WO2023071613A1 - 站间时间同步的方法及相关设备 - Google Patents

站间时间同步的方法及相关设备 Download PDF

Info

Publication number
WO2023071613A1
WO2023071613A1 PCT/CN2022/119840 CN2022119840W WO2023071613A1 WO 2023071613 A1 WO2023071613 A1 WO 2023071613A1 CN 2022119840 W CN2022119840 W CN 2022119840W WO 2023071613 A1 WO2023071613 A1 WO 2023071613A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
clock source
clock
synchronization signal
synchronized
Prior art date
Application number
PCT/CN2022/119840
Other languages
English (en)
French (fr)
Inventor
韩小江
姜炎
陆珺
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023071613A1 publication Critical patent/WO2023071613A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a method and related equipment for time synchronization between stations.
  • each network element In order to realize the time division multiplexing of transmission resources and the coordinated communication of multiple cells in the mobile communication network, each network element is required to maintain transmission synchronization. Therefore, each network element has strict requirements on the accuracy of the clock signal. Wherein, when the mobile terminal is between adjacent cells across stations, cell cooperative communication between adjacent cells is required, and time synchronization between stations is a prerequisite for cell cooperation.
  • the base station generally obtains the absolute time through two methods.
  • a global positioning system global positioning system, GPS
  • the current absolute time is obtained through GPS
  • the clock of the cell is determined through the current absolute time, so that the time synchronization between each cell can be realized.
  • the base station obtains the absolute time through a clock server that supports the precision clock synchronization standard version of the network measurement and control system (the institute of electrical and electronics engineers 1588version2, IEEE 1588V2), so that each base station determines the cell based on the obtained absolute time Clock, so as to achieve time synchronization between cells.
  • the institute of electrical and electronics engineers 1588version2, IEEE 1588V2 the institute of electrical and electronics engineers
  • each base station needs to configure GPS ⁇ 1588 hardware to obtain the absolute time, which will lead to an increase in equipment cost.
  • the GPS hardware has certain requirements on the installation location and is susceptible to interference from the electromagnetic environment, which will lead to low reliability of the absolute time obtained by the base station.
  • the second method it requires all devices in the mobile communication network to support the IEEE 1588V2 protocol, which greatly increases the complexity of the mobile communication network. Therefore, how to implement time synchronization between stations more efficiently and concisely becomes an urgent problem to be solved.
  • the embodiment of the present application provides a method and related equipment for inter-station time synchronization.
  • Each base station determines the clock of the clock source base station by detecting the relevant channel sent by the clock source base station, and then adjusts its own clock based on the clock of the clock source base station to realize The purpose of time synchronization with the clock source base station is to finally realize time synchronization between stations.
  • the first aspect of the embodiment of the present application provides a method for inter-station time synchronization, the method comprising:
  • the base station needs to perform periodic time synchronization to provide a prerequisite for cooperative communication between stations. Therefore, the base station to be synchronized can periodically monitor the synchronization signal sent by the clock source base station. The time synchronization with the clock source base station is completed according to the monitored synchronization signal.
  • multiple clock source base stations may be deployed, and GPS hardware may be installed on the clock source base stations to obtain the absolute time, and then determine the clock based on the obtained absolute time.
  • Other base stations only need to ensure that they are synchronized with the clock of the clock source base station. Therefore, the base station to be synchronized needs to monitor the synchronization signal.
  • the base station to be synchronized After receiving the synchronization signal, it can determine the clock of the clock source base station based on the synchronization signal, and then compare the clock of the clock source base station with its own clock to obtain the time deviation.
  • the base station to be synchronized can adjust its own clock based on the time deviation, so as to achieve the purpose of being synchronized with the clock of the clock source base station.
  • the base station to be synchronized can complete the time synchronization through the synchronization signal.
  • the base station to be synchronized directly obtains the synchronization signal sent by the clock source, so the delay can be reduced and the time synchronization accuracy can be improved.
  • the clock source base station can determine the actual position of its own radio frame based on the absolute time.
  • the clock source base station needs to send a synchronization signal to the outside in a preset time slot of each radio frame.
  • the base station to be synchronized can determine the frame number and the subframe number of the wireless frame corresponding to the synchronization signal according to the information carried by the synchronization signal.
  • the base station to be synchronized can determine the start position of the radio frame corresponding to the clock source base station according to the obtained frame number and subframe number, that is, the clock of the clock source base station is known.
  • Using the frame number and subframe number of the wireless frame to determine the clock of the clock source can control the error within the range of milliseconds, which will greatly improve the accuracy of time synchronization.
  • the base station to be synchronized after the base station to be synchronized obtains the start time of the radio frame corresponding to the clock source base station, it needs to compare the start time of the radio frame corresponding to the base station to be synchronized with the time of the radio frame corresponding to the clock source At the initial moment, the time deviation between the two is obtained. Then the base station to be synchronized needs to adjust the start time of its own radio frame according to the time offset, so that the start time of the radio frame corresponding to the base station to be synchronized is the same as the start time of the radio frame corresponding to the clock source base station. In this way, time synchronization between the base station to be synchronized and the clock source base station is realized.
  • the clock source base station may send a synchronization signal on the downlink channel corresponding to the clock source base station, so that the base station to be synchronized needs to receive the synchronization signal on the downlink channel corresponding to the clock source base station.
  • the transmission of the synchronization signal can avoid interfering with the uplink signal sent by the clock source base station.
  • the clock source base station can send a synchronization signal on the uplink channel corresponding to the base station to be synchronized, so that the base station to be synchronized needs to receive the synchronization signal on the uplink channel corresponding to the base station to be synchronized, so that the transmission of the synchronization signal can avoid interference to the synchronization signal
  • the base station receives downlink signals.
  • the base station to be synchronized performs related business operations most of the time, and only needs to perform time synchronization periodically. Before entering the time synchronization state to monitor the synchronization signal, the base station to be synchronized first needs to adjust the antenna, etc. way to adjust its coverage area. In order to better receive the synchronization signal. When the ability of the base station to be synchronized to receive the synchronization signal is enhanced, the number of clock source base stations in the mobile communication network can be reduced, further reducing the network installation cost.
  • the second aspect of the embodiment of the present application provides another method for inter-station time synchronization.
  • the method includes:
  • the clock source base station deployed in the mobile communication network needs to obtain the absolute time, and determine the clock according to the absolute time, that is, the start time of the radio frame corresponding to itself. Use this as the basis for time synchronization between stations. After determining the starting position of the radio frame, the clock source base station needs to send a synchronization signal in a preset time slot of each radio frame. It is used for other base stations to be synchronized to complete inter-station time synchronization according to the synchronization signal.
  • the synchronization signal may carry a frame number corresponding to the radio frame and a subframe number corresponding to a preset time slot, and the frame number and the subframe number corresponding to the preset time slot may indicate the base station to be synchronized, The start position of the radio frame corresponding to the clock source base station.
  • the clock source base station may send a synchronization signal on the downlink channel corresponding to the clock source base station, so that the base station to be synchronized needs to receive the synchronization signal on the downlink channel corresponding to the clock source base station.
  • the transmission of the synchronization signal can avoid interfering with the uplink signal sent by the clock source base station.
  • the clock source base station can send a synchronization signal on the uplink channel corresponding to the base station to be synchronized, so that the base station to be synchronized needs to receive the synchronization signal on the uplink channel corresponding to the base station to be synchronized, so that the transmission of the synchronization signal can avoid interference to the synchronization signal
  • the base station receives downlink signals.
  • the clock source base station before sending the synchronization signal, the clock source base station first needs to adjust its coverage area by adjusting the antenna or the like. This enables the clock source base station to cover base stations in a wider range. When the ability of the clock source base station to send synchronization signals is enhanced, the number of clock source base stations in the mobile communication network can be reduced, further reducing network installation costs.
  • the third aspect of the embodiment of the present application provides a base station device, where the base station device includes:
  • the monitoring unit is used for monitoring the synchronization signal.
  • the synchronization signal is periodically sent by the clock source base station, and the clock of the clock source base station is determined by the absolute time.
  • the determination unit is configured to determine the clock of the clock source base station according to the synchronization signal when the monitoring unit detects the synchronization signal.
  • the determining unit is further configured to determine the time offset between the base station device and the clock source base station according to the clock of the clock source base station.
  • the processing unit is configured to adjust the clock corresponding to the base station device according to the time deviation, so that the clock corresponding to the base station device is synchronized with the clock of the clock source base station.
  • the clock source base station sends a synchronization signal in a preset time slot of a radio frame.
  • the determining unit is specifically configured to determine the frame number and subframe number corresponding to the synchronization signal according to the synchronization signal, and determine the start time of the wireless frame corresponding to the clock source base station according to the frame number and subframe number corresponding to the synchronization signal.
  • the determining unit is specifically configured to determine a time offset between the start moment of the radio frame corresponding to the base station device and the start moment of the radio frame corresponding to the clock source base station.
  • the processing unit is specifically configured to adjust the start time of the radio frame corresponding to the base station device, so that the start time of the radio frame corresponding to the base station device is the same as the start time of the radio frame corresponding to the clock source base station.
  • the monitoring unit is specifically configured to receive a synchronization signal on a downlink channel corresponding to the clock source base station. Or receive the synchronization signal on the uplink channel corresponding to the base station equipment.
  • the processing unit is further configured to adjust the coverage area corresponding to the base station to be synchronized before the monitoring unit detects the synchronization signal.
  • the fourth aspect of the embodiment of the present application provides a clock source base station, where the clock source base station includes:
  • the determining unit is configured to determine the starting moment of the radio frame according to the absolute moment.
  • the sending unit is used to periodically send the synchronization signal in the preset time slot included in the wireless frame.
  • the synchronization signal is used by the base station device to determine the clock of the clock source base station, and adjust the clock of the base station device according to the clock of the clock source base station, so that the corresponding clock of the base station device is synchronized with the clock of the clock source base station.
  • the synchronization signal includes a frame number corresponding to the radio frame and a subframe number corresponding to the preset time slot.
  • the frame number corresponding to the radio frame and the subframe number corresponding to the preset time slot are used to indicate the starting position of the radio frame corresponding to the clock source base station.
  • the sending unit is further configured to send a synchronization signal on a downlink channel corresponding to the clock source base station. Or send a synchronization signal on the uplink channel corresponding to the base station to be synchronized.
  • the clock source base station further includes a processing unit.
  • the processing unit is specifically configured to adjust the coverage area corresponding to the clock source base station before the sending unit periodically sends the synchronization signal in the preset time slot included in the wireless frame.
  • the fifth aspect of the embodiment of the present application provides a base station device, including: at least one processor and a memory, the memory stores computer-executed instructions that can be run on the processor, and when the computer-executed instructions are executed by the processor
  • the base station device executes the method for inter-station time synchronization as described in the first aspect or any possible implementation manner of the first aspect.
  • the sixth aspect of the embodiment of the present application provides a clock source base station, including: at least one processor and a memory, the memory stores computer-executable instructions that can run on the processor, and when the computer-executable instructions are executed by the processor , the clock source base station executes the inter-station time synchronization method described in the second aspect or any possible implementation manner of the second aspect.
  • the seventh aspect of the embodiment of the present application provides a computer program product, the computer program product includes computer software instructions, and the computer software instructions can be loaded by a processor to implement any one of the first aspect or the second aspect.
  • the eighth aspect of the embodiments of the present application provides a computer-readable storage medium storing one or more computer-executable instructions.
  • the processor executes the above-mentioned first aspect or second aspect.
  • FIG. 1 is a network architecture diagram of a mobile communication provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a wireless frame structure provided by an embodiment of the present application.
  • FIG. 3 is a schematic flow diagram of an inter-station time synchronization method provided in an embodiment of the present application
  • FIG. 4 is a network architecture diagram of another mobile communication network provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a base station device provided in an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a clock source base station provided in an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another base station device provided in an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another clock source base station provided by an embodiment of the present application.
  • the embodiment of the present application provides a method and related equipment for inter-station time synchronization.
  • Each base station determines the clock of the clock source base station by detecting the relevant channel sent by the clock source base station, and then adjusts its own clock based on the clock of the clock source base station to realize The purpose of time synchronization with the clock source base station is to finally realize time synchronization between stations.
  • FIG. 1 is a network architecture diagram of a mobile communication provided by an embodiment of the present application.
  • the terminal device is located at the edge of the coverage area corresponding to the base station A, and the terminal device performs network communication with the base station A at this moment.
  • the terminal device moves away from the coverage area corresponding to the base station A and enters the coverage area of the base station B, that is, the terminal device needs to communicate with the base station B when the cell cross-site is performed.
  • the base station In the Long Term Evolution LTE system, the base station generally has two working forms, including time division multiplexing and frequency division multiplexing. Among them, time division multiplexing is a transmission technology that uses different periods of the same physical connection to transmit different signals.
  • base station A and base station B are cells of the same frequency group, when the terminal device is located at the edge of cell A (overlapping area of the two cells), the terminal device is likely to receive downlink signals sent by base station A and base station B at the same time, causing the terminal device to received signal received serious interference.
  • communication coordination between stations is required.
  • the premise of inter-station cell coordination feature is time synchronization between cells.
  • the premise of the wireless network coordination feature is phase synchronization between stations, that is, time synchronization between stations. Subsequent coordinated scheduling can only be performed if the time between stations is synchronized.
  • the base station usually determines its own clock according to the absolute time.
  • each base station needs to configure GPS ⁇ 1588 hardware to obtain the absolute time, which will lead to an increase in equipment cost.
  • the GPS hardware has certain requirements on the installation location and is susceptible to interference from the electromagnetic environment, which will lead to low reliability of the absolute time obtained by the base station. Therefore, it is difficult for the clocks corresponding to each cell to be synchronized with high precision.
  • the second method it requires all devices in the mobile communication network to support the IEEE1588V2 protocol, which will greatly increase the complexity of the mobile communication network. Therefore, how to implement time synchronization between stations more efficiently and concisely becomes an urgent problem to be solved.
  • the embodiment of the present application provides a method for inter-station time synchronization.
  • First plan the wireless network determine the clock source base station in the wireless network, and ensure that the clock source base station obtains the absolute time, so as to determine the clock.
  • other base stations determine the clock of the clock source base station by detecting the synchronization signal sent by the clock source base station, and then adjust their own clocks based on the clock of the clock source base station to achieve the purpose of time synchronization with the clock source base station, and finally realize inter-station time synchronization.
  • the cost of equipment can be greatly reduced, and the purpose of time synchronization between stations can be realized quickly and efficiently through communication between base stations.
  • the mobile communication network transmits network data according to the wireless frame structure.
  • the total length of the radio frame is 10 ms (millisecond).
  • a radio frame is composed of two half-frames with a length of 5ms, and each half-frame includes five subframes with a length of 1ms. Among the 5 subframes, there are 4 normal subframes and 1 special subframe.
  • a subframe is a unit of data scheduling and transmission. That is, the base station can send a downlink signal in one subframe, and receive an uplink signal sent by a terminal device in another subframe. It can be understood that the clock of the base station can be reflected by the radio frame, and when the inter-station time synchronization is completed, it only needs to ensure that the start times of the radio frames corresponding to the two base stations are the same.
  • FIG. 2 is a schematic structural diagram of a wireless frame structure provided by an embodiment of the present application.
  • the base station corresponds to multiple consecutive radio frames, and each radio frame includes a corresponding radio frame number.
  • the total length of a radio frame is 10 ms, and a radio frame includes 10 subframes, and each subframe has a corresponding subframe number, for example, the subframe numbers are 0 to 9.
  • Each subframe includes two slots.
  • subframe 1 and subframe 6 can be configured as special subframes, and the special subframe includes 3 special time slots. Among them, the special time slot is no longer used for ordinary network data transmission, but can be used for transmission of downlink control channels and downlink shared channels, transmission of synchronization signals, and the like.
  • the base station can determine the starting position of the radio frame based on an absolute moment, and then perform data transmission according to the radio frame structure.
  • the stations only need to ensure that the start positions of their corresponding wireless frames are the same, so as to realize time synchronization between stations and avoid data transmission interference.
  • FIG. 3 is a schematic flow diagram of an inter-station time synchronization method provided in an embodiment of the present application, including:
  • the clock source base station acquires an absolute time, and determines a start time of a radio frame corresponding to the clock source base station according to the absolute time.
  • the clock source base station is a reference station, and the clocks of each base station are synchronized with the clock of the clock source base station. It can be understood that the clock source base station determines the start position of the radio frame based on the absolute time.
  • GPS hardware may be installed on the base station of the clock source, so that the clock source obtains the absolute time provided by the satellite, and then determines the starting position of the radio frame based on a certain preset time.
  • the clock source base station can also obtain an absolute time provided by the clock server through the IEEE 1588V2 protocol, and then determine the start position of the wireless frame based on the absolute time, which is not specifically limited. It can be understood that each base station can directly communicate with the clock source. Therefore, in a preferred solution, a clock source base station can only serve as a reference station for multiple neighboring base stations.
  • the clock source base station sends a synchronization signal in a preset subframe included in a radio frame.
  • the clock source base station When the clock source base station has determined the position of its corresponding wireless frame, it can periodically send a synchronization signal based on the wireless frame for other base stations to monitor the synchronization signal, and according to the synchronization signal to achieve the time with the clock source base station Synchronization purpose.
  • the clock source base station can send the following synchronization signals:
  • the clock source base station can implement time synchronization between stations by sending a primary synchronization signal PSS or a secondary synchronization signal SSS.
  • PSS is a special physical layer signal that can be used for synchronization of wireless frames.
  • the PSS In the frequency division multiplexing FDD mode, the PSS is located in the first subframe and the sixth subframe of the radio frame. In TDD mode, it is located in the second subframe and the seventh subframe of the radio frame.
  • the SSS is similar to the PSS and is also a special physical layer signal.
  • the SSS is located in the first subframe and the sixth subframe of the wireless frame, and the first subframe and the sixth subframe
  • the SSS sequences corresponding to subframes are different. Wherein, both the PSS and the SSS are one of the keys for determining the physical cell ID.
  • the clock source base station can implement inter-station synchronization by sending a cell reference signal CRS.
  • a CRS can be sent in each downlink subframe in the radio frame corresponding to the clock source base station.
  • the clock source base station can also implement inter-station time synchronization by sending a physical broadcast channel PBCH, usually the PBCH is located in subframe 0 included in the radio frame.
  • PBCH physical broadcast channel
  • the clock source base station can also send other self-defined synchronization signals, and it is only required to periodically send the self-defined synchronization signals in preset subframes of each radio frame, and there is no specific limitation.
  • the clock source base station may choose to send the synchronization signal in a downlink channel corresponding to the clock source base station (the downlink channel is originally used for receiving signals). In this way, mutual interference between the synchronization signal and the uplink signal corresponding to the clock source base station can be avoided.
  • the clock source base station can choose to send the synchronization signal in the uplink channel of other base stations to be synchronized, so that the base station to be synchronized can receive the synchronization signal in its own corresponding uplink channel (originally the uplink channel is used to send signals), like this, This can prevent the synchronization signal from interfering with the downlink signal corresponding to the base station to be synchronized.
  • the base station to be synchronized monitors the synchronization signal.
  • the clock source base station periodically sends a synchronization signal, and the base station to be synchronized needs to monitor the synchronization signal at any time, and then adjust its own clock according to the monitored synchronization signal.
  • the base station to be synchronized After the base station to be synchronized detects the synchronization signal, determine the frame number and the subframe number of the wireless frame corresponding to the synchronization signal according to the synchronization signal.
  • the base station to be synchronized After the base station to be synchronized detects the synchronization signal, it can obtain the frame number and the subframe number of the wireless frame corresponding to the synchronization signal according to the synchronization signal. Since the synchronization signal is sent by the base station of the clock source based on its own clock, and the position of the synchronization signal is known, then it can be determined according to the frame number and subframe number of the radio frame corresponding to the synchronization signal that the base station of the clock source corresponds to The starting position of the radio frame.
  • the base station to be synchronized determines the start position of the radio frame corresponding to the clock source base station according to the frame number and the subframe number corresponding to the synchronization signal.
  • the start position of the radio frame corresponding to the clock source base station can be determined according to the frame number and subframe number corresponding to the received synchronization signal.
  • the base station to be synchronized determines the time offset between the base station to be synchronized and the base station with the clock source according to the start position of the radio frame corresponding to the base station with the clock source.
  • the base station to be synchronized After the base station to be synchronized determines the start position of the radio frame corresponding to the clock source base station, it can compare with the start position of the radio frame corresponding to itself to determine the time offset between the base station to be synchronized and the clock source base station. Then, its own clock can be adjusted based on the time offset, so that the time of the base station to be synchronized and the clock source base station are synchronized.
  • the base station to be synchronized adjusts the start time of the radio frame corresponding to the base station to be synchronized according to the clock deviation.
  • the base station to be synchronized adjusts the starting position of its own radio frame according to the clock deviation. It can be understood that when the start times of the radio frames of the base station to be synchronized and the base station of the clock source are the same, the time of the base station to be synchronized and the base station of the clock source will also be synchronized. In this way, subsequent collaborative communication can be performed.
  • the base station to be synchronized directly communicates with the clock source base station, monitors the synchronization signal sent by the clock source base station, and then determines the time deviation between the clock source base station and itself based on the synchronization signal, and based on this time deviation, performs its own
  • the clock of the base station is adjusted, and finally the time synchronization between the base station to be synchronized and the clock source base station is achieved.
  • the mobile communication device can realize time synchronization between stations without installing a large number of hardware devices.
  • a millisecond-level high-precision time deviation can be obtained, so that the purpose of real-time high-quality and high-precision time synchronization between stations can be realized.
  • FIG. 4 is a network architecture diagram of another mobile communication network provided by an embodiment of the present application.
  • the base station in the middle is the clock source base station, and other base stations in the fan-shaped coverage area of the base station are base stations to be synchronized.
  • each base station to be synchronized directly communicates with the clock source base station, and realizes time synchronization with the clock source base station by monitoring various synchronization signals.
  • both the clock source base station and the common base station perform service communication.
  • Ordinary base stations only need to monitor synchronization signals periodically to synchronize time between stations.
  • the clock source base station can increase the coverage of its synchronization signal by adjusting the antenna. Or increase the transmission power of the synchronization signal to increase the coverage of the synchronization signal. This enables more base stations to be synchronized to receive the synchronization signal. In this way, when the coverage of the clock source base station is wider, the number of clock source base stations in the entire mobile communication network can be reduced. Therefore, the hardware installation cost of the clock source base station is further reduced.
  • the receiving range of the base station to be synchronized can also be expanded by adjusting the antenna, and the ability of the base station to be synchronized to receive the synchronization signal can be improved, which can also reduce the number of clock source base stations in the entire mobile communication network. quantity.
  • Fig. 5 is a schematic structural diagram of a base station device provided in an embodiment of the present application, as shown in Fig. 5 , including:
  • the monitoring unit 501 is configured to monitor the synchronization signal.
  • the synchronization signal is periodically sent by the clock source base station, and the clock of the clock source base station is determined by the absolute time.
  • the determination unit 502 is configured to determine the clock of the clock source base station according to the synchronization signal when the monitoring unit detects the synchronization signal.
  • the determining unit 502 is further configured to determine a time offset between the base station device and the clock source base station according to the clock of the clock source base station.
  • the processing unit 503 is configured to adjust the clock corresponding to the base station device according to the time deviation, so that the clock corresponding to the base station device is synchronized with the clock of the clock source base station.
  • the clock source base station sends a synchronization signal in a preset time slot of a radio frame.
  • the determining unit 502 is specifically configured to determine the frame number and subframe number corresponding to the synchronization signal according to the synchronization signal, and determine the start time of the wireless frame corresponding to the clock source base station according to the frame number and subframe number corresponding to the synchronization signal.
  • the determining unit 502 is specifically configured to determine a time offset between the start moment of the radio frame corresponding to the base station device and the start moment of the radio frame corresponding to the clock source base station.
  • the processing unit 503 is specifically configured to adjust the start time of the radio frame corresponding to the base station device, so that the start time of the radio frame corresponding to the base station device is the same as the start time of the radio frame corresponding to the clock source base station.
  • the monitoring unit 501 is specifically configured to receive a synchronization signal on a downlink channel corresponding to the clock source base station. Or receive the synchronization signal on the uplink channel corresponding to the base station equipment.
  • the processing unit 503 is further configured to adjust the coverage area corresponding to the base station to be synchronized before the monitoring unit detects the synchronization signal.
  • FIG. 6 is a schematic structural diagram of a clock source base station provided in an embodiment of the present application, as shown in FIG. 6, including:
  • the determining unit 601 is configured to determine the starting moment of the radio frame according to the absolute moment.
  • the sending unit 602 is configured to periodically send a synchronization signal in a preset time slot included in the radio frame.
  • the synchronization signal is used by the base station device to determine the clock of the clock source base station, and adjust the clock of the base station device according to the clock of the clock source base station, so that the corresponding clock of the base station device is synchronized with the clock of the clock source base station.
  • the synchronization signal includes a frame number corresponding to the radio frame and a subframe number corresponding to the preset time slot.
  • the frame number corresponding to the radio frame and the subframe number corresponding to the preset time slot are used to indicate the starting position of the radio frame corresponding to the clock source base station.
  • the sending unit 602 is further configured to send a synchronization signal on a downlink channel corresponding to the clock source base station. Or send a synchronization signal on the uplink channel corresponding to the base station to be synchronized.
  • the clock source base station further includes a processing unit 603 .
  • the processing unit 603 is specifically configured to adjust the corresponding coverage area of the clock source base station before the sending unit periodically sends the synchronization signal in the preset time slot included in the wireless frame.
  • FIG. 7 is a schematic structural diagram of another base station device provided in the embodiment of the present application. As shown in FIG. 7 , the base station device includes: a processor 701, a memory 702, and a communication interface 703.
  • the processor 701, the memory 702, and the communication interface 703 are connected to each other through a bus; the bus may be a peripheral component interconnect standard (PCI for short) bus or an extended industry standard architecture (EISA for short) bus or the like.
  • PCI peripheral component interconnect standard
  • EISA extended industry standard architecture
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 7 , but it does not mean that there is only one bus or one type of bus.
  • the memory 702 may include a volatile memory (volatile memory), such as a random-access memory (random-access memory, RAM); the memory may also include a non-volatile memory (non-volatile memory), such as a flash memory (flash memory) ), a hard disk (hard disk drive, HDD) or a solid-state drive (solid-state drive, SSD); the storage 702 may also include a combination of the above-mentioned types of storage.
  • volatile memory such as a random-access memory (random-access memory, RAM)
  • non-volatile memory such as a flash memory (flash memory)
  • HDD hard disk drive
  • solid-state drive solid-state drive
  • the processor 701 may be a central processing unit (central processing unit, CPU), a network processor (English: network processor, NP) or a combination of CPU and NP.
  • the processor 701 may further include a hardware chip.
  • the aforementioned hardware chip may be an application-specific integrated circuit (application-specific integrated circuit, ASIC), a programmable logic device (programmable logic device, PLD) or a combination thereof.
  • the aforementioned PLD may be a complex programmable logic device (complex programmable logic device, CPLD), a field-programmable gate array (field-programmable gate array, FPGA), a general array logic (generic array logic, GAL) or any combination thereof.
  • the communication interface 703 may be a wired communication interface, a wireless communication interface or a combination thereof, wherein the wired communication interface may be, for example, an Ethernet interface.
  • the Ethernet interface can be an optical interface, an electrical interface or a combination thereof.
  • the wireless communication interface may be a WLAN interface, a cellular network communication interface or a combination thereof.
  • the memory 702 may also be used to store program instructions.
  • the processor 701 invokes the program instructions stored in the memory 702 to execute the steps performed by the base station to be synchronized in the method embodiment shown in FIG. 3 , and details are not repeated here.
  • FIG. 8 is a schematic structural diagram of another clock source base station provided by an embodiment of the present application.
  • the clock source base station includes: a processor 801 , a memory 802 , and a communication interface 803 .
  • the processor 801, the memory 802, and the communication interface 803 are connected to each other through a bus; the bus may be a peripheral component interconnect standard (PCI for short) bus or an extended industry standard architecture (EISA for short) bus or the like.
  • PCI peripheral component interconnect standard
  • EISA extended industry standard architecture
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 8 , but it does not mean that there is only one bus or one type of bus.
  • the memory 802 may include a volatile memory (volatile memory), such as a random-access memory (random-access memory, RAM); the memory may also include a non-volatile memory (non-volatile memory), such as a flash memory (flash memory) ), a hard disk (hard disk drive, HDD) or a solid-state drive (solid-state drive, SSD); the storage 802 may also include a combination of the above-mentioned types of storage.
  • volatile memory such as a random-access memory (random-access memory, RAM)
  • non-volatile memory such as a flash memory (flash memory)
  • HDD hard disk drive
  • solid-state drive solid-state drive
  • the processor 801 may be a central processing unit (central processing unit, CPU), a network processor (English: network processor, NP) or a combination of CPU and NP.
  • the processor 801 may further include a hardware chip.
  • the aforementioned hardware chip may be an application-specific integrated circuit (application-specific integrated circuit, ASIC), a programmable logic device (programmable logic device, PLD) or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above-mentioned PLD can be a complex programmable logic device (complex programmable logic device, CPLD), a field-programmable gate array (field-programmable gate array, FPGA), a general array logic (generic array logic, GAL) or any combination thereof.
  • the communication interface 803 may be a wired communication interface, a wireless communication interface or a combination thereof, wherein the wired communication interface may be, for example, an Ethernet interface.
  • the Ethernet interface can be an optical interface, an electrical interface or a combination thereof.
  • the wireless communication interface may be a WLAN interface, a cellular network communication interface or a combination thereof.
  • the memory 802 may also be used to store program instructions, and the processor 801 invokes the program instructions stored in the memory 802 to execute the steps performed by the clock source base station in the method embodiment shown in FIG. 3 , which will not be repeated here.
  • the embodiment of the present application also provides a computer storage medium, and the computer storage medium stores computer program instructions for implementing the base station to be synchronized or the clock source base station in the method for inter-station time synchronization provided in the embodiment of the present application.
  • the embodiment of the present application also provides a computer program product, the computer program product includes computer software instructions, and the computer software instructions can be loaded by a processor to implement the flow in the method for time synchronization between stations shown in FIG. 3 above.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the disclosed system, device and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or part of the contribution to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, read-only memory), random access memory (RAM, random access memory), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种站间时间同步的方法及相关设备,应用于通信技术领域。包括:待同步基站对同步信号进行监测。其中,同步信号由时钟源基站进行周期性发送,时钟源基站的时钟由绝对时刻来确定。当待同步基站检测到同步信号时,根据同步信号确定时钟源基站的时钟。待同步基站根据时钟源基站的时钟,确定待同步基站和时钟源基站之间的时间偏差。待同步基站根据时间偏差,调整待同步基站对应的时钟,以使得待同步基站对应的时钟与时钟源基站的时钟同步。

Description

站间时间同步的方法及相关设备
本申请要求于2021年10月28日提交中国专利局、申请号为CN202111266345.8、申请名称为“站间时间同步的方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种站间时间同步的方法及相关设备。
背景技术
移动通信网络为实现传输资源的时分复用,以及实现多个小区的协调通信等,要求各网元保持传输同步。因此,各网元对时钟信号精度有严格的要求。其中,当移动终端在跨站的相邻小区之间时,需要相邻小区之间的小区协同通信,而站间时间同步是小区协作的前提。
目前,基站一般通过两种方法来获取绝对时间。一种是所有基站均配置有全球定位系统(global positioning System,GPS),通过GPS获取当前绝对时刻,通过当前绝对时刻确定小区时钟,这样就可以实现每个小区之间的时间同步。另一种是基站通过支持网络测量和控制系统的精密时钟同步标准版本(the institute of electrical and electronics engineers 1588version2,IEEE 1588V2)协议的时钟服务器获取绝对时间,这样各基站基于获取的绝对时间来确定小区时钟,从而实现小区间的时间同步。
在上述两种方法中,各个基站均需要配置GPS\1588硬件才能获取到绝对时间,这将导致设备成本增加。同时对于第一种方法而言,GPS硬件对安装位置有一定的要求,且易受电磁环境干扰,将导致基站获取到的绝对时间的可靠性不高。对于第二种方法而言,它要求移动通信网络中的所有设备都支持IEEE 1588V2协议,大大增加了移动通信网络的复杂度。因此,如果更高效简洁的实现站间时间同步成为亟需解决的问题。
发明内容
本申请实施例提供了一种站间时间同步的方法及相关设备,各基站通过检测时钟源基站发送的相关信道,确定时钟源基站的时钟,然后基于时钟源基站的时钟来调整自身时钟,实现与时钟源基站的时间同步的目的,最终实现站间时间同步。
本申请实施例第一方面提供了一种站间时间同步的方法,该方法包括:
基站需要进行周期性的时间同步,为站间的协作通信提供前提。因此,待同步基站可以周期性的监测时钟源基站发送的同步信号。根据监测到的同步信号来完成其与时钟源基站的时间同步。其中,在移动通信网络中,可以部署多个时钟源基站,时钟源基站上可以安装有GPS硬件,来获取到绝对时刻,然后基于获得的绝对时刻来确定时钟。而其他的基站只需保证其与时钟源基站的时钟同步即可。因此,待同步基站需要监测同步信号,在接收到同步信号之后,就可以基于该同步信号来确定时钟源基站的时钟,然后对比时钟源基站的时钟和自身的时钟,以获得时间偏差。待同步基站就可以基于该时间偏差来调整自己的时钟,以达到与时钟源基站的时钟相同步的目的。
在上述方法中,待同步基站通过同步信号就可以完成时间同步。这样,在移动通信网络中,就可以只选择少部分基站作为时钟源基站即可,并且只需为时钟源基站安装GPS等硬件。这样可以大大降低移动网络建设成本。同时,待同步基站是直接获取时钟源发送的同步信号的,因此可以减少延迟,提高时间同步精度。
在一个可选的实施方式中,时钟源基站基于绝对时刻就可以确定其自身无线帧的其实位置。而时钟源基站需要在每个无线帧的预设时隙内对外发送同步信号。这样,待同步基站在接收到同步信号后,就可以根据同步信号携带的信息确定该同步信号对应的无线帧的帧号以及子帧号。然后待同步基站就可以根据获得的帧号和子帧号确定时钟源基站对应的无线帧的起始位置,即知道了时钟源基站的时钟。
利用无线帧的帧号和子帧号确定时钟源的时钟,可以将误差控制在毫秒级范围内,这样将大大提高时间同步的精度。
在一个可选的实施方式中,当待同步基站获取到时钟源基站对应的无线帧的起始时刻后,就需要对比待同步基站对应的无线帧的起始时刻和时钟源对应的无线帧的起始时刻,获得两者之间的时间偏差。然后待同步基站就需要根据该时间偏差调整其自身无线帧的起始时刻,使得待同步基站对应的无线帧的起始时刻和时钟源基站对应的无线帧的起始时刻相同。这样就实现了待同步基站和时钟源基站的时间同步。
在一个可选的实施方式中,时钟源基站可以在时钟源基站对应的下行信道上发送同步信号,这样待同步基站就需要在时钟源基站对应的下行信道上接收该同步信号。这样,同步信号的发送就可以避免干扰时钟源基站发送上行信号。或者时钟源基站可以在待同步基站对应的上行信道上发送同步信号,这样待同步基站就需要在待同步基站对应的上行信道上接收该同步信号,这样,同步信号的发送就可以避免干扰待同步基站接收下行信号。
在一个可选的实施方式中,待同步基站在大部分时刻均执行相关业务操作,只需周期性的进行时间同步,在进入时间同步状态监测同步信号之前,待同步基站首先需要通过调节天线等方式来调整其覆盖面积。以便更好的接收同步信号。当待同步基站接收同步信号的能力增强时,就可以减少移动通信网络中时钟源基站的个数,进一步降低网络安装成本。
本申请实施例第二方面提供了另一种站间时间同步的方法,该方法包括:
首先,移动通信网络中部署的时钟源基站需要获取到绝对时刻,并根据该绝对时刻来确定时钟,即自身对应无线帧的起始时刻。以此作为站间时间同步的基准。时钟源基站在确定好无线帧的起始位置后,就需要在每个无线帧的预设时隙内发送同步信号。以供其他待同步基站根据该同步信号来完成站间时间同步。
在一个可选的实施方式中,该同步信号可以携带无线帧对应的帧号和预设时隙对应的子帧号,而帧号和预设时隙对应的子帧号可以指示待同步基站,该时钟源基站对应的无线帧的起始位置。
在一个可选的实施方式中,时钟源基站可以在时钟源基站对应的下行信道上发送同步信号,这样待同步基站就需要在时钟源基站对应的下行信道上接收该同步信号。这样,同步信号的发送就可以避免干扰时钟源基站发送上行信号。或者时钟源基站可以在待同步基站对应的上行信道上发送同步信号,这样待同步基站就需要在待同步基站对应的上行信道 上接收该同步信号,这样,同步信号的发送就可以避免干扰待同步基站接收下行信号。
在一个可选的实施方式中,在发送同步信号之前,时钟源基站首先需要通过调节天线等方式来调整其覆盖面积。使得时钟源基站能够覆盖更大范围内的基站。当时钟源基站发送同步信号的能力增强时,就可以减少移动通信网络中时钟源基站的个数,进一步降低网络安装成本。
本申请实施例第三方面提供了一种基站设备,该基站设备包括:
监测单元,用于对同步信号进行监测。同步信号由时钟源基站进行周期性发送,时钟源基站的时钟由绝对时刻来确定。
确定单元,用于当监测单元检测到同步信号时,根据同步信号确定时钟源基站的时钟。
确定单元,还用于根据时钟源基站的时钟,确定基站设备和时钟源基站之间的时间偏差。
处理单元,用于根据时间偏差,调整基站设备对应的时钟,以使得基站设备对应的时钟与时钟源基站的时钟同步。
在一个可选的实施方式中,时钟源基站在无线帧的预设时隙内发送同步信号。
确定单元,具体用于根据同步信号,确定同步信号对应的帧号和子帧号,根据同步信号对应的帧号和子帧号确定时钟源基站对应的无线帧的起始时刻。
在一个可选的实施方式中,确定单元,具体用于确定基站设备对应的无线帧的起始时刻和时钟源基站对应的无线帧的起始时刻之间的时间偏差。
处理单元,具体用于调整基站设备对应的无线帧的起始时刻,使得基站设备对应的无线帧的起始时刻和时钟源基站对应的无线帧的起始时刻相同。
在一个可选的实施方式中,监测单元,具体用于在时钟源基站对应的下行信道上接收同步信号。或在基站设备对应的上行信道上接收同步信号。
在一个可选的实施方式中,处理单元,还用于在监测单元对同步信号进行检测之前,调整待同步基站对应的覆盖面积。
本申请实施例第四方面提供了一种时钟源基站,该时钟源基站包括:
确定单元,用于根据绝对时刻确定无线帧的起始时刻。
发送单元,用于在无线帧包括的预设时隙内周期性的发送同步信号。同步信号用于基站设备确定时钟源基站的时钟,并根据时钟源基站的时钟调整基站设备的时钟,以使得基站设备对应的时钟与时钟源基站的时钟同步。
在一个可选的实施方式中,同步信号包括无线帧对应的帧号和预设时隙对应的子帧号。无线帧对应的帧号和预设时隙对应的子帧号用于指示时钟源基站对应的无线帧的起始位置。
在一个可选的实施方式中,发送单元,还用于在时钟源基站对应的下行信道上发送同步信号。或在待同步基站对应的上行信道上发送同步信号。
在一个可选的实施方式中,时钟源基站还包括处理单元。处理单元,具体用于在发送单元在无线帧包括的预设时隙内周期性的发送同步信号之前,调整时钟源基站对应的覆盖面积。
本申请实施例第五方面提供了一种基站设备,包括:至少一个处理器和存储器,存储器存储有可在处理器上运行的计算机执行指令,当所述计算机执行指令被所述处理器执行时,所述基站设备执行如上述第一方面或第一方面任意一种可能的实现方式所述的站间时间同步的方法。
本申请实施例第六方面提供了一种时钟源基站,包括:至少一个处理器和存储器,存储器存储有可在处理器上运行的计算机执行指令,当所述计算机执行指令被所述处理器执行时,所述时钟源基站执行如上述第二方面或第二方面任意一种可能的实现方式所述的站间时间同步的方法。
本申请实施例第七方面提供了一种计算机程序产品,该计算机程序产品包括计算机软件指令,该计算机软件指令可通过处理器进行加载来实现上述第一方面或第二方面中任意一项所述的站间时间同步的方法。
本申请实施例第八方面提供了一种存储一个或多个计算机执行指令的计算机可读存储介质,当所述计算机执行指令被处理器执行时,所述处理器执行上述第一方面或第二方面中任意一项所述的站间时间同步的方法。
附图说明
图1为本申请实施例提供的一种移动通信的网络架构图;
图2为本申请实施例提供的一种无线帧结构的结构示意图;
图3为本申请实施例提供的一种站间时间同步方法的流程示意图;
图4为本申请实施例提供的另一种移动通信网络的网络架构图;
图5为本申请实施例提供的一种基站设备的结构示意图;
图6为本申请实施例提供的一种时钟源基站的结构示意图;
图7为本申请实施例提供的另一种基站设备的结构示意图;
图8为本申请实施例提供的另一种时钟源基站的结构示意图。
具体实施方式
本申请实施例提供了一种站间时间同步的方法及相关设备,各基站通过检测时钟源基站发送的相关信道,确定时钟源基站的时钟,然后基于时钟源基站的时钟来调整自身时钟,实现与时钟源基站的时间同步的目的,最终实现站间时间同步。
本发明实施例中所使用的技术术语仅用于说明特定实施例而并不旨在限定本发明。在本文中,单数形式“一”、“该”及“所述”用于同时包括复数形式,除非上下文中明确另行说明。进一步地,在说明书中所使用的用于“包括”和/或“包含”是指存在所述特征、整体、步骤、操作、元件和/或构件,但是并不排除存在或增加一个或多个其它特征、整体、步骤、操作、元件和/或构件。
图1为本申请实施例提供的一种移动通信的网络架构图。如图1所示,终端设备位于基站A对应的覆盖区域的边缘,此时终端设备与基站A进行网络通信。当终端设备远离基站A对应的覆盖区域进入基站B的覆盖区域后,即终端设备进行小区跨站时,就需要与基站B进行通信。在长期演进LTE系统中,基站通常有两种工作形式,包括时分复用和频分复用。其中,时分复用是一种采用同一物理连接的不同时段来传输不同信号的传输技术。
由于基站A和基站B为同频组小区,当终端设备位于小区A的边缘(两小区重叠区域)时,终端设备设备很有可能同时接收到基站A和基站B发送的下行信号,导致终端设备的接收信号收到严重的干扰。为了排除干扰,就需要进行站间的通信协调。而站间小区协调特性的前提就是小区之间时间同步。
同时,随着无线网络的不断发展,为了充分利用带宽资源,使无线网络容纳更多的网络设备,通常各基站之间需要进行统一调度,实现协调通信。而无线网络协同特性的前提是,站间相位同步,即站间时间同步。只有站间时间同步,才能进行后续的协同调度。
现有的,基站通常是根据绝对时间来确定自身时钟的。基站获取绝对时间的方法通常有两种,一种是所有基站均配置有GPS,通过GPS获取当前绝对时刻,通过当前绝对时刻确定小区时钟。这样,每个基站都可以与卫星时间同步,从而每个基站对应的小区之间的时间也同步。另一种是基站通过支持网络测量和控制系统的精密时钟同步标准版本IEEE1588V2协议的时钟服务器获取绝对时间,然后基于获取的绝对时间来确定小区时钟,这样各基站与时钟服务器确定的时间同步,从而各小区间的时间也同步。
在上述两种方法中,各个基站均需要配置GPS\1588硬件才能获取到绝对时间,这将导致设备成本增加。对于第一种方法而言,GPS硬件对安装位置有一定的要求,且易受电磁环境干扰,将导致基站获取到的绝对时间的可靠性不高。从而各小区对应的时钟也难以做到高精度的同步。而对于第二种方法而言,它要求移动通信网络中的所有设备都支持IEEE1588V2协议,这将大大增加了移动通信网络的复杂度。因此,如果更高效简洁的实现站间时间同步成为亟需解决的问题。
基于上述问题,本申请实施例提供了一种站间时间同步的方法,先规划无线网络,确定无线网络中的时钟源基站,保证时钟源基站获得绝对时间,从而确定好时钟。然后其他基站通过检测时钟源基站发送的同步信号,确定时钟源基站的时钟,然后基于时钟源基站的时钟来调整自身时钟,实现与时钟源基站的时间同步的目的,最终实现站间时间同步。这样就可以大大降低设备成本,并且通过基站与基站之间的通信,快速高效的实现站间时间同步的目的。
在介绍本申请实施例提供的站间时间同步的方法之前,先对基站的数据传输进行详细的介绍:
移动通信网络根据无线帧结构来传输网络数据的。其中,无线帧的总长度为10ms(毫秒)。示例性的,在时分双工TDD模式下,无线帧是由两个长度为5ms的半帧组成,而每个半帧包括5个长度为1ms的子帧。这5个子帧中有4个普通子帧与1个特殊子帧。其中,子帧是数据调度和传输的单位。即基站可以在一个子帧中发送下行信号,在另一个子帧中接收终端设备发送的上行信号。可以理解的,基站的时钟可以通过无线帧来反应,在完成站间时间同步时,只需要保证两个基站对应的无线帧的起始时间相同即可。
图2为本申请实施例提供的一种无线帧结构的结构示意图。其中,基站对应连续的多个无线帧,每个无线帧都包括对应无线帧号。而一个无线帧的总长度为10ms,一个无线帧包括10个子帧,每个子帧都有对应的子帧号,示例性的,子帧号为0到9。每个子帧包括两个时隙。在TDD帧结构中,子帧1和子帧6可以配置为特殊子帧,特殊子帧则包含了3 个特殊时隙。其中,特殊时隙不再进行普通的网络数据传输,可以用于下行控制信道和下行共享信道的传输、同步信号的传输等。基站可以基于某个绝对时刻来确定无线帧的起始位置,然后根据无线帧结构来进行数据传输。而站间只需要保证各自对应的无线帧的起始位置相同,就可以实现站间的时间同步,避免数据传输干扰。
基于上述无线帧结构,下面对本申请实施例提供的一种站间时间同步方法进行详细的介绍。图3为本申请实施例提供的一种站间时间同步方法的流程示意图,包括:
301、时钟源基站获取绝对时刻,根据绝对时刻确定时钟源基站对应的无线帧的起始时刻。
首先,对移动通信网络进行网络规划,确定移动通信网络中的多个时钟源基站。其中,时钟源基站为基准站,各基站的时钟均与时钟源基站的时钟同步即可。可以理解的,时钟源基站是基于绝对时刻来确定无线帧起始位置的。示例性的,可以在时钟源基站上安装GPS硬件,使得时钟源获取卫星提供的绝对时刻,然后基于某个预设的时刻确定无线帧的起始位置。示例性的,时钟源基站还可以通过IEEE 1588V2协议来获取时钟服务器提供的某个绝对时刻,再基于该绝对时刻来确定无线帧的起始位置,具体不做限定。可以理解的,各基站可以和时钟源直接进行通信。因此,在一个优选的方案中,一个时钟源基站仅可以作为其相邻的多个基站的基准站。
302、时钟源基站在无线帧包括的预设子帧中发送同步信号。
当时钟源基站确定好其对应的无线帧的位置时,就可以基于该无线帧来周期性的发送同步信号,以供其他基站来监测同步信号,并根据同步信号来达到与时钟源基站的时间同步的目的。其中,时钟源基站可以发送以下几种同步信号:
示例一:时钟源基站可以通过发送主同步信号PSS或辅助同步信号SSS来实现站间时间同步。PSS是一种特殊的物理层信号,可用于无线帧的同步。在频分复用FDD模式下,PSS位于无线帧的第一个子帧和第六个子帧中。在TDD模式下,位于无线帧的第二个子帧和第七个子帧中。而SSS与PSS类似,也是一种特殊的物理层信号,在频分复用FDD模式下,SSS位于无线帧的第一个子帧和第六个子帧中,并且第一个子帧和第六个子帧对应的SSS序列不同。其中,PSS和SSS均是决定物理小区ID的关键之一。
示例二:时钟源基站可以通过发送小区参考信号CRS来实现站间同步,通常,时钟源基站对应的无线帧中的每个下行子帧中均可以发送CRS。
示例三:时钟源基站还可以通过发送物理广播信道PBCH来实现站间时间同步,通常PBCH位于无线帧包括的子帧0中。
可以理解的,时钟源基站还可以发送其他自定义的同步信号,规定在每个无线帧的预设子帧内周期性发送该自定义同步信号即可,具体不做限定。
为了避免同步信号干扰其他数据信号,时钟源基站可以选择在时钟源基站对应的下行信道中发送该同步信号(原本下行信道用于接收信号)。这样就可以避免同步信号与时钟源基站对应的上行信号相互干扰。或者,时钟源基站可以选择在其他待同步基站的上行信道中发送该同步信号,这样待同步基站就可以在其自身对应的上行信道中接收同步信号(原本上行信道用于发送信号),这样,就可以避免同步信号干扰待同步基站对应的下行信号。
303、待同步基站监测同步信号。
时钟源基站周期性的发送同步信号,待同步基站则需要随时监测同步信号,然后根据监测到的同步信号来对自身的时钟进行调整。
304、待同步基站监测到同步信号后,根据同步信号确定同步信号对应的无线帧的帧号和子帧号。
待同步基站在监测到同步信号后,就可以根据同步信号来获取到该同步信号对应的无线帧的帧号和子帧号。由于该同步信号是时钟源基站基于自己的时钟发送的,而同步信号的位置又是已知的,那么就可以根据该同步信号对应的无线帧的帧号和子帧号来确定出时钟源基站对应的无线帧的起始位置。
305、待同步基站根据同步信号对应的帧号和子帧号,确定时钟源基站对应的无线帧的起始位置。
可以理解的,每一个子帧长度为1ms,每一个无线帧的长度为10ms。因此,就可以根据接收到的同步信号对应的帧号和子帧号,确定出时钟源基站对应的无线帧的起始位置。
306、待同步基站根据时钟源基站对应的无线帧的起始位置,确定待同步基站与时钟源基站之间的时间偏差。
待同步基站确定出时钟源基站对应的无线帧的起始位置后,就可以与自身对应的无线帧的起始位置进行比较,确定出待同步基站和时钟源基站之间的时间偏差。然后就可以基于该时间偏差来对其自身的时钟进行调整,使得待同步基站和时钟源基站的时间同步。
307、待同步基站根据时钟偏差,调整待同步基站对应的无线帧的起始时间。
最后,待同步基站根据该时钟偏差,来调整其自身的无线帧的起始位置。可以理解的,待同步基站和时钟源基站的无线帧的起始时间相同时,待同步基站和时钟源基站的时间也将会同步。这样,就可以进行后续的协同通信。
本申请实施例中,待同步基站与时钟源基站直接进行通信,监测时钟源基站发送的同步信号,然后基于该同步信号来确定时钟源基站与其自身的时间偏差,并基于该时间偏差来对自身的时钟进行调整,最终达到待同步基站与时钟源基站的时间同步的目的。通过该方法,移动通信设备无需安装大量的硬件设备就可以实现站间时间同步。同时通过同步信号来实现时间同步时,可以得到毫秒级的高精度时间偏差,这样可以实现站间实时的高质量高精度时间同步的目的。
图4为本申请实施例提供的另一种移动通信网络的网络架构图。如图4所示,中间的基站为时钟源基站,该基站扇形覆盖区域中的其他基站则为待同步基站。在进行时间同步操作时,每个待同步基站直接与时钟源基站进行通信,通过监测各种同步信号来实现与时钟源基站时间同步的目的。
可以理解的,在一般状态下,时钟源基站和普通基站均执行业务通信。普通基站只需要周期性的监测同步信号,进行站间时间同步。在进行站间时间同步时,时钟源基站可以通过调整天线的方式来增大其同步信号的覆盖范围。或者增大同步信号的发射功率,来增大同步信号的覆盖范围。使得更多的待同步基站可以接收到该同步信号。这样,当时钟源基站的覆盖范围越广时,就可以减少整个移动通信网络中时钟源基站的数量。从而经一步 减少时钟源基站的硬件安装成本。同理,在待同步基站监测同步信号时,也可以通过调整天线的方式来扩大待同步基站的接收范围,提高待同步基站接收同步信号的能力,这样也可以减少整个移动通信网络中时钟源基站的数量。
图5为本申请实施例提供的一种基站设备的结构示意图,如图5所示,包括:
监测单元501,用于对同步信号进行监测。同步信号由时钟源基站进行周期性发送,时钟源基站的时钟由绝对时刻来确定。
确定单元502,用于当监测单元检测到同步信号时,根据同步信号确定时钟源基站的时钟。
确定单元502,还用于根据时钟源基站的时钟,确定基站设备和时钟源基站之间的时间偏差。
处理单元503,用于根据时间偏差,调整基站设备对应的时钟,以使得基站设备对应的时钟与时钟源基站的时钟同步。
在一个可选的实施方式中,时钟源基站在无线帧的预设时隙内发送同步信号。
确定单元502,具体用于根据同步信号,确定同步信号对应的帧号和子帧号,根据同步信号对应的帧号和子帧号确定时钟源基站对应的无线帧的起始时刻。
在一个可选的实施方式中,确定单元502,具体用于确定基站设备对应的无线帧的起始时刻和时钟源基站对应的无线帧的起始时刻之间的时间偏差。
处理单元503,具体用于调整基站设备对应的无线帧的起始时刻,使得基站设备对应的无线帧的起始时刻和时钟源基站对应的无线帧的起始时刻相同。
在一个可选的实施方式中,监测单元501,具体用于在时钟源基站对应的下行信道上接收同步信号。或在基站设备对应的上行信道上接收同步信号。
在一个可选的实施方式中,处理单元503,还用于在监测单元对同步信号进行检测之前,调整待同步基站对应的覆盖面积。
图6为本申请实施例提供的一种时钟源基站的结构示意图,如图6所示,包括:
确定单元601,用于根据绝对时刻确定无线帧的起始时刻。
发送单元602,用于在无线帧包括的预设时隙内周期性的发送同步信号。同步信号用于基站设备确定时钟源基站的时钟,并根据时钟源基站的时钟调整基站设备的时钟,以使得基站设备对应的时钟与时钟源基站的时钟同步。
在一个可选的实施方式中,同步信号包括无线帧对应的帧号和预设时隙对应的子帧号。无线帧对应的帧号和预设时隙对应的子帧号用于指示时钟源基站对应的无线帧的起始位置。
在一个可选的实施方式中,发送单元602,还用于在时钟源基站对应的下行信道上发送同步信号。或在待同步基站对应的上行信道上发送同步信号。
在一个可选的实施方式中,时钟源基站还包括处理单元603。处理单元603,具体用于在发送单元在无线帧包括的预设时隙内周期性的发送同步信号之前,调整时钟源基站对应的覆盖面积。
图7为本申请实施例提供的另一种基站设备的结构示意图,如图7所示,该基站设备 包括:处理器701,存储器702,通信接口703。
处理器701、存储器702、通信接口703通过总线相互连接;总线可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,简称EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图7中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
存储器702可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器702还可以包括上述种类的存储器的组合。
处理器701可以是中央处理器(central processing unit,CPU),网络处理器(英文:network processor,NP)或者CPU和NP的组合。处理器701还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
通信接口703可以为有线通信接口,无线通信接口或其组合,其中,有线通信接口例如可以为以太网接口。以太网接口可以是光接口,电接口或其组合。无线通信接口可以为WLAN接口,蜂窝网络通信接口或其组合等。
可选地,存储器702还可以用于存储程序指令,处理器701调用该存储器702中存储的程序指令,可以执行图3所示方法实施例中待同步基站所执行的步骤,具体不再赘述。
图8为本申请实施例提供的另一种时钟源基站的结构示意图,如图8所示,该时钟源基站包括:处理器801,存储器802,通信接口803。
处理器801、存储器802、通信接口803通过总线相互连接;总线可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,简称EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图8中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
存储器802可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器802还可以包括上述种类的存储器的组合。
处理器801可以是中央处理器(central processing unit,CPU),网络处理器(英文:network processor,NP)或者CPU和NP的组合。处理器801还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可 编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
通信接口803可以为有线通信接口,无线通信接口或其组合,其中,有线通信接口例如可以为以太网接口。以太网接口可以是光接口,电接口或其组合。无线通信接口可以为WLAN接口,蜂窝网络通信接口或其组合等。
可选地,存储器802还可以用于存储程序指令,处理器801调用该存储器802中存储的程序指令,可以执行图3所示方法实施例中时钟源基站所执行的步骤,具体不再赘述。
本申请实施例还提供了一种计算机存储介质,该计算机存储介质中存储有实现本申请实施例提供的站间时间同步的方法中待同步基站或者时钟源基站的计算机程序指令。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品包括计算机软件指令,该计算机软件指令可通过处理器进行加载来实现上述图3所示站间时间同步的方法中的流程。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,read-only memory)、随机存取存储器(RAM,random access memory)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (21)

  1. 一种站间时间同步的方法,其特征在于,所述方法包括:
    待同步基站对同步信号进行监测;所述同步信号由时钟源基站进行周期性发送;所述时钟源基站的时钟由绝对时刻来确定;
    当所述待同步基站检测到所述同步信号时,根据所述同步信号确定所述时钟源基站的时钟;
    所述待同步基站根据所述时钟源基站的时钟,确定所述待同步基站和所述时钟源基站之间的时间偏差;
    所述待同步基站根据所述时间偏差,调整所述待同步基站对应的时钟;以使得所述待同步基站对应的时钟与所述时钟源基站的时钟同步。
  2. 根据权利要求1所述的方法,其特征在于,所述时钟源基站在无线帧的预设时隙内发送所述同步信号;
    所述待同步基站根据所述同步信号确定所述时钟源基站的时钟,包括:
    所述待同步基站根据所述同步信号,确定所述同步信号对应的帧号和子帧号;
    根据所述同步信号对应的帧号和子帧号确定所述时钟源基站对应的无线帧的起始时刻。
  3. 根据权利要求2所述的方法,其特征在于,所述待同步基站根据所述时钟源基站的时钟,确定所述待同步基站和所述时钟源基站之间的时间偏差,包括:
    所述待同步基站确定所述待同步基站对应的无线帧的起始时刻和所述时钟源基站对应的无线帧的起始时刻之间的时间偏差;
    所述待同步基站根据所述时间偏差,调整所述待同步基站对应的时钟,包括:
    所述待同步基站调整所述待同步基站对应的无线帧的起始时刻,使得所述待同步基站对应的无线帧的起始时刻和所述时钟源基站对应的无线帧的起始时刻相同。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述待同步基站对同步信号进行监测,包括:
    所述待同步基站在所述时钟源基站对应的下行信道上接收所述同步信号;或
    所述待同步基站在所述待同步基站对应的上行信道上接收所述同步信号。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,在所述待同步基站对同步信号进行检测之前,所述方法还包括:
    所述待同步基站调整所述待同步基站对应的覆盖面积。
  6. 一种站间时间同步的方法,其特征在于,所述方法包括:
    时钟源基站根据绝对时刻确定无线帧的起始时刻;
    所述时钟源基站在所述无线帧包括的预设时隙内周期性的发送同步信号;所述同步信号用于待同步基站确定所述时钟源基站的时钟,并根据所述时钟源基站的时钟调整所述待同步基站的时钟,以使得所述待同步基站对应的时钟与所述时钟源基站的时钟同步。
  7. 根据权利要求6所述的方法,其特征在于,所述同步信号包括所述无线帧对应的帧号和所述预设时隙对应的子帧号;所述无线帧对应的帧号和所述预设时隙对应的子帧 号用于指示所述时钟源基站对应的所述无线帧的起始位置。
  8. 根据权利要求6或7所述的方法,其特征在于,所述方法还包括:
    所述时钟源基站在所述时钟源基站对应的下行信道上发送所述同步信号;或
    所述时钟源基站在所述待同步基站对应的上行信道上发送所述同步信号。
  9. 根据权利要求6至8任一项所述的方法,其特征在于,在所述时钟源基站在所述无线帧包括的预设时隙内周期性的发送同步信号之前,所述方法还包括:
    所述时钟源基站调整所述时钟源基站对应的覆盖面积。
  10. 一种基站设备,其特征在于,所述基站设备包括:
    监测单元,用于对同步信号进行监测;所述同步信号由时钟源基站进行周期性发送;所述时钟源基站的时钟由绝对时刻来确定;
    确定单元,用于当所述监测单元检测到所述同步信号时,根据所述同步信号确定所述时钟源基站的时钟;
    所述确定单元,还用于根据所述时钟源基站的时钟,确定所述基站设备和所述时钟源基站之间的时间偏差;
    处理单元,用于根据所述时间偏差,调整所述基站设备对应的时钟;以使得所述基站设备对应的时钟与所述时钟源基站的时钟同步。
  11. 根据权利要求10所述的基站设备,其特征在于,所述时钟源基站在无线帧的预设时隙内发送所述同步信号;
    所述确定单元,具体用于根据所述同步信号,确定所述同步信号对应的帧号和子帧号,根据所述同步信号对应的帧号和子帧号确定所述时钟源基站对应的无线帧的起始时刻。
  12. 根据权利要求11所述的基站设备,其特征在于,所述确定单元,具体用于确定所述基站设备对应的无线帧的起始时刻和所述时钟源基站对应的无线帧的起始时刻之间的时间偏差;
    所述处理单元,具体用于调整所述基站设备对应的无线帧的起始时刻,使得所述基站设备对应的无线帧的起始时刻和所述时钟源基站对应的无线帧的起始时刻相同。
  13. 根据权利要求10至12任一项所述的基站设备,其特征在于,所述监测单元,具体用于在所述时钟源基站对应的下行信道上接收所述同步信号;或在所述基站设备对应的上行信道上接收所述同步信号。
  14. 根据权利要求10至13任一项所述的基站设备,其特征在于,所述处理单元,还用于在所述监测单元对同步信号进行检测之前,调整所述待同步基站对应的覆盖面积。
  15. 一种时钟源基站,其特征在于,所述时钟源基站包括:
    确定单元,用于根据绝对时刻确定无线帧的起始时刻;
    发送单元,用于在所述无线帧包括的预设时隙内周期性的发送同步信号;所述同步信号用于基站设备确定所述时钟源基站的时钟,并根据所述时钟源基站的时钟调整所述基站设备的时钟,以使得所述基站设备对应的时钟与所述时钟源基站的时钟同步。
  16. 根据权利要求15所述的时钟源基站,其特征在于,所述同步信号包括所述无线帧对应的帧号和所述预设时隙对应的子帧号;所述无线帧对应的帧号和所述预设时隙对 应的子帧号用于指示所述时钟源基站对应的所述无线帧的起始位置。
  17. 根据权利要求15或16所述的时钟源基站,其特征在于,所述发送单元,还用于在所述时钟源基站对应的下行信道上发送所述同步信号;或在所述待同步基站对应的上行信道上发送所述同步信号。
  18. 根据权利要求15至17任一项所述的时钟源基站,其特征在于,所述时钟源基站还包括处理单元;
    所述处理单元,具体用于在所述发送单元在所述无线帧包括的预设时隙内周期性的发送同步信号之前,调整所述时钟源基站对应的覆盖面积。
  19. 一种基站设备,其特征在于,所述基站设备包括至少一个处理器和存储器;
    所述存储器存储有可在处理器上运行的计算机执行指令,当所述计算机执行指令被所述处理器执行时,所述处理器执行如上述权利要求1至5任一项所述的方法。
  20. 一种时钟源设备,其特征在于,所述时钟源设备包括至少一个处理器和存储器;
    所述存储器存储有可在处理器上运行的计算机执行指令,当所述计算机执行指令被所述处理器执行时,所述处理器执行如上述权利要求6至9任一项所述的方法。
  21. 一种存储一个或多个计算机执行指令的计算机可读存储介质,其特征在于,当所述计算机执行指令被处理器执行时,所述处理器执行如上述权利要求1至9任一项所述的方法。
PCT/CN2022/119840 2021-10-28 2022-09-20 站间时间同步的方法及相关设备 WO2023071613A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111266345.8A CN116056200A (zh) 2021-10-28 2021-10-28 站间时间同步的方法及相关设备
CN202111266345.8 2021-10-28

Publications (1)

Publication Number Publication Date
WO2023071613A1 true WO2023071613A1 (zh) 2023-05-04

Family

ID=86111945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119840 WO2023071613A1 (zh) 2021-10-28 2022-09-20 站间时间同步的方法及相关设备

Country Status (2)

Country Link
CN (1) CN116056200A (zh)
WO (1) WO2023071613A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117545063A (zh) * 2024-01-10 2024-02-09 中国电力科学研究院有限公司 复帧号同步方法、系统和电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101801121A (zh) * 2009-02-06 2010-08-11 中兴通讯股份有限公司 一种实现基站间同步的方法及系统
CN102006661A (zh) * 2010-12-06 2011-04-06 华为技术有限公司 实现时间同步的方法及基站
US20160066290A1 (en) * 2014-09-03 2016-03-03 Broadcom Corporation Cell Timing Synchronization Via Network Listening
CN106488550A (zh) * 2016-12-20 2017-03-08 华为技术有限公司 确定终端与基站时钟时间偏差的方法与装置
CN106604383A (zh) * 2015-10-15 2017-04-26 中兴通讯股份有限公司 时间同步方法、主时间同步装置及通信系统
CN107404754A (zh) * 2017-06-13 2017-11-28 深圳市市政设计研究院有限公司 一种轨道交通行业lte基站间时钟同步方法和系统
CN113225803A (zh) * 2021-03-17 2021-08-06 中煤科工集团沈阳研究院有限公司 一种矿用5g基站无线时钟同步方法和装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101801121A (zh) * 2009-02-06 2010-08-11 中兴通讯股份有限公司 一种实现基站间同步的方法及系统
CN102006661A (zh) * 2010-12-06 2011-04-06 华为技术有限公司 实现时间同步的方法及基站
US20160066290A1 (en) * 2014-09-03 2016-03-03 Broadcom Corporation Cell Timing Synchronization Via Network Listening
CN106604383A (zh) * 2015-10-15 2017-04-26 中兴通讯股份有限公司 时间同步方法、主时间同步装置及通信系统
CN106488550A (zh) * 2016-12-20 2017-03-08 华为技术有限公司 确定终端与基站时钟时间偏差的方法与装置
CN107404754A (zh) * 2017-06-13 2017-11-28 深圳市市政设计研究院有限公司 一种轨道交通行业lte基站间时钟同步方法和系统
CN113225803A (zh) * 2021-03-17 2021-08-06 中煤科工集团沈阳研究院有限公司 一种矿用5g基站无线时钟同步方法和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117545063A (zh) * 2024-01-10 2024-02-09 中国电力科学研究院有限公司 复帧号同步方法、系统和电子设备

Also Published As

Publication number Publication date
CN116056200A (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
CN110475336B (zh) 一种实现网络同步的方法及装置
CN110324889B (zh) 时钟同步方法、通信装置及通信设备
CN108702642B (zh) 在非服务载波频率上调适d2d操作
CN110036685B (zh) 用于适应随机接入配置来控制与基于srs载波的切换相关联的中断的方法和装置
US9661628B2 (en) Method and apparatus for receiving timing information from a cell or network in a less active mode
CN112544110B (zh) 链路通信中用于同步的方法和装置
US20190124524A1 (en) System and method for event synchronization in wireless networks
US10064147B2 (en) Synchronization method, synchronization appratus, and base station
US20160157116A1 (en) Methods, apparatuses, and computer-readable storage media for inter-frequency small cell detection and reporting
WO2021041511A1 (en) Techniques for adjusting timing in wireless networks
US9854550B2 (en) Synchronization method and base station
EP3232718B1 (en) Device
CN111630894B (zh) 小区组之间的传输的切换
WO2016082779A1 (zh) 一种基于网络侦听的空口同步方法及装置
WO2023071613A1 (zh) 站间时间同步的方法及相关设备
EP4055922A1 (en) User equipment positioning measurements under cell change
EP3777366B1 (en) Flexible selection of timing advance control method for supplementary uplink connections
US8059568B1 (en) Alternative timing source for low-cost-internet-base-station-(LCIB) systems
WO2022210023A1 (ja) ユーザ装置及び通信制御方法
WO2023245607A1 (en) Positioning configuration update
US12022337B2 (en) Switching of transmission between cell groups
WO2017171917A1 (en) System and method for event synchronization in wireless networks
WO2021152353A1 (en) Communicating timing accuracy information for synchronization source of network node and related apparatuses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885500

Country of ref document: EP

Kind code of ref document: A1