WO2023071894A1 - 信号的发送方法和装置、接收方法和装置、存储介质 - Google Patents

信号的发送方法和装置、接收方法和装置、存储介质 Download PDF

Info

Publication number
WO2023071894A1
WO2023071894A1 PCT/CN2022/126271 CN2022126271W WO2023071894A1 WO 2023071894 A1 WO2023071894 A1 WO 2023071894A1 CN 2022126271 W CN2022126271 W CN 2022126271W WO 2023071894 A1 WO2023071894 A1 WO 2023071894A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
target
sequence
value
target reference
Prior art date
Application number
PCT/CN2022/126271
Other languages
English (en)
French (fr)
Inventor
贺海港
卢有雄
陈杰
娄俊鹏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023071894A1 publication Critical patent/WO2023071894A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup

Definitions

  • Embodiments of the present disclosure relate to the communication field, and in particular, to a signal sending method and device, a receiving method and device, a storage medium, and an electronic device.
  • communication nodes can directly perform service transmission.
  • a side link (Sidelink) communication system when there is a service to be transmitted between user equipments (UEs), the service between UEs does not Through the network side, that is, without the forwarding of the cellular link between the UE and the base station, it is directly transmitted from the data source UE to the target UE through Sidelink.
  • This mode of direct communication between the UE and the UE is obviously different from the traditional cellular The characteristics of the communication mode of the system.
  • the anchor node is generally a base station.
  • both the anchor node and the target node are terminals.
  • different reference signal sequences are supported for multiple reference signal (for example, positioning reference signal) resources.
  • the sequence ID sequence identification number used to generate the positioning reference signal sequence of different positioning reference signal resources is obtained through the high-level parameter configuration on the network side.
  • Sidelink positioning may also support the design principle that multiple positioning reference signal resources use different positioning reference signal sequences.
  • the high-level parameter configuration on the network side is used to generate the sequence ID of different positioning reference signal resource sequences, and there will be some problems.
  • the main problem is that the target UE does not know the sequence ID configured by the network for the anchor UE.
  • One method is that the anchor point notifies the target UE of the sequence IDs of multiple positioning reference signal resources configured by the network, but this will introduce a large additional overhead.
  • Embodiments of the present disclosure provide a signal sending method and device, a receiving method and device, a storage medium, and an electronic device, so as to at least solve the problem of high signaling overhead in the related art.
  • a signal sending method including: a first communication node generates a target reference signal sequence of a target reference signal, wherein the target reference signal sequence is generated by a pseudo-random sequence, and the pseudo-random sequence
  • the random sequence is a sequence initialized using a target formula, and the target formula includes the resource number of the target reference signal; the first communication node sends the target reference signal, wherein the target reference signal sequence mapping The target reference signal is formed after the time-frequency resource is received.
  • a signal receiving method including: the second communication node receives the target reference signal sent by the first communication node, wherein the target reference signal sequence is mapped to the time-frequency resource to form the The target reference signal, the target reference signal sequence is generated by a pseudo-random sequence, the pseudo-random sequence is a sequence initialized using a target formula, and the target formula includes the resource number of the target reference signal; the The second communication node determines the pseudo-random sequence and the target reference signal sequence based on the resource number of the target reference signal.
  • a signal sending device which is applied to a first communication node, and includes: a generating module configured to generate a target reference signal sequence of a target reference signal, wherein the target reference signal The sequence is generated by a pseudo-random sequence, the pseudo-random sequence is a sequence initialized using a target formula, and the target formula includes the resource number of the target reference signal; the sending module is configured to send the target reference signal, Wherein, the target reference signal sequence is mapped to time-frequency resources to form the target reference signal.
  • a signal receiving device which is applied to a second communication node, and includes: a receiving module configured to receive a target reference signal sent by the first communication node, wherein the target reference signal The target reference signal is formed after the sequence is mapped to the time-frequency resource, the target reference signal sequence is generated by a pseudo-random sequence, the pseudo-random sequence is a sequence initialized using a target formula, and the target formula includes the The resource number of the target reference signal; a determining module configured to determine the pseudo-random sequence and the target reference signal sequence based on the resource number of the target reference signal.
  • a computer-readable storage medium wherein a computer program is stored in the computer-readable storage medium, wherein the computer program is configured to perform any one of the above-mentioned methods when running Steps in the examples.
  • an electronic device including a memory and a processor, wherein a computer program is stored in the memory, and the processor is configured to run the computer program to perform any of the above Steps in the method examples.
  • FIG. 1 is a block diagram of a hardware structure of a mobile terminal according to a signal transmission method according to an embodiment of the disclosure
  • FIG. 2 is a flowchart of a signal sending method according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of a signal receiving method according to an embodiment of the present disclosure
  • Fig. 4 is a structural block diagram of a signal sending device according to an embodiment of the present disclosure.
  • Fig. 5 is a structural block diagram of a signal receiving device according to an embodiment of the disclosure.
  • Typical applications of Sidelink communication include Device-to-Device (D2D, Device-to-Device) communication and Vehicle to Everything (V2X) communication.
  • the Internet of Vehicles (V2X) communication includes Vehicle to Vehicle (V2V for short), Vehicle to Pedestrian (V2P for short), and Vehicle to Infrastructure (V2I for short).
  • V2V Vehicle to Vehicle
  • V2P Vehicle to Pedestrian
  • V2I Vehicle to Infrastructure
  • Sidelink communication not only saves wireless spectrum resources, but also reduces the data transmission pressure of the core network, which can reduce system resource occupation, increase the spectrum efficiency of cellular communication systems, and reduce communication delays. And save network operation cost to a great extent.
  • a communication node that needs to obtain its own geographic location is called a target node, and the target node is usually a user equipment.
  • the positioning of the target node needs the help of other communication nodes, and these other communication nodes are usually called anchor nodes.
  • Anchor nodes can be base stations, terminals, or satellites.
  • the positioning reference signal here refers to a reference signal used for positioning, and the communication node sending the positioning reference signal may be a target node or an anchor node.
  • the communication node sending the positioning reference signal may be equipment such as a base station, a terminal, or a satellite.
  • positioning can be divided into absolute positioning and relative positioning.
  • absolute positioning the geographic location of the anchor node is known, and the geographic location of the target node can be deduced through the measurement of the positioning reference signal and the geographic location of the anchor node. For example, by measuring the positioning reference signal, the signal propagation delay between the target node and the anchor node can be further obtained, so as to further deduce the distance between the target node and the anchor node.
  • the geographic location of the target node can be calculated, that is, the location of the target node can be obtained.
  • the geographic location of the anchor node can be known or unknown.
  • the anchor node sends a positioning reference signal
  • the target node measures the positioning reference signal sent by the anchor node.
  • the target node obtains the distance between the anchor node and the target node, and obtains the positioning reference signal angle of arrival.
  • the target node can calculate the distance from the anchor node and obtain the direction of the anchor node relative to the target node, thus , the relative positioning information of the target node relative to the anchor node is obtained.
  • FIG. 1 is a block diagram of a hardware structure of a mobile terminal according to a signal transmission method according to an embodiment of the present disclosure.
  • the mobile terminal may include one or more (only one is shown in Figure 1) processors 102 (processors 102 may include but not limited to processing devices such as microprocessor MCU or programmable logic device FPGA, etc.) and a memory 104 configured to store data, wherein the mobile terminal may further include a transmission device 106 and an input/output device 108 configured to communicate.
  • processors 102 may include but not limited to processing devices such as microprocessor MCU or programmable logic device FPGA, etc.
  • a transmission device 106 and an input/output device 108 configured to communicate.
  • the mobile terminal may also include more or fewer components than those shown in FIG. 1 , or have a different configuration from that shown in FIG. 1 .
  • the memory 104 may be configured to store computer programs, for example, software programs and modules of application software, such as computer programs corresponding to signal transmission methods (including signal transmission methods and/or transmission methods) in the embodiments of the present disclosure, and the processor 102 By running the computer program stored in the memory 104 to perform various functional applications and data processing, the above-mentioned method is realized.
  • the memory 104 may include high-speed random access memory, and may also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 104 may further include a memory that is remotely located relative to the processor 102, and these remote memories may be connected to the mobile terminal through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the transmission device 106 is configured to receive or transmit data via a network.
  • the specific example of the above network may include a wireless network provided by the communication provider of the mobile terminal.
  • the transmission device 106 includes a Network Interface Controller (NIC for short), which can be connected to other network devices through a base station so as to communicate with the Internet.
  • the transmission device 106 may be a radio frequency (Radio Frequency, referred to as RF) module, which is configured to communicate with the Internet in a wireless manner.
  • RF Radio Frequency
  • Fig. 2 is a flowchart of a signal sending method according to an embodiment of the present disclosure. As shown in Fig. 2, the process includes the following steps:
  • Step S202 the first communication node generates a target reference signal sequence of a target reference signal, wherein the target reference signal sequence is generated by a pseudo-random sequence, the pseudo-random sequence is a sequence initialized using a target formula, and the target The formula includes the resource number of the target reference signal;
  • Step S204 the first communication node sends the target reference signal, wherein the target reference signal is formed after the target reference signal sequence is mapped to time-frequency resources.
  • the target reference signal sequence is a sequence composed of a series of modulation symbols, and after the target reference signal sequence is mapped to the time-frequency resource, it becomes the above-mentioned target reference signal.
  • the above-mentioned first communication node sends the target reference signal, it may be unicast, multicast, or broadcast, and so on.
  • the execution subject of the above steps is the first communication node, and the above-mentioned first communication node may be a terminal device.
  • the node for receiving the target reference signal sent by the first communication node may also be a terminal device.
  • the formula for generating the target reference signal sequence includes the resource index of the target reference signal, so as to achieve the purpose of using different reference signal sequences for different reference signal resources.
  • different reference signal sequences are generated for different reference signal resources through some parameters or variables that can be obtained by the transmitting end without notifying the receiving end through signaling, Or the sending end notifies the variable that is the same for multiple reference signals, and through this variable and through some parameters or variables that the sending end can obtain without signaling to the receiving end, different reference signal sequences are generated for different reference signal resources, relative to
  • Using the solution in the embodiment of the present disclosure can reduce the transmission of resource identification and effectively reduce the effect of signaling overhead, thereby solving the signaling problem in the related art. costly problem.
  • the target reference signal includes a positioning reference signal.
  • the positioning reference signal includes a side link positioning reference signal.
  • the target formula includes the product of the first data and the second data, wherein the first data includes the resource number, and the second data includes the cycle corresponding to the target channel The value calculated by the redundancy check CRC.
  • the target channel may be a physical side link control channel PSCCH.
  • the pseudo-random sequence c(n) is used to generate the positioning reference signal sequence r(m).
  • the formula used to initialize the pseudo-random sequence includes the positioning reference signal resource number r, that is, the formula used for c init calculation includes the positioning reference signal resource number r.
  • the resource number here may also be called resource index or resource identification number.
  • the above-mentioned formula for initializing the pseudo-random sequence includes the product of the first item (corresponding to the above-mentioned first data) and the second item (corresponding to the above-mentioned second data). That is, the calculation formula of c init includes the product of the first term and the second term.
  • the first item includes a positioning reference signal resource number r;
  • the second entry includes a value calculated via the CRC of the PSCCH, denoted as
  • the calculation formula of c init includes the product of the first term and the second term, and the formula of c init calculation includes variables variable
  • the calculation formula of includes the product of the first item and the second item, and the first item includes the positioning reference signal resource number r, and the second item includes a value calculated by the CRC of the PSCCH
  • a universal pseudo-random sequence is defined by a length-31 Gold sequence.
  • x 1 (n+31) (x 1 (n+3)+x 1 (n))mod2
  • x 2 (n+31) (x 2 (n+3)+x 2 (n+2)+x 2 (n+1)+x 2 (n))mod2
  • the initialization of the second m-sequence, x 2 (n) is given by Indicates that its value depends on the application of the sequence.
  • the UE shall assume that the reference signal sequence r(m) is defined by:
  • pseudo-random sequence generator should be initialized with:
  • l is the number of OFDM symbols in the slot, is the number of slots in the frame.
  • the formula for initializing the pseudo-random sequence includes the product of the first term and the second term. That is, the calculation formula of c init includes the product of the first term and the second term. More specifically, the calculation formula of c init includes the variable variable The calculation formula for includes the product of the first term and the second term. as well as, or
  • the calculation includes the first term r+1 and the second term
  • the product of , the first item (r+1) includes the positioning reference signal (PRS) resource number r, and the second item included in
  • the calculation includes the first term r+1 and the second term
  • the product of , the first item r+1 includes the positioning reference signal resource number r, and the second item included in
  • the first terminal After the first terminal (corresponding to the above-mentioned first communication node) generates the positioning reference signal sequence in the above manner, the first terminal sends the positioning reference signal, and the positioning reference signal sequence is mapped to the time-frequency resource to form the positioning reference signal.
  • the second terminal receives the positioning reference signal sent by the first terminal.
  • the target formula includes the sum of the first data and the second data, wherein the first data includes the resource number, and the second data includes the resource number corresponding to the target channel.
  • CRC cyclic redundancy check
  • the pseudo-random sequence c(n) is used to generate the positioning reference signal sequence r(m).
  • the formula used to initialize the pseudo-random sequence includes the positioning reference signal resource number r, that is, the formula used for c init calculation includes the positioning reference signal resource number r.
  • the resource number here may also be called resource index or resource identification number.
  • the above formula for initializing the pseudo-random sequence includes the sum of the first item and the second item. That is, the calculation formula of c init includes the sum of the first item and the second item.
  • the first item includes a positioning reference signal resource number r;
  • the second entry includes a value calculated via the CRC of the PSCCH, denoted as
  • the calculation formula of c init includes the sum of the first item and the second item, and the calculation formula of c init includes variables variable
  • the calculation formula of includes the sum of the first item and the second item, and the first item includes the positioning reference signal resource number r, and the second item includes a value calculated by the CRC of the PSCCH
  • a universal pseudo-random sequence is defined by a length-31 Gold sequence.
  • x 1 (n+31) (x 1 (n+3)+x 1 (n))mod2
  • x 2 (n+31) (x 2 (n+3)+x 2 (n+2)+x 2 (n+1)+x 2 (n))mod2
  • the initialization of the second m-sequence, x 2 (n) is given by Indicates that its value depends on the application of the sequence.
  • the UE shall assume that the reference signal sequence r(m) is defined by:
  • pseudo-random sequence generator should be initialized with:
  • l is the number of OFDM symbols in the slot, is the number of slots in the frame.
  • the formula for initializing the pseudo-random sequence includes the sum of the first item and the second item. That is, the calculation formula of c init includes the sum of the first item and the second item. More specifically, the calculation formula of c init includes the variable variable The calculation formula for includes the sum of the first term and the second term. and, or
  • the calculation includes the first term r and the second term The sum of the two, the first item r includes the positioning reference signal resource number r, and the second item included in
  • the calculation includes the first term r and the second term The sum of the two, the first item r includes the positioning reference signal resource number r, and the second item included in
  • the first terminal After the first terminal generates the positioning reference signal sequence in the above manner, the first terminal sends the positioning reference signal, and the positioning reference signal sequence is mapped to the time-frequency resource to form the positioning reference signal.
  • the second terminal receives the positioning reference signal sent by the first terminal.
  • the target formula includes the product of the third data, the fourth data and the fifth data, wherein the third data includes the following data: the quadrature used to send the reference signal The symbol number of frequency division multiplexing OFDM, the time slot number of the time slot used to send the reference signal, and the number of OFDM symbols in the time slot; the fourth data includes the CRC calculated by the corresponding target channel The value, or, includes the source identification number of the first communication node; the fifth data includes the resource number.
  • the target formula includes a predetermined power of 2, and the value of the predetermined power is equal to 10-floor(A/2), wherein, the A power of 2 minus 1 is equal to the The maximum value of the resource number, floor() is a function of rounding down.
  • the pseudo-random sequence c(n) is used to generate the positioning reference signal sequence r(m).
  • the formula used to initialize the pseudo-random sequence includes the positioning reference signal resource number r, that is, the formula used for c init calculation includes the positioning reference signal resource number r.
  • the resource number here may also be called resource index or resource identification number.
  • the above-mentioned formula for initializing the pseudo-random sequence includes the first item (corresponding to the above-mentioned third data), the second item (corresponding to the above-mentioned fourth data), and the third item (corresponding to the above-mentioned first Five data) the product of these three items. That is, the calculation formula of c init includes the product of the first item, the second item, and the third item.
  • the first item includes the OFDM symbol number in the time slot (that is, the time slot used to send the positioning reference signal), and the time slot number in the frame (that is, the frame used to send the positioning reference signal), and the time slot The number of OFDM symbols in .
  • the second item includes a value calculated from the CRC of the PSCCH (marked as ), or, including the source identification number (or terminal ID) of the first terminal;
  • the third item includes resource number r;
  • the above resource number corresponds to the side link positioning reference signal resource number.
  • the value range of the resource number r is 0, 1, 2, ..., 2 A -1.
  • the formula for initializing the pseudo-random sequence includes a power of 2, and the value of the power is equal to 10-floor(A/2).
  • the value of A satisfies the restriction: 2 to the power of A minus one is equal to the maximum value of the resource number.
  • the floor() indicates that the content in () is rounded down.
  • the calculation formula of c init includes the product of the first item, the second item, and the third item.
  • the realization method is that the calculation formula of c init includes the first item, the second item, and the third item. the product of , and:
  • the first item includes the OFDM symbol number in the slot, the slot number in the frame, and the number of OFDM symbols in the slot;
  • the second item consists of a value calculated from the CRC of the PSCCH
  • the second item includes the resource number r;
  • x 1 (n+31) (x 1 (n+3)+x 1 (n))mod2
  • x 2 (n+31) (x 2 (n+3)+x 2 (n+2)+x 2 (n+1)+x 2 (n))mod2
  • the initialization of the second m-sequence, x 2 (n) is given by Indicates that its value depends on the application of the sequence.
  • the UE shall assume that the reference signal sequence r(m) is defined by:
  • pseudo-random sequence generator should be initialized with:
  • l is the number of OFDM symbols in the slot, is the number of slots in the frame.
  • the formula for initializing the pseudo-random sequence includes the product of the first item, the second item, and the third item. That is, the calculation formula of c init includes the product of the first item, the second item, and the third item. It can be seen from the calculation formula of c init that the first item included in the calculation formula of c init is The second item is The third term is r+1. and, in the second item
  • the above c init calculation formula includes For powers of 2 The value of A in satisfies the restriction: 2 to the power of A minus one is equal to the maximum value of the resource number.
  • the first terminal After the first terminal generates the positioning reference signal sequence in the above manner, the first terminal sends the positioning reference signal, and the positioning reference signal sequence is mapped to the time-frequency resource to form the positioning reference signal.
  • the second terminal receives the positioning reference signal sent by the first terminal.
  • the target formula includes a variable related to the resource number, wherein the variable corresponding to the resource number whose value is r is determined by taking the value r-1 It is obtained by calculating the variable corresponding to the resource number of , and r is a positive integer.
  • the variable corresponding to the resource number whose value is r is calculated as follows: the product of the variable corresponding to the resource number r-1 and a positive integer, and then Another positive integer modulo.
  • the pseudo-random sequence c(n) is used to generate the positioning reference signal sequence r(m).
  • the formula used to initialize the pseudo-random sequence includes the positioning reference signal resource number r, that is, the formula used for c init calculation includes the positioning reference signal resource number r.
  • the resource number here may also be called resource index or resource identification number.
  • the formula for initializing the pseudo-random sequence includes a variable related to the resource number r, marked as Thus, the above variable corresponding to the resource number r-1 is The above variable corresponding to resource number r is
  • the minimum value of the resource number r is 0, and the variable corresponding to the resource number 0 is marked as The variable label corresponding to resource number 0
  • the value of is calculated by a formula, and the formula includes a value calculated by the CRC of the PSCCH, marked as
  • x 1 (n+31) (x 1 (n+3)+x 1 (n))mod2
  • x 2 (n+31) (x 2 (n+3)+x 2 (n+2)+x 2 (n+1)+x 2 (n))mod2
  • the initialization of the second m-sequence, x 2 (n) is given by Indicates that its value depends on the application of the sequence.
  • the UE shall assume that the reference signal sequence r(m) is defined by:
  • pseudo-random sequence generator should be initialized with:
  • l is the number of OFDM symbols in the slot, is the number of slots in the frame.
  • a and D are positive integers.
  • the first terminal After the first terminal generates the positioning reference signal sequence in the above manner, the first terminal sends the positioning reference signal, and the positioning reference signal sequence is mapped to the time-frequency resource to form the positioning reference signal.
  • the second terminal receives the positioning reference signal sent by the first terminal.
  • the target formula includes a resource index of the target reference signal and a source identification number of the first communication node.
  • the target formula includes: a product of a resource index of the target reference signal and a predetermined value.
  • the target formula includes: a product of the target sum obtained by adding 1 to the resource index of the target reference signal and the predetermined value.
  • the method further includes: the first communication node sending side link control information SCI, wherein the SCI includes the predetermined value.
  • the predetermined value is a fixed value.
  • the predetermined value is a value configured or pre-configured by a high layer.
  • the target formula includes a sum of a product of a resource index of the target reference signal and a predetermined value and a source identification number of the first communication node.
  • the target formula includes a summed value of the resource index of the target reference signal and the source identification number of the first communication node.
  • the pseudo-random sequence c(n) is used to generate the positioning reference signal sequence r(m).
  • the formula used to initialize the pseudo-random sequence includes the positioning reference signal resource number r, that is, the formula used for c init calculation includes the positioning reference signal resource number r.
  • the resource number here may also be called resource index or resource identification number.
  • a formula for initializing a pseudo-random sequence includes a resource index r and a source identification number (marked as SouceID), further, a formula for initializing a pseudo-random sequence includes SouceID+r ⁇ D or SourceID+r.
  • SouceID source identification number
  • a formula for initializing a pseudo-random sequence includes SouceID+r ⁇ D or SourceID+r.
  • r is a positioning reference signal resource number
  • D is a value configured or pre-configured by a higher layer.
  • the high layer here is a communication protocol layer above the physical layer, for example, it may be a NAS layer, an RRC layer, a MAC layer, and the like.
  • x 1 (n+31) (x 1 (n+3)+x 1 (n))mod2
  • x 2 (n+31) (x 2 (n+3)+x 2 (n+2)+x 2 (n+1)+x 2 (n))mod2
  • the UE shall assume that the reference signal sequence r(m) is defined by:
  • pseudo-random sequence generator should be initialized with:
  • l is the number of OFDM symbols in the slot, is the number of slots in the frame.
  • the formula for initializing the pseudo-random sequence includes SourceID+r ⁇ D. That is, the formula for calculating c init includes SourceID+r ⁇ D. More specifically, the calculation formula of c init includes the variable variable The calculation formula of includes SouceID+r ⁇ D, and
  • the above describes how the first terminal generates the positioning reference signal, the first terminal sends the positioning reference signal, and the first terminal sends the SCI, and the SCI includes the above-mentioned D value and SourceID.
  • the second terminal obtains the D value and SourceID indicated by the SCI of the first terminal through receiving the SCI, and the second terminal determines the resource number r of the positioning reference signal by receiving the time-frequency resource position of the positioning reference signal.
  • the second terminal receives the positioning reference signal sent by the first terminal through the obtained r value, D value, SourceID, and the like.
  • the pseudo-random sequence c(n) is used to generate the positioning reference signal sequence r(m).
  • the formula for initializing the pseudo-random sequence includes a value calculated by CRC That is, the formula used for c init calculation includes
  • the formula for initializing the pseudo-random sequence includes a value calculated through the CRC of the PSCCH.
  • x 1 (n+31) (x 1 (n+3)+x 1 (n))mod2
  • x 2 (n+31) (x 2 (n+3)+x 2 (n+2)+x 2 (n+1)+x 2 (n))mod2
  • the UE shall assume that the reference signal sequence r(m) is defined by:
  • pseudo-random sequence generator should be initialized with:
  • l is the number of OFDM symbols in the slot, is the number of slots in the frame.
  • the formula for initializing the pseudo-random sequence includes a value calculated by the CRC of the PSCCH That is, the calculation formula of c init includes a value calculated by the CRC of the PSCCH More specifically, the calculation formula of c init includes the variable variable The calculation formula includes a value calculated by the CRC of the PSCCH and
  • the first terminal After the first terminal generates the positioning reference signal sequence in the above manner, the first terminal sends the positioning reference signal, and the positioning reference signal sequence is mapped to the time-frequency resource to form the positioning reference signal.
  • the second terminal receives the positioning reference signal sent by the first terminal.
  • Fig. 3 is a flowchart of a signal receiving method according to an embodiment of the present disclosure. As shown in Fig. 3, the process includes the following steps:
  • the second communication node receives the target reference signal sent by the first communication node, wherein the target reference signal sequence is mapped to a time-frequency resource to form the target reference signal, the target reference signal sequence is generated by a pseudo-random sequence, and the The pseudo-random sequence is a sequence initialized using a target formula, and the target formula includes the resource number of the target reference signal;
  • the second communication node determines the pseudo-random sequence and the target reference signal sequence based on the resource number of the target reference signal.
  • the target reference signal sequence is a sequence composed of a series of modulation symbols, and after the target reference signal sequence is mapped to the time-frequency resource, it becomes the above-mentioned target reference signal.
  • the above-mentioned first communication node sends the target reference signal, it may be unicast, multicast, or broadcast, and so on.
  • the execution subject of the above steps is the second communication node, and the above second communication node may be a terminal device.
  • the formula for generating the target reference signal sequence includes the resource index of the target reference signal, so as to achieve the purpose of using different reference signal sequences for different reference signal resources.
  • different reference signal sequences are generated for different reference signal resources through some parameters or variables that can be obtained by the transmitting end without notifying the receiving end through signaling, Or the sending end notifies the variable that is the same for multiple reference signals, and through this variable and through some parameters or variables that the sending end can obtain without signaling to the receiving end, different reference signal sequences are generated for different reference signal resources, relative to
  • Using the solution in the embodiment of the present disclosure can reduce the transmission of resource identification and effectively reduce the effect of signaling overhead, thereby solving the signaling problem in the related art. costly problem.
  • the target reference signal includes a positioning reference signal.
  • the positioning reference signal includes a side link positioning reference signal.
  • the target formula includes the product of the first data and the second data, wherein the first data includes the resource number, and the second data includes the cycle corresponding to the target channel The value calculated by the redundancy check CRC.
  • the target formula includes the sum of the first data and the second data, wherein the first data includes the resource number, and the second data includes the resource number corresponding to the target channel.
  • the target formula includes the product of the third data, the fourth data and the fifth data, wherein the third data includes the following data: the quadrature used to send the reference signal The symbol number of frequency division multiplexing OFDM, the time slot number of the time slot used to send the reference signal, and the number of OFDM symbols in the time slot; the fourth data includes the CRC calculated by the corresponding target channel The value, or, includes the source identification number of the first communication node; the fifth data includes the resource number.
  • the target formula includes a predetermined power of 2, and the value of the predetermined power is equal to 10-floor(A/2), wherein, the A power of 2 minus 1 is equal to the The maximum value of the resource number, floor() is a function of rounding down.
  • the target formula includes a variable related to the resource number, wherein the variable corresponding to the resource number whose value is r is determined by taking the value r-1 It is obtained by calculating the variable corresponding to the resource number of , and r is a positive integer.
  • variable corresponding to the resource number whose value is r is calculated as follows: the variable corresponding to the resource number whose number is r-1 and a positive integer The product of , and then take the modulus of another positive integer.
  • the target formula includes a resource index of the target reference signal and a source identification number of the first communication node.
  • the target formula includes: a product of a resource index of the target reference signal and a predetermined value.
  • the target formula includes: a product of the target sum obtained by adding 1 to the resource index of the target reference signal and the predetermined value.
  • the method further includes: the second communication node receiving side link control information SCI sent by the first communication node, wherein the SCI includes the predetermined value.
  • the predetermined value is a fixed value.
  • the predetermined value is a value configured or pre-configured by a high layer.
  • the target formula includes a sum of a product of a resource index of the target reference signal and a predetermined value and a source identification number of the first communication node.
  • the target formula includes a summed value of the resource index of the target reference signal and the source identification number of the first communication node.
  • the method according to the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is Better implementation.
  • the technical solution of the present disclosure can be embodied in the form of a software product in essence or the part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, disk, CD) contains several instructions to enable a terminal device (which may be a mobile phone, computer, server, or network device, etc.) to execute the methods described in various embodiments of the present disclosure.
  • a signal sending device and a signal receiving device are also provided, and the devices are used to implement the above embodiments and preferred implementation modes, and those that have already been described will not be repeated.
  • the term "module” may be a combination of software and/or hardware that realizes a predetermined function.
  • the devices described in the following embodiments are preferably implemented in software, implementations in hardware, or a combination of software and hardware are also possible and contemplated.
  • Fig. 4 is a structural block diagram of a signal sending device according to an embodiment of the present disclosure.
  • the device can be applied to a first communication node. As shown in Fig. 4 , the device includes:
  • the generating module 42 is configured to generate a target reference signal sequence of a target reference signal, wherein the target reference signal sequence is generated by a pseudo-random sequence, the pseudo-random sequence is a sequence initialized using a target formula, and the target formula including the resource number of the target reference signal;
  • the sending module 44 is configured to send the target reference signal, wherein the target reference signal is formed after the target reference signal sequence is mapped to time-frequency resources.
  • the target reference signal includes a positioning reference signal; optionally, the positioning reference signal includes a side link positioning reference signal.
  • FIG. 5 is a structural block diagram of a signal receiving device according to an embodiment of the present disclosure.
  • the device can be applied to a second communication node. As shown in FIG. 5 , the device includes:
  • the receiving module 52 is configured to receive a target reference signal sent by the first communication node, wherein the target reference signal sequence is mapped to a time-frequency resource to form the target reference signal, the target reference signal sequence is generated by a pseudo-random sequence, the The pseudo-random sequence is a sequence initialized using a target formula, and the target formula includes the resource number of the target reference signal;
  • the determining module 54 is configured to determine the pseudo-random sequence and the target reference signal sequence based on the resource number of the target reference signal.
  • the target reference signal includes a positioning reference signal; optionally, the positioning reference signal includes a side link positioning reference signal.
  • the above-mentioned modules can be realized by software or hardware. For the latter, it can be realized by the following methods, but not limited to this: the above-mentioned modules are all located in the same processor; or, the above-mentioned modules can be combined in any combination The forms of are located in different processors.
  • Embodiments of the present disclosure also provide a computer-readable storage medium, in which a computer program is stored, wherein the computer program is configured to execute the steps in any one of the above method embodiments when running.
  • the above-mentioned computer-readable storage medium may include but not limited to: U disk, read-only memory (Read-Only Memory, referred to as ROM), random access memory (Random Access Memory, referred to as RAM) , mobile hard disk, magnetic disk or optical disk and other media that can store computer programs.
  • ROM read-only memory
  • RAM random access memory
  • mobile hard disk magnetic disk or optical disk and other media that can store computer programs.
  • Embodiments of the present disclosure also provide an electronic device, including a memory and a processor, where a computer program is stored in the memory, and the processor is configured to run the computer program to perform the steps in any one of the above method embodiments.
  • the electronic device may further include a transmission device and an input and output device, wherein the transmission device is connected to the processor, and the input and output device is connected to the processor.
  • each module or each step of the above-mentioned disclosure can be realized by a general-purpose computing device, and they can be concentrated on a single computing device, or distributed in a network composed of multiple computing devices In fact, they can be implemented in program code executable by a computing device, and thus, they can be stored in a storage device to be executed by a computing device, and in some cases, can be executed in an order different from that shown here. Or described steps, or they are fabricated into individual integrated circuit modules, or multiple modules or steps among them are fabricated into a single integrated circuit module for implementation. As such, the present disclosure is not limited to any specific combination of hardware and software.

Abstract

本公开实施例提供了一种信号的发送方法和装置、接收方法和装置、存储介质及电子装置,其中,该发送方法包括:第一通信节点生成目标参考信号的目标参考信号序列,其中,目标参考信号序列通过伪随机序列产生,伪随机序列是使用目标公式进行初始化后的序列,且目标公式中包括目标参考信号的资源编号;第一通信节点发送目标参考信号,其中,目标参考信号序列映射到时频资源后形成目标参考信号。

Description

信号的发送方法和装置、接收方法和装置、存储介质
相关申请的交叉引用
本公开基于2021年10月27日提交的发明名称为“信号的发送方法和装置、接收方法和装置、存储介质”的中国专利申请CN202111257154.5,并且要求该专利申请的优先权,通过引用将其所公开的内容全部并入本公开。
技术领域
本公开实施例涉及通信领域,具体而言,涉及一种信号的发送方法和装置、接收方法和装置、存储介质及电子装置。
背景技术
在相关技术的通信系统中,通信节点之间可以直接进行业务传输,例如,在边链路(Sidelink)通信系统中,用户设备(UE)之间有业务需要传输时,UE之间的业务不经过网络侧,即不经过UE与基站之间的蜂窝链路的转发,而是直接由数据源UE通过Sidelink传输给目标UE,这种UE与UE之间直接通信的模式具有明显区别于传统蜂窝系统通信模式的特征。
下面以5G通信系统为例进行说明:在5G NR Uu定位中,锚点节点一般为基站。在Sidelink定位中,锚点节点和目标节点都是终端。对于5GNRUu定位中,支持多个参考信号(例如,定位参考信号)资源采用不同的参考信号序列。以定位参考信号为例,用于产生不同定位参考信号资源定位参考信号序列的sequence ID(序列识别号),通过网络侧的高层参数配置获得。同样的,Sidelink定位中也可能支持多个定位参考信号资源采用不同的定位参考信号序列这一设计原则。然而,如果沿用5G NR Uu定位中,网络侧的高层参数配置用于产生不同定位参考信号资源序列的sequence ID,会有一些问题。主要问题是,目标UE并不知道网络为锚点UE配置的sequence ID。一种方法是,锚点把网络配置的多个定位参考信号资源的sequence ID通知给目标UE,然而这会引入较大的额外开销。
针对相关技术中存在的信令开销大的问题,目前尚未提出有效的解决方案。
发明内容
本公开实施例提供了一种信号的发送方法和装置、接收方法和装置、存储介质及电子装置,以至少解决相关技术中存在的信令开销大的问题。
根据本公开的一个实施例,提供了一种信号的发送方法,包括:第一通信节点生成目标参考信号的目标参考信号序列,其中,所述目标参考信号序列通过伪随机序列产生,所述伪随机序列是使用目标公式进行初始化后的序列,且所述目标公式中包括所述目标参考信号的资源编号;所述第一通信节点发送所述目标参考信号,其中,所述目标参考信号序列映射到时频资源后形成所述目标参考信号。
根据本公开的另一个实施例,还提供了一种信号的接收方法,包括:第二通信节点接收第一通信节点发送的目标参考信号,其中,目标参考信号序列映射到时频资源后形成所述目标参考信号,所述目标参考信号序列通过伪随机序列产生,所述伪随机序列是使用目标公式 进行初始化后的序列,且所述目标公式中包括所述目标参考信号的资源编号;所述第二通信节点基于所述目标参考信号的资源编号确定所述伪随机序列和所述目标参考信号序列。
根据本公开的另一个实施例,提供了一种信号的发送装置,应用于第一通信节点中,包括:生成模块,设置为生成目标参考信号的目标参考信号序列,其中,所述目标参考信号序列通过伪随机序列产生,所述伪随机序列是使用目标公式进行初始化后的序列,且所述目标公式中包括所述目标参考信号的资源编号;发送模块,设置为发送所述目标参考信号,其中,所述目标参考信号序列映射到时频资源后形成所述目标参考信号。
根据本公开的另一个实施例,还提供了一种信号的接收装置,应用于第二通信节点中,包括:接收模块,设置为接收第一通信节点发送的目标参考信号,其中,目标参考信号序列映射到时频资源后形成所述目标参考信号,所述目标参考信号序列通过伪随机序列产生,所述伪随机序列是使用目标公式进行初始化后的序列,且所述目标公式中包括所述目标参考信号的资源编号;确定模块,设置为基于所述目标参考信号的资源编号确定所述伪随机序列和所述目标参考信号序列。
根据本公开的又一个实施例,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
根据本公开的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项方法实施例中的步骤。
附图说明
图1是本公开实施例的一种信号的传输方法的移动终端的硬件结构框图;
图2是根据本公开实施例的信号的发送方法的流程图;
图3是根据本公开实施例的信号的接收方法的流程图;
图4是根据本公开实施例的信号的发送装置的结构框图;
图5是根据本公开实施例的信号的接收装置的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开的实施例。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
首先对本公开中可能涉及到的相关技术进行说明:
边链路(Sidelink)通信的典型应用包括设备到设备(D2D,Device-to-Device)通信和车联网(Vehicle to Everything,简称为V2X)通信。其中,车联网(V2X)通信包括车与车(Vehicle to Vehicle,简称为V2V)、车与人(Vehicle to Pedestrian,简称为V2P)、车与路(Vehicle to Infrastructure,简称为V2I)。对于能够应用Sidelink通信的近距离通信用户来说,Sidelink通信不但节省了无线频谱资源,而且降低了核心网的数据传输压力,能够减少系统资源占用,增加蜂窝通信系统频谱效率,降低通信时延,并在很大程度上节省网络运营成本。
在定位中,需要获得自身地理位置的通信节点称为目标节点,目标节点通常为用户设备。对于目标节点的定位,需要借助其它通信节点的帮助才能实现目标节点的定位,这些其它通信节点通常称为锚点节点。锚点节点可以是基站、终端、或卫星等设备。另外,通常需要借助定位参考信号,来帮助实现目标节点的定位。这里的定位参考信号,是指用于定位的参考信号,发送定位参考信号的通信节点可以是目标节点,也可以是锚点节点。发送定位参考信号的通信节点可以是基站、终端、或卫星等设备。
进一步的,定位可以划分为绝对定位和相对定位。在绝对定位中,锚点节点的地理位置是已知的,通过定位参考信号的测量和锚点节点的地理位置,可以推导出目标节点的地理位置。例如,通过定位参考信号的测量,可以进一步获得目标节点和锚点节点之间的信号传播时延,从而进一步推导出目标节点和锚点节点之间的距离。该例子中,根据多个锚点的地理位置、以及目标节点到多个锚点节点之间的距离,可以计算出目标节点的地理位置,即获得目标节点的定位。
在相对定位中,锚点节点的地理位置可以是已知的,也可以是未知的。接下来,以锚点节点的地理位置未知为例,阐述相对定位。例如,锚点节点发送定位参考信号,目标节点测量锚点节点发送的定位参考信号,例如,通过定位参考信号的测量,目标节点获得锚点节点和目标节点之间的距离,以及获得定位参考信号的到达角。基于目标节点获得的锚点节点和目标节点之间的距离、以及定位参考信号的到达角,目标节点可以计算出与锚点节点之间的距离、以及获得锚点节点相对目标节点的方向,从而,获得了目标节点相对锚点节点的相对定位信息。
下面结合实施例对本公开如何解决相关技术中存在的信令开销大的问题进行说明:
本申请实施例中所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图1是本公开实施例的一种信号的传输方法的移动终端的硬件结构框图。如图1所示,移动终端可以包括一个或多个(图1中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)和设置为存储数据的存储器104,其中,上述移动终端还可以包括设置为通信功能的传输设备106以及输入输出设备108。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述移动终端的结构造成限定。例如,移动终端还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可设置为存储计算机程序,例如,应用软件的软件程序以及模块,如本公开实施例中的信号的传输方法(包括信号的发送方法和/或传输方法)对应的计算机程序,处理器102通过运行存储在存储器104内的计算机程序,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106设置为经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互 联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,简称为RF)模块,其设置为通过无线方式与互联网进行通讯。
图2是根据本公开实施例的信号的发送方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,第一通信节点生成目标参考信号的目标参考信号序列,其中,所述目标参考信号序列通过伪随机序列产生,所述伪随机序列是使用目标公式进行初始化后的序列,且所述目标公式中包括所述目标参考信号的资源编号;
步骤S204,所述第一通信节点发送所述目标参考信号,其中,所述目标参考信号序列映射到时频资源后形成所述目标参考信号。
在上述实施例中,目标参考信号序列为一串调制符号组成的序列,目标参考信号序列映射到时频资源后,则成为上述目标参考信号。上述的第一通信节点在发送目标参考信号时,可以是单播发送,也可以是组播发送,还可以是广播发送,等等。
其中,上述步骤的执行主体为第一通信节点,上述的第一通信节点可以是终端设备,此外,用于接收第一通信节点发送的目标参考信号的节点也可以是终端设备。
通过上述实施例,用于产生目标参考信号序列的公式中,包含目标参考信号的资源索引,从而达到不同参考信号资源采用不同的参考信号序列的目的。在需要在多个参考信号资源上发送多个参考信号资源的情况下,通过一些发送端不需要通过信令通知接收端就可以获得的参数或变量为不同参考信号资源产生不同的参考信号序列,或者发送端通知对于多个参考信号相同的变量,通过该变量以及通过一些发送端不需要通过信令通知接收端就可以获得的参数或变量为不同参考信号资源产生不同的参考信号序列,相对于相关技术中存在的需要通知每一个参考信号资源的标识的方式,采用本公开实施例中的方案能够实现减少资源标识的发送,有效降低信令开销的效果,从而解决相关技术中存在的信令开销大的问题。
在一个可选的实施例中,所述目标参考信号包括定位参考信号。
在一个可选的实施例中,所述定位参考信号包括边链路定位参考信号。
在一个可选的实施例中,所述目标公式中包括第一数据和第二数据的乘积,其中,所述第一数据包括所述资源编号,所述第二数据包括通过目标信道对应的循环冗余校验CRC所计算的值。在本实施例中,目标信道可以是物理边链路控制信道PSCCH。下面对本实施例进行具体举例说明:
本实施例中:
伪随机序列c(n)用于产生定位参考信号序列r(m)。
使用公式对伪随机序列c(n)进行初始化,即通过公式计算c init
用于伪随机序列进行初始化的公式中包括定位参考信号资源编号r,即用于c init计算的公式中包括定位参考信号资源编号r。这里的资源编号,也可称为资源索引或资源识别号。
进一步的,上述用于伪随机序列进行初始化的公式,包括第一项(对应于上述的第一数据)和第二项(对应于上述的第二数据)的乘积。即,c init的计算的公式中,包括第一项和第二项的乘积。
所述第一项包括定位参考信号资源编号r;
所述第二项包括一个通过PSCCH的CRC计算的值,标记为
Figure PCTCN2022126271-appb-000001
c init的计算的公式中包括第一项和第二项的乘积的实现方式为,c init计算的公式中包括变量
Figure PCTCN2022126271-appb-000002
变量
Figure PCTCN2022126271-appb-000003
的计算公式中包括第一项和第二项的乘积,且第一项中包括定位参考信号资源编号r,第二项包括一个通过PSCCH的CRC计算的值
Figure PCTCN2022126271-appb-000004
上面描述为本实施例的概述,接下来基于上面的描述,给出本实施例的具体实例。
通用伪随机序列由长度-31Gold序列定义.长度为M PN的输出序列c(n),当n=0,1,...,M PN-1,由以下定义:
c(n)=(x 1(n+N C)+x 2(n+N C))mod2
x 1(n+31)=(x 1(n+3)+x 1(n))mod2
x 2(n+31)=(x 2(n+3)+x 2(n+2)+x 2(n+1)+x 2(n))mod2
其中N C=1600并且第一个m序列x 1(n)使用x 1(0)=1,x 1(n)=0,n=1,2,...,30进行初始化。第二个m序列的初始化,x 2(n),由
Figure PCTCN2022126271-appb-000005
表示,其值取决于序列的应用。
UE将假定参考信号序列r(m)由下式定义:
Figure PCTCN2022126271-appb-000006
其中该伪随机序列c(n)被定义为如前所述。伪随机序列生成器应该用下式初始化:
Figure PCTCN2022126271-appb-000007
其中,l是时隙内的OFDM符号数,
Figure PCTCN2022126271-appb-000008
是帧内的时隙数。
本实施例中,所述用于伪随机序列进行初始化的公式,包括第一项和第二项的乘积。即,c init的计算的公式中,包括第一项和第二项的乘积。更具体的,c init的计算公式中包括变量
Figure PCTCN2022126271-appb-000009
变量
Figure PCTCN2022126271-appb-000010
的计算公式中包括第一项和第二项的乘积。以及,
Figure PCTCN2022126271-appb-000011
或者
Figure PCTCN2022126271-appb-000012
对于
Figure PCTCN2022126271-appb-000013
Figure PCTCN2022126271-appb-000014
的计算中包括第一项r+1和第二项
Figure PCTCN2022126271-appb-000015
的乘积,第一项(r+1)中包括定位参考信号(PRS)资源编号r,第二项
Figure PCTCN2022126271-appb-000016
中包括
Figure PCTCN2022126271-appb-000017
对于
Figure PCTCN2022126271-appb-000018
Figure PCTCN2022126271-appb-000019
的计算中包括第一项r+1和第二项
Figure PCTCN2022126271-appb-000020
的乘积,第一项目r+1中包括定位参考信号资源编号r,第二项
Figure PCTCN2022126271-appb-000021
中包括
Figure PCTCN2022126271-appb-000022
其中,
Figure PCTCN2022126271-appb-000023
等于PSCCH所对应的CRC的十进制表示,即
Figure PCTCN2022126271-appb-000024
将有效载荷的比特表示为a 0,a 1,a 2,a 3,...,a A-1,并且将奇偶校验位表示为p 0,p 1,p 2,p 3,...,p L-1,其中A是有效载荷大小,L是奇偶校验比特的数量。
第一终端(对应于上述第一通信节点)按照上述方式产生定位参考信号序列后,第一终端发送定位参考信号,定位参考信号序列映射到时频资源后形成定位参考信号。
第二终端对第一终端发送的定位参考信号进行接收。
在一个可选的实施例中,所述目标公式中包括第一数据和第二数据的加和,其中,所述第一数据包括所述资源编号,所述第二数据包括通过目标信道对应的循环冗余校验CRC所计算的值。下面对本实施例进行具体举例说明:
本实施例中:
伪随机序列c(n)用于产生定位参考信号序列r(m)。
使用公式对伪随机序列c(n)进行初始化,即通过公式计算c init
用于伪随机序列进行初始化的公式中包括定位参考信号资源编号r,即用于c init计算的公式中包括定位参考信号资源编号r。这里的资源编号,也可称为资源索引或资源识别号。
进一步的,上述用于伪随机序列进行初始化的公式,包括第一项和第二项之和。即,c init的计算的公式中,包括第一项和第二项之和。
所述第一项包括定位参考信号资源编号r;
所述第二项包括一个通过PSCCH的CRC计算的值,标记为
Figure PCTCN2022126271-appb-000025
c init的计算的公式中包括第一项和第二项之和的实现方式为,c init计算的公式中包括变量
Figure PCTCN2022126271-appb-000026
变量
Figure PCTCN2022126271-appb-000027
的计算公式中包括第一项和第二项之和,且第一项中包括定位参考信号资源编号r,第二项包括一个通过PSCCH的CRC计算的值
Figure PCTCN2022126271-appb-000028
上面描述为本实施例的概述,接下来基于上面的描述,给出本实施例的具体实例。
通用伪随机序列由长度-31Gold序列定义.长度为M PN的输出序列c(n),当n=0,1,...,M PN-1,由以下定义:
c(n)=(x 1(n+N C)+x 2(n+N C))mod2
x 1(n+31)=(x 1(n+3)+x 1(n))mod2
x 2(n+31)=(x 2(n+3)+x 2(n+2)+x 2(n+1)+x 2(n))mod2
其中N C=1600并且第一个m序列x 1(n)使用x 1(0)=1,x 1(n)=0,n=1,2,...,30进行初始化。第二个m序列的初始化,x 2(n),由
Figure PCTCN2022126271-appb-000029
表示,其值取决于序列的应用。
UE将假定参考信号序列r(m)由下式定义:
Figure PCTCN2022126271-appb-000030
其中该伪随机序列c(n)被定义为如前所述。伪随机序列生成器应该用下式初始化:
Figure PCTCN2022126271-appb-000031
其中,l是时隙内的OFDM符号数,
Figure PCTCN2022126271-appb-000032
是帧内的时隙数。
本实施例中,所述用于伪随机序列进行初始化的公式,包括第一项和第二项之和。即,c init的计算的公式中,包括第一项和第二项之和。更具体的,c init的计算公式中包括变量
Figure PCTCN2022126271-appb-000033
变量
Figure PCTCN2022126271-appb-000034
的计算公式中包括第一项和第二项之和。并且,
Figure PCTCN2022126271-appb-000035
或者
Figure PCTCN2022126271-appb-000036
对于
Figure PCTCN2022126271-appb-000037
Figure PCTCN2022126271-appb-000038
的计算中包括第一项r和第二项
Figure PCTCN2022126271-appb-000039
这两者之和,第一项目r中包括定位参考信号资源编号r,第二项
Figure PCTCN2022126271-appb-000040
中包括
Figure PCTCN2022126271-appb-000041
对于
Figure PCTCN2022126271-appb-000042
Figure PCTCN2022126271-appb-000043
的计算中包括第一项r和第二项
Figure PCTCN2022126271-appb-000044
这两者之和,第一项目r中包括定位参考信号资源编号r,第二项
Figure PCTCN2022126271-appb-000045
中包括
Figure PCTCN2022126271-appb-000046
其中,
Figure PCTCN2022126271-appb-000047
等于PSCCH所对应的CRC的十进制表示,即
Figure PCTCN2022126271-appb-000048
将有效载荷的比特表示为a 0,a 1,a 2,a 3,...,a A-1,并且将奇偶校验位表示为p 0,p 1,p 2,p 3,...,p L-1,其中A是有效载荷大小,L是奇偶校验比特的数量。
第一终端按照上述方式产生定位参考信号序列后,第一终端发送定位参考信号,定位参考信号序列映射到时频资源后形成定位参考信号。
第二终端对第一终端发送的定位参考信号进行接收。
在一个可选的实施例中,所述目标公式中包括第三数据、第四数据和第五数据的乘积,其中,所述第三数据包括以下数据:用于发送所述参考信号的正交频分复用OFDM的符号编号、用于发送所述参考信号的时隙的时隙编号以及所述时隙内的OFDM的符号数;所述第四数据包括通过目标信道对应的CRC所计算的值,或者,包括所述第一通信节点的源识别号;所述第五数据包括所述资源编号。在一个可选的实施例中,所述目标公式中包括2的预定次幂,所述预定次幂的值等于10-floor(A/2),其中,2的A次幂减1等于所述资源编号的最大值,floor()为向下取整函数。下面对本实施例进行具体举例说明:
本实施例中:
伪随机序列c(n)用于产生定位参考信号序列r(m)。
使用公式对伪随机序列c(n)进行初始化,即通过公式计算c init
用于伪随机序列进行初始化的公式中包括定位参考信号资源编号r,即用于c init计算的公式中包括定位参考信号资源编号r。这里的资源编号,也可称为资源索引或资源识别号。
进一步的,上述用于伪随机序列进行初始化的公式,包括第一项(对应于上述的第三数据)、第二项(对应于上述的第四数据)、第三项(对应于上述的第五数据)这三项的乘积。即,c init的计算的公式中,包括第一项、第二项、第三项这三项的乘积。
所述第一项包括时隙(即,用于发送定位参考信号的时隙)内OFDM的符号编号,和帧(即,用于发送定位参考信号的帧)内的时隙编号,和时隙内的OFDM符号数。
所述第二项包括一个通过PSCCH的CRC计算的值(标记为
Figure PCTCN2022126271-appb-000049
),或者,包括第一终端的源识别号(或称为终端ID);
所述第三项包括资源编号r;
例如,上述资源编号对应边链路定位参考信号资源编号。资源编号r的取值范围为 0,1,2,....,2 A-1。
进一步的,本实施例中,所述用于伪随机序列进行初始化的公式包括2的幂次方,所述幂次方的值等于10-floor(A/2)。所述A的值满足限制:2的A次幂减一等于资源编号的最大值。其中,所述floor()表示对()内的内容进行向下取整。
c init的计算的公式中包括第一项、第二项、第三项这三项的乘积的实现方式为,c init计算的公式中包括第一项、第二项、第三项这三项的乘积,且:
第一项包括时隙内OFDM的符号编号,和帧内的时隙编号,和时隙内的OFDM符号数;
第二项包括一个通过PSCCH的CRC计算的值
Figure PCTCN2022126271-appb-000050
第二项包括资源编号r;
上面描述为本实施例的概述,接下来基于上面的描述,给出本实施例的具体实例。
通用伪随机序列由长度-31Gold序列定义。长度为M PN的输出序列c(n),其中n=0,1,...,M PN-1,由以下定义:
c(n)=(x 1(n+N C)+x 2(n+N C))mod2
x 1(n+31)=(x 1(n+3)+x 1(n))mod2
x 2(n+31)=(x 2(n+3)+x 2(n+2)+x 2(n+1)+x 2(n))mod2
其中N C=1600并且第一个m序列x 1(n)使用x 1(0)=1,x 1(n)=0,n=1,2,...,30进行初始化。第二个m序列的初始化,x 2(n),由
Figure PCTCN2022126271-appb-000051
表示,其值取决于序列的应用。
UE将假定参考信号序列r(m)由下式定义:
Figure PCTCN2022126271-appb-000052
其中该伪随机序列c(n)被定义为如前所述。伪随机序列生成器应该用下式初始化:
Figure PCTCN2022126271-appb-000053
其中,l是时隙内的OFDM符号数,
Figure PCTCN2022126271-appb-000054
是帧内的时隙数。
本实施例中,所述用于伪随机序列进行初始化的公式,包括第一项、第二项、第三项这三项的乘积。即,c init的计算的公式中,包括第一项、第二项、第三项这三项的乘积。从c init的计算公式可以看出,c init计算公式中包括的第一项为
Figure PCTCN2022126271-appb-000055
第二项为
Figure PCTCN2022126271-appb-000056
第三项为r+1。以及,第二项中的
Figure PCTCN2022126271-appb-000057
其中,
Figure PCTCN2022126271-appb-000058
等于PSCCH所对应的CRC的十进制表示,即
Figure PCTCN2022126271-appb-000059
将有效载荷的比特表示为a 0,a 1,a 2,a 3,...,a A-1,并且将奇偶校验位表示为p 0,p 1,p 2,p 3,...,p L-1,其中A是有效载荷大小,L是奇偶校验比特的数量。
上述c init计算公式中包括
Figure PCTCN2022126271-appb-000060
对于2的幂次方
Figure PCTCN2022126271-appb-000061
中的A值满足限制:2的A次幂减一等于资源编号的最大值。
第一终端按照上述方式产生定位参考信号序列后,第一终端发送定位参考信号,定位参考信号序列映射到时频资源后形成定位参考信号。
第二终端对第一终端发送的定位参考信号进行接收。
在一个可选的实施例中,所述目标公式中包括与所述资源编号相关的变量,其中,与取值为r的所述资源编号所对应的所述变量是通过取值为r-1的所述资源编号所对应的所述变量计算得到的,r为正整数。可选地,取值为r的所述资源编号所对应的所述变量是通过如下方式计算得到的:编号为r-1的资源编号所对应的所述变量与一个正整数的乘积,再对另一个正整数取模。可选地,r≥0,其中,在r=0的情况下,取值为0的所述资源编号所对应的所述变量是通过预定公式计算得到的,所述预定公式中包括通过目标信道对应的CRC计算的值。下面对本实施例进行具体举例说明:
本实施例中:
伪随机序列c(n)用于产生定位参考信号序列r(m)。
使用公式对伪随机序列c(n)进行初始化,即通过公式计算c init
用于伪随机序列进行初始化的公式中包括定位参考信号资源编号r,即用于c init计算的公式中包括定位参考信号资源编号r。这里的资源编号,也可称为资源索引或资源识别号。
进一步的,用于伪随机序列进行初始化的公式,包括一个与资源编号r相关的变量,标记为
Figure PCTCN2022126271-appb-000062
从而,资源编号为r-1对应的上述变量为
Figure PCTCN2022126271-appb-000063
资源编号为r对应的上述变量为
Figure PCTCN2022126271-appb-000064
对于正整数r,通过资源编号为r-1对应的变量
Figure PCTCN2022126271-appb-000065
计算资源编号为r对应的所述变量
Figure PCTCN2022126271-appb-000066
具体的:
Figure PCTCN2022126271-appb-000067
进一步的,资源编号r的最小取值为0,对于资源编号为0对应的变量标记为
Figure PCTCN2022126271-appb-000068
资源编号为0对应的变量标
Figure PCTCN2022126271-appb-000069
的取值,通过一个公式进行计算,所述公式中包括一个通过PSCCH的CRC计算的值,标记为
Figure PCTCN2022126271-appb-000070
上面描述为本实施例的概述,接下来基于上面的描述,给出本实施例的具体实例。
通用伪随机序列由长度-31Gold序列定义。长度为M PN的输出序列c(n),其中n=0,1,...,M PN-1,由以下定义:
c(n)=(x 1(n+N C)+x 2(n+N C))mod2
x 1(n+31)=(x 1(n+3)+x 1(n))mod2
x 2(n+31)=(x 2(n+3)+x 2(n+2)+x 2(n+1)+x 2(n))mod2
其中N C=1600并且第一个m序列x 1(n)使用x 1(0)=1,x 1(n)=0,n=1,2,...,30进行初始化。 第二个m序列的初始化,x 2(n),由
Figure PCTCN2022126271-appb-000071
表示,其值取决于序列的应用。
UE将假定参考信号序列r(m)由下式定义:
Figure PCTCN2022126271-appb-000072
其中该伪随机序列c(n)被定义为如前所述。伪随机序列生成器应该用下式初始化:
Figure PCTCN2022126271-appb-000073
其中,l是时隙内的OFDM符号数,
Figure PCTCN2022126271-appb-000074
是帧内的时隙数。
对于r大于0,
Figure PCTCN2022126271-appb-000075
对于
Figure PCTCN2022126271-appb-000076
其中,A和D为正整数。
其中,
Figure PCTCN2022126271-appb-000077
等于PSCCH所对应的CRC的十进制表示,即
Figure PCTCN2022126271-appb-000078
将有效载荷的比特表示为a 0,a 1,a 2,a 3,...,a A-1,并且将奇偶校验位表示为p 0,p 1,p 2,p 3,...,p L-1,其中A是有效载荷大小,L是奇偶校验比特的数量。
第一终端按照上述方式产生定位参考信号序列后,第一终端发送定位参考信号,定位参考信号序列映射到时频资源后形成定位参考信号。
第二终端对第一终端发送的定位参考信号进行接收。
在一个可选的实施例中,所述目标公式中包括所述目标参考信号的资源索引和所述第一通信节点的源识别号。可选地,所述目标公式中包括:目标参考信号的资源索引与预定值的乘积。可选地,所述目标公式中包括:目标参考信号的资源索引加1以得到的目标和,与所述预定值的乘积。可选地,所述方法还包括:所述第一通信节点发送边链路控制信息SCI,其中,所述SCI中包括所述预定值。可选地,所述预定值为固定的值。可选地,所述预定值是通过高层配置或者预配置的值。可选地,所述目标公式中包括所述目标参考信号的资源索引与预定值的乘积和所述第一通信节点的源识别号的加和值。可选地,所述目标公式中包括所述目标参考信号的资源索引和所述第一通信节点的源识别号的加和值。下面对本实施例进行具体举例说明:
本实施例中:
伪随机序列c(n)用于产生定位参考信号序列r(m)。
使用公式对伪随机序列c(n)进行初始化,即通过公式计算c init
用于伪随机序列进行初始化的公式中包括定位参考信号资源编号r,即用于c init计算的公式中包括定位参考信号资源编号r。这里的资源编号,也可称为资源索引或资源识别号。
用于伪随机序列进行初始化的公式,所述公式包括资源索引r和源识别号(标记为 SouceID),进一步的,用于伪随机序列进行初始化的公式包括SouceID+r×D或SouceID+r。接下来,仅介绍伪随机序列进行初始化的公式包括SouceID+r×D的情况。
其中,r为定位参考信号资源编号,D为高层配置或预配置的值。这里的高层,是物理层之上的通信协议层,例如可以是NAS层、RRC层、MAC层等。
上面描述为本实施例的概述,接下来基于上面的描述,给出本实施例的具体实例。
通用伪随机序列由长度-31Gold序列定义。长度为M PN的输出序列c(n),其中n=0,1,...,M PN-1,由以下定义:
c(n)=(x 1(n+N C)+x 2(n+N C))mod2
x 1(n+31)=(x 1(n+3)+x 1(n))mod2
x 2(n+31)=(x 2(n+3)+x 2(n+2)+x 2(n+1)+x 2(n))mod2
其中N C=1600并且第一个m序列x 1(n)使用x 1(0)=1,x 1(n)=0,n=1,2,...,30进行初始化,第二个m序列的初始化,x 2(n),由
Figure PCTCN2022126271-appb-000079
表示,其值取决于序列的应用。
UE将假定参考信号序列r(m)由下式定义:
Figure PCTCN2022126271-appb-000080
其中该伪随机序列c(n)被定义为如前所述。伪随机序列生成器应该用下式初始化:
Figure PCTCN2022126271-appb-000081
其中,l是时隙内的OFDM符号数,
Figure PCTCN2022126271-appb-000082
是帧内的时隙数。
本实施例中,用于伪随机序列进行初始化的公式包括SouceID+r×D。即,c init的计算的公式中,包括SouceID+r×D。更具体的,c init的计算公式中包括变量
Figure PCTCN2022126271-appb-000083
变量
Figure PCTCN2022126271-appb-000084
的计算公式中包括SouceID+r×D,且
Figure PCTCN2022126271-appb-000085
其中,
Figure PCTCN2022126271-appb-000086
等于PSCCH所对应的CRC的十进制表示,即
Figure PCTCN2022126271-appb-000087
将有效载荷的比特表示为a 0,a 1,a 2,a 3,...,a A-1,并且将奇偶校验位表示为p 0,p 1,p 2,p 3,...,p L-1,其中A是有效载荷大小,L是奇偶校验比特的数量。
上述介绍了第一终端产生定位参考信号的方式,第一终端发送定位参考信号,以及第一终端发送SCI,且SCI中包含上述的D值和SouceID。
第二终端通过SCI的接收,获得第一终端SCI所指示的D值和SouceID,以及第二终端通过接收定位参考信号的时频资源位置确定定位参考信号的资源编号r。第二终端通过获得的r值、D值、SouceID等,对第一终端发送的定位参考信号进行接收。
本实施例中:
伪随机序列c(n)用于产生定位参考信号序列r(m)。
使用公式对伪随机序列c(n)进行初始化,即通过公式计算c init
所述用于伪随机序列进行初始化的公式中包括一个通过CRC计算的值
Figure PCTCN2022126271-appb-000088
即用于c init计算的公式中包括
Figure PCTCN2022126271-appb-000089
进一步的,所述用于伪随机序列进行初始化的公式中包括一个通过PSCCH的CRC计算的值。
上面描述为本实施例的概述,接下来基于上面的描述,给出本实施例的具体实例。
通用伪随机序列由长度-31Gold序列定义。长度为M PN的输出序列c(n),其中n=0,1,...,M PN-1,由以下定义:
c(n)=(x 1(n+N C)+x 2(n+N C))mod2
x 1(n+31)=(x 1(n+3)+x 1(n))mod2
x 2(n+31)=(x 2(n+3)+x 2(n+2)+x 2(n+1)+x 2(n))mod2
其中N C=1600并且第一个m序列x 1(n)使用x 1(0)=1,x 1(n)=0,n=1,2,...,30进行初始化,第二个m序列的初始化,x 2(n),由
Figure PCTCN2022126271-appb-000090
表示,其值取决于序列的应用。
UE将假定参考信号序列r(m)由下式定义:
Figure PCTCN2022126271-appb-000091
其中该伪随机序列c(n)被定义为如前所述。伪随机序列生成器应该用下式初始化:
Figure PCTCN2022126271-appb-000092
其中,l是时隙内的OFDM符号数,
Figure PCTCN2022126271-appb-000093
是帧内的时隙数。
本实施例中,所述用于伪随机序列进行初始化的公式,包括一个通过PSCCH的CRC计算的值
Figure PCTCN2022126271-appb-000094
即,c init的计算的公式中,包括一个通过PSCCH的CRC计算的值
Figure PCTCN2022126271-appb-000095
更具体的,c init的计算公式中包括变量
Figure PCTCN2022126271-appb-000096
变量
Figure PCTCN2022126271-appb-000097
的计算公式中包括一个通过PSCCH的CRC计算的值
Figure PCTCN2022126271-appb-000098
并且
Figure PCTCN2022126271-appb-000099
其中,
Figure PCTCN2022126271-appb-000100
等于PSCCH所对应的CRC的十进制表示,即
Figure PCTCN2022126271-appb-000101
将有效载荷的比特表示为a 0,a 1,a 2,a 3,...,a A-1,并且将奇偶校验位表示为p 0,p 1,p 2,p 3,...,p L-1,其中A是有效载荷大小,L是奇偶校验比特的数量。
第一终端按照上述方式产生定位参考信号序列后,第一终端发送定位参考信号,定位参 考信号序列映射到时频资源后形成定位参考信号。
第二终端对第一终端发送的定位参考信号进行接收。
图3是根据本公开实施例的信号的接收方法的流程图,如图3所示,该流程包括如下步骤:
S302,第二通信节点接收第一通信节点发送的目标参考信号,其中,目标参考信号序列映射到时频资源后形成所述目标参考信号,所述目标参考信号序列通过伪随机序列产生,所述伪随机序列是使用目标公式进行初始化后的序列,且所述目标公式中包括所述目标参考信号的资源编号;
S304,所述第二通信节点基于所述目标参考信号的资源编号确定所述伪随机序列和所述目标参考信号序列。
在上述实施例中,目标参考信号序列为一串调制符号组成的序列,目标参考信号序列映射到时频资源后,则成为上述目标参考信号。上述的第一通信节点在发送目标参考信号时,可以是单播发送,也可以是组播发送,还可以是广播发送,等等。
其中,上述步骤的执行主体为第二通信节点,上述的第二通信节点可以是终端设备。
通过上述实施例,用于产生目标参考信号序列的公式中,包含目标参考信号的资源索引,从而达到不同参考信号资源采用不同的参考信号序列的目的。在需要在多个参考信号资源上发送多个参考信号资源的情况下,通过一些发送端不需要通过信令通知接收端就可以获得的参数或变量为不同参考信号资源产生不同的参考信号序列,或者发送端通知对于多个参考信号相同的变量,通过该变量以及通过一些发送端不需要通过信令通知接收端就可以获得的参数或变量为不同参考信号资源产生不同的参考信号序列,相对于相关技术中存在的需要通知每一个参考信号资源的标识的方式,采用本公开实施例中的方案能够实现减少资源标识的发送,有效降低信令开销的效果,从而解决相关技术中存在的信令开销大的问题。
在一个可选的实施例中,所述目标参考信号包括定位参考信号。
在一个可选的实施例中,所述定位参考信号包括边链路定位参考信号。
在一个可选的实施例中,所述目标公式中包括第一数据和第二数据的乘积,其中,所述第一数据包括所述资源编号,所述第二数据包括通过目标信道对应的循环冗余校验CRC所计算的值。
在一个可选的实施例中,所述目标公式中包括第一数据和第二数据的加和,其中,所述第一数据包括所述资源编号,所述第二数据包括通过目标信道对应的循环冗余校验CRC所计算的值。
在一个可选的实施例中,所述目标公式中包括第三数据、第四数据和第五数据的乘积,其中,所述第三数据包括以下数据:用于发送所述参考信号的正交频分复用OFDM的符号编号、用于发送所述参考信号的时隙的时隙编号以及所述时隙内的OFDM的符号数;所述第四数据包括通过目标信道对应的CRC所计算的值,或者,包括所述第一通信节点的源识别号;所述第五数据包括所述资源编号。
在一个可选的实施例中,所述目标公式中包括2的预定次幂,所述预定次幂的值等于10-floor(A/2),其中,2的A次幂减1等于所述资源编号的最大值,floor()为向下取整函数。
在一个可选的实施例中,所述目标公式中包括与所述资源编号相关的变量,其中,与取值为r的所述资源编号所对应的所述变量是通过取值为r-1的所述资源编号所对应的所述变量计算得到的,r为正整数。
在一个可选的实施例中,取值为r的所述资源编号所对应的所述变量是通过如下方式计算得到的:编号为r-1的资源编号所对应的所述变量与一个正整数的乘积,再对另一个正整数取模。
在一个可选的实施例中,r≥0,其中,在r=0的情况下,取值为0的所述资源编号所对应的所述变量是通过预定公式计算得到的,所述预定公式中包括通过目标信道对应的CRC计算的值。
在一个可选的实施例中,所述目标公式中包括所述目标参考信号的资源索引和所述第一通信节点的源识别号。
在一个可选的实施例中,所述目标公式中包括:目标参考信号的资源索引与预定值的乘积。
在一个可选的实施例中,所述目标公式中包括:目标参考信号的资源索引加1以得到的目标和,与所述预定值的乘积。
在一个可选的实施例中,所述方法还包括:所述第二通信节点接收所述第一通信节点发送的边链路控制信息SCI,其中,所述SCI中包括所述预定值。
在一个可选的实施例中,所述预定值为固定的值。
在一个可选的实施例中,所述预定值是通过高层配置或者预配置的值。
在一个可选的实施例中,所述目标公式中包括所述目标参考信号的资源索引与预定值的乘积和所述第一通信节点的源识别号的加和值。
在一个可选的实施例中,所述目标公式中包括所述目标参考信号的资源索引和所述第一通信节点的源识别号的加和值。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法。
在本实施例中还提供了一种信号的发送装置和一种信号的接收装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以 实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图4是根据本公开实施例的信号的发送装置的结构框图,该装置可以应用于第一通信节点中,如图4所示,该装置包括:
生成模块42,设置为生成目标参考信号的目标参考信号序列,其中,所述目标参考信号序列通过伪随机序列产生,所述伪随机序列是使用目标公式进行初始化后的序列,且所述目标公式中包括所述目标参考信号的资源编号;
发送模块44,设置为发送所述目标参考信号,其中,所述目标参考信号序列映射到时频资源后形成所述目标参考信号。
在本实施例中,所述目标参考信号包括定位参考信号;可选地,所述定位参考信号包括边链路定位参考信号。
本实施例中的目标公式具体所包括的信息以及公式中所包括的信息的获取方式可参见前述的方法实施例中的内容,在此,不再赘述。
图5是根据本公开实施例的信号的接收装置的结构框图,该装置可以应用于第二通信节点中,如图5所示,该装置包括:
接收模块52,设置为接收第一通信节点发送的目标参考信号,其中,目标参考信号序列映射到时频资源后形成所述目标参考信号,所述目标参考信号序列通过伪随机序列产生,所述伪随机序列是使用目标公式进行初始化后的序列,且所述目标公式中包括所述目标参考信号的资源编号;
确定模块54,设置为基于所述目标参考信号的资源编号确定所述伪随机序列和所述目标参考信号序列。
在本实施例中,所述目标参考信号包括定位参考信号;可选地,所述定位参考信号包括边链路定位参考信号。
本实施例中的目标公式具体所包括的信息以及公式中所包括的信息的获取方式可参见前述的方法实施例中的内容,在此,不再赘述。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
本公开的实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
在一个示例性实施例中,上述计算机可读存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本公开的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算 机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
在一个示例性实施例中,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
本实施例中的具体示例可以参考上述实施例及示例性实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (40)

  1. 一种信号的发送方法,包括:
    第一通信节点生成目标参考信号的目标参考信号序列,其中,所述目标参考信号序列通过伪随机序列产生,所述伪随机序列是使用目标公式进行初始化后的序列,且所述目标公式中包括所述目标参考信号的资源编号;
    所述第一通信节点发送所述目标参考信号,其中,所述目标参考信号序列映射到时频资源后形成所述目标参考信号。
  2. 根据权利要求1所述的方法,其中,所述目标参考信号包括定位参考信号。
  3. 根据权利要求2所述的方法,其中,所述定位参考信号包括边链路定位参考信号。
  4. 根据权利要求1所述的方法,其中,所述目标公式中包括第一数据和第二数据的乘积,其中,
    所述第一数据包括所述资源编号,所述第二数据包括通过目标信道对应的循环冗余校验CRC所计算的值。
  5. 根据权利要求1所述的方法,其中,所述目标公式中包括第一数据和第二数据的加和,其中,
    所述第一数据包括所述资源编号,所述第二数据包括通过目标信道对应的循环冗余校验CRC所计算的值。
  6. 根据权利要求1所述的方法,其中,所述目标公式中包括第三数据、第四数据和第五数据的乘积,其中,
    所述第三数据包括以下数据:用于发送所述参考信号的正交频分复用OFDM的符号编号、用于发送所述参考信号的时隙的时隙编号以及所述时隙内的OFDM的符号数;
    所述第四数据包括通过目标信道对应的CRC所计算的值,或者,包括所述第一通信节点的源识别号;
    所述第五数据包括所述资源编号。
  7. 根据权利要求1所述的方法,其中,所述目标公式中包括2的预定次幂,所述预定次幂的值等于10-floor(A/2),其中,2的A次幂减1等于所述资源编号的最大值,floor()为向下取整函数。
  8. 根据权利要求1所述的方法,其中,所述目标公式中包括与所述资源编号相关的变量,其中,与取值为r的所述资源编号所对应的所述变量是通过取值为r-1的所述资源编号所对应的所述变量计算得到的,r为正整数。
  9. 根据权利要求8所述的方法,其中,取值为r的所述资源编号所对应的所述变量是通过如下方式计算得到的:
    编号为r-1的资源编号所对应的所述变量与一个正整数的乘积,再对另一个正整数取模。
  10. 根据权利要求8所述的方法,其中,r≥0,其中,在r=0的情况下,取值为0的所述资源编号所对应的所述变量是通过预定公式计算得到的,所述预定公式中包括通过目标信道对应的CRC计算的值。
  11. 根据权利要求1所述的方法,其中,所述目标公式中包括所述目标参考信号的资源索引和所述第一通信节点的源识别号。
  12. 根据权利要求1所述的方法,其中,所述目标公式中包括:
    目标参考信号的资源索引与预定值的乘积。
  13. 根据权利要求12所述的方法,其中,所述目标公式中包括:
    目标参考信号的资源索引加1以得到的目标和,与所述预定值的乘积。
  14. 根据权利要求12或13所述的方法,其中,所述方法还包括:
    所述第一通信节点发送边链路控制信息SCI,其中,所述SCI中包括所述预定值。
  15. 根据权利要求12或13所述的方法,其中,所述预定值为固定的值。
  16. 根据权利要求12或13所述的方法,其中,所述预定值是通过高层配置或者预配置的值。
  17. 根据权利要求1所述的方法,其中,所述目标公式中包括所述目标参考信号的资源索引与预定值的乘积和所述第一通信节点的源识别号的加和值。
  18. 根据权利要求1所述的方法,其中,所述目标公式中包括所述目标参考信号的资源索引和所述第一通信节点的源识别号的加和值。
  19. 一种信号的接收方法,包括:
    第二通信节点接收第一通信节点发送的目标参考信号,其中,目标参考信号序列映射到时频资源后形成所述目标参考信号,所述目标参考信号序列通过伪随机序列产生,所述伪随机序列是使用目标公式进行初始化后的序列,且所述目标公式中包括所述目标参考信号的资源编号;
    所述第二通信节点基于所述目标参考信号的资源编号确定所述伪随机序列和所述目标参考信号序列。
  20. 根据权利要求19所述的方法,其中,所述目标参考信号包括定位参考信号。
  21. 根据权利要求20所述的方法,其中,所述定位参考信号包括边链路定位参考信号。
  22. 根据权利要求19所述的方法,其中,所述目标公式中包括第一数据和第二数据的乘积,其中,
    所述第一数据包括所述资源编号,所述第二数据包括通过目标信道对应的循环冗余校验CRC所计算的值。
  23. 根据权利要求19所述的方法,其中,所述目标公式中包括第一数据和第二数据的加和,其中,
    所述第一数据包括所述资源编号,所述第二数据包括通过目标信道对应的循环冗余校验CRC所计算的值。
  24. 根据权利要求19所述的方法,其中,所述目标公式中包括第三数据、第四数据和第五数据的乘积,其中,
    所述第三数据包括以下数据:用于发送所述参考信号的正交频分复用OFDM的符号编号、用于发送所述参考信号的时隙的时隙编号以及所述时隙内的OFDM的符号数;
    所述第四数据包括通过目标信道对应的CRC所计算的值,或者,包括所述第一通信节点的源识别号;
    所述第五数据包括所述资源编号。
  25. 根据权利要求19所述的方法,其中,所述目标公式中包括2的预定次幂,所述预定次幂的值等于10-floor(A/2),其中,2的A次幂减1等于所述资源编号的最大值,floor()为向下取整函数。
  26. 根据权利要求19所述的方法,其中,所述目标公式中包括与所述资源编号相关的变量,其中,与取值为r的所述资源编号所对应的所述变量是通过取值为r-1的所述资源编号所对应的所述变量计算得到的,r为正整数。
  27. 根据权利要求26所述的方法,其中,取值为r的所述资源编号所对应的所述变量是通过如下方式计算得到的:
    编号为r-1的资源编号所对应的所述变量与一个正整数的乘积,再对另一个正整数取模。
  28. 根据权利要求26所述的方法,其中,r≥0,其中,在r=0的情况下,取值为0的所述资源编号所对应的所述变量是通过预定公式计算得到的,所述预定公式中包括通过目标信道对应的CRC计算的值。
  29. 根据权利要求19所述的方法,其中,所述目标公式中包括所述目标参考信号的资源索引和所述第一通信节点的源识别号。
  30. 根据权利要求19所述的方法,其中,所述目标公式中包括:
    目标参考信号的资源索引与预定值的乘积。
  31. 根据权利要求30所述的方法,其中,所述目标公式中包括:
    目标参考信号的资源索引加1以得到的目标和,与所述预定值的乘积。
  32. 根据权利要求30或31所述的方法,其中,所述方法还包括:
    所述第二通信节点接收所述第一通信节点发送的边链路控制信息SCI,其中,所述SCI中包括所述预定值。
  33. 根据权利要求30或31所述的方法,其中,所述预定值为固定的值。
  34. 根据权利要求30或31所述的方法,其中,所述预定值是通过高层配置或者预配置的值。
  35. 根据权利要求19所述的方法,其中,所述目标公式中包括所述目标参考信号的资源索引与预定值的乘积和所述第一通信节点的源识别号的加和值。
  36. 根据权利要求19所述的方法,其中,所述目标公式中包括所述目标参考信号的资源索引和所述第一通信节点的源识别号的加和值。
  37. 一种信号的发送装置,应用于第一通信节点中,包括:
    生成模块,设置为生成目标参考信号的目标参考信号序列,其中,所述目标参考信号序列通过伪随机序列产生,所述伪随机序列是使用目标公式进行初始化后的序列,且所述目标公式中包括所述目标参考信号的资源编号;
    发送模块,设置为发送所述目标参考信号,其中,所述目标参考信号序列映射到时频资源后形成所述目标参考信号。
  38. 一种信号的接收装置,应用于第二通信节点中,包括:
    接收模块,设置为接收第一通信节点发送的目标参考信号,其中,目标参考信号序列映射到时频资源后形成所述目标参考信号,所述目标参考信号序列通过伪随机序列产生,所述伪随机序列是使用目标公式进行初始化后的序列,且所述目标公式中包括所述目标参考信号的资源编号;
    确定模块,设置为基于所述目标参考信号的资源编号确定所述伪随机序列和所述目标参考信号序列。
  39. 一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,其中,所述计算机程序被处理器执行时实现所述权利要求1至18任一项中所述的方法的步骤,或者实现权利要求19至36任一项中所述的方法的步骤。
  40. 一种电子装置,包括存储器、处理器以及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现所述权利要求1至18任一项中所述的方法的步骤,或者实现权利要求19至36任一项中所述的方法的步骤。
PCT/CN2022/126271 2021-10-27 2022-10-19 信号的发送方法和装置、接收方法和装置、存储介质 WO2023071894A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111257154.5 2021-10-27
CN202111257154.5A CN116055014A (zh) 2021-10-27 2021-10-27 信号的发送方法和装置、接收方法和装置、存储介质

Publications (1)

Publication Number Publication Date
WO2023071894A1 true WO2023071894A1 (zh) 2023-05-04

Family

ID=86127798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126271 WO2023071894A1 (zh) 2021-10-27 2022-10-19 信号的发送方法和装置、接收方法和装置、存储介质

Country Status (2)

Country Link
CN (1) CN116055014A (zh)
WO (1) WO2023071894A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108260219A (zh) * 2018-01-12 2018-07-06 中兴通讯股份有限公司 一种参考信号的接收和发送方法、设备及计算机可读存储介质
CN109802792A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 接收参考信号的方法和发送参考信号的方法
WO2020222603A1 (ko) * 2019-05-02 2020-11-05 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
CN112119665A (zh) * 2019-04-22 2020-12-22 联发科技股份有限公司 Prs序列初始化

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109802792A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 接收参考信号的方法和发送参考信号的方法
CN108260219A (zh) * 2018-01-12 2018-07-06 中兴通讯股份有限公司 一种参考信号的接收和发送方法、设备及计算机可读存储介质
CN112119665A (zh) * 2019-04-22 2020-12-22 联发科技股份有限公司 Prs序列初始化
WO2020222603A1 (ko) * 2019-05-02 2020-11-05 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치

Also Published As

Publication number Publication date
CN116055014A (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
EP1977563B1 (en) Encoding beacon signals to provide identification in peer-to-peer communication
US11588569B2 (en) Method and apparatus for transmitting and receiving sidelink synchronization signal in wireless communication system
CN108353063B (zh) 用于为v2x配置dm-rs的方法
CN110351682B (zh) 一种通信设备定位方法及相关设备
CN113556668B (zh) 一种定位参考信号接收方法及用户设备
KR102373623B1 (ko) 충돌 프리 랜덤 액세스를 위한 방법
WO2019080153A1 (zh) 无线通信方法和设备
JP2017518673A (ja) データ伝送方法および装置
TW202126090A (zh) 側行鏈路廣播通道傳輸
US11206684B2 (en) Method and device for sending and receiving preamble sequence of physical random access channel
CN112449420A (zh) 一种数据传输方法及装置
CN112929968B (zh) 随机接入前导的传输方法、装置及存储介质
Mughal et al. Performance analysis of V2V communications: A novel scheduling assignment and data transmission scheme
CN110383736B (zh) 反馈信息的传输方法、装置、设备及存储介质
CN108029105A (zh) 无线资源分配的方法和装置
WO2023071894A1 (zh) 信号的发送方法和装置、接收方法和装置、存储介质
US10992509B2 (en) Resource configuration method, terminal device, and base station
WO2016074132A1 (zh) 信息传输方法、设备和系统
US20220400366A1 (en) Method and device for providing uwb service
Su et al. A robust deafness-free MAC protocol for directional antennas in ad hoc networks
CN109842938A (zh) 一种信息指示方法和装置
WO2020211873A1 (zh) 发送和接收dmrs的方法和装置
CN110062473B (zh) 随机接入方法、终端设备和网络设备
CN111132318B (zh) 一种资源调度方法和装置
CN113632567A (zh) 发送装置、接收装置、发送方法及接收方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885772

Country of ref document: EP

Kind code of ref document: A1