WO2023072074A1 - Pci的分配方法、基站、电子设备和计算机可读存储介质 - Google Patents

Pci的分配方法、基站、电子设备和计算机可读存储介质 Download PDF

Info

Publication number
WO2023072074A1
WO2023072074A1 PCT/CN2022/127389 CN2022127389W WO2023072074A1 WO 2023072074 A1 WO2023072074 A1 WO 2023072074A1 CN 2022127389 W CN2022127389 W CN 2022127389W WO 2023072074 A1 WO2023072074 A1 WO 2023072074A1
Authority
WO
WIPO (PCT)
Prior art keywords
pci
cell
serving cell
unavailable
list
Prior art date
Application number
PCT/CN2022/127389
Other languages
English (en)
French (fr)
Inventor
唐琳
柯雅珠
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023072074A1 publication Critical patent/WO2023072074A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the technical field of communications, and in particular, to a PCI allocation method, a base station, electronic equipment, and a computer-readable storage medium.
  • PCI Physical Cell Identifier
  • LTE Long-term evolution
  • NR new radio access technology
  • the physical layer identification of LTE and NR terminals use PCI to distinguish the wireless signals of different cells. Due to the limited number of PCIs available in the LTE system and NR, when the number of cells in the same-frequency network is large, PCI multiplexing will inevitably occur, that is, multiple cells use the same PCI. PCI multiplexing in adjacent cells may cause PCI conflict or PCI confusion, affecting normal communication.
  • the network management will re-allocate a PCI for the serving cell based on the working parameters such as the frequency point and PCI of the cell under the network management. PCI to ensure normal communication.
  • the network manager cannot obtain the PCIs of the cells under different network managements, and PCI conflicts or confusion may still occur when assigning PCIs to serving cells.
  • the main purpose of the embodiments of the present application is to provide a PCI allocation method, a base station, an electronic device, and a computer-readable storage medium, so as to accurately avoid PCI conflicts or confusions.
  • the embodiment of the present application provides a PCI allocation method applied to the base station, including: obtaining the physical layer cell identity PCI of the neighboring cell with the same frequency point as the serving cell; generating the service cell according to the obtained PCI The unavailable PCI list of the cell, and synchronize the unavailable PCI list into the database, so that the network manager to which the serving cell belongs can provide the service for the service according to the unavailable PCI list of the serving cell in the database.
  • the cell allocates PCI.
  • the embodiment of the present application also provides a base station, including: an acquisition module, configured to acquire the physical layer cell identity PCI of a neighboring cell with the same frequency point as the serving cell; a generation module, configured to generate a PCI based on the acquired PCI The unavailable PCI list of the serving cell, and synchronizing the unavailable PCI list into a database, for the network management to which the serving cell belongs to, according to the unavailable PCI list of the serving cell in the database, for The serving cell allocates PCIs.
  • an acquisition module configured to acquire the physical layer cell identity PCI of a neighboring cell with the same frequency point as the serving cell
  • a generation module configured to generate a PCI based on the acquired PCI The unavailable PCI list of the serving cell, and synchronizing the unavailable PCI list into a database, for the network management to which the serving cell belongs to, according to the unavailable PCI list of the serving cell in the database, for The serving cell allocates PCIs.
  • the embodiment of the present application also provides a server, including: at least one processor; and a memory connected to the at least one processor in communication; wherein, the memory stores information that can be used by the at least one processor An instruction executed by a processor, the instruction is executed by the at least one processor, so that the at least one processor can execute the above PCI allocation method.
  • the embodiment of the present application further provides a computer-readable storage medium storing a computer program, and implementing the above PCI allocation method when the computer program is executed by a processor.
  • FIG. 1 is a flowchart of a PCI allocation method according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a scenario of a PCI conflict according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a scene of PCI confusion according to an embodiment of the present application.
  • FIG. 4 is a first schematic diagram of a scene of information exchange between base stations through an interface according to an embodiment of the present application
  • FIG. 5 is a second schematic diagram of a scene where information is exchanged between base stations through an interface according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of a third scenario of information exchange between base stations through an interface according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of interaction between a base station, a network management system, and a database according to an embodiment of the present application;
  • FIG. 8 is a schematic diagram of a networking scenario of regional networking according to an embodiment of the present application.
  • FIG. 9 is a flowchart of a PCI allocation method according to another embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • Fig. 11 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • An embodiment of the present application relates to a PCI allocation method, which is applied to a base station.
  • the base station obtains the physical layer cell identifier PCI of the adjacent cell with the same frequency as the serving cell; generates an unavailable PCI list of the serving cell according to the obtained PCI, and synchronizes the unavailable PCI list to
  • the network manager to which the serving cell belongs allocates a PCI for the serving cell according to the unavailable PCI list of the serving cell in the database.
  • the specific flow of the method for allocating PCI in this embodiment may be shown in FIG. 1 .
  • PCI is a physical layer identifier used to uniquely identify a cell in LTE and NR networks. Terminals in LTE and NR use PCI to distinguish wireless signals from different cells.
  • the LTE system includes a total of 504 available PCIs, and the NR system includes a total of 1008 available PCIs.
  • PCI multiplexing will inevitably occur, that is, multiple cells use the same PCI situation.
  • PCI multiplexing includes the following two situations.
  • PCI conflict the cell uses the same PCI as the adjacent cell with the same frequency. If the geographical isolation of two or more same-frequency cells using the same PCI is too small, the user equipment (User Equipment, referred to as "UE") cannot normally achieve signal synchronization in the signal overlap area of the two cells ,decoding.
  • UE User Equipment
  • FIG. 2 A schematic diagram of a scenario where a PCI conflict occurs is shown in Figure 2.
  • cell A and cell B belong to the same system, have the same frequency and use the same PCI, and the PCIs of cell A and cell B conflict.
  • the PCI conflict can be identified as: PCI conflict of LTE-LTE; when the systems of the two adjacent cells where the PCI conflict occurs are both NR In this case, the PCI conflict may be identified as: NR-NR PCI conflict.
  • PCI confusion Multiple co-frequency adjacent cells of a cell use the same PCI. Although two cells with the same frequency point using the same PCI are isolated in terms of coverage, they are neighbors of the same cell. In this way, when the UE measures and reports the confusing PCI, it will cause confusion when the UE switches. The handover target cell of the UE cannot be determined, resulting in handover failure and call drop.
  • FIG. 3 The schematic diagram of the scenario where PCI confusion occurs is shown in Figure 3.
  • both cell A and cell C are neighbors of cell B.
  • Cell A and cell C belong to the same system, have the same frequency and use the same PCI.
  • Cell A and cell C PCI confusion.
  • cell B is an intermediate cell, and it and cell A may belong to the same or different systems, and have the same frequency or different frequencies.
  • the PCI confusion can be identified as: PCI confusion of LTE-LTE-LTE; if the middle cell If the system belongs to the NR system, the PCI confusion can be identified as: PCI confusion of LTE-NR-LTE.
  • the PCI confusion can be identified as: PCI confusion of NR-NR-NR; if the middle cell If the system belongs to the LTE system, the PCI confusion can be identified as: NR-LTE-NR PCI confusion.
  • a neighboring cell of the local serving cell of the base station is a first-tier neighboring cell
  • a first-tier neighboring cell of the serving cell's neighboring cell is a second-story neighboring cell of the serving cell.
  • B is a layer-1 neighbor of A
  • C is a layer-1 neighbor of B
  • C is a layer-2 neighbor of A. That is to say, to ensure that the PCI allocated to the serving cell does not conflict or be confused, the PCI of the serving cell cannot be the same as the PCI of its first-tier co-frequency neighbor cell or second-tier co-frequency neighbor cell.
  • the serving cell of the base station generally has an initial PCI. However, due to the change of the frequency point and PCI of the local cell of the base station, the change of the frequency point and PCI of the cell outside the base station, the addition or deletion of external cells, or the relationship between neighboring cells in the base station Any additions or deletions may cause PCI conflicts or confusion. Therefore, PCI conflict and confusion need to be detected in time, and the PCI of the serving cell should be optimized, that is, a new PCI that does not cause PCI conflict or confusion should be reassigned to the serving cell.
  • the network management system will have engineering parameters such as frequency points, PCIs, longitudes and latitudes, and neighbor cell relationship table information for all the cells under the network management. No conflict or confusion with all communities under this network management.
  • the network management cannot obtain information such as the work parameter list and neighbor cell relationship of the cells under the other network management. Therefore, when assigning PCI to the serving cell, especially the border cell, The PCIs of adjacent cells under the network management do not conflict or confuse.
  • Step 101 acquiring the PCI of the neighboring cell with the same frequency point as the serving cell.
  • the base station acquires the PCI of the neighboring cell with the same frequency as the serving cell under the base station.
  • the system to which the base station that executes the PCI allocation method in this embodiment belongs is the Long Term Evolution LTE system or the New Radio Access Technology NR system. That is, the base station may be a base station eNodeB in an LTE system, or a base station gNB in an NR system.
  • obtaining the physical layer cell identity PCI of the neighboring cell with the same frequency point as the serving cell may include: obtaining the cell frequency point, PCI, and neighbor cell relationship of the neighboring cell of the serving cell; The cell frequency point, PCI, and neighbor cell relationship of the neighboring cell, and the PCI of the neighboring cell with the same frequency point as the serving cell is obtained.
  • obtaining the cell frequency point, PCI, and neighbor cell relationship of the neighboring cell of the serving cell may include: obtaining the information of the neighboring cell of the serving cell according to the interface message between the base station and the neighboring base station. Cell frequency point, PCI, neighbor cell relationship; or, based on the neighbor cell measurement result reported by the user equipment UE under the serving cell, obtain the cell frequency point, PCI, neighbor cell relationship of the neighbor cell of the serving cell. According to the message of the interface between the base station and the adjacent base station or based on the measurement result of the adjacent cell reported by the UE under the serving cell, the PCI of the adjacent cell can be obtained, and the unavailable PCI of the serving cell can be obtained comprehensively.
  • the two adjacent base stations eNB1 and eNB2 shown in FIG. 4 belong to network management 1 and network management 2 respectively, and the information exchange between eNB1 and eNB2 can be performed on the intra-site cell and its neighboring cells through the established X2 interface.
  • the two adjacent base stations gNB1 and gNB2 shown in FIG. 5 belong to the network management 3 and the network management 4 respectively, and the information exchange between the intra-site cell and its neighboring cells can be performed between gNB1 and gNB2 through the established Xn interface.
  • the two adjacent base stations eNB1 and gNB1 shown in Figure 6 belong to network management 1 and network management 3 respectively, and eNB1 and gNB1 can exchange information between the intra-site cell and its neighboring cells through the established EN-DC X2 interface.
  • Step 102 Generate an unavailable PCI list of the serving cell according to the obtained PCI, and synchronize the unavailable PCI list to the database, so that the network management to which the serving cell belongs can allocate PCIs for the serving cell according to the unavailable PCI list of the serving cell.
  • the base station adds the PCIs that conflict or confuse with the serving cell to the list of unavailable PCIs of the serving cell according to the acquired PCIs of neighboring cells of the serving cell. Further, the list of unavailable PCIs is synchronized into the database, so that the network manager to which the serving cell belongs can allocate PCIs to the serving cell according to the unavailable PCI list of the serving cell.
  • the database involved in this embodiment stores the list of unavailable PCIs of all serving cells of the base station, and supports writing of the base station and reading of the network management.
  • the adjacent cell with the same frequency point as the serving cell is different from the network management to which the serving cell belongs.
  • the unavailable PCI list includes the PCIs of neighboring cells of the serving cell under different network managers, so that when the network manager allocates PCIs for the serving cell according to the unavailable PCI list, PCI conflicts or confusion can be more accurately avoided.
  • the obtained PCI, generating the unavailable PCI list of the serving cell may include: when the base station and the adjacent base station belong to the same system, the PCI of the first-layer adjacent cell and the second-layer adjacent cell of the serving cell Adding to the unavailable PCI list; if the system to which the base station belongs to is different from that of the adjacent base station, adding the PCI of the Layer 2 adjacent cell of the serving cell to the unavailable PCI list.
  • the system of the serving cell's first-tier neighbor cell is different from that of the serving cell, there will be no PCI conflict. Therefore, adding the PCI of the second-tier neighbor cell to the list of unavailable PCIs can fully include the unavailable PCIs.
  • the unavailable PCI list of the serving cell may include: adding PCIs of Layer 2 neighboring cells of the serving cell to the unavailable PCI list.
  • an unavailable PCI list is generated for a serving cell under the LTE system. Firstly, the unavailable PCI is added to the unavailable PCI list according to the message of the interface between the base station and the adjacent base station.
  • the neighboring base station of the LTE base station eNB1 is a base station under the LTE system
  • the base station eNB1 after the base station eNB1 establishes an X2 interface connection with the neighboring base station eNB2, it can obtain the relevant information of the local cell of the neighboring base station eNB2 and its layer-1 neighboring cells.
  • the base station sequentially generates an unavailable PCI list of cells for serving cells under the base station eNB1 according to the acquired information.
  • Table 1 shows the information of the first-floor neighboring cells and second-story neighboring cells of the cell ECGI1 acquired through the interface message.
  • the PCI of the Layer 2 LTE neighbor cell with the same frequency as the LTE serving cell needs to be PCI (8 and 91) are added to the unavailable PCI list.
  • the base station needs to add the PCIs in the unavailable PCI list generated for the serving cell ECGI1 as: ⁇ 5, 8, 91 ⁇ .
  • the base station eNB1 and the neighbor base station gNB2 establish a 4G-5G dual connection (EUTRA-NR Dual Connectivity, "EN-DC") X2 interface connection, and the neighbor base station can be obtained Information about gNB2's local NR cell and its Layer 1 LTE neighbor cell.
  • the base station sequentially generates an unavailable PCI list of cells for serving cells under the base station eNB1 according to the acquired information. For example, for the serving cell ECGI1 under eNB1, first find out all the Layer 1 NR neighbor cells belonging to gNB2 and the Layer 2 LTE neighbor cells obtained from the EN-DC X2 message from the neighbor cell list of the cell. Table 2 shows the information of the first-layer neighbor cell and the second-layer neighbor cell of the cell ECGI1 obtained by the interface message of the neighbor base station gNB2.
  • the PCI of the Layer 2 LTE neighbor cell with the same frequency as the LTE serving cell needs to be PCI (15 and 78) added to the unavailable PCI list.
  • the base station needs to add the PCIs in the unavailable PCI list generated for the serving cell ECGI1 as: ⁇ 15, 78 ⁇ .
  • the base station eNB1 When the base station eNB1 obtains the cell frequency point, PCI, and neighbor cell relationship of the neighbor cell of the serving cell based on the neighbor cell measurement results reported by the user equipment UE under the serving cell, the UE in the LTE serving cell sends a report to the base station Report the PCI of other unknown LTE cells with the same frequency as the serving cell, and the PCI is not in the neighbor cell list of the serving cell.
  • the base station obtains the information of the first-layer neighbor cell and the second-layer neighbor cell of the cell ECGI1 according to the neighbor cell measurement result reported by the UE, as shown in Table 3.
  • the UE under the LTE serving cell can detect the signal of the unknown cell, indicating that the coverage of the cell and the serving cell may overlap. If the PCI reassigned by the base station to the serving cell is the same as that of an unknown LTE cell with the same frequency, LTE may occur. -The PCI of the LTE type conflicts, so the PCI of the unknown LTE cell with the same frequency as the LTE serving cell needs to be added to the list of unavailable PCIs. Therefore, the neighboring cell measurement result reported by the base station UE, the PCI that needs to be added to the unavailable PCI list generated for the serving cell ECGI1 is: ⁇ 9 ⁇ .
  • the PCIs in the unavailable PCI list generated for the serving cell ECGI1 are ⁇ 5, 8, 9, 15, 78, 91 ⁇ .
  • the base station should add the unavailable PCI list for the serving cell PLMN1+eNodeB1+Cell0 under the base station according to the neighbor cell measurement results reported by the UE.
  • PCI(9) Add PCI (92) in its unavailable PCI list for the serving cell PLMN1+eNodeB1+Cell2 under the base station.
  • the obtained frequency point information is the center frequency point; for cells under the NR system, the obtained frequency point information is the synchronization signal and PBCH block (Synchronization Signal and PBCH block, referred to as "SSB”) frequency points.
  • SSB Synchronization Signal and PBCH block
  • the base station After the base station generates the unavailable PCI list for the serving cell, when the network manager optimizes the serving cell with PCI conflicts or confusion, it can first read the unavailable PCI list of the serving cell to be optimized from the database, and select from all available PCI segments The unavailable PCIs in the list are filtered out, and then a PCI that satisfies the constraint conditions in other traditional technologies is selected for allocation from the remaining available PCIs for the cell.
  • the constraint conditions in the traditional technology include that adjacent cells have different PCI moduli of 3 or 30, multiplexing distance, number of multiplexing layers, equalization and other relevant parameters satisfy preset conditions, etc.
  • a PCI conflict or confusion detection module and an unavailable PCI list statistics and maintenance module can be set at the base station side
  • a PCI optimization module can be set at the network management side
  • an unavailable PCI can be set in the database.
  • the schematic diagram of interaction between the list storage module, the base station, the network management and the database is shown in FIG. 7 .
  • PciBlackList is used to represent the unavailable PCI list. It can also be set that the base station reports the list of unavailable PCIs to the network management dynamically.
  • the PCI allocation method involved in this embodiment is also applicable to scenarios with different network managements, where the different network managements may be different network managements of the same manufacturer, or different network managements of different manufacturers.
  • the applicable networking scenario of the PCI allocation method involved in this embodiment may be a regional network or a flower arrangement network.
  • Figure 8 shows the networking scenario of the regional networking.
  • the network management assigns a PCI list to each cell and sends it to the base station, and then the base station assigns a PCI value to each cell from the PCI list.
  • the base station under the network management can pass The interface exchanges information with base stations under different network management, and obtains information such as frequency point, PCI, and neighbor cell relations of different network management base station cells in real time.
  • this PCI allocation method often requires frequent real-time interaction between the network management and the base station, which is inefficient and difficult to implement and maintain.
  • the embodiments of the present application can realize the effect of avoiding frequent interaction between the network management and the base station and improving the efficiency of PCI allocation for the distributed PCI allocation mode.
  • the PCI of the neighboring cell with the same frequency point as the serving cell is obtained in real time, and an unavailable PCI list is generated for the serving cell according to the obtained PCI.
  • the generated list of unavailable PCIs is synchronized into the database, and can be acquired by the network manager to which the serving cell belongs, so that the network manager can allocate PCIs to the serving cell according to the list of unavailable PCIs.
  • the implementation of the present application is not limited to the scene of the same network management, and the unavailable PCI list can include the PCI of the different network management community with the same frequency as the serving community. This enables the network manager to more accurately avoid PCI conflicts or confusion when allocating PCIs to serving cells according to the list of unavailable PCIs.
  • Another embodiment of the present application relates to a PCI allocation method.
  • the implementation details of the PCI allocation method in this embodiment are described in detail below.
  • the following content is only the implementation details provided for easy understanding, and is not necessary for implementing this solution.
  • the specific process is shown in Figure 9, including the following steps.
  • Step 901 acquire the PCI of the neighboring cell with the same frequency point as the serving cell.
  • Step 902 Generate an unavailable PCI list of the serving cell according to the obtained PCI, and synchronize the unavailable PCI list to the database, so that the network management to which the serving cell belongs can allocate PCIs to the serving cell according to the unavailable PCI list of the serving cell.
  • step 901 and step 902 in this embodiment are the same as step 101 and step 102 in the previous embodiment, and the relevant technical details mentioned in the previous embodiment are still valid in this embodiment, in order to reduce repetition , which will not be repeated here.
  • Step 903 acquiring the PCI of the neighboring cell with the same frequency point as the serving cell in real time.
  • the frequency point and PCI of the local cell of the base station may change, the frequency point and PCII of the cell outside the base station may change, the external cell may be added or deleted, or the relationship between neighboring cells in the base station may be added or deleted, these factors may cause service failure.
  • the PCIs assigned by the cells again generate PCI conflicts or confusions. Therefore, the base station needs to continuously collect the information of neighboring cells in real time, so as to know the confusion or conflict of PCI.
  • Step 904 update the list of unavailable PCIs according to the PCIs obtained in real time, and synchronize them into the database.
  • the base station Since the change of neighboring cell information may cause the unavailable PCI of the serving cell to change, the base station needs to update the unavailable PCI list according to the PCI obtained in real time, so as to avoid PCI conflict or confusion. Furthermore, the base station synchronizes the updated list of unavailable PCIs to the database, so that the network manager can obtain and allocate new PCIs to the serving cell according to the updated list.
  • the base station eNB1 in the LTE system has generated respective unavailable PCI lists for the three serving cells Cell0, Cell1 and Cell2 under the base station, as shown in Table 4.
  • eNB ID+Cell ID+center frequency point Unavailable PCI List eNB1+Cell0+1850 ⁇ 1,2,8,10 ⁇ eNB1+Cell1+1850 ⁇ 0,2,8,11,13 ⁇ eNB1+Cell2+1850 ⁇ 0,1,8,12,15 ⁇
  • the eNB1 obtains the relevant information of the local cell and its layer-1 neighbor cell updated by the neighboring base station eNB2 through the received message of the X2 interface.
  • the local cell of eNB2 and its first-tier neighbors find the same-frequency first-tier and same-frequency second-tier neighbors of each cell under eNB1, put the PCIs of these neighbors into the unavailable PCI list, and record the detection Number of additions and detection time.
  • the unavailable PCI lists of the three serving cells Cell0, Cell1 and Cell2 under the eNB1 are shown in Table 5 to Table 7 respectively.
  • the network management needs to re-allocate the PCI of Cell0 under eNB1, read the latest unavailable PCI list of the serving cell Cell0: ⁇ 1,2,8,10,17,24 ⁇ , assuming that the available PCI segments of Cell0 are 0- 503, the PCIs in the unavailable PCI list are filtered out, and then the PCIs are allocated.
  • the unavailable PCI list after updating the unavailable PCI list according to the real-time acquired PCI, it may further include: when the number of PCIs in the unavailable PCI list is greater than a preset threshold, Delete PCIs whose time interval between the addition time and the current time exceeds a preset threshold in the list of unavailable PCIs; wherein, the number of deleted PCIs is not greater than the preset deletable number.
  • the number of PCIs in the list of unavailable PCIs to be deleted each time cannot exceed the preset value, which can prevent the PCI from being deleted too quickly and affect the system.
  • the base station updates and adds time to the received interface message or the unavailable PCI obtained from the UE measurement report, and records the number of additions.
  • the base station maintains an unavailable PCI list for each local cell under the base station, and one of the unavailable PCI lists is shown in Table 8.
  • the base station sorts the PCIs in the unavailable PCI list according to the latest addition time, and the latest addition is ranked first. If the latest addition time is the same, they will be sorted according to the number of additions in descending order.
  • This embodiment obtains the PCI of the neighboring cell with the same frequency point as the serving cell in real time and updates the unavailable PCI list of the serving cell according to the real-time obtained PCI, and then synchronizes the updated list to the database for the network manager to obtain, so that the network manager can Read the constantly updated list of unavailable PCIs in the database, and then assign PCIs to serving cells according to the constantly updated list of unavailable PCIs.
  • the network manager continuously interacts with other network managers to obtain unavailable PCIs, it can be improved to Efficiency of serving cells to allocate PCI.
  • FIG. 10 Another embodiment of the present application relates to a base station, as shown in FIG. 10 , including the following modules.
  • the obtaining module 1001 is configured to obtain the physical layer cell identity PCI of the neighboring cell with the same frequency point as the serving cell.
  • a generating module 1002 configured to generate an unavailable PCI list of the serving cell according to the obtained PCI, and synchronize the unavailable PCI list into a database for the network management to which the serving cell belongs to according to the list of unavailable PCIs in the database.
  • the unavailable PCI list of the serving cell is allocated to the serving cell.
  • the acquiring module 1001 can also be used to acquire the cell frequency point, PCI, and neighbor cell relationship of the neighbor cell of the serving cell; according to the cell frequency point, PCI, neighbor cell relationship of the neighbor cell of the serving cell , acquiring the PCI of the neighboring cell with the same frequency point as the serving cell.
  • the acquiring module 1001 may also be configured to acquire the cell frequency point, PCI, and neighbor cell relationship of the neighbor cell of the serving cell according to the interface message between the base station and the neighbor base station; or, based on the The neighbor cell measurement result reported by the user equipment UE under the serving cell is used to obtain the cell frequency point, PCI, and neighbor cell relationship of the neighbor cell of the serving cell.
  • the generation module 1002 can also be used to obtain the cell frequency point, PCI, and neighbor cell relationship of the neighbor cell of the serving cell according to the message of the interface between the base station and the neighbor base station Next, according to the obtained PCI, generate an unavailable PCI list of the serving cell, and if the system to which the base station and the neighboring base station belong is the same, set the first-tier neighbor cell and the second-tier neighbor cell of the serving cell to Add the PCI of the adjacent cell to the unavailable PCI list; if the system to which the base station belongs to is different from that of the adjacent base station, add the PCI of the layer-2 adjacent cell of the serving cell to the unavailable PCI list ; In the case of obtaining the cell frequency point, PCI, and neighbor cell relationship of the neighbor cell of the serving cell based on the neighbor cell measurement result reported by the user equipment UE under the serving cell, according to the obtained PCI, Generate an unavailable PCI list of the serving cell, and add PCIs of Layer 2 neighboring cells of the serving cell to the unavailable PCI list
  • the base station may further include an update module, configured to generate an unavailable PCI list of the serving cell according to the obtained PCI, and synchronize the unavailable PCI list to a database for the The network manager to which the serving cell belongs, according to the unavailable PCI list of the serving cell in the database, after assigning the PCI to the serving cell, obtains the PCI of the neighboring cell with the same frequency point as the serving cell in real time; according to the real-time The acquired PCI is updated to the unavailable PCI list and synchronized to the database.
  • an update module configured to generate an unavailable PCI list of the serving cell according to the obtained PCI, and synchronize the unavailable PCI list to a database for the The network manager to which the serving cell belongs, according to the unavailable PCI list of the serving cell in the database, after assigning the PCI to the serving cell, obtains the PCI of the neighboring cell with the same frequency point as the serving cell in real time; according to the real-time The acquired PCI is updated to the unavailable PCI list and synchronized to the database.
  • the above-mentioned base station may further include a deletion module, configured to, after the list of unavailable PCIs is updated according to the PCIs acquired in real time, the number of PCIs in the list of unavailable PCIs is greater than the preset In the case of setting a threshold, delete PCIs whose time interval between the addition time and the current time exceeds a preset threshold in the list of unavailable PCIs; wherein, the number of deleted PCIs is not greater than the preset number of deletable ones.
  • a deletion module configured to, after the list of unavailable PCIs is updated according to the PCIs acquired in real time, the number of PCIs in the list of unavailable PCIs is greater than the preset In the case of setting a threshold, delete PCIs whose time interval between the addition time and the current time exceeds a preset threshold in the list of unavailable PCIs; wherein, the number of deleted PCIs is not greater than the preset number of deletable ones.
  • the base station provided in this embodiment acquires the PCIs of neighboring cells with the same frequency as the serving cell in real time, and generates an unavailable PCI list for the serving cell according to the acquired PCIs.
  • the generated unavailable PCI list is synchronized to the database, and can be obtained by the network management to which the serving cell belongs, so that the network management can allocate PCIs for the serving cell according to the unavailable PCI list.
  • the network management can only obtain the PCI of the sub-district under the network management
  • the embodiment of the present application is not limited to the scene of the same network management
  • the unavailable PCI list can include all the PCIs of the neighboring cells with the same frequency as the serving cell, This enables the network manager to more accurately avoid PCI conflicts or confusion when allocating PCIs to serving cells according to the list of unavailable PCIs.
  • this implementation mode is a system implementation mode corresponding to the above method implementation mode, and this implementation mode can be implemented in cooperation with the above method implementation mode.
  • the relevant technical details and technical effects mentioned in the foregoing implementation manners are still valid in this implementation manner, and will not be repeated here to reduce repetition.
  • the relevant technical details mentioned in this implementation manner may also be applied in the foregoing implementation manners.
  • modules involved in the above embodiments of the present application are logical modules.
  • a logical unit can be a physical unit, or a part of a physical unit, and can also Combination of physical units.
  • units that are not closely related to solving the technical problems proposed in the present application are not introduced in this embodiment, but this does not mean that there are no other units in this embodiment.
  • An embodiment of the present application also provides an electronic device, as shown in FIG. 11 , including at least one processor 1101; and a memory 1102 communicatively connected to the at least one processor 1101; An instruction executed by one processor 1101, the instruction is executed by at least one processor 1101, so that at least one processor 1101 can execute the above PCI allocation method.
  • the memory 1102 and the processor 1101 are connected by a bus, and the bus may include any number of interconnected buses and bridges, and the bus connects one or more processors 1101 and various circuits of the memory 1102 together.
  • the bus may also connect together various other circuits such as peripherals, voltage regulators, and power management circuits, all of which are well known in the art and therefore will not be further described herein.
  • the bus interface provides an interface between the bus and the transceivers.
  • a transceiver may be a single element or multiple elements, such as multiple receivers and transmitters, providing means for communicating with various other devices over a transmission medium.
  • the data processed by the processor 1101 is transmitted on the wireless medium through the antenna, further, the antenna also receives the data and transmits the data to the processor 1101.
  • the processor 1101 is responsible for managing the bus and general processing, and can also provide various functions, including timing, peripheral interface, voltage regulation, power management and other control functions. And the memory 1102 may be used to store data used by the processor 1101 when performing operations.
  • Embodiments of the present application also provide a computer-readable storage medium storing a computer program.
  • the computer program is executed by the processor, the above PCI allocation method is realized.
  • the program is stored in a storage medium and includes several instructions to make a device (which can be A single chip microcomputer, a chip, etc.) or a processor (processor) executes all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施方式涉及通信技术领域,特别涉及一种PCI的分配方法、基站、电子设备和计算机可读存储介质。上述PCI的分配方法包括:获取与服务小区频点相同的邻区的物理层小区标识PCI;根据获取的PCI,生成服务小区的不可用PCI列表,并将不可用PCI列表同步到数据库中,供服务小区所属的网管根据服务小区的不可用PCI列表,为服务小区分配PCI。

Description

PCI的分配方法、基站、电子设备和计算机可读存储介质
相关申请的交叉引用
本申请要求在2021年10月26日提交的中国专利申请第202111248472.5号的优先权,该中国专利申请的全部内容通过引用包含于此。
技术领域
本申请实施方式涉及通信技术领域,特别涉及一种PCI的分配方法、基站、电子设备和计算机可读存储介质。
背景技术
物理层小区标识(Physical Cell Identifier,简称“PCI”)是长期演进(Long Term Evolution,简称“LTE”)和新无线接入技术(New Radio,简称“NR”)网络中用来唯一标识一个小区的物理层标识,LTE和NR中的终端用PCI来区分不同小区的无线信号。由于LTE系统和NR中可用的PCI数目有限,因此在同频组网的小区数目较多的情况下,不可避免地会出现PCI复用,即多个小区使用同一个PCI情况。相邻小区的PCI复用可能会引发PCI冲突或PCI混淆,影响正常的通信。
在服务小区初始的PCI与邻区产生PCI冲突或PCI混淆的情况下,网管会基于本网管下小区的频点、PCI等工作参数,为服务小区重新分配一个与本网管小区不冲突也不混淆的PCI,以保证通信的正常进行。
然而,网管无法获取异网管下的小区的PCI,在为服务小区分配PCI时,依然有可能发生PCI冲突或者混淆的情况。
发明内容
本申请实施方式的主要目的在于提出一种PCI的分配方法、基站、电子 设备和计算机可读存储介质,用以准确的避免PCI冲突或者混淆的情况发生。
为实现上述目的,本申请实施方式提供了一种应用于基站的PCI的分配方法,包括:获取与服务小区频点相同的邻区的物理层小区标识PCI;根据获取的PCI,生成所述服务小区的不可用PCI列表,并将所述不可用PCI列表同步到数据库中,供所述服务小区所属的网管根据所述数据库中的所述服务小区的所述不可用PCI列表,为所述服务小区分配PCI。
为实现上述目的,本申请实施方式还提供一种基站,包括:获取模块,用于获取与服务小区频点相同的邻区的物理层小区标识PCI;生成模块,用于根据获取的PCI,生成所述服务小区的不可用PCI列表,并将所述不可用PCI列表同步到数据库中,供所述服务小区所属的网管根据所述数据库中的所述服务小区的所述不可用PCI列表,为所述服务小区分配PCI。
为实现上述目的,本申请实施方式还提供了一种服务器,包括:至少一个处理器;以及,与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行上述的PCI的分配方法。
为实现上述目的,本申请实施方式还提供了一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现上述的PCI的分配方法。
附图说明
一个或多个实施方式通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施方式的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是根据本申请一实施方式中的PCI的分配方法流程图;
图2是根据本申请一实施方式中的PCI冲突的场景示意图;
图3是根据本申请一实施方式中的PCI混淆的场景示意图;
图4是根据本申请一实施方式中的基站间通过接口进行信息交互的场景示意图一;
图5是根据本申请一实施方式中的基站间通过接口进行信息交互的场景示意图二;
图6是根据本申请一实施方式中的基站间通过接口进行信息交互的场景示意图三;
图7是根据本申请一实施方式中的基站、网管与数据库的交互示意图;
图8是根据本申请一实施方式中的区域组网的组网场景示意图;
图9是根据本申请另一实施方式中的PCI的分配方法流程图;
图10是根据本申请一实施方式中的基站的结构示意图
图11是根据本申请一实施方式中的电子设备的结构示意图。
具体实施方式
为使本申请实施方式的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施方式中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本申请所要求保护的技术方案。以下各个实施方式的划分是为了描述方便,不应对本申请的具体实现方式构成任何限定,各个实施方式在不矛盾的前提下可以相互结合相互引用。
本申请的一个实施方式涉及一种PCI的分配方法,应用于基站。在本实施方式中,基站获取与服务小区频点相同的邻区的物理层小区标识PCI;根据获取的PCI,生成所述服务小区的不可用PCI列表,并将所述不可用PCI列表同步到数据库中,供所述服务小区所属的网管根据所述数据库中的所述服务小区的所述不可用PCI列表,为所述服务小区分配PCI。本实施方式的PCI的分配方法的具体流程可以如图1所示。
PCI是LTE和NR网络中用来唯一标识一个小区的物理层标识,LTE和NR中的终端用PCI来区分不同小区的无线信号。LTE系统一共包括504个可用PCI,NR系统一共包括1008个可用PCI。当同频组网的小区数目较多(LTE系统下的小区数目超过504个,或NR系统下的小区数目超过1008个)时,不可避免地会出现PCI复用,即多个小区使用同一个PCI情况。PCI复用包含以下两种情况。
(1)、PCI冲突:小区与同频邻区使用相同的PCI。如果使用同一PCI的两个或多个同频小区在地理位置上的隔离度过小,则用户终端(User Equipment,简称“UE”)在这两个小区的信号交叠区域不能正常实现信号同步、解码。
发生PCI冲突的场景示意图如图2所示,图中小区A和小区B所属系统相同、频点相同且使用相同的PCI,小区A和小区B的PCI冲突。
在发生PCI冲突的两邻区所属的系统均为LTE系统的情况下,该PCI冲突可以被标识为:LTE-LTE的PCI冲突;在发生PCI冲突的两邻区所属的系统均为NR系统的情况下,该PCI冲突可以被标识为:NR-NR的PCI冲突。
(2)、PCI混淆:小区的多个同频邻区彼此使用相同的PCI。具有相同频点的两个使用相同PCI的小区虽然在覆盖上是隔离的,但却是同一个小区的邻区,这样当UE测量上报该混淆的PCI时,就会导致UE切换时发生混淆,无法确定UE的切换目标小区,从而导致切换失败而掉话。
发生PCI混淆的场景示意图如图3所示,图中小区A和小区C均为小区B的邻区,小区A和小区C所属系统相同、频点相同且使用相同的PCI,小区A和小区C的PCI混淆。其中,小区B是中间小区,它与小区A可以所属相同或不同系统,同频或异频。
在发生PCI混淆的两邻区所属的系统均为LTE系统的情况下,若中间小区所属的系统为LTE系统,则该PCI混淆可以被标识为:LTE-LTE-LTE的PCI混淆;若中间小区所属的系统为NR系统,则该PCI混淆可以被标识为: LTE-NR-LTE的PCI混淆。
在发生PCI混淆的两邻区所属的系统均为NR系统的情况下,若中间小区所属的系统为NR系统,则该PCI混淆可以被标识为:NR-NR-NR的PCI混淆;若中间小区所属的系统为LTE系统,则该PCI混淆可以被标识为:NR-LTE-NR的PCI混淆。
因此,在进行PCI分配时需要满足PCI不冲突和PCI不混淆这两个基本原则。
基站本地服务小区的邻区为一层邻区,服务小区的邻区的一层邻区就是服务小区的二层邻区。例如:B是A的一层邻区,C是B的一层邻区,那么C就是A的二层邻区。也就是说,要保证为服务小区分配的PCI不发生冲突或混淆的情况,服务小区的PCI不能与其一层同频邻区、二层同频邻区的PCI相同。
基站的服务小区一般都具有一个初始的PCI,然而,由于基站本地小区频点、PCI的改变,基站外部的小区的频点、PCI的改变,外部小区的增加或删除,或者基站中邻区关系的增加或删除,都有可能造成PCI冲突或混淆的情况发生。因此,需要及时地检测出PCI冲突和混淆,并进行服务小区PCI的优化,即为服务小区重新分配一个不会发生PCI冲突或混淆的新的PCI。
传统的为服务小区分配PCI的技术中,网管上会有本网管下所有小区的频点、PCI、经纬度等工程参数和邻区关系表信息,在进行PCI分配时,可以保证待分配小区的PCI与本网管下所有小区不冲突不混淆。但是上述分配方式不适用于异网管的场景,网管无法获取其余网管下小区的工参表和邻区关系等信息,因此在为服务小区,尤其是边界小区分配PCI时,无法保证服务小区与异网管下的邻区的PCI不冲突不混淆。
下面对本实施方式的PCI的分配方法的实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必须。具体流程如图1所示,可包括如下步骤。
步骤101,获取与服务小区频点相同的邻区的PCI。
具体而言,由于小区与其同频的邻区可能发生PCI冲突或混淆,因此基站对与基站下的服务小区频点相同的邻区的PCI进行获取。
执行本实施方式中的PCI的分配方法的基站所属的系统为长期演进LTE系统或新无线接入技术NR系统。即基站可以是LTE系统中的基站eNodeB,或NR系统中的基站gNB。
在一个例子中,获取与服务小区频点相同的邻区的物理层小区标识PCI,可以包括:获取所述服务小区的邻区的小区频点、PCI、邻区关系;根据所述服务小区的邻区的小区频点、PCI、邻区关系,获取所述与服务小区频点相同的邻区的PCI。
在一个例子中,获取所述服务小区的邻区的小区频点、PCI、邻区关系,可以包括:根据所述基站与邻基站之间的接口的消息,获取所述服务小区的邻区的小区频点、PCI、邻区关系;或者,基于所述服务小区下的用户设备UE上报的邻区测量结果,获取所述服务小区的邻区的小区频点、PCI、邻区关系。根据基站与邻基站之间的接口的消息或基于服务小区下的UE上报的邻区测量结果,获取服务小区邻区的PCI,能够全面的获取服务小区的不可用PCI。
其中,根据所述基站与邻基站之间的接口的消息获取所述服务小区的邻区的小区频点、PCI、邻区关系,涉及的基站间通过接口进行信息交互的场景示意图如图4至图6所示。
图4中所示的相邻的两基站eNB1和eNB2分别属于网管1和网管2,eNB1和eNB2之间可以通过建立的X2接口进行站内小区及其邻区的信息交互。
图5中所示的相邻的两基站gNB1和gNB2分别属于网管3和网管4,gNB1和gNB2之间可以通过建立的Xn接口进行站内小区及其邻区的信息交互。
图6中所示的相邻的两基站eNB1和gNB1分别属于网管1和网管3, eNB1和gNB1之间可以通过建立的EN-DC X2接口进行站内小区及其邻区的信息交互。
步骤102,根据获取的PCI,生成服务小区的不可用PCI列表,并将不可用PCI列表同步到数据库中,供服务小区所属的网管根据服务小区的不可用PCI列表,为服务小区分配PCI。
具体地说,基站根据获取的服务小区邻区的PCI,将其中与服务小区产生冲突或混淆的PCI添加至服务小区的不可用PCI列表。进一步地,将不可用PCI列表同步到数据库中,使得服务小区所属的网管能够根据服务小区的不可用PCI列表,为服务小区分配PCI。
本实施方式中涉及的数据库中保存有基站的所有服务小区的不可用PCI列表,并支持基站的写入和网管的读取。
在一个例子中,与服务小区频点相同的邻区与所述服务小区所属的网管不同。不可用PCI列表中包括异网管下的该服务小区邻区的PCI,使得网管在根据不可用PCI列表为服务小区分配PCI时,能够更加准确的避免PCI冲突或者混淆的情况发生。
在另一个例子中,在所述根据所述基站与邻基站之间的接口的消息,获取所述服务小区的邻区的小区频点、PCI、邻区关系的情况下,所述根据获取的PCI,生成所述服务小区的不可用PCI列表,可以包括:在所述基站与所述邻基站所属的系统相同的情况下,将所述服务小区的一层邻区以及二层邻区的PCI添加至所述不可用PCI列表;在所述基站与所述邻基站所属的系统不同的情况下,将所述服务小区的二层邻区的PCI添加至所述不可用PCI列表。在服务小区的一层邻区与服务小区所属系统不同的情况下,不会发生PCI冲突,因此将二层邻区的PCI添加至所述不可用PCI列表,即可全面包括不可用PCI。
在所述基于所述服务小区下的用户设备UE上报的邻区测量结果,获取所述服务小区的邻区的小区频点、PCI、邻区关系的情况下,所述根据获取的 PCI,生成所述服务小区的不可用PCI列表,可以包括:将所述服务小区的二层邻区的PCI添加至所述不可用PCI列表。
在一示例性实施例中,为LTE系统下的服务小区生成不可用PCI列表。首先根据所述基站与邻基站之间的接口的消息向不可用PCI列表添加不可用PCI。
当LTE基站eNB1的邻基站为LTE系统下的基站时,基站eNB1与邻基站eNB2建立X2接口的连接后,可以获取邻基站eNB2本地小区及其一层邻区的相关信息。其中,获取的小区的信息包括:LTE小区全球标识(E-UTRAN Cell Global Identifier,简称“ECGI”),其中ECGI=PLMN+eNodeB ID+Cell ID,其中PLMN为公共陆地移动网络(Public Land Mobile Network);LTE小区的PCI;LTE小区载波下行中心频点。
在一实例中,基站根据获取的信息,为基站eNB1下的服务小区依次生成小区的不可用PCI列表。对于eNB1下的服务小区ECGI1,首先从该小区的邻区列表中找出所有属于eNB2的一层LTE邻区以及从X2接口消息中获取的二层LTE邻区,基站eNB1根据与邻基站eNB2的接口消息获取的小区ECGI1的一层邻区和二层邻区的信息如表1所示。
表1
Figure PCTCN2022127389-appb-000001
如果基站为服务小区重分配的PCI与频点相同的一层LTE邻区相同,则 会出现LTE-LTE类型的PCI冲突,因此需要将与服务小区同频的一层LTE邻区的PCI(5)添加到不可用PCI列表中。
如果基站为服务小区重分配的PCI与频点相同的二层LTE邻区相同,则会出现LTE-LTE-LTE类型的PCI混淆,因此需要将与LTE服务小区同频的二层LTE邻区的PCI(8和91)添加到不可用PCI列表中。
因此,基站根据与邻基站eNB2的接口消息,为服务小区ECGI1的生成的不可用PCI列表中需要添加的PCI为:{5,8,91}。
当LTE基站eNB1的邻基站为NR系统下的基站时,基站eNB1与邻基站gNB2建立4G-5G双连接(EUTRA-NR Dual Connectivity,简称“EN-DC”)X2接口连接后,可以获取邻基站gNB2的本地NR小区及其一层LTE邻区的相关信息。其中,获取的小区的信息包括:NR小区全球标识(NR Cell Global Identifier,简称“NCGI”),其中NCGI=PLMN+gNodeB ID+Cell ID,;LTE小区的PCI;LTE小区载波下行中心频点。
在一实例中,基站根据获取的信息,为基站eNB1下的服务小区依次生成小区的不可用PCI列表。例如,对于eNB1下的服务小区ECGI1,首先从该小区的邻区列表中找出所有属于gNB2的一层NR邻区以及从EN-DC X2消息中获取的二层LTE邻区,基站eNB1根据与邻基站gNB2的接口消息获取的小区ECGI1的一层邻区和二层邻区的信息如表2所示。
表2
Figure PCTCN2022127389-appb-000002
如果基站为服务小区重分配的PCI与频点相同的二层LTE邻区相同,则 会出现LTE-NR-LTE类型的PCI混淆,因此需要将与LTE服务小区同频的二层LTE邻区的PCI(15和78)添加到不可用PCI列表中。
因此,基站根据与邻基站gNB2的接口消息,为服务小区ECGI1的生成的不可用PCI列表中需要添加的PCI为:{15,78}。
在基站eNB1基于所述服务小区下的用户设备UE上报的邻区测量结果,获取所述服务小区的邻区的小区频点、PCI、邻区关系的情况下,LTE服务小区中的UE向基站上报与服务小区同频的其他未知LTE小区PCI,且该PCI不在服务小区的邻区列表中。基站根据UE上报的邻区测量结果获取的小区ECGI1的一层邻区和二层邻区的信息如表3所示。
表3
Figure PCTCN2022127389-appb-000003
LTE服务小区下的UE能测到未知小区的信号,说明该小区与服务小区的覆盖可能有重叠,如果基站为服务小区重分配的PCI与频点相同的未知LTE小区相同,则可能会出现LTE-LTE类型的PCI冲突,因此需要将与LTE服务小区同频的未知LTE小区的PCI添加到不可用PCI列表中。因此,基站UE上报的邻区测量结果,为服务小区ECGI1的生成的不可用PCI列表中需要添加的PCI为:{9}。
综合上述根据不同方式获取的服务小区邻区的信息,为服务小区ECGI1的生成的不可用PCI列表中的PCI为{5,8,9,15,78,91}。
另外,值得注意的是,为防止出现LTE-LTE-LTE类型的PCI混淆,基站应根据UE上报的邻区测量结果,为基站下的服务小区PLMN1+eNodeB1+Cell0在其不可用PCI列表中添加PCI(9)。为基站下的服 务小区PLMN1+eNodeB1+Cell2在其不可用PCI列表中添加PCI(92)。
值得一提的是,对于LTE系统下的小区,获取的频点信息为中心频点;对于NR系统下的小区,获取的频点信息为同步信号和PBCH块(Synchronization Signal and PBCH block,简称“SSB”)频点。
在基站为服务小区生成不可用PCI列表后,网管对PCI冲突或混淆的服务小区进行优化时,可以首先从数据库读取待优化的服务小区的不可用PCI列表,从全部可用的PCI分段中过滤掉列表中的不可用PCI,然后再从剩余的可用PCI中为该小区选择一个满足其余传统技术中的约束条件的PCI进行分配。其中,传统技术中的约束条件包括相邻小区PCI模3不等或模30不等、复用距离、复用层数、均衡性等相关参数满足预设条件等。
在实际执行本实施方式涉及的PCI的分配方法时,可以在基站侧设置PCI冲突或混淆检测模块和不可用PCI列表统计和维护模块,在网管侧设置PCI优化模块,在数据库中设置不可用PCI列表存储模块,基站、网管与数据库交互的示意图如图7所示。图7中用PciBlackList表示不可用PCI列表。还可以设置由基站向网管上报不可用PCI列表的动态。
本实施方式涉及的PCI的分配方法在异网管场景中同样适用,此处的异网管可以是同厂商的不同网管,也可以是异厂商的不同网管。本实施方式涉及的PCI的分配方法适用的组网场景可以是区域组网,也可以是插花组网。区域组网的组网场景如图8所示。
值得一提的是,对于分布式PCI分配方式,即网管为每个小区分配一个PCI列表并下发给基站,然后基站从PCI列表中为每个小区分配一个PCI值,本网管下基站可以通过接口与异网管下基站交互信息,实时获取异网管基站小区的频点、PCI、邻区关系等信息。然而,这种PCI分配方式往往需要网管与基站之间进行频繁的实时交互,效率低且难于实现和维护。在全网多个基站需要对本地小区进行PCI优化的情况下,如果同时需要向网管申请新的PCI列表,很容易造成网管消息风暴,堵塞网管引起网管瘫痪,对全网造成巨大 损失。本申请的实施方式对于分布式PCI分配方式能够实现避免网管与基站频繁交互,提高PCI分配效率的效果。
本实施方式对与服务小区频点相同的邻区的PCI进行实时获取,并根据获取的PCI,为服务小区生成不可用PCI列表。生成的不可用PCI列表被同步到数据库中,且能够被服务小区所属的网管获取,供网管根据该不可用PCI列表为服务小区分配PCI。相比于传统方法中网管仅能获取本网管下的小区的PCI,本申请的实施方式不局限于同网管的场景,不可用PCI列表可包括与服务小区频点相同的异网管小区的PCI,使得网管在根据不可用PCI列表为服务小区分配PCI时,能够更加准确的避免PCI冲突或者混淆的情况发生。
本申请的另一个实施方式涉及一种PCI的分配方法,下面对本实施方式的PCI的分配方法的实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必须,具体流程如图9所示,包括以下步骤。
步骤901,获取与服务小区频点相同的邻区的PCI。
步骤902,根据获取的PCI,生成服务小区的不可用PCI列表,并将不可用PCI列表同步到数据库中,供服务小区所属的网管根据服务小区的不可用PCI列表,为服务小区分配PCI。
不难看出,本实施方式中的步骤901与步骤902与上一实施方式中的步骤101与步骤102相同,上一实施方式中提到的相关技术细节在本实施方式中依然有效,为了减少重复,这里不再赘述。
步骤903,实时获取与服务小区频点相同的邻区的PCI。
由于基站本地小区频点、PCI可能发生改变,基站外部的小区的频点、PCII可能发生改变,外部小区可能增加或删除,或者基站中邻区关系增加或删除,这些因素都有可能造成为服务小区分配的PCI再次产生PCI冲突或混淆的情况发生。因此,基站需要对邻区的信息进行不断的实时采集,以获知PCI的混淆或冲突的情况。
步骤904,根据实时获取的PCI,对不可用PCI列表进行更新,并同步到 数据库中。
由于邻区信息的变化可能使得服务小区不可用的PCI发生变化,因此基站需要根据实时获取的PCI,对不可用PCI列表进行更新,以避免PCI冲突或者混淆的情况发生。进而基站将更新的不可用PCI列表同步到数据库中,以使得网管能够获取,并根据更新的列表为服务小区分配新的PCI。
在一示例性实施例中,在LTE系统中的基站eNB1已经为该基站下的三个服务小区Cell0、Cell1和Cell2已经生成了各自的不可用PCI列表如表4所示。
表4
eNB ID+Cell ID+中心频点 不可用PCI列表
eNB1+Cell0+1850 {1,2,8,10}
eNB1+Cell1+1850 {0,2,8,11,13}
eNB1+Cell2+1850 {0,1,8,12,15}
eNB1通过接收到的X2接口的消息,获取了邻基站eNB2更新的本地小区及其一层邻区的相关信息。在eNB2的本地小区及其一层邻区中,找出eNB1下每个小区的同频一层和同频二层邻区,将这些邻区的PCI放入不可用PCI列表中,并记录检测添加次数和检测时间。eNB1下的三个服务小区Cell0、Cell1和Cell2的不可用PCI列表分别如表5至表7所示。
表5
Figure PCTCN2022127389-appb-000004
表6
Figure PCTCN2022127389-appb-000005
表7
Figure PCTCN2022127389-appb-000006
如果网管需要对eNB1下Cell0进行PCI重新分配,则读取服务小区Cell0的最新的不可用PCI列表:{1,2,8,10,17,24},假设Cell0可用的PCI分段为0-503,则将不可用PCI列表中的PCI过滤掉后,再进行PCI的分配。
在一个例子中,在所述根据实时获取的PCI,对所述不可用PCI列表进行更新后,还可以包括:在所述不可用PCI列表中的PCI的个数大于预设门限的情况下,在所述不可用PCI列表中删除添加时间与当前时间的时间间隔超出预设阈值的PCI;其中,删除的PCI的个数不大于预设的可删除个数。每次对不可用PCI列表中的PCI进行删除的个数不可超过预设值,能够防止PCI删除过快,对系统造成影响。
在一示例性实施例中,基站对接收到的接口消息或UE测量上报获取的不可用PCI更新添加时间,并记录添加次数。基站为基站下的每个本地小区维护不可用PCI列表,其中一不可用PCI列表如表8所示。
表8
不可用PCI 最近一次添加时间 添加次数
0 2020.04.03 4
2 2020.03.12 3
8 2020.03.03 2
...... ......  
如表8所示,基站将不可用PCI列表中的PCI按照最近一次添加时间进行排序,最新添加的排在最前面。如果最近一次添加时间相同,则按照添加次数由大到小排序。除了上一例中对PCI删除的条件之外,为了防止不可用PCI删除过快,对系统造成影响,可以设置限制每天最多只能删除N个满足条件并且排在列表最下面的不可用PCI。
本实施方式实时获取与服务小区频点相同的邻区的PCI并根据实时获取的PCI对服务小区的不可用PCI列表进行更新,进而将更新的列表同步到数据库中供网管获取,使得网管能够在数据库中读取不断更新的不可用PCI列表,进而根据不断更新的不可用PCI列表为服务小区分配PCI,相比传统方法中网管不断与其他网管交互以获得不可用PCI的技术手段,能够提高为服务小区分配PCI的效率。
本申请的另一个实施方式涉及一种基站,如图10所示,包括以下模块。
获取模块1001,用于获取与服务小区频点相同的邻区的物理层小区标识PCI。
生成模块1002,用于根据获取的PCI,生成所述服务小区的不可用PCI列表,并将所述不可用PCI列表同步到数据库中,供所述服务小区所属的网管根据所述数据库中的所述服务小区的所述不可用PCI列表,为所述服务小区分配PCI。
在一个例子中,获取模块1001,还可以用于获取所述服务小区的邻区的小区频点、PCI、邻区关系;根据所述服务小区的邻区的小区频点、PCI、邻区关系,获取所述与服务小区频点相同的邻区的PCI。
在一个例子中,获取模块1001,还可以用于根据所述基站与邻基站之间的接口的消息,获取所述服务小区的邻区的小区频点、PCI、邻区关系;或者, 基于所述服务小区下的用户设备UE上报的邻区测量结果,获取所述服务小区的邻区的小区频点、PCI、邻区关系。
在一个例子中,生成模块1002,还可以用于在所述根据所述基站与邻基站之间的接口的消息,获取所述服务小区的邻区的小区频点、PCI、邻区关系的情况下,所述根据获取的PCI,生成所述服务小区的不可用PCI列表,在所述基站与所述邻基站所属的系统相同的情况下,将所述服务小区的一层邻区以及二层邻区的PCI添加至所述不可用PCI列表;在所述基站与所述邻基站所属的系统不同的情况下,将所述服务小区的二层邻区的PCI添加至所述不可用PCI列表;在所述基于所述服务小区下的用户设备UE上报的邻区测量结果,获取所述服务小区的邻区的小区频点、PCI、邻区关系的情况下,所述根据获取的PCI,生成所述服务小区的不可用PCI列表,将所述服务小区的二层邻区的PCI添加至所述不可用PCI列表。
在一个例子中,上述基站还可以包括更新模块,用于在所述根据获取的PCI,生成所述服务小区的不可用PCI列表,并将所述不可用PCI列表同步到数据库中,供所述服务小区所属的网管根据所述数据库中的所述服务小区的所述不可用PCI列表,为所述服务小区分配PCI后,实时获取与所述服务小区频点相同的邻区的PCI;根据实时获取的PCI,对所述不可用PCI列表进行更新,并同步到数据库中。
在一个例子中,上述基站还可以包括删除模块,用于在所述根据实时获取的PCI,对所述不可用PCI列表进行更新后,在所述不可用PCI列表中的PCI的个数大于预设门限的情况下,在所述不可用PCI列表中删除添加时间与当前时间的时间间隔超出预设阈值的PCI;其中,删除的PCI的个数不大于预设的可删除个数。
本实施方式提供的基站对与服务小区频点相同的邻区的PCI进行实时获取,并根据获取的PCI,为服务小区生成不可用PCI列表。生成的不可用PCI列表被同步到数据库中,且能够被服务小区所属的网管获取,供网管根据该 不可用PCI列表为服务小区分配PCI。相比于传统方法中网管仅能获取本网管下的小区的PCI,本申请的实施方式不局限于同网管的场景,不可用PCI列表可包括全部与服务小区频点相同的邻区的PCI,使得网管在根据不可用PCI列表为服务小区分配PCI时,能够更加准确的避免PCI冲突或者混淆的情况发生。
不难发现,本实施方式为与上述方法实施方式对应的系统实施方式,本实施方式可以与上述方法实施方式互相配合实施。上述实施方式中提到的相关技术细节和技术效果在本实施方式中依然有效,为了减少重复,这里不再赘述。相应地,本实施方式中提到的相关技术细节也可应用在上述实施方式中。
值得一提的是,本申请上述实施方式中所涉及到的各模块均为逻辑模块,在实际应用中,一个逻辑单元可以是一个物理单元,也可以是一个物理单元的一部分,还可以以多个物理单元的组合实现。此外,为了突出本申请的创新部分,本实施方式中并没有将与解决本申请所提出的技术问题关系不太密切的单元引入,但这并不表明本实施方式中不存在其它的单元。
本申请的实施例还提供一种电子设备,如图11所示,包括至少一个处理器1101;以及,与所述至少一个处理器1101通信连接的存储器1102;其中,存储器1102存储有可被至少一个处理器1101执行的指令,指令被至少一个处理器1101执行,以使至少一个处理器1101能够执行上述PCI的分配方法。
其中,存储器1102和处理器1101采用总线方式连接,总线可以包括任意数量的互联的总线和桥,总线将一个或多个处理器1101和存储器1102的各种电路连接在一起。总线还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路连接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口在总线和收发机之间提供接口。收发机可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器1101处理的数据通过天 线在无线介质上进行传输,进一步,天线还接收数据并将数据传送给处理器1101。
处理器1101负责管理总线和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器1102可以被用于存储处理器1101在执行操作时所使用的数据。
上述产品可执行本申请实施例所提供的PCI的分配方法,具备执行方法相应的功能模块和有益效果,未在本实施例中详尽描述的技术细节,可参见本申请实施例所提供的方法。
本申请的实施例还提供一种计算机可读存储介质,存储有计算机程序。计算机程序被处理器执行时实现上述PCI的分配方法。
本领域技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
上述实施例是提供给本领域普通技术人员来实现和使用本申请的,本领域普通技术人员可以在不脱离本申请的申请思想的情况下,对上述实施例做出种种修改或变化,因而本申请的保护范围并不被上述实施例所限,而应该符合权利要求书所提到的创新性特征的最大范围。

Claims (11)

  1. 一种PCI的分配方法,应用于基站,包括:
    获取与服务小区频点相同的邻区的物理层小区标识PCI;
    根据所述获取的PCI,生成所述服务小区的不可用PCI列表,并将所述不可用PCI列表同步到数据库中,供所述服务小区所属的网管根据所述数据库中的所述服务小区的所述不可用PCI列表,为所述服务小区分配PCI。
  2. 根据权利要求1所述的PCI的分配方法,其中,所述获取与服务小区频点相同的邻区的物理层小区标识PCI,包括:
    获取所述服务小区的邻区的小区频点、PCI、邻区关系;
    根据所述服务小区的邻区的小区频点、PCI、邻区关系,获取所述与服务小区频点相同的邻区的PCI。
  3. 根据权利要求2所述的PCI的分配方法,其中,所述获取所述服务小区的邻区的小区频点、PCI、邻区关系,包括:
    根据所述基站与邻基站之间的接口的消息,获取所述服务小区的邻区的小区频点、PCI、邻区关系;
    或者,基于所述服务小区下的用户设备UE上报的邻区测量结果,获取所述服务小区的邻区的小区频点、PCI、邻区关系。
  4. 根据权利要求3所述的PCI的分配方法,其中,在所述根据所述基站与邻基站之间的接口的消息,获取所述服务小区的邻区的小区频点、PCI、邻区关系的情况下,所述根据获取的PCI,生成所述服务小区的不可用PCI列表,包括:
    在所述基站与所述邻基站所属的系统相同的情况下,将所述服务小区的一层邻区以及二层邻区的PCI添加至所述不可用PCI列表;
    在所述基站与所述邻基站所属的系统不同的情况下,将所述服务小区的二层邻区的PCI添加至所述不可用PCI列表;
    或者,在所述基于所述服务小区下的用户设备UE上报的邻区测量结果, 获取所述服务小区的邻区的小区频点、PCI、邻区关系的情况下,所述根据获取的PCI,生成所述服务小区的不可用PCI列表,包括:
    将所述服务小区的二层邻区的PCI添加至所述不可用PCI列表。
  5. 根据权利要求1所述的PCI的分配方法,其中,在所述根据获取的PCI,生成所述服务小区的不可用PCI列表,并将所述不可用PCI列表同步到数据库中,供所述服务小区所属的网管根据所述数据库中的所述服务小区的所述不可用PCI列表,为所述服务小区分配PCI后,还包括:
    实时获取与所述服务小区频点相同的邻区的PCI;
    根据实时获取的PCI,对所述不可用PCI列表进行更新,并同步到数据库中。
  6. 根据权利要求5所述的PCI的分配方法,其中,在所述根据实时获取的PCI,对所述不可用PCI列表进行更新后,还包括:
    在所述不可用PCI列表中的PCI的个数大于预设门限的情况下,在所述不可用PCI列表中删除添加时间与当前时间的时间间隔超出预设阈值的PCI;其中,删除的PCI的个数不大于预设的可删除个数。
  7. 根据权利要求1或6中任一项所述的PCI的分配方法,其中,所述与服务小区频点相同的邻区与所述服务小区所属的网管不同。
  8. 根据权利要求1或6中任一项所述的PCI的分配方法,其中,所述基站所属的系统为长期演进LTE系统或新无线接入技术NR系统。
  9. 一种基站,包括:
    获取模块,用于获取与服务小区频点相同的邻区的物理层小区标识PCI;
    生成模块,用于根据获取的PCI,生成所述服务小区的不可用PCI列表,并将所述不可用PCI列表同步到数据库中,供所述服务小区所属的网管根据所述数据库中的所述服务小区的所述不可用PCI列表,为所述服务小区分配PCI。
  10. 一种电子设备,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1至8中任一项所述的PCI的分配方法。
  11. 一种计算机可读存储介质,存储有计算机程序,其中,所述计算机程序被处理器执行时实现权利要求1至8中任一项所述的PCI的分配方法。
PCT/CN2022/127389 2021-10-26 2022-10-25 Pci的分配方法、基站、电子设备和计算机可读存储介质 WO2023072074A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111248472.5A CN116033446A (zh) 2021-10-26 2021-10-26 Pci的分配方法、基站、电子设备和计算机可读存储介质
CN202111248472.5 2021-10-26

Publications (1)

Publication Number Publication Date
WO2023072074A1 true WO2023072074A1 (zh) 2023-05-04

Family

ID=86080065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127389 WO2023072074A1 (zh) 2021-10-26 2022-10-25 Pci的分配方法、基站、电子设备和计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN116033446A (zh)
WO (1) WO2023072074A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102395125A (zh) * 2008-09-25 2012-03-28 华为技术有限公司 分配物理小区标识的方法和装置
CN102651876A (zh) * 2011-02-24 2012-08-29 普天信息技术研究院有限公司 实现物理小区标识配置的方法及系统
CN105940702A (zh) * 2013-12-04 2016-09-14 诺基亚通信公司 物理小区id的自组织分布式分配、优化和使用
CN106332098A (zh) * 2015-06-30 2017-01-11 中国移动通信集团公司 一种分配物理小区标识的方法及装置
CN111770508A (zh) * 2019-03-30 2020-10-13 华为技术有限公司 一种pci冲突检测和优化方法、装置及系统
EP3817439A1 (en) * 2019-10-31 2021-05-05 INTEL Corporation Pci configuration son functionality for 5g networks

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102395125A (zh) * 2008-09-25 2012-03-28 华为技术有限公司 分配物理小区标识的方法和装置
CN102651876A (zh) * 2011-02-24 2012-08-29 普天信息技术研究院有限公司 实现物理小区标识配置的方法及系统
CN105940702A (zh) * 2013-12-04 2016-09-14 诺基亚通信公司 物理小区id的自组织分布式分配、优化和使用
CN106332098A (zh) * 2015-06-30 2017-01-11 中国移动通信集团公司 一种分配物理小区标识的方法及装置
CN111770508A (zh) * 2019-03-30 2020-10-13 华为技术有限公司 一种pci冲突检测和优化方法、装置及系统
EP3817439A1 (en) * 2019-10-31 2021-05-05 INTEL Corporation Pci configuration son functionality for 5g networks

Also Published As

Publication number Publication date
CN116033446A (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
CN101568196B (zh) 分配物理小区标识的方法和装置
US11153890B2 (en) Method and system for managing UE-to-UE interference in a mobile telecommunication network
JP5444359B2 (ja) 物理セルidの割当方法と基地局
CN104115514B (zh) 通信系统、标识符分配设备、基站、标识符分配方法、以及体现用于控制设备的指令的非临时性计算机可读介质
CN105637917A (zh) 用于蜂窝网络的pci的划分和分配
CN107439031B (zh) 控制器集群中基于无线电性质的接入点负载均衡
CN102308662B (zh) 在基站间建立x2连接的方法、基站和通讯系统
WO2020164373A1 (zh) 一种通信方法、装置、系统及存储介质
EP2749054B1 (en) Physical cell identity allocation
KR20130065902A (ko) 이동 통신 시스템 및 그 이동 통신 시스템에서 기지국 식별자 관리 방법
US9408213B2 (en) Wireless communication system, frequency channel sharing method, and network controller device
EP3611968B1 (en) Base station and method
US9473202B2 (en) Detection of scrambling code confusion
WO2017015802A1 (zh) 一种分配接入回程资源的方法及装置
US10425823B2 (en) Cell management apparatus and method for operating cell management apparatus
WO2023072074A1 (zh) Pci的分配方法、基站、电子设备和计算机可读存储介质
WO2016065840A1 (zh) 无线接入网节点的邻区关系建立方法及装置
KR20140055511A (ko) 이동통신 네트워크 환경에서 자동 이웃 관계 구성 처리 방법 및 장치
US10172017B2 (en) Method and apparatus for assigning cell identifier values and method and apparatus for managing assignment of cell identifier values in a communication network
JP5345160B2 (ja) 信号系列割当装置及び信号系列割当方法
WO2017215232A1 (zh) 一种用于室内覆盖网络的自适应频率调节方法及系统
US9338783B2 (en) Allocating reuse codes to cells in a communication network
KR20150087599A (ko) 이동 통신 시스템에서의 추적 영역 할당 방법 및 장치
CN115515075A (zh) 一种通感一体化网络中多目标协同跟踪方法
WO2010048844A1 (zh) 分配小区物理层标识的方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE