表すが、離散的な表現を用いて単に「時刻m」と称されることもある。MはPRI内のサンプリングの数を表す。hは、前述したヒット番号である。
 fは、送信周波数を表す。R(h、mΔt)は、目標までのレンジ、すなわち相対距離を表す。cは、光速を表す。Bは、変調帯域幅を表す。Tは、送信パルス長を表す。Aは、振幅を表す定数である。
A mathematical model of the received digital signal is represented by V0 . A mathematical model of the received digital signal is specifically represented by the following equation (1).

Figure JPOXMLDOC01-appb-I000001

Here, m is a serial number assigned to sampling within the PRI and is an integer from 0 to M−1. Δt represents the sampling period within the PRI. In other words, mΔt represents the time from the start of sampling, but may be simply referred to as "time m" using a discrete expression. M represents the number of samplings in the PRI. h is the hit number described above.
f 0 represents the transmission frequency. R(h, mΔt) represents the range, ie relative distance, to the target. c represents the speed of light. B 0 represents the modulation bandwidth. T 0 represents the transmission pulse length. A 0 is a constant representing the amplitude.
 参照信号の数理モデルは、Vref(m)で表される。下添え字のrefは、参照を意味するreferenceの最初の3文字である。参照信号の数理モデルは、具体的には以下の式(2)で表される。

Figure JPOXMLDOC01-appb-I000002

ここでνcan(q)は、速度補償の候補値(以降、単に「速度補償候補」と称する)を表す。下添え字のcanは、候補を意味するcandidateの最初の3文字である。式(2)の右辺におけるArefは、参照信号の振幅である。
A mathematical model of the reference signal is represented by V ref (m). The subscript ref is the first three characters of reference, which means reference. A mathematical model of the reference signal is specifically represented by the following equation (2).

Figure JPOXMLDOC01-appb-I000002

Here, ν can (q) represents a candidate value for speed compensation (hereinafter simply referred to as "speed compensation candidate"). The subscript can is the first three characters of candidate, which means candidate. A ref on the right side of equation (2) is the amplitude of the reference signal.
 実施の形態1に係るレーダ装置100は、式(2)に示されるとおり、用いる参照信号にドップラ周波数項を含んでいる。参照信号にドップラ周波数項を含むことは、相関処理において、ドップラカップリングを抑圧する、という効果を奏する。すなわち参照信号にドップラ周波数項を含むことは、受信信号と参照信号との積分損失を低減する、という効果を奏することになる。 The radar apparatus 100 according to Embodiment 1 includes a Doppler frequency term in the reference signal used, as shown in Equation (2). Including the Doppler frequency term in the reference signal has the effect of suppressing Doppler coupling in correlation processing. That is, including the Doppler frequency term in the reference signal has the effect of reducing the integration loss between the received signal and the reference signal.
 速度補償候補は、具体的には以下の式(3)で表される。

Figure JPOXMLDOC01-appb-I000003

ここで、νcan_criは、速度補償候補の基準値(以降、単に「速度補償候補基準」と称する)を表す。下添え字のcriは、基準を表すcriterionの最初の3文字である。qは速度候補に付された通し番号(以降、「速度候補番号」と称する)であり、0からQ-1までの整数である。Qは速度候補の総数(以降、単に「速度候補数」と称する)を表す。Δνcanは、速度候補を変化させる刻み幅である。速度補償候補は、想定される目標(ターゲット)の速度の範囲内で設定されるとよい。本開示技術に係るレーダ装置100は、速度候補数であるQと、速度候補を変化させる刻み幅であるΔνcanと、それぞれを設定可能である。
 用語の「速度候補」と「速度補償候補」とは、結果的に同じ変数を指してもよいが、厳密には意味が異なり、区別して使用されるべきものである。「速度候補」の用語は、目標について検出すべき速度の候補値を意味するときに使用される。一方、「速度補償候補」の用語は、後述する速度補償に用いられる値を意味するときに使用される。速度補償候補は、速度候補から選定される。特に、速度候補に付される速度候補番号のqと、後述する速度補償候補に付される速度補償候補番号のqとは、区別して用いられる。
 用語の「目標」は、一般用語として辞書的な意味に用いられる場合と、レーダの測定対象を指す場合と、明確に区別される必要がある。そこで本明細書中では、前者の辞書的な意味では「目標」の用語は使わず、別の表現、例えば「目的、めあて」等を使って区別する。
The speed compensation candidate is specifically represented by the following formula (3).

Figure JPOXMLDOC01-appb-I000003

Here, ν can_cri represents the reference value of the speed compensation candidate (hereinafter simply referred to as "speed compensation candidate reference"). The subscript cri is the first three letters of the criterion representing the criterion. q is a serial number assigned to the speed candidate (hereinafter referred to as "speed candidate number") and is an integer from 0 to Q-1. Q represents the total number of speed candidates (hereinafter simply referred to as "the number of speed candidates"). Δν can is the step size for changing the speed candidate. The speed compensation candidate is preferably set within the speed range of the assumed target. The radar device 100 according to the technology disclosed herein can set Q, which is the number of speed candidates, and Δν can , which is an interval for changing the speed candidates.
The terms "speed candidate" and "speed compensation candidate" may refer to the same variable, but strictly speaking, they have different meanings and should be used separately. The term "velocity candidate" is used when referring to a candidate value of velocity to be detected for a target. On the other hand, the term "speed compensation candidate" is used when referring to values used for speed compensation, which will be described later. A velocity compensation candidate is selected from the velocity candidates. In particular, the speed candidate number q assigned to the speed candidate and the speed compensation candidate number qk assigned to the speed compensation candidate described later are used separately.
The term "target" needs to be clearly distinguished between when it is used in a dictionary sense as a general term and when it refers to a radar measurement target. Therefore, in the present specification, the term "target" is not used in the former dictionary sense, but other expressions such as "purpose" are used for distinction.
 式(3)で用いられるΔνcanは、具体的には以下の式(4)により与えられるものを採用するとよい。

Figure JPOXMLDOC01-appb-I000004

ここでΔνambは、Tpri(h)に基づくアンビギュイティが生じることなく測定可能な速度の間隔(以降、単に「アンビギュイティがない速度間隔」と称する)、を表す。下添え字のambは、アンビギュイティの英語表現であるambiguityの最初の3文字である。アンビギュイティは、あいまいさを意味する。またNν,ambは、正の整数である。具体的にΔνambは、以下の式(5)で与えられる。

Figure JPOXMLDOC01-appb-I000005

このようにΔνcanを定義することで、スロータイム方向のフーリエ変換後の信号どうしを同一のサンプリング番号で表すことができ、ペアリング及び検出の効率が良くなる。
Specifically, Δν can used in formula (3) should preferably be given by formula (4) below.

Figure JPOXMLDOC01-appb-I000004

Here, Δν amb represents the velocity interval measurable without ambiguity based on T pri (h) (hereafter simply referred to as “ambiguity-free velocity interval”). The subscript amb is the first three letters of ambiguity, which is the English representation of ambiguity. Ambiguity means ambiguity. Also, N ν, amb is a positive integer. Specifically, Δν amb is given by the following equation (5).

Figure JPOXMLDOC01-appb-I000005

By defining Δν can in this way, signals after Fourier transform in the slow-time direction can be represented by the same sampling number, and the efficiency of pairing and detection is improved.
 図5は、アンビギュイティのない速度間隔と速度補償候補での検出強度分布のイメージを表すグラフである。図5に示されるグラフの縦軸は強度を、横軸は速度を、それぞれ表す。また図5に示されるグラフにおける星印のプロットは目標についての真値を、×印のプロットは速度アンビギュイティを含む目標の速度の候補を、それぞれ表す。  Fig. 5 is a graph showing an image of the detected intensity distribution in the velocity interval without ambiguity and the velocity compensation candidate. The vertical axis of the graph shown in FIG. 5 represents intensity, and the horizontal axis represents velocity. In the graph shown in FIG. 5, plots with asterisks represent true values for the target, and plots with x marks represent target velocity candidates including velocity ambiguities.
 図5に示されるグラフは、目標の速度の真値において、強度が最大となる例を示している。この現象は、速度が真値から離れるほど運動補償後のレンジウォーク成分が残存し、積分した結果の強度が低下していることを表している。 The graph shown in FIG. 5 shows an example where the intensity is maximized at the true value of the target velocity. This phenomenon indicates that the more the velocity deviates from the true value, the more the range walk component remains after motion compensation, and the intensity of the integrated result decreases.
 式(4)に示されるΔνcanは、図5に示されるグラフにおいては、隣接する星印又は×印のプロット間隔のNν,amb倍として現れる。図5は、本開示技術が採用するΔνcanが、Δνambよりも広いことを表している。図5では、Nν,ambを2としたものを例示しているが、Nν,ambは2よりも大きい整数でもよい。 Δν can shown in Equation (4) appears in the graph shown in FIG. 5 as N ν,amb times the plot interval between adjacent asterisks or crosses. FIG. 5 shows that Δν can adopted by the disclosed technique is wider than Δν amb . In FIG. 5, N ν,amb is set to 2, but N ν,amb may be an integer larger than 2.
 図5に示されるグラフにおいてqは、k番目の速度補償候補番号を表す。図5に示される例では、Nν,ambを2としているため、速度補償候補番号は、q=0、q=2、q=4、…、となる。すなわち速度補償候補番号のqは、速度候補番号のqとは異なり、連続しないとびとびの番号となり得る。速度補償候補番号のqは、アンビギュイティのない速度間隔ごとに0から順番に付された番号であるため、Nν,ambの倍数となる。
またP(q)は、qにおける強度を表す。図5に示されるグラフは、k+1番目の速度補償候補番号であるqk+1において、目標の速度の真値と一致する例を示している。
In the graph shown in FIG. 5, qk represents the k-th speed compensation candidate number. In the example shown in FIG. 5, N ν, amb is 2, so the speed compensation candidate numbers are q 0 =0, q 1 =2, q 2 =4, . That is, unlike the speed candidate number q , the speed compensation candidate number qk can be a discontinuous number. Since the speed compensation candidate number qk is a number assigned in order from 0 to each speed interval without ambiguity, it is a multiple of Nv ,amb .
Also, P(q k ) represents the intensity at q k . The graph shown in FIG. 5 shows an example in which qk+ 1 , which is the k+1th speed compensation candidate number, matches the true value of the target speed.
 P(q)とP(qk+1)との差は、あらかじめ設計した設計値よりも大きくなるように、変調帯域、パルス幅、及び速度補償候補の刻みを決定するようにしてもよい。

Figure JPOXMLDOC01-appb-I000006

ここでΔPdesは、設計した強度差分(以降、「強度差分設計値」と称す)である。下添え字のdesは、設計を表すdesignの最初の3文字である。ΔPdesは、例えば3[db]等の、経験的に得られた値であってよい。このように強度差分設計値は、Nν,ambをどの値にするか、すなわち速度補償候補の間隔をどの程度とするか、ということの判断の材料にしてよい。
The modulation band, pulse width, and pitch of velocity compensation candidates may be determined such that the difference between P(q k ) and P(q k+1 ) is greater than a design value designed in advance.

Figure JPOXMLDOC01-appb-I000006

Here, ΔP des is the designed intensity difference (hereinafter referred to as “intensity difference design value”). The subscript des is the first three letters of design. ΔP des may be an empirically obtained value such as 3 [db]. In this way, the intensity difference design value may be used as a reference for deciding which value to set for Nv , amb , that is, how to set the interval between speed compensation candidates.
 相関処理部161が行う相関処理は、具体的には以下の数式処理によるものであってよい。

Figure JPOXMLDOC01-appb-I000007

ここで、式(7)右辺の総和区間に登場するMは、パルス内のサンプリング点の数を表す。また、式(7)の右辺に登場する上線は、複素共役の操作を表す。すなわちVref(p)に上線を付したものは、Vref(p)の複素共役である。なお、式(7)は代表的な相関演算に用いられる離散時間の畳み込み演算であるが、相関演算にはいろいろな流儀のものが存在する。本開示技術に係るレーダ信号処理回路160は、式(7)に代えて、公知の別の流儀の相関演算が用いられてもよい。パルス圧縮処理された信号(以降、「パルス圧縮信号」と称する)は、式(7)の左辺のFv0vref(h,m)として表される。
Specifically, the correlation processing performed by the correlation processing unit 161 may be based on the following formula processing.

Figure JPOXMLDOC01-appb-I000007

Here, M P appearing in the summation interval on the right side of equation (7) represents the number of sampling points in the pulse. Also, the overscore appearing on the right side of equation (7) represents the operation of complex conjugation. That is, the overlined V ref (p) is the complex conjugate of V ref (p). Equation (7) is a discrete-time convolution operation used for a typical correlation operation, but there are various styles of correlation operation. The radar signal processing circuit 160 according to the technique of the present disclosure may use another known style of correlation calculation instead of Equation (7). A pulse-compressed signal (hereinafter referred to as a “pulse-compressed signal”) is expressed as F v0vref (h, m) on the left side of Equation (7).
 レーダ信号処理回路160の補償処理部162は、パルス圧縮信号に対して運動補償処理を実施する。図1に示されるように本開示技術に係るレーダ装置100は、送受信共用のアンテナ130を用いるモノスタティック・レーダが想定されている。モノスタティック・レーダの場合、パルス送信中に受信ゲートを開くことができないため、受信信号のデータの欠落によるいわゆるブラインド領域が生じる。補償処理部162が行う運動補償処理は、このブラインド領域の情報を、時間軸上で隣接するパルスの受信信号の情報から補間する、というものである。運動補償処理が実施されたパルス圧縮信号は、本明細書では運動補償候補と称する。 A compensation processing unit 162 of the radar signal processing circuit 160 performs motion compensation processing on the pulse compression signal. As shown in FIG. 1, the radar device 100 according to the technology of the present disclosure is assumed to be a monostatic radar using an antenna 130 for both transmission and reception. In the case of monostatic radar, the receive gate cannot be opened during pulse transmission, resulting in a so-called blind region due to lack of data in the received signal. The motion compensation processing performed by the compensation processing unit 162 is to interpolate the blind region information from the received signal information of adjacent pulses on the time axis. A pulse-compressed signal that has undergone motion compensation processing is referred to herein as a motion compensation candidate.
 レーダ信号処理回路160の補償処理部162は、速度補償処理を行ったパルス圧縮信号に対して、フーリエ変換を実施する。

Figure JPOXMLDOC01-appb-I000008

ここで、式(8)の左辺のスクリプト書体のKは、その大かっこの中身に対して速度補償処理を行う操作を表している。また、式(8)の左辺のスクリプト書体のFは、その大かっこの中身に対してフーリエ変換を行う操作を表している。速度補償処理とフーリエ変換とを合わせた処理が、運動補償処理である。
式(8)の右辺に現れた関数の引数のkは、離散フーリエ変換を行うことにより得られるスペクトルに付される通し番号である。式(8)の詳細は、後述の説明により明らかとなる。
A compensation processing unit 162 of the radar signal processing circuit 160 performs Fourier transform on the pulse-compressed signal subjected to velocity compensation processing.

Figure JPOXMLDOC01-appb-I000008

Here, K in the script typeface on the left side of equation (8) represents an operation for performing speed compensation processing on the contents of the square brackets. In addition, the script typeface F on the left side of equation (8) represents the operation of Fourier transforming the contents of the square brackets. Motion compensation is a combination of velocity compensation and Fourier transform.
The function argument k appearing on the right side of Equation (8) is a serial number assigned to the spectrum obtained by performing the discrete Fourier transform. The details of formula (8) will become clear from the description below.
 補償処理部162が行う補償処理は、あらかじめ何番目の速度候補を用いて補償するか、決めておくとよい。例えば補償処理は、あらかじめ、速度候補番号がqである速度補償候補のνcan(q)で補償する、と決められていてよい。 In the compensation processing performed by the compensation processing unit 162, it is preferable to determine in advance which velocity candidate is used for compensation. For example, the compensation process may be determined in advance to compensate with v can (q) of the velocity compensation candidate whose velocity candidate number is q.
 図6は、目標の想定速度間隔、アンビギュイティのない速度間隔、及び目標の候補のイメージを表すグラフである。
 一般に、遠距離を観測するため等の理由で、PRIの逆数であるPRF(Pulse Repetition Frequnecy)を低くすると、アンビギュイティによるいわゆる虚像が現れない速度の間隔(「アンビギュイティのない速度間隔」と同じ)は狭くなる。
 また一般に、目標が高速で移動している場合、速度間隔を広くとる必要がある。従来技術に係るレーダは、精度良く目標の速度を求めるために多数の速度候補を取るようにし、速度探索を実施しなければならない。
 図6は、目標の想定速度間隔が広く、かつ、PRIが小さい、といった状況を表している。また図6は、速度補償候補の間隔を、アンビギュイティなく解ける速度の間隔(これも「アンビギュイティのない速度間隔」と同じ)に揃えている例を示している。図6は、速度アンビギュイティにより発生した多数の候補の中から、目標についての最も確からしい値を速度探索により選択しなければならない、ということも示している。
FIG. 6 is a graph representing an assumed velocity interval of a target, an ambiguity-free velocity interval, and an image of a target candidate.
In general, when PRF (Pulse Repetition Frequency), which is the reciprocal of PRI, is lowered for reasons such as long-distance observation, a velocity interval in which a so-called virtual image due to ambiguity does not appear (“velocity interval without ambiguity”) ) is narrower.
Also, in general, when the target is moving at high speed, it is necessary to take a wide speed interval. In order to find the target speed with high accuracy, the radar according to the conventional technology must select a large number of speed candidates and perform a speed search.
FIG. 6 represents a situation in which the target assumed speed interval is wide and the PRI is small. Also, FIG. 6 shows an example in which the intervals of speed compensation candidates are aligned with the interval of speeds that can be solved without ambiguity (this is also the same as the “speed interval without ambiguity”). FIG. 6 also shows that the velocity search must select the most probable value for the target from among the many candidates generated by the velocity ambiguity.
 速度補償候補であるνcanを用いると、以下の数理モデルに基づいて、補償距離及び補償信号を算出することができる。

Figure JPOXMLDOC01-appb-I000009

ここで式(9)の左辺のRcan(h)は、補償距離を表す。用いられているアルファベットのRは、距離を意味するレンジの英語表記であるRangeの頭文字である。引数のhは、前述のヒット番号である。式(9)で示される数理モデルは、単に速度と、時間と、距離と、の関係を表したものである。なお式(9)の右辺にマイナスの符号が用いられているのは、速度の軸と、距離の軸と、それぞれの向きが反対になるように定義したに過ぎない。

Figure JPOXMLDOC01-appb-I000010

ここで式(10)の左辺のVRCAN(h)は、補償距離から作成した補償信号を表す。なお、式(10)の右辺には振幅を示していないが、補償信号についての数理モデルは、式(10)の右辺に振幅を表す定数が乗じられていてもよい。
Using the velocity compensation candidate ν can , the compensation distance and compensation signal can be calculated based on the following mathematical model.

Figure JPOXMLDOC01-appb-I000009

Here, R can (h) on the left side of Equation (9) represents the compensation distance. The alphabet R used is the initial letter of Range, which is an English notation for range, which means distance. Argument h is the aforementioned hit number. The mathematical model shown in Equation (9) simply expresses the relationship between velocity, time and distance. The reason why the minus sign is used on the right side of the equation (9) is that the speed axis and the distance axis are defined so that their directions are opposite to each other.

Figure JPOXMLDOC01-appb-I000010

Here, V RCAN (h) on the left side of equation (10) represents the compensation signal created from the compensation distance. Although the right side of Equation (10) does not indicate the amplitude, the mathematical model for the compensation signal may be such that the right side of Equation (10) is multiplied by a constant representing the amplitude.
 式(7)及び式(10)の結果を用いることにより、速度補償後の信号(以降、単に「速度補償後信号」と称す)が導かれる。

Figure JPOXMLDOC01-appb-I000011

式(11)は、式(8)の速度補償処理の部分についての詳細である。
ここでスクリプト書体のFに下添え字のrangeは、その大かっこの中身に対して距離方向のフーリエ変換を行う操作を表している。距離方向のフーリエ変換は、ファストタイム領域からファストタイム周波数領域への変換を意味する。距離方向の逆フーリエ変換は、その逆の変換、すなわちファストタイム周波数領域からファストタイム領域への変換を意味する。
By using the results of equations (7) and (10), a velocity-compensated signal (hereinafter simply referred to as "velocity-compensated signal") is derived.

Figure JPOXMLDOC01-appb-I000011

Equation (11) details the speed compensation portion of Equation (8).
Here, the subscript range of the script typeface F represents the operation of performing the Fourier transform in the distance direction on the contents of the square brackets. A Fourier transform in the range direction means a transformation from the fast-time domain to the fast-time frequency domain. The inverse Fourier transform in the range direction means the inverse transform, ie from the fast-time frequency domain to the fast-time domain.
 式(11)で得られた結果、すなわち式(11)の左辺を、さらにスロータイム方向にフーリエ変換することで、運動補償処理後の信号(以降、単に「運動補償後信号」と称す)が導かれる。

Figure JPOXMLDOC01-appb-I000012

式(12)は、式(8)のフーリエ変換の部分についての詳細である。式(12)は、一般的な離散フーリエ変換を表すものと相違ない。式(12)の右辺が示すように、変数のkは、離散フーリエ変換を行うときのサンプリング番号である。式(12)の例は、あるサンプリングから次のサンプリングまでに、すなわちhが1つ増えるごとに、位相が2πkをKで割った値の分だけ進む基本波による離散フーリエ変換であることを示している。基本波に相当する式(12)右辺のexpの項は、複素平面上の単位円を等分割した点を表すため、回転子と呼ばれることもある。
By Fourier transforming the result obtained by the equation (11), that is, the left side of the equation (11) in the slow time direction, the signal after the motion compensation processing (hereinafter simply referred to as the "signal after the motion compensation") is obtained as follows: be guided.

Figure JPOXMLDOC01-appb-I000012

Equation (12) details the Fourier transform portion of Equation (8). Equation (12) is no different from what represents the general discrete Fourier transform. As indicated by the right side of Equation (12), the variable k is the sampling number when performing the discrete Fourier transform. The example of equation (12) shows that from one sampling to the next, i.e., for each increment of h, the discrete Fourier transform with the fundamental wave advances in phase by 2πk divided by K. ing. The exp term on the right-hand side of equation (12) corresponding to the fundamental wave represents a point obtained by equally dividing the unit circle on the complex plane, and is therefore sometimes called a rotator.
 以上は、一般的なパルスドップラ方式の技術に速度補償処理を加えたものであるが、本開示技術をこれに限定されない。本開示技術に係るレーダ装置100は、同様の趣旨の別の処理が行われてもよい。 The above is a general pulse Doppler technique with velocity compensation processing added, but the technique of the present disclosure is not limited to this. The radar device 100 according to the technology disclosed herein may perform another process with a similar purpose.
 レーダ信号処理回路160の目標候補検出部163は、目標の候補に関する相対距離及び相対速度を算出する(図4のST163で示されるステップ)。
 目標候補検出部163は、例えば、CA-CFAR(Cell Average-Constant False Alarm Rate)等のアルゴリズムを用いて目標の候補の検出を行うことが考えられる。
 CA-CFARは、誤警報確率が一定値となるように検出確率を最大化できる。すなわちCA-CFARは、誤検出を制御し、雑音をなるべく検出せずに、信号強度に基づいて目標の候補を検出できるという特徴を有する。
The target candidate detection unit 163 of the radar signal processing circuit 160 calculates the relative distance and relative speed of the target candidate (step ST163 in FIG. 4).
The target candidate detection unit 163 may detect target candidates using an algorithm such as CA-CFAR (Cell Average-Constant False Alarm Rate).
CA-CFAR can maximize the detection probability such that the false alarm probability is a constant value. That is, CA-CFAR has the characteristic of being able to control erroneous detection and detect target candidates based on signal strength while minimizing noise detection.
 図4に示されるとおりレーダ信号処理回路160は、ST161、ST162、及びST163の処理ステップを速度候補の数だけ繰り返す。 As shown in FIG. 4, the radar signal processing circuit 160 repeats the processing steps of ST161, ST162, and ST163 by the number of speed candidates.
 上記処理により速度候補数分の目標候補の検出結果が得られるが、それぞれをインコヒーレント積分することにより、検出性能をさらに向上させることができる。図7は、各速度候補のピーク強度を並べたグラフである。横軸が速度、縦軸が距離を表す。速度候補をあいまいさなく解ける速度の整数倍で設定すると、同一の速度ビンで積分されるため、速度方向は等しくかつ距離方向は速度候補に応じた距離間隔でピーク強度が並ぶ。速度候補の速度間隔をΔνとして、速度候補に応じた距離間隔のΔrは以下の式で表される。

Figure JPOXMLDOC01-appb-I000013

 式(13)を用いて各ピーク強度の距離をシフトすれば、複数の速度候補のピーク強度をインコヒーレント積分が可能である。ここで、距離方向シフト後の運動補償後信号は、以下の式で表される。

Figure JPOXMLDOC01-appb-I000014

ただし、r_shiftは、その大かっこの中身に対して、運動補償後信号(FFFT)を速度候補番号と距離間隔(Δr)の積で表される量で距離シフトする処理を表す。
Through the above process, target candidate detection results for the number of speed candidates are obtained, and the detection performance can be further improved by performing incoherent integration on each of them. FIG. 7 is a graph in which peak intensities of speed candidates are arranged. The horizontal axis represents speed and the vertical axis represents distance. If velocity candidates are set as integral multiples of velocities that can be unambiguously solved, integration is performed in the same velocity bin, so the peak intensities are equal in the velocity direction and aligned at distance intervals corresponding to the velocity candidates in the distance direction. Assuming that the speed interval of the speed candidates is Δν, the distance interval Δr corresponding to the speed candidate is expressed by the following equation.

Figure JPOXMLDOC01-appb-I000013

Incoherent integration of multiple velocity candidate peak intensities is possible by shifting the distance of each peak intensity using equation (13). Here, the motion-compensated signal after the distance direction shift is represented by the following equation.

Figure JPOXMLDOC01-appb-I000014

However, r_shift represents the process of distance-shifting the motion-compensated signal (F FFT ) by the product of the speed candidate number and the distance interval (Δr).
 また、複数速度候補のピーク強度のインコヒーレント積分は以下の式で表される。

Figure JPOXMLDOC01-appb-I000015

ここで、変数に付された下添え字のICは、インコヒーレントの英語表記に由来する。なお、式(15)は積分記号ではなく総和記号が用いられているが、これは単に離散的に積分を行ったことを表しているに過ぎない。
Also, the incoherent integration of the peak intensity of multiple velocity candidates is expressed by the following equation.

Figure JPOXMLDOC01-appb-I000015

Here, the subscript IC attached to the variables is derived from the English notation of incoherent. Note that the expression (15) uses the summation symbol instead of the integral symbol, but this merely indicates that the integration is performed discretely.
 本開示技術に係るレーダ装置100は、F’FFT(k、m)の各々を用いることに代えて、インコヒーレント積分により得られたFFFT_IC(k、m)を用いることにより、検出性能を向上させることができる、という効果を奏する。 Radar device 100 according to the technology of the present disclosure improves detection performance by using F FFT_IC (k, m) obtained by incoherent integration instead of using each of F′ FFT (k, m). There is an effect that it can be made.
 レーダ信号処理回路160の測速度・測距離部164は、速度候補のそれぞれのピーク強度を算出し、速度補償候補のそれぞれに対応するピーク強度を算出する。また測速度・測距離部164は、強度が最大となるピークの情報から、もっともらしい目標の速度の推定値を算出する(図4のST164で示されるステップ)。 The speed measurement/distance measurement unit 164 of the radar signal processing circuit 160 calculates the peak intensity of each of the speed candidates, and calculates the peak intensity corresponding to each of the speed compensation candidates. Velocity measurement/distance measurement unit 164 also calculates a plausible estimated value of the speed of the target from the information on the peak with the maximum intensity (step indicated by ST164 in FIG. 4).
 図8は、それぞれの速度補償候補のピーク強度から目標の速度の推定値を算出するイメージを表すグラフである。図8におけるグラフの横軸は速度補償候補の値を、グラフの縦軸は強度を、それぞれ表す。図8は、速度補償候補の値が目標の速度の真値に最も近いときに強度が最大になることを示している。目標速度の真値に近いものを推定できることは、速度アンビギュイティが解けており、かつ、速度候補の範囲のPRF内の目標速度の積分効率が劣化しないこと、すなわち改善すること、を意味する。
 図8は、速度アンビギュイティ間隔よりも広い離散的な速度補償候補を使っても、プロットの傾向から、目標の速度を推定できる、ということも示している。図8においてプロットが線形の傾向を示しているもの、すなわち速度の推定値が真値から離れていくにつれて線形で強度が減少しているもの、を示した。しかし、プロットが必ずしも2つの直線で近似できるものでなくとも、もっともらしい値を推定することは可能である。
FIG. 8 is a graph showing an image of calculating an estimated target speed from the peak intensity of each speed compensation candidate. The horizontal axis of the graph in FIG. 8 represents the value of the speed compensation candidate, and the vertical axis of the graph represents the intensity. FIG. 8 shows that the strength is greatest when the value of the velocity compensation candidate is closest to the true value of the target velocity. Being able to estimate a target velocity close to the true value means that the velocity ambiguity is resolved and the integration efficiency of the target velocity within the PRF of the range of velocity candidates is not degraded, i.e. improved. .
FIG. 8 also shows that the target velocity can be estimated from the trend of the plot using discrete velocity compensation candidates wider than the velocity ambiguity interval. In FIG. 8, the plot shows a linear trend, ie, a linear decrease in intensity as the velocity estimate deviates from the true value. However, even if the plot is not necessarily approximated by two straight lines, it is possible to estimate a plausible value.
 図8に示されたp(0)、…、p(q)、p(qk+1)、…は、速度補償候補番号がq(q=0、q=2、q=4、…、)における強度である。図8に示された例では、グラフは左側で単調増加し、右側で単調減少している。より具体的にいえば、グラフはp(q)までは単調増加しており、p(q)以降は単調減少している。よって図8の例では、qとqk+1との間の速度おいて、強度が最大になると推測できる。 p(0) , . . . , p(q k ), p( q k+1 ) , . , …, ). In the example shown in FIG. 8, the graph monotonically increases on the left and monotonically decreases on the right. More specifically, the graph monotonically increases up to p(q k ) and monotonically decreases after p(q k ). Thus, in the example of FIG. 8, it can be inferred that the intensity is maximized at velocities between q k and q k+1 .
 このように、速度補償候補ごとに強度をプロットしていくと、ある速度補償候補番号において、プロットが増加傾向から減少傾向へと変化する。本開示技術は、増加傾向にあるブロットの前半グループと、減少傾向にあるプロットの後半グループと、に分けて、それぞれを数理モデル化する。図8に示された数理モデルは、最小二乗法に基づいた直線近似を用いたが、これに限定されない。数理モデルは、より次元の高い曲線近似であってもよいし、他の補間方法に基づいたものでもよい。そして、目標の速度は、前半グループの数理モデルである曲線等と、後半グループの数理モデルである曲線等と、それぞれが交わる交点として求めることができる。 In this way, when the intensity is plotted for each speed compensation candidate, the plot changes from an increasing trend to a decreasing trend at a certain speed compensation candidate number. The disclosed technique divides the first half group of plots that are on the increase and the second half group of the plots that are on the decrease, and mathematically models each of them. Although the mathematical model shown in FIG. 8 uses linear approximation based on the method of least squares, it is not limited to this. The mathematical model may be a higher dimensional curve approximation or may be based on other interpolation methods. Then, the target speed can be obtained as an intersection point between the curve, etc., which is the mathematical model of the first half group and the curve, etc., which is the mathematical model of the second half group.
 2つの数理モデルの交点として求められる目標の速度の推定値は、以下のように表すことができる。

Figure JPOXMLDOC01-appb-I000016

ここで式(16)の左辺のνresは、目標の速度の推定結果である。下添え字のresは、結果を意味するresultの最初の3文字である。式(16)の右辺第1項のνにダッシュが付されたものは、速度補償候補の中で最も強度が高いものである。図9におけるνにダッシュが付されたプロットは、「最も近い速度プロット」と称する。式(16)の右辺第2項のdνresは、2つの数理モデルの交点の位置から求めた速度差分値を表す。
 すなわち本開示技術に係るレーダ装置100は、速度候補のそれぞれの検出強度に基づいて、速度候補を、増加傾向にある前半グループと、減少傾向にある後半グループとに分け、前半グループと後半グループのそれぞれで最小二乗法に基づいた近似直線又は近似曲線を求め、近似直線又は近似曲線のそれぞれが交わる交点として前記目標の速度を求める。
An estimate of the target's velocity, determined as the intersection of the two mathematical models, can be expressed as follows.

Figure JPOXMLDOC01-appb-I000016

Here, ν res on the left side of Equation (16) is the target speed estimation result. The subscript res is the first three characters of result which means the result. The dashed ν in the first term on the right side of equation (16) is the strongest of the velocity compensation candidates. The dashed ν plot in FIG. 9 is referred to as the “nearest velocity plot”. dν res in the second term on the right side of Equation (16) represents the velocity difference value obtained from the position of the intersection of the two mathematical models.
That is, the radar device 100 according to the technique of the present disclosure divides the velocity candidates into a first half group that tends to increase and a second half group that tends to decrease, based on the detection strength of each of the speed candidates. Approximate straight lines or curved lines are determined based on the method of least squares, respectively, and the speed of the target is determined as the point of intersection of the respective approximate straight lines or curved lines.
 図9は、目標の推定速度から推定距離を算出するイメージを表すグラフである。図9の下段のグラフに示されるように、距離と速度との関係式から、推定距離が求められる。

Figure JPOXMLDOC01-appb-I000017

ここで式(17)の左辺のΔrcanは、速度候補の刻み幅であるΔνcanに対応する距離候補の刻み幅である。
 式(16)及び式(17)から、目標の距離の推定値は、以下のように求められる。

Figure JPOXMLDOC01-appb-I000018

ここで式(18)の左辺のrresは、目標の距離の推定結果である。式(18)の右辺第1項のrにダッシュが付されたものは、式(16)の右辺第1項のνにダッシュが付されたもの、すなわち最も近い速度プロット、に対応する距離である。
FIG. 9 is a graph showing an image of calculating the estimated distance from the estimated speed of the target. As shown in the lower graph of FIG. 9, the estimated distance is obtained from the relational expression between distance and speed.

Figure JPOXMLDOC01-appb-I000017

Here, Δr can on the left side of equation (17) is the step size of the distance candidate corresponding to Δν can , which is the step size of the speed candidate.
From equations (16) and (17), the target range estimate is obtained as follows.

Figure JPOXMLDOC01-appb-I000018

Here, r res on the left side of equation (18) is the target range estimation result. The dashed r in the first right-hand side of Eq. (18) is the distance corresponding to the dashed first v in the right-hand side of Eq. (16), i.e. the nearest velocity plot. be.
 一般に、極大値及び極小値を求める方法に、導関数から求める方法がある。すなわち極値における傾きは0である、という性質であるが、この性質は、本開示技術において最も強度が高い速度候補を求めることに適用できる。最も強度が高い速度候補は、以下のとおり、隣り合う速度候補の強度の差分を求めることで求めることができる。

Figure JPOXMLDOC01-appb-I000019

例えば図8に例示したようにq番目の速度補償候補とqk+1番目の速度法相候補との間に強度の極大値が存在するとわかった場合、q番目とqk+1番目との間における速度補償候補をより細かい刻みで変化させ、式(19)に基づいて、強度が最大となる速度を求めることもできる。
 すなわち実施の形態1に係るレーダ装置100は、速度補償候補の検出結果から最大強度と2番目に最大となる強度を選択し、前記目標の速度の推定を行う。
Generally, there is a method of obtaining the maximum value and the minimum value from a derivative function. That is, the slope at the extremum is 0, and this property can be applied to find the velocity candidate with the highest strength in the technique of the present disclosure. The velocity candidate with the highest intensity can be found by finding the difference in intensity between adjacent velocity candidates as follows.

Figure JPOXMLDOC01-appb-I000019

For example , when it is found that there is a maximum value of intensity between the qk- th velocity compensation candidate and the qk +1-th velocity law phase candidate as illustrated in FIG. It is also possible to change the compensation candidates in finer increments and obtain the speed at which the intensity is maximized based on equation (19).
That is, the radar apparatus 100 according to Embodiment 1 selects the maximum intensity and the second maximum intensity from the detection results of the velocity compensation candidates, and estimates the velocity of the target.
 目標の速度は、ディスクリカーブを用いて推定されてもよい。図10は、信号強度に関する和信号対差信号の比と、速度と、の関係を示すイメージ図である。図10における曲線は、あらかじめ準備したディスクリカーブである。ここで信号強度に関する和信号と差信号とは、以下のように求めたものである。

Figure JPOXMLDOC01-appb-I000020

ここで、pΣは信号強度の和信号であり、pΔは信号強度の差信号である。
 図10に示されたディスクリカーブの横軸は、速度である。また、図10に示されたディスクリカーブの縦軸は、以下のように算出される、信号強度に関する和信号対差信号の比である。

Figure JPOXMLDOC01-appb-I000021
The target velocity may be estimated using a discricurve. FIG. 10 is an image diagram showing the relationship between the ratio of sum signal to difference signal with respect to signal intensity and speed. The curves in FIG. 10 are discricurves prepared in advance. Here, the sum signal and the difference signal regarding signal intensity are obtained as follows.

Figure JPOXMLDOC01-appb-I000020

Here, p Σ is the sum signal of the signal intensities, and p Δ is the difference signal of the signal intensities.
The horizontal axis of the discricurve shown in FIG. 10 is velocity. Also, the vertical axis of the discricurve shown in FIG. 10 is the ratio of the sum signal to the difference signal with respect to the signal intensity, which is calculated as follows.

Figure JPOXMLDOC01-appb-I000021
 図10は、ディスクリカーブを利用して、式(14)右辺の第1項と、式(14)の右辺の第2項を求め、式(14)に従い目標の速度の推定結果であるνresを求めることができることを示している。 FIG. 10 shows the result of estimating the speed of the target, ν res It shows that it is possible to obtain
 図11は、本開示技術に係るレーダ装置100の信号処理回路170のハードウエア構成の例を示した図である。ここで信号処理回路170は、レーダ装置100の機能構成であるPRI制御部150とレーダ信号処理回路160とを実現するハードウエアである。信号処理回路170は、専用のハードウエアであっても、メモリに格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSPともいう)であってもよい。なお図11は、信号処理回路170がメモリに格納されるプログラムを実行するCPUで実現される場合を例示している。信号処理回路170は、プロセッサ171と、メモリ172と、記憶装置173と、入出力インタフェース174と、信号路175と、を含む。信号処理回路170は、受信回路140からの情報が入力され、外部の表示器200が接続されている。ここで用語の「プロセッサ」は一般名詞として用い、信号処理回路170を構成する構成要素のプロセッサ171は固有名詞として用い、両者は区別される。また用語の「メモリ」は一般名詞として用い、信号処理回路170を構成する構成要素のメモリ172は固有名詞として用い、両者は区別される。 FIG. 11 is a diagram showing an example of the hardware configuration of the signal processing circuit 170 of the radar device 100 according to the technology disclosed herein. Here, the signal processing circuit 170 is hardware that realizes the PRI control unit 150 and the radar signal processing circuit 160 that are the functional configuration of the radar device 100 . The signal processing circuit 170, even if it is dedicated hardware, is also called a CPU (Central Processing Unit, processing unit, arithmetic unit, microprocessor, microprocessor, processor, DSP) that executes programs stored in memory. may be called). Note that FIG. 11 illustrates a case where the signal processing circuit 170 is realized by a CPU that executes a program stored in a memory. Signal processing circuit 170 includes processor 171 , memory 172 , storage device 173 , input/output interface 174 , and signal path 175 . The signal processing circuit 170 receives information from the receiving circuit 140 and is connected to the external display device 200 . Here, the term "processor" is used as a general noun, and the term processor 171, which is a component of the signal processing circuit 170, is used as a proper noun to distinguish between the two. The term "memory" is used as a general noun, and the memory 172, which is a component of the signal processing circuit 170, is used as a proper noun to distinguish between them.
 信号処理回路170が専用のハードウエアである場合、信号処理回路170は、例えば単一回路、復号回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、又はこれらを組み合わせたものが該当する。PRI制御部150及びレーダ信号処理回路160の機能は、それぞれを別の処理回路をもって実現されてもよいし、まとめて1つの処理回路をもって実現されてもよい。 Where signal processing circuitry 170 is dedicated hardware, signal processing circuitry 170 may be, for example, a single circuit, a decoding circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof. do. The functions of the PRI control unit 150 and the radar signal processing circuit 160 may be realized by separate processing circuits, respectively, or may be collectively realized by one processing circuit.
 信号処理回路170がCPUにより構成される場合、PRI制御部150及びレーダ信号処理回路160の機能は、ソフトウエア、ファームウエア、又はソフトウエアとファームウエアとの組合せによって実現される。ソフトウエアもファームウエアもプログラムとして記述され、メモリに格納される。信号処理回路170は、メモリに記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。すなわちレーダ装置100は、信号処理回路170によりその機能が実行されるときに、PRIを設定する処理と、相関処理を行うステップ(ST161)と、速度補償候補による補償処理ステップ(ST162)と、目標候補検出ステップ(ST163)と、測速度・測距離の処理を行うステップ(ST164)と、が結果的に実行されることになるプログラムを格納するためのメモリを備える。また、これらのプログラムは、PRI制御部150及びレーダ信号処理回路160の手順及び方法をコンピュータに実行させるものである、ともいえる。 When the signal processing circuit 170 is configured by a CPU, the functions of the PRI control unit 150 and the radar signal processing circuit 160 are realized by software, firmware, or a combination of software and firmware. Both software and firmware are written as programs and stored in memory. The signal processing circuit 170 realizes the function of each part by reading out and executing the program stored in the memory. That is, when the function is executed by the signal processing circuit 170, the radar apparatus 100 performs a process of setting a PRI, a step of performing a correlation process (ST161), a step of a compensation process using a speed compensation candidate (ST162), and a target A memory is provided for storing a program for executing the candidate detection step (ST163) and the speed measurement/distance measurement step (ST164). It can also be said that these programs cause a computer to execute the procedures and methods of the PRI control unit 150 and the radar signal processing circuit 160 .
 プログラムを実行するプロセッサ171は、例えばLSIにより構成されたものでよい。 The processor 171 that executes the program may be composed of, for example, an LSI.
 ここで、メモリは、例えば、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の不揮発性又は揮発性の半導体メモリであってもよい。さらにメモリは、磁気ディスク、フレキシブルディスク、コンパクトディスク、ミニディスク、DVD等であってもよい。メモリは、HDD、SSD、等の形態であってもよい。
 図11は、メモリが多様な形態を取り得ることを表すため、メモリ172と、記憶装置173と、を含めた。メモリ172及び記憶装置173は、プロセッサ171によって実行されるべき各種プログラムコードを記憶するためのプログラムメモリと、プロセッサ171がディジタル信号処理を実行する際に使用されるワークメモリと、ディジタル信号処理で使用されるデータが記憶される一時記憶メモリと、を含む。
Here, the memory may be, for example, non-volatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM. Furthermore, the memory may be a magnetic disk, flexible disk, compact disk, mini disk, DVD, or the like. The memory may be in the form of HDD, SSD, and the like.
FIG. 11 includes memory 172 and storage 173 to illustrate that memory can take many forms. The memory 172 and storage device 173 are a program memory for storing various program codes to be executed by the processor 171, a work memory used when the processor 171 executes digital signal processing, and a memory used for digital signal processing. and a temporary storage memory in which the data to be processed is stored.
 なお、PRI制御部150及びレーダ信号処理回路160の機能は、一部を専用のハードウエアで実現し、一部をソフトウエア又はファームウエアで実現するようにしてもよい。例えばPRI制御部150については専用のハードウエアとしての処理回路でその機能を実現し、レーダ信号処理回路160については処理回路がメモリに格納されたプログラムを読み出して実行することによってその機能を実現することも可能である。 It should be noted that the functions of the PRI control unit 150 and the radar signal processing circuit 160 may be partially realized by dedicated hardware and partially realized by software or firmware. For example, the function of the PRI control unit 150 is realized by a processing circuit as dedicated hardware, and the function of the radar signal processing circuit 160 is realized by reading and executing a program stored in the memory by the processing circuit. is also possible.
 このように信号処理回路170は、ハードウエア、ソフトウエア、ファームウエア、又はこれらの組合せによって、PRI制御部150及びレーダ信号処理回路160の機能を実現することができる。 Thus, the signal processing circuit 170 can implement the functions of the PRI control section 150 and the radar signal processing circuit 160 by hardware, software, firmware, or a combination thereof.
 実施の形態1に係るレーダ装置100は上記構成を備えるため、速度アンビギュイティが現れる広い範囲の中の複数の速度候補に基づいて、目標の速度を推定することができる。この作用効果により実施の形態1に係るレーダ装置100は、従来よりも少ない演算量で、速度アンビギュイティの影響を受けることなく、目標の距離及び速度を推定することができる。 Since the radar device 100 according to Embodiment 1 has the above configuration, it is possible to estimate the speed of the target based on a plurality of speed candidates within a wide range in which speed ambiguity appears. Due to this effect, the radar device 100 according to the first embodiment can estimate the distance and speed of the target with a smaller amount of calculation than in the conventional art and without being affected by the speed ambiguity.
実施の形態2.
 実施の形態2に係るレーダ装置100は、実施の形態1に係るレーダ信号処理回路160とは構成を異にするレーダ信号処理回路160(160B)を備える。実施の形態2は、特に明記する場合を除き、実施の形態1と同じ符号を用い、重複する説明は適宜省略される。
Embodiment 2.
The radar apparatus 100 according to the second embodiment includes a radar signal processing circuit 160 (160B) having a configuration different from that of the radar signal processing circuit 160 according to the first embodiment. In the second embodiment, unless otherwise specified, the same reference numerals as in the first embodiment are used, and overlapping descriptions are omitted as appropriate.
 図12は、実施の形態2に係るレーダ装置100のレーダ信号処理回路160(160B)の機能構成を示すブロック図である。図12に示されるとおりレーダ信号処理回路160(160B)は、相関処理部161と補償処理部162とに代えて、CZTパルスドップラ処理部165を含む。図12に示されるとおりCZTパルスドップラ処理部165はレーダ信号処理回路160(160B)において最前段に設けられ、その後段に目標候補検出部163、さらにその後段に測速度・測距離部164、が設けられている。CZTは、Chirp Z―Transformの頭文字であり、チャープz変換を意味する。 FIG. 12 is a block diagram showing the functional configuration of the radar signal processing circuit 160 (160B) of the radar device 100 according to the second embodiment. As shown in FIG. 12, radar signal processing circuit 160 (160B) includes CZT pulse Doppler processing section 165 instead of correlation processing section 161 and compensation processing section 162 . As shown in FIG. 12, the CZT pulse Doppler processing unit 165 is provided at the foremost stage in the radar signal processing circuit 160 (160B), followed by the target candidate detection unit 163, and further after the speed measurement/distance measurement unit 164. is provided. CZT is an acronym for Chirp Z-Transform and means Chirp z-transform.
 チャープz変換は、Bluesteinが1968年に提唱したFFTアルゴリズムのことであり、BluesteinのFFTアルゴリズムとも呼ばれる。チャープz変換は、任意の長さの離散データを高速フーリエ変換できる、という特徴を有する。 The chirp z-transform is an FFT algorithm proposed by Bluestein in 1968, and is also called Bluestein's FFT algorithm. The chirp z-transform has the characteristic that it can fast Fourier transform any length of discrete data.
 図13は、実施の形態2に係るレーダ装置100のレーダ信号処理回路160(160B)の処理ステップを示すフローチャートである。図13に示されるとおりレーダ信号処理回路160(160B)の処理ステップは、CZTパルスドップラ処理部165が行うCZTパルスドップラ処理ステップ(ST165)と、目標候補検出部163が行う目標候補検出ステップ(ST163)と、測速度・測距離部164が行う測速度・測距離ステップ(ST164)と、を含む。 FIG. 13 is a flow chart showing processing steps of the radar signal processing circuit 160 (160B) of the radar device 100 according to the second embodiment. As shown in FIG. 13, the processing steps of radar signal processing circuit 160 (160B) include a CZT pulse Doppler processing step (ST165) performed by CZT pulse Doppler processing section 165 and a target candidate detection step (ST163) performed by target candidate detection section 163. ), and a speed measurement/distance measurement step (ST164) performed by the speed measurement/distance measurement unit 164 .
 実施の形態2に係るレーダ信号処理回路160(160B)は、チャープz変換を用いて相関処理と速度補償とを実施する。具体的にレーダ信号処理回路160(160B)のCZTパルスドップラ処理部165は、式(1)に示される受信ディジタル信号に対して、速度補償を考慮したヒット方向のCZT処理を行い、さらに相関処理を実施する(図13のST165で示されるステップ)。 The radar signal processing circuit 160 (160B) according to Embodiment 2 performs correlation processing and velocity compensation using chirp z-transform. Specifically, the CZT pulse Doppler processing unit 165 of the radar signal processing circuit 160 (160B) performs CZT processing in the hit direction in consideration of velocity compensation on the received digital signal shown in Equation (1), and further performs correlation processing. (step indicated by ST165 in FIG. 13).
 図14は、図13に示されるフローチャートにおいて、CZTパルスドップラ処理ステップ(ST165)の詳細を示したフローチャートである。図14に示されるとおりCZTパルスドップラ処理ステップ(ST165)は、距離方向のFFTの処理ステップ(ST165A)と、ヒット方向のCZTの処理ステップ(ST165B)と、参照関数と乗算する処理ステップ(ST165C)と、距離方向のIFFTの処理ステップ(ST165D)と、を含む。 FIG. 14 is a flowchart showing details of the CZT pulse Doppler processing step (ST165) in the flowchart shown in FIG. As shown in FIG. 14, the CZT pulse Doppler processing step (ST165) includes an FFT processing step in the range direction (ST165A), a CZT processing step in the hit direction (ST165B), and a processing step of multiplying by a reference function (ST165C). and an IFFT processing step (ST165D) in the distance direction.
 CZTパルスドップラ処理部165は受信ディジタル信号に対して、以下の数式に例示される距離方向のFFTの処理を実行する(図14のST165Aで示されるステップ)。

Figure JPOXMLDOC01-appb-I000022

ここで、mは、1つのPRIにおけるサンプリング番号である。Mは、1つのPRIにおけるサンプリングの総数である。Mfftは、フーリエ変換点の総数である。kは、距離方向のFFTの結果に付される通し番号である。別の表現をすればkは、ファストタイム周波数スペクトルに付されるビン番号である。ビン番号の詳細は、後述の説明により明らかとなる。
The CZT pulse Doppler processing unit 165 executes FFT processing in the distance direction exemplified by the following formula on the received digital signal (step indicated by ST165A in FIG. 14).

Figure JPOXMLDOC01-appb-I000022

Here, mp is the sampling number in one PRI. M p is the total number of samplings in one PRI. M fft is the total number of Fourier transform points. kr is a serial number attached to the result of FFT in the range direction. In other words, kr is the bin number attached to the fast-time frequency spectrum. The details of the bin numbers will become clear from the description below.
 CZTパルスドップラ処理部165は、以下の数式に例示される、ヒット方向のCZTの処理を実行する(図14のST165Bで示されるステップ)。

Figure JPOXMLDOC01-appb-I000023

 ここでスクリプト書体のFに下添え字のCZTは、その大かっこの中身に対してヒット方向のチャープz変換を行う操作を表している。ヒット方向とは、要するにヒット番号が増減する方向とイメージすればよく、距離方向又はレンジ方向と同義である。このことは、式(23)が、式(22)の距離方向のFFTの結果に対して行う処理である、ということからも理解できる。言い換えれば実施の形態2に係るレーダ装置100は、受信信号に対して、ファストタイム方向を周波数領域に変換し、チャープz変換を用いている。
 hcztは、CZT処理後の信号のドップラ速度のビン番号を表す。ビン番号は、FFTビンに付された通し番号である。FFTビン又はビンは、英語のbinに由来し、周波数スペクトルが短冊のように並んでいることから、その短冊状のものを指す用語として使われている。Hcztは、CZT処理後に得られるビンの総数である。hcztがドップラ速度のビン番号であることと対比して、kをレンジのビン番号と称してもよい。
The CZT pulse Doppler processing unit 165 executes CZT processing in the hit direction exemplified by the following formula (step indicated by ST165B in FIG. 14).

Figure JPOXMLDOC01-appb-I000023

Here, the subscript CZT of the script typeface F represents the operation of performing chirp z-conversion in the hit direction on the contents of the square brackets. The hit direction can be imagined as the direction in which the hit number increases or decreases, and is synonymous with the distance direction or range direction. This can also be understood from the fact that equation (23) is a process performed on the result of FFT in the range direction of equation (22). In other words, the radar apparatus 100 according to Embodiment 2 transforms the fast-time direction of the received signal into the frequency domain and uses chirp z-transform.
h czt represents the Doppler velocity bin number of the signal after CZT processing. The bin number is a serial number given to the FFT bins. FFT bins or bins are derived from the English word bin, and since the frequency spectrum is arranged like a strip, the term is used to refer to the strip shape. H czt is the total number of bins obtained after CZT treatment. k r may be referred to as the range bin number, in contrast to h czt being the Doppler velocity bin number.
 式(21)の右辺における回転子の項は、具体的には以下のように定義される。

Figure JPOXMLDOC01-appb-I000024

 ここで式(24)の左辺のAkrは、kに対応する変換の開始位相に係る回転子である。fkrは、kに位置するスペクトルのファストタイム周波数である。νstは、変換開始の速度である。νstの下添え字のstは、開始を意味するstartの最初の2文字である。
 式(25)の左辺のWkr(hczt)は、kに対応する変換の位相変化幅に係る回転子である。Δνcztは、速度の変化幅である。
 言い換えれば実施の形態2に係るレーダ装置100は、補償処理部162において、チャープz変換を用いて位相補償を実施し、予め設定された速度による前記運動補償候補で前記運動補償を行う。
The rotator term on the right side of equation (21) is specifically defined as follows.

Figure JPOXMLDOC01-appb-I000024

where A kr on the left side of equation (24) is the rotator associated with the starting phase of the transform corresponding to k r . f kr is the fast-time frequency of the spectrum located at k r . ν st is the rate of conversion initiation. The subscript st of ν st is the first two characters of start, which means the start.
W kr (h czt ) on the left side of Equation (25) is the rotator related to the phase change width of the transform corresponding to k r . Δν czt is the variation width of the velocity.
In other words, in the radar apparatus 100 according to Embodiment 2, the compensation processing unit 162 performs phase compensation using chirp z-transform, and performs the motion compensation with the motion compensation candidate based on the preset velocity.
 式(22)に示される処理も、式(23)に示される処理も、FFTであることに相違はない。式(22)に示されるFFTは、1回目のFFTであり、Range―FFTと称されることもある。式(23)に示されるFFTは、1回目のFFTの結果に対する2回目のFFTであり、Doppler-FFTと称されることもある。一般に、Range-FFTとDoppler-FFTとの2回のFFTを行うことによって、同じ距離にある複数の物体それぞれの速度の測定が可能となる。 There is no difference in that both the processing shown in formula (22) and the processing shown in formula (23) are FFTs. The FFT shown in Equation (22) is the first FFT and is sometimes called Range-FFT. The FFT shown in Equation (23) is the second FFT for the result of the first FFT, and is also called Doppler-FFT. In general, by performing two FFTs, Range-FFT and Doppler-FFT, it is possible to measure the velocity of each of multiple objects at the same distance.
 CZT処理で求めようとする相対速度は、式(24)及び式(25)に現れている。具体的に相対速度は、以下の数式による値である。

Figure JPOXMLDOC01-appb-I000025

式(26)の左辺のνczt(hczt)は、ドップラ速度のビン番号がhcztであるときの相対速度を表す。
The relative velocity sought by CZT processing appears in equations (24) and (25). Specifically, the relative velocity is a value according to the following formula.

Figure JPOXMLDOC01-appb-I000025

ν czt (h czt ) on the left side of equation (26) represents the relative velocity when the Doppler velocity bin number is h czt .
 式(25)で用いたΔνcztは、Hcztとの間に以下に示される関係を有する。

Figure JPOXMLDOC01-appb-I000026

ここでνenは、変換終了の速度である。νenの下添え字のenは、終了を意味するendの最初の2文字である。式(27)は、単に、速度の全体幅をサンプリングの点の数で割ることで刻み幅が求められることを表している。
Δν czt used in equation (25) has the following relationship with H czt .

Figure JPOXMLDOC01-appb-I000026

where ν en is the rate of conversion completion. The subscript en of ν en is the first two characters of end, which means the end. Equation (27) simply states that the step size is found by dividing the total width of the velocity by the number of sampling points.
 式(27)で用いたνst及びνenは、νcanとの間に以下に示される関係を有する。

Figure JPOXMLDOC01-appb-I000027

ここでkνは、或る定数である。dνは、速度分解能、すなわち速度の刻み幅について最も小さくできるもの、を表す。dνは、数式で表せば、以下のように示せる。

Figure JPOXMLDOC01-appb-I000028
ν st and ν en used in equation (27) have the following relationship with ν can .

Figure JPOXMLDOC01-appb-I000027

where kv is a constant. d v represents the velocity resolution, ie the smallest possible velocity step size. dv can be shown as follows if it expresses with a numerical formula.

Figure JPOXMLDOC01-appb-I000028
 以上の受信ディジタル信号に対しての処理と同様に、参照信号に対してもフーリエ変換が実施される。実施の形態2で用いる参照信号は、式(2)に示された実施の形態1の参照信号と同じ構造ではあるが、詳細は以下に示される。

Figure JPOXMLDOC01-appb-I000029

このように式(30)に示される参照信号は、式(26)に示された相対速度が使われている。
Fourier transform is also performed on the reference signal in the same manner as in the processing on the received digital signal described above. The reference signal used in Embodiment 2 has the same structure as the reference signal in Embodiment 1 shown in Equation (2), but the details are shown below.

Figure JPOXMLDOC01-appb-I000029

In this way, the reference signal shown in Equation (30) uses the relative velocity shown in Equation (26).
 参照信号に対して実施されるフーリエ変換は、例えば以下のようなものである。

Figure JPOXMLDOC01-appb-I000030

なお、式(31)に示されたフーリエ変換は、式(22)で示されたものと同じである。
A Fourier transform performed on the reference signal is, for example, as follows.

Figure JPOXMLDOC01-appb-I000030

Note that the Fourier transform shown in Equation (31) is the same as that shown in Equation (22).
 CZTパルスドップラ処理部165は、それぞれフーリエ変換された受信ディジタル信号と参照関数とを乗算する処理を実施する(図14のST165Cで示されるステップ)。

Figure JPOXMLDOC01-appb-I000031
CZT pulse Doppler processing section 165 performs a process of multiplying the respective Fourier-transformed received digital signals by a reference function (step ST165C in FIG. 14).

Figure JPOXMLDOC01-appb-I000031
 CZTパルスドップラ処理部165は、式(32)に示された2つの信号を乗算した結果に対して、距離方向の逆フーリエ変換を実施する(図14のST165Dで示されるステップ)。

Figure JPOXMLDOC01-appb-I000032

 式(33)により得られたRpc(hczt、l)は、相関処理及び補償処理が施された信号である。Rpc(hczt、l)は、実施の形態1における式(12)で示されたFFFT(k,m)と等価なものである。よって、以降の処理は、実施の形態1に示されたものを行えばよい。
CZT pulse Doppler processing section 165 performs inverse Fourier transform in the distance direction on the result of multiplying the two signals shown in equation (32) (step ST165D in FIG. 14).

Figure JPOXMLDOC01-appb-I000032

R pc (h czt , l) obtained by Equation (33) is a signal that has undergone correlation processing and compensation processing. R pc (h czt , l) is equivalent to F FFT (k, m) shown in equation (12) in the first embodiment. Therefore, the subsequent processing may be performed as described in the first embodiment.
 以上のように実施の形態2に係るレーダ装置100は上記の構成を備えるため、実施の形態1に示した効果に加えて、ドップラカップリングによる積分損失を少なくし、ドップラカップリングによる距離シフトを小さくできる、という効果を奏する。 As described above, since the radar apparatus 100 according to the second embodiment has the above configuration, in addition to the effects shown in the first embodiment, the integration loss due to Doppler coupling is reduced, and the distance shift due to Doppler coupling is reduced. It has the effect of making it smaller.
 なお、実施の形態2に係るレーダ装置100のハードウエアは、実施の形態1と同様の構成で実現されてよい。 Note that the hardware of the radar device 100 according to the second embodiment may be implemented with the same configuration as that of the first embodiment.
実施の形態3.
 実施の形態3に係るレーダ装置100は、実施の形態2に係るレーダ装置100の構成をベースとし、或る機能を追加したレーダ信号処理回路160(160C)を備える。実施の形態3に係るレーダ装置100は、特にレーダ装置100がパルス間毎にPRIを不等間隔にさせるスタガPRI方式を採用する場合に有効な構成を備える。用語の「スタガ」は、英語のStaggeredに由来する。staggeredとは、もともとは「よろよろする」、「千鳥状にした」という意味であるが、この技術分野においては不等間隔を意味する。
 実施の形態3は、特に明記をする場合を除き、既出の実施の形態と同じ符号を用い、重複する説明は適宜省略される。
Embodiment 3.
The radar device 100 according to the third embodiment is based on the configuration of the radar device 100 according to the second embodiment, and includes a radar signal processing circuit 160 (160C) with a certain function added. The radar device 100 according to Embodiment 3 has a configuration that is particularly effective when the radar device 100 employs a staggered PRI method in which PRIs are set at unequal intervals between pulses. The term "stagger" is derived from the English staggered. Staggered originally meant "staggered" or "staggered", but in this technical field it means uneven spacing.
Embodiment 3 uses the same reference numerals as those of the above-described embodiments, unless otherwise specified, and overlapping descriptions are omitted as appropriate.
 図15は、実施の形態3に係るレーダ装置100のレーダ信号処理回路160(160C)の機能構成を示すブロック図である。図15に示されるとおりレーダ信号処理回路160(160C)は、CZTパルスドップラ処理部165、目標候補検出部163、測速度・測距離部164、に加えて、平均化部166を備える。 FIG. 15 is a block diagram showing the functional configuration of the radar signal processing circuit 160 (160C) of the radar device 100 according to the third embodiment. As shown in FIG. 15, the radar signal processing circuit 160 (160C) includes an averaging section 166 in addition to a CZT pulse Doppler processing section 165, a target candidate detection section 163, a velocity/distance measurement section 164, and so on.
 スタガPRI方式(単に「スタガ方式」ともいう)は、ドップラ及びレンジのアンビギュイティを解決する上で有効な手段である。スタガ方式ではパルス繰返し周期が、ヒット番号ごとに変化する。そこで実施の形態3においては、パルス繰返し周期は、TPRI(0)、TPRI(1)、…、TPRI(h)、…、TPRI(H-1)との表記が用いられる。 The staggered PRI scheme (simply called "staggered scheme") is an effective means of resolving Doppler and range ambiguities. In the staggered method, the pulse repetition period changes for each hit number. Therefore, in Embodiment 3, the pulse repetition periods are expressed as T PRI (0), T PRI (1), . . . , T PRI ( h), .
 実施の形態3に係るPRI制御部150は、パルス幅がそれぞれTであり、パルス繰返し周期がTPRI(0)、TPRI(1)、…、TPRI(h)、…、TPRI(H-1)である一連の信号を生成するためのタイミング信号を生成する。生成されたタイミング信号は、信号生成回路110へ送出される。
 実施の形態3に係るレーダ装置100が採用する一連の信号は、基準周期という考え方に基づいて作成されたものでもよい。すなわち一連の信号は、例えば基準周期を起点に線形的に周期を増加又は減少させたものでもよい。
PRI control section 150 according to Embodiment 3 has a pulse width of T 0 and pulse repetition periods of T PRI (0), T PRI (1), . . . , T PRI (h), . H-1) to generate a timing signal for generating a series of signals. The generated timing signal is sent to signal generation circuit 110 .
A series of signals employed by the radar apparatus 100 according to Embodiment 3 may be created based on the concept of the reference period. In other words, a series of signals may be obtained by linearly increasing or decreasing the period starting from the reference period, for example.
 図16は、実施の形態3に係るレーダ装置100のレーダ信号処理回路160(160C)の処理ステップを示すフローチャートである。図16に示されるとおりレーダ信号処理回路160(160C)の処理フローは、速度候補に係る内側の処理ループと、パルス繰返し周期に係る外側の処理ループと、による2重の処理ループを備える。速度候補に係る内側の処理ループは、図13に示されたフローチャートにおける速度候補に係る処理ループと同じである。 FIG. 16 is a flow chart showing processing steps of the radar signal processing circuit 160 (160C) of the radar device 100 according to the third embodiment. As shown in FIG. 16, the processing flow of the radar signal processing circuit 160 (160C) has double processing loops, an inner processing loop for velocity candidates and an outer processing loop for pulse repetition periods. The inner processing loop for speed candidates is the same as the processing loop for speed candidates in the flowchart shown in FIG.
 このように実施の形態3に係るレーダ装置100のレーダ信号処理回路160(160C)は、パルス繰返し周期がTPRI(0)、TPRI(1)、…、TPRI(h)、…、TPRI(H-1)、のそれぞれにおいて、目標の距離及び速度の推定値が算出される。レーダ信号処理回路160(160C)が平均化部166を備える趣旨は、パルス繰返し周期のそれぞれにおいて算出した推定値の平均を取ることにより、より確からしい推定値を算出することにある。平均化部166は、パルス繰返し周期のそれぞれにおいて算出した推定値の平均値を算出する(図16のST166で示されるステップ)。 In this way, the radar signal processing circuit 160 (160C) of the radar device 100 according to the third embodiment has pulse repetition periods of T PRI (0), T PRI (1), ..., T PRI (h), ..., T PRI (H-1), an estimate of the target's range and velocity is calculated. The reason why the radar signal processing circuit 160 (160C) includes the averaging unit 166 is to calculate a more probable estimated value by averaging the estimated values calculated in each pulse repetition cycle. Averaging section 166 calculates the average value of the estimated values calculated in each pulse repetition period (step ST166 in FIG. 16).
 図17は、図8に示すイメージ図を実施の形態3にあてはめたものである。また図18は、図9に示すイメージ図を実施の形態3にあてはめたものである。 FIG. 17 is the image diagram shown in FIG. 8 applied to the third embodiment. FIG. 18 is the image diagram shown in FIG. 9 applied to the third embodiment.
 以上のように実施の形態3に係るレーダ装置100は上記の構成を備えるため、実施の形態2に示した効果に加えて、スタガPRI方式を採用でき、パルス繰返し周期のそれぞれにおいて算出した推定値の平均を取ることにより、より確からしい推定値を算出することができる、という効果を奏する。 As described above, since the radar device 100 according to Embodiment 3 has the above configuration, in addition to the effects shown in Embodiment 2, the staggered PRI method can be adopted, and the estimated value calculated at each pulse repetition period By taking the average of , it is possible to calculate a more probable estimated value.
 なお、実施の形態3に係るレーダ装置100のハードウエアは、実施の形態1と同様の構成で実現されてよい。 Note that the hardware of the radar device 100 according to the third embodiment may be implemented with the same configuration as that of the first embodiment.
実施の形態4.
 実施の形態4に係るレーダ装置100は、実施の形態1に係るレーダ装置100の構成をベースとし、相関処理部161及び補償処理部162をパルス間スタガ積分部167に代えたレーダ信号処理回路160(160D)を備える。実施の形態4に係るレーダ装置100は、特にレーダ装置100がスタガPRI方式を採用する場合に有効な構成を備える。実施の形態4は、特に明記をする場合を除き、既出の実施の形態と同じ符号を用い、重複する説明は適宜省略される。
Embodiment 4.
The radar apparatus 100 according to the fourth embodiment is based on the configuration of the radar apparatus 100 according to the first embodiment, and includes a radar signal processing circuit 160 in which the correlation processing unit 161 and the compensation processing unit 162 are replaced with an inter-pulse stagger integration unit 167. (160D). The radar device 100 according to Embodiment 4 has a configuration that is particularly effective when the radar device 100 employs the staggered PRI method. In the fourth embodiment, unless otherwise specified, the same reference numerals as in the previous embodiments are used, and duplicate descriptions are omitted as appropriate.
 実施の形態4が想定するスタガ方式は、同じ間隔のPRIのパルスが数発連続しグループを形成する、という特殊なものである。グループは複数存在し、異なるグループではPRIが異なる、というスタガ方式である。例えば、同じ間隔のPRIが4パルス分だけ連続しグループを形成する、と想定する。この場合、TPRI(0)~TPRI(3)が第1グループを構成し、同じ値となる。TPRI(4)~TPRI(7)が第2グループを構成し、第1グループとは異なる、別の共通の値となる。以下同様にグループ分けされ、この例の場合は、1つのシリーズにHを4で割った数のグループが想定される。1回目のシリーズの信号の照射が行われた後、またヒット番号が0に戻り2回目のシリーズの信号の照射が行われる。2回目のシリーズにおいても、TPRI(0)~TPRI(3)が第1グループを構成し、TPRI(4)~TPRI(7)が第2グループを構成する。実施の形態4に係るレーダ装置100は、このようにパルスの照射を繰り返す。 The staggered method assumed in the fourth embodiment is a special method in which several PRI pulses with the same interval are consecutively shot to form a group. This is a staggered method in which a plurality of groups exist and different groups have different PRIs. For example, assume that four pulses of PRI with the same interval form a group. In this case, T PRI (0) to T PRI (3) constitute the first group and have the same value. T PRI (4) to T PRI (7) constitute the second group, which is another common value different from the first group. Subsequent groups are similarly grouped, and in the case of this example, one series is assumed to have a number of groups obtained by dividing H by 4. After the first series of signal irradiation is performed, the hit number returns to 0 and the second series of signal irradiation is performed. In the second series as well, T PRI (0) to T PRI (3) constitute the first group, and T PRI (4) to T PRI (7) constitute the second group. The radar device 100 according to the fourth embodiment repeats pulse irradiation in this manner.
 実施の形態4に係るPRI制御部150は、上記のグループを形成したスタガ方式の信号を生成するためのタイミング信号を生成する。生成されたタイミング信号は、信号生成回路110へ送出される。 The PRI control unit 150 according to the fourth embodiment generates timing signals for generating staggered signals that form the above groups. The generated timing signal is sent to signal generation circuit 110 .
 図20は、実施の形態4に係るレーダ装置100のレーダ信号処理回路160(160D)の処理ステップを示すフローチャートである。図20に示されるとおりレーダ信号処理回路160(160D)の処理ステップは、パルス間スタガ積分部167が行うパルス間スタガ積分のステップ(ST167)と、目標候補検出部163が行う目標候補検出ステップ(ST163)と、測速度・測距離部164が行う測速度・測距離ステップ(ST164)と、を含む。 FIG. 20 is a flow chart showing processing steps of the radar signal processing circuit 160 (160D) of the radar device 100 according to the fourth embodiment. As shown in FIG. 20, the processing steps of the radar signal processing circuit 160 (160D) include the inter-pulse stagger integration step (ST167) performed by the inter-pulse stagger integration unit 167 and the target candidate detection step (ST167) performed by the target candidate detection unit 163. ST163) and a speed measurement/distance measurement step (ST164) performed by the speed measurement/distance measurement unit 164.
 間隔が同じPRIの反射信号を次々に加算して積分することで、SN比を改善することが考えられる。実施の形態4に係るレーダ信号処理回路160(160D)がパルス間スタガ積分部167を備える趣旨は、この効果を奏することである。 It is conceivable to improve the SN ratio by successively adding and integrating reflected signals of PRIs with the same interval. The reason why the radar signal processing circuit 160 (160D) according to the fourth embodiment includes the pulse-to-pulse stagger integration unit 167 is to achieve this effect.
 図21は、実施の形態4に係るパルス間スタガ積分部167が行う積分のイメージを示す参考図である。より詳細には図21は、ヒットごとのPRIを、そのPRIが所属するグループの番号を記載して表したものである。図21の右方向は、ヒット番号が増える方向である。図21は、同じ間隔のPRIが4パルス分だけ連続しグループを形成する場合を例示している。また図21は、Hが16であり、グループの数は4である場合を例示している。図21の下方向は、シリーズの回数が増える方向を表している。 FIG. 21 is a reference diagram showing an image of integration performed by the pulse-to-pulse stagger integration unit 167 according to the fourth embodiment. More specifically, FIG. 21 represents the PRI for each hit by describing the number of the group to which the PRI belongs. The right direction in FIG. 21 is the direction in which the hit number increases. FIG. 21 exemplifies a case where four pulses of PRI with the same interval continue to form a group. Also, FIG. 21 exemplifies a case where H is 16 and the number of groups is 4. In FIG. The downward direction in FIG. 21 represents the direction in which the number of series increases.
 実施の形態4に係るパルス間スタガ積分部167は、例えば図21の参考図に示された複数のシリーズの反射信号について、コヒーレント積分を行う。パルス間スタガ積分部167は、まず、間隔が同じPRIの反射信号についてコヒーレント積分を行い、その後、間隔が異なるPRIの反射信号についてコヒーレント積分を行う(図19のST167で示されるステップ)。ここでパルス間スタガ積分部167が行うコヒーレント積分は、前述したCZTでもよいし、その他の流儀の離散フーリエ変換であってもよい。またコヒーレント積分は、射影行列を利用したり、フィルタを適用したりして、その効果を高めるようにしてもよい。 The pulse-to-pulse stagger integration unit 167 according to the fourth embodiment performs coherent integration on a plurality of series of reflected signals shown in the reference diagram of FIG. 21, for example. The pulse-to-pulse stagger integrator 167 first performs coherent integration on reflected signals of PRIs with the same interval, and then coherently integrates reflected signals of PRIs with different intervals (step ST167 in FIG. 19). The coherent integration performed by the pulse-to-pulse stagger integration unit 167 may be the above-described CZT or discrete Fourier transform of another style. Coherent integration may be enhanced by using a projection matrix or by applying a filter.
 間隔が同じPRIの反射信号についてのコヒーレント積分は、同一のシリーズの同じグループに所属する反射信号について行ってもよいし(図21の「積分方向1」参照)、異なるシリーズの同じグループ番号の反射信号について行ってもよい(図21の「積分方向2」参照)。 Coherent integration of reflected signals with the same PRI interval may be performed on reflected signals belonging to the same group in the same series (see “integration direction 1” in FIG. 21), or may be performed on reflections of the same group number in different series. It may be done for the signal (see "integration direction 2" in FIG. 21).
 実施の形態4に係るレーダ装置100は、同一の種類の前記パルス繰返し周期に含まれるパルスごとの信号に対しコヒーレント積分を行い、その後に、異なる種類の前記パルス繰返し周期でのコヒーレント積分を行うことにより、前記目標の検出を行う。 The radar apparatus 100 according to Embodiment 4 performs coherent integration on signals for each pulse included in the pulse repetition period of the same type, and then performs coherent integration in the pulse repetition period of a different type. to detect the target.
 実施の形態4に係るレーダ装置100は、パルス間スタガ積分部167を含む構成であり、検波後積分によってSN比を改善する。
 SN比の改善は、検波前積分によっても達成できると考えられる。本開示技術に係るレーダ装置100は、SN比を改善するため、Matched Filter等のフィルタが用いられてもよい。
The radar apparatus 100 according to Embodiment 4 includes a pulse-to-pulse stagger integration section 167, and improves the SN ratio by post-detection integration.
It is believed that SNR improvement can also be achieved by pre-detection integration. The radar device 100 according to the technology disclosed herein may use a filter such as a matched filter to improve the SN ratio.
 以上のように実施の形態4に係るレーダ装置100は上記の構成を備えるため、実施の形態2に示した効果に加えて、間隔が同じPRIの反射信号について検波後積分を行うため、SN比を改善できる、という効果を奏する。検波後積分は、実施の形態3に示される平均化と同様の効果が期待される。したがって実施の形態4に係るレーダ装置100は、より確からしい推定値を算出することができるという効果を奏する、ともいえる。 As described above, since the radar apparatus 100 according to the fourth embodiment has the above configuration, in addition to the effects shown in the second embodiment, post-detection integration is performed for reflected signals with PRIs having the same interval, so the SN ratio can be improved. Post-detection integration is expected to have the same effect as the averaging shown in the third embodiment. Therefore, it can be said that the radar device 100 according to Embodiment 4 has the effect of being able to calculate a more probable estimated value.
 本開示技術に係るレーダ装置100は、目標の距離及び速度を測定する測定装置として利用することができ、産業上の利用可能性を有する。 The radar device 100 according to the technology disclosed herein can be used as a measuring device that measures the distance and speed of a target, and has industrial applicability.
 100 レーダ装置、110 信号生成回路、111 局部発振器、112 パルス生成器、113 パルス内変調器、114 出力部、120 送受信部、130 アンテナ、140 受信回路、150 PRI制御部、160、(160B)、(160C)、(160D) レーダ信号処理回路、161 相関処理部、162 補償処理部、163 目標候補検出部、164 測速度・測距離部、165 CZTパルスドップラ処理部、166 平均化部、167 パルス間スタガ積分部、170 信号処理回路、171 プロセッサ、172 メモリ、173 記憶装置、174 入出力インタフェース、175 信号路、200 表示器。 100 radar device, 110 signal generation circuit, 111 local oscillator, 112 pulse generator, 113 intra-pulse modulator, 114 output section, 120 transmission/reception section, 130 antenna, 140 reception circuit, 150 PRI control section, 160, (160B), (160C), (160D) Radar signal processing circuit, 161 correlation processing unit, 162 compensation processing unit, 163 target candidate detection unit, 164 speed and distance measurement unit, 165 CZT pulse Doppler processing unit, 166 averaging unit, 167 pulse Inter-stagger integrator, 170 signal processing circuit, 171 processor, 172 memory, 173 storage device, 174 input/output interface, 175 signal path, 200 display.

Claims (14)

  1.  ヒット毎に予め定められたパルス繰返し周期を設定するPRI制御部と、
     前記パルス繰返し周期に基づくタイミングで複数の送信パルス信号を連続的に生成する信号生成回路と、
     前記送信パルス信号を外部空間に送出し、前記送信パルス信号のそれぞれに対応する複数の反射波信号を前記外部空間から受信する送受信部と、
     前記送受信部で受信された前記反射波信号の各々をサンプリングすることにより、前記送信パルス信号にそれぞれ対応する複数の受信信号を生成する受信回路と、
     前記受信信号を相関演算によりパルス圧縮する相関処理部と、
     予め設定された速度による運動補償候補で運動補償を実施する補償処理部と、
     前記補償処理部の処理後の信号に基づいて目標候補を検出する目標候補検出部と、
     あいまいさなく計測可能な速度間隔よりも広い間隔にある複数の前記運動補償候補を用いて処理した前記目標候補検出部からの結果から、目標のあいまいさのない速度と距離を推定する測速度・測距離部と
    を備えるレーダ装置。
    a PRI controller that sets a predetermined pulse repetition period for each hit;
    a signal generation circuit that continuously generates a plurality of transmission pulse signals at timing based on the pulse repetition period;
    a transmission/reception unit that transmits the transmission pulse signal to an external space and receives a plurality of reflected wave signals corresponding to each of the transmission pulse signals from the external space;
    a receiving circuit for generating a plurality of received signals respectively corresponding to the transmitted pulse signals by sampling each of the reflected wave signals received by the transmitting/receiving unit;
    a correlation processing unit that pulse-compresses the received signal by correlation calculation;
    a compensation processing unit that performs motion compensation with a motion compensation candidate based on a preset speed;
    a target candidate detection unit that detects a target candidate based on the signal processed by the compensation processing unit;
    velocimetry for estimating the unambiguous velocity and distance of a target from results from the target candidate detector processed using a plurality of the motion compensation candidates at intervals wider than the unambiguously measurable velocity interval; A radar device comprising a distance measuring unit.
  2.  前記運動補償候補の間隔は、前記速度間隔の整数倍である
    請求項1記載のレーダ装置。
    2. The radar apparatus according to claim 1, wherein the motion compensation candidate interval is an integral multiple of the velocity interval.
  3.  前記運動補償候補の間隔は、前記目標候補検出部での前記目標の積分損失に基づき算出する
    請求項1記載のレーダ装置。
    2. The radar apparatus according to claim 1, wherein the motion compensation candidate interval is calculated based on the integrated loss of the target in the target candidate detection unit.
  4.  前記運動補償候補による生成される信号をインコヒーレント積分する
    請求項1記載のレーダ装置。
    2. The radar system according to claim 1, wherein signals generated by said motion compensation candidates are incoherently integrated.
  5.  前記目標候補検出部は、
     前記目標の候補に関する相対距離及び相対速度を算出する
    請求項1記載のレーダ装置。
    The target candidate detection unit is
    2. The radar system according to claim 1, wherein the relative distance and relative velocity of said target candidate are calculated.
  6.  前記運動補償を実施するために必要な速度候補の数と前記速度候補の刻み幅とは設定可能である
    請求項1記載のレーダ装置。
    2. The radar apparatus according to claim 1, wherein the number of velocity candidates required for performing said motion compensation and the step size of said velocity candidates are configurable.
  7.  速度候補のそれぞれの検出強度に基づいて、前記速度候補を、増加傾向にある前半グループと、減少傾向にある後半グループとに分け、
    前記前半グループと前記後半グループのそれぞれで最小二乗法に基づいた近似直線又は近似曲線を求め、
    前記近似直線又は前記近似曲線のそれぞれが交わる交点として前記目標の速度を求める
    請求項1記載のレーダ装置。
    dividing the speed candidates into a first half group that tends to increase and a second half group that tends to decrease based on the detection strength of each of the speed candidates;
    Obtaining an approximate straight line or approximate curve based on the least squares method for each of the first half group and the second half group,
    2. The radar device according to claim 1, wherein the velocity of said target is obtained as an intersection point where said approximated straight lines or said approximated curves intersect.
  8.  速度補償候補の検出結果から最大強度と2番目に最大となる強度を選択し、前記目標の速度の推定を行う
    請求項1記載のレーダ装置。
    2. The radar device according to claim 1, wherein the maximum intensity and the second maximum intensity are selected from the detection results of the velocity compensation candidates, and the velocity of the target is estimated.
  9.  速度補償候補の検出結果から、前後の差分値が最も小さくなるときの速度補償候補番号を選択する
    請求項7記載のレーダ装置。
    8. The radar apparatus according to claim 7, wherein the speed compensation candidate number is selected when the difference value before and after is the smallest from the detection results of the speed compensation candidates.
  10.  速度補償候補を処理した結果から選択した2つの信号強度の和と差とに基づいて前記目標の速度を推定する
    請求項7記載のレーダ装置。
    8. The radar apparatus according to claim 7, wherein the speed of the target is estimated based on the sum and difference of two signal intensities selected from results of processing speed compensation candidates.
  11.  前記パルス繰返し周期の種類に応じて、それぞれで算出した推定値の平均値を算出する平均化部を備える
    請求項1記載のレーダ装置。
    2. The radar apparatus according to claim 1, further comprising an averaging unit that calculates an average value of estimated values calculated respectively according to the type of the pulse repetition period.
  12.  同一の種類の前記パルス繰返し周期に含まれるパルスごとの信号に対しコヒーレント積分を行い、その後に、異なる種類の前記パルス繰返し周期でのコヒーレント積分を行うことにより、前記目標の検出を行う
    請求項1記載のレーダ装置。
    2. The target is detected by performing coherent integration on signals for each pulse contained in the pulse repetition period of the same type, followed by coherent integration in the pulse repetition period of a different type. The radar device as described.
  13.  前記補償処理部は、チャープz変換を用いて位相補償を実施し、予め設定された速度による前記運動補償候補で前記運動補償を行う
    請求項1記載のレーダ装置。
    2. The radar apparatus according to claim 1, wherein said compensation processing unit performs phase compensation using a chirp z-transform, and performs said motion compensation with said motion compensation candidate based on a preset speed.
  14.  前記受信信号に対して、ファストタイム方向を周波数領域に変換し、前記チャープz変換を用いる
    請求項13記載のレーダ装置。
    14. The radar apparatus according to claim 13, wherein the fast-time direction is transformed into the frequency domain for the received signal and the chirp z-transform is used.
PCT/JP2021/039294 2021-10-25 2021-10-25 Radar device WO2023073763A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/039294 WO2023073763A1 (en) 2021-10-25 2021-10-25 Radar device
JP2022508979A JP7090826B1 (en) 2021-10-25 2021-10-25 Radar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/039294 WO2023073763A1 (en) 2021-10-25 2021-10-25 Radar device

Publications (1)

Publication Number Publication Date
WO2023073763A1 true WO2023073763A1 (en) 2023-05-04

Family

ID=82155949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039294 WO2023073763A1 (en) 2021-10-25 2021-10-25 Radar device

Country Status (2)

Country Link
JP (1) JP7090826B1 (en)
WO (1) WO2023073763A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010197178A (en) * 2009-02-24 2010-09-09 Nec Corp Pulse compression device
JP2017522574A (en) * 2014-06-26 2017-08-10 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Radar measurement method
WO2017149596A1 (en) * 2016-02-29 2017-09-08 三菱電機株式会社 Radar device
JP2020051842A (en) * 2018-09-26 2020-04-02 日本電気株式会社 Signal processing device, sensing device, signal processing method, and control program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010197178A (en) * 2009-02-24 2010-09-09 Nec Corp Pulse compression device
JP2017522574A (en) * 2014-06-26 2017-08-10 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Radar measurement method
WO2017149596A1 (en) * 2016-02-29 2017-09-08 三菱電機株式会社 Radar device
JP2020051842A (en) * 2018-09-26 2020-04-02 日本電気株式会社 Signal processing device, sensing device, signal processing method, and control program

Also Published As

Publication number Publication date
JP7090826B1 (en) 2022-06-24
JPWO2023073763A1 (en) 2023-05-04

Similar Documents

Publication Publication Date Title
JP4988332B2 (en) Techniques for incoherent integration of targets with vague velocities.
Su et al. High-speed multi-target detection with narrowband radar
US10718861B2 (en) Frequency profiles for non-contact range measurement with multi-scale analysis
CN102628937B (en) Radar detection method based on generalized keystone transformation and non-coherent accumulation
CN107843892B (en) High-speed target Doppler velocity measurement method based on least square method
US20060109169A1 (en) Method for measuring distances and speeds of several objects by means of an fmcw radar
JP5072694B2 (en) Target detection device
JP2010230643A (en) Radar device
CN108828602B (en) Signal processing method for eliminating velocity ambiguity in pulse phase dry method velocity measurement
CN113093120B (en) Method for estimating PRI agile radar target parameters based on capon algorithm
CN105738889A (en) Frequency modulated continuous wave speed measurement and distance measurement method
CN113009439B (en) Multi-target detection method based on frequency modulated continuous wave millimeter wave radar
CN110221264B (en) Doppler fuzzy target coherent detection method and device based on periodic Keystone transformation
EP3270180B1 (en) Signal processing apparatus for generating a range-doppler map
Zheng et al. Radar detection and motion parameters estimation of maneuvering target based on the extended keystone transform (July 2018)
EP3208633B1 (en) Method and system for fmcw radar altimeter system height measurement resolution improvement
JP6861906B2 (en) Radar device and signal processing method
CN113640752B (en) Waveform design method based on inter-pulse phase frequency spectrum double agility
WO2023073763A1 (en) Radar device
WO2020076316A1 (en) Phase doppler radar
CN105548987A (en) Continuous wave radar object acceleration blind estimation method
CN115902803A (en) Speed ambiguity resolution method and device based on constant frequency assistance
CN115436929A (en) Sawtooth wave radar speed measurement extension method based on amplitude comparison angle measurement mode
CN110726988B (en) Distance and speed fuzzy mutual solution method for detecting hypersonic target by PD radar
CN109765540B (en) Frequency stepping system meter wave radar target extraction method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022508979

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE