WO2023072017A1 - 血泵的泵血流量确定方法、装置、电子设备和存储介质 - Google Patents

血泵的泵血流量确定方法、装置、电子设备和存储介质 Download PDF

Info

Publication number
WO2023072017A1
WO2023072017A1 PCT/CN2022/127202 CN2022127202W WO2023072017A1 WO 2023072017 A1 WO2023072017 A1 WO 2023072017A1 CN 2022127202 W CN2022127202 W CN 2022127202W WO 2023072017 A1 WO2023072017 A1 WO 2023072017A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
value
pump
blood flow
difference
Prior art date
Application number
PCT/CN2022/127202
Other languages
English (en)
French (fr)
Inventor
刘智勇
薛志宽
曹殿佳
Original Assignee
丰凯利医疗器械(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丰凯利医疗器械(上海)有限公司 filed Critical 丰凯利医疗器械(上海)有限公司
Publication of WO2023072017A1 publication Critical patent/WO2023072017A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/50Details relating to control
    • A61M60/508Electronic control means, e.g. for feedback regulation
    • A61M60/515Regulation using real-time patient data
    • A61M60/523Regulation using real-time patient data using blood flow data, e.g. from blood flow transducers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/50Details relating to control
    • A61M60/508Electronic control means, e.g. for feedback regulation
    • A61M60/538Regulation using real-time blood pump operational parameter data, e.g. motor current
    • A61M60/546Regulation using real-time blood pump operational parameter data, e.g. motor current of blood flow, e.g. by adapting rotor speed

Definitions

  • the present application relates to the field of information processing, and in particular to a method, device, electronic device and storage medium for determining pump blood flow of a blood pump.
  • Short-term blood pump is one of the effective ways to treat cardiovascular and related complications. It provides hemodynamic support for patients in a short period of time to promote the rapid recovery of heart and other important tissues and organs.
  • the effectiveness of the short-term blood pump is mainly reflected in the improvement of the patient's aortic pressure and cardiac output.
  • the cardiac output of the patient under the support of the short-term blood pump is mainly the sum of the patient's own cardiac output and the blood flow of the blood pump. How to correctly calibrate these two indicators (the patient's own cardiac output and the pump blood flow of the blood pump) is particularly important.
  • the pump blood flow is mainly calculated based on the relationship between the current of the blood pump and the pump blood flow of the catheter, while the patient's own cardiac output is calculated based on the pump blood flow.
  • the applicant found that differences in the motors and catheters of different blood pumps will result in different currents of the blood pumps. Therefore, it is inaccurate to characterize the blood flow of the blood pump based on the current of the blood pump.
  • One of the objectives of the embodiments of the present application is to provide a method, device, electronic device and storage medium for determining the blood pump flow rate of a blood pump, so as to achieve the effect of accurately determining the pump blood flow rate of the blood pump.
  • the embodiment of the first aspect of the present application provides a method for determining the pump blood flow rate of a blood pump, the method comprising:
  • a target pump blood flow value is determined.
  • the embodiment of the second aspect of the present application provides a device for determining pump blood flow of a blood pump, the device comprising:
  • the first acquisition module is used to acquire the first corresponding relationship between the absolute value of the first current difference and the first pump blood flow value at different rotational speeds in the blood pump in the simulated environment of the in vitro test;
  • the second acquisition module is used to acquire the first reference current value of each current cycle when the blood pump is in the actual human body environment of the detection object and works at each rotation speed;
  • the first determination module is configured to, for each current cycle in each rotational speed, make a difference between the first reference current value and the current value at different times in the current cycle to obtain at least one second absolute current difference value value;
  • the second determination module is configured to search in the first corresponding relationship for at least one absolute value of the second current difference corresponding to each current cycle in each rotational speed, and obtain the relationship with at least one of the second At least one second pump blood flow value corresponding to the absolute value of the current difference;
  • the third determination module is configured to determine a target pump blood flow value for each rotational speed based on at least one second pump blood flow value in each current cycle.
  • the embodiment of the third aspect of the present application provides an electronic device, which includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor, and the program or instruction is executed by
  • the processor implements the steps of the method for determining and locating the pump blood flow rate of the blood pump described in any one of the embodiments of the present application when executed.
  • the embodiment of the fourth aspect of the present application provides a readable storage medium, on which a program or instruction is stored, and when the program or instruction is executed by a processor, the blood described in any one of the embodiments of the present application is realized.
  • the pump blood flow rate of the pump determines the steps of the positioning method.
  • the method for determining the pump blood flow rate of the blood pump obtained in the embodiment of the present application obtains the first value between the absolute value of the first current difference and the first pump blood flow value at different rotational speeds in the simulated environment of the in vitro test of the blood pump.
  • One-to-one correspondence obtain the first reference current value of each current cycle during the working process of the blood pump in the actual human body environment of the detection object at each speed; for each current cycle in each speed, set the first reference current value A difference between a reference current value and the current value at different times in the current cycle is obtained to obtain at least one second absolute value of the current difference; for at least one second absolute value of the current difference corresponding to each current cycle in each rotational speed, Search in the first correspondence relationship to obtain at least one second pump blood flow value corresponding to at least one second absolute value of the current difference; for each rotational speed, based on at least one second pump blood flow under each current cycle Quantity, to determine the target pump blood flow value, because the current change is mainly related to the change of the pump blood flow value, so, the pump blood flow value of the blood pump can be effectively represented by the current change difference, compared with the direct use of current In order to characterize the pump blood flow value of the blood pump, the error caused by the difference between different blood pump catheters can be effectively reduced by using the current difference
  • Fig. 1 is a schematic diagram of a method for determining pump blood flow of a blood pump provided by an exemplary embodiment of the present application
  • Fig. 2 is a second corresponding relationship diagram between various pressure differences at different rotational speeds and the second current value at each pressure difference involved in an exemplary embodiment of the present application;
  • Fig. 3 is a third correspondence diagram between various pressure differences at different rotational speeds and the first pump blood flow values at various pressure differences involved in an exemplary embodiment of the present application;
  • Fig. 4 is a diagram of the corresponding relationship between each differential pressure at different rotational speeds and the absolute value of the first current difference at each differential pressure according to an exemplary embodiment of the present application;
  • Fig. 5 is a diagram of the corresponding relationship between the absolute value of the first current difference and the first pump blood flow at different rotational speeds according to an exemplary embodiment of the present application;
  • Fig. 6 is a graph of current variation in a certain cardiac cycle at a certain rotational speed involved in an exemplary embodiment of the present application
  • Fig. 7 is a graph of the second pump blood flow values in a certain current cycle at a certain speed according to an exemplary embodiment of the present application
  • Fig. 8 is a correction curve diagram of the absolute value of the first current difference at the rotational speed n1 according to an exemplary embodiment of the present application
  • Fig. 9 is a correction curve diagram of the absolute value of the first current difference at a rotational speed n2 according to an exemplary embodiment of the present application.
  • Fig. 10 is a correction curve diagram of the absolute value of the first current difference at a rotational speed n3 according to an exemplary embodiment of the present application;
  • Fig. 11 is a structural block diagram of a device for determining pump blood flow of a blood pump provided by an exemplary embodiment of the present application;
  • FIG. 12 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the current value reflects the output power of the motor.
  • the external work of the motor includes overcoming the frictional work of the external driven shaft rotor rotation, the frictional work of the flexible drive shaft relative to the constraint layer, and the frictional work of the internal bearing rotation, as well as the impeller, drive shaft and bearings.
  • the absolute value of the motor current reflects the comprehensive effect of the above-mentioned factors, and not only reflects the work done by the impeller on the blood pumping.
  • the current value reflects the total work done by the motor. As mentioned above, it includes the power consumption of various factors. Therefore, it is inaccurate to calculate the work done by the corresponding impeller on the blood through the motor current value, and then determine the pumped blood flow.
  • the embodiment of the present application provides a method for determining the pump blood flow rate of a blood pump.
  • the absolute value of the first current difference and the first pump blood flow The first corresponding relationship between the flow values; the blood pump is in the actual human body environment of the detection object, and the first reference current value of each current cycle is obtained during the operation process at each speed; for each speed in each speed current cycle, the difference between the first reference current value and the current value at different times in the current cycle is obtained to obtain at least one second absolute value of the current difference; at least one second corresponding to each current cycle in each rotational speed
  • the absolute value of the current difference is searched in the first corresponding relationship to obtain at least one second blood pump flow value corresponding to at least one second absolute value of the current difference; for each rotation speed, based on at least A second pump blood flow value is used to determine the target pump blood flow value.
  • the change of the current value is mainly caused by the change of the work done by the impeller to the blood, therefore, the current difference can better reflect the change value of the pump blood flow value, and the absolute value of the current difference and the reference value of the pump blood flow can determine the value of the pump blood flow.
  • the pump blood flow value of the blood pump is effectively represented by the current change difference.
  • the use of the current difference can achieve a relatively accurate calculation of the pump blood flow. The effect of flow.
  • Fig. 1 is a schematic flowchart of a method for determining the pump blood flow rate of a blood pump provided in an embodiment of the present application. As shown in Fig. 1 , the method for determining the pump blood flow rate of a blood pump provided in an embodiment of the present application may include:
  • Step S110 Obtain the first corresponding relationship between the absolute value of the first current difference and the first pump blood flow value at different rotational speeds under the blood pump in the simulated environment of the in vitro test;
  • Step S120 Obtain the first reference current value of each current cycle when the blood pump is in the actual human body environment of the detection object and works at each rotation speed;
  • Step S130 For each current cycle in each speed, make a difference between the first reference current value and the current value at different times in the current cycle to obtain at least one second absolute value of the current difference;
  • Step S140 For at least one second absolute value of the second current difference corresponding to each current cycle in each rotational speed, search in the first correspondence to obtain the second pump corresponding to the second absolute value of the second current difference blood flow value.
  • each absolute value of the second current difference corresponds to a second pump blood flow value
  • Step S150 For each rotational speed, based on at least one second pump blood flow value in each current cycle, determine a target pump blood flow value.
  • the first reference current value of each current cycle in the working process at each speed, the first reference current value of each current cycle; for each current cycle in each speed, the first reference current value and the current cycle Differentiate the current values at different times to obtain at least one second absolute value of current difference; for at least one second absolute value of current difference corresponding to each current cycle in each rotational speed, search in the first correspondence , to obtain at least one second pump blood flow value corresponding to at least one second absolute value of the current difference; for each rotational speed, based on at least one second pump blood flow value under each current cycle, determine the target pump blood flow In this way, the pump blood flow value of the blood pump is effectively represented by the current change difference.
  • the use of the current difference can effectively reduce the blood flow of different blood pumps.
  • the error caused by the difference between the pump catheters achieves the effect of accurately determining the pump blood flow rate of the blood pump.
  • step S110 is introduced to obtain the first corresponding relationship between the absolute value of the first current difference and the first pump blood flow value at different rotation speeds in the blood pump in the simulated environment of the in vitro test.
  • the blood pump is a device that provides hemodynamic support for patients.
  • the in vitro test simulation environment may be an in vitro simulated environment of the human body, and the in vitro test simulation environment is as close as possible to the environment in the human body.
  • the fluid in the in vitro test simulation environment may be selected to have a fluid equal to or close to blood, and the temperature is equal to the blood temperature of the test object (ie, a human body, such as a patient), between 36 and 37°C.
  • the fluid in the simulated environment of the in vitro test can be water and glycerin in a mixing ratio whose viscosity is equal to that of blood, and the ratio range can be between 45% and 55%.
  • the absolute value of the first current difference may be in the in vitro test simulation environment, under the condition that the catheter of the blood pump is in a straight pipe state, according to the obtained different rotating speeds, the value under zero pressure difference The absolute value of the difference between the current value and the other current values at each differential pressure.
  • the in vitro test simulation environment when the catheter of the blood pump is in a straight pipe state, for the rotation speed n1, the current value I0 at zero pressure difference at this rotation speed and the current at other pressure differences are obtained value I, and make a difference between the current value I and I0 under each pressure difference at the rotational speed n1, and take the absolute value of the difference to obtain the first absolute value of the current difference corresponding to each pressure difference.
  • the first pump blood flow value may be the pump blood flow value under different pressure differences at different rotational speeds.
  • the first corresponding relationship may be a first corresponding relationship between the absolute value of the first current difference and the first pump blood flow value.
  • the above-mentioned method for determining the pump blood flow of the blood pump may further include:
  • the second current value corresponding to zero pressure difference is used as the second reference current value
  • the second current value may be the current value of the blood pump under various pressure differences in the catheter of the blood pump when the blood pump is in an in vitro test simulation environment.
  • the blood pump current values corresponding to the catheter of the blood pump under zero pressure difference and other pressure differences are obtained, and the second current values corresponding to each pressure difference are obtained.
  • the second corresponding relationship may be the corresponding relationship between each pressure difference and the second current value under each pressure difference when the blood pump is in an in vitro test simulation environment and the blood pump is at different speeds.
  • the rotation speed n1 the difference between each pressure difference (including zero pressure difference and other pressure differences) of the blood pump at the rotation speed n1 and the second current value at the corresponding pressure difference is obtained.
  • the second corresponding relationship of the blood pump at the speed n1 is obtained; for the speed n2, the pressure differences (including zero pressure difference and other pressure differences) of the blood pump at the speed n2 and the second corresponding pressure difference at the corresponding pressure difference are obtained.
  • the second corresponding relationship of the blood pump at the speed n2 is obtained; for the speed n3, the pressure difference (including zero pressure difference and other pressure differences) and the corresponding pressure difference of the blood pump at the speed n3 are obtained.
  • the corresponding relationship between the second current values under the difference is obtained to obtain the second corresponding relationship of the blood pump at the rotational speed n3.
  • the third corresponding relationship may be the corresponding relationship between each pressure difference and the first pump blood flow value under each pressure difference when the blood pump is in an in vitro test simulation environment and the blood pump is at different speeds.
  • each pressure difference (including zero pressure difference and other pressure differences) of the blood pump at the speed n1 and the first pump blood flow rate under the corresponding pressure difference are obtained
  • the third corresponding relationship of the blood pump at the speed n1 is obtained; for the speed n2, the pressure difference (including zero pressure difference and other pressure differences) and the corresponding pressure difference of the blood pump at the speed n2 are obtained
  • the corresponding relationship between the blood flow values of the first pump at the speed n2 is obtained to obtain the third corresponding relationship of the blood pump at the speed n2; for the speed n3, the pressure differences (including zero pressure difference and other pressure differences) of the blood pump at the speed n3 are obtained.
  • the second reference current value may be the current value of the conduit of the blood pump under zero pressure difference when the blood pump is in an in vitro test simulation environment.
  • the pressure difference may be the pressure difference between the heart and other organs in a normal human body, and the pressure difference has a certain range, usually within 0-14KPa.
  • the pressure difference between the suction end and the outflow end of the blood pumping catheter of the blood pump can be adjusted to the pressure difference between the heart and other organs in a normal human body, so that the blood pump can Determine the current value and pump blood flow value under different pressure differences.
  • the blood pump can be operated at different speeds in an in vitro test simulation environment, and the second current value at each pressure difference and the first pump blood flow value at each pressure difference at different speeds can be obtained. , and then fit the second current value under each pressure difference at different speeds to obtain the second corresponding relationship (as shown in Figure 2), and simulate the first pump blood flow value under each pressure difference under different speeds Combined, the third corresponding relationship (as shown in Figure 3) is obtained.
  • n1, n2 and n3 represent different rotational speeds, respectively.
  • the current value under zero pressure difference at each rotational speed may be obtained as the second reference current value.
  • the current value I 0 under zero pressure difference at this rotational speed is obtained, and I 0 is used as the second reference current value, and then according to the current values under each differential pressure in the second corresponding relationship, the rotational speed
  • the current value I under each pressure difference under n1 is different from I0 , and the absolute value of the difference is taken to obtain the first absolute value of the current difference corresponding to each pressure difference (as shown in FIG. 4 ).
  • the first absolute value of the current difference and the third corresponding relationship the corresponding relationship between the first absolute value of the current difference and the first pump blood flow can be obtained (as shown in FIG. 5 ).
  • the second corresponding relationship between the pressure difference and the second current value, and the pressure difference and the first pump blood flow rate of the blood pump at different rotation speeds are obtained by using the blood pump in an in vitro test simulation environment.
  • the absolute value of the difference, and the third corresponding relationship can obtain the first corresponding relationship between the absolute value of the first current difference and the first pump blood flow value at this speed, so that the first corresponding relationship at each speed can be accurately obtained.
  • step S120 is introduced to obtain the first reference current value of each current cycle when the blood pump is in the actual human body environment of the detection object and is working at each rotation speed.
  • the detection object may be a detection object using a blood pump, for example, may be an object in which a blood pump is placed in a certain object.
  • a current period may be a period of the current.
  • the heart of the human body has a cardiac cycle.
  • the current of the blood pump also has a cycle, as shown in the figure 6 shows a curve diagram of current variation in a certain cardiac cycle at a certain speed. In each current cycle, the current changes regularly according to the curve shown in FIG. 6 .
  • the first reference current value may be the reference current value in each current cycle when the blood pump is in the actual human body environment of the detection object and is working at each rotation speed.
  • S120 in order to further accurately determine the pump blood flow value of the blood pump, S120 may specifically include:
  • the largest first current value in the current cycle is determined as the first reference current value of the current cycle.
  • the first current value may be the current value in each current cycle when the blood pump is working at each rotational speed, that is, the current value shown in FIG. 6 .
  • the pressure of the aorta and the left ventricle will be approximately the same when the aortic valve is opened, and the pressure difference between the suction end and the outflow end of the pumping catheter of the blood pump will be approximately is 0, at this time, the pump blood flow is the largest, the motor has the largest work, and the current is the largest, so the largest first current value in each current cycle can be determined as the reference current value of the current cycle (ie the first reference current value).
  • the maximum first current value in the current cycle is determined as Based on the first reference current value of the current cycle, the absolute value of the second current difference can be accurately determined based on the first reference current value, so as to obtain an accurate target pump blood flow value.
  • the method for determining the pump blood flow of the blood pump mentioned above may further include:
  • the current period at the rotational speed is compared with the predicted current period corresponding to the cardiac cycle
  • the predicted current period may be a current period predicted by a preset algorithm for a cardiac cycle at the rotation speed.
  • the cardiac cycle of the detected object at each rotational speed can be obtained, based on the cardiac cycle, the current cycle of the blood pump at each rotational speed can be obtained through measurement, and the current cycle and the predicted current cycle Perform a comparison. If the comparison results are consistent, it is determined that the current value at each rotational speed has changed periodically. If the comparison results are inconsistent, it means that the blood pump is placed in the wrong place, and the blood pump needs to be replaced.
  • step S120 may specifically be: when it is determined that the current value at each rotational speed changes periodically, acquire the blood pump in the actual human body environment of the detection object, and during the working process at each rotational speed, each current cycle The first reference current value.
  • an alarm message may be generated to indicate that the blood pump is not placed in the correct position and the blood pump needs to be repositioned.
  • the current cycle of the blood pump at each rotational speed can be obtained through measurement, and the current cycle is compared with the predicted current cycle. Comparison, based on the comparison result, it is determined whether the current value at each rotational speed changes periodically, so as to ensure that the blood pump can work normally.
  • step S130 is introduced, for each current cycle in each rotational speed, the difference between the first reference current value and the current value at different times in the current cycle is obtained to obtain at least one second absolute value of the current difference.
  • the absolute value of the second current difference may be, for each current cycle in each rotational speed, take the absolute value after making a difference between the first reference current value in the current cycle and the current value at different times in the current cycle the resulting value.
  • the maximum current value I 1 in the current cycle is acquired, the maximum current value I 1 is determined as the first reference current value, and then I 1 is combined with the A plurality of second current difference absolute values corresponding to the current cycle at the rotational speed n1 can be obtained by making a difference between the current values at each moment in the current cycle and taking the absolute value.
  • step S140 for at least one second absolute value of current difference corresponding to each current cycle in each rotational speed, search in the first correspondence relationship, and obtain the corresponding value corresponding to at least one second absolute value of current difference at least one second pump blood flow value.
  • the second pump blood flow value may be the pump blood flow value found in the first correspondence relation and corresponding to the absolute value of the second current difference.
  • the first corresponding relationship has the corresponding relationship between the absolute value of the first current difference and the first pump blood flow value at each rotation speed (that is, FIG. 5 )
  • the first corresponding relationship that is, Fig. 5
  • the first corresponding relationship can be obtained. Find the pump blood flow value corresponding to the absolute value of each second current difference, and determine the searched pump blood flow value corresponding to the absolute value of each second current difference as the current cycle in the speed n1
  • Each second pump blood flow value is then be obtained.
  • the method for determining the blood pump flow rate of the blood pump mentioned above may further include:
  • the first reference current value is calibrated as the second reference current value.
  • the flow value corresponding to the second reference current value can be used as the maximum flow value Qmax of the current cycle, and the target pump blood flow value is subsequently displayed , the maximum flow value Qmax can also be displayed.
  • step S130 may specifically include:
  • the difference between the second reference current value and the current value at each moment in the current cycle is obtained to obtain at least one second absolute value of the current difference.
  • the second reference current value can be compared with each moment in the current cycle making a difference between the current values to obtain at least one second absolute value of the current difference.
  • the maximum of the absolute values of the second current differences can be calculated as The pump blood flow value corresponding to the second absolute value of the current difference is determined as the minimum flow value Qmin of the current cycle, and the minimum flow value Qmin may also be displayed when the target pump blood flow value is subsequently displayed.
  • the first reference current value is marked as the second reference current value, and the same reference current value is selected in this way, so that the obtained difference absolute value (the first difference absolute value and the second difference absolute value value) is obtained based on the same reference current value, which ensures that when searching in Figure 5 later, the pump blood flow value corresponding to the absolute value of the difference obtained based on the same reference current value can be found, so that it can be obtained to the precise pump blood flow value.
  • step S150 is introduced, for each rotational speed, based on at least one second pump blood flow value in each current cycle, a target pump blood flow value is determined.
  • the target pump blood flow value may be a pump blood flow value obtained for each rotation speed at each rotation speed, that is, a flow value used to represent the blood pumping capacity of the blood pump.
  • step S150 in order to accurately determine the target pump blood flow value, may specifically include:
  • At least one second pump blood flow value under the current cycle is integrated and calculated to obtain the first total pump blood flow value under the current cycle
  • the average value of the second total pump blood flow value is calculated to obtain the target pump blood flow value at the rotation speed.
  • the first total pump blood flow value may be a value obtained by integral calculation of at least one second pump blood flow value under the current cycle.
  • the current cycle value may be how long each current cycle is, for example, if one current cycle is 10 seconds, then the current cycle value is 10 seconds.
  • the average pump blood flow value may be a value obtained by averaging the first total pump blood flow values in the current cycle.
  • the second total pump blood flow value may be a value obtained by summing the average pump blood flow values of each current cycle at the rotation speed.
  • Fig. 7 is a graph of the second pump blood flow values in a certain current cycle at a certain speed n1, and the respective second pump blood flow values in Fig. 7 are integrated and calculated to obtain The first total pump blood flow value in the current cycle, and then divide the first total pump blood flow value by the current cycle value to obtain the average pump blood flow value in the current cycle.
  • the average pump blood flow value of each current cycle at the speed n1 is summed to obtain the second total pump blood flow value at the speed n1, and the second total pump blood flow value at the speed n1
  • the target pump blood flow value at the rotational speed can be obtained.
  • the graph of the pump blood flow value within one current cycle can be obtained by fitting the above-mentioned corresponding relationship between the absolute value of the second current difference and the second pump blood flow value, and the fitting
  • the methods may include polynomial fitting, trigonometric function fitting, exponential function fitting, logarithmic function fitting and other forms or combinations.
  • the clinician can be helped to determine how much pump blood flow the blood pump should provide for the test subject, and when the blood pump can be withdrawn.
  • the cardiac output value at the rotation speed may be determined based on the target pump blood flow value at each rotation speed.
  • the method for determining the blood pump flow rate of the blood pump mentioned above may further include:
  • the cardiac output value at the rotation speed is determined.
  • the cardiac output may be a value used to characterize the cardiac recovery function of the detection subject.
  • the cardiac output value at the rotational speed is determined based on the target pump blood flow value at the rotational speed, which may specifically be achieved in the following manner:
  • the cardiac output value of the detection object at the rotation speed is determined.
  • the initial moment may be the moment when the blood pump is placed in the body of the test subject and the blood pump starts to work.
  • the total cardiac output value of the detected object at each moment may be obtained through external device measurement, for example, it may be a pulse indicator continuous cardiac output (Pulse indicator Continuous Cadiac Output, PiCCO) monitoring device It can also be obtained through the floating catheter Swan-Ganz. Aortic mean pressure values can also be obtained through auxiliary pressure transducers.
  • external device measurement for example, it may be a pulse indicator continuous cardiac output (Pulse indicator Continuous Cadiac Output, PiCCO) monitoring device It can also be obtained through the floating catheter Swan-Ganz.
  • PiCCO Pulse indicator Continuous Cadiac Output
  • Aortic mean pressure values can also be obtained through auxiliary pressure transducers.
  • how to obtain the total cardiac output value and the average aortic pressure value of the detection object at each moment is not limited in the present application.
  • the vascular resistance of the subject at the initial moment can be determined specifically according to the following formula (1):
  • CO represents the total cardiac output value
  • MAP represents the mean aortic pressure value
  • SVR represents the vascular resistance
  • the vascular resistance SVR0 of the detection object at the initial moment can be calculated.
  • the total cardiac output of the subject detected at time Ti can be based on the following formula (2) within a period of time get:
  • the real-time COi of the detection object can be calculated by using the above formula (2).
  • Con represents the cardiac output value of the detected object at a certain speed
  • COC represents the pump blood flow value of the blood pump at this speed
  • the CO value (that is, the cardiac output value) of the detected object at a certain rotational speed can be obtained.
  • the cardiac output value at the rotation speed is determined based on the target pump blood flow value at the rotation speed, so that the accurate cardiac output value can be determined based on the accurate target pump blood flow value. output, and then accurately know the degree of recovery of the subject's heart.
  • the above determined target pump blood flow value can be obtained based on the blood pump catheter being in a straight state, or based on the blood pump catheter being in a curved state.
  • the state of the catheter of the blood pump may be different from that in the simulated environment of the in vitro test, which will cause the current of the blood pump to be different in actual application, that is, the current value is abnormal, and the resulting current
  • the absolute value of the difference will also be different, such that the first correspondence in the environment cannot be simulated using in vitro tests.
  • the absolute value of the first current difference in the simulated environment of the in vitro test is allowed to have a certain adjustment range.
  • the catheter of the blood pump has two states: a first state and a second state.
  • the first state may be that the catheter of the blood pump is in a straight state
  • the second state may be that the catheter of the blood pump is in a bent state
  • obtaining the second current value under each pressure difference at the rotation speed may be for each rotation speed, obtaining the second current value under different states , the second current value under each differential pressure at the rotational speed.
  • the second current value here may include a first sub-current value and a second sub-current value, wherein, the first sub-current value may be that the catheter of the blood pump is in the first state, the blood pump is at various speeds, and at various pressure differences.
  • the current value; the second sub-current value may be the current value of the catheter of the blood pump in the second state, the blood pump at each rotation speed, and each pressure difference.
  • the values of the blood pump at each rotation speed and each pressure difference are respectively obtained.
  • the absolute value of the first current difference, and in the second state, after obtaining the absolute value of the first current difference of the blood pump at each rotation speed and each pressure difference respectively, the blood pumping of the above-mentioned blood pump may also include:
  • the first absolute value of the current difference in the target state is corrected based on the third absolute value of the current difference.
  • the absolute value of the third current difference may be a value obtained by taking the absolute value after taking the difference between the first sub-current value and the second sub-current value under each pressure difference at the rotation speed.
  • the target state can be the first state or the second state.
  • the current values (that is, the first sub-current value and the second sub-current value) of the blood pump at each rotation speed and each pressure difference in the first state and the second state can be acquired respectively, Then make a difference between the current values under each voltage difference in the two states to obtain the third absolute value of the current difference, which can be used for the first state (or second state) under the first state (or second state) by the absolute value of the third current difference.
  • the absolute value of the current difference is corrected. That is, the absolute value of the current difference in the bending state can be used to correct the absolute value of the current difference in the straight pipe state, or the absolute value of the current difference in the straight pipe state can be used to correct the absolute value of the current difference in the bending state. value is corrected.
  • the current values that is, the first sub-current values
  • the current values are 1, 2, 1 and 3, respectively.
  • the current values under different pressure differences are 1.2, 1.8, 1.1 and 3.1 respectively, then the first sub-current value under the corresponding pressure difference under the speed n1
  • the absolute value is taken after the difference between the current value and the second sub-current value to obtain the absolute value of the third current difference, that is,
  • 0.2,
  • 0.2,
  • 0.1,
  • 0.1, where 0.2, 0.2, 0.1 and 0.1 are the absolute values of the third current value difference.
  • the maximum value of the third absolute value of the current difference may be used as the correction range of the absolute value of the first current difference.
  • the maximum value of 0.2 among 0.2, 0.2, 0.1 and 0.1 can be used as the correction of the first absolute value of the current difference
  • the range, that is, the absolute value of the first current difference can fluctuate within the range of 0.2.
  • the curve corresponding to n1 in FIG. 8 is the ratio of the absolute value of the first current difference at the rotational speed n1 to the first pump blood flow value when the catheter of the blood pump is in a straight tube state.
  • the curve corresponding to n11 in FIG. 8 is a curve composed of the maximum value of the correction range of the absolute value of the first current difference at the speed n1.
  • the curve corresponding to n2 in Figure 9 in Figure 9 is the corresponding relationship between the absolute value of the first current difference at the speed n2 and the first pump blood flow value when the catheter of the blood pump is in a straight tube state, as shown in Figure 9
  • the curve corresponding to n22 is a curve composed of the maximum value of the correction range of the absolute value of the first current difference at the speed n2.
  • the curve corresponding to n3 in Figure 10 is the corresponding relationship between the absolute value of the first current difference and the first pump blood flow value at the speed n3 when the catheter of the blood pump is in a straight tube state, and the curve corresponding to n33 in Figure 10 It is a curve composed of the maximum value of the correction range of the absolute value of the first current difference at the rotational speed n3.
  • the absolute value of the current difference in a certain bending state can also be used to correct the absolute value of the current difference in another bending state, for example, the current at a bending degree of 5° can be used The absolute value of the difference corrects the absolute value of the current difference at a curvature of 8°.
  • the current cycle is discarded. After the current cycle is stable, count again to calculate the target pump blood flow value.
  • the blood pump is in the simulated in vitro test environment, and the first sub-current value of the blood pump at each speed, each pressure difference, and the second state are respectively obtained under the first state.
  • the difference between the first sub-current value and the second sub-current value under the pressure difference is obtained.
  • the correction of the absolute value of the first current difference is realized, which ensures that in the actual application of the catheter of the blood pump, as long as its state is within the correction range compared with the in vitro test simulation environment, it can be directly based on the first corresponding relationship.
  • Finding the second pump blood flow value ensures the determination efficiency of the target pump blood flow value, reduces the correction threshold, and improves the value accuracy of the target pump blood flow value.
  • the target pump blood flow value after the target pump blood flow value is determined, the target pump blood flow value can be displayed, and at the same time, any graph in Fig. 2 to Fig. 10, and Fig. 10, so that the target pump blood flow value can be viewed intuitively in time to improve user experience.
  • the execution subject may be the blood pump flow determination device of the blood pump, or the blood pump flow determination device in the blood pump blood flow determination device is used to execute the blood pump A control module of a pump blood flow determination method.
  • the method for determining the pumping blood flow of the blood pump performed by the device for determining the pumping blood flow of the blood pump is taken as an example to illustrate the device for determining the pumping blood flow of the blood pump provided in the embodiment of the present application.
  • the present application also provides a device for determining the pump blood flow rate of the blood pump.
  • the pump blood flow determining device of the blood pump provided by the embodiment of the present application will be described in detail below with reference to FIG. 11 .
  • Fig. 11 is a structural block diagram of a device for determining pump blood flow of a blood pump according to an exemplary embodiment.
  • the pump blood flow determining device 1100 of the blood pump may include:
  • the first acquiring module 1110 is configured to acquire the first corresponding relationship between the absolute value of the first current difference and the first pump blood flow value at different rotational speeds in the blood pump in the simulated environment of the in vitro test;
  • the second acquisition module 1120 is used to acquire the first reference current value of each current cycle when the blood pump is in the actual human body environment of the detection object and works at each rotation speed;
  • the first determining module 1130 is configured to, for each current cycle in each rotation speed, make a difference between the first reference current value and the current value at different times in the current cycle to obtain at least one second current difference value absolute value;
  • the second determining module 1140 is configured to search in the first corresponding relationship for at least one absolute value of the second current difference corresponding to each current cycle in each rotational speed, and obtain the relationship with at least one of the second current differences. At least one second pump blood flow value corresponding to the absolute value of the two current differences;
  • the third determination module 1150 is configured to determine a target pump blood flow value for each rotational speed based on at least one second pump blood flow value in each current cycle.
  • the first acquisition module acquires the first corresponding relationship between the absolute value of the first current difference and the first pump blood flow value at different rotational speeds in the in vitro test simulation environment of the blood pump ;
  • the blood pump is in the actual human body environment of the detection object, and in the working process at each speed, the first reference current value of each current cycle;
  • the first determination module for each speed in each speed current cycle the difference between the first reference current value and the current value at different times in the current cycle is obtained to obtain at least one second absolute value of the current difference;
  • the second determination module for each current cycle corresponding to each speed At least one second absolute value of the current difference is searched in the first correspondence relationship to obtain at least one second pump blood flow value corresponding to the at least one second absolute value of the current difference;
  • the third determination module for each The target pump blood flow value is determined based on at least one second pump blood flow value in each current cycle.
  • the pump blood flow value of the blood pump is effectively represented by the current change difference, compared with the direct
  • using the current to represent the pump blood flow value of the blood pump can effectively reduce the error caused by the difference between different blood pump catheters, and realize the effect of accurately determining the pump blood flow of the blood pump.
  • the second acquisition module 1120 may include:
  • the first acquisition unit is used to acquire the first current value of each current cycle when the blood pump is working at each rotational speed
  • the first determining unit is configured to, for each current cycle, determine the largest first current value in the current cycle as the first reference current value of the current cycle.
  • the third determining module 1150 may include:
  • the second determination unit is configured to integrate at least one second blood pump flow value in the current cycle for each current cycle in each rotational speed, to obtain the first total pump blood flow rate in the current cycle flow value;
  • a third determining unit configured to determine an average pump blood flow value in the current cycle based on the first total pump blood flow value and the current cycle value for each current cycle in each rotational speed;
  • the fourth determination unit is configured to obtain a second total pump blood flow value at the rotation speed after summing the average pump blood flow values under each current cycle for each rotation speed;
  • the fifth determination unit is configured to calculate an average value of the second total pump blood flow value for each rotation speed, so as to obtain a target pump blood flow value at the rotation speed.
  • the blood pump flow determination device of the blood pump may further include:
  • the fourth determination module is configured to, for each rotational speed, determine the cardiac output value at the rotational speed based on the target pump blood flow value at the rotational speed.
  • the fourth determination module may be specifically used for:
  • the cardiac output value of the detection object at the rotation speed is determined.
  • the blood pump flow determination device of the blood pump may further include:
  • the third acquiring module is used to acquire the second corresponding relationship between the pressure difference and the second current value, and the relationship between the pressure difference and the first pump blood flow value at different rotational speeds of the blood pump when the blood pump is in an in vitro test simulation environment.
  • the fifth determination module is configured to use the corresponding second current value under zero pressure difference as the second reference current value for each rotational speed;
  • the sixth determining module is configured to, for each rotational speed, obtain a second current value under each pressure difference at the rotational speed based on the second corresponding relationship, and compare the second reference current value with each voltage difference at the rotational speed.
  • the second current value under the differential pressure is used as a difference to obtain the absolute value of the first current difference value under each differential pressure;
  • the seventh determination module is configured to obtain the absolute value of the first current difference and the first pump blood flow at the rotation speed based on the absolute value of the first current difference and the third corresponding relationship for each rotation speed. The first correspondence between magnitudes.
  • the blood pump flow determination device of the blood pump may further include:
  • An eighth determination module configured to calibrate the first reference current value as the second reference current value.
  • the first determining module 1130 may specifically be used for:
  • the difference between the second reference current value and the current value at each moment in the current cycle is obtained to obtain at least one second absolute value of the current difference.
  • the state of the catheter of the blood pump has a first state and a second state ;
  • the second current value includes a first sub-current value and a second sub-current value, wherein, the first sub-current value is in the first state of the catheter of the blood pump, the blood pump is at each speed, each The current value under pressure difference, the second sub-current value is the current value under each pressure difference at each rotation speed of the blood pump in the second state of the catheter of the blood pump;
  • the pump blood flow determining device of the blood pump may also include:
  • a correction module configured to make a difference between the first sub-current value and the second sub-current value under the pressure difference for each pressure difference at each rotational speed, to obtain a third absolute value of the current difference; For each pressure difference at each rotational speed, correct the first absolute value of the current difference in the target state based on the third absolute value of the current difference; wherein the target state is the first state or the first state Two states.
  • the blood pump flow determination device of the blood pump may further include:
  • a tenth determination module configured to determine the current period of the blood pump at each rotational speed based on the cardiac cycle of the detected object at each rotational speed
  • a comparison module for each rotational speed, comparing the current period at the rotational speed with the predicted current period corresponding to the cardiac period;
  • the comparison determination module is configured to determine whether the current value at each rotational speed changes periodically based on the comparison result.
  • the second obtaining module 1120 can be specifically used for:
  • the first reference current value of each current cycle is obtained when the blood pump is in the actual human body environment of the detection object and is working at each rotation speed.
  • the device for determining the blood pump flow rate of the blood pump provided in the embodiments of the present application can be used to implement the methods for determining the pump blood flow rate of the blood pump provided in the above-mentioned method embodiments. Let me repeat.
  • the embodiment of the present application also provides an electronic device.
  • FIG. 12 is a schematic structural diagram of an electronic device provided by an embodiment of the present application. As shown in FIG. 12 , the electronic device may include a processor 1201 and a memory 1202 storing computer programs or instructions.
  • the processor 1201 may include a central processing unit (CPU), or an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), or may be configured to implement one or more integrated circuits in the embodiments of the present application.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • Memory 1202 may include mass storage for data or instructions.
  • memory 1202 may include a hard disk drive (Hard Disk Drive, HDD), a floppy disk drive, a flash memory, an optical disk, a magneto-optical disk, a magnetic tape, or a Universal Serial Bus (Universal Serial Bus, USB) drive or two or more Combinations of multiple of the above.
  • Storage 1202 may include removable or non-removable (or fixed) media, where appropriate. Under appropriate circumstances, the storage 1202 can be inside or outside the comprehensive gateway disaster recovery device.
  • memory 1202 is a non-volatile solid-state memory.
  • memory 1202 includes read-only memory (ROM).
  • the ROM may be mask programmed ROM, programmable ROM (PROM), erasable PROM (EPROM), electrically erasable PROM (EEPROM), electrically rewritable ROM (EAROM), or flash memory or A combination of two or more of the above.
  • the processor 1201 reads and executes the computer program instructions stored in the memory 1202 to implement any method for determining the blood pump flow rate of the blood pump in the above-mentioned embodiments.
  • the electronic device may further include a communication interface 1203 and a bus 1210 .
  • a communication interface 1203 and a bus 1210 .
  • a processor 1201 a memory 1202 , and a communication interface 1203 are connected through a bus 1210 to complete mutual communication.
  • the communication interface 1203 is mainly used to realize the communication between various modules, devices, units and/or devices in the embodiment of the present application.
  • the bus 1210 includes hardware, software, or both, and couples the components of the electronic device to each other.
  • the bus may include Accelerated Graphics Port (AGP) or other graphics bus, Enhanced Industry Standard Architecture (EISA) bus, Front Side Bus (FSB), HyperTransport (HT) interconnect, Industry Standard Architecture (ISA) Bus, Infiniband Interconnect, Low Pin Count (LPC) Bus, Memory Bus, Micro Channel Architecture (MCA) Bus, Peripheral Component Interconnect (PCI) Bus, PCI-Express (PCI-X) Bus, Serial Advanced Technology Attachment (SATA) bus, Video Electronics Standards Association Local (VLB) bus or other suitable bus or a combination of two or more of these.
  • Bus 1210 may comprise one or more buses, where appropriate.
  • the electronic device can execute the method for determining the blood pump flow rate of the blood pump in the embodiment of the present application, so as to realize the method for determining the pump blood flow rate of the blood pump described in any one of FIGS. 1-10 .
  • the embodiments of the present application may provide a readable storage medium for implementation.
  • the readable storage medium stores program instructions; when the program instructions are executed by the processor, any method for determining the blood pump flow rate of the blood pump in the above-mentioned embodiments is implemented.
  • the functional blocks shown in the structural block diagrams described above may be implemented as hardware, software, firmware, or a combination thereof.
  • hardware When implemented in hardware, it may be, for example, an electronic circuit, an application specific integrated circuit (ASIC), suitable firmware, a plug-in, a function card, or the like.
  • ASIC application specific integrated circuit
  • the elements of the present application are the programs or code segments employed to perform the required tasks.
  • Programs or code segments can be stored in machine-readable media, or transmitted over transmission media or communication links by data signals carried in carrier waves.
  • "Machine-readable medium" may include any medium that can store or transmit information.
  • machine-readable media examples include electronic circuits, semiconductor memory devices, ROM, flash memory, erasable ROM (EROM), floppy disks, CD-ROMs, optical disks, hard disks, fiber optic media, radio frequency (RF) links, and the like.
  • Code segments may be downloaded via a computer network such as the Internet, an Intranet, or the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Mechanical Engineering (AREA)
  • Anesthesiology (AREA)
  • Cardiology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • External Artificial Organs (AREA)

Abstract

一种血泵的泵血流量确定方法、装置、电子设备和存储介质。该方法包括:(S110)获取血泵处于体外测试模拟环境中,在不同转速下,第一电流差值绝对值与第一泵血流量值之间的第一对应关系;(S120)获取血泵处于检测对象的实际人体环境中,在各转速下,各电流周期的第一基准电流值;(S130)针对各转速中各电流周期,将第一基准电流值与电流周期内的各时刻的电流值作差,得到至少一个第二电流差值绝对值;(S140)针对各转速中的各电流周期对应的各第二电流差值绝对值,在第一对应关系中进行查找,得到与各第二电流差值绝对值对应的各第二泵血流量值,其中,每一个第二电流差值绝对值对应于一个第二泵血流量值;(S150)针对各转速,基于各电流周期下的各第二泵血流量值,确定目标泵血流量值。

Description

血泵的泵血流量确定方法、装置、电子设备和存储介质
相关申请的交叉引用
本申请要求享有于2021年10月25日提交的名称为“一种量化血泵的泵血支持流量方 法及设备”的中国专利申请CN202111243412.4的优先权,该申请的全部内容通过引用并入 本文中。
技术领域
本申请涉及信息处理领域,具体涉及一种血泵的泵血流量确定方法、装置、电子设备和存储介质。
背景技术
短期血泵是心血管及相关并发症状治疗的有效方式之一,通过短期内为患者提供血液动力学支持,以促进心脏及其他重要组织和器官功能快速恢复。短期血泵的有效性主要体现在对患者的主动脉压力和心输出量的提高,在短期血泵支持下的患者心输出量主要为患者自身心输出量与血泵的泵血流量之和。如何正确标定这两个指标(患者自身心输出量和血泵的泵血流量)显得尤为重要。
目前,主要是根据血泵的电流与导管泵血流量的关系来计算泵血流量,而患者自身心输出量是基于泵血流量来计算得到的。申请人发现不同的血泵的电机和导管的差异,会造成血泵的电流不同,因此,基于血泵的电流表征血泵泵血流量不准确。
发明内容
本申请实施例的目的之一是提供一种血泵的泵血流量确定方法、装置、电子设备和存储介质,以实现精确确定血泵的泵血流量的效果。
本申请第一方面的实施例提供了一种血泵的泵血流量确定方法,该方法包括:
获取血泵处于体外测试模拟环境中,在不同转速下,第一电流差值绝对值与第一泵血流 量值之间的第一对应关系;
获取血泵处于检测对象的实际人体环境中,在每个转速下工作过程中,每个电流周期的第一基准电流值;
针对每个转速中的每个电流周期,将所述第一基准电流值与所述电流周期内的不同时刻的电流值作差,得到至少一个第二电流差值绝对值;
针对每个转速中的每个电流周期对应的至少一个所述第二电流差值绝对值,在所述第一对应关系中进行查找,得到与所述第二电流差值绝对值对应的第二泵血流量值,其中,每一个第二电流差值绝对值对应于一个第二泵血流量值;
针对每个转速,基于各电流周期下的至少一个第二泵血流量值,确定目标泵血流量值。
本申请第二方面的实施例提供了一种血泵的泵血流量确定装置,该装置包括:
第一获取模块,用于获取血泵处于体外测试模拟环境中,在不同转速下,第一电流差值绝对值与第一泵血流量值之间的第一对应关系;
第二获取模块,用于获取血泵处于检测对象的实际人体环境中,在每个转速下工作过程中,每个电流周期的第一基准电流值;
第一确定模块,用于针对每个转速中的每个电流周期,将所述第一基准电流值与所述电流周期内的不同时刻的电流值作差,得到至少一个第二电流差值绝对值;
第二确定模块,用于针对每个转速中的每个电流周期对应的至少一个所述第二电流差值绝对值,在所述第一对应关系中进行查找,得到与至少一个所述第二电流差值绝对值对应的至少一个第二泵血流量值;
第三确定模块,用于针对每个转速,基于各电流周期下的至少一个第二泵血流量值,确定目标泵血流量值。
本申请第三方面的实施例提供了一种电子设备,该电子设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现本申请实施例任一所述的血泵的泵血流量确定定位方法的步骤。
本申请第四方面的实施例提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现本申请实施例任一所述的血泵的泵血流量确定定位方法的步骤。
本申请的实施例提供的技术方案至少带来以下有益效果:
本申请实施例提供的血泵的泵血流量确定方法,通过获取血泵处于体外测试模拟环境中,在不同转速下,第一电流差值绝对值与第一泵血流量值之间的第一对应关系;获取血泵处于检测对象的实际人体环境中,在每个转速下的工作过程中,每个电流周期的第一基准电流值;针对每个转速中的每个电流周期,将第一基准电流值与电流周期内的不同时刻的电流值作差,得到至少一个第二电流差值绝对值;针对每个转速中的每个电流周期对应的至少一个第二电流差值绝对值,在第一对应关系中进行查找,得到与至少一个第二电流差值绝对值对应的至少一个第二泵血流量值;针对每个转速,基于各电流周期下的至少一个第二泵血流量值,确定目标泵血流量值,因为电流变化主要与泵血流量值的变化相关,如此,通过电流变化差值来有效表征血泵的泵血流量值,相较于直接利用电流来表征血泵的泵血流量值的方式,利用电流差值可以有效降低不同血泵导管之间的差异所造成的误差,实现了精确确定血泵的泵血流量的效果。
以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理,并不构成对本申请的不当限定。
图1是本申请一示例性实施例提供的一种血泵的泵血流量确定方法的示意图;
图2是本申请一示例性实施例涉及的不同转速下的各压差与各压差下的第二电流值的第二对应关系图;
图3是本申请一示例性实施例涉及的不同转速下的各压差与各压差下的第一泵血流量值的第三对应关系图;
图4是本申请一示例性实施例涉及的不同转速下的各压差与各压差下的第一电流差值绝对值的对应关系图;
图5是本申请一示例性实施例涉及的不同转速下的第一电流差值绝对值与第一泵血流量的对应关系图;
图6是本申请一示例性实施例涉及的某一转速下,某一心动周期内的电流变化曲线图;
图7是本申请一示例性实施例涉及的某一转速下的某一个电流周期的各第二泵血流量值的曲线图;
图8是本申请一示例性实施例涉及的转速n1下的第一电流差值绝对值的校正曲线图;
图9是本申请一示例性实施例涉及的转速n2下的第一电流差值绝对值的校正曲线图;
图10是本申请一示例性实施例涉及的转速n3下的第一电流差值绝对值的校正曲线图;
图11是本申请一示例性实施例提供的一种血泵的泵血流量确定装置的结构框图;
图12是本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
为了使本领域普通人员更好地理解本申请的技术方案,下面将结合附图,对本申请实施例中的技术方案进行清楚、完整地描述。应理解,此处所描述的具体实施例仅意在解释本申请,而不是限定本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的例子。
为了便于理解本申请的技术方案,首先介绍一下本申请实施例的背景:
在血泵的电机供电电压不变的情况下,电流值反映出电机输出功率的大小,电流越大,电机对外做功越多。在体外泵血电机方案中,电机的对外做功包括了克服体外从动轴转子转动的摩擦做功、柔性驱动轴相对于约束层的摩擦做功和体内轴承转动的摩擦做功,以及叶轮、驱动轴和轴承等的转动驱动做功以及叶轮对血液的泵血做功。电机电流绝对值反应了上述各因素的综合效应,不仅仅体现了叶轮对血液的泵血做功。在其他因素均不变的情况下,泵血流量越大,叶轮对血液做功越多,电流值也越大。但是,即使同一型号的血泵的导管, 导管和导管之间也不相同,例如各零部件间因公差配合波动会造成需要克服摩擦做功不相同;使用时导管弯曲状态不同,也会使得驱动轴相对于约束层摩擦做功不相同。综上,电流值反映了电机做的总功,如前述,包括了各种因素的功耗。因此,通过电机电流值去计算对应叶轮对血液做功情况,继而确定泵血流量是不准确的。
为了解决上述问题,本申请实施例提供了一种血泵的泵血流量确定方法,通过获取血泵处于体外测试模拟环境中,在不同转速下,第一电流差值绝对值与第一泵血流量值之间的第一对应关系;获取血泵处于检测对象的实际人体环境中,在每个转速下工作过程中,每个电流周期的第一基准电流值;针对每个转速中的每个电流周期,将第一基准电流值与电流周期内的不同时刻的电流值作差,得到至少一个第二电流差值绝对值;针对每个转速中的每个电流周期对应的至少一个第二电流差值绝对值,在第一对应关系中进行查找,得到与至少一个第二电流差值绝对值对应的至少一个第二泵血流量值;针对每个转速,基于各电流周期下的至少一个第二泵血流量值,确定目标泵血流量值。在导管结构确定的情况下,其他因素均不会改变(即体外从动轴转子转动的摩擦做功、柔性驱动轴相对于约束层的摩擦做功和体内轴承转动的摩擦做功,以及叶轮、驱动轴和轴承等的转动驱动做功均一定),此时,电流值的变化主要由叶轮对血液做功的变化引起,因此,电流差值更能反映泵血流量值的变化值,通过电流差值绝对值及泵血流量基准值即可确定泵血流量的值。如此,通过电流变化差值来有效表征血泵的泵血流量值,相较于直接利用电流来表征血泵的泵血流量值的方式,利用电流差值可以实现了相对精确计算泵血流量的效果。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的血泵的泵血流量确定方法进行详细地说明。
图1是本申请实施例所提供的一种血泵的泵血流量确定方法的流程示意图,如图1所示,本申请实施例提供的血泵的泵血流量确定方法可以包括:
步骤S110:获取血泵处于体外测试模拟环境中,在不同转速下,第一电流差值绝对值与第一泵血流量值之间的第一对应关系;
步骤S120:获取血泵处于检测对象的实际人体环境中,在每个转速下工作过程中,每个电流周期的第一基准电流值;
步骤S130:针对每个转速中的每个电流周期,将第一基准电流值与电流周期内的不同 时刻的电流值作差,得到至少一个第二电流差值绝对值;
步骤S140:针对每个转速中的每个电流周期对应的至少一个第二电流差值绝对值,在第一对应关系中进行查找,得到与所述第二电流差值绝对值对应的第二泵血流量值。其中,每一个第二电流差值绝对值对应于一个第二泵血流量值;
步骤S150:针对每个转速,基于各电流周期下的至少一个第二泵血流量值,确定目标泵血流量值。
在本申请的实施例中,通过获取血泵处于体外测试模拟环境中,在不同转速下,第一电流差值绝对值与第一泵血流量值之间的第一对应关系;获取血泵处于检测对象的实际人体环境中,在每个转速下工作过程中,每个电流周期的第一基准电流值;针对每个转速中的每个电流周期,将第一基准电流值与电流周期内的不同时刻的电流值作差,得到至少一个第二电流差值绝对值;针对每个转速中的每个电流周期对应的至少一个第二电流差值绝对值,在第一对应关系中进行查找,得到与至少一个第二电流差值绝对值对应的至少一个第二泵血流量值;针对每个转速,基于各电流周期下的至少一个第二泵血流量值,确定目标泵血流量值,如此,通过电流变化差值来有效表征血泵的泵血流量值,相较于直接利用电流来表征血泵的泵血流量值的方式,利用电流差值可以有效降低不同血泵导管之间的差异所造成的误差,实现了精确确定血泵的泵血流量的效果。
下面将对本申请实施例提供的血泵的泵血流量确定方法进行详细说明。
首先介绍步骤S110,获取血泵处于体外测试模拟环境中,在不同转速下,第一电流差值绝对值与第一泵血流量值之间的第一对应关系。
其中,血泵是为患者提供血液动力学支持的装置。
在本申请的一些实施例中,体外测试模拟环境可以是在体外模拟的人体的环境,该体外测试模拟环境尽可能的近似于人体身体内的环境。
在一个示例中,在体外测试模拟环境中的流体可选择具有等于或接近血液的流体,温度等于检测对象(即人体,例如可以是患者)的血液温度,在36和37℃之间。在体外测试模拟环境中的流体可以是粘度等于血液的粘度的混合比例的水和甘油,比例范围可以在45%~55%之间。
在本申请的一些实施例中,第一电流差值绝对值可以是在体外测试模拟环境中,在血泵 的导管处于直管状态的情况下,根据获取的不同转速下,零压差下的电流值与其他各压差下的电流值之间的差值的绝对值。例如,在体外测试模拟环境中,在血泵的导管处于直管状态的情况下,针对转速n1而言,获取该转速下的零压差下的电流值I 0和其他各压差下的电流值I,并将该转速n1下的各压差下的电流值I与I 0做差,并取差值的绝对值,得到各压差对应的第一电流差值绝对值。
第一泵血流量值可以是在不同转速下,各压差下的泵血流量值。
第一对应关系可以是第一电流差值绝对值与第一泵血流量值之间的第一对应关系。
在本申请的一些实施例中,为了进一步的精确确定血泵的目标泵血流量值,在步骤S110之前,上述所涉及的血泵的泵血流量确定方法还可以包括:
在血泵处于体外测试模拟环境中,获取血泵在不同转速下,压差与第二电流值的第二对应关系,以及压差与第一泵血流量值的第三对应关系;
针对每个转速,将零压差下对应的第二电流值作为第二基准电流值;
针对每个转速,基于第二对应关系,获取转速下各压差下的第二电流值,将第二基准电流值与所述转速下各压差下的第二电流值作差,得到各压差下的第一电流差值绝对值;
针对每个转速,基于第一电流差值绝对值,以及第三对应关系,得到转速下,第一电流差值绝对值与第一泵血流量值之间的第一对应关系。
其中,第二电流值可以是在血泵处于体外测试模拟环境中,在血泵的导管在各压差下的血泵的电流值。例如,在血泵处于体外测试模拟环境中,获取在血泵的导管在零压差和其他各压差下的对应的血泵的电流值,得到各压差对应的第二电流值。
第二对应关系可以是在血泵处于体外测试模拟环境中,血泵在不同转速下,各压差与各压差下的第二电流值的对应关系。例如,在血泵处于体外测试模拟环境中,针对转速n1,获取血泵在转速n1下各压差(包括零压差和其他各压差)与对应压差下的第二电流值之间的对应关系,得到血泵在转速n1下的第二对应关系;针对转速n2,获取血泵在转速n2下的各压差(包括零压差和其他各压差)与对应压差下的第二电流值之间的对应关系,得到血泵在转速n2下的第二对应关系;针对转速n3,获取血泵在转速n3下的各压差(包括零压差和其他各压差)与对应压差下的第二电流值之间的对应关系,得到血泵在转速n3下的第二对应关系。
第三对应关系可以是在血泵处于体外测试模拟环境中,血泵在不同转速下,各压差与各压差下的第一泵血流量值的对应关系。例如,在血泵处于体外测试模拟环境中,针对转速n1,获取血泵在转速n1下的各压差(包括零压差和其他各压差)与对应压差下的第一泵血流量值之间的对应关系,得到血泵在转速n1下的第三对应关系;针对转速n2,获取血泵在转速n2下的各压差(包括零压差和其他各压差)与对应压差下的第一泵血流量值之间的对应关系,得到血泵在转速n2下的第三对应关系;针对转速n3,获取血泵在转速n3下的各压差(包括零压差和其他各压差)与对应压差下的第一泵血流量值之间的对应关系,得到血泵在转速n3下的第三对应关系。
第二基准电流值可以是在血泵处于体外测试模拟环境中,在血泵的导管在零压差下的电流值。
在本申请的一些实施例中,压差可以是正常人体内心脏与其他器官之间的压差,该压差具有一定的范围,通常情况下,是处于0-14KPa内。在本申请的一些实施例中,可以通过将血泵的泵血导管的吸入端和流出端两端的压差调整为正常人体内心脏与其他器官之间的压差,以此来通过血泵来进行不同压差下的电流值和泵血流量值的确定。
在一个示例中,可以在体外测试模拟环境中,让血泵在不同转速下进行工作,获取不同转速下,各压差下的第二电流值和各压差下的第一泵血流量值,然后对不同转速下的各压差下的第二电流值进行拟合,得到第二对应关系(如图2),对不同转速下的各压差下的第一泵血流量值进行拟合,得到第三对应关系(如图3)。
在图2和图3中,n1、n2和n3分别表示不同的转速。
继续参考上述示例,在确定了第二对应关系和第三对应关系后,可获取各转速下的零压差下的电流值,将其作为第二基准电流值。例如针对转速n1而言,获取该转速下的零压差下的电流值I 0,将I 0作为第二基准电流值,然后根据第二对应关系中各压差下的电流值,将该转速n1下的各压差下的电流值I与I 0做差,并取差值的绝对值,得到各压差对应的第一电流差值绝对值(如图4)。然后根据第一电流差值绝对值,以及第三对应关系,可得到第一电流差值绝对值与第一泵血流量的对应关系(如图5)。
在本申请的实施例中,通过在血泵处于体外测试模拟环境中,获取血泵在不同转速下,压差与第二电流值的第二对应关系,以及压差与第一泵血流量值的第三对应关系;针对每个 转速,将零压差下对应的第二电流值作为第二基准电流值;针对每个转速,基于第二对应关系,获取转速下各压差下的第二电流值,将第二基准电流值与所述转速下各压差下的第二电流值作差,得到各压差下的第一电流差值绝对值;针对每个转速,基于第一电流差值绝对值,以及第三对应关系,可得到该转速下,第一电流差值绝对值与第一泵血流量值之间的第一对应关系,如此可精确得到各转速下,第一电流差值绝对值与第一泵血流量值之间的第一对应关系,以基于该精确的第一对应关系,得到精确的泵血流量值。
然后介绍步骤S120,获取血泵处于检测对象的实际人体环境中,在每个转速下工作过程中,每个电流周期的第一基准电流值。
其中,检测对象可以是利用血泵进行检测的对象,例如可以是将血泵放置于某一对象体内的对象。
电流周期可以是电流的周期。
在本申请的一些实施例中,人体的心脏是具有心动周期的,对应的将血泵放置于人体中后,随着人体的心脏的周期性跳动,血泵的电流也就具有周期,如图6所示为某一转速下,某一心动周期内的电流变化曲线图,在每个电流周期内,电流均是按照图6所示的曲线进行规律性变化的。
第一基准电流值可以是在血泵处于检测对象的实际人体环境中,在每个转速下工作过程中,每个电流周期中的基准电流值。
在本申请的一些实施例中,为了进一步精确确定血泵的泵血流量值,S120可以具体包括:
获取血泵在每个转速下工作过程中,每个电流周期的第一电流值;
针对每个电流周期,将电流周期中最大的第一电流值确定为电流周期的第一基准电流值。
其中,第一电流值可以是血泵在每个转速下工作过程中,每个电流周期中的电流值,即如图6所示的电流值。
在本申请的一些实施例中,在一个心动周期中,主动脉和左心室压会在主动脉瓣打开的时候近似相同,此时血泵的泵血导管吸入端和流出端两端的压差近似为0,此时泵血流量最大,电机做功最大,电流最大,故可将每个电流周期中最大的第一电流值确定为该电流周期 的基准电流值(即第一基准电流值)。
在本申请的实施例中,通过获取血泵在每个转速下工作过程中,每个电流周期的第一电流值,针对每个电流周期,将该电流周期中最大的第一电流值确定为该电流周期的第一基准电流值,如此可基于该第一基准电流值,精确确定第二电流差值绝对值,以得到精确的目标泵血流量值。
在本申请的一些实施例中,血泵放置于人体中后,若血泵放置位置正确,则该血泵工作过程中的电流是具有周期性变化的,只有血泵工作中的电流呈周期性变化,才可获取各电流周期的第一基准电流值,故在步骤S120之前,要判断血泵工作中的电流呈周期性变化。故在步骤S120之前,上述涉及的血泵的泵血流量确定方法还可以包括:
基于检测对象在每个转速下的心动周期,确定血泵在每个转速下的电流周期;
针对每个转速,将转速下的电流周期,与心动周期对应的预测电流周期进行比对;
基于比对结果,确定各转速下的电流值是否发生的周期性变化。
其中,针对每个转速,预测电流周期可以针对该转速下的心动周期,利用预设算法所预测出的电流周期。
在本申请的一些实施例中,可获取检测对象在每个转速下的心动周期,基于该心动周期,通过测量可获取血泵在每个转速下的电流周期,将该电流周期与预测电流周期进行比对,若比对结果一致,则确定各转速下的电流值发生了周期性变化,若比对结果不一致,则说明血泵的放置位置不对,需要重新放置血泵。
对应的,步骤S120可以具体为:在确定各转速下的电流值发生周期性变化的情况下,获取血泵处于检测对象的实际人体环境中,在每个转速下工作过程中,每个电流周期的第一基准电流值。
在本申请的一些实施例中,若血泵长时间电流数据异常,即未发生周期性变化的话,可生成报警信息,用于提示血泵未放置在正确位置,需重新放置血泵。
在本申请的实施例中,通过获取检测对象在每个转速下的心动周期,基于该心动周期,通过测量可获取血泵在每个转速下的电流周期,将该电流周期与预测电流周期进行比对,基于比对结果,确定各转速下的电流值是否发生的周期性变化,如此可确保血泵可以正常工作。
然后介绍步骤S130,针对每个转速中的每个电流周期,将第一基准电流值与电流周期内的不同时刻的电流值作差,得到至少一个第二电流差值绝对值。
其中,第二电流差值绝对值可以是针对每个转速中的每个电流周期,将该电流周期内的第一基准电流值与该电流周期内的不同时刻的电流值作差后取绝对值所得到的值。
在一个示例中,针对转速n1中的某一电流周期而言,获取该电流周期内的最大电流值I 1,将该最大电流值I 1确定为第一基准电流值,然后将I 1与该电流周期内各时刻的电流值作差并取绝对值,即可得到该转速n1下该电流周期对应的多个第二电流差值绝对值。
然后介绍步骤S140,针对每个转速中的每个电流周期对应的至少一个第二电流差值绝对值,在第一对应关系中进行查找,得到与至少一个所述第二电流差值绝对值对应的至少一个第二泵血流量值。
其中,第二泵血流量值可以是在第一对应关系中查找到的与第二电流差值绝对值对应的泵血流量值。
在本申请的一些实施例中,由于第一对应关系中具有各转速下,第一电流差值绝对值与第一泵血流量值之间的对应关系(即图5),当得到每个转速中的每个电流周期的各第二电流差值绝对值后,例如得到转速n1中的某一个电流周期的各第二电流差值绝对值后,可在第一对应关系(即图5)中查找与各第二电流差值绝对值相对应的泵血流量值,将查找的与各第二电流差值绝对值相对应的泵血流量值确定为转速n1中的该电流周期的各第二泵血流量值。即可得到图7所示的某一转速下的某一个电流周期的各第二泵血流量值的曲线图。
在本申请的一些实施例中,为了确保第二电流差值绝对值在图5中进行查找的精确性,在步骤S120之后,上述涉及的血泵的泵血流量确定方法还可以包括:
将第一基准电流值标定为第二基准电流值。
在本申请的一些实施例中,在确定了第一基准电流值后,可将该第一基准电流值标定为第二基准电流值,即将I 1=I 0
在本申请的一些实施例中,在确定了第二基准电流值后,可将该第二基准电流值对应的流量值作为该电流周期的最大流量值Qmax,在后续显示目标泵血流量值时,也可以显示最大流量值Qmax。
对应的,步骤S130可以具体包括:
针对每个转速中的每个电流周期,将第二基准电流值与电流周期内的各时刻的电流值作差,得到至少一个第二电流差值绝对值。
在本申请的一些实施例中,在将第一基准电流值标定为第二基准电流值后,针对每个转速中的每个电流周期,可将第二基准电流值与电流周期内的各时刻的电流值作差,得到至少一个第二电流差值绝对值。
在本申请的一些实施例中,针对每个转速中的每个电流周期,在得到该电流周期内的各第二电流差值绝对值后,可将各第二电流差值绝对值中的最大的第二电流差值绝对值对应的泵血流量值确定为该电流周期的最小流量值Qmin,在后续显示目标泵血流量值时,也可以显示最小流量值Qmin。
在本申请的实施例中,将第一基准电流值标定为第二基准电流值,如此选取同一基准电流值,这样所得到的差值绝对值(第一差值绝对值和第二差值绝对值)是基于同一个基准电流值所得到的,确保了后续在图5中进行查找时,可查找到基于同一基准电流值所得到的差值绝对值对应的泵血流量值,如此可以获取到精确的泵血流量值。
最后介绍步骤S150,针对每个转速,基于各电流周期下的至少一个第二泵血流量值,确定目标泵血流量值。
其中,目标泵血流量值可以是针对每个转速下,得到的每个转速下的泵血流量值,即为用于表征血泵的泵血能力的流量值。
在本申请的一些实施例中,为了精确确定目标泵血流量值,步骤S150可以具体包括:
针对每个转速中的每个电流周期,将电流周期下的至少一个第二泵血流量值进行积分计算,得到电流周期下的第一总泵血流量值;
针对每个转速中的每个电流周期,基于第一总泵血流量值和电流周期值,确定电流周期下的平均泵血流量值;
针对每个转速,将各电流周期下的平均泵血流量值进行求和后,得到转速下的第二总泵血流量值;
针对每个转速,计算第二总泵血流量值的平均值,得到转速下的目标泵血流量值。
其中,针对每个转速中的每个电流周期,第一总泵血流量值可以是对该电流周期下的至少一个第二泵血流量值进行积分计算所得到的值。
电流周期值可以是每个电流周期是多久,例如,一个电流周期为10秒,则电流周期值为10秒。
针对每个转速中的每个电流周期,平均泵血流量值可以是对该电流周期下的第一总泵血流量值进行求平均值所得到的值。
针对每个转速,第二总泵血流量值可以是将该转速下的各电流周期的平均泵血流量值进行求和后所得到的值。
在一个示例中,如图7为某一转速n1下的某一个电流周期的各第二泵血流量值的曲线图,将图7中的各第二泵血流量值进行积分计算,得到该电流周期下的第一总泵血流量值,然后将该第一总泵血流量值除以电流周期值,可得到该电流周期下的平均泵血流量值。将该转速n1下的各电流周期的平均泵血流量值进行求和,可得到该转速n1下的第二总泵血流量值,将该转速n1下的第二总泵血流量值进行求平均值,则可得到该转速下的目标泵血流量值。
在本申请的一些实施例中,一个电流周期内的泵血流量值的曲线图可由前述第二电流差值绝对值与第二泵血流量值的对应关系进行拟合得到,其拟合方式可以包括多项式拟合、三角函数拟合、指数函数拟合和对数函数拟合等形式或者组合。
在本申请的实施例中,根据确定的目标泵血流量值,可帮助临床医生确定血泵应为检测对象提供多少泵血流量,以及何时可以撤回血泵。
在本申请的一些实施例中,在获取了每个转速下的目标泵血流量值之后,可基于每个转速下的目标泵血流量值,确定该转速下的心输出量值。
在本申请的一些实施例中,为了精确确定检测对象的恢复功能,在步骤S150之后,上述涉及的血泵的泵血流量确定方法还可以包括:
针对每个转速,基于转速下的目标泵血流量值,确定转速下的心输出量值。
其中,心输出量可以是用于表征检测对象的心脏恢复功能的值。
在本申请的一些实施例中,具体的针对每个转速,基于转速下的目标泵血流量值,确定转速下的心输出量值,具体可以是通过如下方式实现:
针对每个转速,基于检测对象在初始时刻的总心输出量值,以及检测对象在初始时刻的主动脉平均压力值,确定检测对象在初始时刻的血管阻力;
针对每个转速,基于检测对象在各时刻的主动脉平均压力值,以及检测对象在初始时刻的血管阻力,确定检测对象在各时刻下的总心输出量值;
针对每个转速,基于检测对象在各时刻下的总心输出量值,以及目标泵血流量值,确定检测对象在转速下的心输出量值。
其中,初始时刻可以是将血泵放置于检测对象体内,在血泵开始工作的时刻。
在本申请的一些实施例中,检测对象各时刻的总心输出量值可以是通过外部设备测量获取的,例如可以是通过脉搏指示连续心排血量(Pulse indicator Continous Cadiac Output,PiCCO)监测设备获取的,还可以是通过漂浮导管Swan-Ganz获取。主动脉平均压力值也可以是通过辅助的压力传感器来获取的。
在本申请的一些实施例中,具体的如何获取检测对象在各时刻的总心输出量值和主动脉平均压力值在本申请中不做限定。
在本申请的一些实施例中,通过检测对象在初始时刻的总心输出量值,以及主动脉平均压力值,具体根据如下公式(1)可确定检测对象在初始时刻的血管阻力:
CO=MAP/SVR                                              (1)
其中,CO表示总心输出量值,MAP表示主动脉平均压力值,SVR表示血管阻力。
根据上述公式(1)可计算出检测对象在初始时刻的血管阻力SVR0。
在本申请的一些实施例中,由于血管阻力在一段时间内(例如8小时内)是保持不变的,因此在一段时间内,Ti时刻检测对象的总心输出量可基于如下公式(2)得到:
COi=MAPTi/SVR0                                            (2)
利用上述公式(2)可计算检测对象实时的COi。
针对每个转速,基于检测对象在各时刻下的总心输出量值,以及该转速下的目标泵血流量值,利用如下公式(3)和公式(4),可确定检测对象在该转速下的心输出量值:
COi=Con+COC                                              (3)
其中,Con表示检测对象在某一个转速下的心输出量值,COC表示血泵在该转速下的泵血流量值,根据上述公式(3)可得到如下公式(4):
Con=COi-COC                                              (4)
通过上述公式(4),可以获得检测对象在某一转速下的CO值(即心输出量值)。
在本申请的实施例中,针对每个转速,基于转速下的目标泵血流量值,确定转速下的心输出量值,如此可基于精确的目标泵血流量值,确定出精确的心输出量,进而可精确获知检测对象的心脏的恢复程度。
在本申请的一些实施例中,上述确定的目标泵血流量值是可以是基于血泵的导管处于直管状态下获取的,也可以是基于血泵的导管处于弯曲状态下获取的,在血泵的实际应用过程中,血泵的导管的状态可能会与在体外测试模拟环境中不同,如此则会导致在实际应用时,血泵的电流不同,即电流值异常,由此得到的电流差值绝对值也会不同,这样是无法使用体外测试模拟环境中的第一对应关系的。但是若在实际应用过程中,血泵的导管相较于在体外测试模拟环境中的状态变化不大,则电流值不会有太大变化,可基于在体外测试模拟环境中的第一对应关系来确定目标泵血流量值,故在实际应用过程中,允许体外测试模拟环境下的第一电流差值绝对值有一定的调整范围。
在本申请的一些实施例中,血泵的导管具有两种状态:第一状态和第二状态。
在本申请的一些实施例中,第一状态可以是血泵的导管处于直管的状态,第二状态可以是血泵的导管处于弯曲的状态。
在血泵的导管处于不同的状态下时,对应的,在体外测试模拟环境中,针对每个转速,获取转速下各压差下的第二电流值可以是针对每个转速,获取不同状态下,所述转速下各压差下的第二电流值。这里的第二电流值可以包括第一子电流值和第二子电流值,其中,第一子电流值可以为血泵的导管在第一状态下,血泵在各转速下,各压差下的电流值;第二子电流值可以为血泵的导管在第二状态下,血泵在各转速下,各压差下的电流值。
在本申请的一些实施例中,为了实现对第一电流差值绝对值一定程度上的校正,在S110中,在所述第一状态下,分别得到血泵在各转速下,各压差下的第一电流差值绝对值,且在所述第二状态下,分别得到血泵在各转速下,各压差下的第一电流差值绝对值之后,上述所涉及的血泵的泵血流量值确定方法还可以包括:
针对每个转速下的每个压差,将压差下的第一子电流值和第二子电流值作差,得到第三电流差值绝对值;
针对每个转速下的每个压差,基于第三电流差值绝值对目标状态下的第一电流差值绝对值进行校正。
其中,针对每个转速,第三电流差值绝对值可以是将该转速下的各压差下的第一子电流值和第二子电流值作差后取绝对值所得到的值。
目标状态可以为第一状态或第二状态。
在本申请的一些实施例中,可以分别获取第一状态和第二状态下,血泵在各转速下,各压差下的电流值(即第一子电流值和第二子电流值),然后将两个状态下的各压差下的电流值作差,得到第三电流差值绝对值,利用该第三电流差值绝对值可以对第一状态(或第二状态)下的第一电流差值绝对值进行校正。即可以是利用弯曲状态下的电流差值绝对值对直管状态下的电流差值绝对值进行校正,也可以是利用直管状态下的电流差值绝对值对弯曲状态下的电流差值绝对值进行校正。
在一个示例中,以利用弯曲状态下的电流差值绝对值对直管状态下的电流差值绝对值进行校正为例来进行说明,在转速n1下,在血泵的导管处于直管状态下,不同压差下的电流值(即第一子电流值)分别为1、2、1和3。在血泵的导管处于弯曲状态下,不同压差下的电流值(即第二子电流值)分别为1.2、1.8、1.1和3.1,则将该转速n1下的对应压差下的第一子电流值和第二子电流值作差后取绝对值,得到第三电流差值绝对值,即|1-1.2|=0.2,|2-1.8|=0.2,|1-1.1|=0.1,|3-3.1|=0.1,这里的0.2、0.2、0.1和0.1为第三电流值差值绝对值。
在本申请的一些实施例中,可以是将第三电流差值绝对值中的最大值作为第一电流差值绝对值的校正范围。
继续参考上述示例,在确定了0.2、0.2、0.1和0.1为第三电流值差值绝对值后,可将0.2、0.2、0.1和0.1中的最大值0.2作为第一电流差值绝对值的校正范围,即第一电流差值绝对值可以在0.2的范围内波动。
在一个示例中,如图8所示,图8中n1所对应的曲线为血泵的导管处于直管状态下,转速n1下的第一电流差值绝对值与第一泵血流量值的对应关系,图8中n11所对应的曲线为转速n1下的第一电流差值绝对值的修正范围最大值所组成的曲线。对应的,图9中图9中n2所对应的曲线为血泵的导管处于直管状态下,转速n2下的第一电流差值绝对值与第一泵血流量值的对应关系,图9中n22所对应的曲线为转速n2下的第一电流差值绝对值的修正范围最大值所组成的曲线。图10中n3所对应的曲线为血泵的导管处于直管状态下, 转速n3下的第一电流差值绝对值与第一泵血流量值的对应关系,图10中n33所对应的曲线为转速n3下的第一电流差值绝对值的修正范围最大值所组成的曲线。
在本申请一些实施例中,还可以是利用某一弯曲状态下的电流差值绝对值对另一弯曲状态下的电流差值绝对值进行校正,例如可以是用弯曲度为5°下的电流差值绝对值对弯曲度为8°下的电流差值绝对值进行校正。
在本申请的一些实施例中,若此时由于导管弯曲程度变化,或者其他情况导致电流增量超过预定限值(即超过了第一电流差值绝对值的校正范围),则抛弃该电流周期的数据,待电流周期稳定后重新计数进行目标泵血流量值的计算。
在本申请的实施例中,通过在血泵处于模拟体外测试环境中,在分别得到第一状态下,血泵在各转速下,各压差下的第一子电流值,以及在第二状态下,血泵在各转速下,各压差下的第二子电流值之后,针对每个转速下的每个压差,将压差下的第一子电流值和第二子电流值作差,得到第三电流差值绝对值;基于第三电流差值绝值对目标状态下的第一电流差值绝对值进行校正。如此实现了对第一电流差值绝对值的校正,保证了在血泵的导管的实际应用中,只要其状态相较于体外测试模拟环境中在校正范围内,可直接基于第一对应关系来查找到第二泵血流量值,保证了目标泵血流量值的确定效率,降低了校正取值阀内,提高了目标泵血流量值的取值精度。
在本申请的一些实施例中,在确定出目标泵血流量值后,可将目标泵血流量值进行显示,同时也可显示图2至图10中的任意图,以及图2至图10中的各个图,以便可及时直观的查看到目标泵血流量值,提高用户体验。
需要说明的是,本申请实施例提供的血泵的泵血流量确定方法,执行主体可以为血泵的泵血流量确定装置,或者该血泵的泵血流量确定装置中的用于执行血泵的泵血流量确定方法的控制模块。本申请实施例中以血泵的泵血流量确定装置执行血泵的泵血流量确定方法为例,说明本申请实施例提供的血泵的泵血流量确定装置。
基于与上述的血泵的泵血流量确定方法相同的发明构思,本申请还提供了一种血泵的泵血流量确定装置。下面结合图11对本申请实施例提供的血泵的泵血流量确定装置进行详细说明。
图11是根据一示例性实施例示出的一种血泵的泵血流量确定装置的结构框图。
如图11所示,该血泵的泵血流量确定装置1100可以包括:
第一获取模块1110,用于获取血泵处于体外测试模拟环境中,在不同转速下,第一电流差值绝对值与第一泵血流量值之间的第一对应关系;
第二获取模块1120,用于获取血泵处于检测对象的实际人体环境中,在每个转速下工作过程中,每个电流周期的第一基准电流值;
第一确定模块1130,用于针对每个转速中的每个电流周期,将所述第一基准电流值与所述电流周期内的不同时刻的电流值作差,得到至少一个第二电流差值绝对值;
第二确定模块1140,用于针对每个转速中的每个电流周期对应的至少一个所述第二电流差值绝对值,在所述第一对应关系中进行查找,得到与至少一个所述第二电流差值绝对值对应的至少一个第二泵血流量值;
第三确定模块1150,用于针对每个转速,基于各电流周期下的至少一个第二泵血流量值,确定目标泵血流量值。
在本申请的实施例中,通过第一获取模块获取血泵处于体外测试模拟环境中,在不同转速下,第一电流差值绝对值与第一泵血流量值之间的第一对应关系;基于第二获取模块获取血泵处于检测对象的实际人体环境中,在每个转速下工作过程中,每个电流周期的第一基准电流值;基于第一确定模块针对每个转速中的每个电流周期,将第一基准电流值与电流周期内的不同时刻的电流值作差,得到至少一个第二电流差值绝对值;基于第二确定模块针对每个转速中的每个电流周期对应的至少一个第二电流差值绝对值,在第一对应关系中进行查找,得到与至少一个第二电流差值绝对值对应的至少一个第二泵血流量值;基于第三确定模块针对每个转速,基于各电流周期下的至少一个第二泵血流量值,确定目标泵血流量值,如此,通过电流变化差值来有效表征血泵的泵血流量值,相较于直接利用电流来表征血泵的泵血流量值的方式,利用电流差值可以有效降低不同血泵导管之间的差异所造成的误差,实现了精确确定血泵的泵血流量的效果。
在本申请的一些实施例中,为了进一步精确确定血泵的泵血流量值,第二获取模块1120可以包括:
第一获取单元,用于获取血泵在每个转速下工作过程中,每个电流周期的第一电流值;
第一确定单元,用于针对每个电流周期,将所述电流周期中最大的第一电流值确定为所 述电流周期的第一基准电流值。
在本申请的一些实施例中,为了精确确定目标泵血流量值,第三确定模块1150可以包括:
第二确定单元,用于针对每个转速中的每个电流周期,将所述电流周期下的至少一个第二泵血流量值进行积分计算,得到所述电流周期下的第一总泵血流量值;
第三确定单元,用于针对每个转速中的每个电流周期,基于所述第一总泵血流量值和电流周期值,确定所述电流周期下的平均泵血流量值;
第四确定单元,用于针对每个转速,将各电流周期下的平均泵血流量值进行求和后,得到所述转速下的第二总泵血流量值;
第五确定单元,用于针对每个转速,计算所述第二总泵血流量值的平均值,得到所述转速下的目标泵血流量值。
在本申请的一些实施例中,为了精确确定检测对象的恢复功能,血泵的泵血流量确定装置还可以包括:
第四确定模块,用于针对每个转速,基于所述转速下的目标泵血流量值,确定所述转速下的心输出量值。
在本申请的一些实施例中,所述第四确定模块具体可以用于:
针对每个转速,基于检测对象在初始时刻的总心输出量值,以及检测对象在初始时刻的主动脉平均压力值,确定检测对象在初始时刻的血管阻力;
针对每个转速,基于检测对象在各时刻的主动脉平均压力值,以及检测对象在初始时刻的血管阻力,确定检测对象在各时刻下的总心输出量值;
针对每个转速,基于检测对象在各时刻下的总心输出量值,以及目标泵血流量值,确定检测对象在转速下的心输出量值。
在本申请的一些实施例中,为了进一步的精确确定血泵的目标泵血流量值,血泵的泵血流量确定装置还可以包括:
第三获取模块,用于在血泵处于体外测试模拟环境中,获取血泵在不同转速下,压差与第二电流值的第二对应关系,以及压差与第一泵血流量值的第三对应关系;
第五确定模块,用于针对每个转速,将零压差下对应的第二电流值作为第二基准电流值;
第六确定模块,用于针对每个转速,基于所述第二对应关系,获取所述转速下各压差下的第二电流值,将所述第二基准电流值与所述转速下各压差下的第二电流值作差,得到各压差下的第一电流差值绝对值;
第七确定模块,用于针对每个转速,基于所述第一电流差值绝对值,以及所述第三对应关系,得到所述转速下,第一电流差值绝对值与第一泵血流量值之间的第一对应关系。
在本申请的一些实施例中,为了进一步的精确确定血泵的目标泵血流量值,血泵的泵血流量确定装置还可以包括:
第八确定模块,用于将所述第一基准电流值标定为所述第二基准电流值。
对应的,第一确定模块1130具体可以用于:
针对每个转速中的每个电流周期,将所述第二基准电流值与所述电流周期内的各时刻的电流值作差,得到至少一个第二电流差值绝对值。
在本申请的一些实施例中,为了进一步的精确确定血泵的目标泵血流量值,在血泵处于体外测试模拟环境中,所述血泵的导管的状态具有第一状态和第二状态;所述第二电流值包括第一子电流值和第二子电流值,其中,所述第一子电流值为所述血泵的导管在第一状态下,血泵在各转速下,各压差下的电流值,所述第二子电流值为所述血泵的导管在第二状态下,血泵在各转速下,各压差下的电流值;
血泵的泵血流量确定装置还可以包括:
校正模块,用于针对每个转速下的每个压差,将所述压差下的所述第一子电流值和所述第二子电流值作差,得到第三电流差值绝对值;针对每个转速下的每个压差,基于所述第三电流差值绝值对目标状态下的第一电流差值绝对值进行校正;其中,所述目标状态为所述第一状态或第二状态。
在本申请的一些实施例中,为了判断血泵工作中的电流呈周期性变化,血泵的泵血流量确定装置还可以包括:
第十确定模块,用于基于所述检测对象在每个转速下的心动周期,确定血泵在每个转速下的电流周期;
比对模块,用于针对每个转速,将所述转速下的电流周期,与所述心动周期对应的预测电流周期进行比对;
比对确定模块,用于基于比对结果,确定各转速下的电流值是否发生了周期性变化。
对应的,第二获取模块1120具体可以用于:
在确定各转速下的电流值发生周期性变化的情况下,获取血泵处于检测对象的实际人体环境中,在每个转速下工作过程中,每个电流周期的第一基准电流值。
本申请实施例提供的血泵的泵血流量确定装置,可以用于执行上述各方法实施例提供的血泵的泵血流量确定方法,其实现原理和技术效果类似,为简介起见,在此不再赘述。
基于同一发明构思,本申请实施例还提供了一种电子设备。
图12是本申请实施例提供的一种电子设备的结构示意图。如图12所示,电子设备可以包括处理器1201以及存储有计算机程序或指令的存储器1202。
具体地,上述处理器1201可以包括中央处理器(CPU),或者特定集成电路(Application Specific Integrated Circuit,ASIC),或者可以被配置成实施本申请实施例的一个或多个集成电路。
存储器1202可以包括用于数据或指令的大容量存储器。举例来说而非限制,存储器1202可包括硬盘驱动器(Hard Disk Drive,HDD)、软盘驱动器、闪存、光盘、磁光盘、磁带或通用串行总线(Universal Serial Bus,USB)驱动器或者两个或更多个以上这些的组合。在合适的情况下,存储器1202可包括可移除或不可移除(或固定)的介质。在合适的情况下,存储器1202可在综合网关容灾设备的内部或外部。在特定实施例中,存储器1202是非易失性固态存储器。在特定实施例中,存储器1202包括只读存储器(ROM)。在合适的情况下,该ROM可以是掩模编程的ROM、可编程ROM(PROM)、可擦除PROM(EPROM)、电可擦除PROM(EEPROM)、电可改写ROM(EAROM)或闪存或者两个或更多个以上这些的组合。
处理器1201通过读取并执行存储器1202中存储的计算机程序指令,以实现上述实施例中的任意一种血泵的泵血流量确定方法。
在一个示例中,电子设备还可包括通信接口1203和总线1210。其中,如图12示,处理器1201、存储器1202、通信接口1203通过总线1210连接并完成相互间的通信。
通信接口1203,主要用于实现本申请实施例中各模块、设备、单元和/或设备之间的通信。
总线1210包括硬件、软件或两者,将电子设备的部件彼此耦接在一起。举例来说而非限制,总线可包括加速图形端口(AGP)或其他图形总线、增强工业标准架构(EISA)总线、前端总线(FSB)、超传输(HT)互连、工业标准架构(ISA)总线、无限带宽互连、低引脚数(LPC)总线、存储器总线、微信道架构(MCA)总线、外围组件互连(PCI)总线、PCI-Express(PCI-X)总线、串行高级技术附件(SATA)总线、视频电子标准协会局部(VLB)总线或其他合适的总线或者两个或更多个以上这些的组合。在合适的情况下,总线1210可包括一个或多个总线。尽管本申请实施例描述和示出了特定的总线,但本申请考虑任何合适的总线或互连。
该电子设备可以执行本申请实施例中的血泵的泵血流量确定方法,从而实现图1-图10任一描述的血泵的泵血流量确定方法。
另外,结合上述实施例中的血泵的泵血流量确定方法,本申请实施例可提供一种可读存储介质来实现。该可读存储介质上存储有程序指令;该程序指令被处理器执行时实现上述实施例中的任意一种血泵的泵血流量确定方法。
需要明确的是,本申请并不局限于上文所描述并在图中示出的特定配置和处理。为了简明起见,这里省略了对已知方法的详细描述。在上述实施例中,描述和示出了若干具体的步骤作为示例。但是,本申请的方法过程并不限于所描述和示出的具体步骤,本领域的技术人员可以在领会本申请的精神后,作出各种改变、修改和添加,或者改变步骤之间的顺序。
以上所述的结构框图中所示的功能块可以实现为硬件、软件、固件或者它们的组合。当以硬件方式实现时,其可以例如是电子电路、专用集成电路(ASIC)、适当的固件、插件、功能卡等等。当以软件方式实现时,本申请的元素是被用于执行所需任务的程序或者代码段。程序或者代码段可以存储在机器可读介质中,或者通过载波中携带的数据信号在传输介质或者通信链路上传送。“机器可读介质”可以包括能够存储或传输信息的任何介质。机器可读介质的例子包括电子电路、半导体存储器设备、ROM、闪存、可擦除ROM(EROM)、软盘、CD-ROM、光盘、硬盘、光纤介质、射频(RF)链路,等等。代码段可以经由诸如因特网、内联网等的计算机网络被下载。
还需要说明的是,本申请中提及的示例性实施例,基于一系列的步骤或者装置描述一些方法或系统。但是,本申请不局限于上述步骤的顺序,也就是说,可以按照实施例中提及的 顺序执行步骤,也可以不同于实施例中的顺序,或者若干步骤同时执行。
本领域技术人员应能理解,上述实施例均是示例性而非限制性的。在不同实施例中出现的不同技术特征可以进行组合,以取得有益效果。本领域技术人员在研究附图、说明书及权利要求书的基础上,应能理解并实现所揭示的实施例的其他变化的实施例。在权利要求书中,术语“包括”并不排除其他装置或步骤;物品没有使用数量词修饰时旨在包括一个/种或多个/种物品,并可以与“一个/种或多个/种物品”互换使用”;术语“第一”、“第二”用于标示名称而非用于表示任何特定的顺序。权利要求中的任何附图标记均不应被理解为对保护范围的限制。权利要求中出现的多个部分的功能可以由一个单独的硬件或软件模块来实现。某些技术特征出现在不同的从属权利要求中并不意味着不能将这些技术特征进行组合以取得有益效果。

Claims (12)

  1. 一种血泵的泵血流量确定方法,所述方法包括:
    获取血泵处于体外测试模拟环境中,在不同转速下,第一电流差值绝对值与第一泵血流量值之间的第一对应关系;
    获取血泵处于检测对象的实际环境中,在每个转速下工作过程中,每个电流周期的第一基准电流值;
    针对每个转速中的每个电流周期,将所述第一基准电流值与所述电流周期内的不同时刻的电流值作差,得到至少一个第二电流差值绝对值;
    针对每个转速中的每个电流周期对应的至少一个所述第二电流差值绝对值,在所述第一对应关系中进行查找,得到与所述第二电流差值绝对值对应的第二泵血流量值,其中,每一个第二电流差值绝对值对应于一个第二泵血流量值;
    针对每个转速,基于各电流周期下的至少一个第二泵血流量值,确定目标泵血流量值。
  2. 根据权利要求1所述的方法,其中,所述获取血泵在每个转速下工作过程中,每个电流周期的第一基准电流值的步骤,包括:
    获取血泵在每个转速下工作过程中,每个电流周期的第一电流值;
    针对每个电流周期,将所述电流周期中最大的第一电流值确定为所述电流周期的第一基准电流值。
  3. 根据权利要求1所述的方法,其中,所述针对每个转速,基于各电流周期下的至少一个第二泵血流量值,确定目标泵血流量值,包括:
    针对每个转速中的每个电流周期,将所述电流周期下的至少一个第二泵血流量值进行积分计算,得到所述电流周期下的第一总泵血流量值;
    针对每个转速中的每个电流周期,基于所述第一总泵血流量值和电流周期值,确定所述电流周期下的平均泵血流量值;
    针对每个转速,将各电流周期下的平均泵血流量值进行求和后,得到所述转速下的第二总泵血流量值;
    针对每个转速,计算所述第二总泵血流量值的平均值,得到所述转速下的目标泵血流量值。
  4. 根据权利要求1-3任一所述的方法,其中,在所述针对每个转速,基于各电流周期下的至少一个第二泵血流量值,确定目标泵血流量值之后,所述方法还包括:
    针对每个转速,基于所述转速下的目标泵血流量值,确定所述转速下的心输出量值。
  5. 根据权利要求4所述的方法,其中,所述针对每个转速,基于所述转速下的目标泵血流量值,确定所述转速下的心输出量值,包括:
    针对每个转速,基于检测对象在初始时刻的总心输出量值,以及检测对象在初始时刻的主动脉平均压力值,确定检测对象在初始时刻的血管阻力;
    针对每个转速,基于检测对象在各时刻的主动脉平均压力值,以及检测对象在初始时刻的血管阻力,确定检测对象在各时刻下的总心输出量值;
    针对每个转速,基于检测对象在各时刻下的总心输出量值,以及目标泵血流量值,确定检测对象在转速下的心输出量值。
  6. 根据权利要求1-3任一所述的方法,其中,在所述获取血泵处于体外测试模拟环境中,在不同转速下,第一电流差值绝对值与第一泵血流量值之间的对应关系之前,所述方法还包括:
    在血泵处于体外测试模拟环境中,获取血泵在不同转速下,压差与第二电流值的第二对应关系,以及压差与第一泵血流量值的第三对应关系;
    针对每个转速,将零压差下对应的第二电流值作为第二基准电流值;
    针对每个转速,基于所述第二对应关系,获取所述转速下各压差下的第二电流值,将所述第二基准电流值与所述转速下各压差下的第二电流值作差,得到各压差下的第一电流差值绝对值;
    针对每个转速,基于所述第一电流差值绝对值,以及所述第三对应关系,得到所述转速下,第一电流差值绝对值与第一泵血流量值之间的第一对应关系。
  7. 根据权利要求6所述的方法,其中,在所述获取血泵处于实际人体环境中,在每个转速下工作过程中,每个电流周期的第一基准电流值之后,所述方法还包括:
    将所述第一基准电流值标定为所述第二基准电流值;
    所述针对每个转速中的每个电流周期,将所述第一基准电流值与所述电流周期内的各时刻的电流值作差,得到至少一个第二电流差值绝对值,包括:
    针对每个转速中的每个电流周期,将所述第二基准电流值与所述电流周期内的各时刻的电流值作差,得到至少一个第二电流差值绝对值。
  8. 根据权利要求6所述的方法,其中,在血泵处于体外测试模拟环境中,所述血泵的导管的状态具有第一状态和第二状态;所述第二电流值包括第一子电流值和第二子电流值,其中,所述第一子电流值为所述血泵的导管在第一状态下,血泵在各转速下,各压差下的电流值,所述第二子电流值为所述血泵的导管在第二状态下,血泵在各转速下,各压差下的电流值;
    在所述第一状态,分别得到血泵在各转速下,各压差下的第一电流差值绝对值,且在所述第二状态,分别得到血泵在各转速下,各压差下的第一电流差值绝对值之后,所述方法还包括:
    针对每个转速下的每个压差,将所述压差下的所述第一子电流值和所述第二子电流值作差,得到第三电流差值绝对值;
    针对每个转速下的每个压差,基于所述第三电流差值绝值对目标状态下的第一电流差值绝对值进行校正;
    其中,所述目标状态为所述第一状态或第二状态。
  9. 根据权利要求1-3任一所述的方法,其中,在所述获取血泵处于检测对象的实际人体环境中,在每个转速下工作过程中,每个电流周期的第一基准电流值之前,所述方法还包括:
    基于所述检测对象在每个转速下的心动周期,确定血泵在每个转速下的电流周期;
    针对每个转速,将所述转速下的电流周期,与所述心动周期对应的预测电流周期进行比对;
    基于比对结果,确定各转速下的电流值是否发生的周期性变化;
    所述获取血泵处于实际人体环境中,在每个转速下工作过程中,每个电流周期的第一基准电流值,包括:
    在确定各转速下的电流值发生周期性变化的情况下,获取血泵处于检测对象的实际人体环境中,在每个转速下工作过程中,每个电流周期的第一基准电流值。
  10. 一种血泵的泵血流量确定装置,其中,所述装置包括:
    第一获取模块,用于获取血泵处于体外测试模拟环境中,在不同转速下,第一电流差值 绝对值与第一泵血流量值之间的第一对应关系;
    第二获取模块,用于获取血泵处于检测对象的实际人体环境中,在每个转速下工作过程中,每个电流周期的第一基准电流值;
    第一确定模块,用于针对每个转速中的每个电流周期,将所述第一基准电流值与所述电流周期内的不同时刻的电流值作差,得到至少一个第二电流差值绝对值;
    第二确定模块,用于针对每个转速中的每个电流周期对应的至少一个所述第二电流差值绝对值,在所述第一对应关系中进行查找,得到与至少一个所述第二电流差值绝对值对应的至少一个第二泵血流量值;
    第三确定模块,用于针对每个转速,基于各电流周期下的至少一个第二泵血流量值,确定目标泵血流量值。
  11. 一种电子设备,其中,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1-9任一所述的血泵的泵血流量确定方法的步骤。
  12. 一种可读存储介质,其中,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-9任一所述的血泵的泵血流量确定方法的步骤。
PCT/CN2022/127202 2021-10-25 2022-10-25 血泵的泵血流量确定方法、装置、电子设备和存储介质 WO2023072017A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111243412.4A CN116020052A (zh) 2021-10-25 2021-10-25 血泵的泵血流量确定方法、装置、电子设备和存储介质
CN202111243412.4 2021-10-25

Publications (1)

Publication Number Publication Date
WO2023072017A1 true WO2023072017A1 (zh) 2023-05-04

Family

ID=86080062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127202 WO2023072017A1 (zh) 2021-10-25 2022-10-25 血泵的泵血流量确定方法、装置、电子设备和存储介质

Country Status (2)

Country Link
CN (1) CN116020052A (zh)
WO (1) WO2023072017A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116236685B (zh) * 2023-05-10 2023-07-25 深圳核心医疗科技股份有限公司 电机转速的控制方法及装置
CN117282017B (zh) * 2023-10-07 2024-06-14 心擎医疗(苏州)股份有限公司 介入泵流量估算方法、装置、设备及心室辅助装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004073875A (ja) * 1997-12-27 2004-03-11 Jms Co Ltd 連続流血液ポンプを用いた血流循環補助装置および生体の血流循環状態の診断装置
CN111565771A (zh) * 2018-01-09 2020-08-21 阿比奥梅德欧洲股份有限公司 用于在估计血管内血泵中的血液流量中校准和使用的方法和设备
CN111669079A (zh) * 2019-03-06 2020-09-15 株式会社太阳医疗技术研究所 马达识别方法、驱动方法、控制器及辅助人工心脏系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004073875A (ja) * 1997-12-27 2004-03-11 Jms Co Ltd 連続流血液ポンプを用いた血流循環補助装置および生体の血流循環状態の診断装置
CN111565771A (zh) * 2018-01-09 2020-08-21 阿比奥梅德欧洲股份有限公司 用于在估计血管内血泵中的血液流量中校准和使用的方法和设备
CN111669079A (zh) * 2019-03-06 2020-09-15 株式会社太阳医疗技术研究所 马达识别方法、驱动方法、控制器及辅助人工心脏系统

Also Published As

Publication number Publication date
CN116020052A (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
WO2023072017A1 (zh) 血泵的泵血流量确定方法、装置、电子设备和存储介质
JP7314150B2 (ja) 血管内血液ポンプ内の血流を推定する方法、血管内血液ポンプ内の血流推定に用いる装置、及びコンピュータプログラム製品
US11574741B2 (en) Systems and methods for determining cardiac output
US11141574B2 (en) Electronic valve reader having orientation sensing mechanism
WO2023173963A1 (zh) 泵血导管的检测方法、系统、装置、设备、介质及产品
US20200147286A1 (en) Hvad circadian tracker (phi+)
EP3856275B1 (en) Map estimation on vad patients
CN116726378B (zh) 流量确定方法、流量检测模型的训练方法、设备及介质
CN116492588A (zh) 一种心室导管泵的位置检测方法及装置
CN117018434B (zh) 介入泵位置确定方法、装置、控制设备及心室辅助装置
CN109562212B (zh) 具有主动脉瓣打开检测的vad
WO2019013794A1 (en) HVAD CIRCADIC MONITORING DEVICE (PHI +)
WO2016039241A1 (ja) トレーニングに好適なランニング強度の推定方法、およびランニング支援装置
CN116672598B (zh) 泵控制方法及装置
CN118267605A (zh) 一种基于左心室导管泵的左心室压力估计方法及系统
TW202400074A (zh) 估計通過循環支持裝置之最大流量
CN117771535A (zh) 基于输液装置的压强控制方法及装置
WO2023215500A1 (en) Position detection for a circulatory support device
JP2020038125A (ja) 二次電池の劣化度推定装置
CN115276495A (zh) 压缩机电阻估计方法、系统、装置及相关设备
CN116919460A (zh) 一种参数测量方法和系统
WO2018144875A1 (en) Hemodynamic monitor providing enhanced cardiac output measurements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885894

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022885894

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022885894

Country of ref document: EP

Effective date: 20240527