WO2023071716A1 - 卫星通信方法和卫星通信装置 - Google Patents

卫星通信方法和卫星通信装置 Download PDF

Info

Publication number
WO2023071716A1
WO2023071716A1 PCT/CN2022/123573 CN2022123573W WO2023071716A1 WO 2023071716 A1 WO2023071716 A1 WO 2023071716A1 CN 2022123573 W CN2022123573 W CN 2022123573W WO 2023071716 A1 WO2023071716 A1 WO 2023071716A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite
elevation angle
service
terminal device
indication information
Prior art date
Application number
PCT/CN2022/123573
Other languages
English (en)
French (fr)
Inventor
汪宇
罗禾佳
乔云飞
陈莹
杨若男
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023071716A1 publication Critical patent/WO2023071716A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data

Definitions

  • the present application relates to the field of satellite communication, and more specifically, to a satellite communication method and a satellite communication device.
  • Non-terrestrial networks include nodes such as satellite networks, high-altitude platforms, and UAVs. They have significant advantages such as global coverage, long-distance transmission, flexible networking, convenient deployment, and no geographical constraints.
  • the coverage of a single satellite is very wide, up to thousands or even tens of thousands of square kilometers, while the coverage of a single beam can be as small as tens or even thousands of meters. Therefore, in order to support wide-area coverage, a single satellite usually needs to be equipped with hundreds or even thousands of beams, which poses a huge challenge to the satellite load.
  • the beam-hopping satellite communication system came into being. Specifically, in the beam-hopping satellite system, a single satellite is only equipped with a small number of beams (such as dozens of beams), and the beams serve all coverage areas of a single satellite in a time-sharing manner.
  • a satellite can serve multiple terminal devices within a coverage area. As the satellite moves, its coverage area may change accordingly, and may not continue to provide communication services for multiple terminal devices within the original coverage area.
  • the satellite needs to monitor the position information of multiple terminal devices in real time during the movement process, determine the timer parameters or reference point position parameters of each terminal device according to the position information of each terminal device, and send them to each terminal device. Since the location information of each terminal device is different, the timer parameters of each terminal device are different. After the timer expires, the terminal device can reselect or switch satellites.
  • the present application provides a satellite communication method and a satellite communication device, which are beneficial to reducing signaling overhead in the communication process.
  • a satellite communication method including: a terminal device receives first indication information from a first satellite, where the first indication information indicates the first service used to determine the first satellite where the terminal device is located Parameter of the cell's departure elevation angle.
  • the terminal device determines the elevation angle of the terminal device relative to the first satellite based on the ephemeris and the location information of the terminal device.
  • the terminal device determines the departure service elevation angle according to the first indication information, and compares the departure service elevation angle with the terminal device's elevation angle relative to the first satellite to determine whether to reselect or switch satellites.
  • the terminal device may determine whether to perform satellite reselection or switching according to the departure elevation angle indicated by the first satellite.
  • the number of terminal equipments in the first serving cell is at least one, and the first indication information is used for all terminal equipments in the first serving cell, so that the first satellite does not need to be a terminal device for each terminal equipment in the first serving cell.
  • the timer parameter is sent separately to instruct the terminal device to reselect or switch satellites, which is beneficial to save signaling overhead.
  • the terminal device compares the elevation angle of the terminal device with respect to the first satellite to determine whether to perform satellite reselection or handover, including: In a case where the elevation angle of the terminal device relative to the first satellite is less than or equal to the departure elevation angle, the terminal device determines to perform satellite reselection or switching.
  • the terminal device can determine whether to switch satellites by comparing the elevation angle of the terminal device relative to the first satellite with the elevation angle of the departure service, which is easy to implement and facilitates timely switching of the terminal device to improve communication quality .
  • the first indication information is carried by any of the following information: system information block (system information block, SIB), medium access control control element (medium access control control element, MAC CE), downlink control information (downlink control information, DCI) or radio resource control (radio resource control, RRC).
  • SIB system information block
  • medium access control control element medium access control control element
  • MAC CE medium access control control element
  • DCI downlink control information
  • RRC radio resource control
  • the parameters used to determine the elevation angle of the first satellite leaving the first serving cell where the terminal device is located include at least one of the following: the first satellite Departure service elevation angle, opening angle or central angle.
  • a satellite communication method including: a first satellite acquires a parameter used to determine a service elevation angle of the first satellite leaving a first service cell where the terminal device is located. The first satellite sends first indication information to the terminal equipment in the first serving cell, where the first indication information indicates the parameter used to determine the elevation angle away from the service.
  • the first indication information is carried by any of the following information: SIB, MAC CE, DCI or RRC.
  • the parameters used to determine the elevation angle of the first satellite leaving the first serving cell where the terminal device is located include at least one of the following: the first satellite Departure service elevation angle, opening angle or central angle.
  • the first satellite can directly indicate the departure service elevation angle to the terminal device.
  • the first satellite can also indicate the opening angle and/or the central angle of the satellite that determines the departure service elevation angle through the first indication information.
  • the aperture angle and/or the central angle of a satellite can be used to obtain the out-of-service elevation angle of the first satellite.
  • the first satellite determines an incoming service elevation angle and/or an outgoing service elevation angle of the first satellite in the first serving cell.
  • the first satellite adjusts the service entering elevation angle and/or the leaving service elevation angle according to the traffic density of the first serving cell.
  • the first satellite sends second indication information to the second satellite, the second indication information is used to indicate the adjusted entering service elevation angle and/or the adjusted leaving service elevation angle of the first satellite, and the second satellite and the first satellite The coverage areas of a satellite are adjacent.
  • the first satellite and the second satellite can exchange the information of entering service elevation angle and/or leaving service elevation angle, so that the first satellite and the second satellite can dynamically adjust their own elevation angle information , to achieve seamless coverage of the area, thereby improving the communication quality of the terminal equipment in the coordinated coverage area.
  • the first satellite adjusts the entering service elevation angle and/or the leaving service elevation angle according to the traffic density of the first serving cell, including: When the traffic density of the cell is greater than or equal to the first preset threshold, the first satellite increases the service entry elevation angle and/or the service exit elevation angle. Or, in the case that the traffic intensity of the first serving cell is less than the first preset threshold, the first satellite reduces the entering service elevation angle and/or the leaving service elevation angle.
  • the first satellite may not be able to bear the intensive traffic demand and cannot provide good service for terminal equipment in the first serving cell. service experience, so the first satellite can reduce the service area by increasing the elevation angle of entering the service and/or the elevation angle of leaving the service, so that when the service area becomes smaller and the traffic flow that the first satellite can carry remains the same, It is beneficial to increase the throughput within the unit service area.
  • the first satellite obtains the activation factor of the first channel used by the first serving cell for service data transmission, and the activation factor is used to indicate that the channel is in the target time period The average activation time in .
  • the first satellite sends the activation factor of the first channel to a third satellite, and the coverage area of the third satellite is similar to that of the first satellite. adjacent.
  • the first satellite can exchange channel activation factors with other satellites, and the channel activation factors can further perform interference estimation and interference management, which is conducive to realizing efficient interference management between satellites/cells.
  • the first satellite receives third indication information from the third satellite, where the third indication information is used to instruct the first satellite to reconfigure a channel.
  • the first satellite reconfigures the channel of the first serving cell based on the third indication information.
  • the third satellite can reconfigure the channel of the first serving cell according to the third instruction information, which is beneficial to reduce interference between satellites.
  • a satellite communication method including: the second satellite receives second indication information from the first satellite, and the second indication information is used to indicate the first satellite's adjusted entry service elevation angle and/or adjusted After leaving the service elevation angle, the second satellite is adjacent to the coverage area of the first satellite.
  • the second satellite adjusts the in-service elevation and/or the out-of-service elevation of the second satellite based on the adjusted in-service elevation and/or the adjusted out-of-service elevation of the first satellite.
  • the second satellite can adjust the service entry elevation angle and/or the departure service elevation angle of the second satellite based on the first satellite's adjusted entry service elevation angle and/or the adjusted exit service elevation angle, which is beneficial to realize the region-free Seam coverage.
  • the second satellite adjusts the in-service elevation angle of the second satellite based on the adjusted in-service elevation angle and/or the adjusted out-of-service elevation angle of the first satellite and/or departure service elevation angle, including: the case where the adjusted entry service elevation angle and/or the adjusted departure service elevation angle of the first satellite is greater than or equal to the entry service elevation angle and/or departure service elevation angle before the first satellite adjustment Next, the second satellite decreases the in-service elevation angle and/or the out-of-service elevation angle of the second satellite.
  • the second satellite increases The in-service elevation angle and/or the out-of-service elevation angle of the second satellite is greater.
  • a satellite communication method including: a third satellite receives an activation factor of a first channel from a first satellite, and the first channel is used by a first service cell covered by the first satellite for service data transmission The first channel is used, the activation factor is used to represent the average activation time of the channel within the target time period, and the third satellite is adjacent to the coverage area of the first satellite.
  • the third satellite performs interference estimation based on the activation factor of the first channel and a preset interference value to obtain an interference estimation result, and the interference estimation result is used to represent the service of the first serving cell to the third satellite during data transmission Interference caused by the cell.
  • the third satellite can perform interference estimation based on the channel activation factor, and such interference estimation method is simple and efficient.
  • the third satellite when the interference estimation result is greater than or equal to a third preset threshold, the third satellite sends third indication information to the first satellite, and the first The third indication information is used to instruct the first satellite to reconfigure the channel.
  • a satellite communication device including: configured to execute the method in any possible implementation manner in any one of the foregoing aspects.
  • the apparatus includes a module for executing the method in any possible implementation manner in any of the foregoing aspects.
  • the device may include modules corresponding to one-to-one execution of the methods/operations/steps/actions described in the above aspects.
  • the modules may be hardware circuits, software, or a combination of hardware circuits and software. accomplish.
  • the device is a communication chip
  • the communication chip may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
  • the apparatus is a satellite communications device, which may include a transmitter for sending information or data, and a receiver for receiving information or data.
  • the apparatus is used to execute the method in any of the above-mentioned aspects or any possible implementation of the various aspects, and the apparatus may be configured in the above-mentioned terminal equipment, the first satellite, the second satellite, or the third satellite, or The device itself is the aforementioned terminal equipment, the first satellite, the second satellite or the third satellite.
  • another satellite communication device including a processor and a memory, the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that the device performs any of the above aspects A method in any of the possible implementations.
  • processors there are one or more processors, and one or more memories.
  • the memory may be integrated with the processor, or the memory may be set separately from the processor.
  • the device is a communication device, and the communication device also includes a transmitter (transmitter) and a receiver (receiver).
  • the transmitter and the receiver can be set separately or integrated together, called a transceiver ( transceiver).
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit, and transmit a signal through the output circuit, so that the processor executes the method in any possible implementation manner in any of the foregoing aspects.
  • the above-mentioned processor can be a chip
  • the input circuit can be an input pin
  • the output circuit can be an output pin
  • the processing circuit can be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example but not limited to, the receiver
  • the output signal of the output circuit may be, for example but not limited to, output to the transmitter and transmitted by the transmitter
  • the circuit may be the same circuit, which is used as an input circuit and an output circuit respectively at different times.
  • the present application does not limit the specific implementation manners of the processor and various circuits.
  • a satellite communication system including: a device for realizing the above-mentioned first aspect or any possible realization method of the first aspect and a device for realizing the above-mentioned second aspect or any one of the second aspects
  • the device for realizing the above-mentioned second aspect or any possible realization method of the second aspect and the device for realizing the above-mentioned third aspect or any possible realization method of the third aspect or include:
  • a device for realizing the above-mentioned second aspect or any possible realization method of the second aspect and a device for realizing the above-mentioned fourth aspect or any one possible realization method of the fourth aspect.
  • the communication system may further include other devices that interact with the first network device, the target second network device and/or the wireless backhaul node in the solution provided in this application.
  • a computer program product includes: a computer program (also referred to as code, or an instruction), which, when the computer program is executed, causes the computer to perform any of the above-mentioned aspects.
  • a computer program also referred to as code, or an instruction
  • a computer-readable medium stores a computer program (also referred to as code, or instruction) which, when running on a computer, causes the computer to perform any of the above-mentioned aspects.
  • a computer program also referred to as code, or instruction
  • Fig. 1 is a schematic diagram of a beam-hopping satellite communication system
  • Fig. 2 is a schematic diagram of an elevation angle of a satellite provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a satellite communication system provided by an embodiment of the present application.
  • FIG. 4 is a schematic flow chart of a satellite communication method provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an elevation angle-based satellite switching provided by an embodiment of the present application.
  • Fig. 6 is a schematic flowchart of another satellite communication method provided by the embodiment of the present application.
  • FIG. 7 is a schematic diagram of multi-satellite coordinated coverage provided by an embodiment of the present application.
  • Fig. 8 is a schematic diagram of another multi-satellite coordinated coverage provided by the embodiment of the present application.
  • FIG. 9 is a schematic diagram of interference management provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of another satellite communication method provided by the embodiment of the present application.
  • FIG. 11 is a schematic diagram of an NR single-cell co-frequency SSB configuration provided by an embodiment of the present application.
  • Fig. 12 is a schematic diagram of a UV plane provided by the embodiment of the present application.
  • FIG. 13 is a schematic diagram of a beam coverage position corresponding to a TAC provided in an embodiment of the present application.
  • Fig. 14 is a schematic block diagram of a satellite communication device provided by an embodiment of the present application.
  • FIG. 15 is a schematic block diagram of another satellite communication device provided by an embodiment of the present application.
  • Fig. 16 is a schematic block diagram of another satellite communication device provided by the embodiment of the present application.
  • Fig. 17 is a schematic block diagram of another satellite communication device provided by an embodiment of the present application.
  • Fig. 18 is a schematic block diagram of another satellite communication device provided by an embodiment of the present application.
  • NTN Non-terrestrial networks
  • NTN includes nodes such as satellite networks, high-altitude platforms, and UAVs. It has global coverage, long-distance transmission, flexible networking, convenient deployment, and is not limited by geographical conditions. It has been widely used in maritime communications, positioning and navigation, and anti-ship disaster relief, scientific experiments, video broadcasting, and earth observation.
  • the terrestrial mobile communication technology network and satellite network are integrated with each other, learn from each other's strengths, and jointly form an integrated communication network with sea, land, air, space and ground that seamlessly covers the world to meet the various business needs of users everywhere.
  • the next-generation satellite network generally presents an ultra-dense and heterogeneous trend.
  • the scale of the satellite network has grown from 66 in the Iridium constellation to 720 in the OneNet constellation, and finally extended to a constellation of more than 12,000 Starlink ultra-dense low earth orbit (LEO) satellites.
  • LEO Starlink ultra-dense low earth orbit
  • the satellite network presents heterogeneous characteristics. From the traditional single-layer communication network to the multi-layer communication network, the functions of the communication satellite network also tend to be complicated and diversified, and are gradually compatible and support navigation enhancement, earth observation, and multi-dimensional information. Track processing and other functions.
  • the coverage of a single satellite is very wide, up to thousands or even tens of thousands of kilometers, while the coverage of a single beam can be as small as tens or even thousands of meters. Therefore, in order to support wide-area coverage, a single satellite usually needs to be equipped with hundreds or even thousands of beams, which poses a huge challenge to the load of LEO satellites.
  • the beam-hopping satellite communication system came into being. Specifically, in a beam-hopping satellite communication system, a single satellite is only equipped with a small number of beams (such as dozens of beams), and the beams serve all coverage areas of a single satellite in a time-sharing manner.
  • FIG. 1 is a schematic diagram of a beam-hopping satellite communication system 100 .
  • the beam-hopping satellite communication system 100 includes satellites 110 at time T1 , time T2 , time T3 , and time T4 . Since the satellite 110 has different positions at different times, the satellite 110 can form beams in different directions at different times. In the embodiment of the present application, the beams that the satellite 110 can form are numbered, and the beam numbers are 0-15. At the same time, satellite 110 can form 4 beams. At time T1 , the satellite 110 uses four beams numbered 0, 1, 4, and 5 to cover its corresponding area. At time T2 , the satellite 110 uses four beams numbered 2, 3, 6, and 7 to cover its corresponding area.
  • the satellite 110 uses four beams numbered 8, 9, 12, and 13 to cover its corresponding area.
  • the satellite 110 uses four beams numbered 10, 11, 14, and 15 to cover its corresponding area. In this way, all areas covered by a single satellite (that is, the areas corresponding to 16 beams) can be served by means of time division of T 1 , T 2 , T 3 , and T 4 .
  • Fig. 2 is a schematic diagram of an elevation angle of a satellite provided by an embodiment of the present application. Taking the satellite 110 in FIG. 1 as an example, as shown in FIG. 2 , at a given moment, the angle between the line of sight from point p on the earth to the satellite and the horizon at point p is the elevation angle of the satellite 110 .
  • the definition of the elevation angle is applicable to the satellite’s departure service elevation angle, entry service elevation angle, and the elevation angle of the terminal device relative to the satellite, but the point p corresponding to the three may be different, so the satellite’s departure service elevation angle, entry service elevation angle and terminal equipment The elevation angle relative to the satellite may vary.
  • the elevation angle of the satellite is used to describe the position where the satellite passes above the terminal device at a certain moment.
  • the elevation angle is 90 degrees, it means that the satellite is directly above the terminal device.
  • the satellite does not provide services to the terminal device.
  • the parameters for determining the elevation angle of the satellite at a certain moment may include the latitude and longitude of the location of the terminal device, the height of the satellite from the ground, the orbit angle of the satellite, and the specific position of the satellite on the orbit (for example, the latitude and longitude of the satellite). longitude). It is worth noting that the elevation angle can also be converted from angular information such as the satellite's opening angle and/or the central angle.
  • FIG. 3 is a schematic diagram of a satellite communication system 300 provided by an embodiment of the present application.
  • the satellite communication system 300 includes a satellite 101 , a satellite 102 , a satellite 103 and at least one terminal device 104 . Satellites communicate with each other through inter-satellite links. Communication between the satellite and the terminal equipment can be carried out through the uplink and downlink.
  • FIG. 3 exemplarily shows a scenario of five terminal devices, and this embodiment of the present application does not limit the number of terminal devices.
  • the satellite communication system 300 further includes a ground station device 105 .
  • the satellite 103 may be connected to the ground station device 105 to communicate with the ground station device 105 .
  • the satellite 101 , the satellite 102 , and the satellite 103 in FIG. 3 may have the same functions as the satellite 110 in FIG. 1 .
  • the terminal device may be fixed or mobile.
  • the embodiment of the present application does not limit the number of satellites and terminal devices included in the satellite communication system 300 .
  • the satellites in the satellite communication system 300 may be LEO satellites, non-geostationary earth orbit (NGEO) satellites, middle earth orbit (middle earth orbit, MEO) satellites, or geosynchronous earth orbit (geostationary earth orbit) satellites. , GEO) satellites.
  • NGEO non-geostationary earth orbit
  • MEO middle earth orbit
  • GEO geosynchronous earth orbit
  • Satellites in the satellite communication system 300 can provide communication services, navigation services, and positioning services to terminal devices through multiple beams.
  • the satellites in the satellite communication system 300 use multiple beams to cover the serving cell, and different beams can communicate through one or more of time division, frequency division and space division. Satellites in the satellite communication system 300 communicate wirelessly with terminal equipment by broadcasting communication signals and navigation signals, and satellites can communicate wirelessly with ground station equipment.
  • the satellite mentioned in the embodiment of the present application may be a satellite base station, may also include an orbit receiver or a repeater for relaying information, or may be a network device carried on a satellite.
  • a satellite communication system includes a transparent satellite architecture and a non-transparent satellite architecture.
  • Transparent transmission is also called bent pipe forwarding transmission, that is, the signal is only subjected to frequency conversion and signal amplification on the satellite, and the satellite is transparent to the signal.
  • Non-transparent transmission is also called regenerative (access/processing on satellite) transmission, that is, the satellite has part or all of the base station functions.
  • the satellite 101 and the satellite 102 in FIG. 3 are non-transparent satellite architectures
  • the satellite 103 is a transparent satellite architecture.
  • the terminal equipment in the embodiments of the present application may refer to user equipment, access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent or user device .
  • the terminal device in the embodiment of the present application can also be a satellite phone, a cellular phone, a smart phone, a wireless data card, a wireless modem, a machine type communication device, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, Wireless local loop (WLL) station, personal digital assistant (PDA), handheld device with wireless communication capabilities, computing device or other processing device connected to a wireless modem, vehicle-mounted device, or wearable device , virtual reality (virtual reality, VR) terminal equipment, augmented reality (augmented reality, AR) terminal equipment, wireless terminals in industrial control (industrial control), wireless terminals in self driving (self driving), telemedicine (remote Wireless terminals in medical, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in
  • the terminal device may also be a terminal device in an Internet of Things (internet of things, IoT) system.
  • IoT Internet of things
  • Its main technical feature is to connect objects to the network through communication technology, so as to realize the intelligent network of human-machine interconnection and object interconnection.
  • the present application does not limit the specific form of the terminal device.
  • the terminal device may be a device for realizing the function of the terminal device, or may be a device capable of supporting the terminal device to realize the function, such as a chip system, and the device may be installed in the terminal.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • the network devices in the embodiments of the present application may include one or more satellite and ground station devices.
  • the network device can be any device with wireless transceiver function, including but not limited to: evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), node B (node base , NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home node B, HNB), base band unit (base band unit, BBU), wireless fidelity (wireless fidelity, WIFI) system in the access point (access point, AP), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or sending and receiving point (transmission and reception point, TRP), etc., can also be 5G, such as gNB in the NR system, or transmission point (TRP or TP), one or a group (including multiple antenna panels) antenna panels of the
  • the network device may be a device for realizing the function of the network device, or a device capable of supporting the network device to realize the function, such as a chip system, and the device may be installed in the network device.
  • the network devices and terminal devices in the embodiments of the present application can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; or deployed on water; or deployed on airplanes, balloons and satellites in the air.
  • the embodiments of the present application do not limit the application scenarios of the network device and the terminal device.
  • the ground station equipment in the embodiment of the present application may also be referred to as core network equipment, for example, the ground station equipment is the equipment in the core network (core network, CN) of the existing mobile communication architecture or the core network of the future mobile communication architecture device of.
  • the core network provides an interface to the data network, providing communication connections, authentication, management, policy control, and carrying data services for terminal devices.
  • CN can further include: access and mobility management function (AMF), session management function (SMF), authentication server function (AUSF), policy Control network element (policy control function, PCF), user plane function network element (user plane function, UPF) and other network elements.
  • AMF access and mobility management function
  • SMF session management function
  • AUSF authentication server function
  • policy Control network element policy control function
  • PCF user plane function network element
  • UPF user plane function
  • the AMF network element is used to manage the access and mobility of the terminal equipment, and is mainly responsible for the authentication of the terminal equipment, the mobility management of the terminal equipment, and the paging of the terminal
  • the satellite communication method provided by the embodiment of the present application can be applied to NTN systems such as satellite communication system, high altitude platform station (HAPS) communication, unmanned aerial vehicle, for example, integrated communication and navigation (IcaN) system, global navigation satellite system (GNSS) and ultra-dense LEO satellite communication system, etc.
  • the satellite communication system can be integrated with the traditional mobile communication system.
  • the traditional mobile communication system can be the fourth generation (4th generation, 4G) communication system (for example, long term evolution (long term evolution, LTE) system), global interconnection microwave access (worldwide interoperability for microwave access, WiMAX) communication system, the fifth generation (5th generation, 5G) communication system (for example, new radio (NR) system), and future mobile communication systems, etc.
  • 4G fourth generation
  • LTE long term evolution
  • WiMAX global interconnection microwave access
  • 5th generation, 5G for example, new radio (NR) system
  • future mobile communication systems etc.
  • FIG. 4 is a schematic flowchart of a satellite communication method 400 provided by an embodiment of the present application.
  • the method 400 may be applied to the aforementioned satellite communication system 300, where the first satellite may be a satellite in the satellite communication system 300, but this is not limited in this embodiment of the present application.
  • Method 400 includes the steps of:
  • the first satellite acquires a parameter used to determine an elevation angle of the first satellite leaving a service cell in a first serving cell.
  • the first satellite sends first indication information to the terminal device, where the first indication information is used to indicate the departure service elevation angle of the first satellite from the first service cell where the terminal device is located.
  • the terminal device receives the first indication information.
  • the terminal device determines an elevation angle of the terminal device relative to the first satellite based on the ephemeris and the location information of the terminal device.
  • the terminal device determines the leaving service information based on the first indication information, and compares the leaving service elevation angle with an elevation angle of the terminal device relative to the first satellite, and determines whether to perform satellite reselection or switching.
  • the first serving cell is one of multiple serving cells of the first satellite, and the number of terminal devices in the first serving cell is at least one.
  • the parameters used to determine the departure service elevation angle of the first satellite in the first serving cell where the terminal device is located include at least one of the following: the departure service elevation angle, opening angle, or central angle of the first satellite .
  • the parameter used to indicate the departure service elevation angle of the first satellite in the first service cell where the terminal device is located may be the departure service elevation angle, that is, the first satellite directly indicates the departure service of the first service cell to the terminal device. elevation angle.
  • the parameter used to indicate the elevation angle of the first satellite leaving the first service cell where the terminal device is located may also be the opening angle and/or central angle of the first satellite, and the terminal device may The angle and/or central angle is calculated to obtain the service elevation angle, that is, the first satellite can indirectly indicate to the terminal device the elevation angle of the service cell leaving the first service cell.
  • the elevation angle, opening angle, and central angle of the satellite are shown in FIG. 2 .
  • the elevation angle of the satellite can be calculated according to a triangle-related mathematical calculation method when the opening angle and the central angle of the satellite are known.
  • the first satellite may indicate a departure service elevation angle through the first indication information, and the departure service elevation angle is used for the terminal device to determine whether to perform satellite reselection or switching.
  • the departure service elevation angle is applicable to all terminal devices in the first serving cell, that is, it can be cell-specific or satellite-specific, so that the first satellite does not need to be a terminal device in the first serving cell.
  • Each terminal device sends a timer parameter separately to instruct the terminal device to reselect or switch satellites, which is beneficial to save signaling overhead.
  • S404 includes: when the elevation angle of the terminal device relative to the first satellite is less than or equal to the departure elevation angle, the terminal device determines to reselect or switch satellites.
  • the terminal device can compare the elevation angle of the terminal device calculated based on the ephemeris and its own position information (such as latitude and longitude) with the departure service elevation angle, when the elevation angle of the terminal device is less than or equal to the departure service elevation angle , the terminal device can trigger satellite reselection or handover related measurements, or directly trigger satellite reselection or handover.
  • the terminal device can compare the elevation angle of the terminal device calculated based on the ephemeris and its own position information (such as latitude and longitude) with the departure service elevation angle, when the elevation angle of the terminal device is less than or equal to the departure service elevation angle , the terminal device can trigger satellite reselection or handover related measurements, or directly trigger satellite reselection or handover.
  • the terminal device when the terminal device is in a connected state, the terminal device may trigger satellite switching, and when the terminal device is in an idle state, the terminal device may trigger satellite reselection.
  • FIG. 5 is a schematic diagram of satellite switching based on elevation angle provided by an embodiment of the present application.
  • FIG. 5 includes a first satellite 510 , a second satellite 520 and a terminal device 530 .
  • the terminal device 530 is located in the overlapping area of the first serving cell of the first satellite 510 and the second serving cell of the second satellite 520, and the first satellite 510 moves toward the direction indicated by the arrow.
  • first satellite 510 and the second satellite 530 may be satellites in the satellite communication system 300, and the terminal device 530 may be a terminal device in the satellite communication system 300, but this is not limited in this embodiment of the present application.
  • the terminal device 530 After the terminal device 530 receives the departure service elevation angle sent by the first satellite 510, the terminal device 530 calculates the elevation angle of the terminal device 530 relative to the first satellite, and the elevation angle of the terminal device 530 relative to the first satellite is less than or equal to the first satellite.
  • the terminal device 530 can separately measure the signal power with at least one candidate satellite, and select satellites that meet the signal power requirements as the terminal device 530 reselection Or the service satellite after switching, which is conducive to improving the communication quality.
  • the terminal device 530 does not need to perform relevant measurements, and randomly selects a satellite from at least one candidate satellite as a reselected or switched serving satellite, which is beneficial to reduce communication delay.
  • the terminal device 530 is located in the serving cell of the at least one candidate satellite. Assuming that the terminal device is in the connected state, the terminal device 530 chooses to switch directly from the first satellite 510 to the second satellite 520, or to switch from the first satellite 510 to the second satellite 520 after measuring the signal power depends on the previous network deployment, according to Requirements during network deployment trigger satellite reselection or handover related measurements, or directly trigger satellite reselection or handover.
  • the satellite with the strongest signal power may be selected as the serving satellite after the terminal device 530 reselects or switches.
  • the second satellite 520 is one of at least one candidate satellite, and is a serving satellite reselected or switched by the terminal device 530, and other candidate satellites are not shown in FIG. 5 .
  • the first indication information may be carried by a system information block SIB, a medium access control element MAC CE, downlink control information DCI or radio resource control RRC.
  • SIB system information block
  • MAC CE medium access control element
  • DCI downlink control information
  • RRC radio resource control
  • the interval of the departure service elevation angle of the first satellite is 10 degrees to 85 degrees
  • the indication accuracy of the first indication information is 5 degrees
  • the departure service elevation angle of the first satellite can be indicated by 4 bits
  • the information bit is related to the departure service
  • more bits may also be used to indicate a more fine-grained departure service elevation angle.
  • the elevation angle of the first satellite may be indicated by 6 bits, or by more The bit indicates the out-of-service elevation angle of the first satellite.
  • the departure elevation angle here can also be obtained through conversion of angular information such as the opening angle and/or the center angle of the satellite. Therefore, the purpose of cell reselection/handover can also be achieved by indicating angle information such as the opening angle and/or central angle of the satellite.
  • the satellites/beams need to transmit the information of the entering service elevation angle and leaving the service elevation angle, so as to realize the coordinated coverage and service mode conversion between multiple satellites.
  • FIG. 6 is a schematic flow chart of another satellite communication method 600 provided by the embodiment of the present application.
  • the method 600 can be applied to the above-mentioned satellite communication system 300, wherein the first satellite and the second satellite can be satellites in the satellite communication system 300 , but this embodiment of the present application does not limit it.
  • Method 600 includes the steps of:
  • the first satellite determines an incoming service elevation angle of the first satellite in a first serving cell.
  • the first satellite adjusts the elevation angle of entering the service and/or the elevation angle of leaving the service according to the traffic density of the first serving cell.
  • the first satellite sends second indication information to the second satellite, the second indication information is used to indicate the adjusted entering service elevation angle and/or the adjusted leaving service elevation angle of the first satellite, the first satellite and the second satellite adjacent coverage areas.
  • the second satellite receives the second indication information.
  • the second satellite adjusts an incoming service elevation angle and/or an outgoing service elevation angle of the second satellite based on the second indication information.
  • the number of the second satellite is at least one, and the first satellite adjusts the entering service elevation angle and/or the leaving service elevation angle according to the traffic density of the first serving cell, and the adjusted entering service elevation angle and/or The adjusted out-of-service elevation angle is transmitted to the second satellite, and the second satellite can adapt to adjust the in-service elevation angle and/or out-of-service elevation angle of the second satellite according to the adjusted in-service elevation angle and/or the adjusted out-of-service elevation angle of the first satellite Elevation angles are used to achieve coordinated coverage between multiple satellites.
  • the interactive adjustment of the entering service elevation angle and/or leaving the service elevation angle is conducive to dynamically adjusting the service area among multiple satellites, so as to realize the coverage of the target area. Seamless coverage.
  • the incoming service elevation angle and/or the outgoing service elevation angle may be transferred between different satellites/cells served by different satellites through the Xn interface or the NG interface.
  • the first satellite may increase the entering service elevation angle and/or leaving the service elevation angle of the first satellite, which can reduce the first The service area of the satellite, which is conducive to improving the throughput within the unit service area.
  • the first satellite may reduce the service elevation angle of the first satellite and/or the service elevation angle of the first satellite to reduce the service area, such that The service area of the first satellite can be enlarged, so as to provide communication services for more terminal devices.
  • the entering service elevation angle and leaving service elevation angle here can also be obtained through conversion of angular information such as the opening angle and/or the center angle of the satellite. Therefore, coordinated coverage can also be achieved between cells by indicating angle information such as the opening angle and/or central angle of the satellite.
  • the first satellite is satellite 1
  • the second satellite includes satellite 2 and satellite 3.
  • Satellite 2 and satellite 3 are neighbor satellites of satellite 1, which can be understood as the coverage area of satellite 2 and satellite 3 and the coverage area of satellite 1. Adjacent or overlapping. Assume that at time T 0 , the service entry elevation angles and departure service elevation angles of satellite 1, satellite 2, and satellite 3 are shown in Table 2.
  • satellite 1 can increase the service elevation angle of satellite 1 and/or the service elevation angle of departure, thereby reducing the service area of satellite 1 and entering a service mode with enhanced throughput.
  • satellite 1 as an example to adjust the in-service elevation angle and out-of-service elevation angle
  • the in-service elevation angles and out-of-service elevation angles of satellite 1, satellite 2, and satellite 3 at time T1 are shown in Table 3.
  • Satellite identification access service elevation departure service elevation Satellite 1 35 Satellite 2 30 45 Satellite 3 35 25
  • Satellite 1 60 55 satellite 2 30 45 Satellite 3 35 25
  • Fig. 7 is a schematic diagram of multi-satellite coordinated coverage provided by an embodiment of the present application. It can be seen from FIG. 7 that the satellite 1 , satellite 2 and satellite 3 cooperate to cover the target area 70 , and the service area 10 of the satellite 1 is smaller than the service area 20 of the satellite 2 and the service area 30 of the satellite 3 .
  • satellite 1 , satellite 2 and satellite 3 in FIG. 7 may be satellites in the satellite communication system 300 , but this is not limited in this embodiment of the present application.
  • satellite 1 can increase the service elevation angle of satellite 1 and/or the service elevation angle of departure to 90 degrees, that is, satellite 1 does not provide services for terminal equipment at all, and enters the energy saving mode. model.
  • satellite 2 and satellite 3 can reduce their entering service elevation angle and/or leaving service elevation angle to improve coverage.
  • the in-service elevation angles and out-of-service elevation angles of satellite 1, satellite 2, and satellite 3 at time T2 are shown in Table 4.
  • the service areas of satellite 1, satellite 2 and satellite 3 at time T2 are shown in FIG. 8 .
  • Satellite identification access service elevation departure service elevation Satellite 1 90 90 satellite 2 15 15 Satellite 3 10 15
  • FIG. 8 is a schematic diagram of another multi-satellite coordinated coverage provided by an embodiment of the present application. It can be seen from Fig. 8 that satellite 2 and satellite 3 cooperate to cover the target area 70, and satellite 1 enters the energy-saving mode and cannot continue to provide services for terminal equipment because the elevation angle of entering service and the elevation angle of leaving service increase to 90 degrees. Compared with FIG. 7 , the service area 20 of satellite 2 and the service area 30 of satellite 3 increase after satellite 2 and satellite 3 in FIG. 8 decrease the service elevation angle and service elevation angle.
  • satellite 1, satellite 2, and satellite 3 in FIG. 8 may be satellites in the satellite communication system 300, but this embodiment of the present application does not limit it.
  • satellite 1 reduces satellite 1's entering service elevation angle and/or leaving service elevation angle to make its own service area larger
  • satellite 2 can adapt to increase satellite 2's entering service elevation angle and/or leaving service elevation angle to Make its own service area smaller.
  • satellite 3 can also adapt to increase the entering service elevation angle and/or leaving service elevation angle of satellite 3 to make its own service area smaller, which is conducive to reducing the power of satellite 2 or satellite 3. consumption.
  • the first satellite sends second indication information to the terminal device, where the second indication information is used to indicate the adjusted elevation angle for entering the service and/or the adjusted elevation angle for leaving the service.
  • the terminal device receives the second indication information, and determines whether to perform satellite reselection or handover based on the adjusted incoming service elevation angle and/or the adjusted outgoing service elevation angle.
  • terminal devices in the service area 10 can trigger satellite reselection or switching, which is beneficial to improve communication quality and realize efficient cooperative coverage among multiple satellites.
  • signal interference may occur between systems including multiple satellites.
  • the first serving cell of the first satellite and the second serving cell of the second satellite use the same time-frequency resource.
  • the data transmission of the second serving cell may have a significant impact on the data transmission of the first serving cell. Data transmission is disrupted.
  • the data transmission of the first serving cell may interfere with the data transmission of the second serving cell.
  • NR mainly solves the inter-cell interference problem from two dimensions:
  • NR when NR deploys serving cells, it uses criteria such as modulo 3 and modulo 30 to solve physical cell identifier (PCI) conflict and confusion problems.
  • PCI physical cell identifier
  • interference coordination mechanisms are set between serving cells, such as almost blank subframe (almost blank subframe, ABS), enhanced interference coordination and channel state information interference measurement (channel state information interference measurement, CSI-IM) feedback mechanism, etc.
  • the embodiment of the present application provides a satellite communication method, which can realize efficient interference management between multiple satellites by transferring channel activation factors between different satellites/cells.
  • Fig. 9 is a schematic diagram of interference management provided by an embodiment of the present application.
  • the area covered by the first satellite and the second satellite can be divided into five clusters (cluster), wherein cluster 1 and cluster 2 respectively include service cells of a plurality of first satellites, and cluster 3 , cluster 4 and cluster 5 respectively include serving cells of a plurality of second satellites.
  • different clusters can use frequency/polarization multiplexing, for example, cluster 1 and cluster 4 multiplex channels C 0 and C 1 , and cluster 2 and cluster 5 multiplex channel C 2 and C 3 .
  • different clusters adopt non-uniform channel allocation, and each channel corresponds to a combination of frequency and/or polarization.
  • cluster 3 is configured with three channels, namely C 4 , C 5 and C 6 .
  • the seven channels of C 0 , C 1 , C 2 , C 3 , C 4 , C 5 and C 6 have different bandwidths to match the service requirements of different serving cells.
  • Figure 1 and Figure 2 represent serving cells configured with channels C 0 and C 1 in cluster 1 and cluster 4
  • Figure 3 and Figure 4 represent serving cells configured with channels C 2 and C 3 in cluster 2 and cluster 5.
  • Figure 5, Figure 6 and Figure 7 represent serving cells in cluster 3 where channels C 4 , C 5 and C 6 are configured.
  • channel activation factors can be transmitted between serving satellites in different clusters, and interference estimation can be performed through the channel activation factors.
  • Fig. 10 is a schematic flowchart of another satellite communication method 1000 provided by the embodiment of the present application.
  • the method 1000 may be applied to the aforementioned satellite communication system 300, where the first satellite and the third satellite may be satellites in the satellite communication system 300, but this is not limited in this embodiment of the present application.
  • Method 1000 includes the steps of:
  • the first satellite configures a first channel used by the first serving cell for service data transmission according to service requirements of the first serving cell.
  • the first serving cell may be one or more of the multiple serving cells of the first satellite in cluster 1, and the first satellite is based on C 0 , C 1 , C 2 , C 3 , and C 4 , C5 and C6 , the bandwidth of the seven channels and the service requirements of the first serving cell, and select an appropriate channel for the first serving cell to perform data transmission.
  • the service of the first serving cell is a broadband service
  • the bandwidth of C 0 can meet the requirements of the broadband service
  • the first satellite can configure channel C 0 for the first serving cell.
  • the first satellite acquires an activation factor of the first channel, where the activation factor is used to represent an average activation time of the channel within a target time period.
  • the target time period is T
  • the channel C 0 is scheduled at T 0 within the target time period
  • ⁇ 0 is used to represent the activation factor of the channel C 0
  • ⁇ 0 T 0 /T.
  • the first satellite sends the activation factor of the first channel, the coverage area of the third satellite and the first satellite to the third satellite adjacent.
  • the third satellite receives the activation factor of the first channel.
  • the third satellite may be the second satellite in the above embodiment, or other satellites different from the second satellite.
  • the third satellite performs interference estimation based on the activation factor of the first channel and a preset interference value, and obtains an interference estimation result, which is used to represent the service of the first serving cell to the third satellite during data transmission Interference caused by the cell.
  • the third satellite in the embodiment of the present application may be a satellite that reuses the same channel as the first satellite, and the third satellite may directly interact with the first satellite through an inter-satellite link for interference information interaction and interference management policy negotiation, or
  • the third satellite reports the interference estimation result to the central control node such as the gateway station or the core network equipment, and the control node receives the channel information of other satellites for unified interference management.
  • method 1000 includes S1005: in the case that the interference estimation result is greater than or equal to a third preset threshold, the third satellite sends third indication information to the first satellite, where the third indication information is used to instruct the first satellite to restart Configure the channel.
  • the first satellite receives the third indication information.
  • the third satellite may instruct the first satellite to reconfigure the channel through the third indication information.
  • the third indication information carries an identifier of a channel, for example, carries an identifier of channel C2 .
  • the method 1000 includes S1006: the first satellite reconfigures a channel of the first serving cell based on the third indication information.
  • the reconfigured channel information may be sent to the terminal device, and the terminal device may select a channel according to its own position information for data transmission.
  • different satellites can perform interference estimation by transmitting channel activation factors, so as to determine whether to reconfigure channels for interference management.
  • This interference management method is simple and efficient.
  • the above-mentioned interference management of multiple satellites is described in conjunction with FIG. 9 and FIG. 10. If only the first satellite covers the areas corresponding to the five clusters shown in FIG. 9, the first satellite can be based on the activation factor of the channel in each cluster Interference estimation is performed in a similar manner, and then it is judged whether a channel needs to be reconfigured.
  • the synchronization signal block (SSB) index index
  • the maximum value of the SSB index in a single cell is 64, that is, the maximum Contains 64 SSB beams.
  • Figure 11 is a schematic diagram of an NR single-cell co-frequency SSB configuration provided by the embodiment of the present application.
  • the beam is identified, and fc represents the frequency point of the SSB bandwidth.
  • the SSB index is mainly determined by the time domain, and corresponds to the position in the time domain one by one, that is, different SSB indexes correspond to different times.
  • the existing NR beam indication method does not support such a large-scale beam scenario.
  • the index indicating the beam is extended, a large broadcast overhead will be generated.
  • an embodiment of the present application provides a beam indication method in a large-scale beam NTN scenario, which specifically includes the following three implementation manners.
  • FIG. 12 is a schematic diagram of a UV plane provided by the embodiment of the present application.
  • the UV plane is defined as a plane perpendicular to the connecting line between the satellite and the center of the earth, where P1 represents the radius point, and P2 represents the UV plane.
  • the center point can be recorded as (u, v), and the length from P1 to P2 is the radius corresponding to the UV center point (u, v).
  • the coverage of a single satellite is a regular hexagonal topology in the UV plane, so the satellite can indicate the UV center point and the corresponding radius information to the terminal device to indicate the beam.
  • the UV center point is set to (0, 0)
  • the UV radius is set to 0.1.
  • the satellite can indicate to the terminal device the new UV center point after movement, and the radius corresponding to the new UV center point can be calculated according to the new UV center point.
  • UV center point offset indication When the satellite moves, the center point of the UV will shift, and the satellite can indicate to the terminal equipment the offset (U-offest, V-offest) of the new UV center point relative to the reference UV center point after the movement. For example, if the reference UV center point is (1, 1) and the offset is (0.1, 0.03), it means that the new UV center point after movement is (1.1, 1.03).
  • FIG. 13 is a schematic diagram of beam coverage positions corresponding to a TAC provided in an embodiment of the present application.
  • the satellite can indicate the coverage area 1 of the beam based on TAC 1 and TAC 2 , indicate the coverage area 2 of the beam based on TAC 2 and TAC 3 , and indicate the coverage area 3 of the beam based on TAC 4 , that is, the satellite can use one Or multiple TACs indicate the coverage area of the beam.
  • the satellite can also use one TAC to indicate the coverage information of multiple beams in a single satellite/single cell.
  • the terminal device can further perform random access (for example, select which channel resource to transmit on) and mobility management (for example, whether it is necessary to perform satellite /Cell switching) or location management.
  • sequence numbers of the above processes do not mean the order of execution, and the execution order of each process should be determined by its functions and internal logic, and should not constitute any limitation on the implementation process of the embodiment of the present application.
  • the satellite communication method according to the embodiment of the present application is described in detail above with reference to FIGS. 1 to 13 , and the satellite communication device according to the embodiment of the present application will be described in detail below with reference to FIGS. 14 to 18 .
  • FIG. 14 is a schematic block diagram of a satellite communication device 1400 provided by an embodiment of the present application.
  • the device 1400 includes: a receiving module 1410 and a processing module 1420 .
  • the receiving module 1410 is configured to: receive first indication information from the first satellite, where the first indication information indicates a parameter used to determine the departure elevation angle of the first satellite in the first serving cell.
  • the processing module 1420 is configured to: determine the elevation angle of the device relative to the first satellite based on the ephemeris and position information; and determine the departure service elevation angle according to the first indication information, and compare the departure service elevation angle with the relative Based on the elevation angle of the first satellite, it is determined whether to perform satellite reselection or switching.
  • the processing module 1420 is configured to: determine to perform satellite reselection or switching when the elevation angle of the apparatus relative to the first satellite is less than or equal to the departure elevation angle.
  • the first indication information is carried by any of the following information: SIB, MAC CE, DCI or RRC.
  • the parameters for determining the departure elevation angle of the first satellite in the first serving cell where the terminal device is located include at least one of the following: the departure elevation angle, opening angle, or center angle of the first satellite.
  • the apparatus 1400 may specifically be the terminal device in the foregoing embodiment, or the functions of the terminal device in the foregoing embodiment may be integrated in the apparatus 1400 .
  • the above functions can be implemented by hardware, or can be implemented by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the above-mentioned receiving module 1410 may be a communication interface, such as a transceiver interface.
  • Apparatus 1400 may be configured to execute various processes and/or steps corresponding to the terminal device in the foregoing method embodiments.
  • FIG. 15 is a schematic block diagram of another satellite communication device 1500 provided by an embodiment of the present application.
  • the device 1500 includes: an acquiring module 1510 and a sending module 1520 .
  • the obtaining module 1510 is configured to: obtain a parameter for determining the departure elevation angle of the first satellite in the first serving cell where the terminal device is located.
  • the sending module 1520 is configured to: send first indication information to the terminal equipment in the first serving cell, where the first indication information indicates the parameter used for determining the elevation angle away from the service.
  • the first indication information is carried by any of the following information: SIB, MAC CE, DCI or RRC.
  • the parameters for determining the departure elevation angle of the first satellite in the first serving cell where the terminal device is located include at least one of the following: the departure elevation angle, opening angle, or center angle of the first satellite.
  • the apparatus 1500 further includes a processing module 1530, configured to determine an incoming service elevation angle and/or an outgoing service elevation angle of the first satellite in the first serving cell; and, according to the traffic density of the first serving cell, adjust The incoming service elevation and/or the outgoing service elevation.
  • the sending module 1520 is configured to: send second indication information to the second satellite, where the second indication information is used to indicate the adjusted entering service elevation angle and/or the adjusted leaving service elevation angle.
  • the processing module 1530 is configured to: increase the service entry elevation angle and/or the exit service elevation angle when the traffic density of the first serving cell is greater than or equal to a first preset threshold. Or, in the case that the traffic intensity of the first serving cell is less than the first preset threshold, reduce the service entry elevation angle and/or the departure service elevation angle.
  • the acquiring module 1510 is configured to: acquire an activation factor of a first channel used by the first serving cell for service data transmission, where the activation factor is used to represent an average activation time of the channel within a target time period.
  • the sending module 1520 is configured to: send the activation factor of the first channel to a third satellite when the activation factor of the first channel is greater than or equal to a second preset threshold.
  • the apparatus 1500 further includes a receiving module 1540, configured to receive third indication information from a third satellite, where the third indication information is used to indicate channel reconfiguration.
  • the processing module 1530 is configured to: reconfigure the channel of the first serving cell based on the third indication information.
  • the apparatus 1500 may specifically be the first satellite in the foregoing embodiment, or the function of the first satellite in the foregoing embodiment may be integrated in the apparatus 1500 .
  • the above functions can be implemented by hardware, or can be implemented by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the above-mentioned sending module 1520 may be a communication interface, such as a transceiver interface.
  • the apparatus 1500 may be configured to execute various procedures and/or steps corresponding to the first satellite in the foregoing method embodiments.
  • FIG. 16 is a schematic block diagram of another satellite communication device 1600 provided by the embodiment of the present application.
  • the device 1600 includes: a receiving module 1610 and a processing module 1620.
  • the receiving module 1610 is configured to: receive second indication information from the first satellite, where the second indication information is used to indicate the adjusted entering service elevation angle and/or the adjusted leaving service elevation angle of the first satellite.
  • the processing module 1620 is configured to: adjust the in-service elevation angle and/or the out-of-service elevation angle based on the adjusted in-service elevation angle and/or the adjusted out-of-service elevation angle of the first satellite.
  • the processing module 1620 is configured to: when the adjusted entry service elevation angle and/or the adjusted exit service elevation angle of the first satellite is greater than or equal to the entry service elevation angle and/or the exit service elevation angle of the first satellite before adjustment case, reduce the entry service elevation angle and/or the exit service elevation angle. Or, when the adjusted entry service elevation angle and/or the adjusted exit service elevation angle of the first satellite are less than or equal to the entry service elevation angle and/or exit service elevation angle of the first satellite before adjustment, increase the entry service elevation angle and/or leave service elevation.
  • the apparatus 1600 may specifically be the second satellite in the foregoing embodiment, or the function of the second satellite in the foregoing embodiment may be integrated in the apparatus 1600 .
  • the above functions can be implemented by hardware, or can be implemented by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the above-mentioned receiving module 1610 may be a communication interface, such as a transceiver interface.
  • the apparatus 1600 may be configured to execute various processes and/or steps corresponding to the second satellite in the foregoing method embodiments.
  • FIG. 17 is a schematic block diagram of another satellite communication device 1700 provided by an embodiment of the present application.
  • the device 1700 includes: a receiving module 1710 and a processing module 1720 .
  • the receiving module 1710 is configured to: receive the activation factor of the first channel from the first satellite, the first channel is the first channel used by the first serving cell covered by the first satellite for service data transmission, the activation factor Used to represent the average activation time of the channel within the target time period.
  • the processing module 1720 is configured to: perform interference estimation based on the activation factor of the first channel and a preset interference value, and obtain an interference estimation result, where the interference estimation result is used to represent the interference caused by the first serving cell during data transmission.
  • the apparatus 1700 includes a sending module 1730, configured to send third indication information to the first satellite when the interference estimation result is greater than or equal to a third preset threshold, where the third indication information is used to indicate the The first satellite reconfigures the channel.
  • a sending module 1730 configured to send third indication information to the first satellite when the interference estimation result is greater than or equal to a third preset threshold, where the third indication information is used to indicate the The first satellite reconfigures the channel.
  • the device 1700 may specifically be the third satellite in the above embodiment, or the function of the third satellite in the above embodiment may be integrated in the device 1700 .
  • the above functions can be implemented by hardware, or can be implemented by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the above-mentioned receiving module 1710 may be a communication interface, such as a transceiver interface.
  • the apparatus 1700 may be configured to execute various processes and/or steps corresponding to the third satellite in the foregoing method embodiments.
  • module here may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor (such as a shared processor, a dedicated processor, or a group processor, etc.) and memory, incorporated logic, and/or other suitable components to support the described functionality.
  • ASIC application specific integrated circuit
  • processor such as a shared processor, a dedicated processor, or a group processor, etc.
  • memory incorporated logic, and/or other suitable components to support the described functionality.
  • the device 1400, the device 1500, the device 1600, and the device 1700 may also be a chip or a chip system, for example: a system on chip (system on chip, SoC).
  • the receiving module and the sending module may be the transceiver circuits of the chip, which are not limited here.
  • Fig. 18 is a schematic block diagram of another satellite communication device 1800 provided by an embodiment of the present application.
  • the apparatus 1800 includes a processor 1810 , a transceiver 1820 and a memory 1830 .
  • the processor 1810, the transceiver 1820 and the memory 1830 communicate with each other through an internal connection path, the memory 1830 is used to store instructions, and the processor 1810 is used to execute the instructions stored in the memory 1830 to control the transceiver 1820 to send signals and /or to receive a signal.
  • the apparatus 1800 may specifically be the terminal device, the first satellite, the second satellite, or the third satellite in the foregoing embodiments, or the function of the terminal device, the first satellite, the second satellite, or the third satellite in the foregoing embodiments It may be integrated in the apparatus 1800, and the apparatus 1800 may be used to execute various steps and/or processes corresponding to the terminal device, the first satellite, the second satellite, or the third satellite in the foregoing method embodiments.
  • the memory 1830 may include read-only memory and random-access memory, and provides instructions and data to the processor. A portion of the memory may also include non-volatile random access memory. For example, the memory may also store device type information.
  • the processor 1810 can be used to execute the instruction stored in the memory, and when the processor executes the instruction, the processor 1810 can execute the method corresponding to the terminal device, the first satellite, the second satellite or the third satellite in the above method embodiment. individual steps and/or processes.
  • the processor may be a central processing unit (central processing unit, CPU), and the processor may also be other general processors, digital signal processors (DSP), application specific integrated circuits (ASIC) ), field programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processors
  • ASIC application specific integrated circuits
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • each step of the above method can be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the steps of the methods disclosed in connection with the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor executes the instructions in the memory to complete the steps of the above method in combination with its hardware. To avoid repetition, no detailed description is given here.
  • modules and algorithm steps of the examples described in conjunction with the embodiments disclosed herein can be implemented by electronic hardware, or a combination of computer software and electronic hardware. Whether these functions are executed by hardware or software depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the modules is only a logical function division. In actual implementation, there may be other division methods.
  • multiple modules or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or modules may be in electrical, mechanical or other forms.
  • the modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical modules, that is, they may be located in one place, or may be distributed to multiple network modules. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional module in each embodiment of the present application may be integrated into one processing module, each module may exist separately physically, or two or more modules may be integrated into one module.
  • the functions are implemented in the form of software function modules and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Abstract

本申请提供了一种卫星通信方法和卫星通信装置,有利于节省通行过程中的信令开销。该方法包括:第一卫星获取用于确定该第一卫星在第一服务小区的离开服务仰角的参数;第一卫星向终端设备发送第一指示信息,该第一指示信息用于指示该第一卫星在该终端设备所处的第一服务小区的离开服务仰角。终端设备基于星历和该终端设备的位置信息,确定该终端设备相对于该第一卫星的仰角;终端设备基于该第一指示信息,确定该离开服务信息,并比较该离开服务仰角和该终端设备相对于该第一卫星的仰角,确定是否进行卫星的重选或者切换。

Description

卫星通信方法和卫星通信装置
本申请要求于2021年10月29日提交中国专利局、申请号为202111276264.6、申请名称为“卫星通信方法和卫星通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及卫星通信领域,更具体地,涉及一种卫星通信方法和卫星通信装置。
背景技术
非地面通信网络(non-terrestrial networks,NTN)包括卫星网络、高空平台和无人机等节点,具有全球覆盖、远距离传输、组网灵活、部署方便和不受地理条件限制等显著优点。通常,单颗卫星的覆盖范围非常广,可达几千甚至几万平方千米,而单个波束的覆盖范围则最小可达几十甚至几千米。因此,为了支撑广域覆盖,单颗卫星通常要配备几百甚至几千个波束,这为卫星的载荷带来巨大的挑战。为了缓解单星载荷小和覆盖范围广的矛盾,跳波束卫星通信系统应运而生。具体来说,在跳波束卫星系统中,单颗卫星仅配备少量的波束(如几十个波束),波束通过分时的方式服务单星的所有覆盖区域。
通常,卫星在覆盖区域内可以服务多个终端设备,随着卫星的运动,其覆盖区域可能随之发生变化,进而可能无法继续为原来的覆盖区域内的多个终端设备提供通信服务。卫星在运动过程中需要实时监测多个终端设备的位置信息,根据每个终端设备的位置信息确定每个终端设备的定时器参数或参考点位置参数,并发送给每个终端设备。由于每个终端设备的位置信息不同,所以每个终端设备的定时器参数不同。在定时器超时后,终端设备可以进行卫星的重选或者切换。
然而,上述通过定时器参数或参考点位置参数指示终端设备进行卫星的重选或者切换的方式,由于每个终端设备的定时器参数或参考点位置参数不同,需要卫星分别为每个终端设备发送对应的定时器参数或参考点位置参数,这样会造成过多的信令开销。
发明内容
本申请提供一种卫星通信方法和卫星通信装置,有利于减少通信过程中的信令开销。
第一方面,提供了一种卫星通信方法,包括:终端设备接收来自第一卫星的第一指示信息,该第一指示信息指示用于确定该第一卫星在该终端设备所处的第一服务小区的离开服务仰角的参数。该终端设备基于星历和该终端设备的位置信息,确定该终端设备相对于该第一卫星的仰角。该终端设备根据该第一指示信息,确定该离开服务仰角,并比较该离开服务仰角和该终端设备相对于该第一卫星的仰角,确定是否进行卫星的重选或者切换。
在本申请中,终端设备可以根据第一卫星指示的离开服务仰角确定是否进行卫星的重选或者切换。其中,第一服务小区中的终端设备的数量为至少一个,该第一指示信息使用于第一服务小区中的所有终端设备,这样第一卫星不需要为第一服务小区中的每个终端设备单独发送定时器参数以指示终端设备进行卫星的重选或者切换,这样有利于节省信令开 销。
结合第一方面,在第一方面的某些实现方式中,该终端设备比较离开服务仰角和该终端设备相对于该第一卫星的仰角,确定是否进行卫星的重选或者切换,包括:在该终端设备相对于该第一卫星的仰角小于或者等于该离开服务仰角的情况下,该终端设备确定进行卫星的重选或者切换。
在本申请中,终端设备通过比较终端设备相对于该第一卫星的仰角和该离开服务仰角的大小可以确定是否进行卫星的切换,这样实现简便,并且有利于终端设备及时的切换以提高通信质量。
结合第一方面,在第一方面的某些实现方式中,第一指示信息通过下列任一信息承载:系统信息块(system information block,SIB)、介质访问控制控制元素(medium access control control element,MAC CE)、下行控制信息(downlink control information,DCI)或者无线资源控制(radio resource control,RRC)。
结合第一方面,在第一方面的某些实现方式中,用于确定该第一卫星在该终端设备所处的第一服务小区的离开服务仰角的参数包括以下至少一种:该第一卫星的离开服务仰角、张角或圆心角。
第二方面,提供了一种卫星通信方法,包括:第一卫星获取用于确定该第一卫星在该终端设备所处的第一服务小区的离开服务仰角的参数。该第一卫星向该第一服务小区的终端设备发送第一指示信息,该第一指示信息指示该用于确定离开服务仰角的参数。
结合第二方面,在第二方面的某些实现方式中,第一指示信息通过下列任一信息承载:SIB、MAC CE、DCI或者RRC。
结合第二方面,在第二方面的某些实现方式中,用于确定该第一卫星在该终端设备所处的第一服务小区的离开服务仰角的参数包括以下至少一种:该第一卫星的离开服务仰角、张角或圆心角。
在本申请中,第一卫星可以直接向终端设备指示该离开服务仰角,此外,第一卫星还可以通过第一指示信息指示确定该离开服务仰角的卫星的张角和/或圆心角,通过第一卫星的张角和/或圆心角可以得到第一卫星的离开服务仰角。
结合第二方面,在第二方面的某些实现方式中,该第一卫星确定该第一卫星在该第一服务小区的进入服务仰角和/或离开服务仰角。该第一卫星根据该第一服务小区的业务密集程度,调整该进入服务仰角和/或该离开服务仰角。该第一卫星向第二卫星发送第二指示信息,该第二指示信息用于指示该第一卫星的调整后的进入服务仰角和/或调整后的离开服务仰角,该第二卫星与该第一卫星的覆盖区域相邻。
在本申请中,为了实现多卫星的协同覆盖,第一卫星和第二卫星之间可以交互进入服务仰角和/或离开服务仰角信息,这样第一卫星和第二卫星可以动态调整自己的仰角信息,实现区域的无缝覆盖,从而提高协同覆盖区域的终端设备的通信质量。
结合第二方面,在第二方面的某些实现方式中,第一卫星根据该第一服务小区的业务密集程度,调整该进入服务仰角和/或该离开服务仰角,包括:在该第一服务小区的业务密集程度大于或者等于第一预设阈值的情况下,该第一卫星增大该进入服务仰角和/或该离开服务仰角。或者,在该第一服务小区的业务密集程度小于该第一预设阈值的情况下,该第一卫星减小该进入服务仰角和/或该离开服务仰角。
在本申请中,如果第一卫星的第一服务小区的业务比较密集,超过了第一预设阈值, 第一卫星可能无法承载密集的业务需求,无法为第一服务小区中的终端设备提供良好的业务体验,因此第一卫星可以通过增大进入服务仰角和/或离开服务仰角的方式来减小服务区域,这样在服务区域变小并且第一卫星可以承载的业务流量不变的情况下,有利于增加单位服务区域内的吞吐量。
结合第二方面,在第二方面的某些实现方式中,第一卫星获取该第一服务小区进行业务数据传输所采用的第一信道的激活因子,该激活因子用于表示信道在目标时间段内的平均激活时间。在该第一信道的激活因子大于或者等于第二预设阈值的情况下,该第一卫星向第三卫星发送该第一信道的激活因子,该第三卫星与该第一卫星的覆盖区域相邻。
在本申请中。第一卫星可以和其他卫星交互信道的激活因子,通过信道的激活因子可以进一步进行干扰估计和干扰管理,有利于实现卫星/小区之间的高效干扰管理。
结合第二方面,在第二方面的某些实现方式中,该第一卫星接收来自该第三卫星的第三指示信息,该第三指示信息用于指示该第一卫星重新配置信道。第一卫星基于该第三指示信息,重新配置该第一服务小区的信道。
在本申请中,第三卫星可以根据第三指示信息重新配置第一服务小区的信道,有利于减少卫星之间的干扰。
第三方面,提供了一种卫星通信方法,包括:第二卫星接收来自第一卫星的第二指示信息,该第二指示信息用于指示该第一卫星调整后的进入服务仰角和/或调整后的离开服务仰角,该第二卫星与该第一卫星的覆盖区域相邻。该第二卫星基于该第一卫星调整后的进入服务仰角和/或调整后的离开服务仰角,调整该第二卫星的进入服务仰角和/或离开服务仰角。
在本申请中,第二卫星可以基于第一卫星调整后的进入服务仰角和/或调整后的离开服务仰角,调整第二卫星的进入服务仰角和/或离开服务仰角,有利于实现区域的无缝覆盖。
结合第三方面,在第三方面的某些实现方式中,该第二卫星基于该第一卫星调整后的进入服务仰角和/或调整后的离开服务仰角,调整该第二卫星的进入服务仰角和/或离开服务仰角,包括:在该第一卫星调整后的进入服务仰角和/或调整后的离开服务仰角大于或等于该第一卫星调整前的进入服务仰角和/或离开服务仰角的情况下,该第二卫星减小该第二卫星的进入服务仰角和/或离开服务仰角。或者,在该第一卫星调整后的进入服务仰角和/或调整后的离开服务仰角小于或等于该第一卫星调整前的进入服务仰角和/或离开服务仰角的情况下,该第二卫星增大该第二卫星的进入服务仰角和/或离开服务仰角。
第四方面,提供了一种卫星通信方法,包括:第三卫星接收来自第一卫星的第一信道的激活因子,该第一信道为该第一卫星覆盖的第一服务小区进行业务数据传输所采用的第一信道,该激活因子用于表示信道在目标时间段内的平均激活时间,该第三卫星与该第一卫星的覆盖区域相邻。该第三卫星基于该第一信道的激活因子和预设干扰值进行干扰估计,得到干扰估计结果,该干扰估计结果用于表示该第一服务小区在数据传输过程中对该第三卫星的服务小区造成的干扰。
在本申请中,第三卫星可以基于信道的激活因子进行干扰估计,这样的干扰估计方式简单高效。
结合第四方面,在第四方面的某些实现方式中,在该干扰估计结果大于或者等于第三预设阈值的情况下,该第三卫星向该第一卫星发送第三指示信息,该第三指示信息用于指 示该第一卫星重新配置信道。
第五方面,提供了一种卫星通信装置,包括:用于执行上述任一方面中任一种可能的实现方式中的方法。具体地,该装置包括用于执行上述任一方面中任一种可能的实现方式中的方法的模块。
在一种设计中,该装置可以包括执行上述各个方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。
在另一种设计中,该装置为通信芯片,通信芯片可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
在另一种设计中,该装置为卫星通信设备,卫星通信设备可以包括用于发送信息或数据的发射机,以及用于接收信息或数据的接收机。
在另一种设计中,该装置用于执行上述各个方面或各个方面任意可能的实现方式中的方法,该装置可以配置在上述终端设备、第一卫星、第二卫星或第三卫星中,或者该装置本身即为上述终端设备、第一卫星、第二卫星或第三卫星。
第六方面,提供了另一种卫星通信装置,包括,处理器,存储器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该装置执行上述任一方面中任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
可选地,该装置为通信设备,该通信设备还包括,发射机(发射器)和接收机(接收器),发射机和接收机可以分离设置,也可以集成在一起,称为收发机(收发器)。
第七方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。处理电路用于通过输入电路接收信号,并通过输出电路发射信号,使得处理器执行上述任一方面中任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请对处理器及各种电路的具体实现方式不做限定。
第八方面,提供了一种卫星通信系统,包括:用于实现上述第一方面或第一方面的任一种可能实现的方法的装置和用于实现上述第二方面或第二方面的任一种可能实现的方法的装置;或者包括:
用于实现上述第二方面或第二方面的任一种可能实现的方法的装置和用于实现上述第三方面或第三方面的任一种可能实现的方法的装置;或者包括:
用于实现上述第二方面或第二方面的任一种可能实现的方法的装置和用于实现上述第四方面或第四方面的任一种可能实现的方法的装置。
在一个可能的设计中,该通信系统还可以包括本申请所提供的方案中与第一网络设备、目标第二网络设备和/或无线回传节点进行交互的其他设备。
第九方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也 可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述任一方面中任一种可能实现方式中的方法。
第十方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述任一方面中任一种可能实现方式中的方法。
附图说明
图1是一种跳波束卫星通信系统的示意图;
图2是本申请实施例提供的一种卫星的仰角的示意图;
图3是本申请实施例提供的一种卫星通信系统的示意图;
图4是本申请实施例提供的一种卫星通信方法的示意性流程图;
图5是本申请实施例提供的一种基于仰角的卫星切换的示意图;
图6是本申请实施例提供的另一种卫星通信方法的示意性流程图;
图7是本申请实施例提供的一种多卫星协同覆盖的示意图;
图8是本申请实施例提供的另一种多卫星协同覆盖的示意图;
图9是本申请实施例提供的一种干扰管理的示意图;
图10是本申请实施例提供的再一种卫星通信方法的示意性流程图;
图11是本申请实施例提供的一种NR单小区同频SSB配置的示意图;
图12是本申请实施例提供的一种UV平面的示意图;
图13是本申请实施例提供的一种TAC对应的波束覆盖位置的示意图;
图14是本申请实施例提供的一种卫星通信装置的示意性框图;
图15是本申请实施例提供的另一种卫星通信装置的示意性框图;
图16是本申请实施例提供的再一种卫星通信装置的示意性框图;
图17是本申请实施例提供的又一种卫星通信装置的示意性框图;
图18是本申请实施例提供的又一种卫星通信装置的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
为便于理解,首先对本申请实施例所涉及的术语进行简单介绍。
1、非地面通信网络(non-terrestrial networks,NTN)
NTN包括卫星网络、高空平台和无人机等节点,具有全球覆盖、远距离传输、组网灵活、部署方便和不受地理条件限制等显著优点,已经被广泛应用于海上通信、定位导航、抗险救灾、科学实验、视频广播和对地观测等多个领域。地面移动通信技术网络和卫星网络等相互融合,取长补短,共同构成全球无缝覆盖的海、陆、空、天、地一体化综合通信网,满足用户无处不在的多种业务需求。
作为NTN的重要组成部分,下一代卫星网络总体呈现超密、异构的趋势。首先,卫星网络的规模从铱星星座的66颗发展到一网星座的720颗,并最终延展到12000多颗的星链(starlink)超密低地球轨道(low earth orbit,LEO)卫星星座。其次,卫星网络呈现异构特性,从传统的单层通信网络发展到多层通信网络,通信卫星网络的功能也趋向复杂化、多样化,逐渐兼容并支持导航增强、对地观测、多维信息在轨处理等功能。
2、跳波束卫星通信技术
通常来说,单颗卫星的覆盖范围非常广,可达几千甚至几万千米,而单个波束的覆盖范围则最小可达几十甚至几千米。因此,为了支撑广域覆盖,单颗卫星通常要配备几百甚至几千个波束,这给LEO卫星的载荷带来巨大挑战。为了缓解单星载荷小和覆盖范围广的矛盾,跳波束卫星通信系统应运而生。具体来说,在跳波束卫星通信系统中,单颗卫星仅配备少量的波束(如几十个波束),波束通过分时的方式服务单星的所有覆盖区域。
图1是一种跳波束卫星通信系统100的示意图。如图1所示,跳波束卫星通信系统100包括处于T 1时刻、T 2时刻、T 3时刻、T 4时刻的卫星110。由于卫星110在不同时刻的位置不同,卫星110在不同时刻可以形成不同方向的波束,本申请实施例中将卫星110能够形成的波束进行编号,波束编号为0~15。在同一时刻,卫星110可以形成4个波束。在T 1时刻,卫星110使用编号为0、1、4、5的四个波束覆盖其对应的区域。在T 2时刻,卫星110使用编号为2、3、6、7的四个波束覆盖其对应的区域。在T 3时刻,卫星110使用编号为8、9、12、13的四个波束覆盖其对应的区域。在T 4时刻,卫星110使用编号为10、11、14、15的四个波束覆盖其对应的区域。这样,通过T 1、T 2、T 3、T 4分时的方式可以服务单星覆盖的所有区域(即16个波束对应的区域)。
3、卫星的仰角
图2是本申请实施例提供的一种卫星的仰角的示意图。以图1中的卫星110为例,如图2所示,在给定的时刻,处于地球上的p点到卫星的视线与p点地平线之间的夹角即为卫星110的仰角。
应理解,该仰角的定义适用于卫星的离开服务仰角、进入服务仰角以及终端设备相对于卫星的仰角,只是三者对应的p点可能不同,因此卫星的离开服务仰角、进入服务仰角以及终端设备相对于卫星的仰角可能不同。
通常卫星的仰角用于描述卫星在某时刻经过终端设备上方的位置,当仰角为90度时,表示卫星正在终端设备的正上方,此时卫星不向终端设备提供服务。示例性地,决定某一时刻卫星的仰角的参数可以包括终端设备所处位置的纬度和经度,卫星距离地面的高度,卫星的轨道角度以及卫星处于轨道上的具体位置(例如,卫星的纬度和经度)。值得注意的是,仰角也可以通过卫星的张角和/或圆心角等角度信息换算得到。
图3是本申请实施例提供的一种卫星通信系统300的示意图。卫星通信系统300包括卫星101、卫星102、卫星103以及至少一个终端设备104。卫星和卫星之间通过星间链路进行通信。卫星和终端设备之间可以通过上下行链路进行通信。
图3示例性地示出了5个终端设备的场景,本申请实施例对终端设备的数量不做限定。
可选地,卫星通信系统300还包括地面站设备105。在一种可能的实现方式中,卫星103可以与地面站设备105连接,从而与地面站设备105进行通信。
应理解,图3中的卫星101、卫星102、卫星103可以与图1中的卫星110具备相同的功能。
在本申请实施例中,终端设备可以是固定位置的,也可以是可移动的。本申请实施例对该卫星通信系统300中包括的卫星和终端设备的数量不做限定。
示例性地,卫星通信系统300中的卫星可以为LEO卫星、非静止地球轨道(non-geostationary earth orbit,NGEO)卫星、中地球轨道(middle earth orbit,MEO)卫星或者地球同步轨道(geostationary earth orbit,GEO)卫星。
卫星通信系统300中的卫星可以通过多波束向终端设备提供通信服务、导航服务和定 位服务等。卫星通信系统300中的卫星采用多个波束覆盖服务小区,不同的波束可通过时分、频分和空分中的一种或多种进行通信。卫星通信系统300中的卫星通过广播通信信号和导航信号等与终端设备进行无线通信,卫星可与地面站设备进行无线通信。本申请实施例中提及的卫星,可以为卫星基站,也可以包括用于对信息进行中继的轨道接收机或中继器,或者为搭载在卫星上的网络设备。
一般情况下,卫星通信系统包括透传卫星架构与非透传卫星架构。透传也称为弯管转发传输,即信号在卫星上只进行了频率的转换,信号的放大等过程,卫星对于信号而言是透明的。非透传也称为再生(在卫星上接入/处理)传输,即卫星具有部分或全部基站功能。示例性地,图3中的卫星101、卫星102为非透传卫星架构,卫星103为透传卫星架构。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备还可以是卫星电话、蜂窝电话、智能手机、无线数据卡、无线调制解调器、机器类型通信设备、可以是无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、5G网络或者未来通信网络中的终端设备等。
此外,终端设备还可以是物联网(internet of things,IoT)系统中的终端设备。IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。本申请对于终端设备的具体形式不作限定。
应理解,本申请实施例中,终端设备可以是用于实现终端设备功能的装置,也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
本申请实施例中的网络设备可包括一个或多个卫星和地面站设备。网络设备可以是任意一种具有无线收发功能的设备,该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node base,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home node B,HNB)、基带单元(base band unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
应理解,本申请实施例中,网络设备可以是用于实现网络设备功能的装置,也可以是 能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。
还应理解,本申请实施例中的网络设备和终端设备可以部署在陆地上,包括室内或室外,手持或车载;或者部署在水面上;或者部署在空中的飞机、气球和卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。
本申请实施例中的地面站设备也可以被称为核心网设备,地面站设备例如为现有的移动通信架构的核心网(core network,CN)中的设备或未来移动通信架构的核心网中的设备。核心网作为承载网络提供到数据网络的接口,为终端设备提供通信连接、认证、管理、策略控制以及对数据业务完成承载等。其中,CN又进一步可包括:接入和移动管理网元(access and mobility management function,AMF)、会话管理网元(session management function,SMF)、认证服务器网元(authentication server function,AUSF)、策略控制网元(policy control function,PCF)、用户面功能网元(user plane function,UPF)等网元。其中,AMF网元用于管理终端设备的接入和移动性,主要负责终端设备的认证、终端设备的移动性管理,终端设备的寻呼等功能。
本申请实施例提供的卫星通信方法可以应用于卫星通信系统、高空平台(high altitude platform station,HAPS)通信、无人机等NTN系统,例如,通信、导航一体化(integrated communication and navigation,IcaN)系统、全球导航卫星系统(global navigation satellite system,GNSS)和超密LEO卫星通信系统等。卫星通信系统可以与传统的移动通信系统相融合。其中,传统的移动通信系统可以为第四代(4th generation,4G)通信系统(例如,长期演进(long term evolution,LTE)系统),全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统,第五代(5th generation,5G)通信系统(例如,新无线(new radio,NR)系统),以及未来的移动通信系统等。
图4是本申请实施例提供的一种卫星通信方法400的示意性流程图。方法400可以应用于上述卫星通信系统300,其中第一卫星可以是卫星通信系统300中的卫星,但本申请实施例对此不作限定。方法400包括如下步骤:
S401,第一卫星获取用于确定该第一卫星在第一服务小区的离开服务仰角的参数。
S402,第一卫星向终端设备发送第一指示信息,该第一指示信息用于指示该第一卫星在该终端设备所处的第一服务小区的离开服务仰角。相应地,终端设备接收该第一指示信息。
S403,终端设备基于星历和该终端设备的位置信息,确定该终端设备相对于该第一卫星的仰角。
S404,终端设备基于该第一指示信息,确定该离开服务信息,并比较该离开服务仰角和该终端设备相对于该第一卫星的仰角,确定是否进行卫星的重选或者切换。
在本申请实施例中,第一服务小区是第一卫星的多个服务小区中的一个,第一服务小区中的终端设备的数量为至少一个。
可选地,用于确定所述第一卫星在所述终端设备所处的第一服务小区的离开服务仰角的参数包括以下至少一种:该第一卫星的离开服务仰角、张角或者圆心角。其中,用于指示该第一卫星在该终端设备所处的第一服务小区的离开服务仰角的参数可以是该离开服务仰角,也就是第一卫星直接向终端设备指示第一服务小区的离开服务仰角。此外,用于指示该第一卫星在该终端设备所处的第一服务小区的离开服务仰角的参数还可以是第一卫星的张角和/或圆心角,终端设备可以根据第一卫星的张角和/或圆心角计算得到该离开 服务仰角,也就是第一卫星可以间接向终端设备指示第一服务小区的离开服务仰角。
其中,卫星的仰角、张角和圆心角如图2所示,示例性地,在知道卫星的张角和圆心角的情况下可以根据三角形相关的数学计算方式计算得到卫星的仰角。
在本申请实施例的卫星通信方法中,第一卫星可以通过第一指示信息指示一个离开服务仰角,该离开服务仰角用于终端设备确定是否进行卫星的重选或者切换。该离开服务仰角适用于第一服务小区中的所有终端设备,也就是可以做到小区专用(cell-specific)或者卫星专用(satellite-specific),这样第一卫星不需要为第一服务小区中的每个终端设备单独发送定时器参数以指示终端设备进行卫星的重选或者切换,这样有利于节省信令开销。
作为一个可选的实施例,S404包括:在该终端设备相对于该第一卫星的仰角小于或者等于该离开服务仰角的情况下,该终端设备确定进行卫星的重选或者切换。
在本申请实施例中,终端设备可以将基于星历和自身位置信息(例如纬度和经度)计算出的终端设备的仰角与离开服务仰角进行比较,当终端设备的仰角小于或等于离开服务仰角时,终端设备可以触发卫星的重选或者切换相关的测量,或者直接触发卫星的重选或者切换。
示例性地,在终端设备处于连接态的情况下,终端设备可以触发卫星的切换,在终端设备处于空闲态时,终端设备可以触发卫星的重选。
图5是本申请实施例提供的一种基于仰角的卫星切换的示意图。图5中包括第一卫星510、第二卫星520和终端设备530。其中,终端设备530处于第一卫星510的第一服务小区和第二卫星520的第二服务小区的重叠区域,第一卫星510朝着箭头所示的方向运动。
应理解,第一卫星510和第二卫星530可以是卫星通信系统300中的卫星,终端设备530可以是卫星通信系统300中的终端设备,但本申请实施例对此不作限定。
当终端设备530接收到第一卫星510发送的离开服务仰角之后,终端设备530计算出终端设备530相对于第一卫星的仰角,在终端设备530相对于第一卫星的仰角小于或者等于该第一卫星510的离开服务仰角的情况下,在一种可能的实现方式中,终端设备530可以分别测量与至少一个候选卫星之间的信号功率,筛选出满足信号功率要求的卫星作为终端设备530重选或者切换后的服务卫星,这样有利于提高通信质量。在另一种可能的实现方式中,终端设备530无需进行相关测量,在至少一个候选卫星中随机选择一个卫星作为重选或者切换后的服务卫星,这样有利于减少通信时延。
其中,终端设备530处于该至少一个候选卫星的服务小区内。假设终端设备处于连接态,终端设备530选择直接从第一卫星510切换至第二卫星520,还是在测量信号功率之后再从第一卫星510切换至第二卫星520取决于前期的网络部署,根据网络部署时的需求触发卫星的重选或者切换相关的测量,或者直接触发卫星的重选或者切换。
示例性地,在有多个卫星满足信号功率要求的情况下,可以选择信号功率最强的卫星作为终端设备530重选或者切换后的服务卫星。
应理解,此处第二卫星520为至少一个候选卫星中的一个,是终端设备530重选或者切换后的服务卫星,其他候选卫星在图5中未予以示出。
作为一个可选的实施例,该第一指示信息可以由系统信息块SIB、介质访问控制控制元素MAC CE、下行控制信息DCI或者无线资源控制RRC承载。
示例性地,第一卫星的离开服务仰角的区间为10度到85度,第一指示信息的指示精度为5度,可以通过4位比特指示第一卫星的离开服务仰角,信息比特与离开服务仰角的 对应关系如表一所示。
表一
信息比特 离开服务仰角
0000 10
0001 15
0010 20
0011 25
0100 30
0101 35
0110 40
0111 45
1000 50
1001 55
1010 60
1011 65
1100 70
1101 75
1110 80
1111 85
示例性地,还可以采用更多的比特指示更细粒度的离开服务仰角。例如,当第一卫星的离开服务仰角的区间为0度到90度,第一指示信息的指示精度为2度时,可以通过6位比特指示第一卫星的离开服务仰角,或者通过更多的比特指示第一卫星的离开服务仰角。值得注意的是,此处的离开服务仰角也可以通过卫星的张角和/或圆心角等角度信息换算得到。因此,也可以通过指示卫星的张角和/或圆心角等角度信息实现小区重选/切换的目的。
在卫星通信系统中,可能存在多个卫星协同覆盖某一片区域的情况。为了实现多个卫星的协同覆盖,卫星/波束之间需要传递进入服务仰角和离开服务仰角信息,实现多个卫星间协同覆盖和服务模式的转换。
图6是本申请实施例提供的另一种卫星通信方法600的示意性流程图,方法600可以应用于上述卫星通信系统300,其中第一卫星和第二卫星可以是卫星通信系统300中的卫 星,但本申请实施例对此不作限定。方法600包括如下步骤:
S601,第一卫星确定该第一卫星在第一服务小区的进入服务仰角。
S602,第一卫星根据第一服务小区的业务密集程度,调整该进入服务仰角和/或离开服务仰角。
S603,第一卫星向第二卫星发送第二指示信息,该第二指示信息用于指示第一卫星的调整后的进入服务仰角和/或调整后的离开服务仰角,第一卫星和第二卫星的覆盖区域相邻。相应地,第二卫星接收该第二指示信息。
S604,第二卫星基于第二指示信息,调整第二卫星的进入服务仰角和/或离开服务仰角。
在本申请实施例中,第二卫星的数量为至少一个,第一卫星根据第一服务小区的业务密集程度调整进入服务仰角和/或离开服务仰角,并将调整后的进入服务仰角和/或调整后的离开服务仰角传递给第二卫星,第二卫星根据第一卫星调整后的进入服务仰角和/或调整后的离开服务仰角,可以适应调整第二卫星的进入服务仰角和/或离开服务仰角来实现多个卫星之间的协同覆盖,这样通过交互调整后的进入服务仰角和/或离开服务仰角的方式,有利于多卫星之间动态地对服务区域进行调整,从而实现对目标区域的无缝覆盖。其中,不同卫星之间/不同卫星所服务的小区之间可以通过Xn接口或者NG接口传递进入服务仰角和/或离开服务仰角。
可选地,在第一服务小区的业务密集程度大于或者等于第一预设阈值的情况下,第一卫星可以增大第一卫星的进入服务仰角和/或离开服务仰角,这样可以缩小第一卫星的服务区域,从而有利于提高单位服务区域内的吞吐量。
可选地,在第一服务小区的业务密集程度小于或者等于第一预设阈值的情况下,第一卫星可以减小第一卫星的进入服务仰角和/或离开服务仰角以缩小服务区域,这样可以增大第一卫星的服务区域,从而为更多的终端设备提供通信服务。
可选地,此处的进入服务仰角和离开服务仰角也可以通过卫星的张角和/或圆心角等角度信息换算得到。因此,小区间也可以通过指示卫星的张角和/或圆心角等角度信息实现协同覆盖。示例性地,第一卫星为卫星1,第二卫星包括卫星2和卫星3,卫星2和卫星3是卫星1的邻居卫星,可以理解为卫星2和卫星3的覆盖区域与卫星1的覆盖区域相邻或者有重叠部分。假设在T 0时刻,卫星1、卫星2和卫星3的进入服务仰角和离开服务仰角如表二所示。在T 1时刻,由于卫星1的服务小区的业务比较密集,因此卫星1可以增大卫星1的进入服务仰角和/或离开服务仰角,从而缩小卫星1的服务区域,进入吞吐增强的服务模式。以卫星1调整进入服务仰角和离开服务仰角为例,T 1时刻卫星1、卫星2和卫星3的进入服务仰角和离开服务仰角如表三所示。
表二
卫星标识 进入服务仰角 离开服务仰角
卫星1 35 25
卫星2 30 45
卫星3 35 25
表三
卫星标识 进入服务仰角 离开服务仰角
卫星1 60 55
卫星2 30 45
卫星3 35 25
由表二和表三可以看出,卫星1的进入服务仰角和离开服务仰角增大,并且卫星1的进入服务仰角大于卫星2和卫星3的进入服务仰角,卫星1的离开服务仰角大于卫星2和卫星3的进入服务仰角,因此卫星1的服务区域缩小,卫星1的服务区域小于卫星2和卫星3的服务区域。相应地,T 1时刻卫星1、卫星2和卫星3的服务区域如图7所示。
图7是本申请实施例提供的一种多卫星协同覆盖的示意图。由图7可知,卫星1、卫星2和卫星3协同覆盖目标区域70,卫星1的服务区域10小于卫星2的服务区域20和卫星3的服务区域30。
应理解,图7中的卫星1、卫星2和卫星3可以是卫星通信系统300中的卫星,但本申请实施例对此不作限定。
在T 2时刻,假设卫星1的服务区域为高纬度区域,卫星1可以增大卫星1的进入服务仰角和/或离开服务仰角至90度,即卫星1完全不为终端设备提供服务,进入节能模式。为了保证目标区域的无缝覆盖,卫星2和卫星3可以减小自己的进入服务仰角和/或离开服务仰角以提高覆盖范围。T 2时刻卫星1、卫星2和卫星3的进入服务仰角和离开服务仰角如表四所示。相应地,T 2时刻卫星1、卫星2和卫星3的服务区域如图8所示。
表四
卫星标识 进入服务仰角 离开服务仰角
卫星1 90 90
卫星2 15 15
卫星3 10 15
图8是本申请实施例提供的另一种多卫星协同覆盖的示意图。由图8可知,卫星2和卫星3协同覆盖目标区域70,卫星1由于进入服务仰角和离开服务仰角增大到了90度,进入了节能模式无法继续为终端设备提供服务。相较于图7,图8中卫星2和卫星3在减小进入服务仰角和离开服务仰角之后,卫星2的服务区域20和卫星3的服务区域30增大。
应理解,图8中的卫星1、卫星2和卫星3可以是卫星通信系统300中的卫星,但本申请实施例对此不作限定。
可选地,如果卫星1减小卫星1的进入服务仰角和/或离开服务仰角以使自己的服务区域变大,那么卫星2可以适应增大卫星2的进入服务仰角和/或离开服务仰角以使自己的服务区域变小,同样地,卫星3也可以适应增大卫星3的进入服务仰角和/或离开服务仰角以使自己的服务区域变小,这样有利于减少卫星2或者卫星3的功耗。
作为一个可选的实施例,第一卫星向终端设备发送第二指示信息,该第二指示信息用于指示调整后的进入服务仰角和/或调整后的离开服务仰角。相应地,终端设备接收该第二指示信息,并基于该调整后的进入服务仰角和/或调整后的离开服务仰角,确定是否进行卫星的重选或者切换。
在本申请实施例中,以第一卫星为图7中的卫星1为例,由于卫星1的进入服务仰角 和/或离开服务仰角增大,服务区域10缩小,可能无法继续为服务区域10中的终端设备服务,因此服务区域10中的终端设备可以触发卫星的重选或切换,从而有利于提高通信质量、实现多卫星之间的高效协同覆盖。
在多个卫星进行协同覆盖的情况下,包括多个卫星的系统间可能产生信号干扰。示例性地,第一卫星的第一服务小区和第二卫星的第二服务小区使用相同的时频资源,对于第一服务小区而言,第二服务小区的数据传输可能对第一服务小区的数据传输产生干扰。同样地,对于第二服务小区而言,第一服务小区的数据传输可能对第二服务小区的数据传输产生干扰。
目前NR在主要从两个维度解决小区间的干扰问题:一方面,NR在部署服务小区时,采用模三、模三十等准则解决物理小区标识(physical cell identifier,PCI)冲突和混淆问题。另一方面,服务小区之间设置干扰协调机制,例如准空白子帧(almost blank subframe,ABS)、增强干扰协调和信道状态信息干扰测量(channel state information interference measurement,CSI-IM)反馈机制等。
由于跳波束通信场景增加了空域维度,不同服务小区中信道的激活情况和服务状态存在明显差异,干扰情况更加复杂,无法适用目前NR的干扰管理技术。
为了实现服务小区的干扰管理,本申请实施例提供一种卫星通信方法,可以通过在不同的卫星/小区之间传递信道的激活因子从而实现多卫星之间的高效干扰管理。
图9是本申请实施例提供的一种干扰管理的示意图。在图9中,示例性地,可以将第一卫星和第二卫星协同覆盖的区域划分为5个簇(cluster),其中簇1和簇2分别包括多个第一卫星的服务小区,簇3、簇4和簇5分别包括多个第二卫星的服务小区。
在为每个服务小区配置信道时,不同的簇之间可以采用频率/极化复用,例如,簇1和簇4复用信道C 0和C 1,簇2和簇5复用信道C 2和C 3。此外不同的簇之间采用非均匀信道分配,每个信道对应一种频率和/或极化的组合,例如簇3配置了3个信道,分别是C 4、C 5和C 6。其中,C 0、C 1、C 2、C 3、C 4、C 5和C 6这7个信道的带宽不同,以匹配不同服务小区的业务需求。图例1和图例2表示簇1和簇4中配置信道C 0和C 1的服务小区,图例3和图例4表示簇2和簇5中配置信道C 2和C 3的服务小区。图例5、图例6和图例7表示簇3中配置信道C 4、C 5和C 6的服务小区。
由于不同簇的服务小区的数量和使用波束的数量可能不同,产生的簇间干扰比较复杂。为了进行簇间的干扰管理,可以在不同簇的服务卫星之间传递信道的激活因子,通过信道的激活因子进行干扰估计。
图10是本申请实施例提供的再一种卫星通信方法1000的示意性流程图。方法1000可以应用于上述卫星通信系统300,其中第一卫星和第三卫星可以是卫星通信系统300中的卫星,但本申请实施例对此不作限定。方法1000包括如下步骤:
S1001,第一卫星根据第一服务小区的业务需求,配置该第一服务小区进行业务数据传输所采用的第一信道。
结合图9,示例性地,第一服务小区可以是簇1中第一卫星的多个服务小区中的一个或者多个,第一卫星根据C 0、C 1、C 2、C 3、C 4、C 5和C 6这7个信道的带宽以及第一服务小区的业务需求,为第一服务小区选择一个合适的信道进行数据传输。例如,第一服务小区的业务为宽带业务,而C 0的带宽可以满足宽带业务的需求,那么第一卫星可以为第一服务小区配置信道C 0
S1002,第一卫星获取该第一信道的激活因子,该激活因子用于表示信道在目标时间段内的平均激活时间。
示例性地,目标时间段为T,在目标时间段内信道C 0被调度的时间为T 0,用α 0表示信道C 0的激活因子,那么α 0=T 0/T。
S1003,在该第一信道的激活因子大于或者等于第二预设阈值的情况下,该第一卫星向该第三卫星发送该第一信道的激活因子,第三卫星和第一卫星的覆盖区域相邻。相应地,第三卫星接收该第一信道的激活因子。
其中,第三卫星可以是上述实施例中的第二卫星,也可以是区别于第二卫星的其他卫星。
示例性地,簇1内信道的激活因子门限α T,1=0.3,如果α 0=0.4>0.3,那么第一卫星可以向第三卫星发送信道C 0和α 0
S1004,第三卫星基于所述第一信道的激活因子和预设干扰值进行干扰估计,得到干扰估计结果,该干扰估计结果用于表示第一服务小区在数据传输过程中对第三卫星的服务小区造成的干扰。
第三卫星在接收到C 0和α 0之后,可以基于α 0进行干扰估计,例如干扰估计结果I=α 0×I 0,其中,I 0表示系统预设的干扰值。
应理解,本申请实施例中的第三卫星可以是与第一卫星复用相同信道的卫星,第三卫星可以直接与第一卫星通过星间链路进行干扰信息交互和干扰管理策略协商,或第三卫星将干扰估计结果上报至信关站或者核心网设备等中心控制节点,由控制节点接收其他卫星的信道信息进行统一干扰管理。
可选地,方法1000包括S1005:在干扰估计结果大于或者等于第三预设阈值的情况下,第三卫星向第一卫星发送第三指示信息,该第三指示信息用于指示第一卫星重新配置信道。相应地,第一卫星接收该第三指示信息。
示例性地,如果干扰估计结果I大于或者等于第三预设阈值,那么第三卫星可以通过第三指示信息指示第一卫星重新配置信道。
可选地,第三指示信息携带一个信道的标识,例如,携带信道C 2的标识。在刷新第一卫星的第一服务小区的信道之后,如果干扰估计结果I小于第三预设阈值,表示当前系统的干扰在预设范围之内,此时可以不再进行信道的刷新。
可选地,方法1000包括S1006:第一卫星基于该第三指示信息,重新配置该第一服务小区的信道。
第一卫星的根据第三指示信息重新配置信道之后,可以将重新配置的信道信息发送给终端设备,终端设备可以根据自身的位置信息选择信道进行数据传输。
在本申请实施例中,不同的卫星之间可以通过传递信道的激活因子的方式进行干扰估计,从而判断是否需要重新配置信道以进行干扰管理,这样的干扰管理方式简单高效。
上述结合图9和图10介绍了多个卫星的干扰管理,假如只有第一卫星覆盖如图9所示的5个簇对应的区域时,第一卫星可以根据每个簇中信道的激活因子,以类似的方式进行干扰估计,进而判断是否需要重新配置信道。
在NR系统中,通常为了使终端设备获知自身的位置信息,可以采用同步信号块(synchronization signal block,SSB)索引(index)进行波束的标识,单小区SSB索引最大值为64,即单小区最多包含64个SSB波束。
图11是本申请实施例提供的一种NR单小区同频SSB配置的示意图,如图11所示,在单小区内可以通过SSB0、SSB1、SSB2等多个SSB索引在同一个SSB带宽内对波束进行标识,fc表示SSB带宽的频点。SSB索引主要由时域决定,与时域位置一一对应,即不同时刻对应不同的SSB索引。
但是在大规模波束NTN场景下,由于NTN单星覆盖面积大,可配置几百甚至几千个波束,现有的NR的波束指示方法不支持如此大规模波束的场景。此外,如果对指示波束的索引进行扩展,会产生较大的广播开销。
为了减少开销,本申请实施例提供一种大规模波束NTN场景下的波束指示方法,具体包括以下三种实现方式。
实现方式1:UV中心点和半径指示。图12是本申请实施例提供的一种UV平面的示意图,如图12所示,UV平面定义为与卫星和地心的连接线垂直的平面,其中,P1表示半径点,P2表示UV平面的中心点,可以记为(u,v),P1到P2的长度即为UV中心点(u,v)对应的半径。通常,单星的覆盖在UV平面内为规则的六边形拓扑,因此卫星可以向终端设备指示UV中心点和对应的半径信息来进行波束的指示。例如,UV中心点设置为(0,0),UV半径设置为0.1。
当卫星移动时,卫星可以向终端设备指示运动后新的UV中心点,根据新的UV中心点可以计算出新的UV中心点对应的半径。
实现方式2:UV中心点偏移量指示。当卫星移动时,UV的中心点会偏移,卫星可以向终端设备指示运动后新的UV中心点相对于基准UV中心点的偏移量(U-offest,V-offest)。例如,基准UV中心点为(1,1),偏移量为(0.1,0.03),则表示运动后新的UV中心点为(1.1,1.03)。
实现方式3:由于跟踪区域码(tracking area code,TAC)隐含位置信息,即包含经纬度网格信息,因此,卫星可以基于TAC向终端设备指示波束的覆盖信息。图13是本申请实施例提供的一种TAC对应的波束覆盖位置的示意图。如图13所示,卫星可以基于TAC 1、TAC 2指示波束的覆盖区域1,基于TAC 2和TAC 3指示波束的覆盖区域2,基于TAC 4指示波束的覆盖区域3,也就是卫星可以采用一个或者多个TAC指示波束的覆盖区域。此外,卫星还可以采用一个TAC指示单星/单小区内的多个波束的覆盖信息。
卫星在将波束的覆盖信息发送给终端设备之后,终端设备可以基于自身的位置信息,进一步进行随机接入(例如,选择在哪个信道资源上进行传输)、移动性管理(例如,是否需要进行卫星/小区的切换)或者位置管理。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中结合图1至图13,详细描述了根据本申请实施例的卫星通信方法,下面将结合图14至图18,详细描述根据本申请实施例的卫星通信装置。
图14是本申请实施例提供的一种卫星通信装置1400的示意性框图,装置1400包括:接收模块1410和处理模块1420。
其中,接收模块1410用于:接收来自第一卫星的第一指示信息,该第一指示信息指示用于确定该第一卫星在第一服务小区的离开服务仰角的参数。处理模块1420用于:基于星历和位置信息,确定该装置相对于该第一卫星的仰角;以及,根据该第一指示信息,确定该离开服务仰角,并比较该离开服务仰角和该装置相对于该第一卫星的仰角,确定是 否进行卫星的重选或者切换。
可选地,处理模块1420用于:在该装置相对于该第一卫星的仰角小于或者等于该离开服务仰角的情况下,确定进行卫星的重选或者切换。
可选地,第一指示信息通过下列任一信息承载:SIB、MAC CE、DCI或者RRC。
可选地,用于确定该第一卫星在该终端设备所处的第一服务小区的离开服务仰角的参数包括以下至少一种:该第一卫星的离开服务仰角、张角或圆心角。
在一个可选的例子中,本领域技术人员可以理解,装置1400可以具体为上述实施例中的终端设备,或者,上述实施例中终端设备的功能可以集成在装置1400中。上述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。例如,上述接收模块1410可以为通信接口,例如收发接口。装置1400可以用于执行上述方法实施例中与终端设备对应的各个流程和/或步骤。
图15是本申请实施例提供的另一种卫星通信装置1500的示意性框图,装置1500包括:获取模块1510和发送模块1520。
其中,获取模块1510用于:获取用于确定该第一卫星在该终端设备所处的第一服务小区的离开服务仰角的参数。发送模块1520用于:向该第一服务小区的终端设备发送第一指示信息,该第一指示信息指示该用于确定离开服务仰角的参数。
可选地,第一指示信息通过下列任一信息承载:SIB、MAC CE、DCI或者RRC。
可选地,用于确定该第一卫星在该终端设备所处的第一服务小区的离开服务仰角的参数包括以下至少一种:该第一卫星的离开服务仰角、张角或圆心角。
可选地,装置1500还包括处理模块1530,用于确定该第一卫星在该第一服务小区的进入服务仰角和/或离开服务仰角;以及,根据该第一服务小区的业务密集程度,调整该进入服务仰角和/或该离开服务仰角。发送模块1520用于:向第二卫星发送第二指示信息,该第二指示信息用于指示调整后的进入服务仰角和/或调整后的离开服务仰角。
可选地,处理模块1530用于:在该第一服务小区的业务密集程度大于或者等于第一预设阈值的情况下,增大该进入服务仰角和/或该离开服务仰角。或者,在该第一服务小区的业务密集程度小于该第一预设阈值的情况下,减小该进入服务仰角和/或该离开服务仰角。
可选地,获取模块1510用于:获取该第一服务小区进行业务数据传输所采用的第一信道的激活因子,该激活因子用于表示信道在目标时间段内的平均激活时间。发送模块1520用于:在该第一信道的激活因子大于或者等于第二预设阈值的情况下,向第三卫星发送该第一信道的激活因子。
可选地,装置1500还包括接收模块1540,用于接收来自第三卫星的第三指示信息,该第三指示信息用于指示重新配置信道。处理模块1530用于:基于该第三指示信息,重新配置该第一服务小区的信道。
在一个可选的例子中,本领域技术人员可以理解,装置1500可以具体为上述实施例中的第一卫星,或者,上述实施例中第一卫星的功能可以集成在装置1500中。上述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。例如,上述发送模块1520可以为通信接口,例如收发接口。装置1500可以用于执行上述方法实施例中与第一卫星对应的各个流程和/或步骤。
图16是本申请实施例提供的再一种卫星通信装置1600的示意性框图,装置1600包 括:接收模块1610和处理模块1620。
其中,接收模块1610用于:接收来自第一卫星的第二指示信息,该第二指示信息用于指示该第一卫星调整后的进入服务仰角和/或调整后的离开服务仰角。处理模块1620用于:基于该第一卫星调整后的进入服务仰角和/或调整后的离开服务仰角,调整进入服务仰角和/或离开服务仰角。
可选地,处理模块1620用于:在该第一卫星调整后的进入服务仰角和/或调整后的离开服务仰角大于或等于该第一卫星调整前的进入服务仰角和/或离开服务仰角的情况下,减小进入服务仰角和/或离开服务仰角。或者,在该第一卫星调整后的进入服务仰角和/或调整后的离开服务仰角小于或等于该第一卫星调整前的进入服务仰角和/或离开服务仰角的情况下,增大进入服务仰角和/或离开服务仰角。
在一个可选的例子中,本领域技术人员可以理解,装置1600可以具体为上述实施例中的第二卫星,或者,上述实施例中第二卫星的功能可以集成在装置1600中。上述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。例如,上述接收模块1610可以为通信接口,例如收发接口。装置1600可以用于执行上述方法实施例中与第二卫星对应的各个流程和/或步骤。
图17是本申请实施例提供的又一种卫星通信装置1700的示意性框图,装置1700包括:接收模块1710和处理模块1720。
其中,接收模块1710用于:接收来自第一卫星的第一信道的激活因子,该第一信道为该第一卫星覆盖的第一服务小区进行业务数据传输所采用的第一信道,该激活因子用于表示信道在目标时间段内的平均激活时间。处理模块1720用于:基于该第一信道的激活因子和预设干扰值进行干扰估计,得到干扰估计结果,该干扰估计结果用于表示该第一服务小区在数据传输过程中造成的干扰。
可选地,装置1700包括发送模块1730,用于在该干扰估计结果大于或者等于第三预设阈值的情况下,向该第一卫星发送第三指示信息,该第三指示信息用于指示该第一卫星重新配置信道。
在一个可选的例子中,本领域技术人员可以理解,装置1700可以具体为上述实施例中的第三卫星,或者,上述实施例中第三卫星的功能可以集成在装置1700中。上述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。例如,上述接收模块1710可以为通信接口,例如收发接口。装置1700可以用于执行上述方法实施例中与第三卫星对应的各个流程和/或步骤。
应理解,这里的装置1400、装置1500、装置1600和装置1700以功能模块的形式体现。这里的术语“模块”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。
在本申请的实施例,装置1400、装置1500、装置1600和装置1700也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。对应的,接收模块和发送模块可以是该芯片的收发电路,在此不做限定。
图18是本申请实施例提供的又一种卫星通信装置1800的示意性框图。该装置1800包括处理器1810、收发器1820和存储器1830。其中,处理器1810、收发器1820和存储 器1830通过内部连接通路互相通信,该存储器1830用于存储指令,该处理器1810用于执行该存储器1830存储的指令,以控制该收发器1820发送信号和/或接收信号。
应理解,装置1800可以具体为上述实施例中的终端设备、第一卫星、第二卫星或第三卫星,或者,上述实施例中终端设备、第一卫星、第二卫星或第三卫星的功能可以集成在装置1800中,装置1800可以用于执行上述方法实施例中与终端设备、第一卫星、第二卫星或第三卫星对应的各个步骤和/或流程。可选地,该存储器1830可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。该处理器1810可以用于执行存储器中存储的指令,并且该处理器执行该指令时,该处理器1810可以执行上述方法实施例中与终端设备、第一卫星、第二卫星或第三卫星对应的各个步骤和/或流程。
应理解,在本申请实施例中,该处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器执行存储器中的指令,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的模块及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。
所述功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现 有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种卫星通信方法,其特征在于,包括:
    终端设备接收来自第一卫星的第一指示信息,所述第一指示信息指示用于确定所述第一卫星在所述终端设备所处的第一服务小区的离开服务仰角的参数;
    所述终端设备基于星历和所述终端设备的位置信息,确定所述终端设备相对于所述第一卫星的仰角;
    所述终端设备根据所述第一指示信息,确定所述离开服务仰角,并比较所述离开服务仰角和所述终端设备相对于所述第一卫星的仰角,确定是否进行卫星的重选或者切换。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备比较所述离开服务仰角和所述终端设备相对于所述第一卫星的仰角,确定是否进行卫星的重选或者切换,包括:
    在所述终端设备相对于所述第一卫星的仰角小于或者等于所述离开服务仰角的情况下,所述终端设备确定进行卫星的重选或者切换。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一指示信息通过下列任一信息承载:
    系统信息块SIB、介质访问控制控制元素MAC CE、下行控制信息DCI或者无线资源控制RRC。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述用于确定所述第一卫星在所述终端设备所处的第一服务小区的离开服务仰角的参数包括以下至少一种:
    所述第一卫星的离开服务仰角、张角或者圆心角。
  5. 一种卫星通信方法,其特征在于,包括:
    第一卫星获取用于确定所述第一卫星在所述终端设备所处的第一服务小区的离开服务仰角的参数;
    所述第一卫星向所述第一服务小区的终端设备发送第一指示信息,所述第一指示信息指示所述用于确定离开服务仰角的参数。
  6. 根据权利要求5所述的方法,其特征在于,所述第一指示信息通过下列任一信息承载:
    系统信息块SIB、介质访问控制控制元素MAC CE、下行控制信息DCI或者无线资源控制RRC。
  7. 根据权利要求5或6所述的方法,其特征在于,所述用于确定所述第一卫星在所述终端设备所处的第一服务小区的离开服务仰角的参数包括以下至少一种:
    所述第一卫星的离开服务仰角、张角或者圆心角。
  8. 根据权利要求5-7中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一卫星确定所述第一卫星在所述第一服务小区的进入服务仰角和/或离开服务仰角;
    所述第一卫星根据所述第一服务小区的业务密集程度,调整所述进入服务仰角和/或所述离开服务仰角;
    所述第一卫星向第二卫星发送第二指示信息,所述第二指示信息用于指示所述第一卫星的调整后的进入服务仰角和/或调整后的离开服务仰角,所述第二卫星与所述第一卫星的覆盖区域相邻。
  9. 根据权利要求8所述的方法,其特征在于,所述第一卫星根据所述第一服务小区的业务密集程度,调整所述进入服务仰角和/或所述离开服务仰角,包括:
    在所述第一服务小区的业务密集程度大于或者等于第一预设阈值的情况下,所述第一卫星增大所述进入服务仰角和/或所述离开服务仰角;或者,
    在所述第一服务小区的业务密集程度小于所述第一预设阈值的情况下,所述第一卫星减小所述进入服务仰角和/或所述离开服务仰角。
  10. 根据权利要求5-9中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一卫星获取所述第一服务小区进行业务数据传输所采用的第一信道的激活因子,所述激活因子用于表示信道在目标时间段内的平均激活时间;
    在所述第一信道的激活因子大于或者等于第二预设阈值的情况下,所述第一卫星向第三卫星发送所述第一信道的激活因子,所述第三卫星与所述第一卫星的覆盖区域相邻。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    所述第一卫星接收来自所述第三卫星的第三指示信息,所述第三指示信息用于指示所述第一卫星重新配置信道;
    所述第一卫星基于所述第三指示信息,重新配置所述第一服务小区的信道。
  12. 一种卫星通信方法,其特征在于,包括:
    第二卫星接收来自第一卫星的第二指示信息,所述第二指示信息用于指示所述第一卫星调整后的进入服务仰角和/或调整后的离开服务仰角,所述第二卫星与所述第一卫星的覆盖区域相邻;
    所述第二卫星基于所述第一卫星调整后的进入服务仰角和/或调整后的离开服务仰角,调整所述第二卫星的进入服务仰角和/或离开服务仰角。
  13. 根据权利要求12所述的方法,其特征在于,所述第二卫星基于所述第一卫星调整后的进入服务仰角和/或调整后的离开服务仰角,调整所述第二卫星的进入服务仰角和/或离开服务仰角,包括:
    在所述第一卫星调整后的进入服务仰角和/或调整后的离开服务仰角大于或等于所述第一卫星调整前的进入服务仰角和/或离开服务仰角的情况下,所述第二卫星减小所述第二卫星的进入服务仰角和/或离开服务仰角;或者,
    在所述第一卫星调整后的进入服务仰角和/或调整后的离开服务仰角小于或等于所述第一卫星调整前的进入服务仰角和/或离开服务仰角的情况下,所述第二卫星增大所述第二卫星的进入服务仰角和/或离开服务仰角。
  14. 一种卫星通信方法,其特征在于,包括:
    第三卫星接收来自第一卫星的第一信道的激活因子,所述第一信道为所述第一卫星覆盖的第一服务小区进行业务数据传输所采用的第一信道,所述激活因子用于表示信道在目标时间段内的平均激活时间,所述第三卫星与所述第一卫星的覆盖区域相邻;
    所述第三卫星基于所述第一信道的激活因子和预设干扰值进行干扰估计,得到干扰估计结果,所述干扰估计结果用于表示所述第一服务小区在数据传输过程中对所述第三卫星的服务小区造成的干扰。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    在所述干扰估计结果大于或者等于第三预设阈值的情况下,所述第三卫星向所述第一卫星发送第三指示信息,所述第三指示信息用于指示所述第一卫星重新配置信道。
  16. 一种卫星通信装置,其特征在于,包括用于执行如权利要求1-4中任一项所述方法的模块,或者,用于执行如权利要求5-11中任一项所述方法的模块,或者,用于执行如权利要求12或13所述方法的模块,或者,用于执行如权利要求14或15所述方法的模块。
  17. 一种卫星通信装置,其特征在于,包括:包括处理器和存储器;所述存储器用于存储一个或多个计算机程序,当所述一个或多个计算机程序被运行时,使得如权利要求1-4中任一项所述的方法被执行,或使得如权利要求5-11中任一项所述的方法被执行,或使得如权利要求12或13所述的方法被执行,或使得如权利要求14或15所述的方法被执行。
  18. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1-4中任一项所述的方法,或使得所述计算机执行如权利要求5-11中任一项所述的方法,或使得所述计算机执行如权利要求12或13所述的方法,或使得所述计算机执行如权利要求14或15所述的方法。
  19. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,实现如权利要求1-4中任一项所述的方法,或实现如权利要求5-11中任一项所述的方法,或实现如权利要求12或13所述的方法,或实现如权利要求14或15所述的方法。
  20. 一种卫星通信系统,其特征在于,包括终端设备和卫星,所述终端设备用于执行如权利要求1-4中任一项所述的方法,所述卫星用于执行如权利要求5-11中任一项所述的方法,或所述卫星用于执行如权利要求12或13所述的方法,或所述卫星用于执行如权利要求14或15所述的方法。
PCT/CN2022/123573 2021-10-29 2022-09-30 卫星通信方法和卫星通信装置 WO2023071716A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111276264.6 2021-10-29
CN202111276264.6A CN116073878A (zh) 2021-10-29 2021-10-29 卫星通信方法和卫星通信装置

Publications (1)

Publication Number Publication Date
WO2023071716A1 true WO2023071716A1 (zh) 2023-05-04

Family

ID=86160284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123573 WO2023071716A1 (zh) 2021-10-29 2022-09-30 卫星通信方法和卫星通信装置

Country Status (2)

Country Link
CN (1) CN116073878A (zh)
WO (1) WO2023071716A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116980030A (zh) * 2023-09-22 2023-10-31 中科星图测控技术股份有限公司 用轨道外推和空间位置算ngso星座间通信干扰的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6246874B1 (en) * 1998-04-29 2001-06-12 Hughes Electronics Corporation Method and apparatus for predicting spot beam and satellite handover in a mobile satellite communication network
CN105044745A (zh) * 2015-07-15 2015-11-11 中国人民解放军理工大学 一种圆轨道低轨卫星过顶剩余可见时长预测方法
US20190082481A1 (en) * 2015-06-17 2019-03-14 Hughes Network Systems, Llc Approaches for high speed global packet data services for leo/meo satellite systems
CN109495160A (zh) * 2018-12-04 2019-03-19 航天科工空间工程发展有限公司 一种低轨通信卫星星座与信关站连通规划方法
CN109495156A (zh) * 2018-11-02 2019-03-19 航天科工空间工程发展有限公司 一种基于星历的低轨宽带卫星通信终端天线方向获取方法
CN111211829A (zh) * 2019-12-31 2020-05-29 东方红卫星移动通信有限公司 一种低轨卫星星间数据无损切换的方法
CN113438006A (zh) * 2020-03-23 2021-09-24 中国电信股份有限公司 卫星信号捕获方法、装置、系统和存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6246874B1 (en) * 1998-04-29 2001-06-12 Hughes Electronics Corporation Method and apparatus for predicting spot beam and satellite handover in a mobile satellite communication network
US20190082481A1 (en) * 2015-06-17 2019-03-14 Hughes Network Systems, Llc Approaches for high speed global packet data services for leo/meo satellite systems
CN105044745A (zh) * 2015-07-15 2015-11-11 中国人民解放军理工大学 一种圆轨道低轨卫星过顶剩余可见时长预测方法
CN109495156A (zh) * 2018-11-02 2019-03-19 航天科工空间工程发展有限公司 一种基于星历的低轨宽带卫星通信终端天线方向获取方法
CN109495160A (zh) * 2018-12-04 2019-03-19 航天科工空间工程发展有限公司 一种低轨通信卫星星座与信关站连通规划方法
CN111211829A (zh) * 2019-12-31 2020-05-29 东方红卫星移动通信有限公司 一种低轨卫星星间数据无损切换的方法
CN113438006A (zh) * 2020-03-23 2021-09-24 中国电信股份有限公司 卫星信号捕获方法、装置、系统和存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116980030A (zh) * 2023-09-22 2023-10-31 中科星图测控技术股份有限公司 用轨道外推和空间位置算ngso星座间通信干扰的方法
CN116980030B (zh) * 2023-09-22 2023-12-15 中科星图测控技术股份有限公司 用轨道外推和空间位置算ngso星座间通信干扰的方法

Also Published As

Publication number Publication date
CN116073878A (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
Di et al. Ultra-dense LEO: Integration of satellite access networks into 5G and beyond
WO2020080044A1 (ja) 通信制御装置、通信装置、通信制御方法、通信方法、通信制御プログラム、通信プログラム、及び通信システム
WO2022152000A1 (zh) 应用于非地面通信网络中的定位的方法和通信装置
US20220217589A1 (en) Information transmission method, apparatus, and system
US20220295434A1 (en) Communication method and apparatus
US20240014888A1 (en) Flexible Frequency Band Pairing for Satellite Communications
Pourbaba et al. Full-duplex UAV relay positioning for vehicular communications with underlay V2V links
WO2018166368A1 (zh) 用于无线通信的电子设备和方法
US20220368411A1 (en) Method for Interference Minimization and Optimization of Orbital Mobile Cellular Services
WO2023071716A1 (zh) 卫星通信方法和卫星通信装置
CN116250277A (zh) 一种通信方法及装置
CN106788667B (zh) 基于平流层平台及船载中继站的海地一体化通信系统
US11374627B1 (en) Restricting uplink MIMO assignment based on fading in an mmWave system
WO2019205169A1 (zh) 一种通信方法及装置
WO2022021130A1 (zh) 选择初始带宽部分bwp的方法、终端设备和网络设备
WO2023116335A1 (zh) 一种通信方法及装置
US20240049219A1 (en) Cross-carrier data transmission method, terminal, and storage medium
WO2022017130A1 (zh) 一种波束信息指示方法及装置
WO2021249530A1 (zh) 一种用于非地面通信网络的信息指示方法及装置
CN114650085A (zh) 改进的上行链路操作
CN116250267A (zh) 用于无线通信系统的电子设备、方法和存储介质
WO2022017114A1 (zh) 卫星编队通信的方法和通信装置
WO2024016836A1 (zh) 一种通信方法及装置
WO2023130221A1 (zh) 通信方法、终端设备以及网络设备
WO2022213925A1 (zh) 一种无线通信的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885598

Country of ref document: EP

Kind code of ref document: A1