WO2023071687A1 - 加热装置 - Google Patents

加热装置 Download PDF

Info

Publication number
WO2023071687A1
WO2023071687A1 PCT/CN2022/122246 CN2022122246W WO2023071687A1 WO 2023071687 A1 WO2023071687 A1 WO 2023071687A1 CN 2022122246 W CN2022122246 W CN 2022122246W WO 2023071687 A1 WO2023071687 A1 WO 2023071687A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
radiation
radiating
heating device
side plate
Prior art date
Application number
PCT/CN2022/122246
Other languages
English (en)
French (fr)
Inventor
韩志强
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2023071687A1 publication Critical patent/WO2023071687A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/36Freezing; Subsequent thawing; Cooling
    • A23L3/365Thawing subsequent to freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/02Stoves or ranges heated by electric energy using microwaves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/12Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the invention relates to kitchen utensils, in particular to an electromagnetic wave processing device.
  • an electromagnetic wave heating device is generally used to thaw food, and the heating device is embedded in the refrigerator.
  • the temperature uniformity of food after thawing is closely related to the distribution uniformity of electromagnetic waves in the heating chamber.
  • the limited size of the chamber greatly limits the size of the radiation antenna, which not only affects the intensity of electromagnetic waves and thus affects the heating efficiency, but also the intensity of electromagnetic waves increases with the The difference in the distance of the radiating antenna produces a large difference, thereby affecting the temperature uniformity of the food.
  • an electromagnetic wave heating device with a small radiating antenna size and uniform distribution of electromagnetic waves is required in design.
  • An object of the present invention is to overcome at least one technical defect in the prior art and provide an electromagnetic wave heating device.
  • a further object of the present invention is to improve the temperature uniformity of the object to be treated.
  • Another further object of the invention is to increase security.
  • the present invention provides a heating device comprising:
  • a barrel for containing the material to be processed and provided with a grounded conductive feature
  • the electromagnetic wave generating system includes an electromagnetic wave generating module for generating electromagnetic wave signals, and a radiation antenna arranged in the cylinder; wherein the radiation antenna includes:
  • a radiation part configured to be electrically connected to the electromagnetic wave generating module
  • the grounding portion is configured to extend from a peripheral edge of the radiation portion toward a direction close to a side plate of the barrel, and to be fixedly connected to the conductive feature.
  • the grounding part includes:
  • the parallel section is arranged to be in contact with the side plate and tightly connected.
  • a dimension of the ground portion in a direction perpendicular to its extension is smaller than a dimension of the radiation portion in this direction.
  • the heating device also includes:
  • a transmission line configured to connect the electromagnetic wave generating module and the radiation part
  • the distance between the connection point of the transmission line and the radiation part and the ground part is 1/20-1/5 of the size of the radiation part in this direction.
  • the grounding portion is configured to extend from an end edge of the radiating portion in the longitudinal direction toward a direction close to the side plate;
  • the radiating portion is parallel to the side plate.
  • the periphery of the radiating part is formed of a smooth curve.
  • the heating device also includes:
  • the supporting member is disposed on a side of the radiating part away from the grounding part, and is used to support the radiating part.
  • the support includes:
  • a clamping part configured to be clamped with the radiation part
  • the mounting part is configured to be fixedly connected with the side plate
  • connection part is configured to connect the clamping part and the installation part.
  • the clamping portion includes:
  • At least one lower clip is arranged below the upper clip;
  • the radiating portion is partially sandwiched between the at least one upper clip and the at least one lower clip.
  • the radiating antenna has a thickness of 0.1 mm to 5 mm; and/or
  • the size of the grounding portion in a direction perpendicular to the radiating portion is 20 mm to 50 mm; and/or
  • the radiating part and the grounding part are integrally formed; and/or
  • the radiating antenna is made of copper, or the radiating antenna is made of aluminum and the surface is conductively oxidized; and/or
  • the barrel is made of the same conductive material as the radiating antenna; and/or
  • the support is made of insulating material.
  • One end of the radiation part of the heating device of the present invention is grounded, which not only avoids the occurrence of electric arcs generated by the radiation antenna, but also produces better radiation effects in a wide frequency range of electromagnetic wave signals, which is convenient for different frequencies to be processed. Adjust to improve the heating efficiency of the object to be treated and the temperature uniformity of the object to be treated.
  • the distance between the contact point connecting the transmission line of the radiating part of the present invention and the grounding part is 1/20 to 1/5 of the size of the radiating part in this direction, which can efficiently and uniformly radiate electromagnetic waves into the chamber, avoiding The electromagnetic waves are concentrated near the radiation antenna, which further improves the heating efficiency of the object to be treated and the temperature uniformity of the object to be treated.
  • the barrel and the radiation antenna of the present invention are made of the same conductive material, which can prevent oxidation-reduction reactions (such as galvanic cell reactions) between the barrel and the radiation antenna, and ensure the conductivity of the barrel and the radiation antenna. Furthermore, the safety performance and the radiation effect of the radiation antenna are guaranteed, and the situation that the structural strength of the whole machine is affected by the size change of the cylinder body and the radiation antenna after the reaction is avoided, and the user experience is improved.
  • Fig. 1 is a schematic structural diagram of a heating device according to an embodiment of the present invention.
  • Fig. 2 is a schematic cross-sectional view of the cylinder in Fig. 1;
  • Fig. 3 is a schematic enlarged view of area A in Fig. 2;
  • Figure 4 is a schematic exploded view of the cartridge shown in Figure 2, with the main body of the cartridge not shown;
  • Figure 5 is a schematic isometric view of the radiating antenna of Figure 4.
  • Figure 6 is a schematic isometric view of the support in Figure 4.
  • FIG. 7 is a schematic isometric view of the connector of FIG. 4 .
  • Fig. 1 is a schematic structural diagram of a heating device 100 according to an embodiment of the present invention.
  • the heating device 100 may include a barrel body 110 , a door body 120 , and an electromagnetic wave generating system.
  • the barrel 110 may define a chamber 111 for containing the object 180 to be treated.
  • the door body 120 can be configured to open and close the access opening of the chamber 111, so that the object 180 to be processed can be accessed.
  • the cylinder body 110 may be surrounded by a rear side panel and four circumferential side panels coupled to respective peripheral edges of the rear side panel.
  • the rearward side panel and the four peripheral side panels are only directional descriptions, and do not mean that the rearward side panel and the four peripheral side panels are independent of each other or integrally formed.
  • the electromagnetic wave generating system may be at least partly disposed in the barrel 110 or accessible to the barrel 110 to emit electromagnetic waves into the barrel 110 to heat the object 180 to be treated.
  • the electromagnetic wave generating system may include an electromagnetic wave generating module 131 , a radiation antenna 140 electrically connected to the electromagnetic wave generating module 131 , a power supply module 132 for supplying power to the electromagnetic wave generating module 131 , and a control module 133 .
  • the electromagnetic wave generating module 131 can be configured to generate electromagnetic wave signals, and the radiation antenna 140 can be disposed in the barrel 110 to generate electromagnetic waves in the barrel 110 to heat the object 180 to be processed in the barrel 110 .
  • the electromagnetic wave generating module 131 can be disposed outside the cylinder body 110 to avoid the heat generated by the electromagnetic wave generating module 131 from affecting the object 180 to be processed.
  • the electromagnetic wave generating module 131 and the radiation antenna 140 can realize signal transmission through the connecting piece 160 .
  • the control module 133 can be configured to be electrically connected with the electromagnetic wave generating module 131 to control the start and stop of the electromagnetic wave generating module 131 and adjust the working parameters of the electromagnetic wave generating module 131 .
  • the barrel 110 may be provided with a grounded conductive feature to increase the safety of the heating device 100 .
  • the barrel 110 may be made of a conductive material, ie, the conductive feature of the barrel 110 is the barrel 110 itself.
  • the conductive feature may be a conductive layered structure, such as a metal coating.
  • FIG. 2 is a schematic sectional view of cylinder 110 in Fig. 1;
  • Fig. 3 is a schematic enlarged view of area A in Fig. 2;
  • Fig. 4 is a schematic exploded view of cylinder 110 shown in Fig. 2, wherein the main body of cylinder 110 112 is not shown;
  • FIG. 5 is a schematic isometric view of the radiating antenna 140 in FIG. 4 .
  • the radiation antenna 140 may include a radiation part 141 and a ground part 142 .
  • the radiation part 141 can be configured to be electrically connected with the electromagnetic wave generating module 131 to receive electromagnetic wave signals.
  • the grounding part 142 can be arranged to extend from the peripheral edge of the radiation part 141 to a direction close to a side plate of the cylinder 110, and be fixedly connected to the conductive feature of the cylinder 110, so as to prevent the radiation antenna 140 from generating an electric arc.
  • a better radiation effect is produced in a wide frequency range of the electromagnetic wave signal, which facilitates frequency adjustment for different objects 180 to be processed, and improves the heating efficiency of the object 180 to be processed and the temperature uniformity of the object 180 to be processed.
  • the radiation antenna 140 can be fixed on the lower peripheral side plate of the cylinder body 110, and the object 180 to be treated can be arranged above the radiation antenna 140.
  • the radiating antenna 140 can also be fixed on the upper peripheral side plate or the rear side plate of the barrel 110 .
  • the ground portion 142 may be configured to extend from the end edge of the radiation portion 141 in the longitudinal direction toward a direction close to the lower peripheral side plate, so as to further improve the radiation performance of the radiation antenna 140 .
  • the radiation part 141 may be parallel to the lower circumferential side plate, so as to further improve the uniformity of electromagnetic wave distribution.
  • the ground portion 142 may include a vertical segment 1421 and a parallel segment 1422 .
  • the vertical section 1421 may be configured to extend from the peripheral edge of the radiation portion 141 toward a direction close to the lower peripheral side plate.
  • the parallel section 1422 can be set to extend from the end of the vertical section 1421 away from the radiation part 141 parallel to the lower circumferential side plate, and be in contact with the lower circumferential side plate to ensure grounding reliability and structural stability. sex.
  • the dimension of the grounding portion 142 perpendicular to its extending direction may be smaller than the dimension of the radiating portion 141 in this direction, so that the radiation antenna 140 can efficiently radiate electromagnetic waves into the cavity 111 .
  • the direction perpendicular to the extending direction of the ground portion 142 is the lateral direction of the radiation portion 141 .
  • the distance between the connection point of the transmission line 161 and the radiation portion 141 and the ground portion 142 is 1/20 ⁇ 1/5 of the size of the radiation portion 141 in this direction, for example, 1/20, 1/10, or 1 /5, to efficiently and uniformly radiate electromagnetic waves into the chamber 111, avoiding the concentration of electromagnetic waves near the radiation antenna 140, and further improving the heating efficiency of the object 180 to be processed and the temperature uniformity of the object 180 to be processed.
  • the periphery of the radiating part 141 may be formed by a smooth curve, so as to reduce the edge effect and improve the uniformity of electromagnetic wave distribution.
  • a smooth curve refers to a curve whose curve equation is a continuous first-order derivative, which means that the periphery of the radiation portion 141 has no sharp corners in engineering.
  • the thickness of the radiating antenna 140 may be 0.1 mm ⁇ 5 mm, such as 0.1 mm, 2 mm, or 5 mm, so as to ensure the structural strength of the radiating antenna 140 and reduce production costs.
  • the size of the grounding portion 142 in the direction perpendicular to the radiation portion 141 is 20 mm to 50 mm, that is, the distance between the radiation portion 141 and the lower peripheral side plate is 20 mm to 50 mm, for example, 20 mm, 30 mm, 40 mm, or 50 mm, so as to While reducing the occupied space of the radiating antenna 140, edge effects are mitigated.
  • the radiating portion 141 and the grounding portion 142 can be integrally formed to reduce production costs and prevent edge effects caused by the assembly process.
  • Radiation antenna 140 is made of copper or aluminum.
  • the surface may be treated with conductive oxidation, so as to avoid the reduction of the conductivity of the radiation antenna 140 due to oxidation.
  • the cylinder body 110 and the radiation antenna 140 can be made of the same conductive material to prevent oxidation-reduction reactions (such as galvanic cell reactions) between the cylinder body 110 and the radiation antenna 140, ensuring the conductivity of the cylinder body 110 and the radiation antenna 140, and then The radiation effect of the radiating antenna 140 is ensured, and the occurrence of changes in dimensions of the cylinder body 110 and the radiating antenna 140 after the reaction, which may affect the structural strength of the whole machine, is avoided.
  • FIG. 6 is a schematic isometric view of the support member 150 in FIG. 4 .
  • the heating device 100 may further include a support member 150 .
  • the supporting member 150 may be disposed on a side of the radiating part 141 away from the ground part 142 for supporting the radiating part 141 so as to improve the structural stability of the radiating antenna 140 .
  • the support member 150 may include a clamping portion for clamping with the radiation portion 141 , a mounting portion 152 fixedly connected with the lower peripheral side plate, and a connection portion 153 connecting the clamping portion and the mounting portion 152 .
  • the connecting portion 153 may be provided with reinforcing ribs to improve the structural strength of the supporting member 150 .
  • the engaging portion may include at least one upper clamping piece 1511 and at least one lower clamping piece 1512 disposed below the upper clamping piece 1511 .
  • the radiating part 141 can be partially sandwiched between the upper clamping piece 1511 and the lower clamping piece 1512 to facilitate the disassembly and assembly of the radiation antenna 140 .
  • the number of the upper clips 1511 may be smaller than the number of the lower clips 1512 to reduce the attenuation of the electromagnetic wave by the support 150 .
  • the supporter 150 may be made of insulating material to further reduce attenuation of electromagnetic waves by the supporter 150 .
  • the supporting member 150 can be made of ABS, PS or PP material to obtain a small dielectric loss tangent.
  • FIG. 7 is a schematic isometric view of the connector 160 in FIG. 4 .
  • the connector 160 may include a transmission line 161 and a shielding structure.
  • the transmission line 161 may be provided to be electrically connected to the electromagnetic wave generating module 131 and the radiation antenna 140 through the cylinder body 110 .
  • the shielding structure can be disposed on the outside of the barrel 110 and cover part of the transmission line 161 to reduce the interference of the transmission line 161 to surrounding electrical devices.
  • the shielding structure may include a shielding part 1621 and a fixing part 1622 .
  • the shielding part 1621 can be set to cover part of the transmission line 161 inside.
  • the fixing part 1622 can be configured to extend radially outward from one end of the shielding part 1621 , and be fixedly connected with the cylinder body 110 , so as to improve the structural reliability of the transmission line 161 .
  • Both the shielding part 1621 and the fixing part 1622 may have conductive features.
  • the conductive features of the fixing part 1622 may be configured to be in conductive connection with the conductive features of the barrel 110 and the conductive features of the shielding part 1621 to further improve the shielding performance.
  • the conductive feature of the shielding portion 1621 may be a metal mesh.
  • the fixing portion 1622 may be made of metal and welded to the conductive features of the shielding portion 1621 .
  • the fixing part 1622 can be configured to be firmly connected with the cylinder body 110 to realize a conductive connection.
  • the outer side of the conductive features of the shielding part 1621 may be provided with insulating features to improve safety performance and avoid electric shock.
  • the radiation antenna 140 can define a connection hole 1411 .
  • the core wire of the transmission line 161 can be welded with the radiation antenna 140 at the connection hole 1411 to realize signal transmission and improve connection reliability.
  • the heating device 100 may further include a casing 170 disposed outside the barrel 110 for covering the fixing part 1622 and at least part of the shielding part 1621 to further improve safety.
  • the cover 170 can be provided with at least one slot 171 , and the shielding portion 1621 is fastened in the at least one slot 171 , so as to further improve the connection reliability of the transmission line 161 and avoid bending of the shielding portion 1621 .
  • at least one is one, two, or more than two.
  • the slot 171 can be arranged to extend along a side plate parallel to the cylinder body 110 , and at least partially leave the shielding portion 1621 at a distance from the lower circumferential side plate to avoid signal interference. In the illustrated embodiment, there are two card slots 171 .
  • the connecting member 160 may further include a connection terminal 163 disposed at an end of the shielding portion 1621 away from the fixing portion 1622 and electrically connected to the transmission line 161 for electrical connection with the electromagnetic wave generating module 131 .
  • the connection terminal 163 can be disposed on the outside of the casing 170 .
  • the barrel 110 may include a main body 112 with an installation opening 1121 opened therein, and an installation plate 113 detachably fixed to the installation opening 1121 .
  • the mounting plate 113 and the main body 112 together define a cavity 111 .
  • the projection of the radiation antenna 140 on the main body 112 may completely fall into the installation opening 1121 .
  • the mounting plate 113 can be fixedly connected to the main body 112 on the outside of the main body 112, so that the radiation antenna 140 can be assembled with the mounting plate 113 to form an integrated component and then installed on the main body 112 together, which improves the assembly efficiency and facilitates production and debugging.
  • the mounting plate 113 and the main body 112 can be made of the same conductive material, so as to avoid oxidation-reduction reaction (such as galvanic reaction) and ensure electrical conductivity.
  • control module 133 can be configured to control the electromagnetic wave generating system to adjust the frequency of the electromagnetic wave signal generated by it within the pre-selected frequency range every preset time interval t, so that the electromagnetic wave generating system meets the preset matching conditions, Record the frequency of the electromagnetic wave signal that meets the preset matching condition each time and calculate the change amount of the frequency of the electromagnetic wave signal that meets the preset matching condition before the preset matching number of times.
  • the change amount is less than or equal to the preset change threshold S, Control the electromagnetic wave generating system to stop working.
  • the inventors of the present application have creatively realized that the variation of the matching frequency in the same time period is relatively small, and it only has a significant drop when it is close to the phase transition region of water and is affected by the degree of frequency matching.
  • the frequency matching is satisfied
  • the electromagnetic wave generation system is controlled to stop working, which can stop the heating of the food at the state desired by the user, and is especially suitable for food thawing, which can prevent the object 180 from being thawed too much.
  • the temperature at the time of completion is generally -4 to -2°C, which can avoid bloody water from thawing when the object 180 to be processed is meat, and is easy for the user to cut.
  • the preset time interval t may be 25s ⁇ 40s, such as 25s, 30s, or 40s, so as to avoid misjudgment.
  • the optional frequency range may be 400MHz-500MHz, so as to ensure the temperature uniformity of the object 180 to be processed and the heating efficiency of the object 180 to be processed.
  • the preset matching times may be greater than or equal to 2, for example 3, to avoid misjudgment.
  • the preset matching times can also be 1, that is, the variation is the difference between the frequencies of two adjacent electromagnetic wave signals satisfying the preset matching condition.
  • the power of the electromagnetic wave signal during the frequency matching process may be 5% to 10% of the power of the electromagnetic wave signal during the normal heating process, so as to reduce adverse effects on the object 180 to be treated.
  • control module 133 can be configured to use the minimum value of the pre-selected frequency range to the frequency of the electromagnetic wave signal satisfying the preset matching condition last time as the candidate frequency range for this frequency matching, and calculate the preset The difference between the frequency of the electromagnetic wave signal that satisfies the preset matching condition before the number of matching times and this time is used as the variation to quickly and accurately determine the frequency of the electromagnetic wave signal that meets the preset matching condition, thereby reducing the frequency of the frequency matching process. 180 quality effects, improve the timeliness of judging whether to stop heating.
  • control module 133 can be configured to first calculate the frequency difference (absolute value) of every two adjacent electromagnetic wave signals satisfying the preset matching condition, and then add all the differences to obtain the variation, to improve accuracy.
  • the matching condition when performing frequency matching for the first time, may be: the power of the reflected wave signal returning to the electromagnetic wave generating system is minimum, so as to facilitate subsequent frequency matching and shorten the time of subsequent frequency matching.
  • the control module 133 can be configured to determine the remaining heating time T of the object 180 to be treated according to the frequency of the electromagnetic wave signal that meets the preset matching condition for the first time according to the preset comparison table, and continue to heat the object 180 for a time greater than or equal to the determined remaining heating time.
  • the electromagnetic wave generation system is controlled to stop working, so as to further ensure the excellent quality of the heated object 180 to be processed.
  • the comparison table records the corresponding relationship between different frequencies and the remaining heating time T.
  • the matching condition when frequency matching is performed for the first time and within a similar preset matching times after the first time, the matching condition may be: the power of the reflected wave signal returning to the electromagnetic wave generating system is minimum.
  • the control module 133 can be configured to follow the preset comparison table according to the sum of the frequency difference (absolute value) of every adjacent two electromagnetic wave signals satisfying the preset matching condition within the preset matching times for the first time and after the first time. Determine the remaining heating time T of the object to be treated 180, and when the heating time of the object to be treated 180 is greater than or equal to the determined remaining heating time T, control the electromagnetic wave generating system to stop working, so as to stop the heating of the object to be treated 180 more accurately, Further guarantee the excellent quality of the heated object 180 to be processed.
  • the comparison table records the corresponding relationship between the sum of different differences and the remaining heating time T.
  • the matching condition may be: the ratio of the power of the reflected wave signal returning to the electromagnetic wave generating system to the power of the incident wave signal propagating to the cylinder 110 from the electromagnetic wave generating system is greater than equal to the preset ratio threshold.
  • the preset ratio threshold may be 70%-80%.
  • the current frequency matching is terminated, so as to reduce adverse effects on the object 180 to be treated and improve heating efficiency.
  • the barrel 110 of the present invention can be embedded in other household appliances for use, such as a refrigerator and freezer with a refrigeration system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Nutrition Science (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

一种加热装置,包括筒体和电磁波发生系统。筒体用于容置待处理物,并设置有接地的导电特征。电磁波发生系统包括用于产生电磁波信号的电磁波发生模块、和设置于筒体内的辐射天线。辐射天线包括辐射部和接地部。辐射部设置为与电磁波发生模块电连接。接地部设置为自辐射部的周向边缘向靠近筒体的一个侧板的方向延伸、并与导电特征固定连接,不仅避免了辐射天线产生电弧的情况发生,还可在电磁波信号较宽的频率范围下均产生较好的辐射效果,便于针对不同的待处理物进行频率调节,提高对待处理物的加热效率和待处理物的温度均匀性。

Description

加热装置 技术领域
本发明涉及厨房用具,特别是涉及一种电磁波处理装置。
背景技术
食物在冷冻的过程中,食物的品质得到了保持,然而冷冻的食物在加工或食用前需要解冻。为了便于用户冷冻和解冻食物,现有技术一般通过电磁波加热装置来解冻食物,并将加热装置嵌入冰箱。
解冻后食物的温度均匀性与加热室内电磁波的分布均匀性密切相关,然而有限的腔室尺寸极大地限制了辐射天线的尺寸,不仅影响电磁波的强度进而影响加热效率,而且电磁波的强度随着与辐射天线的距离的不同产生较大的差异进而影响食物的温度均匀性。综合考虑,在设计上需要一种辐射天线尺寸较小且电磁波分布均匀的电磁波加热装置。
发明内容
本发明的一个目的是要克服现有技术中的至少一个技术缺陷,提供一种电磁波加热装置。
本发明一个进一步的目的是要提高待处理物的温度均匀性。
本发明另一个进一步的目的是要提高安全性。
特别地,本发明提供了一种加热装置,包括:
筒体,用于容置待处理物,并设置有接地的导电特征;以及
电磁波发生系统,包括用于产生电磁波信号的电磁波发生模块、和设置于所述筒体内的辐射天线;其中所述辐射天线包括:
辐射部,设置为与所述电磁波发生模块电连接;和
接地部,设置为自所述辐射部的周向边缘向靠近所述筒体的一个侧板的方向延伸、并与所述导电特征固定连接。
可选地,所述接地部包括:
垂直段,设置为自所述辐射部的周向边缘向靠近所述侧板的方向延伸;和
平行段,设置为自所述垂直段的远离所述辐射部的一端平行于所述侧板延伸;其中
所述平行段设置为与所述侧板接触并紧固连接。
可选地,所述接地部在垂直于其延伸方向上的尺寸小于所述辐射部在该方向上的尺寸。
可选地,所述加热装置还包括:
传输线,设置为连接所述电磁波发生模块与所述辐射部;其中
所述传输线与所述辐射部的接点与所述接地部的距离为所述辐射部在该方向上的尺寸的1/20~1/5。
可选地,所述接地部设置为自所述辐射部在纵向方向上的端部边缘向靠近所述侧板的方向延伸;和/或
所述辐射部平行于所述侧板。
可选地,所述辐射部的周缘由平滑曲线构成。
可选地,所述加热装置还包括:
支撑件,设置于所述辐射部的远离所述接地部的一侧,用于支撑所述辐射部。
可选地,所述支撑件包括:
卡接部,设置为与所述辐射部卡接;
安装部,设置为与所述侧板固定连接;以及
连接部,设置为连接所述卡接部和所述安装部。
可选地,所述卡接部包括:
至少一个上夹片;和
至少一个下夹片,设置于所述上夹片的下方;其中
所述辐射部部分夹置于所述至少一个上夹片和所述至少一个下夹片之间。
可选地,所述辐射天线的厚度为0.1mm~5mm;和/或
所述接地部在垂直于所述辐射部的方向上的尺寸为20mm~50mm;和/或
所述辐射部与所述接地部一体成型;和/或
所述辐射天线由铜制成,或所述辐射天线由铝制成且表面导电氧化处理;和/或
所述筒体与所述辐射天线由相同导电材料制成;和/或
所述支撑件由绝缘材料制成。
本发明的加热装置的辐射部一端接地,不仅避免了辐射天线产生电弧的情况发生,还可在电磁波信号较宽的频率范围下均产生较好的辐射效果,便于针对不同的待处理物进行频率调节,提高对待处理物的加热效率和待处理物的温度均匀性。
进一步地,本发明的辐射部的连接传输线的接点与接地部的距离为辐射部在该方向上的尺寸的1/20~1/5,可高效地、均匀地将电磁波辐射到腔室内,避免电磁波集中于辐射天线附近,进一步地提高了对待处理物的加热效率和待处理物的温度均匀性。
进一步地,本发明的筒体与辐射天线由相同的导电材料制成,可防止筒体与辐射天线之间发生氧化还原反应(例如原电池反应),保证了筒体和辐射天线的导电性能,进而保证了安全性能和辐射天线的辐射效果,避免反应后的筒体和辐射天线发生尺寸上的变化而影响整机结构强度情况发生,提高了用户体验。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的加热装置的示意性结构图;
图2是图1中筒体的示意性剖视图;
图3是图2中区域A的示意性放大视图;
图4是图2所示筒体的示意性爆炸视图,其中筒体的主体未示出;
图5是图4中辐射天线的示意性轴侧图;
图6是图4中支撑件的示意性轴侧图;
图7是图4中连接件的示意性轴侧图。
具体实施方式
图1是根据本发明一个实施例的加热装置100的示意性结构图。参见图1,加热装置100可包括筒体110、门体120、以及电磁波发生系统。
筒体110可限定有用于容纳待处理物180的腔室111。门体120可设置 为开闭腔室111的取放口,以使待处理物180可被取放。
在图示实施例中,筒体110可由后向侧板以及结合于后向侧板的各个周缘的四个周向侧板围成。其中,后向侧板和四个周向侧板仅为方向性描述,并不表示后向侧板和四个周向侧板互相独立、或一体成型。
电磁波发生系统可至少部分设置于筒体110内或通达至筒体110,以向筒体110内发射电磁波来加热待处理物180。
电磁波发生系统可包括电磁波发生模块131、与电磁波发生模块131电连接的辐射天线140、用于向电磁波发生模块131供电的供电模块132、以及控制模块133。
电磁波发生模块131可配置为产生电磁波信号,辐射天线140可设置于筒体110内,以在筒体110内产生电磁波,进而加热筒体110内的待处理物180。
电磁波发生模块131可设置于筒体110外,以避免电磁波发生模块131工作产生的热量对待处理物180的影响。电磁波发生模块131和辐射天线140可通过连接件160实现信号传输。
控制模块133可设置为与电磁波发生模块131电连接,以控制电磁波发生模块131的启停、调节电磁波发生模块131的工作参数。
筒体110可设置有接地的导电特征,以提高加热装置100的安全性。在一些实施例中,筒体110可由导电材料制成,即筒体110的导电特征为筒体110本身。在另一些实施例中,导电特征可为导电层状结构,例如金属涂层。
图2是图1中筒体110的示意性剖视图;图3是图2中区域A的示意性放大视图;图4是图2所示筒体110的示意性爆炸视图,其中筒体110的主体112未示出;图5是图4中辐射天线140的示意性轴侧图。参见图2至图5,特别地,辐射天线140可包括辐射部141和接地部142。其中,辐射部141可设置为与电磁波发生模块131电连接,以接收电磁波信号。
接地部142可设置为自辐射部141的周向边缘向靠近筒体110的一个侧板的方向延伸、并与筒体110的导电特征固定连接,以避免辐射天线140产生电弧的情况发生,可在电磁波信号较宽的频率范围下均产生较好的辐射效果,便于针对不同的待处理物180进行频率调节,提高对待处理物180的加热效率和待处理物180的温度均匀性。
辐射天线140可固定于筒体110的下侧周向侧板,待处理物180可设置 于辐射天线140的上方。
辐射天线140也可固定于筒体110的上侧周向侧板或后向侧板。
下面以辐射天线140固定于筒体110的下侧周向侧板为例对本发明的技术方案作详细介绍。
在一些实施例中,接地部142可设置为自辐射部141在纵向方向上的端部边缘向靠近下侧周向侧板的方向延伸,以进一步提高辐射天线140的辐射性能。
辐射部141可平行于下侧周向侧板,以进一步提高电磁波的分布均匀性。
在一些实施例中,接地部142可包括垂直段1421和平行段1422。其中,垂直段1421可设置为自辐射部141的周向边缘向靠近下侧周向侧板的方向延伸。平行段1422可设置为自垂直段1421的远离辐射部141的一端平行于下侧周向侧板延伸,并与下侧周向侧板接触并紧固连接,以保证接地可靠性、以及结构稳定性。
在一些实施例中,接地部142在垂直于其延伸方向上的尺寸可小于辐射部141在该方向上的尺寸,以使辐射天线140可将电磁波高效地辐射到腔室111内。在图示实施例中,垂直于接地部142的延伸方向的方向为辐射部141的横向方向。
在一些实施例中,传输线161与辐射部141的接点与接地部142的距离为辐射部141在该方向上的尺寸的1/20~1/5,例如1/20、1/10、或1/5,以高效地、均匀地将电磁波辐射到腔室111内,避免电磁波集中于辐射天线140附近,进一步地提高对待处理物180的加热效率和待处理物180的温度均匀性。
在一些实施例中,辐射部141的周缘可由平滑曲线构成,以减轻边缘效应,提高电磁波的分布均匀性。其中,平滑曲线指曲线方程为一阶导数连续的曲线,在工程中意味着辐射部141的周缘无尖角。
辐射天线140的厚度可为0.1mm~5mm,例如0.1mm、2mm、或5mm,以保证辐射天线140的结构强度,并减少生产成本。
接地部142在垂直于辐射部141的方向上的尺寸为20mm~50mm,即辐射部141与下侧周向侧板的距离为20mm~50mm,例如,20mm、30mm、40mm、或50mm,以在减少辐射天线140的占用空间的同时,减轻边缘效应。
辐射部141与接地部142可一体成型,以减少生产成本、并防止因组装 工艺引起的边缘效应。
辐射天线140由铜或铝制成。辐射天线140由铝制成时表面可导电氧化处理,以避免辐射天线140因氧化造成的导电性能降低。
筒体110与辐射天线140可由相同导电材料制成,以防止筒体110与辐射天线140之间发生氧化还原反应(例如原电池反应),保证了筒体110和辐射天线140的导电性能,进而保证了辐射天线140的辐射效果,避免反应后的筒体110和辐射天线140发生尺寸上的变化而影响整机结构强度情况发生。
图6是图4中支撑件150的示意性轴侧图。参见图2至图6,在一些实施例中,加热装置100还可包括支撑件150。支撑件150可设置于辐射部141的远离接地部142的一侧,用于支撑辐射部141,以提高辐射天线140的结构稳定性。
具体地,支撑件150可包括为与辐射部141卡接的卡接部、与下侧周向侧板固定连接的安装部152、以及连接卡接部与安装部152的连接部153。其中,连接部153可设置有加强筋,以提高支撑件150的结构强度。
在一些进一步地实施例中,卡接部可包括至少一个上夹片1511、和设置于上夹片1511的下方的至少一个下夹片1512。辐射部141可部分夹置于上夹片1511和下夹片1512之间,以便于辐射天线140的拆装。
上夹片1511的数量可小于下夹片1512的数量,以减小支撑件150对电磁波的衰减。
支撑件150可由绝缘材料制成,以进一步减小支撑件150对电磁波的衰减。支撑件150可由ABS、PS或PP材料制成,以获得较小的介电损耗正切值。
图7是图4中连接件160的示意性轴侧图。参见图3和图7,在一些实施例中,连接件160可包括传输线161和屏蔽结构。
传输线161可设置为穿过筒体110与电磁波发生模块131和辐射天线140电连接。屏蔽结构可设置于筒体110的外侧,并将部分传输线161包覆在内,以减少传输线161对周围电器件的干扰。
在一些进一步地实施例中,屏蔽结构可包括屏蔽部1621和固定部1622。其中,屏蔽部1621可设置为将部分传输线161包覆在内。固定部1622可设置为自屏蔽部1621的一端沿径向方向向外延伸,并与筒体110固定连接, 以提高传输线161的结构可靠性。
屏蔽部1621和固定部1622可均具有导电特征。固定部1622导电特征可设置为与筒体110的导电特征和屏蔽部1621的导电特征导电连接,以进一步提高屏蔽性能。
屏蔽部1621的导电特征可为金属网。固定部1622可由金属制成,并与屏蔽部1621的导电特征焊接。固定部1622可设置为与筒体110紧固连接,以实现导电连接。
屏蔽部1621的导电特征的外侧可设置有绝缘特征,以提高安全性能,避免触电。
辐射天线140可开设有连接孔1411。传输线161的芯线可与辐射天线140焊接于连接孔1411处,以实现信号传输,并提高连接的可靠性。
在一些实施例中,加热装置100还可包括设置于筒体110的外侧的罩壳170,用于将固定部1622和至少部分屏蔽部1621罩设在内,以进一步提高安全性。
罩壳170可设置有至少一个卡槽171,屏蔽部1621卡固于至少一个卡槽171,以进一步提高传输线161的连接可靠性,并避免屏蔽部1621弯折。在本发明中,至少一个为一个、两个、或两个以上的更多个。
卡槽171可设置为沿平行于筒体110的一个侧板延伸,并使屏蔽部1621至少部分与下侧周向侧板留有间隔,以避免信号干扰。在图示实施例中,卡槽171的数量为两个。
连接件160还可包括设置于屏蔽部1621远离固定部1622的一端并与传输线161电连接的接线端子163,用于与电磁波发生模块131电连接。接线端子163可设置于罩壳170的外侧。
在一些实施例中,筒体110可包括开设有安装开口1121的主体112、以及可拆卸地固定于安装开口1121的安装板113。安装板113与主体112共同围成腔室111。
辐射天线140在主体112上的投影可完全落入安装开口1121内。安装板113可设置为在主体112的外侧与主体112固定连接,以使辐射天线140可先与安装板113装配形成一体组件再一同安装于主体112,提高了装配效率,并便于生产调试。
安装板113与主体112可由相同导电材料制成,以避免发生氧化还原反 应(例如原电池反应),保证导电性能。
在一些实施例中,控制模块133可配置为每预设时间间隔t控制电磁波发生系统在预设备选频率区间内调节其产生的电磁波信号的频率,以使电磁波发生系统满足预设匹配条件,记录每次满足预设匹配条件的电磁波信号的频率并计算预设匹配次数前至本次的满足预设匹配条件的电磁波信号的频率的变化量,在变化量小于等于预设变化阈值S时,控制电磁波发生系统停止工作。
本申请的发明人创造性地认识到,相同时间内实现匹配的频率的变化量相差较小,仅在接近于水的相变区时具有明显的下降且受频率匹配度的影响,在满足频率匹配条件的频率变化量小于等于预设变化阈值S时控制电磁波发生系统停止工作,可使对食物的加热停止在用户期望的状态,特别适用于食物解冻,可防止待处理物180被过分解冻,解冻完成时的温度一般为-4~-2℃,可避免当待处理物180为肉品时,解冻产生血水,易于用户切割。
在本发明中,预设时间间隔t可为25s~40s,例如25s、30s、或40s,以避免误判的情况发生。
备选频率区间可为400MHz~500MHz,以保证待处理物180的温度均匀性和对待处理物180的加热效率。
预设匹配次数可大于等于2,例如3,以避免误判的情况发生。预设匹配次数也可为1,即变化量为相邻两次满足预设匹配条件的电磁波信号的频率的差值。
频率匹配过程中电磁波信号的功率可为正常加热过程中电磁波信号的功率的5%~10%,以减少对待处理物180的不利影响。
在一些实施例中,控制模块133可配置为将预设备选频率区间的最小值至前一次满足预设匹配条件的电磁波信号的频率作为本次频率匹配的备选频率区间,并计算预设匹配次数前与本次的满足预设匹配条件的电磁波信号的频率的差值作为变化量,以快速、准确地确定出满足预设匹配条件的电磁波信号的频率,进而降低频率匹配过程对待处理物180品质的影响,提高的判断是否停止加热的及时性。
在另一些实施例中,控制模块133可配置为先计算每相邻两个满足预设匹配条件的电磁波信号的频率的差值(绝对值),再将该所有差值相加获得变化量,以提高准确性。
在一些实施例中,在首次进行频率匹配时,匹配条件可为:返回电磁波发生系统的反射波信号的功率最小,以便于后续频率匹配,缩短后续频率匹配的时间。
控制模块133可配置为根据首次满足预设匹配条件的电磁波信号的频率按照预设对照表确定对待处理物180的剩余加热时间T,并在继续对待处理物180的加热时间大于等于确定的剩余加热时间T时,控制电磁波发生系统停止工作,以进一步保障加热完成的待处理物180的具有极佳的品质。其中,对照表记录有不同频率和剩余加热时间T的对应关系。
在另一些实施例中,在首次及在首次之后相近的预设匹配次数内进行频率匹配时,匹配条件均可为:返回电磁波发生系统的反射波信号的功率最小。
控制模块133可配置为根据在首次及在首次之后相近的预设匹配次数内的每相邻两个满足预设匹配条件的电磁波信号的频率的差值(绝对值)的总和按照预设对照表确定对待处理物180的剩余加热时间T,并在继续对待处理物180的加热时间大于等于确定的剩余加热时间T时,控制电磁波发生系统停止工作,以更加精准的停止对待处理物180的加热,进一步保障加热完成的待处理物180的具有极佳的品质。其中,对照表记录有不同的差值总和与剩余加热时间T的对应关系。
在一些进一步的实施例中,在确定出剩余加热时间T后,匹配条件可为:返回电磁波发生系统的反射波信号的功率与电磁波发生系统传播向筒体110的入射波信号的功率的比值大于等于预设比率阈值。预设比率阈值可为70%~80%。
当反射波信号的功率与入射波信号的功率的比值大于等于预设比率阈值,结束本次的频率匹配,以减少对待处理物180的不利影响,提高加热效率。
本发明的筒体110可嵌入其他家用电器的内部使用,例如具有制冷系统的冷藏冷冻装置。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种加热装置,包括:
    筒体,用于容置待处理物,并设置有接地的导电特征;以及
    电磁波发生系统,包括用于产生电磁波信号的电磁波发生模块、和设置于所述筒体内的辐射天线;其中所述辐射天线包括:
    辐射部,设置为与所述电磁波发生模块电连接;和
    接地部,设置为自所述辐射部的周向边缘向靠近所述筒体的一个侧板的方向延伸、并与所述导电特征固定连接。
  2. 根据权利要求1所述的加热装置,其中,所述接地部包括:
    垂直段,设置为自所述辐射部的周向边缘向靠近所述侧板的方向延伸;和
    平行段,设置为自所述垂直段的远离所述辐射部的一端平行于所述侧板延伸;其中
    所述平行段设置为与所述侧板接触并紧固连接。
  3. 根据权利要求1所述的加热装置,其中,
    所述接地部在垂直于其延伸方向上的尺寸小于所述辐射部在该方向上的尺寸。
  4. 根据权利要求1所述的加热装置,还包括:
    传输线,设置为连接所述电磁波发生模块与所述辐射部;其中
    所述传输线与所述辐射部的接点与所述接地部的距离为所述辐射部在该方向上的尺寸的1/20~1/5。
  5. 根据权利要求1所述的加热装置,其中,
    所述接地部设置为自所述辐射部在纵向方向上的端部边缘向靠近所述侧板的方向延伸;和/或
    所述辐射部平行于所述侧板。
  6. 根据权利要求1所述的加热装置,其中,
    所述辐射部的周缘由平滑曲线构成。
  7. 根据权利要求1所述的加热装置,还包括:
    支撑件,设置于所述辐射部的远离所述接地部的一侧,用于支撑所述辐射部。
  8. 根据权利要求7所述的加热装置,其中,所述支撑件包括:
    卡接部,设置为与所述辐射部卡接;
    安装部,设置为与所述侧板固定连接;以及
    连接部,设置为连接所述卡接部和所述安装部。
  9. 根据权利要求8所述的加热装置,其中,所述卡接部包括:
    至少一个上夹片;和
    至少一个下夹片,设置于所述上夹片的下方;其中
    所述辐射部部分夹置于所述至少一个上夹片和所述至少一个下夹片之间。
  10. 根据权利要求7所述的加热装置,其中,
    所述辐射天线的厚度为0.1mm~5mm;和/或
    所述接地部在垂直于所述辐射部的方向上的尺寸为20mm~50mm;和/或
    所述辐射部与所述接地部一体成型;和/或
    所述辐射天线由铜制成,或所述辐射天线由铝制成且表面导电氧化处理;和/或
    所述筒体与所述辐射天线由相同导电材料制成;和/或
    所述支撑件由绝缘材料制成。
PCT/CN2022/122246 2021-10-25 2022-09-28 加热装置 WO2023071687A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111240755.5A CN116033611A (zh) 2021-10-25 2021-10-25 加热装置
CN202111240755.5 2021-10-25

Publications (1)

Publication Number Publication Date
WO2023071687A1 true WO2023071687A1 (zh) 2023-05-04

Family

ID=86089920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122246 WO2023071687A1 (zh) 2021-10-25 2022-09-28 加热装置

Country Status (2)

Country Link
CN (1) CN116033611A (zh)
WO (1) WO2023071687A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1241923A1 (fr) * 2001-03-13 2002-09-18 Seb S.A. Four de chauffage par micro-ondes
CN103080656A (zh) * 2010-09-03 2013-05-01 Lg电子株式会社 烹饪设备
CN105706294A (zh) * 2013-12-12 2016-06-22 伊莱克斯家用电器股份公司 天线装置及厨房设备
CN206004937U (zh) * 2016-09-19 2017-03-08 广东美的厨房电器制造有限公司 微波炉的天线组件及微波炉
CN209893780U (zh) * 2019-01-23 2020-01-03 青岛海尔股份有限公司 加热装置及冰箱
CN216565643U (zh) * 2021-10-25 2022-05-17 青岛海尔电冰箱有限公司 加热装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1241923A1 (fr) * 2001-03-13 2002-09-18 Seb S.A. Four de chauffage par micro-ondes
CN103080656A (zh) * 2010-09-03 2013-05-01 Lg电子株式会社 烹饪设备
CN105706294A (zh) * 2013-12-12 2016-06-22 伊莱克斯家用电器股份公司 天线装置及厨房设备
CN206004937U (zh) * 2016-09-19 2017-03-08 广东美的厨房电器制造有限公司 微波炉的天线组件及微波炉
CN209893780U (zh) * 2019-01-23 2020-01-03 青岛海尔股份有限公司 加热装置及冰箱
CN216565643U (zh) * 2021-10-25 2022-05-17 青岛海尔电冰箱有限公司 加热装置

Also Published As

Publication number Publication date
CN116033611A (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
RU2393650C2 (ru) Микроволновая печь
CN216565643U (zh) 加热装置
JP5064924B2 (ja) マイクロ波処理装置
EP3905847B1 (en) Heating device and refrigerator having same
US11045249B2 (en) Electrode for a system for heating biological tissue via RF energy
EP3907452B1 (en) Refrigeration and freezing apparatus
JP5297885B2 (ja) マイクロ波プラズマ処理装置
WO2023071687A1 (zh) 加热装置
CN216414619U (zh) 加热装置
WO2023071686A1 (zh) 加热装置
AU2020205145B2 (en) Heating device
CN105491702B (zh) 用于微波加热设备的天线和微波炉
CN209893780U (zh) 加热装置及冰箱
CN105509109B (zh) 微波炉
EP3902374B1 (en) Heating device
AU2020204763B2 (en) Heating device
CN213029671U (zh) 加热装置
EP3910272B1 (en) Heating apparatus and refrigerator
CN216414620U (zh) 加热装置
CN209893778U (zh) 加热装置及冰箱
CN220858442U (zh) 电磁波加热装置
JP2011124049A (ja) マイクロ波加熱装置
CN116033612A (zh) 加热装置
CN113851822B (zh) 一种大功率频分空间选择性天线
CN220776105U (zh) 电磁波加热装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885572

Country of ref document: EP

Kind code of ref document: A1