WO2023071528A1 - 剪切波传播速度的确定方法及超声设备 - Google Patents

剪切波传播速度的确定方法及超声设备 Download PDF

Info

Publication number
WO2023071528A1
WO2023071528A1 PCT/CN2022/116912 CN2022116912W WO2023071528A1 WO 2023071528 A1 WO2023071528 A1 WO 2023071528A1 CN 2022116912 W CN2022116912 W CN 2022116912W WO 2023071528 A1 WO2023071528 A1 WO 2023071528A1
Authority
WO
WIPO (PCT)
Prior art keywords
shear wave
particle
ultrasonic
velocity
wave signal
Prior art date
Application number
PCT/CN2022/116912
Other languages
English (en)
French (fr)
Inventor
朱超超
王�琦
谢鹏
翁嘉淳
丁浩
Original Assignee
青岛海信医疗设备股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111255031.8A external-priority patent/CN113827278B/zh
Priority claimed from CN202211048860.3A external-priority patent/CN115414065A/zh
Application filed by 青岛海信医疗设备股份有限公司 filed Critical 青岛海信医疗设备股份有限公司
Publication of WO2023071528A1 publication Critical patent/WO2023071528A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings

Definitions

  • the present application relates to the technical field of ultrasonic imaging processing, in particular to a method for determining shear wave propagation velocity and ultrasonic equipment.
  • the Young's modulus of the tissue can be calculated through the relational formula, that is, the elastic value of the tissue. Tissues are judged, therefore, need to calculate the shear wave propagation velocity.
  • An embodiment of the present application provides a method for determining a shear wave propagation velocity, including:
  • Ultrasonic equipment sequentially transmits ultrasonic focused long pulse excitations of different angles to the imaging area, or sequentially transmits ultrasonic focused long pulse excitations of different focal depths to each imaging block of the imaging area, wherein two adjacent ultrasonic focused long pulse excitations
  • the emission time interval is less than the preset value
  • a shear wave propagation velocity of the imaged region is determined based on the shear wave propagation velocity of each shear wave signal component.
  • an ultrasonic device including:
  • At least one processor and a memory communicatively connected to the at least one processor; wherein the memory stores instructions executable by the at least one processor, and the instructions are executed by the at least one processor to The at least one processor is enabled to execute the method for generating the shear wave propagation velocity provided in the first aspect.
  • An embodiment of the present application provides a computer-readable non-volatile storage medium, where a computer program is stored in the storage medium, and the computer program is used to cause a computer to execute the above-mentioned method for determining the shear wave propagation velocity.
  • FIG. 1 is a schematic diagram of the framework of an ultrasonic device provided in an embodiment of the present application
  • Fig. 2 is a schematic diagram of the principle of the ultrasonic equipment provided in the embodiment of the present application to realize the ultrasonic image;
  • FIG. 3 is a schematic flow chart of a method for determining a shear wave propagation velocity provided in an embodiment of the present application
  • Fig. 4a is a schematic diagram of the first incentive method provided by the embodiment of the present application.
  • Fig. 4b is a schematic diagram of the second incentive method provided by the embodiment of the present application.
  • FIG. 5 is a schematic diagram of a directional filter provided in an embodiment of the present application.
  • FIG. 6 is a flowchart of a method for generating a shear wave image provided in an embodiment of the present application
  • FIG. 7 is a schematic diagram of preset masks corresponding to multiple directions provided by the embodiment of the present application.
  • Fig. 8 is a schematic diagram of reference particle vibration velocities corresponding to multiple directions provided by the embodiment of the present application.
  • FIG. 9 is a schematic diagram of a shear wave image including shear wave velocities in various directions provided by the embodiment of the present application.
  • the embodiment of the present application adopts the method of dynamic excitation inside the tissue to realize ultrasonic imaging, and improves the estimation accuracy of the shear wave propagation velocity.
  • the imaging width and the imaging depth can be taken into consideration at the same time, so that the entire imaging area is filled with shear waves, and then the shear waves are detected to obtain ultrasonic echo signals.
  • the shear wave signal components in different directions are extracted and separated by directional filtering, and then the shear wave propagation velocity of each shear wave signal component is obtained, and finally the The shear wave propagation velocity in each direction is fused to obtain the overall shear wave propagation velocity of the imaging area.
  • FIG. 1 it is a structural block diagram of an ultrasonic device provided by an embodiment of the present application.
  • the ultrasonic device 100 shown in FIG. 1 is only one example, and that the ultrasonic device 100 may have more or fewer components than shown in FIG. 1, two or more components may be combined, or Different component configurations are possible.
  • the various components shown in the figures may be implemented in hardware, software, or a combination of hardware and software including one or more signal processing and/or application specific integrated circuits.
  • FIG. 1 exemplarily shows a hardware configuration block diagram of an ultrasound device 100 according to an exemplary embodiment.
  • the ultrasonic device 100 may include, for example: a processor 110, a memory 120, a display unit 130, and a probe 140; wherein,
  • Probe 140 used to emit ultrasonic focused long pulse excitation
  • a display unit 130 configured to display ultrasound elastic images
  • the memory 120 is configured to store data required for ultrasound imaging, which may include software programs, application interface data, etc.;
  • the processor 110 is respectively connected to the probe 140, the display unit 130 and the memory 120, and is configured to execute:
  • Ultrasonic equipment sequentially transmits ultrasonic focused long pulse excitations of different angles to the imaging area, or sequentially transmits ultrasonic focused long pulse excitations of different focal depths to each imaging block of the imaging area, wherein two adjacent ultrasonic focused long pulse excitations
  • the emission time interval is less than the preset value
  • a shear wave propagation velocity of the imaged region is determined based on the shear wave propagation velocity of each shear wave signal component.
  • Fig. 2 is a schematic diagram of an application principle according to an embodiment of the present application. Wherein, this part can be realized by some modules or functional components of the ultrasonic equipment shown in FIG. 1 , and the following will only describe the main components, while other components, such as memory, controller, control circuit, etc., will not be described here.
  • the application environment may include a user interface 210 , a display unit 220 for displaying the user interface, and a processor 230 .
  • the display unit 220 may include a display panel 221 and a backlight assembly 222 .
  • the display panel 321 is configured to display ultrasonic images
  • the backlight assembly 222 is located at the back of the display panel 221
  • the backlight assembly 222 may include a plurality of backlight partitions (not shown in the figure), and each backlight partition may emit light to light up the display Panel 221.
  • the processor 230 may be configured to control the brightness of the backlight of each backlight partition in the backlight assembly 222, and control the probe to transmit ultrasonic focused long pulse excitation and detection pulses, and receive ultrasonic echo signals.
  • the processor 230 may process the ultrasonic echo signal to determine the shear wave propagation velocity of the imaging region.
  • FIG. 3 it is a schematic flow chart of the shear wave propagation velocity method in the embodiment of the present application, including the following steps:
  • step 301 is: the ultrasonic device sequentially transmits ultrasonic focused long pulse excitations of different angles to the imaging area, or sequentially sends the pulses to each imaging block of the imaging area Ultrasonic focused long pulse excitations with different focal depths are emitted, wherein the emission time interval between two adjacent ultrasonic focused long pulse excitations is less than a preset value.
  • the imaging blocks can be divided based on the deflection angle of the ultrasonic focused long pulse excitation.
  • the deflection angle is 0, the emitted sound field corresponds to the first imaging block, and when it is deflected to the left by 20°, it corresponds to the second imaging block. , which corresponds to the third imaging block when deflected to the right by 20°.
  • the number of deflection angles can be set according to requirements, and each deflection angle corresponds to an imaging block.
  • this excitation method is also referred to as the first excitation method hereinafter.
  • the depth of focus when the long pulse excitation is emitted at different deflection angles, the depth of focus may be the same or different.
  • the first depth of focus is used when not deflected
  • the second depth of focus is used when deflected to the left by 20°
  • the third depth of focus is used when deflected to the right by 20°. Therefore, the same imaging area is not only excited by long pulses with multiple deflection angles to fill the shear wave as much as possible, but also obtains shear waves at different depths due to different focal depths. Therefore, the first excitation method has no limitation on the depth of focus and does not display the imaging area. It is an ultrasonic imaging method that can take into account both the depth of focus and the imaging width, and the shear wave propagation speed obtained thereby is more accurate and reliable.
  • long-pulse excitations are sequentially transmitted at each deflection angle, for example, according to undeflected, left deflected 20°, and right deflected 20° sequentially, or undeflected, right deflected 20° °, 20° to the left, or 20° to the right, 20° to the left, and no deflection.
  • the emission sequence can be set according to requirements, as long as each emission angle set by coverage is applicable to the embodiment of the present application.
  • the emission sound fields at various angles can be superimposed, so that the generated shear wave signals can fill the entire imaging area, and at the same time, the shear wave signals generated by the emission at various angles can be coherently superimposed, so that in a relatively There is a strong shear wave signal in both wide and deep regions, and the stronger the shear wave signal, the more accurate the resulting shear wave velocity.
  • the present application further provides a second incentive manner.
  • the same imaging block can transmit long-pulse excitation multiple times, and the focal depth of each transmission can be different.
  • the imaging area can be divided into left and right imaging blocks.
  • the imaging block on the left sends long pulse excitation according to focus 1 and focus 2, and the imaging block on the right sends long pulse excitation according to focus 1 and focus 2.
  • the superimposed generation can be shown in FIG. 4b.
  • the shear wave can fill the entire imaging area, and then use the detection pulse to obtain the ultrasonic echo signal of the imaging area.
  • the second excitation method in the embodiment of the present application can be applied to any desired imaging depth and imaging width.
  • long-pulse excitation can be first sent to the left imaging block according to focus 1, and then, as shown in Figure 4b, long-pulse excitation can be sent on the same side to act on focus 2. Then, on the other side of the probe, that is, the right imaging block, a long pulse excitation is emitted to act on focus 1, and finally on the same side (i.e., the right imaging block) a long pulse excitation is emitted to act on focus 2, and the emission of these 4 ultrasonic waves is The sound fields are superimposed to obtain the effect diagram after superimposing the sound fields in 4b.
  • the four focal points can be located at different depths and at different horizontal positions, and the order of firing can also be unlimited.
  • the sound fields of each transmission can be superimposed, so that the generated shear wave signal fills the entire imaging area, and at the same time, the shear wave signals generated by each ultrasonic transmission are coherent. , so there is a strong shear wave signal in the wider and deeper regions.
  • the long pulse excitation acts on the same position, the shear wave signal is stronger, and the obtained shear wave velocity is accurate The degree is also higher.
  • step 302 a detection pulse is emitted to obtain an ultrasonic echo signal of the imaging region
  • detection pulses may be transmitted multiple times to obtain ultrasonic echo signals corresponding to detection pulses sent each time.
  • step 303 a motion detection method is used for the ultrasonic echo signal to determine a shear wave signal.
  • the motion detection method includes, for example, an autocorrelation method, including one-dimensional and two-dimensional autocorrelation methods, which are applicable to the embodiments of the present application.
  • the time dimension that is, the frame data dimension information
  • the time dimension and point number dimension information are used for autocorrelation processing to obtain Shear wave signal.
  • the ultrasonic echo signal includes multiple frames of data, and continuous multiple frames of data may be used to determine the shear wave signal. It can be implemented as: performing autocorrelation analysis on the ultrasonic echo signal data of any continuous designated frame number in the ultrasonic echo signal to obtain the The shear wave signal data corresponding to the ultrasonic echo data.
  • the tissue is displaced on the order of microns, thereby generating a shear wave signal.
  • a detection pulse is then emitted to track the propagation of the shear wave.
  • the Kasai algorithm is used to calculate the shear wave signal.
  • the calculation formula (1) is as follows:
  • the IQ signal represents the collected ultrasonic echo data
  • the IQ signal is three-dimensional data
  • i, j represent two dimensions therein.
  • i and j represent the two-dimensional spatial position of the IQ signal
  • Len represents the number of frames used for autocorrelation
  • Frame represents the total number of frames of the ultrasonic echo signal collected
  • * symbol represents the conjugation of the IQ signal
  • m represents the frame number index in the ultrasound echo data.
  • the shear wave signal represented by ShearWaveSignal.
  • shear wave signals are also three-dimensional.
  • One dimension is points
  • one dimension is scanlines
  • the other dimension is frames.
  • the same frame includes multiple points and multiple scanning lines, and the same point in different frames constitutes a one-dimensional signal, which represents the shear wave trajectory changing with time.
  • step 304 may be performed.
  • step 304 shear wave signal components of the shear wave signal in various directions are separated from the shear wave signal based on a directional filtering method.
  • shear wave signal components in two directions can be obtained.
  • a first direction filter corresponding to the emission angle of the ultrasonic focused long pulse excitation is obtained, and the filter is flipped up and down to obtain a second direction filter;
  • the first directional filter uses the first directional filter to multiply the two-dimensional data of each focal depth in the shear wave signal to obtain a first shear wave signal component corresponding to the ultrasonic focused long pulse excitation; and using the first The two-dimensional filter multiplies the two-dimensional data of each focal depth in the shear wave signal to obtain a second shear wave signal component corresponding to the ultrasonic focused long pulse excitation.
  • each sending angle corresponds to a first direction filter.
  • no deflection corresponds to a first-direction filter
  • 20° to the left corresponds to a first-direction filter
  • 20° to the right corresponds to another first-direction filter.
  • the shear wave signal component propagating from left to right is obtained by using the corresponding first direction filter
  • the second direction filter is obtained after the upward flip of the first direction filter, and the second direction filter is used
  • a shear wave signal component propagating from right to left can be obtained. Do the same processing for other sending angles to get the shear wave signal components propagating in different directions.
  • the first direction filter for other deflection angles may be obtained based on the first direction filter for a specified deflection angle. If the emission angle is a specified deflection angle, then obtain the first direction filter of the specified deflection angle as the first direction filter corresponding to the emission angle of the ultrasonic focused long pulse excitation;
  • the sending angle is deflected relative to the specified deflection angle, then use the first direction filter of the specified deflection angle as a reference filter; and rotate the reference filter from the specified deflection angle to the
  • the emission angle of the ultrasound-focused long-pulse excitation is used to obtain a first-direction filter corresponding to the emission angle of the ultrasound-focused long-pulse excitation.
  • the left figure shown in Figure 5 is a schematic diagram of the reference filter, where the black part is 0 and the white part is 1.
  • the two-dimensional data and the first direction shown in the left figure in Fig. 5 The shear wave signal components propagating from left to right can be obtained by multiplying the filters; at the same time, the filter in the first direction shown in the left figure in Figure 5 is flipped up and down, and the two-dimensional data at each depth, Multiplying the 2D data with a directional filter yields the shear wave signal component propagating from right to left.
  • the left figure in Figure 5 shows the directional filter for undeflected emission.
  • the directional filter shown in the left figure of Figure 5 needs to be rotated, and the angle of rotation is equal to the angle of the deflected emission interface.
  • the first direction filter is obtained as shown in the right diagram of Fig. 5, so that the shear wave signal components propagating in various directions can be extracted and separated.
  • step 305 shear wave propagation velocities of shear wave signal components in various directions are determined.
  • the signals of two scan lines corresponding to the same point of the shear wave signal component can be obtained; then, the cross-correlation method is used to analyze the two scanning lines.
  • the time delay between the signals of the two scan lines is divided by the time delay based on the distance between the two scan lines to obtain the shear wave propagation velocity of the shear wave signal component.
  • the shear wave signal components are data of (100*100*100).
  • the first 100 represents the data volume of points
  • the second 100 represents the number of scan lines
  • the third 100 represents the number of frames.
  • the data of line 1 can be scanned, that is, point a can be obtained from the data of (100*100*100)
  • all data corresponding to scan line 1 can be used as data 1
  • all data corresponding to scan line 2 of point a can be obtained in the same way
  • data 2 calculate the distance between scan lines in these two data. For example, if scanning line 1 and scanning line 9 are selected, the distance is (9-1)*the distance between adjacent points.
  • the detection pulse is emitted, the distance between adjacent points is known, so the distance between two scan lines can be calculated.
  • the shear wave signal component is a three-dimensional array, which is the number of points, the number of lines and the number of frames respectively.
  • Two pairs of one-dimensional signals that is, the two scan lines used when calculating the distance signal
  • the distance between the pair of one-dimensional signals is then divided by the time delay to obtain the shear wave propagation velocity of the shear wave signal component.
  • the shear wave propagation velocity of the imaging region is determined based on the shear wave propagation velocity of each shear wave signal component.
  • the shear wave propagation velocity of each shear wave signal component is fused.
  • the fusion method is:
  • M represents a total of several shear wave signal components propagating in different directions
  • i and j represent the two-dimensional spatial positions of the shear wave signal components
  • ShearWaveSpeed(m) represents the mth shear wave signal
  • Coeff represents the reliability corresponding to the shear wave propagation velocity of the shear wave signal component
  • SWS represents the image composed of the shear wave velocity of the entire imaging area after adaptive fusion.
  • it may be determined based on scan line data for determining the shear wave propagation velocity of the shear wave signal component. like:
  • each shear wave signal component For each shear wave signal component, acquiring two scan lines for determining the shear wave propagation velocity of the shear wave signal component in the shear wave signal component;
  • ultrasonic elastography can neither limit the imaging depth nor the imaging width, and can well adapt to various depth and width imaging requirements, and can cover the entire imaging area to obtain shear waves and accurately obtain shear wave propagation speeds .
  • Another embodiment provides a method for generating a shear wave image, in which a target part of an object is excited to generate a shear wave, and the shear wave is detected on the shear wave propagation path to obtain detection data of the shear wave; Based on the detection data, determine the particle vibration velocity corresponding to each particle of the shear wave at different times; for the particle vibration velocity corresponding to any particle at different times, perform multi-directional filtering on the particle vibration velocity corresponding to the particle at different times processing to obtain the reference particle vibration velocity corresponding to each particle vibration velocity in each direction; for any direction, according to the reference particle vibration velocity of each particle in the direction, determine the shear wave velocity corresponding to each particle in the direction; according to the preset The black-and-white ultrasonic image of the ultrasound, and the shear wave velocity corresponding to each particle in each direction, generate a shear wave image.
  • step 601 acoustic radiation force or low-frequency vibration is used to excite the target part of the object to generate shear waves, and the shear waves are detected on the propagation path of the shear waves to obtain the detection data of the shear waves.
  • acoustic radiation force or low-frequency vibration to excite the target part of the object to generate shear waves, and transmit ultrasonic signals multiple times on the shear wave propagation path to detect the shear waves and obtain echo data; Orthogonal demodulation processing and down-frequency processing to obtain the detection data of the shear wave.
  • IQ data will be obtained after performing quadrature demodulation processing and down-frequency processing on the echo data, and the IQ data is the detection data of the shear wave.
  • step 602 based on the detection data, the particle vibration velocities corresponding to each particle of the shear wave at different times are determined.
  • determining the particle vibration velocity corresponding to each particle of the shear wave at different times can be performed as follows: for any particle, based on the data corresponding to the particle in the detection data, use the two-dimensional autocorrelation algorithm to determine the particle at each The axial displacement within the preset duration corresponding to each moment; based on the axial displacement within the preset duration corresponding to each moment and the preset duration, determine the particle vibration velocities corresponding to the particle at different times.
  • IQ data and each particle on each shear wave detection line in the horizontal direction will be obtained; then for any shear wave Any one of the particles on the wave detection line, within the preset axial range of the particle, is calculated according to the following formula using multiple sample points in the vertical direction and multiple sample points in the time direction set in advance The axial displacement of the particle within the preset time period corresponding to each moment:
  • M is the number of samples in the vertical direction
  • N is the number of samples in the time direction
  • m is the coordinate of each sample point in the vertical direction
  • n is the coordinates of each sample point in the time direction
  • c is the propagation velocity of the sound at the target site
  • is the circular ratio
  • f c is the center frequency of the echo data signal
  • quadrature components are obtained by performing quadrature demodulation processing and down-frequency processing on the echo data signal.
  • the axial displacement of each mass point within the preset time period corresponding to each moment will be obtained, and then based on the axial displacement within the preset time period corresponding to each moment and the predicted Assuming the duration, the particle vibration velocity corresponding to the particle at this moment can be determined according to the following formula:
  • step 603 for the particle vibration velocity corresponding to any particle at different times, the particle vibration velocity corresponding to the particle at different times is filtered in multiple directions to obtain the reference particle vibration corresponding to each particle vibration velocity in each direction speed.
  • the particle vibration velocity corresponding to the particle at different times is filtered in multiple different directions, and the reference particle vibration velocity corresponding to each particle vibration velocity in each direction is obtained, specifically:
  • the preset mask in the embodiment of the present application is a mask after edges are truncated by using a truncation function.
  • Fourier transform is performed on the particle vibration velocity corresponding to each particle at different times, and the time-space domain data is converted into frequency-domain wavenumber domain data to obtain the frequency-domain wavenumber domain data corresponding to each particle vibration velocity. Then according to the user's interested direction, multiply all the frequency-domain wavenumber domain data of each particle with the preset mask corresponding to the user's interested direction, suppress the shear wave propagating in other directions, and then perform Fourier on the product
  • the Lie inverse transformation can obtain the reference particle vibration velocity corresponding to each particle in the direction the user is interested in at different times.
  • the edge can be used to perform
  • the truncated mask is used as the preset mask, and the mask whose edges are not truncated by the truncation function can also be used as the preset mask.
  • FIG. 7 it is a schematic diagram of preset masks corresponding to multiple directions provided in the embodiment of the present application.
  • the frequency domain wavenumber domain data can be respectively compared with the 0° shown in FIG. 7 , 45°, 90°, 135°, 180°, 225°, 270°, and 315° corresponding preset masks are multiplied respectively, and then inverse Fourier transform is performed to obtain 0 as shown in Figure 8 °, 45°, 90°, 135°, 180°, 225°, 270°, 315° correspond to the reference particle vibration velocity.
  • the wavenumber domain data in the frequency domain is multiplied with the preset mask corresponding to 0° as shown in Figure 6, and then inverse Fourier transform is performed to obtain the filtered mask corresponding to 0° as shown in Figure 7
  • the reference particle vibration velocity, other directions are the same as the reference particle vibration velocity obtained in the 0° direction, where multiple directions are set to 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315 °.
  • the interference between shear waves can be excluded, so that in the following step 604 the time delay between adjacent particles of shear waves in each direction can be calculated more accurately.
  • step 604 for any direction, the shear wave velocity corresponding to each particle in the direction is determined according to the reference particle vibration velocity of each particle in the direction.
  • the shear wave velocity corresponding to each particle in the direction is determined, and the following steps can be performed for any particle in the direction:
  • the distance between the mass point and the candidate mass point is determined; the candidate mass point is one or more continuous mass points adjacent to the mass point in the direction.
  • the shear wave velocity corresponding to the particle is determined.
  • the shear wave velocity corresponding to the particle is determined, and the following specific steps can be performed:
  • the shear wave velocity corresponding to the particle is obtained.
  • Calculate the shear wave velocity corresponding to the particle A in the 90° direction if the candidate particle is a particle adjacent to the particle A in the 90° direction, first select a particle adjacent to the particle A in the 90° direction, that is Mass point B, then based on the position information of mass point A and the position information of mass point B, determine the distance d between mass point A and mass point B; then based on the reference mass point vibration velocity of mass point A and mass point B in the 90° direction, determine the distance d based on the mass point
  • the first time tA corresponding to the peak point of the reference particle vibration velocity of A in the 90° direction, and the second time tB corresponding to the peak point of the reference particle vibration velocity of particle B in the 90° direction using the principle of cross-correlation
  • the mass point A in the 90° direction calculates the time delay, that is, determines the time difference tB-tA between the first time and the second time, and finally based on the distance d between mass point A and mass point B, and the first
  • calculate the shear wave velocity corresponding to particle A in the 90° direction if the candidate particle is a plurality of continuous particles adjacent to particle A in the 90° direction, then select Multiple adjacent mass points, such as mass point B, mass point C, and mass point D, and then respectively determine the distances d1, d2, and d3 between mass point A and mass point B, mass point C, and mass point D.
  • the magnitude of the shear wave velocity corresponding to the particle A with direction information can be calculated, so that the shear wave velocity has two characteristic information of magnitude and direction.
  • a shear wave image is generated according to the preset ultrasonic black and white image and the shear wave velocity corresponding to each particle in each direction.
  • the shear wave velocity corresponding to each particle in each direction can be calculated according to the vector information (direction information and size information), and the preset Ultrasonic black and white images are superimposed and displayed, and the shear wave image in the 0° direction, the shear wave image in the 45° direction, the shear wave image in the 90° direction, and the shear wave image in the 135° direction are respectively obtained.
  • the shear wave image in the 180° direction, the shear wave image in the 225° direction, the shear wave image in the 270° direction, the shear wave image in the 315° direction, and finally the shear wave image corresponding to each direction The wave images are fused according to the weights corresponding to each direction, and a shear wave image including shear wave velocities in various directions is obtained as shown in Fig. 9 . Then all the images can be stored in the ultrasound equipment, and the shear wave image can be displayed according to the user's needs.
  • the corresponding shear wave image can be selected for display; for example, the user If it is necessary to view shear wave images in various directions, the shear wave image shown in FIG. 9 can be selected for display.
  • each arrow represents the shear wave velocity corresponding to each particle, the longer the arrow, the greater the shear wave velocity corresponding to the particle; the direction of each arrow represents the shear wave velocity corresponding to each particle The direction of the shear wave velocity.
  • the length and color of the arrow can also be used to represent the shear wave velocity corresponding to each particle.
  • the direction of the arrows used represents the direction of the shear wave velocity corresponding to each particle.
  • a method for generating a shear wave image comprising the following steps:
  • Ultrasonic equipment sequentially transmits ultrasonic focused long pulse excitations of different angles to the imaging area, or sequentially transmits ultrasonic focused long pulse excitations of different focal depths to each imaging block of the imaging area, wherein two adjacent ultrasonic focused long pulse excitations
  • the emission time interval is less than the preset value, and the shear wave is detected on the shear wave propagation path to obtain the detection data of the shear wave.
  • the ultrasonic equipment sequentially transmits ultrasonic focused long pulse excitations of different angles to the imaging area, specifically: according to the deflection angle of 0, the deflection angle of 20° to the left, and the deflection angle of 20° to the right.
  • the ultrasonic focused long pulse excitation is sequentially transmitted to the imaging area.
  • the ultrasonic focused long-pulse excitation is sequentially transmitted to the imaging area.
  • the imaging area is divided into left imaging block and right imaging block;
  • the left side of the ultrasonic probe sequentially transmits the ultrasonic focused long pulse excitation of focus 1 and focus 2 to the left imaging block
  • the right side of the ultrasonic probe sequentially transmits the excitation of focus 1 and focus 2 to the right imaging block Ultrasound focused long pulse excitation.
  • the two-dimensional autocorrelation algorithm is used to determine the axial displacement of the mass point within the preset time length corresponding to each moment; based on the axial displacement within the preset time length corresponding to each moment
  • the displacement and the preset duration determine the particle vibration velocity corresponding to the particle at different times.
  • the Fourier transform is performed on the particle vibration velocity corresponding to the particle at different times, and the frequency domain wave number domain data corresponding to each particle vibration velocity is obtained.
  • any mass point in any direction based on the position information of the mass point and the position information of the candidate mass point, determine the distance between the mass point and the candidate mass point; based on the first time corresponding to the peak point of the reference mass point vibration velocity of the mass point in the direction , and the second time corresponding to the peak point of the vibration velocity of the reference particle in the direction of the candidate particle, and determine the time difference between the first time and the second time.
  • the shear wave velocity corresponding to the particle is obtained.
  • ultrasonic focused long pulse excitations of different angles are sequentially transmitted to the imaging area, or ultrasonic focused long pulse excitations of different focal depths are sequentially transmitted to each imaging block of the imaging area, and excitation is performed on the target part of the object to generate shear.
  • Shear wave detect the shear wave on the shear wave propagation path to obtain the detection data of the shear wave; based on the detection data, determine the particle vibration velocity corresponding to each particle of the shear wave at different times; for any particle The particle vibration velocity corresponding to the particle at different times, the particle vibration velocity corresponding to the particle at different moments is filtered in multiple directions, and the reference particle vibration velocity corresponding to each particle vibration velocity in each direction is obtained; for any direction, according to the direction Determine the shear wave velocity corresponding to each particle in the direction according to the reference particle vibration velocity of each particle in the above direction; generate a shear wave image according to the preset ultrasonic black and white image and the shear wave velocity corresponding to each particle in each direction, It can overcome the problem of low accuracy caused by single-dimensional shear wave information, improve the directional and accurate characterization of shear wave propagation velocity, and provide a more comprehensive shear wave information.
  • Embodiments of the present application may be provided as methods, systems or devices. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.

Abstract

一种剪切波传播速度的确定方法及超声设备(100),能够同时兼顾成像宽度和成像深度,提供激励方式以使整个成像区域充满剪切波,然后进行检测获得超声回波信号,在实施时,为了克服不同方向传播的剪切波之间的相互影响,通过方向滤波提取和分离出不同方向的剪切波信号分量,然后得到每个剪切波信号分量的剪切波传播速度,最后对各个方向的剪切波传播速度进行融合处理,得到成像区域的准确的整体剪切波传播速度。

Description

剪切波传播速度的确定方法及超声设备
相关申请的交叉引用
本申请要求在2021年10月27日提交、申请号为202111255031.8、名称为“剪切波传播速度的确定方法及装置”的中国专利申请的优先权,以及在2022年08月30日提交、申请号为202211048860.3、名称为“一种剪切波图像生成方法、超声设备及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及超声成像处理技术领域,尤其涉及一种剪切波传播速度的确定方法及超声设备。
背景技术
在当前的超声剪切波弹性成像应用中,依据剪切波传播速度,在已知成像组织的密度后,即可通过关系式计算得到组织的杨氏模量,也就是组织的弹性值来对组织进行判断,因此,需要计算剪切波传播速度。
发明内容
本申请实施例提供一种剪切波传播速度的确定方法,包括:
超声设备依序向成像区域发射不同角度的超声聚焦长脉冲激励,或者依序向成像区域的各个成像区块发射不同焦点深度的超声聚焦长脉冲激励,其中,相邻两次超声聚焦长脉冲激励的发射时间间隔小于预设值;
发射检测脉冲,获得所述成像区域的超声回波信号;
对所述超声回波信号采用运动检测方法确定剪切波信号;
基于方向滤波方法从所述剪切波信号中分离出所述剪切波信号在各个方向的剪切波信号分量;
确定各个方向的剪切波信号分量的剪切波传播速度;
基于各个剪切波信号分量的剪切波传播速度,确定所述成像区域的剪切波传播速度。
另一方面,本申请实施例提供了一种超声设备,包括:
至少一个处理器;以及与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执上述第一方面提供的剪切波传播速度的生成方法。
本申请实施例提供计算机可读的非易失性存储介质,所述存储介质存储有计算机程序,所述计算机程序用于使计算机执行上述的剪切波传播速度的确定方法。
附图说明
图1为本申请实施例提供的超声设备的框架示意图;
图2为本申请实施例提供的超声设备实现超声图像的原理示意图;
图3为本申请实施例提供的剪切波传播速度的确定方法的流程示意图;
图4a为本申请实施例提供的第一激励方式的示意图;
图4b为本申请实施例提供的第二激励方式的示意图;
图5为本申请实施例提供的方向滤波器的示意图;
图6为本申请实施例提供的剪切波图像生成方法的流程图;
图7为本申请实施例提供的多个方向对应的预设掩膜的示意图;
图8为本申请实施例提供的多个方向对应的参考质点振动速度的示意图;
图9为本申请实施例提供的包含有各个方向的剪切波速度的剪切波图像示意图。
具体实施方式
为进一步说明本申请实施例,下面结合附图以及具体实施方式对此进行详细的说明。虽然本申请实施例提供了如下述实施例或附图所示的方法操作步骤,但基于常规或者无需创造性的劳动在方法中可以包括更多或者更少的操作步骤。在逻辑上不存在必要因果关系的步骤中,这些步骤的执行顺序不限于本申请实施例提供的执行顺序。方法在实际的处理过程中或者控制设备执行时,可以按照实施例或者附图所示的方法顺序执行或者并行执行。
本申请实施例采用组织内部动态激励的方式实现超声成像,提高剪切波传播速度的估计精度。本申请中能够同时兼顾成像宽度和成像深度,使整个成像区域充满剪切波,然后对剪切波进行检测获得超声回波信号。而且为了克服不同方向传播的剪切波之间的相互影响,通过方向滤波提取和分离出不同方向的剪切波信号分量,然后得到每个剪切波信号分量的剪切波传播速度,最后对各个方向的剪切波传播速度进行融合处理,得到成像区域的整体剪切波传播速度。
参见图1所示,为本申请实施例提供的超声设备的结构框图。
应该理解的是,图1所示超声设备100仅是一个范例,并且超声设备100可以具有比图1中所示的更多的或者更少的部件,可以组合两个或多个的部件,或者可以具有不同的部件配置。图中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。
图1中示例性示出了根据示例性实施例中超声设备100的硬件配置框图。
如图1所示,超声设备100例如可以包括:处理器110、存储器120、显示单元130和探头140;其中,
探头140,用于发射超声聚焦长脉冲激励;
显示单元130,用于显示超声弹性图像;
存储器120被配置为存储用于超声成像所需的数据,可包括软件程序,应用界面数据等;
处理器110,分别与所述探头140、所述显示单元130和存储器120相连接,被配置为执行:
超声设备依序向成像区域发射不同角度的超声聚焦长脉冲激励,或者依序向成像区域的各个成像区块发射不同焦点深度的超声聚焦长脉冲激励,其中,相邻两次超声聚焦长脉冲激励的发射时间间隔小于预设值;
发射检测脉冲,获得所述成像区域的超声回波信号;
对所述超声回波信号采用运动检测方法确定剪切波信号;
基于方向滤波方法从所述剪切波信号中分离出所述剪切波信号在各个方向的剪切波信号分量;
确定各个方向的剪切波信号分量的剪切波传播速度;
基于各个剪切波信号分量的剪切波传播速度,确定所述成像区域的剪切波传播速度。
图2为根据本申请一个实施例的应用原理的示意图。其中,该部分可由图1所示超声设备的部分模块或功能组件实现,下面将仅针对主要的部件进行说明,而其它部件,如存储器、控制器、控制电路等,此处将不进行赘述。
如图2所示,应用环境中可以包括用户界面210、用于显示所述用户界面的显示单元220以及处理器230。
显示单元220可以包括显示面板221、背光组件222。其中,显示面板321被配置为对超声图像进行显示,背光组件222位于显示面板221背面,背光组件222可以包括多个背光分区(图中未示出),各背光分区可以发光,以点亮显示面板221。
处理器230可以被配置为控制背光组件222中各背光分区的背光源亮度,以及控制探头发射超声聚焦长脉冲激励和检测脉冲,并接收超声回波信号。
其中,处理器230可以对所述超声回波信号进行处理确定所述成像区域的剪切波传播速度。
如图3所示,为本申请实施例中剪切波传播速度方法的流程示意图,包括以下步骤:
为了使得整个成像区域尽可能充满剪切波,本申请实施例中,步骤301为:超声设备依序向成像区域发射不同角度的超声聚焦长脉冲激励,或者依序向成像区域的各个成像区块发射不同焦点深度的超声聚焦长脉冲激励,其中,相邻两次超声聚焦长脉冲激励的发射时间间隔小于预设值。
例如,图4a所示,成像区块可以基于超声聚焦长脉冲激励的偏转角度划分,例如偏转角度为0时的发射声场对应第一成像区块,向左偏转20°时对应第二成像区块,向右偏转20°时对应第三成像区块。以此类推,可根据需求设 置偏转角度数量,每个偏转角度对应一个成像区块,为描述方便该种激励方式后文亦称之为第一激励方式。
在第一激励方式中,不同偏转角度发射长脉冲激励时,聚焦深度可以相同也可以不同。继续以图4a为例,未偏转时采用第一聚焦深度,左偏转20°时采用第二聚焦深度,右偏转20°时采用第三聚焦深度。由此,同一成像区域不仅被多个偏转角度的长脉冲激励尽可能填充满剪切波,还由于聚焦深度不同得到不同深度的剪切波情况。由此,第一激励方式对聚焦深度没有限制,对成像区域也没有显示,是一种能够兼顾聚焦深度和成像宽度的超声成像方式,由此得到的剪切波传播速度更加准确和可靠。
在采用第一激励方式进行超声成像时,每个偏转角度依序发射长脉冲激励,例如按照未偏转、左偏20°、右偏20°的方式依序发射,或者按照未偏转、右偏20°、左偏20°依序发射,亦或者按照右偏20°、左偏20°、未偏转依序发射。需要说明的是发射顺序可以根据需求设定,只要覆盖设定的各个发射角度均适用于本申请实施例。
按照第一激励方式可以让各个角度的发射声场进行叠加,从而使得所产生的剪切波信号充满整个成像区域,同时,各个角度的发射所产生的剪切波信号之间相干叠加,从而在较宽和较深的区域内都有很强的剪切波信号,剪切波信号越强,所得到的剪切波速度的准确度也越高。
在另一种可能的实施方式中,本申请还提供第二激励方式。在第二激励方式中同一成像区块可多次发射长脉冲激励,且每次发送的聚焦深度可以不同。如图4b所示,可以将成像区域划分为左右两块成像区块。左边成像区块,按照焦点1和焦点2发射长脉冲激励,右边成像区块按照焦点1和焦点2发送长脉冲激励。将左右两个成像区块进行叠加后,叠加后的生成可如图4b所示。由此,剪切波能够填充整个成像区域,然后利用检测脉冲获得成像区域的超声回波信号。
由于成像焦点不同,成像深度不同,且能够使得剪切波填充整个成像区域,本申请实施例的第二激励方式能够适用任意需求的成像深度和成像宽度。
如图4b所示,可以先对左侧成像区块按照焦点1发送长脉冲激励,之后如图4b所示,在同一侧发射长脉冲激励作用于焦点2。然后在探头另一侧即右侧成像区块发射长脉冲激励作用于焦点1,最后在同一侧(即右侧成像区块)发射长脉冲激励作用于焦点2,将这4次超声波发射的发射声场进行叠加,从而得到4b中叠加声场之后的效果图。这四个焦点可以位于不同的深度以及不同的水平位置,发射顺序也可以不受限制。由于结合了多次发射的方式,这样的话可以让各个的发射声场进行叠加,从而使得所产生的剪切波信号充满整个成像区域,同时,各个超声波的发射所产生的剪切波信号之间相干,从而在较宽和较深的区域内都有很强的剪切波信号,本申请实施例中长脉冲激励作用于同一位置,剪切波信号更强,所得到的剪切波速度的准确度也越高。
在步骤302中,发射检测脉冲,获得所述成像区域的超声回波信号;
本申请中可以多次发射检测脉冲,得到每次发送的检测脉冲对应的超声回波信号。
在步骤303中,对所述超声回波信号采用运动检测方法确定剪切波信号。
其中,运动检测方法例如包括自相关方法,包括一维和二维自相关方法均适用于本申请实施例。适用于本申请的一维自相关方法中采用时间维度即帧数据维度信息进行自相关处理,得到剪切波信号,采用二维自相关方法中采用时间维度和点数维度信息进行自相关处理,得到剪切波信号。
本申请实施例中,超声回波信号中包括多帧数据,可以采用连续多帧数据确定剪切波信号。可实施为:对所述超声回波信号中任意连续指定帧数的超声回波信号数据,对所述连续指定帧数的超声回波信号数据进行自相关分析,得到所述连续指定帧数的超声回波数据对应的剪切波信号数据。
例如,采用上述的第一激励方式或第二激励方式,此时组织产生了微米数量级的位移,从而产生了剪切波信号。随后发射检测脉冲去跟踪剪切波的传播。在得到超声回波数据后,利用Kasai算法来计算剪切波信号。计算公式(1)如下:
for(m=Len:Frame)
Figure PCTCN2022116912-appb-000001
end
在公式(1)中,IQ信号表示采集到的超声回波数据中,IQ信号为三维数据,i,j表示其中的两个维度。i和j表示IQ信号的二维空间位置,Len表示用于做自相关的帧数,Frame表示总共所采集的超声回波信号的帧数, *符号表示对IQ信号求共轭,
Figure PCTCN2022116912-appb-000002
表示两个IQ信号进行复数相乘。m表示超声回波数据中的帧号索引。ShearWaveSignal表示的得到剪切波信号。
同IQ信号,剪切波信号也是三维。一个维度为点,一个维度为扫描线,另一个维度为帧。其中,同一帧包括多个点和多条扫描线,不同帧同一点构成一维信号,该信号表示随时间变化的剪切波运动轨迹。
经过自相关算法处理后得到了包含各个方向传播的剪切波信号,各个方向传播的剪切波信号之间会相互造成干涉,使得剪切波的波形之间存在着很大的不连续。为了消除剪切波干涉的影响,可执行步骤304。
在步骤304中,基于方向滤波方法从所述剪切波信号中分离出所述剪切波信号在各个方向的剪切波信号分量。
其中,针对任一发射角度,可获得两个方向的剪切波信号分量。可实施为:
针对每次发射的超声聚焦长脉冲激励,获取与所述超声聚焦长脉冲激励的发射角度对应的第一方向滤波器,并对所述滤波器进行上下翻转处理,得到第二方向滤波器;
采用所述第一方向滤波器乘以所述剪切波信号中每一聚焦深度的二维数据,得到与所述超声聚焦长脉冲激励对应的第一剪切波信号分量;并采用所述第二方向滤波器乘以所述剪切波信号中每一聚焦深度的二维数据,得到与所述超声聚焦长脉冲激励对应的第二剪切波信号分量。
针对第一激励方式,每种发送角度对应一种第一方向滤波器。例如未偏转时对应一种第一方向滤波器,左偏20°对应一种第一方向滤波器,右偏20°时对应另一种第一方向滤波器。未偏转时,采用其对应的第一方向滤波器得到从左至右传播的剪切波信号分量,对该第一方向滤波器上行翻转之后得到第二方向滤波器,采用该第二方向滤波器可以得到从右至左传播的剪切波信号分量。其他发送角度做同样的处理,即可得到不同方向传播的剪切波信号分量。
针对第二激励方式,若发射角度仅有一种(即未偏转)则只需要未偏转时对应的第一方向滤波器和对应的第二方向滤波器得到两个方向的剪切波信号分量。
在一种可能的实施方式中,其他偏转角度的第一方向滤波器可以基于指定偏转角度的第一方向滤波器得到。如若所述发射角度为指定偏转角度,则获取所述指定偏转角度的第一方向滤波器作为所述超声聚焦长脉冲激励的发射角度对应的第一方向滤波器;
若所述发送角度相对所述指定偏转角度有偏转,则以所述指定偏转角度的第一方向滤波器作为基准滤波器;并,将所述基准滤波器从所述指定偏转角度旋转到所述超声聚焦长脉冲激励的发射角度,得到所述超声聚焦长脉冲激励的发射角度对应的第一方向滤波器。
以未偏转时的方向滤波器作为基准滤波器,如图5所示的左图是基准滤波器的示意图,其中黑色部分区域是0,白色部分区域是1。对于针对未偏转发射得到的剪切波信号,对于每一深度下的二维数据(即剪切波信号中的一帧数据),将二维数据与图5中左图所示的第一方向滤波器相乘,即可得到从左至右传播的剪切波信号分量;同时,将图5中左图所示的第一方向滤波器进行上下翻转,与每一深度下的二维数据,将二维数据与方向滤波器相乘,即可得到从右至左传播的剪切波信号分量。图5左图所示是针对未偏转发射时的方向滤波器,对于偏转发射激励,则需要对图5左图所示的方向滤波器进行旋转,旋转的角度与偏转发射的角度相等接口。例如左偏20°时,得到的第一方向滤波器如图5中的右图所示,从而可以将各个方向传播的剪切波信号分量进行提取和分离。
在步骤305中,确定各个方向的剪切波信号分量的剪切波传播速度。
一种可能的实施方式中,针对每个方向的剪切波信号分量,可以获取所述剪切波信号分量的同一点对应的两条扫描线的信号;然后,采用互相关方法分析所述两条扫描线的信号之间的时延,然后基于所述两条扫描线之间的距离除以时延,得到剪切波信号分量的剪切波传播速度。
例如,假设剪切波信号分量为(100*100*100)的数据。其中,第一个100表示点的数据量,第二个100表示扫描线的数量,第三个100表示帧数。对于点a,可以扫描线1的数据,即从(100*100*100)的数据中获取点a,扫描线1对应的所有数据作为数据1,同理获取点a扫描线2对应的所有数据作为数据2,然后计算这两个数据中扫描线之间的距离。例如,选取扫描线1和扫描线9,则距离为(9-1)*相邻点之间的距离。在发射检测脉冲时,相邻点之 间的距离是已知值,故此可计算出两扫描线之间的距离。
剪切波信号分量是一个三维数组,分别为点数、线数和帧数,利用同一深度(即同一点)不同扫描线位置的两对一维信号(也即计算距离时采用的两条扫描线信号)进行互相关算法即可得到两对信号之间的时延。然后采用该对一维信号之间的距离除以时延,得到剪切波信号分量的剪切波传播速度。
在步骤306中,基于各个剪切波信号分量的剪切波传播速度,确定所述成像区域的剪切波传播速度。
为了能够衡量成像区域整体的剪切波传播速度,本申请实施例中,对各个剪切波信号分量的剪切波传播速度进行融合处理。融合的方式为:
确定各个剪切波信号分量的剪切波传播速度分别对应的可信度,以及各个可信度的总和;以可信度为权重,对各个剪切波信号分量的剪切波传播速度进行加权求和,并采用加权求和结果除以所述总和,得到所述成像区域的剪切波传播速度。
概括为采用以下公式2确定成像区域的整体的剪切波传播速度:
Figure PCTCN2022116912-appb-000003
在公式(2)中,M表示总共有几个不同方向传播的剪切波信号分量,i和j表示剪切波信号分量的二维空间位置,ShearWaveSpeed(m)表示第m个剪切波信号分量的剪切波传播速度,Coeff表示剪切波信号分量的剪切波传播速度所对应的可信度,SWS表示自适应融合后的整个成像区域的剪切波速度构成的图像。
关于剪切波传播速度的可信度,一种实施方式中可基于确定剪切波信号分量的剪切波传播速度的扫描线数据来确定。如:
针对每个剪切波信号分量,获取所述剪切波信号分量中用于确定所述剪切波信号分量的剪切波传播速度的两条扫描线;
确定所述两条扫描线之间的相似度作为所述剪切波信号分类的剪切波传播速度的可信度。
本实施例中,超声弹性成像可以不限制成像深度也不限制成像宽度,能够很好的适应各种深度和宽度成像需求,能够覆盖整个成像区域得到剪切波并准确的获取剪切波传播速度。
另一个实施例提供了一种剪切波图像生成方法,在对象的目标部位上进行激励产生剪切波,在剪切波传播路径上对剪切波进行检测,获取剪切波的检测数据;基于检测数据,确定剪切波的各个质点在不同时刻分别对应的质点振动速度;针对任一个质点在不同时刻对应的质点振动速度,对质点在不同时刻对应的质点振动速度进行多个方向的滤波处理,得到每个质点振动速度在各个方向对应的参考质点振动速度;针对任一个方向,根据方向上各个质点的参考质点振动速度,确定方向上每个质点对应的剪切波速度;根据预 设的超声黑白图像,以及各个方向上每个质点对应的剪切波速度,生成剪切波图像。由此,通过将剪切波传播速度的不同方向的信息展现并叠加生成最终的剪切波图像,能够克服单一维度的剪切波信息带来的重复性低和准确性较低的问题,提高剪切波传播速度的方向性和准确性表征,从而提供一个更全面的剪切波信息。
该实施例中包括以下步骤:
在步骤601中,用声辐射力或低频振动,在对象的目标部位上进行激励产生剪切波,在剪切波传播路径上对剪切波进行检测,获取剪切波的检测数据。
利用声辐射力或低频振动在对象的目标部位上进行激励产生剪切波,并在剪切波传播路径上多次发射超声信号对剪切波进行检测,获取回波数据;对回波数据进行正交解调处理和降频处理,得到剪切波的检测数据。
其中,对回波数据进行正交解调处理和降频处理后会得到IQ数据,IQ数据即为剪切波的检测数据。
在步骤602中,基于检测数据,确定剪切波的各个质点在不同时刻分别对应的质点振动速度。
基于检测数据,确定剪切波的各个质点在不同时刻分别对应的质点振动速度,可以执行为:针对任意一个质点,基于检测数据中质点对应的数据,利用二维自相关算法确定质点在每个时刻对应的预设时长内的轴向位移;基于每个时刻对应的预设时长内的轴向位移以及预设时长,确定质点在不同时刻分别对应的质点振动速度。
具体可以实施为,首先在对回波数据进行正交解调处理和降频处理后会得到IQ数据,以及水平方向上的每一条剪切波检测线上的各个质点;然后针对任意一条剪切波检测线上的各个质点中的任意一个质点,在质点的预设轴向范围内,使用提前设置的垂直方向上的多个样点和时间方向上的多个样点,根据下列公式计算得到质点在每个时刻对应的预设时长内的轴向位移:
Figure PCTCN2022116912-appb-000004
其中,
Figure PCTCN2022116912-appb-000005
是质点在一个时刻对应的预设时长内的轴向位移;M是垂直方向上的样点个数;N是时间方向上的样点个数;m是垂直方向上的每个样点的坐标;n是时间方向上的每个样点的坐标;c是声音在目标部位的传播速度;π是圆周率;f c是回波数据信号的中心频率;I和Q分别是回波数据信号的同相和正交分量,是对回波数据信号进行正交解调处理和降频处理后得到的。
然后,对每个质点都使用上述公式计算后,会得到每个质点在每个时刻对应的预设时长内的轴向位移,然后基于每个时刻对应的预设时长内的轴向位移以及预设时长,根据下列公式就可以确定质点在该时刻对应的质点振动速度:
Figure PCTCN2022116912-appb-000006
其中,
Figure PCTCN2022116912-appb-000007
表示质点在该时刻对应的质点振动速度,
Figure PCTCN2022116912-appb-000008
表示质点在该时刻对应的预设时长内的轴向位移,△t表示该时刻对应的预设时长。上述公式表示质点在一个时刻对应的预设时长内的轴向位移除以预设时长,就可以得到质点在该时刻对应的质点振动速度,也表示对质点在一个时刻对应的预设时长内的轴向位移进行微分,就可以得到质点在该时刻对应的质点振动速度。
在步骤603中,针对任一个质点在不同时刻对应的质点振动速度,对质点在不同时刻对应的质点振动速度进行多个方向的滤波处理,得到每个质点振动速度在各个方向对应的参考质点振动速度。
对质点在不同时刻对应的质点振动速度进行多个不同方向的滤波处理,得到每个质点振动速度在各个方向对应的参考质点振动速度,具体为:
对质点在不同时刻对应的质点振动速度分别进行傅里叶变换,得到每个质点振动速度对应的频域波数域数据;针对任一个频域波数域数据,将频域波数域数据与多个方向对应的预设掩膜分别进行相乘;并将乘积进行傅里叶逆变换,得到频域波数域数据在各个方向对应的参考质点振动速度。
在一种可能的实施方式中,为了防止出现吉布斯效应,本申请实施例中的预设掩膜为边缘采用截取函数进行截断之后的掩膜。
具体实施时,将每个质点在不同时刻对应的质点振动速度分别进行傅里叶变换,将时间空间域数据转换为频域波数域数据,得到每个质点振动速度对应的频域波数域数据,然后根据用户感兴趣的方向,将每个质点的所有频域波数域数据全部与用户感兴趣的方向对应的预设掩膜进行相乘,抑制其他方向传播的剪切波,然后将乘积进行傅里叶逆变换,就可以得到用户感兴趣的方向的每个质点在不同时刻对应的参考质点振动速度。
其中,本申请实施例中根据用户感兴趣的方向,将每个质点的所有频域波数域数据全部与用户感兴趣的方向对应的预设掩膜进行相乘时,可以使用边缘采用截取函数进行截断之后的掩膜作为预设掩膜,也可以使用边缘未采用截取函数进行截断的掩膜作为预设掩膜。
如图7所示,为本申请实施例提供的多个方向对应的预设掩膜的示意图,可以针对任一个频域波数域数据,将频域波数域数据分别与图7所示的0°、45°、90°、135°、180°、225°、270°、315°对应的预设掩膜分别进行相乘,再进行傅里叶逆变换,就可以得到如图8所示的0°,45°,90°,135°,180°,225°,270°、315°对应的参考质点振动速度。其中,将频域波数域数据与图6所示的0°对应的预设掩膜分别进行相乘,再进行傅里叶逆变换,得到图7所示的经过滤波处理后的0°对应的参考质点振动速度,其他方向和0°方向得到的参考质点振动速度的过程一样,其中多个方向分别设置为0°,45°,90°,135°,180°,225°,270°、315°。
在一种可能的实施方式中,为了消除孤立的质点,本申请实施例中在对质点在不同时刻对应的质点振动速度进行多个不同方向的滤波处理之前,还可以对任一个质点在不同时刻对应的质点振动速度进行低通滤波和中值滤波。
由此,可以排除剪切波之间的干涉,以便在下面的步骤604中能够更加精确的计算出每个方向的剪切波的相邻质点之间的时延。
在步骤604中,针对任一个方向,根据方向上各个质点的参考质点振动速度,确定方向上每个质点对应的剪切波速度。
在一种可能的实施方式中,根据方向上各个质点的参考质点振动速度,确定方向上每个质点对应的剪切波速度,可以针对方向上的任一个质点分别执行如下步骤:
基于质点的位置信息以及候选质点的位置信息,确定质点与候选质点之间的距离;候选质点为在方向上与质点相邻的一个或多个连续的质点。
基于质点与候选质点在方向上的参考质点振动速度,以及质点与候选质点之间的距离,确定质点对应的剪切波速度。
在一种可能的实施方式中,基于质点与候选质点在方向上的参考质点振动速度,以及质点与候选质点之间的距离,确定质点对应的剪切波速度,可以执行具体如下的步骤:
基于质点在方向上的参考质点振动速度的峰值点对应的第一时间,以及候选质点在方向上的参考质点振动速度的峰值点对应的第二时间,确定第一时间和第二时间之间的时间差值;
基于质点与候选质点之间的距离,以及第一时间和第二时间之间的时间差值,得到质点对应的剪切波速度。
计算90°方向上质点A对应的剪切波速度,若候选质点为在90°方向上与质点A相邻的一个质点,则首先在90°方向上选取与质点A相邻的一个质点,即质点B,然后基于质点A的位置信息以及质点B的位置信息,确定质点A与质点B之间的距离d;接着基于质点A与质点B在90°方向上的参考质点振动速度,确定基于质点A在90°方向上的参考质点振动速度的峰值点对应的第一时间tA,以及质点B在90°方向上的参考质点振动速度的峰值点对应的第二时间tB,利用互相关的原理对在90°方向上的质点A计算时延,即确定第一时间和第二时间之间的时间差值tB-tA,最后基于质点A与质点B之间的距离d,以及第一时间和第二时间之间的时间差值tB-tA,根据下列公式得到质点A对应的剪切波速度:
Figure PCTCN2022116912-appb-000009
示例性的,计算90°方向上质点A对应的剪切波速度,若候选质点为在90°方向上与质点A相邻的多个连续的质点,则在90°方向上选取与质点A相邻的多个连续的质点,如质点B、质点C、质点D,然后分别确定质点A与质点B、质点C、质点D之间的距离d1、d2、d3,同时基于质点A、质点B、质点C、质点D在90°方向上的参考质点振动速度,分别确定质点A与质点B、质点C、质点D之间的时间差值t1、t2、t3,然后使用上述公式确定质点A对应的多个剪切波速度为:
Figure PCTCN2022116912-appb-000010
最后使用V1、V2、V3的均值作为质点A最终对应的剪切波速度。
由此,可以计算得到带有方向信息的质点A对应的剪切波速度大小,使 得剪切波速度具有大小和方向两个特征信息。
在步骤605中,根据预设的超声黑白图像,以及各个方向上每个质点对应的剪切波速度,生成剪切波图像。
具体实施时,在计算得到各个方向上每个质点对应的剪切波速度后,可以将各个方向上每个质点对应的剪切波速度按照矢量信息(方向信息与大小信息),和预设的超声黑白图像进行叠加之后显示,分别得到0°方向上的剪切波图像,45°方向上的剪切波图像,90°方向上的剪切波图像,135°方向上的剪切波图像,180°方向上的剪切波图像,225°方向上的剪切波图像,270°方向上的剪切波图像,315°方向上的剪切波图像,最后可以将每一个方向对应的剪切波图像按照每个方向对应的权重进行融合,得到如图9所示的一张包含有各个方向的剪切波速度的剪切波图像。然后可以将图像全部存储在超声设备中,就可以根据用户的需求显示剪切波图像,例如用户需要查看90°方向上的剪切波图像,就可以选取相应剪切波图像进行显示;例如用户需要查看各个方向上的剪切波图像,则可以选取图9所示的剪切波图像进行显示。
在图9中,每一个箭头的长度代表了每个质点对应的剪切波速度大小,箭头越长,质点对应的剪切波速度越大;每一个箭头的方向代表了每个质点对应的剪切波速度的方向。
在另一种示例中,也可以使用箭头的长度和颜色共同代表每个质点对应的剪切波速度大小,箭头越长,颜色的RGB值越高,则表示质点对应的剪切波速度越大;使用箭头的方向代表了每个质点对应的剪切波速度的方向。
一种实施例中,一种剪切波图像生成方法,包括以下步骤:
超声设备依序向成像区域发射不同角度的超声聚焦长脉冲激励,或者依序向成像区域的各个成像区块发射不同焦点深度的超声聚焦长脉冲激励,其中,相邻两次超声聚焦长脉冲激励的发射时间间隔小于预设值,在剪切波传播路径上对剪切波进行检测,获取剪切波的检测数据。
超声设备依序向成像区域发射不同角度的超声聚焦长脉冲激励,具体为:按照偏转角度为0、偏转角度为向左偏转20°、偏转角度为向右偏转20°这三种不同的角度依序向所述成像区域发射超声聚焦长脉冲激励。
或者,按照偏转角度为0并且采用第一聚焦深度、偏转角度为向左偏转20°并且采用第二聚焦深度、偏转角度为向右偏转20°并且采用第三聚焦深度,这三种不同的角度和不同的聚焦深度,依序向所述成像区域发射超声聚焦长脉冲激励。
依序向成像区域的各个成像区块发射不同焦点深度的超声聚焦长脉冲激励,具体为:
成像区域分为左侧成像区块和右侧成像区块;
超声探头的左侧依序对所述左侧成像区块发射焦点1和焦点2的超声聚焦长脉冲激励,超声探头的右侧依序对所述右侧成像区块发射焦点1和焦点2的超声聚焦长脉冲激励。
针对任意一个质点,基于检测数据中质点对应的数据,利用二维自相关 算法确定质点在每个时刻对应的预设时长内的轴向位移;基于每个时刻对应的预设时长内的轴向位移以及预设时长,确定质点在不同时刻分别对应的质点振动速度。
针对任一个质点在不同时刻对应的质点振动速度,对质点在不同时刻对应的质点振动速度分别进行傅里叶变换,得到每个质点振动速度对应的频域波数域数据。
针对任一个频域波数域数据,将频域波数域数据与多个方向对应的预设掩膜分别进行相乘;并将乘积进行傅里叶逆变换,得到频域波数域数据在各个方向对应的参考质点振动速度。
针对任一个方向上的任一个质点,基于质点的位置信息以及候选质点的位置信息,确定质点与候选质点之间的距离;基于质点在方向上的参考质点振动速度的峰值点对应的第一时间,以及候选质点在方向上的参考质点振动速度的峰值点对应的第二时间,确定第一时间和第二时间之间的时间差值。
基于质点与候选质点之间的距离,以及第一时间和第二时间之间的时间差值,得到质点对应的剪切波速度。
根据预设的超声黑白图像,以及各个方向上每个质点对应的剪切波速度,生成剪切波图像。
本实施例依序向成像区域发射不同角度的超声聚焦长脉冲激励,或者依序向成像区域的各个成像区块发射不同焦点深度的超声聚焦长脉冲激励,在对象的目标部位上进行激励产生剪切波,在剪切波传播路径上对剪切波进行检测,获取剪切波的检测数据;基于检测数据,确定剪切波的各个质点在不同时刻分别对应的质点振动速度;针对任一个质点在不同时刻对应的质点振动速度,对质点在不同时刻对应的质点振动速度进行多个方向的滤波处理,得到每个质点振动速度在各个方向对应的参考质点振动速度;针对任一个方向,根据方向上各个质点的参考质点振动速度,确定方向上每个质点对应的剪切波速度;根据预设的超声黑白图像,以及各个方向上每个质点对应的剪切波速度,生成剪切波图像,能够克服单一维度的剪切波信息带来准确性较低的问题,提高剪切波传播速度的方向性和准确性表征,从而提供一个更全面的剪切波信息。
本申请的实施例可提供为方法、系统或者设备。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。

Claims (10)

  1. 一种剪切波传播速度的确定方法,包括:
    超声设备依序向成像区域发射不同角度的超声聚焦长脉冲激励,或者依序向成像区域的各个成像区块发射不同焦点深度的超声聚焦长脉冲激励,其中,相邻两次超声聚焦长脉冲激励的发射时间间隔小于预设值;
    发射检测脉冲,获得所述成像区域的超声回波信号;
    对所述超声回波信号采用运动检测方法确定剪切波信号;
    基于方向滤波方法从所述剪切波信号中分离出所述剪切波信号在各个方向的剪切波信号分量;
    确定各个方向的剪切波信号分量的剪切波传播速度;
    基于各个剪切波信号分量的剪切波传播速度,确定所述成像区域的剪切波传播速度。
  2. 根据权利要求1所述的方法,所述超声设备依序向成像区域发射不同角度的超声聚焦长脉冲激励,包括:
    按照偏转角度为0、偏转角度为向左偏转20°、偏转角度为向右偏转20°这三种不同的角度依序向所述成像区域发射超声聚焦长脉冲激励。
  3. 根据权利要求1所述的方法,所述超声设备依序向成像区域发射不同角度的超声聚焦长脉冲激励,包括:
    按照偏转角度为0并且采用第一聚焦深度、偏转角度为向左偏转20°并且采用第二聚焦深度、偏转角度为向右偏转20°并且采用第三聚焦深度,这三种不同的角度和不同的聚焦深度,依序向所述成像区域发射超声聚焦长脉冲激励。
  4. 根据权利要求1所述的方法,依序向成像区域的各个成像区块发射不同焦点深度的超声聚焦长脉冲激励,包括:
    成像区域分为左侧成像区块和右侧成像区块;
    超声探头的左侧依序对所述左侧成像区块发射焦点1和焦点2的超声聚焦长脉冲激励,超声探头的右侧依序对所述右侧成像区块发射焦点1和焦点2的超声聚焦长脉冲激励。
  5. 根据权利要求1-4中任一所述的方法,所述基于方向滤波方法从所述剪切波信号中分离出所述剪切波信号在各个方向的剪切波信号分量,包括:
    针对每次发射的超声聚焦长脉冲激励,获取与所述超声聚焦长脉冲激励的发射角度对应的第一方向滤波器,并对所述滤波器进行上下翻转处理,得到第二方向滤波器;
    采用所述第一方向滤波器乘以所述剪切波信号中每一聚焦深度的二维数据,得到与所述超声聚焦长脉冲激励对应的第一剪切波信号分量;并采用所述第二方向滤波器乘以所述剪切波信号中每一聚焦深度的二维数据,得到与所述超声聚焦长脉冲激励对应的第二剪切波信号分量,
    其中,获取与所述超声聚焦长脉冲激励的发射角度对应的方向滤波器, 具体为,若所述发射角度为指定偏转角度,则获取所述指定偏转角度的第一方向滤波器作为所述超声聚焦长脉冲激励的发射角度对应的第一方向滤波器;
    若所述发送角度相对所述指定偏转角度有偏转,则以所述指定偏转角度的第一方向滤波器作为基准滤波器;并,将所述基准滤波器从所述指定偏转角度旋转到所述超声聚焦长脉冲激励的发射角度,得到所述超声聚焦长脉冲激励的发射角度对应的第一方向滤波器。
  6. 一种剪切波图像生成方法,包括:
    在对象的目标部位上进行激励产生剪切波,在剪切波传播路径上对所述剪切波进行检测,获取所述剪切波的检测数据;
    基于所述检测数据,确定所述剪切波的各个质点在不同时刻分别对应的质点振动速度;
    针对任一个质点在不同时刻对应的质点振动速度,对所述质点在不同时刻对应的质点振动速度进行多个方向的滤波处理,得到每个质点振动速度在各个方向对应的参考质点振动速度;
    针对任一个方向,根据所述方向上各个质点的参考质点振动速度,确定所述方向上每个质点对应的剪切波速度;
    根据预设的超声黑白图像,以及各个方向上每个质点对应的剪切波速度,生成剪切波图像。
  7. 根据权利要求6所述的方法,所述基于所述检测数据,确定所述剪切波的各个质点在不同时刻分别对应的质点振动速度,包括:
    针对任意一个质点,基于所述检测数据中所述质点对应的数据,利用二维自相关算法确定所述质点在每个时刻对应的预设时长内的轴向位移;
    基于每个时刻对应的预设时长内的轴向位移以及所述预设时长,确定所述质点在不同时刻分别对应的质点振动速度。
  8. 根据权利要求6所述的方法,所述对所述质点在不同时刻对应的质点振动速度进行多个不同方向的滤波处理,得到每个质点振动速度在各个方向对应的参考质点振动速度,包括:
    对所述质点在不同时刻对应的质点振动速度分别进行傅里叶变换,得到每个质点振动速度对应的频域波数域数据;
    针对任一个频域波数域数据,将所述频域波数域数据与所述多个方向对应的预设掩膜分别进行相乘;并将各个乘积均进行傅里叶逆变换,得到所述频域波数域数据在各个方向对应的参考质点振动速度。
  9. 根据权利要求6所述的方法,所述根据所述方向上各个质点的参考质点振动速度,确定所述方向上每个质点对应的剪切波速度,包括:
    针对所述方向上的任一个质点分别执行以下操作:
    基于所述质点的位置信息以及候选质点的位置信息,确定所述质点与所述候选质点之间的距离;所述候选质点为在所述方向上与所述质点相邻的一个或多个连续的质点;
    基于所述质点在所述方向上的参考质点振动速度的峰值点对应的第一时间,以及所述候选质点在所述方向上的参考质点振动速度的峰值点对应的第 二时间,确定所述第一时间和所述第二时间之间的时间差值;
    基于所述质点与所述候选质点之间的距离,以及所述第一时间和所述第二时间之间的时间差值,得到所述质点对应的剪切波速度。
  10. 一种超声设备,其特征在于,包括:处理器、存储器、显示单元和探头;
    探头,用于发射超声信号;
    显示单元,用于显示超声图像;
    处理器,分别与所述探头以及所述显示单元相连接,被配置为执行如权利要求1或者6中所述的方法。
PCT/CN2022/116912 2021-10-27 2022-09-02 剪切波传播速度的确定方法及超声设备 WO2023071528A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111255031.8A CN113827278B (zh) 2021-10-27 2021-10-27 剪切波传播速度的确定方法及装置
CN202111255031.8 2021-10-27
CN202211048860.3A CN115414065A (zh) 2022-08-30 2022-08-30 一种剪切波图像生成方法、超声设备及装置
CN202211048860.3 2022-08-30

Publications (1)

Publication Number Publication Date
WO2023071528A1 true WO2023071528A1 (zh) 2023-05-04

Family

ID=86160195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116912 WO2023071528A1 (zh) 2021-10-27 2022-09-02 剪切波传播速度的确定方法及超声设备

Country Status (1)

Country Link
WO (1) WO2023071528A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104968278A (zh) * 2013-07-19 2015-10-07 梅约医学教育与研究基金会 用于从多向波场测量剪切波速的系统和方法
CN107577642A (zh) * 2017-08-25 2018-01-12 深圳中科乐普医疗技术有限公司 一种剪切波方向滤波实现方法及医用超声波设备
US20190350559A1 (en) * 2018-05-16 2019-11-21 Esaote Spa Method and ultrasound system for shear wave elasticity imaging
CN110974296A (zh) * 2019-12-24 2020-04-10 深圳开立生物医疗科技股份有限公司 一种获取剪切波弹性图像的方法、装置及超声成像系统
CN111388012A (zh) * 2019-01-02 2020-07-10 无锡海斯凯尔医学技术有限公司 用于检测组织硬度的方法、设备及系统
CN111735526A (zh) * 2020-07-20 2020-10-02 深圳中科乐普医疗技术有限公司 超声弹性成像装置和用于弹性测量的剪切波波速测量方法
CN112533539A (zh) * 2018-08-24 2021-03-19 深圳迈瑞生物医疗电子股份有限公司 一种超声成像装置和方法、超声弹性检测装置和方法
CN113827278A (zh) * 2021-10-27 2021-12-24 青岛海信医疗设备股份有限公司 剪切波传播速度的确定方法及装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104968278A (zh) * 2013-07-19 2015-10-07 梅约医学教育与研究基金会 用于从多向波场测量剪切波速的系统和方法
CN107577642A (zh) * 2017-08-25 2018-01-12 深圳中科乐普医疗技术有限公司 一种剪切波方向滤波实现方法及医用超声波设备
US20190350559A1 (en) * 2018-05-16 2019-11-21 Esaote Spa Method and ultrasound system for shear wave elasticity imaging
CN112533539A (zh) * 2018-08-24 2021-03-19 深圳迈瑞生物医疗电子股份有限公司 一种超声成像装置和方法、超声弹性检测装置和方法
CN111388012A (zh) * 2019-01-02 2020-07-10 无锡海斯凯尔医学技术有限公司 用于检测组织硬度的方法、设备及系统
CN110974296A (zh) * 2019-12-24 2020-04-10 深圳开立生物医疗科技股份有限公司 一种获取剪切波弹性图像的方法、装置及超声成像系统
CN111735526A (zh) * 2020-07-20 2020-10-02 深圳中科乐普医疗技术有限公司 超声弹性成像装置和用于弹性测量的剪切波波速测量方法
CN113827278A (zh) * 2021-10-27 2021-12-24 青岛海信医疗设备股份有限公司 剪切波传播速度的确定方法及装置

Similar Documents

Publication Publication Date Title
KR102332464B1 (ko) 분석 데이터로부터 전단파 추정
US10359515B2 (en) Angle independent velocity spectrum determination
EP2830508B1 (en) Methods and apparatus for ultrasound imaging
US20090178483A1 (en) Nonlinear Elastic Imaging With Two-Frequency Elastic Pulse Complexes
US20140150556A1 (en) Measurement and Imaging of Scatterers with Memory of Scatterer Parameters Using at Least Two-Frequency Elastic Wave Pulse Complexes
US20190369220A1 (en) Methods and systems for filtering ultrasound image clutter
CN103239258B (zh) 采用超声波的同轴切变波表征
WO2018058606A1 (zh) 超声血流运动谱的显示方法及其超声成像系统
JPH07303644A (ja) 超音波診断装置
CN110974296B (zh) 一种获取剪切波弹性图像的方法、装置及超声成像系统
US8951198B2 (en) Methods and apparatus for ultrasound imaging
JP2008136860A (ja) 超音波診断装置およびその画像処理プログラム
US20160363561A1 (en) Methods and systems for measuring properties with ultrasound
US11399805B2 (en) Ultrasound diagnostic device and ultrasound signal processing method
KR102459053B1 (ko) 환경에서 유체 흐름을 감지하기 위한 초음파 시스템
WO2021103493A1 (zh) 一种基于剪切波的成像方法、系统及装置
Salles et al. Full 3-D transverse oscillations: a method for tissue motion estimation
US9636086B2 (en) Three dimensional (3D) transverse oscillation vector velocity ultrasound imaging
CN112513675A (zh) 超声方法和装置
KR102319397B1 (ko) 초음파-기반 전단파 이미징을 위한 각도들
JP4761999B2 (ja) 超音波診断装置およびその画像処理方法、その画像処理プログラム
WO2023071528A1 (zh) 剪切波传播速度的确定方法及超声设备
CN113827278B (zh) 剪切波传播速度的确定方法及装置
WO2020110500A1 (ja) 超音波診断装置および超音波診断装置の制御方法
JP2021529039A (ja) カラードップラー超音波イメージングを行うための方法及びシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885418

Country of ref document: EP

Kind code of ref document: A1