WO2023071814A1 - 柔性折叠光伏组件及其制备方法 - Google Patents

柔性折叠光伏组件及其制备方法 Download PDF

Info

Publication number
WO2023071814A1
WO2023071814A1 PCT/CN2022/125092 CN2022125092W WO2023071814A1 WO 2023071814 A1 WO2023071814 A1 WO 2023071814A1 CN 2022125092 W CN2022125092 W CN 2022125092W WO 2023071814 A1 WO2023071814 A1 WO 2023071814A1
Authority
WO
WIPO (PCT)
Prior art keywords
folding
flexible
photovoltaic
photovoltaic cell
foldable
Prior art date
Application number
PCT/CN2022/125092
Other languages
English (en)
French (fr)
Inventor
黄耀纶
Original Assignee
中能创光电科技(常州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中能创光电科技(常州)有限公司 filed Critical 中能创光电科技(常州)有限公司
Priority to EP22885693.6A priority Critical patent/EP4418534A1/en
Publication of WO2023071814A1 publication Critical patent/WO2023071814A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • H02S30/20Collapsible or foldable PV modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to the field of photovoltaic technology, in particular to a flexible foldable photovoltaic module and a preparation method thereof.
  • New photovoltaic application scenarios put forward higher requirements for improving the photoelectric conversion efficiency of photovoltaic products, thereby increasing the power generation per unit area.
  • Group III and five compound batteries (GaAs), stacked and multi-junction batteries (Tandem) occupy a small number of special application markets that require high component efficiency and high price tolerance.
  • GaAs Group III and five compound batteries
  • Tandem stacked and multi-junction batteries
  • the photoelectric conversion efficiency of these products is far ahead of ordinary modules.
  • the efficiency of ordinary modules is between 20-22%, and the conversion efficiency of these special products can reach more than 30%.
  • the high price of these products also limits the application of these high-efficiency photovoltaic products.
  • Ciura folding frame discloses a folding solar power generation device, an emergency power supply system and a mobile power vehicle, including a Miura folding frame, a plurality of photovoltaic panels and a drive mechanism for driving the Miura folding frame, and a plurality of photovoltaic panels are installed on Unfold and fold on the Miura folding stand.
  • Cisokawa patent document CN206977375U discloses a hinged photovoltaic module, which includes more than two rectangular bottom plates with solar cell chips, and the bottom plates in the longitudinal direction are connected by hinges to realize the foldable photovoltaic module.
  • the photovoltaic cell to be folded is not a whole photovoltaic module, and the installation and cost of the whole device are very high.
  • Chinese patent CN102945873A discloses a multi-dimensional folded flexible solar cell module and its manufacturing method.
  • the photovoltaic cell in the module is a flexible photovoltaic cell, specifically an amorphous silicon thin film solar cell, and a local protective layer is added to protect the flexible photovoltaic cell. .
  • the protective layer is arranged above the corresponding photovoltaic cells in the layout step, because the protective layer is sliced, which is not conducive to the automatic production of components, the production cost is high, and it is not conducive to mass production .
  • the technical problem to be solved by the present invention is to provide a flexible foldable photovoltaic module and its preparation method to reduce the production cost of the flexible module.
  • a flexible foldable photovoltaic module including a flexible packaging structure and a hard protection plate and a photovoltaic cell layer packaged in the flexible packaging structure, and the hard protection plate is used to protect the photovoltaic cells
  • the photovoltaic cells in the layer provide protection, and there are flexible fold lines on the hard protection plate, which are used to make the flexible foldable photovoltaic module flexibly fold along the flexible fold line.
  • the flexible foldable photovoltaic module is divided into multiple folding units through the flexible fold line, and the photovoltaic cell layer The photovoltaic cells are located within each folding unit.
  • the folding angle can be customized according to the environment. Generally, the folding angle A is 50-70 degrees.
  • the flexible foldable photovoltaic module also includes a component frame around the encapsulation structure, which is used to maintain the folding angle A between adjacent folding units;
  • a rigid backplane on the back of the flexible packaging structure is also included, which is used to maintain the folding angle A between adjacent folding units;
  • a module folding and unfolding mechanism is also included, which is used to adjust the folding angle A between adjacent folding units by unfolding or folding the flexible and foldable photovoltaic module.
  • the portion of the flexible packaging structure corresponding to the flexible fold line has a folding stress, which is used to make the folding unit fold along the flexible fold line to a preset folding direction under the action of the folding stress.
  • the flexible fold line on the hard protection plate is specifically composed of discontinuous points and/or discontinuous lines; or, the flexible fold line on the hard protection plate is specifically a thinned area of the hard protection plate.
  • the photovoltaic cells in adjacent folding units are interconnected through flexible conductors, and the flexible conductors are metal foil conductive tapes, conductive paste tapes or flexible cables.
  • the flexible foldable photovoltaic module is folded using a Miura folding structure, and the folding unit is a parallelogram.
  • the shape of the photovoltaic cell in the folding unit is the same as that of the folding unit, specifically a single parallelogram photovoltaic cell.
  • the flexible foldable photovoltaic module is folded using a w-folding structure; or, a combined w-folding structure is used for folding, and the combined w-folding structure is composed of at least 3 w-folding segments, and adjacent w-folding segments are opposite to each other.
  • the folding units of the w-folding segments located at both ends are triangular, and the folding units of each w-folding segment located in the middle area are trapezoidal.
  • the shape of the photovoltaic cell in the trapezoidal folding unit is the same as that of the folding unit, and is composed of at least one rectangular photovoltaic cell and two right-angled trapezoidal photovoltaic cells.
  • the rectangular photovoltaic cells are arranged in a line to form the main part of the rectangle.
  • Two right-angled trapezoidal photovoltaic cells are located on both sides of the rectangular main body to form a trapezoidal photovoltaic cell.
  • the flexible packaging structure includes a flexible panel layer, an adhesive layer, and a flexible backsheet layer.
  • the layer structure of the flexible foldable photovoltaic module from top to bottom is: a flexible panel layer, an adhesive layer, a hard protective plate, an adhesive layer , photovoltaic cell layer, adhesive layer and flexible backplane layer, the hard protective plate is glass, acrylic, glass fiber cloth or fiber reinforced composite material, the flexible panel layer and flexible backplane layer are ETFE, TPO, PET, nylon or their of composite materials.
  • a method for preparing the above-mentioned flexible foldable photovoltaic module Before the module is laminated, the hard protection board is patterned to form flexible folding lines on the hard protection board, and then the flexible packaging structure, the hard protection board, Photovoltaic cells are typesetting, and after typesetting, enter the laminator to complete the module lamination.
  • the hard protection sheet is patterned by mechanical cutting, punching or laser means.
  • the flexible packaging structure is processed, and a folding stress is formed at the position corresponding to the flexible folding line of the flexible packaging structure, so that the folding unit can be folded along the flexible folding line to a preset folding direction under the action of the folding stress. fold.
  • the flexible packaging structure is processed to form folding stress at the position corresponding to the flexible folding line of the flexible packaging structure.
  • the specific method of forming folding stress is: through laser, hot pressing, ray scanning, and patterned polymer doping One or a combination of methods to process the flexible packaging structure.
  • the photovoltaic cells are sliced into small photovoltaic cells through a slicing process, and a small battery string composed of small photovoltaic cells is obtained for subsequent Component typography.
  • a small parallelogram photovoltaic cell is obtained as a photovoltaic cell in the photovoltaic cell layer of a flexible foldable photovoltaic module that adopts a Miura folding structure: The line from the center to the vertex is the slice line for trisecting;
  • a rectangular photovoltaic cell and a right-angled trapezoidal photovoltaic cell are obtained as a photovoltaic cell in a trapezoidal folding unit, and the shape of the photovoltaic cell in the trapezoidal folding unit is the same as that of the folding unit, specifically consisting of at least one rectangular Composed of photovoltaic cells and two right-angled trapezoidal photovoltaic cells, the rectangular photovoltaic cells are arranged in a line to form the main part of the rectangle, and the two right-angled trapezoidal photovoltaic cells are located on both sides of the main part of the rectangle, forming a trapezoidal photovoltaic cell: a regular dodecagon
  • the large photovoltaic cell takes the four connecting lines between the vertices as the slicing line to be divided into a small square photovoltaic cell in the middle and four small isosceles trapezoidal photovoltaic cells around it, and the small square photovoltaic cell in the middle is divided into rectangular photovoltaic cells, etc.
  • the beneficial effect of the present invention is that: the design of the flexible folding line of the present invention enables the hard protection board to be folded while still being a whole piece before lamination, which facilitates automatic operation, greatly improves the production efficiency of components, and reduces production costs.
  • the design of the folding angle A between adjacent folding units can greatly improve the efficiency of the module: on the basis of not changing the structure of the photovoltaic cell, through the innovation of the module technology, the unit receives light
  • the photoelectric conversion efficiency of modules with a smaller area has been greatly improved, quickly meeting the high-efficiency market demand.
  • the technology of the present invention can greatly improve the photoelectric conversion efficiency of its photovoltaic module products.
  • the design of the present invention is not only beneficial to increase the power generation at vertical incidence, but also helps to increase the power generation at morning and evening tilt angles, thereby reducing the cost of photovoltaic power generation.
  • the storage space of the components can be greatly reduced, reducing logistics and storage costs. It can also reduce the installation and maintenance costs of the components. The installation is quick and easy, and the maintenance can even be folded and rolled for cleaning without going to the roof.
  • Fig. 1 is the preparation flowchart of embodiment 1 of the present invention
  • FIG. 2 is a schematic structural view of a patterned hard protection plate according to Embodiment 1 of the present invention.
  • Fig. 3 is a schematic diagram of the folding structure of the photovoltaic module according to Embodiment 1 of the present invention.
  • Fig. 4 is a schematic diagram showing the unfolded structure of the photovoltaic cell layer according to Embodiment 1 of the present invention.
  • Fig. 5 is a schematic structural diagram of a flexible folding line according to Embodiment 1 of the present invention.
  • Fig. 6 is a schematic structural view of the cutting die forming the flexible fold line in Fig. 5 of the present invention.
  • FIG. 7 is a schematic diagram of forming folding stress by laser in Embodiment 1 of the present invention.
  • Fig. 8 is the schematic diagram that the present invention carries out simulation test
  • Fig. 9 is a schematic diagram of the unfolded structure of the photovoltaic module according to Embodiment 4 of the present invention.
  • FIG. 10 is a schematic structural view of a patterned hard protection plate according to Embodiment 6 of the present invention.
  • Fig. 11 is a schematic diagram of the folding structure of the photovoltaic module according to Embodiment 6 of the present invention.
  • FIG. 12 is a schematic structural view of a patterned hard protection plate according to Embodiment 7 of the present invention.
  • Fig. 13 is a schematic diagram of the folded structure of the photovoltaic module according to Embodiment 7 of the present invention.
  • Fig. 14 is a schematic diagram of obtaining a rectangular photovoltaic cell by slicing a square photovoltaic cell in the present invention.
  • Fig. 15 is a schematic diagram of a small parallelogram photovoltaic cell obtained by slicing a regular hexagonal photovoltaic cell in the present invention.
  • Fig. 16 is a schematic diagram of a small photovoltaic cell obtained by slicing a regular hexagonal photovoltaic cell in the present invention.
  • Fig. 17 is a schematic diagram of the photovoltaic cells in the trapezoidal folding unit composed of small photovoltaic cells obtained in Fig. 16;
  • a flexible foldable photovoltaic module includes a flexible packaging structure and a hard protection plate 10 and a photovoltaic cell layer encapsulated in the flexible packaging structure, and the hard protection plate 10 It is used to protect the photovoltaic cells 3 in the photovoltaic cell layer.
  • the hard protective plate 10 has a flexible fold line 1, which is used to make the flexible foldable photovoltaic module flexible along the flexible fold line 1.
  • the flexible foldable photovoltaic module passes through the flexible fold line 1. Divided into a plurality of folding units 2 , the photovoltaic cells 3 of the photovoltaic cell layer are located in each folding unit 2 .
  • the flexible foldable photovoltaic module also includes a component outer frame around the packaging structure, used to maintain the folding angle A between adjacent folding units 2; Folding angle A between adjacent folding units 2.
  • the flexible fold line 1 on the hard protection plate 10 is specifically composed of discontinuous points and/or discontinuous lines.
  • the portion of the flexible packaging structure corresponding to the flexible fold line 1 has a folding stress, which is used to make the folding unit 2 fold along the flexible fold line 1 in a predetermined folding direction under the action of the folding stress.
  • the photovoltaic cells 3 in adjacent folding units 2 are interconnected through flexible conductors 4, and the flexible conductors 4 are metal foil conductive tapes, conductive paste tapes or flexible cables.
  • the flexible cable is FFC cable, FPC cable or PTF cable.
  • the folding unit 2 adopts a w-folding structure for folding, the folding unit 2 is rectangular, the folding direction is the width direction of the folding unit 2, and the folding units 2 are arranged side by side along the folding direction.
  • the shape of the photovoltaic cells 3 in the folding unit 2 is the same as that of the folding unit 2, and consists of a plurality of rectangular photovoltaic cells 3 arranged in a line along the length direction.
  • the rectangular photovoltaic cell 3 is a small photovoltaic cell obtained by slicing a large square photovoltaic cell.
  • the flexible packaging structure includes a flexible panel layer, an adhesive layer, and a flexible backsheet layer.
  • the layer structure of the flexible foldable photovoltaic module from top to bottom is: flexible panel layer, adhesive layer, hard protection sheet 10, adhesive layer, photovoltaic Cell layer, adhesive layer and flexible backsheet layer.
  • the hard protection board 10 is made of glass, acrylic, glass fiber cloth or fiber reinforced composite material, and the flexible panel layer and flexible backboard layer are made of ETFE, TPO, PET, nylon or their composite materials.
  • the specific method for processing the flexible packaging structure and forming the folding stress at the position corresponding to the flexible folding line 1 of the flexible packaging structure is: one or a combination of laser, hot pressing, ray scanning, and patterned polymer doping methods Processing of flexible packaging structures.
  • the step of forming the folding stress is located after the lamination step, and the flexible packaging structure is processed after the assembly is laminated, and the corresponding flexible folding line 1 of the flexible packaging structure Folding stress is formed at the position of the folding stress, which is used to make the folding unit 2 fold along the flexible folding line 1 to a preset folding direction under the action of the folding stress.
  • the step of forming the folding stress is located before the lamination step.
  • the photovoltaic cells 3 are divided into small photovoltaic cells through a slicing process to obtain a small battery string composed of small photovoltaic cells for subsequent components. typesetting.
  • Example 1 takes a 210mm square silicon wafer using a conventional slicing method and slices a PERC or TOPCON high-efficiency square photovoltaic large cell prepared according to a conventional cell process as an example to further illustrate Example 1:
  • the preparation method of the flexible foldable photovoltaic module of this embodiment 1 has the following steps:
  • each square photovoltaic cell 3 in the battery string is cut into 10 small rectangular photovoltaic cells of 21*210mm to obtain a small battery string composed of small rectangular photovoltaic cells.
  • the direction of laser slicing and the welding ribbon 5 direction parallel.
  • Patterning of the hard protection board 10 the fiber reinforced composite material (FRP) obtained by composite hot pressing of acrylic and glass fiber is used as the hard protection board 10, and the upper cutting die 6-1 and the lower cutting die are adopted as shown in FIG. 6
  • the mechanical punching and shearing tool composed of the mold 6-2 performs mechanical punching and shearing processing on the hard protection plate 10, realizes the patterning of the hard protection plate 10, and forms a flexible fold line 1 on the hard protection plate 10.
  • the flexible fold line 1 is specifically formed by breaking continuous dots and/or broken lines, as shown in Figure 5.
  • Typesetting first lay a flexible backplane layer on the typesetting workbench, then lay an adhesive layer, and lay flexible conductors 4 and small battery strings on the adhesive layer, each small battery string is located in a folding unit 2, The distance between the small battery strings is 3 mm, and the two ends of the small battery strings are connected by flexible conductors 4 to form electrically connected photovoltaic cell layers.
  • the bonding layer, the hard protection board 10, the bonding layer, and the flexible panel layer are sequentially laid on the photovoltaic cell layer to complete the typesetting of the components.
  • the flexible panel layer is specifically an ETFE film layer
  • the adhesive layer is specifically an EVA adhesive layer.
  • Example 1 The components in Example 1 are folded using a w-folding structure.
  • the folding parts along the flexible folding line 1 are divided into mountain folds 7-1 and valley folds 7-2.
  • Mountain folds and valley folds are terms in the field of origami technology, and mountain folds represent the formation of mountain peaks.
  • the same fold, the valley fold represents the same fold that forms a valley.
  • the folding unit 2 is folded along the flexible fold line 1 to the mountain fold direction and the valley fold direction under the action of the fold stress. and the backplane both have a laser processing device 11, the laser treatment on the front of the module laminate is installed on the surface of the valley fold part 7-2 along the flexible fold line 1 of the flexible panel layer of the module laminate to generate high temperature and shrink, and the module
  • the valley fold portion 7-2 of the laminate produces folding stress, which is used to make the folding unit 2 fold toward the valley fold along the flexible fold line 1 under the action of the folding stress.
  • the laser treatment on the back side of the component laminate generates high temperature and shrinks on the surface of the mountain fold portion 7-1 of the flexible backplane layer of the component laminate along the flexible fold line 1, and the mountain fold portion 7 of the component laminate -1 generates folding stress, which is used to make the folding unit 2 fold along the flexible folding line 1 toward the mountain folding direction under the action of the folding stress.
  • the above-mentioned components can be fixed by using corrugated boards with 50-70 degree corrugated clamps as the hard backboard, so that the folding angle A between adjacent folding units 2 remains unchanged; or, the above-mentioned component laminates can be installed around Assembling the outer frame so that the folding angle A between adjacent folding units 2 remains unchanged.
  • the design of the flexible folding line 1 in this embodiment 1 enables the hard protection board 10 to be folded and at the same time remain a whole piece before lamination, which is convenient for automatic operation.
  • the design of the folding stress makes the flexible folding component always fold according to the preset folding structure during the unfolding and folding process.
  • the hard backplane and module frame can be installed at the application site of the module, and the module is stored and distributed in the folded state, which can reduce logistics and storage costs.
  • the simulation test process is as follows: two half-piece ordinary photovoltaic cells 3 are used, the two photovoltaic cells 3 are connected in series, and then placed outdoors facing the sun, the two photovoltaic cells 3 form an isosceles triangle. Change the angle a between the cells, and test the change of the current intensity of the photovoltaic cell, so as to test the change of its power. Then divide its power change by the equivalent area to get the efficiency gain after folding.
  • Embodiment 2 is basically the same as Embodiment 1, except that the flexible foldable photovoltaic module also includes a module folding and unfolding mechanism for adjusting the folding clips between adjacent folding units 2 by unfolding or folding the flexible foldable photovoltaic module Angle A varies between 0 and 180 degrees.
  • the flexible foldable photovoltaic module When the module is in the working state, the flexible foldable photovoltaic module can be opened to have a certain folding angle A through the module folding and unfolding mechanism.
  • the folding angle A of the flexible folding photovoltaic module with a folding and unfolding mechanism can be adjusted according to the environmental conditions, and the power generation at the morning and evening tilt angle can also be increased through the adjustment of the folding angle A, thereby reducing the cost of photovoltaic power generation.
  • the folding angle A between adjacent folding units 2 is generally 50-70 degrees.
  • Embodiment 2 also has other advantages. For example, when the module encounters a safety risk, such as a fire, the module folding and unfolding mechanism can be activated to completely fold the flexible foldable photovoltaic module, and then the module can be fully folded. Immediately make the photovoltaic modules no longer generate power, and the photovoltaic equipment is completely cut off, which intuitively protects the safety of firefighters.
  • a safety risk such as a fire
  • the module folding and unfolding mechanism can be activated to completely fold the flexible foldable photovoltaic module, and then the module can be fully folded. Immediately make the photovoltaic modules no longer generate power, and the photovoltaic equipment is completely cut off, which intuitively protects the safety of firefighters.
  • Embodiment 3 is basically the same as Embodiment 2, except that the flexible fold line 1 on the hard protection board 10 is specifically the thinned area of the hard protection board 10 .
  • the flexible fold line 1 on the hard protection board 10 is specifically the thinned area of the hard protection board 10 .
  • it is formed by laser treatment.
  • the thinned areas are formed mechanically.
  • Embodiment 4 is basically the same as Embodiment 2, except that the flexible foldable photovoltaic module is folded using a Miura folding structure, and the folding unit 2 is a parallelogram.
  • FIG. 9 is a schematic structural view of a hard protection board 10 for Miura folding.
  • the shape of the photovoltaic cell 3 in the folding unit 2 is the same as that of the folding unit 2, and the photovoltaic cell 3 in the folding unit 2 is a small photovoltaic cell formed by segmenting square heterojunction HJT cells according to the flexible folding line 1.
  • the advantage of the Miura folding structure is that the ability of the surface of the module to bear pressure is improved, because the Miura folding structure has more balance support points, and at the same time, the folding angle A between all adjacent folding units 2 in the module is easier to keep consistent.
  • the Miura folding structure can also be fully folded and fully unfolded.
  • Embodiment 5 is basically the same as Embodiment 4, except that the photovoltaic cell 3 in the folding unit 2 is specifically a single parallelogram photovoltaic cell 3, and the single parallelogram photovoltaic cell 3 is a regular hexagonal large photovoltaic cell.
  • the connection line from the center to the apex of the regular hexagonal large photovoltaic cell is a parallelogram small photovoltaic cell obtained by dividing the slice into three equal parts by the slice line 9 , as shown in FIG. 15 .
  • the regular hexagonal photovoltaic large battery is specifically a regular hexagonal TOPCON battery.
  • the conventional slicing method for producing the crystal bar of the photovoltaic cell 3 is to slice the silicon wafer into a square, as shown in Figure 14, and in this embodiment 5, the silicon wafer The slice is a positive hexagonal deformation inscribed with the ingot, and the area of the photovoltaic cell 3 produced is larger than that of a square silicon wafer.
  • TOPCON silicon wafers and batteries Since the manufacturing process of TOPCON silicon wafers and batteries is mostly furnace tubes, using regular hexagonal silicon wafers for battery manufacturing can increase the throughput of the entire process by 30%, which means that the manufacturing cost can be reduced by about 30%. For TOPCON batteries, it means a substantial cost reduction of 4-5 cents per watt. PERC batteries, polycrystalline batteries, TOPCON batteries, etc. can all have the same benefits using furnace tube process photovoltaic cells 3 .
  • three small parallelogram-shaped photovoltaic cells can be sliced from one regular hexagonal large photovoltaic cell without any waste.
  • Embodiment 6 is basically the same as Embodiment 2, the difference is that the flexible foldable photovoltaic module adopts a combined w-folding structure for folding, and the combined w-folding structure is composed of three w-folding segments, and the adjacent w-folding segments They are in an anti-folding relationship with each other.
  • the folding units 2 of the w-folding segments located at both ends are triangular, and the folding units 2 of the w-folding segment located in the middle area are trapezoidal, as shown in FIGS. 10 and 11 .
  • the w-folding segments located at both ends make the combined w-folding structure of Embodiment 6, compared with the ordinary w-folding structures of Embodiments 1 and 2, improve the ability of the surface of the component to withstand pressure, and at the same time, all adjacent folding units 2 in the component The folding angle A between them is easier to keep consistent.
  • the shape of the photovoltaic cell 3 inside the folding unit 2 is the same as that of the folding unit 2 .
  • the photovoltaic cell 3 in the triangular folding unit 2 of the w-folding section at both ends may be omitted, or replaced by a silicon dummy sheet or a plastic dummy sheet.
  • the photovoltaic cell 3 in the trapezoidal folding unit 2 is specifically composed of at least one rectangular photovoltaic cell 3 and two right-angled trapezoidal photovoltaic cells 3, the rectangular photovoltaic cells 3 are arranged in a line to form the main part of the rectangle, and the two right-angled trapezoidal photovoltaic cells 3 are located The two sides of the rectangular main part form a trapezoidal photovoltaic cell 3 .
  • small photovoltaic cells of all shapes in this embodiment 6 can be obtained by using regular dodecagonal large photovoltaic cells for slicing.
  • the rectangular photovoltaic cell 3 and the right-angle trapezoidal photovoltaic cell 3 in the trapezoidal folding unit 2 are small photovoltaic cells formed by segmenting large regular dodecagonal photovoltaic cells.
  • the sharding scheme for small photovoltaic cells is shown in Figure 16, where the dashed dotted line is the sharding line 9.
  • the regular dodecagonal photovoltaic large battery takes the four connecting lines between the vertices as the slice line and the 9 slices as the square photovoltaic small battery in the middle and four isosceles trapezoidal photovoltaic small batteries around it, and the square photovoltaic small battery in the middle is further divided into
  • the sheet is a rectangular photovoltaic cell 3
  • the line connecting the midpoints of the upper and lower sides of the small isosceles trapezoidal photovoltaic cell is a slicing line 9 and then divided into right-angled trapezoidal photovoltaic cells 3 .
  • a large regular dodecagonal photovoltaic cell is sliced according to the slice line 9 shown in Figure 16, and a total of 8 right-angled trapezoidal photovoltaic cells 3 and 5 rectangular photovoltaic cells 3 of the same size and 1 slightly smaller photovoltaic cell can be obtained.
  • the rectangular photovoltaic cell 3, the slightly smaller rectangular photovoltaic cell 3 will not be wasted, and can be used to produce photovoltaic modules of conventional specifications.
  • Two right-angled trapezoidal photovoltaic cells 3 and one rectangular photovoltaic cell 3 can form a trapezoidal photovoltaic cell 3 , as shown in FIG. 17 .
  • the conventional slicing method for producing the ingot of the photovoltaic cell 3 is to slice the silicon wafer into a square, as shown in Figure 14, and in the present embodiment 6 In the process, the silicon wafer is sliced into a positive twelve-deformation that is inscribed with the ingot, and the area of the photovoltaic cell 3 is larger than that of a square silicon wafer.
  • TOPCON silicon wafers and battery manufacturing processes are mostly furnace tubes
  • using regular dodecagonal silicon wafers for battery manufacturing can increase the throughput of the entire process by 50%, which means that the manufacturing cost can be reduced by about 50%.
  • TOPCON batteries it means a substantial cost reduction of 7 cents per watt.
  • PERC batteries, polycrystalline batteries, TOPCON batteries, etc. can all have the same benefits using furnace tube process photovoltaic cells 3 .
  • Embodiment 7 is basically the same as Embodiment 6.
  • the flexible foldable photovoltaic module is also folded using a combined w-folding structure.
  • the combined w-folding structure consists of 5 w-folding segments Composition, the adjacent w-folding segments are in an anti-folding relationship with each other, the folding units 2 of the w-folding segments at both ends are triangular, and the folding units 2 of the three w-folding segments in the middle area are trapezoidal.
  • the w-folding segments located at both ends make the combined w-folding structure of Embodiment 7, compared with the ordinary w-folding structures of Embodiments 1 and 2, improve the ability of the surface of the component to withstand pressure, and at the same time, all adjacent folding units 2 in the component The folding angle A between them is easier to keep consistent.
  • the 3 w-folding segments located in the middle area make the module form 3 light-receiving surfaces with certain angles, adapting to the three-dimensional module installation plane with 3 planes.
  • Embodiment 8 compared with Embodiment 1, differs in that: the processing step of forming folding stress on the flexible packaging structure is omitted.
  • Embodiment 8 still has advantages: the hard protection board 10 can be folded and is still a whole piece before lamination, which is convenient for automatic operation.
  • the folding structure can also be changed by changing the battery to GaAs battery, CdTe battery, CIGS battery, perovskite battery or other laminated batteries. , change the processing method of patterning the hard protection plate 10, change the processing method of forming folding stress on the flexible packaging structure, and form new embodiments, all of which are suitable for the protection scope of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种柔性折叠光伏组件及其制备方法,该组件包括柔性封装结构、硬质保护板和光伏电池层,硬质保护板上具有柔性折线,该组件通过柔性折线分为多个折叠单元,光伏电池层的光伏电池位于各个折叠单元内。在组件处于正常工作状态时,相邻折叠单元之间具有折叠夹角A。该组件的制备方法为:在组件层压前,对硬质保护板进行图形化,形成柔性折线,然后进行排版、层压。有益效果是:本发明的柔性折线的设计使得硬质保护板可以进行折叠的同时在层压前依然为一个整块,方便自动化操作,可大大提高组件的生产效率,降低生产成本。进一步地,通过相邻折叠单元之间具有折叠夹角A的设计,可大幅提高组件效率。

Description

柔性折叠光伏组件及其制备方法 技术领域
本发明涉及光伏技术领域,特别是一种柔性折叠光伏组件及其制备方法。
背景技术
随着国际国内普遍对气候危机的重视,各国都提出了“碳达峰”和“碳中和”的具体目标时间点。光伏产品从大型电站应用为主,迅速转向分布式应用,并加速和建筑、电动汽车等民用生活场景结合。国际上,针对和建筑结合、和新能源车结合等方向,国际能源署(IEA)组织全球技术专家,成立了相关的联合工作组。国内,国家发改委能源局提出“整县推进”的思路,也大大加速了光伏和民用生活场景结合的速度。
新的光伏应用场景对提高光伏产品的光电转换效率提出了更高的要求,从而提升单位面积的发电量。
三五族化合物电池(GaAs)、以及叠层和多结电池(Tandem)占据了少部分对组件效率要求高,价格容忍度也较高的特殊应用市场。一方面,这些产品的光电转换效率遥遥领先于普通组件,普通组件效率在20-22%之间,这些特殊产品的转换效率可达30%以上。然而,这些产品的昂贵价格也限制了这些高效光伏产品的应用。
中国专利文献CN20948696U公开了一种折叠式太阳能发电装置、应急供电系统和移动电源车,包括三浦折叠架、多个光伏电池板和用于驱动三浦折叠架的驱动机构,多个光伏电池板安装在三浦折叠架上进行展开和折叠。
中国专利文献CN206977375U公开了一种合页式光伏组件,包括两个以上具有太阳能电池芯片的长方形底板,长方向底板通过合页进行连接,实现光伏组件的可折叠。
上述两个专利文献公开的技术方案存在的缺点是:进行折叠的光伏电池不是一整个光伏组件,整个装置的安装和成本都很高。
中国专利CN102945873A公开了一种多维折叠的柔性太阳能电池组件及其制造方法,组件内的光伏电池为柔性光伏电池,具体为非晶硅薄膜太阳能电池,并且为保护柔性光伏电池,增加局部的保护层。
其存在的缺点是:按照现有组件制造方法,保护层在排版步骤排版至对应的光伏电池上方,因为保护层为分片式,不利于组件的自动化生产,生产成本高,不利于大批量生产。
发明内容
本发明所要解决的技术问题是:提供一种柔性折叠光伏组件及其制备方法,降低柔性组 件的生产成本。
本发明解决其技术问题所采用的技术方案是:一种柔性折叠光伏组件,包括柔性封装结构和封装在柔性封装结构内的硬质保护板和光伏电池层,硬质保护板用于对光伏电池层内的光伏电池提供保护,硬质保护板上具有柔性折线,用于使该柔性折叠光伏组件可沿柔性折线进行柔性折叠,柔性折叠光伏组件通过柔性折线分为多个折叠单元,光伏电池层的光伏电池位于各个折叠单元内。
为提高组件的光电转换效率,进一步限定,在组件处于正常工作状态时,相邻折叠单元之间具有折叠夹角A。
折叠夹角可根据环境情况定制,一般,折叠夹角A为50~70度。
进一步限定,柔性折叠光伏组件还包括封装结构四周的组件外框,用于保持相邻折叠单元之间的折叠夹角A;
或者,还包括柔性封装结构的背面的硬质背板,用于保持相邻折叠单元之间的折叠夹角A;
或者,还包括组件折叠展开机构,用于通过展开或折叠该柔性折叠光伏组件的方式调节相邻折叠单元之间的折叠夹角A。
进一步限定,柔性封装结构的对应柔性折线的部位具有折叠应力,用于使折叠单元在折叠应力的作用下沿柔性折线向预设的折叠方向进行折叠。
进一步限定,硬质保护板上的柔性折线具体由断续点和/或断续线构成;或者,硬质保护板上的柔性折线具体为硬质保护板的打薄区域。
进一步限定,相邻折叠单元内的光伏电池之间通过柔性导电体进行互联,柔性导电体为金属箔导电带、导电浆料带或者柔性排线。
进一步限定,柔性折叠光伏组件采用三浦折叠结构进行折叠,折叠单元为平行四边形。
具体地,折叠单元内的光伏电池的形状与折叠单元的形状相同,具体为单块平行四边形光伏电池。
进一步限定,柔性折叠光伏组件采用w折叠结构进行折叠;或者,采用组合式w折叠结构进行折叠,组合式w折叠结构由至少3个w折叠分段组成,相邻的w折叠分段彼此呈反折叠关系,位于两端的w折叠分段的折叠单元呈三角形,位于中间区域的各个w折叠分段的折叠单元呈梯形。
具体地,梯形的折叠单元内的光伏电池的形状与折叠单元的形状相同,具体由至少一个矩形光伏电池和两个直角梯形光伏电池组成,矩形光伏电池一字排布构成矩形的主体部分,两个直角梯形光伏电池位于矩形的主体部分的两侧,组成梯形的光伏电池。
进一步限定,柔性封装结构包括柔性面板层、粘结层、柔性背板层,该柔性折叠光伏组件由上至下的层结构为:柔性面板层、粘结层、硬质保护板、粘结层、光伏电池层、粘结层和柔性背板层,硬质保护板为玻璃、亚克力、玻璃纤维布或纤维增强复合材料,柔性面板层和柔性背板层为ETFE、TPO、PET、尼龙或它们的复合材料。
一种上述的柔性折叠光伏组件的制备方法,在组件层压前,对硬质保护板进行图形化,用于在硬质保护板上形成柔性折线,然后将柔性封装结构、硬质保护板、光伏电池进行排版,排版后进入层压机中完成组件层压。
进一步限定,通过机械切割、冲剪或激光方式对硬质保护板进行图形化。
进一步限定,在组件层压后对柔性封装结构进行处理,在柔性封装结构的对应柔性折线的部位形成折叠应力,用于使折叠单元在折叠应力的作用下沿柔性折线向预设的折叠方向进行折叠。
进一步限定,对柔性封装结构进行处理,在柔性封装结构的对应柔性折线的部位形成折叠应力,形成折叠应力的具体方法为:通过激光、热压、射线扫描、图形化的高分子掺杂方式中的一种或组合方式对柔性封装结构进行处理。
进一步限定,在组件层压前,光伏电池通过互联导体连接为电池串后,再通过分片工艺将光伏电池分片为光伏小电池,得到由光伏小电池构成的小电池串,用于后续的组件排版。
进一步限定,通过如下方式得到平行四边形光伏小电池,用于作为采用三浦折叠结构进行折叠的柔性折叠光伏组件的光伏电池层中的光伏电池:正六边形光伏大电池以正六边形光伏大电池的中心到顶点的连线为分片线进行三等分分片;
或者,通过如下方式得到矩形光伏电池和直角梯形光伏电池,用于作为梯形的折叠单元内的光伏电池,该梯形的折叠单元内的光伏电池的形状与折叠单元的形状相同,具体由至少一个矩形光伏电池和两个直角梯形光伏电池组成,矩形光伏电池一字排布构成矩形的主体部分,两个直角梯形光伏电池位于矩形的主体部分的两侧,组成梯形的光伏电池:正十二边形光伏大电池以顶点之间的四条连线为分片线分片为中间的正方形光伏小电池和四周的四个等腰梯形光伏小电池,中间的正方形光伏小电池分片为矩形光伏电池,等腰梯形光伏小电池以上下边的中点的连线为分片线分片为直角梯形光伏电池。
本发明的有益效果是:本发明的柔性折线的设计使得硬质保护板可以进行折叠的同时在层压前依然为一个整块,方便自动化操作,可大大提高组件的生产效率,降低生产成本。
进一步地,通过在组件处于正常工作状态时,相邻折叠单元之间具有折叠夹角A的设计,可大幅提高组件效率:在不改变光伏电池结构的基础上,通过组件技术创新,使单位受光面积的组件光电转换效率大幅提升,快速满足高效市场需求。
普适于所有电池技术种类:目前已知的所有电池种类,采用本发明的技术都可以大幅度提升其光伏组件产品的光电转化效率。
有利于提高发电量:本发明的设计不仅仅有利于提高垂直入射的发电量,还有利于提高早晚倾斜角度的发电量,从而减低光伏发电成本。
有利于减低成本:由于组件的可折叠设计,可以大幅度压缩组件的存储空间,减低物流和仓储成本。也可以降低组件的安装和维护成本。安装快速简单,维护甚至可以不上屋顶,直接将其折叠滚动清洗。
提高安全:由于本组件设计施工速度快,施工方式简单,可以采用黑布对组件进行覆盖遮光,可以大幅度提升施工安全。如果发生光伏火灾,也可以在短时间内快速折叠,迅速自我关断,进行自我遮光,断电和灭火。
附图说明
下面结合附图和实施例对本发明进一步说明;
图1是本发明的实施例1的制备流程图;
图2是本发明的实施例1的图形化后的硬质保护板的结构示意图;
图3是本发明的实施例1的光伏组件的折叠结构示意图;
图4是本发明的实施例1的显示光伏电池层的展开结构示意图;
图5是本发明的实施例1的一种柔性折线的结构示意图;
图6是本发明的形成图5中的柔性折线的切模的结构示意图;
图7是本发明的实施例1的通过激光形成折叠应力的示意图;
图8是本发明进行模拟测试的示意图;
图9是本发明的实施例4的光伏组件的展开结构示意图;
图10是本发明的实施例6的图形化后的硬质保护板的结构示意图;
图11是本发明的实施例6的光伏组件的折叠结构示意图;
图12是本发明的实施例7的图形化后的硬质保护板的结构示意图;
图13是本发明的实施例7的光伏组件的折叠结构示意图;
图14是在本发明中通过正方形光伏电池切片得到矩形光伏小电池的示意图;
图15是在本发明中通过正六边形光伏电池切片得到平行四边形光伏小电池的示意图;
图16是在本发明中通过正六边形光伏电池切片得到光伏小电池的示意图;
图17是通过图16得到的光伏小电池组成梯形的折叠单元内的光伏电池的示意图;
图中,1.柔性折线,2.折叠单元,3.光伏电池,4.柔性导电体,5.焊带,6-1.上切模,6-2.下切模,7-1.山折部位,7-2.谷折部位,8.接线盒,9.分片线,10.硬质保护板,11.激 光处理装置。
具体实施方式
实施例1:如图2、3、4和5所示,一种柔性折叠光伏组件,包括柔性封装结构和封装在柔性封装结构内的硬质保护板10和光伏电池层,硬质保护板10用于对光伏电池层内的光伏电池3提供保护,硬质保护板10上具有柔性折线1,用于使该柔性折叠光伏组件可沿柔性折线1进行柔性折叠,柔性折叠光伏组件通过柔性折线1分为多个折叠单元2,光伏电池层的光伏电池3位于各个折叠单元2内。
在组件处于正常工作状态时,相邻折叠单元2之间具有折叠夹角A,折叠夹角A为50~70度。
该柔性折叠光伏组件还包括封装结构四周的组件外框,用于保持相邻折叠单元2之间的折叠夹角A;或者,还包括柔性封装结构的背面的硬质背板,用于保持相邻折叠单元2之间的折叠夹角A。
硬质保护板10上的柔性折线1具体由断续点和/或断续线构成。
柔性封装结构的对应柔性折线1的部位具有折叠应力,用于使折叠单元2在折叠应力的作用下沿柔性折线1向预设的折叠方向进行折叠。
相邻折叠单元2内的光伏电池3之间通过柔性导电体4进行互联,柔性导电体4为金属箔导电带、导电浆料带或者柔性排线。柔性排线为FFC排线、FPC排线或PTF排线。
折叠单元2采用w折叠结构进行折叠,折叠单元2呈长方形,折叠方向为折叠单元2的宽度方向,折叠单元2沿折叠方向并排排列。
折叠单元2内的光伏电池3的形状与折叠单元2的形状相同,由多块长方形光伏电池3沿长度方向一字排布构成。长方形光伏电池3由正方形光伏大电池通过分片得到的光伏小电池。
柔性封装结构包括柔性面板层、粘结层、柔性背板层,该柔性折叠光伏组件由上至下的层结构为:柔性面板层、粘结层、硬质保护板10、粘结层、光伏电池层、粘结层和柔性背板层。硬质保护板10为玻璃、亚克力、玻璃纤维布或纤维增强复合材料,柔性面板层和柔性背板层为ETFE、TPO、PET、尼龙或它们的复合材料。
如图1所示,本实施例1的柔性折叠光伏组件的制备方法为:在组件层压前,通过机械切割、冲剪或激光方式对硬质保护板10进行图形化,用于在硬质保护板10上形成柔性折线1,然后将柔性封装结构、硬质保护板10、光伏电池3进行排版,排版后进入层压机中完成组件层压。
对柔性封装结构进行处理,在柔性封装结构的对应柔性折线1的部位形成折叠应力的具 体方法为:通过激光、热压、射线扫描、图形化的高分子掺杂方式中的一种或组合方式对柔性封装结构进行处理。
当采用激光、热压、射线扫描方式形成折叠应力时,优选,该形成折叠应力的步骤位于层压步骤之后,在组件层压后对柔性封装结构进行处理,在柔性封装结构的对应柔性折线1的部位形成折叠应力,用于使折叠单元2在折叠应力的作用下沿柔性折线1向预设的折叠方向进行折叠。
当采用图形化的高分子掺杂方式形成折叠应力时,优选,该形成折叠应力的步骤位于层压步骤之前。
在组件层压前,光伏电池3通过互联导体连接为电池串后,再通过分片工艺将光伏电池3分片为光伏小电池,得到由光伏小电池构成的小电池串,用于后续的组件排版。
下面以采用常规切片方式的210mm全方硅片,按照常规电池工艺制备的PERC或TOPCON高效正方形光伏大电池进行分片为例,进一步说明本实施例1:
本实施例1的柔性折叠光伏组件的制备方法,具有如下步骤:
S1、首先,采用常规串焊设备,将多块210mm的正方形光伏电池3通过焊带5串焊为电池串,光伏电池3的正面和背面各10根焊带5。采用激光分片方式,将电池串中的各个正方形光伏电池3,切割成10个21*210mm的长方形光伏小电池,得到由长方形光伏小电池构成的小电池串,激光分片方向和焊带5方向平行。
S2、硬质保护板10图形化:采用亚克力和玻璃纤维复合热压得到的纤维增强复合材料(FRP)作为硬质保护板10,采用如图6所述的由上切模6-1和下切模6-2构成的机械冲剪工具对硬质保护板10进行机械冲剪加工,实现硬质保护板10的图形化,在硬质保护板10上形成柔性折线1,柔性折线1具体由断续点和/或断续线构成,如图5所示。
S3、排版:首先在排版工作台上铺设好柔性背板层,然后铺设粘结层,在粘结层上铺柔性导电体4和小电池串,每个小电池串位于一个折叠单元2内,小电池串之间的间距为3mm,在小电池串的两端采用柔性导电体4进行汇流联结,形成电连接的光伏电池层。在光伏电池层上依次铺粘结层、硬质保护板10、粘结层、柔性面板层,完成组件的排版。柔性面板层具体为ETFE膜层,粘结层具体为EVA粘结层。
S4、在排版后上述层结构进入层压机中完成组件层压。
S5、通过激光处理方式,在柔性封装结构的对应柔性折线1的部位形成折叠应力,激光处理装置11通过控制激光的波长和光强,在组件层压件的柔性封装结构的局部表面产生高温,在组件的局部产生折叠应力,如图7所示。
本实施例1的组件采用w折叠结构进行折叠,沿柔性折线1的折叠部位分为山折部位 7-1和谷折部位7-2,山折和谷折为折纸技术领域的术语,山折代表形成山峰一样的折叠,谷折代表形成山谷一样的折叠。
为在组件层压件的正面和背面都形成折叠应力,使折叠单元2在折叠应力的作用下沿柔性折线1向山折方向和谷折方向进行折叠,为提高效率,在组件层压件的正面和背板都具有激光处理装置11,位于组件层压件正面的激光处理装在组件层压件的柔性面板层的沿柔性折线1的谷折部位7-2的表面产生高温并收缩,在组件层压件的谷折部位7-2产生折叠应力,用于使折叠单元2在折叠应力的作用下沿柔性折线1向谷折方向进行折叠。
同样的,位于组件层压件背面的激光处理装在组件层压件的柔性背板层的沿柔性折线1的山折部位7-1的表面产生高温并收缩,在组件层压件的山折部位7-1产生折叠应力,用于使折叠单元2在折叠应力的作用下沿柔性折线1向山折方向进行折叠。
S6、采用常规工艺,对上述组件层压件安装接线盒8和连接器,完成柔性折叠光伏组件的制造。
上述组件可采用具有50~70度波纹夹具的波纹板作为硬质背板进行固定,使相邻折叠单元2之间的折叠夹角A保持不变;或者,在上述组件层压件的四周安装组件外框,使相邻折叠单元2之间的折叠夹角A保持不变。
本实施例1的柔性折线1的设计使得硬质保护板10可以进行折叠的同时在层压前依然为一个整块,方便自动化操作。折叠应力的设计使得本柔性折叠组件在展开和折叠过程中,始终会按照预设的折叠结构进行折叠。
硬质背板和组件外框可在组件应用现场进行安装,组件在完成折叠状态进行仓储和物流,可降低物流和仓储成本。
常规组件为平板设计,一旦接受到光照即会进行发电,故在组件安装过程中,需要采用黑布对组件进行覆盖遮光,避免带电安装组件,产生触电事故。本实施例1的柔性折叠光伏组件可完全折叠,使组件不发电,在完成组件的电气连接后,进行硬质背板和组件外框的安装,锁定折叠角度A,这样有利于保证安装工人的人身安全,降低对工人熟练程度和知识培训的要求,从而降低成本,增加系统的易用性。
由于组件处于正常工作状态时,相邻折叠单元2之间具有折叠夹角A,折叠夹角A为50~70度之间,光线有多次入射到光伏电池3表面并被吸收的机会,可增加光伏组件的效率。
通过晴天室外模拟测试,模拟测试结构如图8所示。
模拟测试过程为:通过两个半片的普通光伏电池3进行,将两个光伏电池3串联连接,然后面向太阳放于室外,两个光伏电池3组成等腰三角形。改变电池之间的夹角a,测试光生电池的电流强度变化,从而测试出其功率变化。然后将其功率变化除以等效面积,就得到 了折叠后的效率增益。
测试结果如下表:
设置 水平即夹角a=180度 夹角a=60度 夹角a=65度
电压 100% 100% 100%
电流强度 100% 176% 173%
组件效率 100% 176% 173%
通过模拟可以发现光伏产品的单位直通的受光面积所产生的电流增加了大约70%。考虑电流传输中的焦耳损失不变情况下,光伏组件的效率也提升70%。也就是说,采用这一设计的光伏组件产品的组件效率大幅提升。
实施例2,和实施例1基本相同,区别在于:该柔性折叠光伏组件还包括组件折叠展开机构,用于通过展开或折叠该柔性折叠光伏组件的方式调节相邻折叠单元2之间的折叠夹角A在0~180度之间变化。
在组件处于工作状态时可以通过组件折叠展开机构,将柔性折叠光伏组件打开至具有一定的折叠夹角A。
具有折叠展开机构的该柔性折叠光伏组件的折叠夹角可根据环境情况进行折叠夹角A的调节,还可通过折叠夹角A的调节提高早晚倾斜角度的发电量,从而减低光伏发电成本。相邻折叠单元2之间的折叠夹角A一般为50~70度。
本实施例2除了具有实施例1的优点外,还具有其他优点,例如,在组件遇到安全风险时,如遇到火灾时,可以启动组件折叠展开机构将柔性折叠光伏组件完全折叠,则可以立即使光伏组件不再发电,光伏设备彻底断电,非常直观地保护了消防员生命安全。
实施例3,和实施例2相比基本相同,区别在于:硬质保护板10上的柔性折线1具体为硬质保护板10的打薄区域。优选,通过激光处理方式形成。但是也不排除通过机械方式形成打薄区域。
实施例4,和实施例2相比基本相同,区别在于:柔性折叠光伏组件采用三浦折叠结构进行折叠,折叠单元2为平行四边形。图9为用于三浦折叠的硬质保护板10的结构示意图。
折叠单元2内的光伏电池3的形状与折叠单元2的形状相同,折叠单元2内的光伏电池3为正方形异质结HJT电池按照柔性折线1进行分片而成的光伏小电池。
三浦折叠结构的好处是组件表面承受压力的能力提升,原因是三浦折叠结构有更多的平衡支撑点,同时组件内所有相邻折叠单元2之间的折叠夹角A更容易保持一致。三浦折叠结 构同样可以做到全折叠和全展开。
实施例5,和实施例4相比基本相同,区别在于:折叠单元2内的光伏电池3具体为单块平行四边形光伏电池3,该单块平行四边形光伏电池3为正六边形光伏大电池以正六边形光伏大电池的中心到顶点的连线为分片线9进行三等分分片而得到的平行四边形光伏小电池,如图15所示。
正六边形光伏大电池具体为正六边形TOPCON电池,生产光伏电池3的晶棒的常规切片方式是将硅片切片为正方形,如图14所示,而在本实施例5中,将硅片切片为与晶棒内切的正六变形,相比正方形硅片,制得的光伏电池3的面积更大。
由于TOPCON硅片、电池的制造工艺大都为炉管,采用正六边形硅片进行电池制造,可以提升整个过程的通量30%,也就是制造费用可以减低大约30%。对TOPCON电池而言,意味着4-5分钱每瓦的大幅度成本减低。PERC电池、多晶电池、TOPCON电池等使用炉管工艺光伏电池3都可以有相同收益。
如图15所示,从一个正六边形光伏大电池上可以切片出3块平行四边形光伏小电池,没有一点浪费。
实施例6、和实施例2相比基本相同,区别在于:柔性折叠光伏组件采用组合式w折叠结构进行折叠,组合式w折叠结构由3个w折叠分段组成,相邻的w折叠分段彼此呈反折叠关系,位于两端的w折叠分段的折叠单元2呈三角形,位于中间区域的w折叠分段的折叠单元2呈梯形,具体如图10和11所示。
位于两端的w折叠分段使本实施例6的组合式w折叠结构相比实施例1和2的普通w折叠结构可以使组件表面承受压力的能力提升,同时组件内所有相邻折叠单元2之间的折叠夹角A更容易保持一致。
折叠单元2内的光伏电池3的形状与折叠单元2的形状相同。
位于两端的w折叠分段的三角形的折叠单元2内的光伏电池3可以省略,或者采用硅假片或塑料假片代替。
梯形的折叠单元2内的光伏电池3具体由至少一个矩形光伏电池3和两个直角梯形光伏电池3组成,矩形光伏电池3一字排布构成矩形的主体部分,两个直角梯形光伏电池3位于矩形的主体部分的两侧,组成梯形的光伏电池3。
当省略三角形的折叠单元2内的光伏电池3或者采用硅假片或塑料假片代替时,采用正十二边形光伏大电池进行分片可以得到该实施例6的所有形状的光伏小电池。
梯形的折叠单元2内矩形光伏电池3和直角梯形光伏电池3为正十二边形光伏大电池分片而成的光伏小电池。分片为光伏小电池的分片方案如图16所示,其中的点划虚线为分片线 9。正十二边形光伏大电池以顶点之间的四条连线为分片线9分片为中间的正方形光伏小电池和四周的四个等腰梯形光伏小电池,中间的正方形光伏小电池再分片为矩形光伏电池3,等腰梯形光伏小电池以上下边的中点的连线为分片线9再分片为直角梯形光伏电池3。
一块正十二边形光伏大电池按照如图16所示的分片线9进行分片,一共可以获得8块直角梯形光伏电池3和5块相同大小的矩形光伏电池3和1块略小的矩形光伏电池3,该略小的一块矩形光伏电池3也不会浪费,可用于生产常规规格的光伏组件。两个直角梯形光伏电池3和一个位于矩形光伏电池3,可以组成梯形的光伏电池3,如图17所示。
正十二边形光伏大电池具体为正十二边形TOPCON电池时,生产光伏电池3的晶棒的常规切片方式是将硅片切片为正方形,如图14所示,而在本实施例6中,将硅片切片为与晶棒内切的正十二变形,相比正方形硅片,制得的光伏电池3的面积更大。
由于TOPCON硅片、电池的制造工艺大都为炉管,采用正十二边形硅片进行电池制造,可以提升整个过程的通量50%,也就是制造费用可以减低大约50%。对TOPCON电池而言,意味着7分钱每瓦的大幅度成本减低。PERC电池、多晶电池、TOPCON电池等使用炉管工艺光伏电池3都可以有相同收益。
实施例7,和实施例6相比基本相同,柔性折叠光伏组件同样采用组合式w折叠结构进行折叠,区别在于:如图12和13所示,组合式w折叠结构由5个w折叠分段组成,相邻的w折叠分段彼此呈反折叠关系,位于两端的w折叠分段的折叠单元2呈三角形,位于中间区域的3个w折叠分段的折叠单元2呈梯形。
位于两端的w折叠分段使本实施例7的组合式w折叠结构相比实施例1和2的普通w折叠结构可以使组件表面承受压力的能力提升,同时组件内所有相邻折叠单元2之间的折叠夹角A更容易保持一致。
位于中间区域的3个w折叠分段使组件形成三个具有一定夹角的3个受光面,适应具有3个平面的立体组件安装平面。
实施例8,和实施例1相比,区别在于:省略在柔性封装结构上形成折叠应力的处理步骤。
本实施例8相比现有技术依然存在优点:硬质保护板10可以进行折叠的同在层压前依然为一个整块,方便自动化操作。
本发明的保护范围不局限于上述具体实施例,在发明的创新思路的基础上,还可以通过变化电池为GaAs电池、CdTe电池、CIGS电池、钙钛矿电池或其他叠层电池,变化折叠结构,变化对硬质保护板10进行图形化的处理方式,变化在柔性封装结构上形成折叠应力的处理方式,形成新的实施例,这些都适于本发明的保护范围。

Claims (18)

  1. 一种柔性折叠光伏组件,其特征是:包括柔性封装结构和封装在柔性封装结构内的硬质保护板和光伏电池层,硬质保护板用于对光伏电池层内的光伏电池提供保护,
    硬质保护板上具有柔性折线,用于使该柔性折叠光伏组件可沿柔性折线进行柔性折叠,柔性折叠光伏组件通过柔性折线分为多个折叠单元,光伏电池层的光伏电池位于各个折叠单元内。
  2. 根据权利要求1所述的柔性折叠光伏组件,其特征是:在组件处于正常工作状态时,所述的相邻折叠单元之间具有折叠夹角A。
  3. 根据权利要求2所述的柔性折叠光伏组件,其特征是:所述的折叠夹角A为50~70度。
  4. 根据权利要求1或2所述的柔性折叠光伏组件,其特征是:还包括封装结构四周的组件外框,用于保持相邻折叠单元之间的折叠夹角A;
    或者,还包括柔性封装结构的背面的硬质背板,用于保持相邻折叠单元之间的折叠夹角A;
    或者,还包括组件折叠展开机构,用于通过展开或折叠该柔性折叠光伏组件的方式调节相邻折叠单元之间的折叠夹角A。
  5. 根据权利要求1~4任一项所述的柔性折叠光伏组件,其特征是:所述的柔性封装结构的对应柔性折线的部位具有折叠应力,用于使折叠单元在折叠应力的作用下沿柔性折线向预设的折叠方向进行折叠。
  6. 根据权利要求1所述的柔性折叠光伏组件,其特征是:所述的硬质保护板上的柔性折线具体由断续点和/或断续线构成;
    或者,硬质保护板上的柔性折线具体为硬质保护板的打薄区域。
  7. 根据权利要求1所述的柔性折叠光伏组件,其特征是:相邻折叠单元内的光伏电池之间通过柔性导电体进行互联,柔性导电体为金属箔导电带、导电浆料带或者柔性排线。
  8. 根据权利要求1所述的柔性折叠光伏组件,其特征是:采用三浦折叠结构进行折叠,折叠单元为平行四边形。
  9. 根据权利要求8所述的柔性折叠光伏组件,其特征是:所述的折叠单元内的光伏电池的形状与折叠单元的形状相同,具体为单块平行四边形光伏电池。
  10. 根据权利要求1所述的柔性折叠光伏组件,其特征是:采用w折叠结构进行折叠;
    或者,采用组合式w折叠结构进行折叠,组合式w折叠结构由至少3个w折叠分段组成,相邻的w折叠分段彼此呈反折叠关系,位于两端的w折叠分段的折叠单元呈三角形,位于中间区域的各个w折叠分段的折叠单元呈梯形。
  11. 根据权利要求10所述的柔性折叠光伏组件,其特征是:所述的梯形的折叠单元内的光伏电池的形状与折叠单元的形状相同,具体由至少一个矩形光伏电池和两个直角梯形光伏电池组成,矩形光伏电池一字排布构成矩形的主体部分,两个直角梯形光伏电池位于矩形的主体部分的两侧,组成梯形的光伏电池。
  12. 根据权利要求1所述的柔性折叠光伏组件,其特征是:所述的柔性封装结构包括柔性面板层、粘结层、柔性背板层,该柔性折叠光伏组件由上至下的层结构为:柔性面板层、粘结层、硬质保护板、粘结层、光伏电池层、粘结层和柔性背板层,
    硬质保护板为玻璃、亚克力、玻璃纤维布或纤维增强复合材料,柔性面板层和柔性背板层为ETFE、TPO、PET、尼龙或它们的复合材料。
  13. 一种权利要求1所述的柔性折叠光伏组件的制备方法,其特征是:在组件层压前,对硬质保护板进行图形化,用于在硬质保护板上形成柔性折线,然后将柔性封装结构、硬质保护板、光伏电池进行排版,排版后进入层压机中完成组件层压。
  14. 根据权利要求13所述的柔性折叠光伏组件的制备方法,其特征是:通过机械切割、冲剪或激光方式对硬质保护板进行图形化。
  15. 根据权利要求13所述的柔性折叠光伏组件的制备方法,其特征是:在组件层压后对柔性封装结构进行处理,在柔性封装结构的对应柔性折线的部位形成折叠应力,用于使折叠单元在折叠应力的作用下沿柔性折线向预设的折叠方向进行折叠。
  16. 根据权利要求13所述的柔性折叠光伏组件的制备方法,其特征是:对柔性封装结构进行处理,在柔性封装结构的对应柔性折线的部位形成折叠应力,形成折叠应力具体方法为:通过激光、热压、射线扫描、图形化的高分子掺杂方式中的一种或组合方式对柔性封装结构进行处理。
  17. 根据权利要求13所述的柔性折叠光伏组件的制备方法,其特征是:在组件层压前,光伏电池通过互联导体连接为电池串后,再通过分片工艺将光伏电池分片为光伏小电池,得到由光伏小电池构成的小电池串,用于后续的组件排版。
  18. 根据权利要求13所述的柔性折叠光伏组件的制备方法,其特征是:通过如下方式得到平行四边形光伏小电池,用于作为采用三浦折叠结构进行折叠的柔性折叠光伏组件的光伏电池层中的光伏电池:正六边形光伏大电池以正六边形光伏大电池的中心到顶点的连线为分片线进行三等分分片;
    或者,通过如下方式得到矩形光伏电池和直角梯形光伏电池,用于作为梯形的折叠单元内的光伏电池,该梯形的折叠单元内的光伏电池的形状与折叠单元的形状相同,具体由至少 一个矩形光伏电池和两个直角梯形光伏电池组成,矩形光伏电池一字排布构成矩形的主体部分,两个直角梯形光伏电池位于矩形的主体部分的两侧,组成梯形的光伏电池:正十二边形光伏大电池以顶点之间的四条连线为分片线分片为中间的正方形光伏小电池和四周的四个等腰梯形光伏小电池,中间的正方形光伏小电池分片为矩形光伏电池,等腰梯形光伏小电池以上下边的中点的连线为分片线分片为直角梯形光伏电池。
PCT/CN2022/125092 2021-10-31 2022-10-13 柔性折叠光伏组件及其制备方法 WO2023071814A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22885693.6A EP4418534A1 (en) 2021-10-31 2022-10-13 Flexible foldable photovoltaic assembly and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111278920.6 2021-10-31
CN202111278920.6A CN116073753A (zh) 2021-10-31 2021-10-31 柔性折叠光伏组件及其制备方法

Publications (1)

Publication Number Publication Date
WO2023071814A1 true WO2023071814A1 (zh) 2023-05-04

Family

ID=86159116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125092 WO2023071814A1 (zh) 2021-10-31 2022-10-13 柔性折叠光伏组件及其制备方法

Country Status (3)

Country Link
EP (1) EP4418534A1 (zh)
CN (1) CN116073753A (zh)
WO (1) WO2023071814A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102945873A (zh) 2012-11-19 2013-02-27 深圳市创益科技发展有限公司 一种多维折叠的柔性太阳能电池组件及其制造方法
KR20130059170A (ko) * 2011-11-28 2013-06-05 전경순 태양광 발전용 블라인드
CN103474491A (zh) * 2013-08-28 2013-12-25 孙涛 高集成度折叠式光伏阵列
CN105262426A (zh) * 2015-11-24 2016-01-20 上海空间电源研究所 一种全柔性折叠式太阳电池阵及其制备方法
CN206977375U (zh) 2017-08-03 2018-02-06 北京铂阳顶荣光伏科技有限公司 合页式光伏组件
CN109904261A (zh) * 2019-02-27 2019-06-18 泰州隆基乐叶光伏科技有限公司 太阳电池组件
CN209016069U (zh) * 2018-08-17 2019-06-21 君泰创新(北京)科技有限公司 一种折叠式便携光伏组件
CN110601653A (zh) * 2019-09-24 2019-12-20 上海交通大学 一种快速安装的光伏组件集成板及安装方法
CN110971186A (zh) * 2018-09-28 2020-04-07 昱臻科技(北京)有限公司 一种遮阳装置及供电系统
CN210724936U (zh) * 2019-07-09 2020-06-09 北京铂阳顶荣光伏科技有限公司 移动设备保护壳

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130059170A (ko) * 2011-11-28 2013-06-05 전경순 태양광 발전용 블라인드
CN102945873A (zh) 2012-11-19 2013-02-27 深圳市创益科技发展有限公司 一种多维折叠的柔性太阳能电池组件及其制造方法
CN103474491A (zh) * 2013-08-28 2013-12-25 孙涛 高集成度折叠式光伏阵列
CN105262426A (zh) * 2015-11-24 2016-01-20 上海空间电源研究所 一种全柔性折叠式太阳电池阵及其制备方法
CN206977375U (zh) 2017-08-03 2018-02-06 北京铂阳顶荣光伏科技有限公司 合页式光伏组件
CN209016069U (zh) * 2018-08-17 2019-06-21 君泰创新(北京)科技有限公司 一种折叠式便携光伏组件
CN110971186A (zh) * 2018-09-28 2020-04-07 昱臻科技(北京)有限公司 一种遮阳装置及供电系统
CN109904261A (zh) * 2019-02-27 2019-06-18 泰州隆基乐叶光伏科技有限公司 太阳电池组件
CN210724936U (zh) * 2019-07-09 2020-06-09 北京铂阳顶荣光伏科技有限公司 移动设备保护壳
CN110601653A (zh) * 2019-09-24 2019-12-20 上海交通大学 一种快速安装的光伏组件集成板及安装方法

Also Published As

Publication number Publication date
EP4418534A1 (en) 2024-08-21
CN116073753A (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
US9653635B2 (en) Flexible high-voltage adaptable current photovoltaic modules and associated methods
EP0874404B1 (en) Solar cell module and method for manufacturing the same
TWI413266B (zh) 太陽能電池模組
JP2007529889A (ja) 二次元プロフィールを有する電気エネルギー発生モジュールおよびこれを作成する方法
CN109920878A (zh) 一种柔性光伏组件制造方法
US20130056044A1 (en) Photovoltaic module fabrication with thin single crystal epitaxial silicon devices
US20190326459A1 (en) Single-cell encapsulation and flexible-format module architecture and mounting assembly for photovoltaic power generation and method for constructing, inspecting and qualifying the same
CN107026213A (zh) 一种全黑高效光伏组件
US12051989B2 (en) Rapidly deployable and transportable high-power-density smart power generators
US20160233824A1 (en) Photovoltaic module fabrication with thin single crystal epitaxial silicon devices
WO2023036288A1 (zh) 柔性光伏电池组件及其制造方法
CN108023537A (zh) 一种彩钢瓦屋顶光伏组件结构
CN217280809U (zh) 一种具有薄膜的无主栅光伏组件
CN103035768A (zh) 一种太阳电池组件及其制备方法
KR101172469B1 (ko) 분리형 태양광 전지 모듈 및 그 제조방법
WO2023071814A1 (zh) 柔性折叠光伏组件及其制备方法
CN111816724B (zh) 光伏组件,光伏组件的背板和光伏组件的制造方法
CN203434927U (zh) 一种卷曲折叠式太阳能电池充电板
CN202120940U (zh) 布匹式可折叠太阳能电池组件
CN204885188U (zh) 一种异形太阳能电池组件
CA3012909C (en) Photovoltaic assembly
EP4109743B1 (en) Method for preparing a flexible and rollable back-contact solar cell module
CN117083712A (zh) 用于优化光伏面板的方法和装置以及使用此方法优化的光伏面板
CN207082538U (zh) 轻量化光伏组件
CN108198885B (zh) 一种可提升发电量的双面太阳能电池组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885693

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18706227

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022885693

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022885693

Country of ref document: EP

Effective date: 20240515

NENP Non-entry into the national phase

Ref country code: DE