WO2023071849A1 - Ssb接收方法及装置、通信设备、存储介质、程序、及程序产品 - Google Patents

Ssb接收方法及装置、通信设备、存储介质、程序、及程序产品 Download PDF

Info

Publication number
WO2023071849A1
WO2023071849A1 PCT/CN2022/125708 CN2022125708W WO2023071849A1 WO 2023071849 A1 WO2023071849 A1 WO 2023071849A1 CN 2022125708 W CN2022125708 W CN 2022125708W WO 2023071849 A1 WO2023071849 A1 WO 2023071849A1
Authority
WO
WIPO (PCT)
Prior art keywords
candidate set
ssb
ssb candidate
power consumption
domain position
Prior art date
Application number
PCT/CN2022/125708
Other languages
English (en)
French (fr)
Inventor
王朝刚
王维
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023071849A1 publication Critical patent/WO2023071849A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0248Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal dependent on the time of the day, e.g. according to expected transmission activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of electronic technology, and in particular to an SSB receiving method, a receiving device, a communication device, a storage medium, a program, and a program product.
  • the fifth generation mobile communication network (5th Generation, 5G) technology Compared with Long Term Evolution (LTE) technology, the fifth generation mobile communication network (5th Generation, 5G) technology has higher frequency, larger bandwidth, and more flexible subframe structure, which greatly improves the system Throughput rate reduces system latency and improves system capacity.
  • 5th Generation, 5G fifth generation mobile communication network
  • the performance of terminal equipment using 5G technology is better, resulting in higher power consumption of 5G terminal equipment. How to optimize the power consumption of 5G terminal equipment is very important.
  • Embodiments of the present application provide a method for receiving a synchronization signal and a physical broadcast channel block (Synchronization Signal and PBCH block, SSB), a receiving device, a communication device, a storage medium, and an electronic device.
  • a synchronization signal and a physical broadcast channel block Synchronization Signal and PBCH block, SSB
  • a method for receiving SSB wherein at least one SSB candidate set is selected from at least two SSB candidate sets as a target SSB candidate set, and the at least two SSB candidate sets include a first SSB candidate set and a second SSB candidate set Candidate set, including:
  • an SSB receiving device wherein at least one SSB candidate set is selected from at least two SSB candidate sets as a target SSB candidate set, and the at least two SSB candidate sets include a first SSB candidate set and a second SSB candidate set candidate set,
  • a selection module configured to select an SSB candidate that is smaller in the power consumption of windowing the first SSB candidate set and the power consumption of windowing the second SSB candidate set set as the target SSB candidate set; or, select an SSB candidate set whose windowed power consumption is less than the power consumption threshold from the at least two SSB candidate sets as the target SSB candidate set, and
  • a receiving module configured to receive the SSBs included in the target SSB candidate set.
  • a communication device in a third aspect, includes a processor and a memory storing instructions executable by the processor;
  • the processor and the memory are connected through a bus;
  • the processor is configured to execute the steps of the above SSB receiving method when running the executable instruction stored in the memory.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps in the above SSB receiving method are implemented.
  • a computer program product including computer program instructions, the computer program instructions cause a computer to execute the steps of the above SSB receiving method.
  • a computer program which, when running on a computer, causes the computer to execute the steps of the above SSB receiving method.
  • FIG. 1 is a schematic diagram of an exemplary network architecture provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of an exemplary business scenario provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a method for determining SSB in a related art provided by an embodiment of the present application
  • FIG. 4A is a first schematic diagram of a power consumption sequence of a terminal device in a related art provided by an embodiment of the present application;
  • FIG. 4B is a second schematic diagram of a power consumption sequence of a terminal device in a related art provided by an embodiment of the present application.
  • FIG. 5 is a first schematic flow diagram of a method for determining an SSB candidate set provided by an embodiment of the present application
  • FIG. 6A is a first schematic diagram of a power consumption sequence of a terminal device provided in an embodiment of the present application.
  • FIG. 6B is a second schematic diagram of a power consumption sequence of a terminal device provided by an embodiment of the present application.
  • FIG. 7 is a schematic flow diagram II of a method for determining an SSB candidate set provided by an embodiment of the present application.
  • FIG. 8 is a schematic flow diagram three of a method for determining an SSB candidate set provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a power consumption control method provided in an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an apparatus for determining an SSB candidate set provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • New Radio New Radio
  • NR New Radio
  • NB-IoT Global System of Mobile communication
  • EDGE Enhanced Data rate for GSM Evolution
  • WCDMA Wideband Code Division Multiple Access
  • CDMA2000 Code Division Multiple Access
  • TD-SCDMA Time Division-Synchronization Code Division Multiple Access
  • General Packet Wireless Service General Packet Radio Service, GPRS
  • LTE Long Term Evolution
  • LTE Frequency Division Duplex Frequency Division Duplex
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • Universal Mobile Communication System Universal Mobile Telecommunication System
  • UMTS Universal Mobile Communication System
  • FIG. 1 shows a network architecture to which this embodiment of the present application may apply.
  • the network architecture provided in this embodiment includes: a network device 101 and a terminal device 102 .
  • the terminal devices involved in the embodiments of the present application may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other electronic devices connected to wireless modems, as well as various forms of user terminal devices ( terminal device) or mobile station (Mobile Station, MS) and so on.
  • the network device involved in the embodiment of the present application is a device deployed in a wireless access network to provide a wireless communication function for a terminal device.
  • the network device may be, for example, the base station shown in FIG. 1 , and the base station may include electronic devices such as various forms of macro base stations, micro base stations, relay stations, and access points.
  • FIG. 2 shows a service scenario where the method for selecting an SSB candidate set provided by this application may be applicable.
  • the method provided by this embodiment of the application can be applied to a discontinuous reception (Discontinuous Reception, DRX) mechanism of a terminal device.
  • the method provided in the embodiment of the present application can be applied to an idle state DRX mechanism and a connected state DRX (Connected DRX, C-DRX) mechanism.
  • DRX discontinuous Reception
  • the idle state DRX mechanism is the paging mechanism.
  • Figure 2 shows a DRX cycle.
  • the terminal equipment in the idle state only monitors the Physical Downlink Control Channel (PDCCH) in a specific period of time (such as the paging listening opportunity) to receive paging call message. At other times, the monitoring function can be turned off and the PDCCH is not monitored.
  • PDCCH Physical Downlink Control Channel
  • the terminal device can monitor the PDCCH within a specific period of time (for example, the continuous monitoring opportunity C-DRX on-duration) to receive information transmitted by the network device. Do not monitor the PDCCH at other times (ie, non-monitoring occasions).
  • the terminal device will determine different working modes (such as deep sleep mode, light sleep mode, active mode, etc.) according to different application scenarios. For example, the terminal device can be in the active mode at the PDCCH, while in the deep sleep mode in other time domain positions, the monitoring function is turned off. Different working modes have different demands on the processing capabilities of terminal equipment. Terminal equipment can adjust the operating frequency and voltage of the chip through Dynamic Voltage and Frequency Scaling (DVFS) technology according to the determined working mode to meet the needs of different working modes.
  • DVFS Dynamic Voltage and Frequency Scaling
  • the terminal device needs to perform pre-synchronization with the network device before the paging monitoring opportunity or the continuous monitoring opportunity, and the terminal device also needs to perform neighbor cell measurement after the pre-synchronization. Therefore, the terminal device also needs to window the SSB for pre-synchronization before the paging monitoring opportunity or the continuous monitoring opportunity to receive the SSB for pre-synchronization, so as to complete the pre-synchronization with the network device. In addition, after the pre-synchronization is completed, the terminal device may open a window for the SSB used for the neighboring cell measurement to receive the SSB used for the neighboring cell measurement, so as to realize the neighboring cell measurement.
  • the terminal device may first determine the time domain position of at least one of the paging frame (Paging Frame, PF), paging position (Paging Occasion, PO), and monitoring position (Monitoring Occasion, MO).
  • the terminal device can determine the time-domain position of the PF/PO according to the network configuration and the identification information (Identity document, ID) of the terminal device, or calculate the time-domain position of the MO according to the current beam.
  • the terminal device may statically determine one or more SSBs for pre-synchronization (hereinafter referred to as SSBs for pre-synchronization) according to the time domain positions of PO/PF/MO.
  • SSBs for pre-synchronization are used to realize the synchronization between the terminal device and the network device, and the terminal device can perform automatic gain control (Automatic Gain Control, AGC) or automatic frequency control (Automatic Frequency Control, AFC) according to the pre-synchronization SSB. ) and other operations.
  • AGC Automatic Gain Control
  • AFC Automatic Frequency Control
  • the terminal device can also statically select the SSB for neighbor cell measurement (hereinafter referred to as the SSB for neighbor cell measurement) according to the cycle of neighbor cell measurement, so as to realize the neighbor cell measurement of the terminal device. measurement operation.
  • the SSB for neighbor cell measurement hereinafter referred to as the SSB for neighbor cell measurement
  • the terminal device can compare the time domain position of SSB (including SSB for pre-synchronization and/or SSB for neighbor cell measurement) according to the time domain position of PF/PO/MO The positional relationship between them determines the working mode of the terminal equipment at different time domain positions. Furthermore, the terminal device can receive the paging message or perform neighbor cell measurement according to the determined working mode.
  • the terminal device can wake up from the deep sleep mode before the time domain position of the first pre-synchronization SSB arrives, and the terminal device can be in the active mode when the first pre-synchronization SSB (SSB1 in the figure) arrives , and receive the first pre-synchronization SSB (SSB1 in the figure) in active mode. Since the time domain positions of the two pre-synchronization SSBs (SSB1 and SSB2 in the figure) in Figure 4A are relatively close to each other, the terminal device can Immediately enters light sleep mode. It is understandable that in light sleep mode, the terminal device can adjust the frequency and pressure of the chip to turn off part of the monitoring function and save power consumption of the terminal device.
  • the terminal device can immediately enter the active mode from the light sleep mode, and receive the second pre-synchronization SSB in the active mode. After receiving the second SSB for pre-synchronization, the terminal device can enter the light sleep mode again to reduce power consumption.
  • the terminal device can enter the active mode from the light sleep mode again to listen to the paging message, and after the PO in the PF is over, the terminal device enters the deep sleep mode until the next DRX cycle corresponding Pre-sync arrives with SSB. In the deep sleep mode, the terminal device turns off the monitoring function, and the power consumption is the lowest.
  • the terminal device selects the SSB for pre-synchronization (SSB1 in the figure '), the first SSB (SSB2' in the figure) after the SSB for pre-synchronization can be used as the SSB for neighbor cell measurement.
  • the terminal device can wake up from the deep sleep mode before the time domain position of the pre-synchronization SSB arrives, and the terminal device can be in the active mode when the pre-synchronization SSB (SSB1' in the figure) arrives, and in the active mode
  • the lower receives the SSB for pre-synchronization (SSB1' in the figure), and performs synchronization processing.
  • the SSB for pre-synchronization is relatively close to the MO time domain in the PF.
  • the terminal device After receiving the SSB for pre-synchronization in the active mode, the terminal device can immediately enter the light sleep mode, which saves power consumption and is convenient when the PF arrives. Quickly enter activation mode.
  • the terminal device Before the PF arrives, the terminal device can enter the active mode from the light sleep mode to listen to the paging message. Since the time domain positions of the PF and the SSB for adjacent cell measurement (SSB2' in the figure) are closer, the terminal equipment has no time to switch the working mode. Therefore, after the PF, the terminal equipment continues to be in the active mode and continuously monitors the downlink channel. Until receiving the SSB for neighbor cell measurement (SSB2' in the figure). After receiving the SSB for neighbor cell measurement, the terminal device can immediately enter the deep sleep mode until the SSB for pre-synchronization corresponding to the next DRX cycle arrives.
  • the terminal device in the related art determines the SSB (including pre-synchronization SSB and adjacent cell measurement SSB) in a static manner, and further, the terminal device determines the distance between the time domain position of the SSB and the reference time domain position
  • the positional relationship of the terminal equipment is divided into different working modes.
  • the operating modes of the terminal equipment in different time domain positions are divided, which will limit the division of the operating modes of the terminal equipment, resulting in a single mode of operation mode division.
  • the static The scheme of selecting SSB does not consider the power consumption factor of windowing the SSB.
  • an embodiment of the present application provides an SSB receiving method, which can be applied to the terminal device shown in FIG. 1 .
  • the terminal device may determine at least two SSB candidate sets; based on the power consumption of each SSB candidate set, select SSBs whose power consumption satisfies a preset condition from the at least two SSB candidate sets to obtain a target SSB candidate set.
  • the terminal device can also dynamically select a better SSB candidate set from multiple SSB candidate sets for pre-synchronization or neighbor cell measurement by calculating and comparing the power consumption corresponding to multiple SSB candidate sets, thereby reducing the power consumption of the terminal device. Extend the standby time of terminal equipment.
  • FIG. 5A is a schematic flow diagram of the method for selecting an SSB candidate set provided in the embodiment of the present application.
  • the terminal The method for a device to determine an SSB candidate set may include the following step 100 .
  • the terminal device selects at least one SSB candidate set from at least two SSB candidate sets, wherein the at least two SSB candidate sets may include a first SSB candidate set and a second SSB candidate set.
  • the terminal device selects at least one SSB candidate set from at least two SSB candidate sets, which may include:
  • An SSB candidate set whose power consumption for windowing is smaller than a power consumption threshold is selected from at least two SSB candidate sets.
  • the terminal device may select the SSB candidate set with the smallest power consumption for windowing from at least two SSB candidate sets, as the SSB candidate set received by the terminal device.
  • the terminal device may also select, from at least two SSB candidate sets, an SSB candidate set whose windowing power consumption is less than a preset power consumption threshold, as the SSB candidate set received by the terminal device.
  • the terminal device may compare the power consumption required for windowing the at least two SSB candidate sets, and dynamically select the power consumption for windowing from the at least two SSB candidate sets
  • the smaller SSB candidate set is used as the SSB candidate set that the terminal device needs to receive. In this way, the power consumption of the terminal device is reduced and the standby time of the terminal device is prolonged.
  • FIG. 5B is a schematic flow diagram II of the SSB receiving method provided by the embodiment of the present application.
  • the SSB receiving method may include the following steps 110 to 130:
  • Step 110 determine at least two SSB candidate sets.
  • each SSB candidate set may include at least one SSB, which is not limited in the embodiment of the present application.
  • SSBs included in the SSB candidate set those skilled in the art can select the specific number of SSBs according to actual needs.
  • the terminal device may select SSB1 and SSB2 as the first SSB candidate set from SSB1, SSB2 and SSB3, and select SSB3 as the second SSB candidate set.
  • the terminal device may also select SSB1 as the first SSB candidate set, select SSB2 as the second SSB candidate set, and select SSB3 as the third SSB candidate set from SSB1, SSB2 and SSB3.
  • the terminal device may also select more than one SSB from multiple SSBs based on certain rules to obtain the at least two SSB candidate sets.
  • the present application does not limit the manner of determining at least two SSBs.
  • the above-mentioned SSB may be the SSB for pre-synchronization, wherein the SSB for pre-synchronization is used to realize the pre-synchronization between the terminal equipment and the network equipment; the above-mentioned SSB may also be the SSB for adjacent cell measurement; wherein, the adjacent cell The SSB for measurement is used to implement the neighbor cell measurement of the terminal equipment.
  • the embodiment of the present application does not limit the application of the SSB.
  • Step 120 based on the windowing power consumption sequence corresponding to each SSB, respectively determine the power consumption corresponding to each SSB candidate set within a preset time period.
  • the windowing power consumption time sequence represents the power consumption of the terminal device performing windowing at different time domain positions within a preset time period.
  • different working modes may be divided for the terminal device according to the time domain positions of the SSB candidate sets.
  • the terminal device may divide the working mode according to the relationship between the time domain position of each SSB and the time domain position of PF/PO/MO.
  • the terminal device may determine that it is in the deep sleep mode before the time domain position of SSB1, and at a certain moment before the time domain position of SSB1 arrives at a starting moment, the terminal device may Wake up from deep sleep mode and enter active mode at the time domain location of SSB1 to receive SSB1.
  • the terminal device since the time interval between the time domain position of SSB1 and the time domain position of PF is small, the terminal device continues to be in the active mode after pre-synchronization is completed until the end of PF/PO/MO. The end device enters deep sleep mode after MO ends.
  • the power consumption of the terminal device in different working modes is also different.
  • the terminal device when the terminal device is in the active mode, it can continuously monitor the signal sent by the network device, and perform corresponding processing based on the signal.
  • the monitoring function can be turned off, so as not to monitor the signal sent by the network device.
  • the power consumption of the terminal device in the active mode is greater than that in the deep sleep mode.
  • the terminal device can determine the power consumption sequence within the preset time period according to the divided working mode, that is, the power consumption of the terminal device at different time domain positions within the preset time period.
  • the power consumption sequence corresponding to SSB1 can be shown in curve 61 in FIG. 6A; when SSB2 is used as the second pre-synchronization SSB candidate set , the power consumption sequence corresponding to SSB2 can be shown in curve 62 in FIG. 6A; when SSB3 is used as the third pre-synchronization SSB candidate set, the power consumption sequence corresponding to SSB3 can be shown in curve 63 in FIG.
  • the power consumption sequence corresponding to SSB3 can be shown in curve 63 in FIG.
  • only one SSB is included in the SSB candidate set, and the present application is not limited thereto.
  • the SSBs included in the SSB candidate set can be set according to actual requirements, which is known to those skilled in the art.
  • the terminal device may calculate the power consumption of the windowing of the SSB candidate set by the terminal device based on the windowing power consumption sequence corresponding to each SSB candidate set.
  • the preset time period may be one data transmission cycle or two data transmission cycles, which is not limited in this embodiment of the present application.
  • the data transmission cycle may be a paging cycle or a DRX cycle.
  • the power consumption may be a total window-opening power consumption within a preset time period, or may be an average power consumption within a preset time period, which is not limited in this embodiment of the present application.
  • the terminal device may respectively calculate the integral results of the curve 61 , the curve 62 , and the curve 63 to obtain the power consumption corresponding to the SSB1 , SSB2 , and SSB3 respectively.
  • Step 130 From at least two SSB candidate sets, determine the SSB candidate sets whose power consumption satisfies a preset condition, to obtain a target SSB candidate set.
  • a target SSB candidate set there are three SSB candidate sets, and other numbers of SSB candidate sets are also possible.
  • the terminal device after calculating the power consumption corresponding to each SSB candidate set, the terminal device can select the power consumption from multiple SSB candidate sets to meet the preset condition according to the power consumption corresponding to each SSB candidate set
  • the SSB candidate set of the target SSB candidate set is obtained.
  • the preset conditions include any of the following:
  • SSB1 can be selected, because SSB1 (equivalent to the first SSB candidate set) ⁇ SSB3 (equivalent to the second SSB candidate set); in another possible implementation, SSB2 can be selected, Since SSB2 (corresponding to the first SSB candidate set) ⁇ SSB1 (corresponding to the second SSB candidate set), it can also be understood as, because SSB2 (corresponding to the first SSB candidate set) ⁇ SSB3 (corresponding to the second SSB candidate set) .
  • the SSB candidate set is dynamically selected for reception according to the windowing power consumption of the SSB, thereby excluding the SSB candidate set with the largest windowing power consumption, so as to achieve the effect of saving power consumption.
  • the SSB candidate set with the smallest windowing power consumption may be selected as the target SSB candidate set.
  • the windowing power consumption of SSB2 since the windowing power consumption of SSB2 is the smallest, it is more preferable to select the SSB candidate set with the minimum windowing power consumption as the target SSB candidate set.
  • SSB2 can be understood as the first SSB candidate set, and both SSB1 and SSB3 can be understood as the second SSB candidate set. Accordingly, the effect of saving power consumption is further enhanced.
  • an SSB candidate set whose windowed power consumption is less than a preset power consumption threshold is selected from at least two SSB candidate sets as the target SSB candidate set.
  • SSB1-3 in FIG. 6A are SSB candidate sets containing one SSB respectively, and the relationship between the corresponding windowing power consumption and the preset power consumption threshold a is: SSB2(windowing Minimum power consumption) ⁇ SSB1 ⁇ a ⁇ SSB3 (window opening maximum power consumption).
  • SSB1 can be selected because SSB1 ⁇ a; in another possible implementation manner, SSB2 can be selected because SSB2 ⁇ a.
  • the SSB candidate set whose power consumption is smaller than the preset power consumption threshold is selected as the target SSB candidate set. Therefore, the dual technical effects of computational complexity and power saving are taken into account.
  • the terminal device may also perform the following steps:
  • the SSBs in the target SSB candidate set are received, and pre-synchronization processing or neighboring cell measurement processing is performed based on the SSBs in the target SSB candidate set.
  • the terminal device may perform power consumption control based on the target SSB candidate set. That is, the terminal device can receive the SSB in the target SSB candidate set based on the working mode of the target SSB candidate set, and perform pre-synchronization based on the received SSB to receive paging messages, or perform neighbor cell measurement based on the SSB.
  • the target SSB candidate set is the SSB for pre-synchronization
  • the terminal device after receiving the SSB in the target SSB candidate set, the terminal device can perform pre-synchronization processing according to the SSB and receive the paging message.
  • the target SSB is the SSB for neighboring cell measurement
  • the terminal device may perform neighboring cell measurement processing according to the SSB.
  • the terminal device can adjust the operating frequency and voltage of the terminal device through the DVFS technology, so that the terminal device is in different working modes.
  • the terminal device can calculate and compare the power consumption corresponding to each SSB candidate set, and dynamically select a target with a smaller power consumption from at least two SSB candidate sets The SSB candidate set, so as to perform power consumption control based on the target SSB candidate set, so as to reduce the power consumption of the terminal device and prolong the standby time of the terminal device.
  • determining at least two SSB candidate sets in step 110 can be achieved in the following manner:
  • Step 1101 obtaining multiple selection conditions
  • Step 1102 From multiple SSB candidate sets, determine an SSB candidate set that satisfies each of the multiple selection conditions, to obtain at least two SSB candidate sets.
  • the terminal device in this embodiment of the present application may determine the foregoing at least two SSB candidate sets from multiple SSB candidate sets according to a certain selection rule.
  • the terminal device may acquire multiple selection conditions in advance, determine an SSB candidate set satisfying each selection condition from multiple SSB candidate sets, and obtain the above at least two SSB candidate sets.
  • the terminal device may determine two selection conditions. In this way, the terminal device can determine the SSB candidate set that satisfies the first selection condition from multiple SSB candidate sets to obtain an SSB candidate set, and then determine the SSB candidate set that meets the second selection condition from the multiple SSB candidate sets to obtain the second SSB candidate set. Two SSB candidate sets, thus, two SSB candidate sets are obtained.
  • the terminal device can select an SSB candidate set whose time interval between the time domain position and the reference time domain position is less than 3 milliseconds from multiple SSB candidate sets to obtain an SSB candidate set; and select from multiple SSB candidate sets From the SSB candidate set whose time interval between the time domain position and the reference time domain position is greater than 3 milliseconds, another SSB candidate set is obtained.
  • the multiple selection conditions may be conditions that need to be satisfied by the time interval between the time domain position of the SSB candidate set and the reference time domain position. That is to say, the terminal device may determine the at least two SSB candidate sets according to the time interval between the time domain position of the SSB and the reference time domain position.
  • the reference time domain position may include the time domain position of the target listening occasion, and/or, the time domain position of the first SSB.
  • the target listening occasion may include a paging listening occasion in the DRX mechanism, and/or a persistent listening occasion.
  • the first SSB refers to the SSB used for pre-synchronization determined by the terminal device.
  • the paging listening occasion here may include at least one of PF, PO, or MO.
  • the reference time domain position is the time domain position of the target listening opportunity; when the SSB candidate set is the SSB candidate set for neighbor cell measurement, The reference time domain position is the time domain position of the first SSB.
  • the terminal device may obtain multiple selection conditions.
  • the multiple selection conditions are conditions that the time interval between the time domain position of the SSB and the reference time domain position needs to meet.
  • the selection condition may be that the time interval is greater than or less than a certain threshold.
  • the first selection condition may be that the interval between the time domain position of the SSB candidate set and the time domain position of the target listening opportunity is less than 3 milliseconds
  • the second A selection condition may be that the interval between the time-domain position of the SSB candidate set and the time-domain position of the target listening occasion is greater than or equal to 3 milliseconds.
  • the time domain position between the time domain position of SSB1 and PO is less than 3 milliseconds
  • the time domain position between SSB2 and PO is greater than 3 milliseconds.
  • the terminal device selects SSB1, the first SSB candidate set, and selects SSB2, as the second SSB candidate set.
  • the first selection condition may be that the time-domain position of the first SSB candidate set is less than 3 milliseconds from the time-domain position of the SSB candidate set
  • the second selection condition may be that the interval between the time domain position of the second SSB candidate set and the time domain position of the SSB candidate set is greater than or equal to 3 milliseconds. Referring to FIG. 6B , the time domain position between the time domain position of SSB4 and PO is less than 3 milliseconds, and the time domain position between SSB5 and PO is greater than 3 milliseconds.
  • the terminal device may select SSB4, the first SSB candidate set, and select SSB5, the second SSB candidate set.
  • the time interval between the time domain position and the reference time domain position of the SSB candidate set determined by the selection condition is different.
  • the operating modes of the terminal device according to the SSB candidate sets are also different, so that the power consumption of different SSB candidate sets is different within the preset time period, so that the terminal device can select from multiple SSB candidate sets according to the needs (considering the complexity) degree and performance), and dynamically select the SSB candidate set with better or optimal power consumption.
  • the multiple selection conditions may be preset conditions.
  • the multiple selection conditions may also be conditions configured by the terminal device according to actual power consumption requirements. This embodiment of the present application does not limit it.
  • the multiple selection conditions in step 1101 may be in one-to-one correspondence with the multiple selection conditions of the terminal device; wherein, the terminal device is between the time domain position of the first SSB candidate set and the reference time domain position
  • the working mode in the time interval is the same as the first working mode; the first SSB candidate set is determined based on the selection condition corresponding to the first working mode; the first working mode is any one of the multiple working modes.
  • the terminal device can set the selection condition according to its working mode. In this way, the terminal device determines an SSB candidate set according to the selection condition. Moreover, the working mode of the terminal device in the time interval between the time domain position of the SSB candidate set and the actual target position is the working mode corresponding to the selection condition for determining the SSB candidate set.
  • the terminal device can determine the SSB candidate set according to its working mode, and the terminal device is still in the time domain position between the time domain position of the SSB candidate set determined by the working mode and the reference time domain position. Operating mode.
  • the selection condition corresponding to each working mode may be pre-set or pre-configured, and the selection condition of each working mode is related to the type of the terminal device.
  • the working mode of the terminal device may include an active mode, a light sleep mode, a deep sleep mode, and the like.
  • the terminal device in the activation mode, the terminal device always turns on the monitoring function to receive the signal transmitted by the network device.
  • the terminal device In light sleep mode, the terminal device can turn off some monitoring functions.
  • the terminal device turns off the monitoring function and does not monitor any signal sent by the network device.
  • the first selection condition corresponding to the activation mode may be that the time interval between the time domain position of the SSB candidate set and the reference time domain position is smaller than a first threshold.
  • the second selection condition corresponding to the light sleep mode may include that the time interval between the time domain position of the SSB candidate set and the reference time domain position is greater than or equal to the first threshold and less than the second threshold.
  • the third selection condition corresponding to the deep sleep mode may include that the time interval between the time domain position of the SSB candidate set and the reference time domain position is greater than or equal to the first threshold.
  • the first threshold may be determined according to the minimum switching duration required for the terminal device to switch from the active mode to the light sleep mode; the second threshold may be determined according to the minimum switching duration required for the terminal device to switch from the active mode to the deep sleep mode Sure,
  • the first threshold may be twice the minimum switching duration required for the terminal device to switch from the active mode to the light sleep mode. That is to say, the first threshold may be the minimum switching time required for the terminal device to switch from the active mode to the light sleep mode and from the light sleep mode to the active mode.
  • the second threshold may be twice the minimum switching time required for the terminal device to switch from the active mode to the deep-sleep mode, and the second threshold may be the terminal device switching from the active mode to the deep-sleep mode, and from the deep-sleep mode to the active mode The minimum switching time required.
  • the terminal device selects the SSB candidate set whose time interval between the time domain position and the reference time domain position is smaller than the first threshold from the SSB candidate set to obtain the first SSB candidate set . That is to say, the time interval between the time domain position of each SSB in the first SSB candidate set and the reference time domain position is smaller than the first threshold.
  • the terminal device cannot switch from the active mode to the light sleep mode within the time interval, and then from the light sleep mode.
  • Mode switch to active mode let alone switch from active mode to deep sleep mode, and switch from deep sleep mode to active mode (the switch between active mode and deep sleep mode takes longer). Therefore, the terminal device is in an active mode during the time interval between the time domain position of the first SSB candidate set and the reference time domain position, and continuously monitors the signal sent by the network device.
  • the terminal device selects the SSB candidate set whose time interval between the time domain position and the reference time domain position is greater than or equal to the first threshold and less than the second threshold from the SSB candidate set according to the second selection condition corresponding to the light sleep mode , to obtain the second SSB candidate set. It can be understood that the time interval between the time domain position of each SSB in the second SSB candidate set and the target time domain position is less than the second threshold, that is, the terminal device cannot switch from the active mode to Switch to deep sleep mode, and switch from deep sleep mode to active mode.
  • the time interval between the time domain position of each SSB in the second SSB candidate set and the reference time domain position is greater than or equal to the first threshold, that is, the terminal device can switch from the active mode to the light mode within this time interval. sleep mode, and switch from light sleep mode to active mode. Therefore, the terminal device may be in a light sleep mode during the time interval between the time domain position of the second SSB candidate set and the reference time domain position, and turn off part of the monitoring function, so as to reduce power consumption.
  • the terminal device selects the SSB candidate set whose time interval between the time domain position and the reference time domain position is greater than or equal to the second threshold from the SSB candidate set according to the third selection condition corresponding to the deep sleep mode, and obtains the third SSB candidate set.
  • the time interval between the time domain position of each SSB in the third SSB candidate set and the target time domain position is greater than or equal to the second threshold, that is, the terminal device can be activated from mode switch to deep sleep mode, and from deep sleep mode to active mode. Therefore, the terminal device may be in a deep sleep mode during the time interval between the time domain position of the second SSB candidate set and the reference time domain position, and turn off all monitoring functions, further reducing power consumption.
  • the working modes of the terminal device are different between its time domain position and the reference time domain position in different SSB candidate sets. In this way, the diversity and richness of the determined at least two SSB candidate sets can be improved.
  • step 120 may also be executed before determining the power consumption of each SSB candidate set within a preset time period based on the windowing power consumption sequence corresponding to each SSB candidate set.
  • Step 140 based on the time position relationship between the time domain position of each SSB candidate set and the reference time domain position, determine the working mode of the terminal device at different time domain positions within a preset time period;
  • Step 150 based on the power consumption required by different working modes, determine the power consumption of the terminal device at different time domain positions within a preset time period, so as to obtain the windowing power consumption sequence corresponding to each SSB candidate set.
  • the terminal device determines multiple SSB candidate sets, it can divide different working modes for the terminal device according to the time position relationship between the time domain position of each SSB candidate set and the reference time domain position.
  • the terminal device may, according to the time domain position of each pre-synchronization SSB candidate set and the time domain position of the target listening opportunity Positional relationship, divided working mode.
  • the target listening occasion includes a paging listening occasion and/or a continuous listening occasion.
  • the terminal device can determine the distribution of the SSB candidate set for pre-synchronization and the target listening opportunity within a preset time period, and determine the time domain position where the SSB candidate set for pre-synchronization and the target listening opportunity are located is the active mode. According to the relationship between the time interval between the time domain position of the pre-synchronization SSB candidate set and the time domain position of the target listening opportunity and the first threshold and the second threshold, determine the work of the pre-synchronization SSB candidate set within the time interval model.
  • the time interval is less than the first threshold, it is determined that the working mode of the pre-synchronization SSB candidate set within the time interval is the active mode, and if the time interval is greater than or equal to the first threshold and less than the second threshold, then it is determined that the The working mode of the SSB candidate set for pre-synchronization in the time interval is light sleep mode, if the time interval is greater than or equal to the second threshold, then it is determined that the working mode of the SSB candidate set for pre-synchronization in the time interval is deep sleep mode .
  • the terminal device determines that it is in the deep sleep mode at other time domain locations. In this way, through the above method, the working mode is divided for each SSB candidate set for pre-synchronization, and the working mode corresponding to each SSB candidate set for pre-synchronization can be obtained.
  • the working relationship between the time-domain position of the SSB candidate set for pre-synchronization and the time-domain position of the target listening opportunity can be directly determined.
  • Mode is the working mode corresponding to the selection condition.
  • the terminal device may determine that it is in the deep sleep mode before the time domain position of SSB1, and start from the time domain position of SSB1 At a certain moment before the arrival of the initial moment, the terminal device may wake up from the deep sleep mode and enter the active mode at the time domain position of SSB1 to receive SSB1. Further, since the time interval between the time domain position of SSB1 and the time domain position of PF/PO/MO is small, the terminal device continues to be in the active mode after pre-synchronization is completed until the end of PF/PO/MO. The terminal device enters deep sleep mode after PF/PO/MO ends.
  • the terminal device may The time interval between time domain positions, dividing the working mode.
  • the first SSB candidate set refers to the SSB candidate set used for pre-synchronization determined by the terminal device.
  • the terminal device can determine the distribution of the SSB candidate set for neighbor cell measurement and the first SSB candidate set within a preset time period, and determine the time domain position where the SSB candidate set for neighbor cell measurement and the first SSB candidate set are located is active model. According to the relationship between the time domain position of the first SSB candidate set and the time domain position of the adjacent cell measurement SSB candidate set and the first threshold and the second threshold, it is determined that the adjacent cell measurement SSB candidate set is at this time The working mode within the interval.
  • the time interval is less than the first threshold, it is determined that the working mode of the adjacent cell measurement SSB candidate set within the time interval is the active mode, and if the time interval is greater than or equal to the first threshold and less than the second threshold, then determine The operating mode of the SSB candidate set for the neighboring cell measurement within the time interval is light sleep mode, if the time interval is greater than or equal to the second threshold, then determine the operating mode of the SSB candidate set for the adjacent cell measurement within the time interval as Deep sleep mode.
  • the terminal device determines that it is in the deep sleep mode at other time domain locations. In this way, through the above method, the working mode is divided for each SSB candidate for neighboring cell measurement, and the working mode corresponding to each SSB candidate set for neighboring cell measurement can be obtained.
  • the working relationship between the time-domain position of the SSB candidate set for pre-synchronization and the time-domain position of the target listening opportunity can be directly determined.
  • Mode is the working mode corresponding to the selection condition.
  • the terminal device may determine that it is in the deep sleep mode before the time domain position of the first SSB, and in the first SSB At a certain moment before the initial moment of the time domain position of is reached, the terminal device may wake up from the deep sleep mode and enter the active mode at the time domain position of the first SSB to receive the first SSB for pre-synchronization. Further, since the time interval between the time domain position of the first SSB and the time domain position of SSB4 is relatively small, the terminal device continues to be in the active mode after pre-synchronization is completed until the end of SSB4 is received. And, the terminal device enters the deep sleep mode after receiving SSB4.
  • the power consumption of the terminal device in different working modes is also different.
  • the terminal device may determine a power consumption sequence within a preset time period based on the power consumption corresponding to each working mode. That is, the power consumption of the terminal device at different time domain positions within the preset time period, and the power consumption sequence of each SSB is obtained.
  • the power consumption in different working modes may be a predefined value, or a value determined by the terminal device according to actual conditions. This embodiment of the present application does not limit it.
  • the windowing power consumption sequence corresponding to SSB1 can be shown in curve 61 in FIG. 6A;
  • SSB2 is used as the second pre-synchronization SSB candidate
  • the power consumption sequence corresponding to SSB2 can refer to the curve 62 in FIG. 6A;
  • SSB3 is used as the third pre-synchronization SSB candidate set, the power consumption sequence corresponding to SSB3 can be shown in the curve 63 in FIG. 6A.
  • the power consumption sequence corresponding to SSB4 can be shown in the curve 64 in Fig. 6B; when SSB5 is used as the SSB candidate set for the second neighbor cell measurement, SSB5 The corresponding power consumption sequence can be shown by reference to the curve 65 in FIG. 6B; when SSB6 is used as the SSB candidate set for the third neighbor cell measurement, the power consumption sequence corresponding to SSB6 can be shown by reference to the curve 66 in FIG. 6B.
  • step 120 based on the windowing power consumption sequence corresponding to each SSB candidate set, the power consumption corresponding to each SSB candidate set within a preset time period is respectively determined, which can be achieved by the following steps:
  • the terminal device may determine the power consumption curve by the windowing power consumption sequence corresponding to each SSB candidate set, that is, the power consumption at different time domain positions within a preset time period.
  • the power consumption curve corresponding to SSB1 is shown as curve 61 in FIG. 6A .
  • the power consumption curve corresponding to SSB2 is shown as curve 62 in FIG. 6A .
  • the power consumption curve corresponding to SSB3 is shown as curve 63 in FIG. 6A .
  • the terminal device may obtain the power consumption corresponding to the target SSB candidate set by calculating the area of the enclosed area formed by the power consumption curve and the time domain axis.
  • the terminal device may calculate the above area by means of integration.
  • a power consumption control method is also provided.
  • the power consumption control method provided in the embodiment of the present application may include the following steps:
  • Step 901 the terminal device determines to enter an idle state.
  • Step 902 the terminal device determines the time domain position of the PF/PO/MO.
  • the terminal device can determine the time-domain position of the PF/PO according to the network configuration and the ID of the terminal device, or calculate the time-domain position of the MO according to the current beam.
  • Step 903 the terminal device determines multiple SSB candidate sets for pre-synchronization.
  • the terminal device may determine multiple SSB candidate sets for pre-synchronization according to its working mode. If the terminal device has N working modes, it can determine at most N SSB candidate sets for pre-synchronization.
  • the terminal device may include three working modes: active mode, light sleep mode, and deep sleep mode.
  • the terminal device may determine the selection conditions respectively corresponding to the three working modes, and determine the SSB candidate set for pre-synchronization based on the three selection conditions.
  • the terminal device needs to perform pre-synchronization processing based on the SSB candidate set, and receive the paging message after the pre-synchronization.
  • the terminal device needs to determine a plurality of SSB candidate sets for pre-synchronization in a plurality of SSBs before the time domain position of PF/PO/MO.
  • the first selection condition corresponding to the activation mode may be that the time interval between the time domain position of the SSB candidate set and the time domain position of the PF/PO/MO is smaller than the first threshold.
  • the second selection condition corresponding to the light sleep mode may include that the time interval between the time domain position of the SSB candidate set and the time domain position of the PF/PO/MO is greater than or equal to the first threshold and less than the second threshold.
  • the third selection condition corresponding to the deep sleep mode may include that the time interval between the time domain position of the SSB candidate set and the time domain position of the PF/PO/MO is greater than or equal to the first threshold.
  • SSB1 is located before the time domain position of PF/PO/MO, and the time interval between the time domain position of SSB1 and the time domain position of PF/PO/MO is less than the first threshold, satisfying the first selection condition , the terminal device may select SSB1 as the first pre-synchronization candidate set.
  • the terminal device may perform pre-synchronization after receiving SSB1, and after the pre-synchronization is completed, it shall remain in the active mode until the paging message is received and enter the deep sleep mode.
  • SSB2 is located before the time domain position of PF/PO/MO, and the time interval between the time domain position of SSB2 and the time domain position of PF/PO/MO is greater than the first threshold and less than the second threshold, satisfying the second selection condition .
  • the terminal device may select SSB2 as the second pre-synchronization candidate set. Among them, the terminal device receives SSB2 for pre-synchronization. After the pre-synchronization is completed, the terminal device enters the light sleep mode until the PO/MO time domain position, and then enters the active mode to receive the paging message, and then enters the deep sleep mode after receiving the paging message. sleep mode.
  • the terminal device can select SSB3 as the third pre-synchronization candidate set.
  • the terminal device can receive SSB3 for pre-synchronization, and immediately enter the deep sleep mode after the pre-synchronization is completed, until the time domain position of the PO/MO wakes up again to enter the activation mode and receive the paging message, and then enter the deep sleep mode after receiving the paging message. sleep mode.
  • step 904 the terminal device determines the power consumption amounts corresponding to the multiple SSB candidate sets for pre-synchronization.
  • the power consumption curve corresponding to SSB1 (that is, the first SSB candidate set for pre-synchronization) is shown as curve 61 in FIG. 6A .
  • the power consumption curve corresponding to SSB2 (that is, the second SSB candidate set for pre-synchronization) is shown as curve 62 in FIG. 6A .
  • the power consumption curve corresponding to SSB3 (that is, the third SSB candidate set for pre-synchronization) is shown as curve 63 in FIG. 6A .
  • the terminal device can respectively calculate the area formed by the curve 61, the curve 62 and the curve 63 and the time domain axis, and obtain the power consumption corresponding to the above three SSB candidate sets for pre-synchronization respectively.
  • Step 905 the terminal device selects the SSB candidate set for pre-synchronization with the lowest power consumption as the target SSB candidate set for pre-synchronization.
  • the terminal device can dynamically select an optimal pre-synchronization. For example, SSB1 corresponds to the lowest power consumption, and the terminal device may select SSB1 as the target pre-synchronization SSB. In this way, the terminal device can perform pre-synchronization after receiving SSB1, and after the pre-synchronization is completed, it will remain in the active mode until it enters the deep sleep mode after receiving the paging message.
  • Step 906 the terminal device judges whether to perform neighbor cell measurement.
  • step 907 if the terminal device needs to perform neighbor cell measurement, perform step 907, and if it does not need to perform neighbor cell measurement, perform step 910.
  • Step 907 the terminal device determines multiple SSB candidate sets for neighboring cell measurement.
  • the terminal device may determine multiple SSB candidate sets for neighboring cell measurement according to its working mode. If the terminal device has N working modes, at most N SSB candidate sets for neighbor cell measurement can be determined.
  • the terminal device may include three working modes: active mode, light sleep mode, and deep sleep mode.
  • the terminal device may determine the selection conditions respectively corresponding to the three working modes, and determine the SSB candidate set for neighboring cell measurement based on the three selection conditions.
  • the terminal device needs to perform neighbor cell measurement processing based on the SSB candidate set, and the neighbor cell measurement needs to be completed when the terminal device and the network device are synchronized.
  • the terminal device needs to determine an SSB candidate set for neighbor cell measurement after the time domain position of the first SSB candidate set.
  • the fourth selection condition corresponding to the activation mode may be that the time interval between the time domain position of the first SSB candidate set and the time domain position of the SSB candidate set is smaller than the first threshold.
  • the fifth selection condition corresponding to the light sleep mode may be that the time interval between the time domain position of the first SSB candidate set and the time domain position of the SSB candidate set is greater than or equal to the first threshold and less than the second threshold.
  • the sixth selection condition corresponding to the deep sleep mode may be that the time interval between the time domain position of the first SSB candidate set and the time domain position of the SSB candidate set is greater than or equal to the first threshold.
  • SSB4 is located after the time domain position of the first SSB, and the time interval between the time domain position of the first SSB and the time domain position of SSB4 is less than the first threshold, satisfying the above fourth selection condition.
  • the terminal device may select SSB4 as the first SSB candidate set for neighboring cell measurement. Wherein, after the first SSB is successfully received, the terminal device may remain in the active mode until the SSB4 is received to perform neighbor cell measurement, and enter the deep sleep mode after the neighbor cell measurement is completed.
  • the terminal device may select SSB5 as the second SSB candidate set for neighboring cell measurement. Among them, the terminal device can enter the light sleep mode after receiving the first SSB, and enter the active mode from the light sleep mode at the time domain position of SSB5 to receive SSB5 for neighbor cell measurement, and enter the deep sleep mode after the neighbor cell measurement is completed .
  • the terminal device may select SSB6 as the third SSB candidate set for neighboring cell measurement. Among them, the terminal device can enter the deep sleep mode after receiving the first SSB until it wakes up before the time domain position of SSB6, and enter the active mode at the time domain position of SSB6 to receive SSB6 for neighbor cell measurement, neighbor cell measurement Go into deep sleep mode when done.
  • step 908 the terminal device determines power consumption corresponding to multiple SSB candidate sets for neighboring cell measurement.
  • the power consumption curve corresponding to SSB4 (that is, the SSB candidate set for the first neighbor cell measurement) is shown as curve 64 in FIG. 6B .
  • the power consumption curve corresponding to SSB5 (that is, the second SSB candidate set for neighboring cell measurement) is shown as curve 65 in FIG. 6B .
  • the power consumption curve corresponding to SSB6 (that is, the third SSB candidate set for neighboring cell measurement) is shown as curve 66 in FIG. 6B .
  • the terminal device may respectively calculate the areas formed by the curve 64, the curve 765, and the curve 66 and the time-domain axis, and obtain the power consumption corresponding to the above-mentioned three neighboring cell measurement SSB candidate sets.
  • Step 909 the terminal device selects the SSB candidate set for neighbor cell measurement with the lowest power consumption as the target neighbor cell measurement SSB candidate set.
  • the terminal device can dynamically select an optimal neighboring cell measurement candidate set. For example, SSB4 corresponds to the lowest power consumption, and the terminal device may select SSB4 as the SSB candidate set for target neighbor cell measurement. In this way, the terminal device can perform neighbor cell measurement after receiving SSB4, and after the neighbor cell measurement is completed, it remains in the active mode until it enters the deep sleep mode after receiving the paging message.
  • Step 910 based on the determined target pre-synchronization SSB candidate set, or the target pre-synchronization SSB candidate set and the target neighbor cell measurement SSB candidate set, the terminal device receives the paging message and performs neighbor cell measurement.
  • the terminal device can determine multiple SSB candidate sets based on the target listening opportunity, and each SSB candidate set corresponds to a different working mode; thus, the terminal device can determine a plurality of SSB candidate sets based on each The working mode corresponding to the SSB candidate set determines the power consumption corresponding to each SSB respectively; then, from multiple SSB candidate sets, determine the SSB candidate set whose power consumption meets the preset conditions, and obtain the target SSB candidate set; finally, the terminal device The target SSB candidate set may be received based on the working mode corresponding to the target SSB candidate set, and a signal may be monitored at a target listening opportunity.
  • the terminal device can dynamically select an appropriate SSB candidate set according to the power consumption of multiple SSB candidate sets, and perform power consumption control based on the selected appropriate SSB candidate set, thereby reducing the power consumption of the terminal device and prolonging the life of the terminal.
  • the standby time of the device can dynamically select an appropriate SSB candidate set according to the power consumption of multiple SSB candidate sets, and perform power consumption control based on the selected appropriate SSB candidate set, thereby reducing the power consumption of the terminal device and prolonging the life of the terminal. The standby time of the device.
  • An embodiment of the present application provides an SSB receiving device, and the device can execute the SSB receiving method provided in any of the foregoing embodiments.
  • the apparatus may be used as a terminal device, or may be a chip (such as a modem (Modem), a system on a chip (SoC), etc.) used for power consumption control in the terminal device.
  • a chip such as a modem (Modem), a system on a chip (SoC), etc.
  • FIG. 10 is a schematic structural diagram of an SSB receiving device provided by an embodiment of the present application.
  • the first determining unit 1001 , the second determining unit 1002 , the selecting unit 1003 and the receiving module 1004 can realize the following functions by means of software, or hardware, or a combination of software and hardware. Exemplary:
  • the first determining unit 1001 is configured to determine at least two SSBs
  • the second determining unit 1002 is configured to respectively determine the power consumption corresponding to each SSB within a preset time period based on the windowing power consumption sequence corresponding to each SSB; The power consumption at different time domain positions within the preset time period;
  • the selecting unit 1003 is configured to, according to the power consumption corresponding to each SSB candidate set, select SSB candidate sets whose power consumption satisfies a preset condition from multiple SSB candidate sets, to obtain a target SSB candidate set.
  • the preset conditions include any of the following:
  • SSB1-3 are SSB candidate sets including one SSB respectively, and the corresponding windowing power consumption relationship is: SSB2 (the windowing power consumption is the smallest) ⁇ SSB1 ⁇ SSB3 (the windowing power consumption is the largest).
  • SSB1 can be selected, because SSB1 (equivalent to the first SSB candidate set) ⁇ SSB3 (equivalent to the second SSB candidate set); in another possible implementation, SSB2 can be selected, Since SSB2 (corresponding to the first SSB candidate set) ⁇ SSB1 (corresponding to the second SSB candidate set), it can also be understood as, because SSB2 (corresponding to the first SSB candidate set) ⁇ SSB3 (corresponding to the second SSB candidate set) .
  • the SSB candidate set is dynamically selected for reception according to the windowing power consumption of the SSB, thereby excluding the SSB candidate set with the largest windowing power consumption, so as to achieve the effect of saving power consumption.
  • the SSB candidate set with the smallest windowing power consumption may be selected as the target SSB candidate set.
  • the windowing power consumption of SSB2 since the windowing power consumption of SSB2 is the smallest, it is more preferable to select the SSB candidate set with the minimum windowing power consumption as the target SSB candidate set.
  • SSB2 can be understood as the first SSB candidate set, and both SSB1 and SSB3 can be understood as the second SSB candidate set. Accordingly, the effect of saving power consumption is further enhanced.
  • an SSB candidate set whose windowed power consumption is less than a preset power consumption threshold is selected from at least two SSB candidate sets as the target SSB candidate set.
  • SSB1-3 in FIG. 6A are SSB candidate sets containing one SSB respectively, and the relationship between the corresponding windowing power consumption and the preset power consumption threshold a is: SSB2(windowing Minimum power consumption) ⁇ SSB1 ⁇ a ⁇ SSB3 (window opening maximum power consumption).
  • SSB1 can be selected because SSB1 ⁇ a; in another possible implementation manner, SSB2 can be selected because SSB2 ⁇ a.
  • the SSB candidate set whose power consumption is smaller than the preset power consumption threshold is selected as the target SSB candidate set. Therefore, the dual technical effects of computational complexity and power saving are taken into account.
  • the receiving module 1004 is configured to receive the SSBs in the target SSB candidate set, and perform pre-synchronization processing or neighboring cell measurement processing based on the SSBs in the target SSB candidate set.
  • the target SSB candidate set may include more than one SSB.
  • the present application does not limit the number of SSBs, and those skilled in the art can set them according to actual needs.
  • the first determining unit 1001 is further configured to obtain multiple selection conditions; the multiple selection conditions are conditions that need to be satisfied by the time interval between the time domain position of the SSB and the reference time domain position; from Among the plurality of SSBs, determining an SSB that satisfies each selection condition in the plurality of selection conditions to obtain the at least two SSBs.
  • the multiple selection conditions correspond one-to-one to multiple working modes of the terminal device
  • the working mode of the terminal device in the time interval between the time domain position of the target SSB candidate set and the reference time domain position is the same as the target working mode; the target SSB candidate set is based on the target working mode The selection condition corresponding to the mode is determined; the target working mode is any one of the multiple working modes.
  • the plurality of operating modes include active mode, light sleep mode and deep sleep mode
  • the first selection condition corresponding to the activation mode includes that the time interval between the time domain position of the SSB and the reference time domain position is less than a first threshold; Determining the minimum switching duration required to switch to the light sleep mode;
  • the second selection condition corresponding to the light sleep mode includes that the time interval between the time domain position of the SSB and the reference time domain position is greater than or equal to the first threshold and less than the second threshold; the second The threshold is determined according to the minimum switching duration required for the terminal device to switch from the active mode to the deep sleep mode;
  • the third selection condition corresponding to the deep sleep mode includes that the time interval between the time domain position of the SSB and the reference time domain position is greater than or equal to the first threshold.
  • the SSB is an SSB for pre-synchronization, and the SSB for pre-synchronization is used to realize pre-synchronization between the terminal device and the network device;
  • the SSB is the SSB for neighboring cell measurement; the SSB for neighboring cell measurement is used to implement the neighboring cell measurement of the terminal device.
  • the reference time domain position is a time domain position of a target listening opportunity; the target listening opportunity includes a paging listening opportunity (MO) and/or Continuous monitoring timing (C-DRX on-duration).
  • MO paging listening opportunity
  • C-DRX on-duration Continuous monitoring timing
  • the reference time-domain position is the time-domain position of the first SSB
  • the first SSB refers to the time-domain position determined by the terminal device for pre-preparation. Synchronized SSBs.
  • the second determining unit 1002 is further configured to determine that the terminal device does not The working mode of the same time domain position; based on the power consumption required by different working modes, determine the power consumption of the terminal device at different time domain positions within the preset time period, so as to obtain the corresponding power consumption of each SSB power consumption timing.
  • the second determination unit 1002 is further configured to determine the power consumption curve corresponding to each SSB within the preset time period based on the power consumption sequence corresponding to each SSB; calculate the power consumption curve The area of the closed area formed on the time domain axis obtains the power consumption corresponding to each SSB.
  • the preset conditions include at least one of the following:
  • the power consumption of any SSB in the at least two SSBs is the minimum value of the power consumption corresponding to the at least two SSBs;
  • the power consumption of any SSB in the at least two SSBs is less than a preset power consumption threshold.
  • embodiments of the present application further provide a communication device, which may be a terminal device, or may be a chip (such as Modem, system on chip, etc.) used for power consumption control in the terminal device.
  • Fig. 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device may be a terminal device or a network device.
  • the communication device shown in FIG. 11 includes a processor 1110, and the processor 1110 can invoke and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 1100 may further include a memory 1120 .
  • the processor 1110 can invoke and run a computer program from the memory 1120, so as to implement the method in the embodiment of the present application.
  • the memory 1120 may be an independent device independent of the processor 1110 , or may be integrated in the processor 1110 .
  • the communication device may further include a transceiver 1130, and the processor 1110 may control the transceiver 1130 to communicate with other devices, where information or data may be sent to other devices, or received by other devices. information or data.
  • the transceiver 1130 may include a transmitter and a receiver.
  • the transceiver 1130 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 1100 may specifically be a terminal device in the embodiment of the present application, and the communication device 1100 may implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, details are not repeated here. .
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memories in the embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
  • the embodiment of the present application also provides a computer storage medium, specifically a computer-readable storage medium.
  • Computer instructions are stored thereon, and when the computer storage medium is located in the electronic equipment manufacturing device, when the computer instructions are executed by the processor, any steps in the above-mentioned SSB receiving method in the embodiment of the present application are implemented.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product may be applied to implement any step in the above-mentioned SSB receiving method in the embodiments of the present application, and for the sake of brevity, details are not repeated here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to implement any step in the above-mentioned SSB receiving method in the embodiments of the present application, and for the sake of brevity, details are not repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the computer software product is stored in a storage medium, including several
  • the instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种SSB接收方法,从至少两个SSB候选集中选取至少一个SSB候选集,以作为目标SSB候选集,所述至少两个SSB候选集包含第一SSB候选集与第二SSB候选集,包括:选取对所述第一SSB候选集进行开窗的功耗量与对所述第二SSB候选集进行开窗的功耗量中小的一方的SSB候选集,以作为所述目标SSB候选集;或者,从所述至少两个SSB候选集中选取进行开窗的功耗量小于功耗量阈值的SSB候选集,以作为目标SSB候选集,接收所述目标SSB候选集中包含的SSB。本申请实施例还提供一种接收装置、通信设备、存储介质、程序及程序产品。

Description

SSB接收方法及装置、通信设备、存储介质、程序、及程序产品
相关申请的交叉引用
本申请基于申请号为202111278095.X、申请日为2021年10月30日、发明名称为“SSB接收方法及接收装置、通信设备、存储介质”的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及电子技术领域,尤其涉及一种SSB接收方法、接收装置、通信设备、存储介质、程序、及程序产品。
背景技术
与长期演进(Long Term Evolution,LTE)技术相比,第五代移动通信网络(5th Generation,5G)技术具有更高的频率,更大的带宽,更灵活的子帧结构,极大地提高了系统的吞吐率,降低了系统延迟并提升了系统容量。
采用5G技术的终端设备性能较优,导致5G终端设备的功耗较大。如何优化5G终端设备的功耗至关重要。
发明内容
本申请实施例提供一种同步信号和物理广播信道块(Synchronization Signal and PBCH block,SSB)接收方法及接收装置、通信设备、存储介质、电子设备。
本申请的技术方案是这样实现的:
第一方面,提供一种SSB接收方法,从至少两个SSB候选集中选取至少一个SSB候选集,以作为目标SSB候选集,所述至少两个SSB候选集包含第一SSB候选集与第二SSB候选集,包括:
选取对所述第一SSB候选集进行开窗(windowing)的功耗量与对所述第二SSB候选集进行开窗的功耗量中小的一方的SSB候选集,以作为所述目标SSB候选集;
或者,从所述至少两个SSB候选集中选取进行开窗的功耗量小于功耗量阈值的SSB候选集,以作为目标SSB候选集,
接收所述目标SSB候选集中包含的SSB。
第二方面,提供一种SSB接收装置,从至少两个SSB候选集中选取至少一个SSB候选集,以作为目标SSB候选集,所述至少两个SSB候选集包含第一SSB候选集与第二SSB候选集,
选取模块,被配置为选取对所述第一SSB候选集进行开窗(windowing)的功耗量与对所述第二SSB候选集进行开窗(windowing)的功耗量中小的一方的SSB候选集,以作为所述目标SSB候选集;或者,从所述至少两个SSB候选集中选取进行开窗的功耗量小于功耗量阈值的SSB候选集,以作为目标SSB候选集,以及
接收模块,被配置为接收所述目标SSB候选集中包含的SSB。
第三方面,提供一种通信设备,所述通信设备包括处理器、以及存储有所述处理器可执行指令的存储器;
所述处理器和所述存储器通过总线进行连接;
所述处理器,用于运行所述存储器中存储的所述可执行指令时,执行上述SSB接收方法的步骤。
第四方面,提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实上述SSB接收方法中的步骤。
第五方面,提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述SSB接收方法的步骤。
第六方面,提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述SSB接收方法的步骤。
附图说明
图1为本申请实施例提供的一种示例性的网络架构示意图;
图2为本申请实施例提供的一种示例性的业务场景示意图;
图3为本申请实施例提供的一种相关技术中的确定SSB的方法流程示意图;
图4A为本申请实施例提供的一种相关技术中终端设备的功耗时序示意图一;
图4B为本申请实施例提供的一种相关技术中终端设备的功耗时序示意图二;
图5为本申请实施例提供的一种确定SSB候选集的方法的流程示意图一;
图6A为本申请实施例提供的一种终端设备的功耗时序示意图一;
图6B为本申请实施例提供的一种终端设备的功耗时序示意图二;
图7为本申请实施例提供的一种确定SSB候选集的方法的流程示意图二;
图8为本申请实施例提供的一种确定SSB候选集的方法的流程示意图三;
图9为本申请实施例提供的一种功耗控制方法的流程示意图;
图10为本申请实施例提供的一种确定SSB候选集装置的结构示意图;
图11为本申请实施例提供的一种通信设备的结构示意图。
具体实施方式
为了能够更加详尽地了解本申请实施例的特点与技术内容,下面结合附图对本申请实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本申请实施例。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
应理解,本申请实施例的技术方案可以应用于新无线(New Radio,NR)系统或未来的通信系统,也可以用于其他各种无线通信系统,例如:窄带物联网(Narrow Band-Internet of Things,NB-IoT)系统、全球移动通讯系统(Global System of Mobile communication,GSM)、增强型数据速率GSM演进(Enhanced Data rate for GSM Evolution,EDGE)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、码分多址2000(Code Division Multiple Access,CDMA2000)系统、时分同步码分多址(Time Division-Synchronization Code Division Multiple Access,TD-SCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)等。
图1示出了本申请实施例可能适用的一种网络架构。如图1所示,本实施例提供的网络架构包括:网络设备101和终端设备102。本申请实施例所涉及到的终端设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器 的其他电子设备,以及各种形式的用户终端设备(terminal device)或移动台(Mobile Station,MS)等等。本申请实施例所涉及到的网络设备是一种部署在无线接入网中用以为终端设备提供无线通信功能的设备。在本申请实施例中,该网络设备例如可以为图1所示的基站,该基站可以包括各种形式的宏基站,微基站,中继站,接入点等电子设备。
图2示出了本申请提供的SSB候选集的选取方法可能适用的业务场景,本申请实施例提供的方法可以应用于终端设备的非连续接收(Discontinuous Reception,DRX)机制中。本申请实施例提供的方法可以应用于空闲态DRX机制和连接态DRX(Connected DRX,C-DRX)机制中。
其中,空闲态DRX机制即寻呼机制。图2示出了一个DRX周期,在寻呼机制中,处于空闲态的终端设备只在特定的时间段(例如寻呼监听时机)监听物理下行控制信道(Physical Downlink Control Channel,PDCCH),以接收寻呼消息。而在其它时间可以关闭监听功能,不去监听PDCCH。
另外,在连接态DRX机制中,终端设备可以在特定的时间段(例如持续监听时机C-DRX on-duration)内监听PDCCH,以接收网络设备传输的信息。在其他时间(即非监听时机)不去监听PDCCH。
通常情况下,终端设备会根据不同的应用场景确定不同工作模式(如深睡模式、浅睡模式、激活模式等),例如终端设备可以在寻呼监听时机的时域位置上处于激活模式,监听PDCCH,而在其他时域位置处于深睡模式,关闭监听功能。不同的工作模式对终端设备处理能力的需求不同。终端设备可以根据确定的工作模式,通过动态电压频率调整(Dynamic Voltage and Frequency Scaling,DVFS)技术调整芯片的运行频率和电压来满足不同工作模式的需求。
实际应用中,终端设备在寻呼监听时机或者持续监听时机之前需要与网络设备进行预同步,并且终端设备还需要在预同步之后进行邻区测量。因此,终端设备还需要在寻呼监听时机或者持续监听时机之前,对用于预同步的SSB进行开窗以接收该用于预同步的SSB,从而完成与网络设备的预同步。另外,终端设备还可以在完成了预同步之后,对用于邻区测量的SSB进行开窗以接收该用于邻区测量的SSB,从而实现邻区测量。
参考图3所示的一种相关技术中选取并接收SSB的方法流程示意图。终端设备在进入5G待机模式后,可以首先确定寻呼帧(Paging Frame,PF)、寻呼位置(Paging Occasion,PO)、以及监控位置(Monitoring Occasion,MO)中至少一个的时域位置。这里,终端设备可以根据网络配置和终端设备的标识信息(Identity document,ID)确定PF/PO的时域位置,或者根据当前所处的波束来计算MO的时域位置。
进一步地,终端设备可以根据PO/PF/MO的时域位置,静态确定一个或者多个用于预同步的SSB(以下称为预同步用SSB)。其中,预同步用SSB用于实现终端设备与网络设备之间的同步,终端设备可以根据预同步用SSB,进行自动增益控制(Automatic Gain Control,AGC),或者自动频率控制(Automatic Frequency Control,AFC)等操作。另外,在需要进行邻区测量的情况下,终端设备还可以根据邻区测量的周期,静态选择用于邻区测量的SSB(以下称为邻区测量用SSB),以实现终端设备的邻区测量操作。
在确定了预同步用SSB和邻区测量用SSB后,终端设备可以根据PF/PO/MO的时域位置,与SSB(包括预同步用SSB和/或邻区测量用SSB)的时域位置之间的位置关系,确定终端设备在不同时域位置上的工作模式。进而,终端设备可以根据确定的工作模式接收寻呼消息,或者进行邻区测量。
示例性的,在终端设备不需要进行邻区测量的场景中,参考图4A所示的一种现有技术中终端设备的开窗功耗时序示意图,终端设备可以将位于PF之前的两个SSB,作为预同步用SSB。
其中,终端设备可以在第一个预同步用SSB的时域位置到达之前,从深睡模式醒来,在第一个预同步用SSB(图示中的SSB1)达到时终端设备可以处于激活模式,并在激活模式 下接收第一个预同步用SSB(图示中的SSB1)。由于图4A中的两个预同步用SSB(图示中的SSB1、SSB2)的时域位置相隔较近,终端设备可以接收到第一个预同步用SSB(图示中的SSB1)后,可以立即进入浅睡模式。可以理解的是,浅睡模式下,终端设备可以调整芯片的频率和压力,以关闭部分监听功能,节省终端设备功耗。当第二个预同步用SSB(图示中的SSB2)时域位置的起始时刻到达时,终端设备可以立即从浅睡模式进入激活模式,在激活模式下接收第二个预同步用SSB。在终端设备接收到第二个预同步用SSB后,可以再次进入浅睡模式,以降低功耗。当PF的时域位置到达时,终端设备可以再次从浅睡模式进入激活模式,以监听寻呼消息,并且在PF中的PO结束后,终端设备进入深睡模式,直到下一DRX周期对应的预同步用SSB到达。在深睡模式中,终端设备关闭监听功能,功耗最低。
示例性的,在终端设备需要进行邻区测量的场景中,参考图4B所示的另一种相关技术中的终端设备的功耗时序示意图,终端设备选取预同步用SSB(图示中的SSB1’)之后,可以将位于预同步用SSB之后的第一个SSB(图示中的SSB2’)作为邻区测量用SSB。
其中,终端设备可以在预同步用SSB的时域位置到达之前,从深睡模式醒来,在预同步用SSB(图示中的SSB1’)达到时终端设备可以处于激活模式,并在激活模式下接收预同步用SSB(图示中的SSB1’),并进行同步处理。另外,预同步用SSB与PF中的MO时域位置相隔较近,终端设备在激活模式下接收到预同步用SSB后,可以立即进入浅睡模式,节省功耗的同时便于在PF到达时能够快速进入激活模式。在PF到达前,终端设备可以从浅睡模式进入激活模式,以监听寻呼消息。由于PF和邻区测量用SSB(图示中的SSB2’)的时域位置相隔更近,终端设备来不及进行工作模式的切换,因此,在PF之后终端设备继续处于激活模式,持续监听下行信道,直到接收到邻区测量用SSB(图示中的SSB2’)。在接收到邻区测量用SSB后,终端设备可以立即进入深睡模式,直到下一DRX周期对应的预同步用SSB到达。
从上述示例可以看出,相关技术中的终端设备是通过静态的方式来确定SSB(包括预同步SSB和邻区测量SSB),进而,终端设备根据SSB的时域位置与基准时域位置之间的位置关系,为终端设备划分不同的工作模式。然而,相关技术中的功耗控制方法中,根据静态确定的SSB,来划分不同时域位置下终端设备的工作模式,会限制终端设备工作模式的划分,导致作模式划分方式单一,此外,静态选定SSB的方案未考虑对SSB进行开窗的功耗因素。
基于此,本申请实施例提供一种SSB的接收方法,可以应用于图1所示的终端设备中。其中,终端设备可以确定至少两个SSB候选集;基于对每个SSB候选集的功耗量,从至少两个SSB候选集中,选取功耗量满足预设条件的SSB,得到目标SSB候选集。终端设备也可以通过计算和比较多个SSB候选集对应的功耗量,动态地从多个SSB候选集中选择较优的SSB候选集进行预同步或邻区测量,从而降低终端设备的功耗,延长终端设备的待机时间。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
本申请一实施例提供了一种SSB候选集的选取方法,图5A为本申请实施例提供的SSB候选集的选取方法的流程示意图一,参考图5A所示,在本申请实施例中,终端设备确定SSB候选集的方法可以包括以下步骤100。
在步骤100中,终端设备从至少两个SSB候选集中选取至少一个SSB候选集,其中,至少两个SSB候选集可以包含第一SSB候选集与第二SSB候选集。
步骤100中终端设备从至少两个SSB候选集中选取至少一个SSB候选集,可以包括:
选取对第一SSB候选集进行开窗的功耗量与对第二SSB候选集进行开窗的功耗量中小的一方的SSB候选集;
或者,
从至少两个SSB候选集中选取进行开窗的功耗量小于功耗量阈值的SSB候选集。
可以理解的是,终端设备可以从至少两个SSB候选集中选择进行开窗的功耗量最小的 SSB候选集,作为终端设备接收的SSB候选集。终端设备也可以从至少两个SSB候选集中选择进行开窗的功耗量小于预设功耗阈值的SSB候选集,作为终端设备接收的SSB候选集。
可以理解的是,本申请实施例中,终端设备可以比较对至少两个SSB候选集进行开窗时所需的功耗量,从至少两个SSB候选集中,动态选取进行开窗的功耗量较小的SSB候选集,作为终端设备需要接收的SSB候选集。如此,实现降低终端设备的功耗,延长终端设备的待机时间的效果。
图5B为本申请实施例提供的SSB接收方法的流程示意图二,参考图5B所示,在本申请实施例中,SSB接收方法可以包括以下步骤110至步骤130:
步骤110、确定至少两个SSB候选集。
本申请实施例中,每个SSB候选集中可以包括至少一个SSB,本申请实施例对此不做限定。SSB候选集所包含的SSB的数量,本领域技术人员能够根据实际需求来进行选定SSB具体数量。
示例性的,参考图6A所示,终端设备可以从SSB1、SSB2和SSB3中,选择SSB1和SSB2作为第一SSB候选集,选择SSB3作为第二SSB候选集。终端设备还可以从SSB1、SSB2和SSB3中,选择SSB1作为第一SSB候选集,选择SSB2作为第二SSB候选集,以及选择SSB3作为第三SSB候选集。
终端设备还可以基于一定的规则,从多个SSB中选择一个以上的SSB,得到上述至少两个SSB候选集。本申请对确定至少两个SSB的方式不进行限定。
在一些实施例中,上述SSB可以为预同步用SSB,其中,预同步用SSB用于实现终端设备与网络设备之间的预同步;上述SSB还可以为邻区测量用SSB;其中,邻区测量用SSB用于实现终端设备的邻区测量。本申请实施例对SSB的用途不做限定。
步骤120、基于每个SSB对应的开窗功耗时序,分别确定预设时间段内每个SSB候选集对应的功耗量。
其中,开窗功耗时序表征终端设备在预设时间段内不同时域位置上进行开窗的功耗大小。
在一些实施例中,在确定了多个SSB候选集之后,可以根据SSB候选集的时域位置,为终端设备划分不同的工作模式。
示例性的,参考图6A所示,终端设备可以根据每个SSB的时域位置与PF/PO/MO的时域位置之间的关系,划分工作模式。在确定SSB1作为第一SSB候选集的情况下,终端设备可以确定在SSB1的时域位置之前处于深睡模式,并在SSB1的时域位置起始时刻到达之前的某个时刻处,终端设备可以从深睡模式中醒来,并在SSB1的时域位置处进入激活模式,以接收SSB1。进一步,由于SSB1的时域位置与PF的时域位置之间的时间间隔较小,因此终端设备在预同步完成之后继续处于激活模式,直至PF/PO/MO结束。终端设备在MO结束后进入深睡模式。
本申请实施例中,由于不同的工作模式对终端设备处理能力的需求不同,因此终端设备在不同的工作模式下的功耗也就不同。示例性的,终端设备处于激活模式时,可以持续监听网络设备发送的信号,并基于信号进行相应的处理。而终端设备处于深睡模式时,可以关闭监听功能,不去监听网络设备发送的信号。显然,终端设备在激活模式下的功耗就大于深睡模式下的功耗。
基于此,终端设备可以根据为其划分的工作模式,确定预设时间段内功耗时序,即在预设时间段内不同时域位置上终端设备的功耗大小。
示例性的,参考图6A所示,SSB1作为第一预同步用SSB候选集时,SSB1对应的功耗时序可以参考图6A中的曲线61所示;SSB2作为第二预同步用SSB候选集时,SSB2对应的功耗时序可以参考图6A中的曲线62所示;SSB3作为第三预同步用SSB候选集时,SSB3对应的功耗时序可以参考图6A中的曲线63所示,即该实施例中SSB候选集中仅包括一个SSB,本申请并不局限于此,SSB候选集中所包含的SSB可以根据实际需求进行设置,这对 于本领域技术人员是公知的。
在一些实施例中,终端设备可以基于每个SSB候选集对应的开窗功耗时序,计算终端设备对该SSB候选集进行开窗的功耗量。其中,预设时间段可以是一个数据传输周期,也可以是两个数据传输周期,本申请实施例对此不做限定。数据传输周期,可以是寻呼周期,也可以是DRX周期。
另外,功耗量可以是预设时间段内的总开窗功耗量,也可以是预设时间段内的平均功耗量,本申请实施例对此不做限定。
示例性的,在图6A中,终端设备可以分别计算曲线61、曲线62、曲线63的积分结果,分别得到SSB1、SSB2、以及SSB3对应的功耗量。
步骤130、从至少两个SSB候选集中,确定功耗量满足预设条件的SSB候选集,得到目标SSB候选集。本发明中为三个SSB候选集,也可以其他数量的SSB候选集。
本申请实施例中,在计算得到每个SSB候选集对应的功耗量后,终端设备可以根据每个SSB候选集对应的功耗量,从多个SSB候选集中选择功耗量满足预设条件的SSB候选集,得到目标SSB候选集。
在一些实施例中,预设条件包括以下中的任意一项:
1,从至少两个SSB候选集中选择开窗功耗量不为最大值的SSB候选集,作为目标SSB候选集;以及,
2,从至少两个SSB候选集中选择开窗功耗量小于预设功耗阈值的SSB候选集,作为目标SSB候选集。
对于1,选择第一SSB候选集与第二SSB候选集的开窗功耗量中较小一方的SSB候选集,作为目标SSB候选集,例如,如图6A所示,假设图6A中的SSB1~3分别为包含一个SSB的SSB候选集,且所对应的开窗功耗量关系为:SSB2(开窗功耗量最小)<SSB1<SSB3(开窗功耗量最大)。在一种可能的实现方式中,可以选择SSB1,由于SSB1(相当于第一SSB候选集)<SSB3(相当于第二SSB候选集);在又一种可能的实现方式中,可以选择SSB2,由于SSB2(相当于第一SSB候选集)<SSB1(相当于第二SSB候选集),也可以理解为,由于SSB2(相当于第一SSB候选集)<SSB3(相当于第二SSB候选集)。由此,根据SSB的开窗功耗量动态选择SSB候选集以进行接收,从而排除开窗功耗量最大的SSB候选集,以实现节省功耗的效果。
在一种可能的实现方式中,可以选择开窗功耗最小的SSB候选集作为目标SSB候选集。例如上例中,由于SSB2的开窗功耗最小,可以选取最小开窗功耗的SSB候选集作为目标SSB候选集更为优选。在此情况下,SSB2可以理解为第一SSB候选集,SSB1和SSB3皆可以理解为第二SSB候选集。由此,进一步提高节省功耗的效果。
对于2,从至少两个SSB候选集中选择开窗功耗量小于预设功耗阈值的SSB候选集,作为目标SSB候选集。例如,如图6A所示,假设图6A中的SSB1~3分别为包含一个SSB的SSB候选集,且所对应的开窗功耗量与预设功耗阈值a的关系为:SSB2(开窗功耗量最小)<SSB1<a<SSB3(开窗功耗量最大)。在一种可能的实现方式中,可以选择SSB1,由于SSB1<a;在又一种可能的实现方式中,可以选择SSB2,由于SSB2<a。由此,选择功耗量小于预设功耗阈值的SSB候选集作为目标SSB候选集。从而,兼顾了计算复杂度与节省功耗的双重技术效果。
一些实施例中,在确定了目标SSB候选集后,终端设备还可以执行以下步骤:
接收目标SSB候选集中的SSB,并基于目标SSB候选集中的SSB进行预同步处理或邻区测量处理。
可以理解的是,终端设备在确定了目标SSB候选集之后,可以基于目标SSB候选集进行功耗控制。即,终端设备可以基于目标SSB候选集划分的工作模式,接收目标SSB候选集中的SSB,并基于接收到的SSB进行预同步以接收寻呼消息,或者基于SSB进行邻区测量。在目标SSB候选集为预同步用SSB的情况下,终端设备在接收到目标SSB候选集中的 SSB后,可以根据该SSB进行预同步处理,并接收寻呼消息。在目标SSB为邻区测量用SSB的情况下,终端设备在接收到目标SSB候选集中的SSB后,可以根据该SSB进行邻区测量处理。
需要说明的是,终端设备可以通过DVFS技术,调整终端设备的运行频率和电压,使得终端设备处于不同的工作模式。
可以理解的是,本申请实施例提供的SSB的接收方法中,终端设备可以计算和比较每个SSB候选集对应的功耗量,从至少两个SSB候选集中动态选择功耗量较小的目标SSB候选集,从而基于目标SSB候选集进行功耗控制,如此,来降低终端设备的功耗,延长终端设备的待机时间。
基于前述实施例,参考图7所示,在本申请一实施例中,步骤110中确定至少两个SSB候选集可以通过以下方式实现:
步骤1101、获取多个选择条件;
步骤1102、从多个SSB候选集中,确定满足多个选择条件中每个选择条件的SSB候选集,得到至少两个SSB候选集。
可以理解的是,本申请实施例中的终端设备可以根据一定的选取规则,从多个SSB候选集中确定上述至少两个SSB候选集。
在一些实施例中,终端设备可以提前获取多个选择条件,从多个SSB候选集中确定满足每个选择条件的SSB候选集,得到上述至少两个SSB候选集。
示例性的,当需要确定出两个SSB候选集时,终端设备可以确定两个选择条件。这样,终端设备可以从多个SSB候选集中确定满足第一个选择条件的SSB候选集,得到一个SSB候选集,进而从多个SSB候选集中确定满足第二个选择条件的SSB候选集,得到第二个SSB候选集,如此,得到两个SSB候选集。例如,终端设备可以从多个SSB候选集中,选择时域位置与基准时域位置之间的时间间隔小于3毫秒的SSB候选集,得到一个SSB候选集;并从多个SSB中候选集,选择与时域位置与基准时域位置之间的时间间隔大于3毫秒的SSB候选集,得到另一SSB候选集。
在一些实施例中,多个选择条件可以为SSB候选集的时域位置与基准时域位置之间的时间间隔需要满足的条件。也就是说,终端设备可以根据所述SSB的时域位置与基准时域位置之间的时间间隔,确定所述至少两个SSB候选集。
这里,基准时域位置可以包括目标监听时机的时域位置,和/或,第一SSB的时域位置。该目标监听时机可以包括DRX机制中的寻呼监听时机,和/或,持续监听时机。该第一SSB是指终端设备确定的用于预同步的SSB。这里的寻呼监听时机可以包括PF、PO、或MO中的至少一个。
在一些实施例中,在SSB候选集为预同步用SSB候选集的情况下,基准时域位置为目标监听时机的时域位置;在SSB候选集为邻区测量用SSB候选集的情况下,基准时域位置为第一SSB的时域位置。
应理解,终端设备可以获取多个选择条件。该多个选择条件为SSB的时域位置与基准时域位置之间的时间间隔需要满足的条件。例如,选择条件可以是时间间隔大于某个阈值,或者小于某个阈值。
示例性的,在SSB候选集为预同步用SSB候选集场景下,第一个选择条件可以是SSB候选集的时域位置与目标监听时机的时域位置之间的间隔小于3毫秒,第二个选择条件可以是SSB候选集的时域位置与目标监听时机的时域位置之间的间隔大于或等于3毫秒。参考图6A所示,SSB1的时域位置与PO之间的时域位置小于3毫秒,SSB2的时域位置与PO之间的时域位置大于3毫秒。终端设备选择SSB1,第一SSB候选集,选择SSB2,作为第二SSB候选集。
在SSB候选集为邻区测量用SSB候选集场景下,第一个选择条件可以是第一SSB候选集的时域位置与SSB候选集的时域位置之间的间隔小于3毫秒,第二个选择条件可以是第二 SSB候选集的时域位置与SSB候选集的时域位置之间的间隔大于或等于3毫秒。参考图6B所示,SSB4的时域位置与PO之间的时域位置小于3毫秒,SSB5的时域位置与PO之间的时域位置大于3毫秒。终端设备可以选择SSB4,第一SSB候选集,选择SSB5,为第二SSB候选集。
也就是说,通过选择条件(即SSB候选集的时域位置与基准时域位置之间的时间间隔)确定出来的SSB候选集,其时域位置与基准时域位置之间的时间间隔不同。这样,终端设备根据SSB候选集划分的工作模式也就不同,从而不同的SSB候选集在预设时间段内的功耗量不同,使得终端设备可以从多个SSB候选集中,根据需要(兼顾复杂度与性能),动态选择功耗较优或最优的SSB候选集。
在一些实施例中,多个选择条件可以是预先设定好的条件。多个选择条件也可以是终端设备根据实际功耗需求,配置的条件。本申请实施例对此不做限定。
在本申请一实施例中,步骤1101中的多个选择条件可以与终端设备的多个选择条件一一对应;其中,终端设备在第一SSB候选集的时域位置与基准时域位置之间的时间间隔内的工作模式,与第一工作模式相同;第一SSB候选集是基于第一工作模式对应的选择条件确定的;第一工作模式为多个工作模式中的任意一个。
可以理解的是,终端设备可以根据其具有的工作模式,来设置选择条件。这样,终端设备根据该选择条件确定一SSB候选集。并且,终端设备在该SSB候选集的时域位置与目标实际位置之间的时间间隔上的工作模式,即为确定该SSB候选集的选择条件所对应的工作模式。
换句话说,终端设备可以根据其具有的工作模式,来确定SSB候选集,并且终端设备在该工作模式确定的SSB候选集的时域位置与基准时域位置之间的时间间隔内仍处于该工作模式。
在一些实施例中,每个工作模式对应的选择条件可以是预先设定好的,或者是预先配置的,每个工作模式的选择条件与终端设备的类型有关。
示例性的,终端设备的工作模式可以包括激活模式、浅睡模式和深睡模式等。其中,在激活模式下终端设备始终开启监听功能,接收网络设备传输的信号。在浅睡模式下,终端设备可以关闭部分监听功能。在该深睡模式下,终端设备关闭监听功能,不去监听网络设备发送的任何信号。
在一些实施例中,激活模式对应的第一选择条件可以为SSB候选集的时域位置与基准时域位置之间的时间间隔小于第一阈值。浅睡模式对应的第二选择条件可以包括SSB候选集的时域位置与基准时域位置之间的时间间隔大于或等于第一阈值,且小于第二阈值。深睡模式对应的第三选择条件可以包括SSB候选集的时域位置与基准时域位置之间的时间间隔大于或等于所述第一阈值。
在一些实施例中,第一阈值可以根据终端设备从激活模式切换为浅睡模式所需的最小切换时长确定;第二阈值可以根据终端设备从激活模式切换为深睡模式所需的最小切换时长确定,
在一些实施例中,第一阈值可以是终端设备从激活模式切换为浅睡模式所需的最小切换时长的两倍。也就是说,第一阈值可以是终端设备从激活模式切换为浅睡模式,以及从浅睡模式切换为激活模式所需的最小切换时长。
第二阈值可以是终端设备从激活模式切换为深睡模式所需的最小切换时长的两倍,第二阈值可以是终端设备从激活模式切换为深睡模式,以及从深睡模式切换为激活模式所需的最小切换时长。
可以理解的是,终端设备根据激活模式对应的第一选择条件,从SSB候选集中选择时域位置与基准时域位置之间的时间间隔小于第一阈值的SSB候选集,得到第一SSB候选集。也就是说,第一SSB候选集中的每个SSB的时域位置与基准时域位置之间的时间间隔都小于第一阈值。这里,在SSB候选集的时域位置与基准时域位置之间的时间间隔小于第一阈值 的情况下,终端设备无法在该时间间隔内进行从激活模式切换至浅睡模式,又从浅睡模式切换到激活模式,更无法从激活模式切换至深睡模式,并从深睡模式切换至激活模式(激活模式与深睡模式的切换需要更长的时间)。因此,终端设备在第一SSB候选集的时域位置与基准时域位置之间的时间间隔内处于激活模式,持续监听网络设备发送的信号。
另外,终端设备根据浅睡模式对应的第二选择条件,从SSB候选集中选择时域位置与基准时域位置之间的时间间隔第大于或等于第一阈值,且小于第二阈值的SSB候选集,得到第二SSB候选集。可以理解的是,第二SSB候选集中的每个SSB的时域位置与目标监时域位置之间的时间间隔均小于第二阈值,也就是说,终端设备无法在该时间间隔内从激活模式切换至深睡模式,并从深睡模式切换至激活模式。另外,第二SSB候选集中每个SSB的时域位置与基准时域位置之间的时间间隔均大于或等于第一阈值,也就是说,终端设备可以在该时间间隔内从激活模式切换至浅睡模式,并从浅睡模式切换到激活模式。因此,终端设备可以在该第二SSB候选集的时域位置与基准时域位置之间的时间间隔内处于浅睡模式,关闭部分监听功能,以降低功耗。
终端设备根据深睡模式对应的第三选择条件,从SSB候选集中选择时域位置与基准时域位置之间的时间间隔第大于或等于第二阈值的SSB候选集,得到第三SSB候选集。可以理解的是,第三SSB候选集中每个SSB的时域位置与目标监时域位置之间的时间间隔均大于或等于第二阈值,也就是说,终端设备可以在该时间间隔内从激活模式切换至深睡模式,并从深睡模式切换至激活模式。因此,终端设备可以在该第二SSB候选集的时域位置与基准时域位置之间的时间间隔内处于深睡模式,关闭全部监听功能,进一步降低功耗。
可以看出,根据工作模式确定出来的至少两个SSB候选集中,终端设备在不同的SSB候选集其时域位置与基准时域位置之间的工作模式就不同。如此,可以提高确定的至少两个SSB候选集的多样性和丰富性。
本申请一实施例中,参考图8所示,步骤120基于每个SSB候选集对应的开窗功耗时序,分别确定预设时间段内每个SSB候选集的功耗量之前,还可以执行以下步骤:
步骤140、基于每个SSB候选集的时域位置与基准时域位置之间的时间位置关系,确定终端设备在预设时间段内不同时域位置的工作模式;
步骤150、基于不同工作模式所需的功耗大小,确定终端设备在预设时间段内不同时域位置上的功耗大小,以得到每个SSB候选集对应的开窗功耗时序。
可以理解的是,终端设备在确定了多个SSB候选集后,可以根据每个SSB候选集的时域位置与基准时域位置之间的时间位置关系,为终端设备划分不同的工作模式。
在一种可能的实现方式中,在SSB候选集为预同步用SSB候选集场景下,终端设备可以根据每个预同步用SSB候选集的时域位置与目标监听时机的时域位置之间的位置关系,划分工作模式。其中,目标监听时机包括寻呼监听时机和/或持续监听时机。
终端设备可以确定预同步用SSB候选集,和目标监听时机在预设时间段内的分布情况,确定预同步用SSB候选集与目标监听时机所在的时域位置上为激活模式。根据预同步用SSB候选集的时域位置与目标监听时机的时域位置之间的时间间隔与第一阈值和第二阈值的关系,确定该预同步用SSB候选集在该时间间隔内的工作模式。即,若时间间隔小于第一阈值,则确定该预同步用SSB候选集在该时间间隔内的工作模式为激活模式,若时间间隔大于或等于第一阈值,且小于第二阈值,则确定该预同步用SSB候选集在该时间间隔内的工作模式为浅睡模式,若时间间隔大于或等于第二阈值,则确定该预同步用SSB候选集在该时间间隔内的工作模式为深睡模式。
此外,终端设备确定其他时域位置上处于深睡模式。如此,通过上述方式,为每个预同步用SSB候选集划分工作模式,可以得到每个预同步用SSB候选集对应的工作模式。
在一些实施例中,若预同步用SSB候选集是通过工作模式对应的选择条件确定的,则可以直接确定该预同步用SSB候选集的时域位置与目标监听时机时域位置之间的工作模式为该选择条件对应的工作模式。
示例性的,参考图6A所示,在确定SSB1作为第一预同步用SSB候选集的情况下,终端设备可以确定在SSB1的时域位置之前处于深睡模式,并在SSB1的时域位置起始时刻到达之前的某个时刻处,终端设备可以从深睡模式中醒来,并在SSB1的时域位置处进入激活模式,以接收SSB1。进一步,由于SSB1的时域位置与PF/PO/MO的时域位置之间的时间间隔较小,因此终端设备在预同步完成之后继续处于激活模式,直至PF/PO/MO结束。终端设备在PF/PO/MO结束后进入深睡模式。
在另一中可能的实现方式中,在SSB候选集为邻区测量用SSB候选集的场景下,终端设备可以根据第一SSB候选集的时域位置与每个邻区测量用SSB候选集的时域位置之间的时间间隔,划分工作模式。其中,第一SSB候选集是指终端设备确定的用于进行预同步的SSB候选集。
终端设备可以确定邻区测量用SSB候选集,和第一SSB候选集在预设时间段内的分布情况,确定邻区测量用SSB候选集与第一SSB候选集所在的时域位置上为激活模式。根据第一SSB候选集的时域位置与邻区测量用SSB候选集的时域位置之间的时间间隔与第一阈值和第二阈值的关系,确定该邻区测量用SSB候选集在该时间间隔内的工作模式。即,若时间间隔小于第一阈值,则确定该邻区测量用SSB候选集在该时间间隔内的工作模式为激活模式,若时间间隔大于或等于第一阈值,且小于第二阈值,则确定该邻区测量用SSB候选集在该时间间隔内的工作模式为浅睡模式,若时间间隔大于或等于第二阈值,则确定该邻区测量用SSB候选集在该时间间隔内的工作模式为深睡模式。
此外,终端设备确定其他时域位置上处于深睡模式。如此,通过上述方式,为每个邻区测量用SSB候选划分工作模式,可以得到每个邻区测量用SSB候选集对应的工作模式。
在一些实施例中,若预同步用SSB候选集是通过工作模式对应的选择条件确定的,则可以直接确定该预同步用SSB候选集的时域位置与目标监听时机时域位置之间的工作模式为该选择条件对应的工作模式。
示例性的,参考图6B所示,在确定SSB4作为第1邻区测量用SSB候选集的情况下,终端设备可以确定在第一SSB的时域位置之前处于深睡模式,并在第一SSB的时域位置起始时刻到达之前的某个时刻处,终端设备可以从深睡模式中醒来,并在第一SSB的时域位置处进入激活模式,以接收第一SSB进行预同步。进一步,由于第一SSB的时域位置与SSB4的时域位置之间的时间间隔较小,因此终端设备在预同步完成之后继续处于激活模式,直至接收到SSB4结束。并且,终端设备在接收到SSB4后进入深睡模式。
本申请实施例中,由于不同的工作模式对终端设备处理能力的需求不同,因此终端设备在不同的工作模式下的功耗也就不同。终端设备可以为基于每个工作模式对应的功耗大小,确定预设时间段内功耗时序。即在预设时间段内不同时域位置上终端设备的功耗大小,得到每个SSB的功耗时序。
需要说明的是,不同工作模式的功耗大小,可以是预先定义好的值,也可以是终端设备根据实际情况确定的值。本申请实施例对此不做限定。
示例性的,参考图6A所示,SSB1作为第1预同步用SSB候选集时,SSB1对应的开窗功耗时序可以参考图6A中的曲线61所示;SSB2作为第2预同步用SSB候选集时,SSB2对应的功耗时序可以参考图6A中的曲线62所示;SSB3作为第3预同步用SSB候选集时,SSB3对应的功耗时序可以参考图6A中的曲线63所示。
参考图6B所示,SSB4作为第1邻区测量用SSB候选集时,SSB4对应的功耗时序可以参考图6B中的曲线64所示;SSB5作为第2邻区测量用SSB候选集时,SSB5对应的功耗时序可以参考图6B中的曲线65所示;SSB6作为第3邻区测量用SSB候选集时,SSB6对应的功耗时序可以参考图6B中的曲线66所示。
在一些实施例中,步骤120中基于每个SSB候选集对应的开窗功耗时序,分别确定预设时间段内每个SSB候选集对应的功耗量,可以通过以下步骤实现:
基于每个SSB对应的功耗时序,分别确定所述预设时间段内每个SSB候选集对应的开 窗功耗曲线;
计算功耗曲线在时域轴上形成的封闭区域的面积,得到每个SSB候选集对应的功耗量。
在一种可能的实现方式中,终端设备可以每个SSB候选集对应的开窗功耗时序,即在预设时间段内不同时域位置处的功耗大小,来确定功耗曲线。
示例性的,参考图6A所示,SSB1对应的功耗曲线如图6A中的曲线61所示。SSB2对应的功耗曲线如图6A中的曲线62所示。SSB3对应的功耗曲线如图6A中的曲线63所示。
在一些实施例中,终端设备可以通过计算功耗曲线与时域轴组成封闭区域的面积,得到目标SSB候选集对应的功耗量。这里,终端设备可以通过积分方式,计算上述面积。
本申请一实施例中,还提供一种功耗控制方法。参考图9所示的流程示意图,本申请实施例提供的功耗控制方法可以包括以下步骤:
步骤901、终端设备确定进入空闲态。
步骤902、终端设备确定PF/PO/MO的时域位置。
这里,终端设备可以根据网络配置和终端设备的ID确定PF/PO的时域位置,或者根据当前所处的波束来计算MO的时域位置。
步骤903、终端设备确定多个预同步用SSB候选集。
这里,终端设备可以根据其具有的工作模式,确定多个预同步用SSB候选集。若终端设备有N种工作模式,则可以确定最多N个预同步用SSB候选集。
示例性的,终端设备可以包括三个工作模式:激活模式、浅睡模式、和深睡模式。终端设备可以确定三个工作模式分别对应的选择条件,基于三个选择条件来确定预同步用SSB候选集。
本申请实施例中,终端设备需要基于SSB候选集进行预同步处理,在预同步之后来接收寻呼消息。终端设备需要在PF/PO/MO的时域位置之前的多个SSB中确定多个预同步用SSB候选集。基于此,在该场景下,激活模式对应的第一选择条件可以为SSB候选集的时域位置与PF/PO/MO的时域位置之间的时间间隔小于第一阈值。浅睡模式对应的第二选择条件可以包括SSB候选集的时域位置与PF/PO/MO的时域位置之间的时间间隔大于或等于第一阈值,且小于第二阈值。深睡模式对应的第三选择条件可以包括SSB候选集的时域位置与PF/PO/MO的时域位置之间的时间间隔大于或等于所述第一阈值。
参考图6A所示,SSB1位于PF/PO/MO的时域位置之前,且SSB1的时域位置与PF/PO/MO的时域位置之间的时间间隔小于第一阈值,满足第一选择条件,则终端设备可以选择SSB1作为第一预同步候选集。其中,终端设备可以在接收SSB1进行预同步,预同步完成后,预同步完成后保持激活模式一直到寻呼消息接收完毕后进入深睡模式。
SSB2位于PF/PO/MO的时域位置之前,且SSB2的时域位置与PF/PO/MO的时域位置之间的时间间隔大于第一阈值,且小于第二阈值,满足第二选择条件。终端设备可以选择SSB2作为第二预同步候选集。其中,终端设备接收SSB2进行预同步,预同步完成后终端设备进入浅睡模式,直到PO/MO的时域位置,终端设备再进入激活模式接收寻呼消息,寻呼消息接收完毕后再进入深睡模式。
SSB3位于PF/PO/MO的时域位置之前,且SSB3的时域位置与PF/PO/MO的时域位置之间的时间间隔大于第二阈值,满足第三选择条件,终端设备可以选择SSB3作为第三预同步候选集。其中,终端设备可以接收SSB3进行预同步,预同步完成后立即进入深睡模式,直到PO/MO的时域位置再次醒来进入激活模式并接收寻呼消息,寻呼消息接收完毕后再进入深睡模式。
步骤904、终端设备确定多个预同步用SSB候选集分别对应的功耗量。
示例性的,SSB1(即第一预同步用SSB候选集)对应的功耗曲线如图6A中的曲线61所示。SSB2(即第二预同步用SSB候选集)对应的功耗曲线如图6A中的曲线62所示。SSB3(即第三预同步用SSB候选集)对应的功耗曲线如图6A中的曲线63所示。终端设备可以分别计算曲线61、曲线62和曲线63与时域轴构成的面积,得到上述3个预同步用SSB候 选集分别对应的功耗量。
步骤905、终端设备选择功耗量最低的预同步用SSB候选集,作为目标预同步用SSB候选集。
可以理解的是,经过功耗量的比较,终端设备可以动态选择一个最优的预同步。例如,SSB1对应的功耗量最低,终端设备可以选择SSB1作为目标预同步用SSB。这样,终端设备可以在接收SSB1进行预同步,预同步完成后,预同步完成后保持激活模式一直到寻呼消息接收完毕后进入深睡模式。
步骤906、终端设备判断是否进行邻区测量。
这里,若终端设备需要进行邻区测量,则执行步骤907,若不需要进行邻区测量则执行步骤910。
步骤907、终端设备确定多个邻区测量用SSB候选集。
与确定预同步用SSB候选集类似,终端设备可以根据其具有的工作模式,确定多个邻区测量用SSB候选集。若终端设备有N种工作模式,则可以确定最多N个邻区测量用SSB候选集。
示例性的,终端设备可以包括三个工作模式:激活模式、浅睡模式、和深睡模式。终端设备可以确定三个工作模式分别对应的选择条件,基于三个选择条件来确定邻区测量用SSB候选集。
本申请实施例中,终端设备需要基于SSB候选集进行邻区测量处理,而邻区测量需要在终端设备与网络设备同步的情况下完成。终端设备需要在第一SSB候选集的时域位置之后来确定一个用于进行邻区测量的SSB候选集。基于此,该场景下,激活模式对应的第四选择条件可以为第一SSB候选集的时域位置与SSB候选集的时域位置之间的时间间隔小于第一阈值。浅睡模式对应的第五选择条件可以为第一SSB候选集的时域位置与SSB候选集的时域位置之间的时间间隔大于或等于第一阈值,且小于第二阈值。深睡模式对应的第六选择条件可以为第一SSB候选集的时域位置与SSB候选集的时域位置之间的时间间隔大于或等于所述第一阈值。
参考图6B所示,SSB4位于第一SSB的时域位置之后,且第一SSB的时域位置与SSB4的时域位置之间的时间间隔小于第一阈值,满足上述第四选择条件。终端设备可以选择SSB4作为第一邻区测量用SSB候选集。其中,终端设备可以在第一SSB接收成功后,保持激活模式直到接收到SSB4进行邻区测量,邻区测量完成后进入深睡模式。
SSB5位于第一SSB的时域位置之后,且第一SSB的时域位置与SSB5的时域位置之间的时间间隔大于第一阈值,且小于第二阈值,满足上述第五选择条件。终端设备可以选择SSB5作为第二邻区测量用SSB候选集。其中,终端设备可以在第一SSB接收完毕之后进入浅睡模式,并在SSB5的时域位置处从浅睡模式进入激活模式,以接收SSB5进行邻区测量,邻区测量完成后进入深睡模式。
SSB6位于第一SSB的时域位置之后,且第一SSB的时域位置与SSB6的时域位置之间的时间间隔大于第二阈值,满足上述第六选择条件。终端设备可以选择SSB6作为第三邻区测量用SSB候选集。其中,终端设备可以在第一SSB接收完毕之后进入深睡模式,直到在SSB6的时域位置之前醒来,并在SSB6的时域位置进入激活模式,以接收SSB6进行邻区测量,邻区测量完成后进入深睡模式。
步骤908、终端设备确定多个邻区测量用SSB候选集分别对应的功耗量。
示例性的,SSB4(即第一邻区测量用SSB候选集)对应的功耗曲线如图6B中的曲线64所示。SSB5(即第二邻区测量用SSB候选集)对应的功耗曲线如图6B中的曲线65所示。SSB6(即第三邻区测量用SSB候选集)对应的功耗曲线如图6B中的曲线66所示。
终端设备可以分别计算曲线64、曲线765和曲线66与时域轴构成的面积,得到上述三个邻区测量用SSB候选集分别对应的功耗量。
步骤909、终端设备选择功耗量最低的邻区测量用SSB候选集,作为目标邻区测量用 SSB候选集。
可以理解的是,经过功耗量的比较,终端设备可以动态选择一个最优的邻区测量候选集。例如,SSB4对应的功耗量最低,终端设备可以选择SSB4作为目标邻区测量用SSB候选集。这样,终端设备可以在接收SSB4进行邻区测量,邻区测量完成后,保持激活模式一直到寻呼消息接收完毕后进入深睡模式。
步骤910、终端设备基于确定的目标预同步用SSB候选集,或者目标预同步用SSB候选集和目标邻区测量用SSB候选集,接收寻呼消息并进行邻区测量。
由此可见,本申请实施例提供的功耗控制方法中,终端设备可以基于目标监听时机,确定多个SSB候选集,每个SSB候选集对应不同的工作模式;这样,终端设备可以基于每个SSB候选集对应的工作模式,分别确定每个SSB对应的功耗量;进而从多个SSB候选集中,确定功耗量满足预设条件的SSB候选集,得到目标SSB候选集;最后,终端设备可以基于目标SSB候选集对应的工作模式,接收目标SSB候选集,以及在目标监听时机监听信号。也就是说,终端设备可以根据多个SSB候选集的功耗量,动态地选择合适的SSB候选集,基于选择的合适的SSB候选集进行功耗控制,从而降低终端设备的功耗,延长终端设备的待机时间。
本申请一实施例提供一SSB接收装置,该装置可以执行上述任意实施例所提供的SSB接收方法。另外,该装置可以作为终端设备,也可以是终端设备中用于进行功耗控制的芯片(例如调制解调器(Modem)、片上系统(SoC)等)。
图10为本申请实施例提供的SSB接收装置的结构示意图,如图10所示,该装置可以包括第一确定单元1001、第二确定单元1002、选取单元1003以及接收模块1004。通过或软件、或硬件、或软件与硬件相结合的方式,可以使第一确定单元1001、第二确定单元1002、选取单元1003以及接收模块1004实现如下功能。示例性的:
第一确定单元1001,被配置为确定至少两个SSB;
第二确定单元1002,被配置为基于每个SSB对应的开窗功耗时序,分别确定预设时间段内每个SSB对应的功耗量;所述开窗功耗时序表征终端设备在所述预设时间段内不同时域位置上的功耗大小;
选取单元1003,被被配置为根据每个SSB候选集对应的功耗量,从多个SSB候选集中选择功耗量满足预设条件的SSB候选集,得到目标SSB候选集。
在一些实施例中,预设条件包括以下中的任意一项:
1,从至少两个SSB候选集中选择开窗功耗量不为最大值的SSB候选集,作为目标SSB候选集;以及,
2,从至少两个SSB候选集中选择开窗功耗量小于预设功耗阈值的SSB候选集,作为目标SSB候选集。
对于1,选择第一SSB候选集与第二SSB候选集的开窗功耗量中较小一方的SSB候选集,以作为目标SSB候选集,例如,如图6A所示,假设图6A中的SSB1~3分别为包含一个SSB的SSB候选集,且所对应的开窗功耗量关系为:SSB2(开窗功耗量最小)<SSB1<SSB3(开窗功耗量最大)。在一种可能的实现方式中,可以选择SSB1,由于SSB1(相当于第一SSB候选集)<SSB3(相当于第二SSB候选集);在又一种可能的实现方式中,可以选择SSB2,由于SSB2(相当于第一SSB候选集)<SSB1(相当于第二SSB候选集),也可以理解为,由于SSB2(相当于第一SSB候选集)<SSB3(相当于第二SSB候选集)。由此,根据SSB的开窗功耗量动态选择SSB候选集以进行接收,从而排除开窗功耗量最大的SSB候选集,以实现节省功耗的效果。
在一种可能的实现方式中,可以选择开窗功耗最小的SSB候选集作为目标SSB候选集。例如上例中,由于SSB2的开窗功耗最小,可以选取最小开窗功耗的SSB候选集作为目标SSB候选集更为优选。在此情况下,SSB2可以理解为第一SSB候选集,SSB1和SSB3皆可以理解为第二SSB候选集。由此,进一步提高节省功耗的效果。
对于2,从至少两个SSB候选集中选择开窗功耗量小于预设功耗阈值的SSB候选集,作为目标SSB候选集。例如,如图6A所示,假设图6A中的SSB1~3分别为包含一个SSB的SSB候选集,且所对应的开窗功耗量与预设功耗阈值a的关系为:SSB2(开窗功耗量最小)<SSB1<a<SSB3(开窗功耗量最大)。在一种可能的实现方式中,可以选择SSB1,由于SSB1<a;在又一种可能的实现方式中,可以选择SSB2,由于SSB2<a。由此,选择功耗量小于预设功耗阈值的SSB候选集作为目标SSB候选集。从而,兼顾了计算复杂度与节省功耗的双重技术效果。
接收模块1004,被配置为接收目标SSB候选集中的SSB,并基于目标SSB候选集中的SSB进行预同步处理或邻区测量处理。其中,目标SSB候选集中可以包括一个以上的SSB,本申请对SSB的个数不做局限,本领域技术人员可根据实际需求进行设置。
在一些实施例中,第一确定单元1001,还被配置为获取多个选择条件;所述多个选择条件为SSB的时域位置与基准时域位置之间的时间间隔需要满足的条件;从多个SSB中,确定满足所述多个选择条件中每个选择条件的SSB,得到所述至少两个SSB。
在一些实施例中,所述多个选择条件与所述终端设备的多个工作模式一一对应;
其中,所述终端设备在目标SSB候选集的时域位置与所述基准时域位置之间的时间间隔内的工作模式,与目标工作模式相同;所述目标SSB候选集是基于所述目标工作模式对应的选择条件确定的;所述目标工作模式为所述多个工作模式中的任意一个。
在一些实施例中,所述多个工作模式包括激活模式、浅睡模式和深睡模式;
其中,所述激活模式对应的第一选择条件包括SSB的时域位置与所述基准时域位置之间的时间间隔小于第一阈值;所述第一阈值根据所述终端设备从所述激活模式切换为所述浅睡模式所需的最小切换时长确定;
所述浅睡模式对应的第二选择条件包括SSB的时域位置与所述基准时域位置之间的时间间隔大于或等于所述第一阈值,且小于所述第二阈值;所述第二阈值根据所述终端设备从所述激活模式切换为所述深睡模式所需的最小切换时长确定;
在一些实施例中,所述深睡模式对应的第三选择条件包括SSB的时域位置与所述基准时域位置之间的时间间隔大于或等于所述第一阈值。
在一些实施例中,所述SSB为预同步用SSB,所述预同步用SSB用于实现所述终端设备与网络设备之间的预同步;
或者,所述SSB为邻区测量用SSB;所述邻区测量用SSB用于实现所述终端设备的邻区测量。
在一些实施例中,在所述SSB为预同步用SSB的情况下,所述基准时域位置为目标监听时机的时域位置;所述目标监听时机包括寻呼监听时机(MO)和/或持续监听时机(C-DRX on-duration)。
在一些实施例中,在所述SSB为邻区测量用SSB的情况下,所述基准时域位置为第一SSB的时域位置,所述第一SSB是指终端设备确定的用于进行预同步的SSB。
在一些实施例中,第二确定单元1002,还被配置为基于每个SSB的时域位置与基准时域位置之间的时间位置关系,确定所述终端设备在所述预设时间段内不同时域位置的工作模式;基于不同工作模式所需的功耗大小,确定所述终端设备在所述预设时间段内不同时域位置上的功耗大小,以得到所述每个SSB对应的功耗时序。
在一些实施例中,第二确定单元1002,还被配置为基于每个SSB对应的功耗时序,分别确定所述预设时间段内每个SSB对应的功耗曲线;计算所述功耗曲线在时域轴上形成的封闭区域的面积,得到每个SSB对应的功耗量。
在一些实施例中,所述预设条件包括以下中的至少一项:
所述至少两个SSB中任一SSB的功耗量,为所述至少两个SSB对应的功耗量的最小值;
所述至少两个SSB中任一SSB的功耗量小于预设功耗阈值。
本领域技术人员应当理解,本申请实施例的上述确定SSB接收装置的相关描述可以参照 本申请实施例的SSB接收方法的相关描述进行理解。
基于前述实施例,本申请实施例还提供一种通信设备,该通信设备可以是终端设备,也可以是终端设备中用于进行功耗控制的芯片(例如Modem、system on chip等)。图11是本申请实施例提供的一种通信设备示意性结构图。该通信设备可以终端设备,也可以是网络设备。图11所示的通信设备包括处理器1110,处理器1110可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图11所示,通信设备1100还可以包括存储器1120。其中,处理器1110可以从存储器1120中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1120可以是独立于处理器1110的一个单独的器件,也可以集成在处理器1110中。
可选地,如图11所示,通信设备还可以包括收发器1130,处理器1110可以控制该收发器1130与其他设备进行通信,其中,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1130可以包括发射机和接收机。收发器1130还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备1100具体可为本申请实施例的终端设备,并且该通信设备1100可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也 就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机存储介质,具体为计算机可读存储介质。其上存储有计算机指令,在计算机存储介质位于电子设备制作装置时,该计算机指令被处理器执行时实现本申请实施例上述SSB接收方法中的任意步骤。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。在本申请的一些实施例中,该计算机程序产品可应用于实现本申请实施例上述SSB接收方法中的任意步骤,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。在本申请的一些实施例中,该计算机程序可应用于实现本申请实施例上述SSB接收方法中的任意步骤,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (18)

  1. 一种SSB接收方法,从至少两个SSB候选集中选取至少一个SSB候选集,作为目标SSB候选集,所述至少两个SSB候选集包含第一SSB候选集与第二SSB候选集,包括:
    选取对所述第一SSB候选集进行开窗的功耗量与对所述第二SSB候选集进行开窗的功耗量中小的一方的SSB候选集,以作为所述目标SSB候选集;
    或者,从所述至少两个SSB候选集中选取进行开窗的功耗量小于功耗量阈值的SSB候选集,以作为目标SSB候选集,
    接收所述目标SSB候选集中包含的SSB。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    从多个SSB中,根据所述SSB的时域位置与基准时域位置之间的时间间隔,确定所述至少两个SSB候选集。
  3. 根据权利要求1所述的方法,其中,所述方法还包括:
    基于所述SSB候选集的时域位置与基准时域位置,确定对所述SSB候选集进行开窗的功耗量。
  4. 根据权利要求1-3任一项所述的方法,其中,所述SSB候选集为预同步用SSB候选集,所述预同步用SSB候选集用于预同步;
    或者,所述SSB候选集为邻区测量用SSB候选集,所述邻区测量用SSB候选集用于邻区测量。
  5. 根据权利要求2或3所述的方法,其中,所述基准时域位置为监听时机的时域位置,所述监听时机包括寻呼监听时机和/或持续监听时机。
  6. 根据权利要求1-3任一项所述的方法,其中,所述方法还包括:
    基于所述SSB候选集对应的开窗功耗时序,确定所述SSB候选集对应的开窗功耗曲线,所述开窗功耗时序用于表征终端设备在不同时域位置上用于对所述SSB候选集进行开窗的电压或电流的大小;
    对所述功耗曲线进行时域积分,获得对所述SSB候选集进行开窗的功耗量。
  7. 根据权利要求1-3任一项所述的方法,其中,所述方法还包括:
    利用所述目标SSB候选集中的SSB,进行预同步处理或邻区测量处理。
  8. 根据权利要求7任一项所述的方法,其中,所述目标SSB候选集包含一个以上的SSB。
  9. 一种通信装置,利用权利要求1至8中任一项所述的SSB接收方法,接收所述目标SSB候选集所包含的SSB。
  10. 一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现权利要求1至8任一项所述的SSB接收方法的步骤。
  11. 一种SSB接收装置,从至少两个SSB候选集中选取至少一个SSB候选集,以作为目标SSB候选集,所述至少两个SSB候选集包含第一SSB候选集与第二SSB候选集,所述接收装置包括:
    选取模块,被配置为选取对所述第一SSB候选集进行开窗的功耗量与对所述第二SSB候选集进行开窗的功耗量中小的一方的SSB候选集,以作为所述目标SSB候选集;或者,从所述至少两个SSB候选集中选取进行开窗的功耗量小于功耗量阈值的SSB候选集,以作为目标SSB候选集;
    接收模块,被配置为接收所述目标SSB候选集中包含的SSB。
  12. 根据权利要求11所述的装置,其中,还包括:
    第一确定单元,被配置为从多个SSB中,根据所述SSB的时域位置与基准时域位置之间的时间间隔,确定所述至少两个SSB候选集。
  13. 根据权利要求11所述的装置,其中,还包括:
    第二确定单元,被配置为基于所述SSB候选集的时域位置与基准时域位置,确定对所述SSB候选集进行开窗的功耗量。
  14. 根据权利要求11-13任一项所述的装置,其中,所述SSB候选集为预同步用SSB候选集,所述预同步用SSB候选集用于预同步;
    或者,所述SSB候选集为邻区测量用SSB候选集,所述邻区测量用SSB候选集用于邻区测量。
  15. 根据权利要求12或13所述的装置,其中,所述基准时域位置为监听时机的时域位置,所述监听时机包括寻呼监听时机和/或持续监听时机。
  16. 根据权利要求11-15任一项所述的装置,其中,所述目标SSB候选集包含一个以上的SSB。
  17. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得权利要求1至8中任一项所述的SSB候选集选取方法被执行。
  18. 一种计算机程序,所述计算机程序使得权利要求1至8中任一项所述的SSB候选集的选取方法被执行。
PCT/CN2022/125708 2021-10-30 2022-10-17 Ssb接收方法及装置、通信设备、存储介质、程序、及程序产品 WO2023071849A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111278095.X 2021-10-30
CN202111278095.XA CN113993198A (zh) 2021-10-30 2021-10-30 Ssb接收方法及接收装置、通信设备、存储介质

Publications (1)

Publication Number Publication Date
WO2023071849A1 true WO2023071849A1 (zh) 2023-05-04

Family

ID=79745007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125708 WO2023071849A1 (zh) 2021-10-30 2022-10-17 Ssb接收方法及装置、通信设备、存储介质、程序、及程序产品

Country Status (2)

Country Link
CN (1) CN113993198A (zh)
WO (1) WO2023071849A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114007254A (zh) * 2021-10-30 2022-02-01 哲库科技(北京)有限公司 Ssb开窗方法及装置、通信设备、存储介质
CN113993198A (zh) * 2021-10-30 2022-01-28 Oppo广东移动通信有限公司 Ssb接收方法及接收装置、通信设备、存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200029345A1 (en) * 2018-07-17 2020-01-23 Qualcomm Incorporated Wireless transceiver calibration opportunities
CN111200868A (zh) * 2018-11-16 2020-05-26 三星电子株式会社 用于接收参考信号的方法及其电子装置
CN111770525A (zh) * 2020-06-19 2020-10-13 Oppo广东移动通信有限公司 一种邻区测量装置、终端以及邻区测量方法
CN112740828A (zh) * 2018-09-21 2021-04-30 株式会社Ntt都科摩 用户装置及基站装置
CN113993198A (zh) * 2021-10-30 2022-01-28 Oppo广东移动通信有限公司 Ssb接收方法及接收装置、通信设备、存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111294851B (zh) * 2019-02-20 2022-10-25 展讯通信(上海)有限公司 寻呼监听方法及装置、存储介质、终端
US11638203B2 (en) * 2020-02-20 2023-04-25 Qualcomm Incorporated Differentiating between synchronization signal block transmission in a licensed operating mode and an unlicensed operating mode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200029345A1 (en) * 2018-07-17 2020-01-23 Qualcomm Incorporated Wireless transceiver calibration opportunities
CN112740828A (zh) * 2018-09-21 2021-04-30 株式会社Ntt都科摩 用户装置及基站装置
CN111200868A (zh) * 2018-11-16 2020-05-26 三星电子株式会社 用于接收参考信号的方法及其电子装置
CN111770525A (zh) * 2020-06-19 2020-10-13 Oppo广东移动通信有限公司 一种邻区测量装置、终端以及邻区测量方法
CN113993198A (zh) * 2021-10-30 2022-01-28 Oppo广东移动通信有限公司 Ssb接收方法及接收装置、通信设备、存储介质

Also Published As

Publication number Publication date
CN113993198A (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
WO2023071849A1 (zh) Ssb接收方法及装置、通信设备、存储介质、程序、及程序产品
US20220022281A1 (en) Method and apparatus for controlling terminal to receive information, and terminal
US10805885B2 (en) Wake-up method and device
US20220132422A1 (en) Wake-up method and apparatus, storage medium and terminal
TWI626856B (zh) 喚醒信號發送與接收之方法、存取點以及Wi-Fi裝置
WO2020019187A1 (zh) 一种信道监听方法及装置、终端设备、网络设备
US20210014786A1 (en) Signal transmission method and device
WO2018149348A1 (zh) 一种发送信息的方法和装置及接收信息的方法和装置
WO2020025061A1 (zh) 传输信号的方法、终端设备和网络设备
WO2020000269A1 (zh) 传输信号的方法、网络设备和终端设备
JP6957644B2 (ja) 無線通信方法及びデバイス
WO2020001123A1 (zh) 一种下行控制信道的检测方法及装置、终端设备
US20220132426A1 (en) Method and apparatus for entering sleep mode, storage medium and user equipment
US12021783B2 (en) Information transmission method, terminal device and network device
WO2020087292A1 (zh) 无线通信方法、终端设备和网络设备
WO2020019756A1 (zh) 一种传输资源确定方法及装置、终端设备
WO2021081918A1 (zh) 无线通信方法、终端设备和网络设备
WO2023071851A1 (zh) Ssb开窗方法及装置、通信设备、存储介质、程序、及程序产品
WO2023071850A1 (zh) Ssb候选集的选取方法、通信装置、通信设备、存储介质、程序、及程序产品
US20220086949A1 (en) Signal reception method and terminal device
WO2023071846A1 (zh) 接收ssb的方法、装置、通信设备、存储介质、程序及程序产品
WO2023071844A1 (zh) 接收ssb的方法、装置、通信设备、存储介质、程序及程序产品
WO2021087987A1 (zh) 无线通信方法、终端设备和网络设备
WO2020164143A1 (zh) 非连续接收的方法、终端设备和网络设备
TWI813728B (zh) 一種訊號傳輸方法及適用該方法的裝置、網路設備及終端設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE