WO2023072697A1 - Système et procédé d'étalonnage automatisé de paramètre de moteur dans un véhicule - Google Patents

Système et procédé d'étalonnage automatisé de paramètre de moteur dans un véhicule Download PDF

Info

Publication number
WO2023072697A1
WO2023072697A1 PCT/EP2022/079051 EP2022079051W WO2023072697A1 WO 2023072697 A1 WO2023072697 A1 WO 2023072697A1 EP 2022079051 W EP2022079051 W EP 2022079051W WO 2023072697 A1 WO2023072697 A1 WO 2023072697A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibration
engine parameter
module
engine
vehicle
Prior art date
Application number
PCT/EP2022/079051
Other languages
English (en)
Inventor
Manohar HALAHALI
Srikanth DUSI SETLUR
Jatavalaba Vijaykumar SRIKANTH
Original Assignee
Robert Bosch Gmbh
Bosch Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh, Bosch Limited filed Critical Robert Bosch Gmbh
Publication of WO2023072697A1 publication Critical patent/WO2023072697A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/05Testing internal-combustion engines by combined monitoring of two or more different engine parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2432Methods of calibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2487Methods for rewriting

Definitions

  • the present invention relates to a system for automated calibration of an engine parameter in a vehicle.
  • a calibration process has a long lead time, and several iterations are performed to optimize it and bring to 100% maturity. In the process there are also several errors that might be introduced due to the calibration engineer. Overall quality of the data set has to improve. Due to manual calibration techniques there is a data review step that is introduced which adds to the overall timeline of a calibration process.
  • a patent literature 201841027905 discloses a device for calibrating an Engine Control Unit (ECU) of a vehicle in a dynamometer.
  • the patent literature provides a device for calibrating the ECU of the vehicle in a dynamometer.
  • the device comprises a housing. Further, a plurality of actuators enclosed in the housing.
  • An interface module is also provided in the housing. The interface module is adapted to connect the plurality of actuators, the ECU, and the dynamometer with a controller. Also, the dynamometer is controlled by respective control module.
  • the device automates end-to-end calibration of the ECU. The automation of the calibration, measurement, and verification activities for the ECU of the vehicle without iterations results in high reproducibility and less time and development cost.
  • FIG. 1 illustrates a block diagram of a system for automated calibration of an engine parameter in a vehicle, according to an embodiment of the present invention
  • FIG. 2 illustrates a method for automated calibration of the engine parameter in the vehicle, according to the present invention. Detailed description of the embodiments:
  • Fig. 1 illustrates a block diagram of a system for automated calibration of an engine parameter in a vehicle, according to an embodiment of the present invention.
  • the system 100 comprises a device 102 interfaced with an Engine Control Unit (ECU) 114 of the vehicle 112 through a communication interface 108 for calibration.
  • the device 102 configured to receive input dataset from a computing unit 106 comprising operating variables of an engine of the vehicle 112.
  • the operating variables comprises but not limited to a throttle position, an engine speed, an air/fuel ratio, an engine temperature, an exhaust temperature, and the like, characterized in that, the device 102 comprises a calibration module 104 to calibrate the engine parameter.
  • the calibration module 104 configured to, process the input dataset based on the engine parameter selected for calibration and calibrates the engine parameter.
  • the calibrated engine parameter is then stored in a memory element (not shown) of the ECU 114.
  • the calibration module 104 is selected from a model-based module and a rule-based module corresponding to the engine parameter selected for calibration.
  • the calibration module 104 iterates the calibration until the calibrated engine parameter satisfies a preset criteria.
  • the device 102 comprises a controller (not shown) along with the memory element such as Random Access Memory (RAM) and/or Read Only Memory (ROM), Analog-to-Digital Converter (ADC) and vice-versa Digital-to- Analog Convertor (DAC), clocks, timers and at least one processor (capable of implementing machine learning) connected with the each other and to other components through communication bus channels.
  • the memory element is prestored with logics or instructions or programs or applications, preset criteria, which is accessed by the processor as per the defined routines.
  • the internal components of the controller are not explained for being state of the art, and the same must not be understood in a limiting manner.
  • the controller may also comprise communication units to communicate with a server or cloud through wireless or wired means such as Global System for Mobile Communications (GSM), 3G, 4G, 5G, Wi-Fi, Bluetooth, Ethernet, serial networks, and the like.
  • GSM Global System for Mobile Communications
  • 3G 3G
  • 4G 4G
  • 5G 5G
  • Wi-Fi Wi-Fi
  • Bluetooth Ethernet
  • serial networks serial networks, and the like.
  • Ecu 114 of the vehicle 112 is similar to the controller.
  • the device 102 is at least one selected from a group comprising a cloud server, a portable computer, the computing unit 106 itself, a smartphone, and a workstation and the like.
  • the computing unit 106 itself is possible to be used as the device 102 without any external devices 102 such as cloud server.
  • the computing unit 106 refers to computing device used to access the cloud server and the ECU 114 of the vehicle 112 in a setup 110 through the communication interface 108.
  • the engine parameter for calibration are selected from but not limited to throttle position, an ignition angle, an injection quantity, an engine position, a combustion phase, an ambient temperature, a drive mode, an emission control, and an exhaust temperature, and the like.
  • the vehicle 112 is preferably a two-wheeler such as a motorcycle, a scooter, a moped, etc.
  • the calibration module 104 is applicable for the two-wheeler and also equally adaptable to be used for three-wheelers such as auto-rickshaws, four wheelers such as cars and the other existing and new vehicles 112 (even snow mobiles) where the required calibration is required.
  • the model-based module takes input based on the engine parameter to be calibrated and outputs calibrated engine parameter.
  • the model-based module is generated using Machine Learning based regression analysis.
  • the calibration module 104 configured to, allow a manual correction/adjustment of the calibrated engine parameter by the calibration engineer.
  • the manual correction is learnt by the modelbased module and rule-based module, for future calibration of the engine parameter for similar vehicle 112.
  • a working of the system 100 is envisaged without limiting to the same.
  • the vehicle 112 as motorcycle set in the setup 110 comprising a dynamometer.
  • the setup 110 enables automated calibration of the engine parameter of the vehicle 112 through the device 102 which is the cloud server.
  • the dynamometer i.e. either an engine dynamometer or a chassis dynamometer.
  • the setup 110 further comprises plurality of sensors such as Manifold Air Pressure (MAP) sensor, a Throttle Position Sensor (TPS), a Crank and/or a Cam position and speed sensor, a coolant temperature sensor, an air temperature sensor, an Exhaust Oxygen (Lambda) sensor and the like.
  • the setup 110 still further comprises a dyno controller to operate the dynamometer, through the communication interface 108 such as a Controller Area Network (CAN) interface to enable communication between the device 102 and the dyno controller, the ECU 114, the actuators, the sensors, and the like.
  • CAN Controller Area Network
  • the actuators are selected from a group comprising a throttle actuator, a brake actuator, a gear actuator, a clutch actuator, a fuel injection module, a blower, and the like.
  • Each actuator comprises a control unit having a microcontroller flashed with actuator program.
  • the communication interface 108 to be a CAN transceiver
  • the CAN transceiver transmits and receives the CAN message from the CAN bus.
  • a stepper motor or other motor or other electro-mechanical assembly is used in the actuator.
  • a driver circuit for the stepper motor is provided which is controlled by the control unit.
  • the objective is to detect the engine position via teeth movement in the working cycle and differentiate between intake stroke and power stroke.
  • the engine parameter to be calibrated is the engine position/phase, which is set in the calibration module 104.
  • the calibration process is then to identify the region of interest where the ECU 114 should assess the MAP sensor signal with respect to crank wheel teeth for differentiating power and intake strokes.
  • the input dataset of engine operating parameters are fed to the device 102 through a measurement file, which undergoes plausibility check by the calibration module 104. Once the requirement is set in the calibration module 104, the process is automatically taken forward in the device 102 for calibration.
  • the calibration module 104 extracts required data from the input dataset needed for the calibration of the engine parameter after the plausibility check is successful, such as trigger wheel configuration, signals from MAP sensor, crankshaft sensor, etc.
  • the calibration module 104 then processes the extracted input data, in this case the signals from the crankshaft sensor, the MAP sensor and uses rule-based module for calibration. In other words, the calibration module 104 replicates an operator/engineer’s data analysis through rule-based module.
  • the calibration module 104 detects gap in the trigger wheel and falling edge of crankshaft sensor signal at zero cross over.
  • the calibration module 104 sweeps the entire working cycle of the engine with different regions (window length), size, start and end angles/points, followed by calculates the difference between minimum and maximum pressures in each region.
  • the preset criteria for this engine parameter is set as pressure difference to be greater than threshold pressure. If the criteria is not met, the calibration module 104 keeps iterating the steps of sweeping the working cycle for different region followed by calculating the pressure difference and then checking the preset criteria. Once the preset criteria is satisfied/met, the calibration module 104 sets the value in the ECU 114. In a further step, the calibrated engine parameter is manually reviewed and if needed is corrected based on experience by an operator (calibration engineer). If corrected, the calibration module 104 learns the correction for the specific engine parameter and adapts the same in future calibration of the same engine parameter for the similar vehicle 112. An Original Equipment Manufacturer (OEM) or calibration engineer or operator is provided with a working cycle to run on the vehicle 112 for automated run.
  • OEM Original Equipment Manufacturer
  • Fig. 2 illustrates a method for automated calibration of the engine parameter in the vehicle, according to the present invention.
  • the system 100 comprises the device 102 interfaced with the Engine Control Unit (ECU) 114 of the vehicle 112 for calibration through the communication interface 108.
  • the method comprises plurality of steps of which a step 202 comprises receiving input dataset from the computing device 102 comprising operating variables of the engine.
  • ECU Engine Control Unit
  • the method is characterized by, a step 204 which comprises processing the input dataset based on the engine parameter selected for calibration using the calibration module 104, and calibrating the engine parameter.
  • the calibration module 104 is selected from the model-based module and the rule-based module corresponding to the engine parameter selected for calibration.
  • a step 206 comprises iterating the calibration until the calibrated engine parameter satisfies the preset criteria.
  • the model-based module takes input based on the engine parameter to be calibrated and outputs calibrated engine parameter.
  • the model-based module is generated using Machine Learning based regression analysis.
  • the method further comprises method further comprises, allowing/enabling the manual correction/adjustment of the calibrated engine parameter, and learning the manual correction by the model-based module and rulebased module, for future calibration of the engine parameter.
  • the method also comprises performing plausibility check on the input dataset, and extracting required data from the input data needed for the calibration of the engine parameter, after successful plausibility check.
  • the step of plausibility check is done before processing through any one of the rule-based module or model-based module.
  • the engine parameter for calibration are selected from but not limited to the throttle position, the ignition angle, the injection quantity, the engine position, the combustion phase, the ambient temperature, the drive mode, the emission control, and the exhaust temperature.
  • the list of engine parameters are not limited to above but contains other parameters known in the art.
  • a self-calibrating device 102 based on Artificial Intelligence/ Machine Learning (AI/ML) based learning and scripts is provided.
  • the calibration module 104 provides freedom to the calibration engineer/operator after completion of the calibration to change certain parameters based on the dynamics of the vehicle 112, such as drivability, specific emission requirements and the like.
  • the solution reduces the calibration time by optimizing the data analysis time, reduces calibration iterations, reduces efforts for measurement analysis and calibration review, and improves the calibration quality.

Abstract

L'invention concerne un système (100) comprenant un dispositif (102) en interface avec une unité de commande de moteur (ECU) du véhicule (112) pour un étalonnage par l'intermédiaire d'une interface de communication (108). Le dispositif (102) est configuré pour recevoir un ensemble de données d'entrée d'une unité de calcul (106) comprenant des variables de fonctionnement d'un moteur du véhicule (112), et se caractérise en ce qu'il (102) comprend un module d'étalonnage (104) servant à étalonner le paramètre de moteur. Le module d'étalonnage (104) est configuré pour traiter l'ensemble de données d'entrée en fonction du paramètre de moteur sélectionné pour l'étalonnage, et il étalonne le paramètre de moteur. Le paramètre de moteur étalonné est ensuite stocké dans un élément de mémoire de l'ECU (114). Le module d'étalonnage (104) est sélectionné entre un module basé sur un modèle et un module basé sur des règles qui correspond au paramètre de moteur sélectionné pour l'étalonnage. Le module d'étalonnage (104) réitère l'étalonnage jusqu'à ce que le paramètre de moteur étalonné satisfasse à un critère prédéfini.
PCT/EP2022/079051 2021-10-27 2022-10-19 Système et procédé d'étalonnage automatisé de paramètre de moteur dans un véhicule WO2023072697A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN202141049574 2021-10-27
IN202141049574 2021-10-27

Publications (1)

Publication Number Publication Date
WO2023072697A1 true WO2023072697A1 (fr) 2023-05-04

Family

ID=84146012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/079051 WO2023072697A1 (fr) 2021-10-27 2022-10-19 Système et procédé d'étalonnage automatisé de paramètre de moteur dans un véhicule

Country Status (1)

Country Link
WO (1) WO2023072697A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170234251A1 (en) * 2016-02-16 2017-08-17 Robert Bosch Gmbh System and method to predict calibration values based on existing calibrations
WO2018114329A1 (fr) * 2016-12-21 2018-06-28 Robert Bosch Gmbh Système et procédé pour étalonner une unité de commande de moteur (ecu) d'un véhicule
CN107655692B (zh) * 2017-09-28 2019-10-11 广州锦红源电子科技有限公司 发动机台架自动标定方法、装置和系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170234251A1 (en) * 2016-02-16 2017-08-17 Robert Bosch Gmbh System and method to predict calibration values based on existing calibrations
WO2018114329A1 (fr) * 2016-12-21 2018-06-28 Robert Bosch Gmbh Système et procédé pour étalonner une unité de commande de moteur (ecu) d'un véhicule
CN107655692B (zh) * 2017-09-28 2019-10-11 广州锦红源电子科技有限公司 发动机台架自动标定方法、装置和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GUTJAHR DR TOBIAS ET AL: "2017 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM POWER & MOBILITY (P&M) TECHNICAL SESSION AUGUST 8-10, 2017 -NOVI, MICHIGAN ADVANCED MODELING AND OPTIMIZATION FOR VIRTUAL CALIBRATION OF INTERNAL COMBUSTION ENGINES Advanced Modeling and Optimization for Virtual Calibration of Int", 10 August 2017 (2017-08-10), XP093017306, Retrieved from the Internet <URL:https://events.esd.org/wp-content/uploads/2017/08/Advanced-Modeling-and-Optimization-for-Virtual-Calibration-of-Internal-Combustion-Engines.pdf> [retrieved on 20230124] *

Similar Documents

Publication Publication Date Title
CN111577457B (zh) 内燃机的失火检测装置、系统、方法、数据解析装置、及内燃机的控制装置
CN112302823B (zh) 内燃机的状态检测系统、数据解析装置以及车辆
CN107300863B (zh) 一种基于map图和在线标定的纵向加速度控制方法
CN111577470B (zh) 内燃机的状态检测系统、数据解析装置、车辆、及内燃机的状态检测方法
US10969304B2 (en) State detection system for internal combustion engine, data analysis device, and vehicle
CN104100393B (zh) 用于在机动车中实施至少一种学习功能的方法和用于实现该方法的器件
CN113255055A (zh) 一种基于整车动力学仿真的变速器台架试验载荷谱生成方法
JP5258880B2 (ja) 内燃機関の完全自動機能検査を行う方法および配置
US8392046B2 (en) Monitoring the functional reliability of an internal combustion engine
US20150371460A1 (en) Method and means for operating a first motor vehicle on the basis of at least one characteristic of at least one second motor vehicle
WO2023072697A1 (fr) Système et procédé d&#39;étalonnage automatisé de paramètre de moteur dans un véhicule
CN114239125A (zh) 故障诊断系统
KR20020007370A (ko) 자동차 내 연산 소자를 감시하기 위한 방법 및 장치
Lee et al. X-in-the-Loop-basierte Kalibrierung: HiL Simulation eines virtuellen Dieselantriebsstrangs
US11294642B2 (en) Middleware system and method
CN114077237A (zh) 机器学习装置
CN114175121A (zh) 电子控制模块的数字化孪生体
EP4033413A1 (fr) Procédé d&#39;entrainement de réseau neuronal artificiel pour prédire si un véhicule est en panne, procédé pour déterminer si un véhicule est en panne, et système informatique le mettant en ¿uvre
Singh et al. Driving Analysis for Load and Fuel Consumption Using OBD-II Diagnostics
CN110598234A (zh) 车辆动力学模型参数校准方法
Kouba et al. Engine Control using a Real-Time 1D Engine Model
KR102202926B1 (ko) 딥러닝 기반 실시간 질소산화물 저감 엔진제어방법
Živković Prediction of Correct Readings of Car Engine Mass Air Flow Sensors
CN115217625B (zh) 发动机失火诊断标定方法、装置、存储介质、设备及系统
JP7451182B2 (ja) 制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22803253

Country of ref document: EP

Kind code of ref document: A1