WO2023071455A1 - 一种针对超级街区层级结构的测量方法 - Google Patents

一种针对超级街区层级结构的测量方法 Download PDF

Info

Publication number
WO2023071455A1
WO2023071455A1 PCT/CN2022/113618 CN2022113618W WO2023071455A1 WO 2023071455 A1 WO2023071455 A1 WO 2023071455A1 CN 2022113618 W CN2022113618 W CN 2022113618W WO 2023071455 A1 WO2023071455 A1 WO 2023071455A1
Authority
WO
WIPO (PCT)
Prior art keywords
quadrant
hierarchical
block
value
hierarchical structure
Prior art date
Application number
PCT/CN2022/113618
Other languages
English (en)
French (fr)
Inventor
宋亚程
韩东青
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Publication of WO2023071455A1 publication Critical patent/WO2023071455A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/60Planning or developing urban green infrastructure

Definitions

  • the invention belongs to the technical field of urban design, and in particular relates to a measurement method for the hierarchical structure of a super block.
  • the purpose of the present invention is to provide a measurement method for the hierarchical structure of super blocks, which can take into account the road network and development land, and can associate the two attributes of geometric scale and topological structure together, which can better Cognition and understanding of the morphological characteristics of super blocks, and design the most ideal block shape.
  • a method for measuring the hierarchical structure of superblocks comprising the following steps:
  • step S1 the "perspective” is divided into two directions of “composition” and “configuration", and the "object” includes two aspects of "network” and "area”.
  • Upper quadrant describes the topological connection of a certain street in the network
  • Right quadrant describes the geometric composition of a street such as width and length
  • Lower quadrant Describes the size of the parcel and its development intensity.
  • the analysis of the hierarchical structure of each block in the step S3 includes the calculation of the level of the individual element type, the calculation of the quadrant index, and the obtaining of the hierarchical results of the entire block in each quadrant.
  • the present invention provides a universal quantitative tool for the identification of the super block structure through a hierarchical matrix, and a regional block structure feature can be extracted through a large number of sample analysis, thereby deriving the value of the ideal interval, which is useful for design and transformation Direction provides a clear guide, through the comparison of the current structure and the ideal interval, can clearly obtain the transformation direction and degree of block shape, which is helpful to accurately select the transformation strategy to make the design result reach the ideal state;
  • the internal mechanism and laws of block form provide a scientific method, and establish a mathematical foundation for connecting the two links of form cognition and form design, which can promote the development of digital urban design methods at the micro level.
  • Figure 1 is a hierarchical matrix cognition cross coordinate diagram where "perspective" and "object” intersect;
  • Figure 2 is a hierarchical diagram of the overall structure
  • Figure 3 is a hierarchical matrix diagram of eight sample blocks.
  • the morphological characteristics of super blocks can be described as: in the regional units enclosed by urban arterial roads (large rivers, forests, city walls, etc.), morphological elements with different scales are interwoven in a complex topological structure through certain logical relationships. in the network.
  • the present invention proposes a set of targeted cognitive methods—hierarchy matrix.
  • Network refers to the street system
  • area refers to the plane formed by the plots occupied by buildings.
  • Composition and Configuration are two perspectives to observe the same element. The former focuses on the geometric scale attributes of elements, while the latter focuses on the abstract topological relationship between elements.
  • a measurement method for the hierarchical structure of superblocks is designed, which includes the following steps:
  • S2 Determine the position of the morphological feature measurement relationship of the super block in each quadrant of the coordinate map. For example, describing the connection relationship of a certain street in the network belongs to the category of the upper quadrant. When describing the geometric composition of the street such as width and length, it is transferred to the right quadrant; When the connection relationship between the plots is established, the perspective shifts to the left quadrant; while the size of the plot and its development intensity belong to the category of the lower quadrant.
  • the four quadrants correspond to each other, allowing a more comprehensive and systematic understanding of the hierarchical structure of superblocks.
  • S3 Based on the basis of the hierarchical matrix, a quantification method is proposed for each quadrant, so as to describe the hierarchical order of the model, and accurately analyze and objectively compare the hierarchical structure between the blocks. First, it is necessary to calculate the level value of the individual feature type. In terms of network configuration, the boundary roads of the limited blocks are positioned as the reference elements, the depth value is set to 0, and the connection degree is set to be infinite.
  • the depth and connection value are assigned to the internal streets, and the streets directly connected to the boundary streets
  • the depth value is 1, the depth value of a street directly connected to a street with a depth value of 1 is 2, and so on, and the connectivity value describes the number of other streets within the block range that the street is connected to, if the street is connected to 3 other streets , then the connectivity value of the street is 3, the lower the depth value and the higher the connectivity value, the higher the grade of the street (the border road grade is always the highest, and the internal streets are descending in turn), otherwise, the grade is lower; in the network composition
  • the street level is identified by the width and length of the street. The greater the width and length of the street, the higher the level of the street.
  • the grade value of the network configuration, the grade of the plot that needs to pass through other plots is equal to the configuration grade of the connected plot plus 1; in terms of area composition, the level of the area is determined based on the volume ratio and building density, The higher the floor area ratio and the greater the building density, the higher the grade, and vice versa, the lower the grade.
  • the basic data for calculating the grade of individual element types in each quadrant is shown in Table 1.
  • Table 1 Basic data for calculating the level value of individual element types in each quadrant
  • the types of element individuals are sorted and the quantity values contained in each type.
  • two samples a and b are taken as examples. Sample a has three grade types in four quadrants, and each category contains one element; sample b has only one grade type in four quadrants. But the number of elements contained in each category is 4.
  • cluster analysis can be used to find the similarity between elements for scientific classification; cluster analysis is widely used to distinguish morphological types, the more similarity (or homogeneity) between classes Larger, the greater the difference between classes, the better (or more obvious) the clustering scheme; the number of classes is determined according to the number of individual elements in the sample block, the basic data interval and the quality of clustering, and according to the level value of the individual element type As a result, the variance operation is performed on the elements of each quadrant to obtain the absolute level value of each quadrant, and the calculation formula is as follows:
  • xi the value of the individual element (street or plot) with the serial number i;
  • M the average value of the level of this type of individual element type in the block
  • n the total number of individuals of this type in the block.
  • the absolute level value of the quadrant
  • ⁇ min the minimum absolute level value among all elements
  • ⁇ max The maximum absolute level value among all features.
  • the relative level value is used to describe the hierarchical characteristics of the internal components of the block, and the horizontal comparison between blocks can be carried out through this value.
  • the more dispersed the distribution of individual element type grade values in a quadrant the higher the relative hierarchy value, indicating the higher the hierarchy of this quadrant.
  • the hierarchy of the blocks in the graph a is significantly higher than that of the blocks in the graph b in all four quadrants, so the former has more circles in the hierarchical matrix than the latter.
  • the data of the four quadrants are normalized after the calculation of the absolute layer value, and then the relative layer value that can be used for comparison and analysis is obtained.
  • Samples A, C, and E with strong hierarchy are all located in the old city environment, covering multiple historical textures from the Ming and Qing Dynasties to the present, and the self-renewal from the bottom up has a significant positive impact on the construction of the hierarchy.
  • sample B is adjacent to the old city, due to the adoption of a relatively overall renovation method, the historical span of the existing texture is relatively small, so the hierarchy is not prominent.
  • Samples F and H are blocks formed with clear design intentions.
  • Samples D and G are in a homogeneous grid. Although they have undergone purposeful and differentiated transformation in the later stage, it is still difficult to change the structural background with weak hierarchy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Development Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Evolutionary Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Artificial Intelligence (AREA)
  • Educational Administration (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Economics (AREA)
  • Evolutionary Computation (AREA)
  • Strategic Management (AREA)
  • Game Theory and Decision Science (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开一种针对超级街区层级结构的测量方法,属于城市设计技术领域,根据城市街区形态研究类别,确立"构成"与"构型"作为认识视角,确定测量对象包括"网络"与"面域",建立了一套由"视角"与"对象"相交所构成的层级矩阵,将超级街区的形态特征测量分为四个象限,提出街区形态层级结构的指标体系及其计算方法,对超级街区之间进行可视化比较与分析;本发明为进一步探索街区形态的内在机制与规律提供了科学方法,为城市建成环境的现状评价及其未来实践优化方向提出了技术工具,对发展中微观层面的数字化城市设计方法具有促进作用。

Description

一种针对超级街区层级结构的测量方法 技术领域
本发明属于城市设计技术领域,具体涉及一种针对超级街区层级结构的测量方法。
背景技术
以城市交通干道(或是大型河道、森林及城墙等)为边界,被其划分出来的内向性巨型街块被视为是超级街区。在街道网络的研究上,谢尔顿(Shelton B)提出了街区网络的三级结构(2012年),皮珀尼斯(Peponis J)在采用空间句法中的方向性距离分析方法研究街区微观网络的多尺度分层特征(2015年)。在面域结构的研究中,英国学者莱斯利·马丁与莱昂内尔·马奇(Martin L and March L,)首次系统性的运用数字化模型研究城市密度问题(1975年)。2005年,荷兰代尔夫特大学的珀特(Pont M B)与哈普特(Haupt P)建构了空间矩阵(spacematrix)方法,建立了容积率(FSI)、覆盖率(GSI)、开敞度(OSI)、层数(L)四个指标与建成形态之间的可视化关联。2019年,城市形态学家穆东(Moudon AV)提出了一个即整合区域、网络、超级网格和超级街区四个方面的概念框架,这些对超级街区形态测量方法只关注单一的要素,对整体形态的层级结构研究缺乏完整性和全面性,且没有给出具体的计算方法,导致设计出的街区形态无法达到预期的理想状态。
发明内容
针对现有技术的不足,本发明的目的在于提供一种针对超级街区层级结构的测量方法,能够兼顾道路网络以及开发用地,并且能够将几何尺度及拓扑结构两种属性关联在一起,可以更好的认知与理解超级街区形态特征,设计出最 理想的街区形态。
本发明的目的可以通过以下技术方案实现:
一种针对超级街区层级结构的测量方法,所述方法包括以下步骤:
S1:根据城市街区形态研究类别,确立“构成”与“构型”作为认识视角,确定测量对象包括“网络”与“面域”,建立一套由“视角”与“对象”相交所构成的层级矩阵十字坐标图;
S2:确定超级街区的不同方面形态特征测量关系在坐标图各个象限中的位置;
S3:根据层级矩阵基础,为各象限提出量化方法,描述模式的层级秩序,对各街区间的层级结构进行准确的分析比较。
进一步的,所述步骤S1中“视角”分为“构成”与“构型”两个方向,“对象”包括“网络”与“面域”两个方面。
进一步的,所述步骤S2中各象限对应的街区形态测量关系为:
上象限:描述某一条街道在网络中的拓扑连接关系;
右象限:描述某一街道的宽度和长度等几何构成;
左象限:描述地块与街道的连接关系以及地块之间的连接关系;
下象限:描述地块的尺度大小及其开发强度。
进一步的,所述步骤S3中对各街区间的层级结构的分析包括对个体要素类型等级的计算、象限指标的计算以及得出整体街区在各象限上的层级性结果。
本发明的有益效果:
本发明通过层级矩阵为超级街区结构的识别提供一个具有普适性的量化工具,一个具有地域性的街区结构特征可以通过大量的样本分析所提取,从而导出理想区间的取值,为设计与改造方向提供明确的指引,通过现状结构与理想 区间的比较,可以明确地获得街区形态的改造方向及程度,有助于准确地选取改造策略使设计结果到达理想状态;同时本发明不但为进一步探索超级街区形态的内在机制与规律提供了科学方法,而且为打通形态认知与形态设计两个环节建立了数学基础,对发展中微观层面的数字化城市设计方法具有促进作用。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是“视角”与“对象”相交叉的层级矩阵认知十字坐标图;
图2是整体结构的层级图;
图3是八个样本街区的层级矩阵图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
超级街区的形态特征可以描述为:在城市干道(大型河道、森林及城墙等)围合出的区域单元中,具有不同尺度大小的形态要素通过某种逻辑关系交织在一个具有复杂性的拓扑结构网络中。为了科学认识隐性的逻辑关系,本发明提出一套具有针对性的认知方法——层级矩阵(hierarchy matrix)。在城市形态学领域中,街道、地块及建筑三个基本形态要素可以通过模式语言被描述出来,“网络”针对街道系统,“面域”指的是被建筑占据的地块所构成的平面区域; 构成(Composition)与构型(Configuration)又是观察同一个要素的两种视角,前者关注的是要素的几何尺度属性,后者关注的是要素之间的抽象拓扑关系。在此基础上,设计出一种针对超级街区层级结构的测量方法,该测量方法包括以下步骤:
S1:根据城市街区形态研究类别,如图1所示,确立“构成”与“构型”作为认识视角,确定测量对象包括“网络”与“面域”,建立一套由“视角”与“对象”相交所构成的层级矩阵十字坐标图,“视角”分为“构成”与“构型”两个方向,“对象”包括“网络”与“面域”两个方面,城市街区形态研究中的几种类别都可以在该层级矩阵中找到相应的位置。
S2:确定超级街区的形态特征测量关系在坐标图各个象限中的位置。比如,描述某一条街道在网络中的连接关系属于上象限的范畴,当描述这条街道的宽度和长度等几何构成时它就转移到了右象限;如果关注到地块与街道的连接关系以及地块之间的连接关系时,视角就转移到了左象限;而地块的尺度大小及其开发强度就属于下象限的范畴。四个象限相互对应,可以更加全面且系统的认知超级街区的层级结构。
S3:根据层级矩阵基础,为各象限提出量化方法,从而描述模式的层级秩序,对各街区间的层级结构进行准确的分析与客观的比较。首先,需要进行个体要素类型等级值的计算。在网络构型上,将限定街区的边界道路定位为基准要素,深度值定为0,连接度定位无限大,在此基础上为内部街道赋予深度与连接度值,与边界街道直接连接的街道深度值为1,与深度值为1的街道直接连接的街道深度值为2,以此类推,而连接度值描述街道所连接的街区范围内其他街道的数量,如果街道与3条其他街道连接,则该街道的连接度值为3,深度值越低、连接度 值越高的街道等级就越高(边界道路等级始终最高,内部街道依次递减),反之,等级就越低;在网络构成上,通过对街道宽度及长度来识别街道等级,宽度及长度越大的街道等级就越高,反之,街道等级就越低;在面域构型上,地块的等级等于其主要出入口所在街道的网络构型等级值,需要穿越其他地块进入的地块,其等级等于所连接地块的构型等级加1;在面域构成上,基于容积率和建筑密度来确定面域的等级,容积率越高建筑密度越大,等级就越高,反之,等级就越低,各象限的个体要素类型等级计算基础数据如表1所示。
表1 各象限的个体要素类型等级值计算基础数据
Figure PCTCN2022113618-appb-000001
依据等级的判断标准对要素个体的类型进行排序以及各类型所包含的数量值。如图2所示a、b两个样本为例,a样本在四个象限上均有3个等级类型,且每类包含1个要素;b样本在四个象限上都只有1个等级类型,但每类包含的要素数量都是4。当基础数据较为复杂时,可以通过聚类分析来寻找要素之间的相似性,以便于科学分类;聚类分析被广泛用于形态类型的区分,类间的相似性(或同质性)越大,类间的差异越大,聚类方案就越好(或越明显);视样本街区的个体要素数量、基础数据区间和聚类的质量来确定类的数量,并根据个体要素类型等级值结果,对每个象限的要素进行方差运算,得到每个象限的绝对层级值,计算公式如下:
Figure PCTCN2022113618-appb-000002
注:α:绝对层级值;
xi:序号为i的个体要素(街道或地块)的值;
M:街区内该类个体要素类型等级值的平均数;
n:街区内该类型等级的个体总数。
将所有街区的各项绝对层级值结果依次进行归一化计算,得到0至1之间的数值,即街区每个象限的相对层级值结果,计算公式如下:
β=(α-α min)/(α maxmin)
注:β:相对层级值;
α:该象限的绝对层级值;
αmin:所有要素中最小绝对层级值;
αmax:所有要素中最大绝对层级值。
相对层级值用于描述街区内部组成要素的层级性特征,可以通过该值进行街区之间的横向对比。一个象限上个体要素类型等级值的分布越分散,相对层级值越高,表示这个象限的层级性越高,反之,类型等级值分布越集中,相对层级值越低,说明该象限的层级性越低。如图2所示,a图结构的街区在四个象限上都呈现出的层级性明显高于b图结构的街区,所以前者在层级矩阵中的圈层要大于后者。
基于街区内个体要素的类型等级值结果,经过绝对层级值计算,将四个象限的数据进行归一化处理,进而得到可以用作比较与分析的相对层级值。
具体实施例,选取国内外八个街区作为比较对象,如表2所示,国内样本是北京、南京、广州及香港的老城中心,社会背景及气候环境差异较大;选取的日本东京街区E与西班牙巴塞罗那街区G位于老城中心,都经历过局部性的规划调整;样本F与H完全是在自上而下的规划控制下建设完成的,充分体现 了设计师的理念。
表2 八个样本街区的概况
Figure PCTCN2022113618-appb-000003
Figure PCTCN2022113618-appb-000004
对中外八个具有代表性的街区分别从四个象限对其进行层级性测量,通过聚类分析,得到16个网络构型等级,10个网络构成等级,12个面域构成等级,16个面域构型等级。将相对层级值呈现在雷达图中,如图3和表3所示。样本A、C及E表现出了明显的层级性特征,但是三者均有一个明显的弱项,A在面域构型上偏弱,C与E的弱项则是面域构成。样本B、F及H均呈现出了明显的“偏心”结构,三者均在网络构型表现极强,而另外三项明显示弱。其中,样本F与H的结构十分相似,都在网络构成及面域构型上表现出了适中的层级性,而面域构成的层级性极低。样本B在网络构成与面域构成上表现出适中的层级性,面域构型的层级性明显偏低。样本D与G的整体层级性明显低于其他样本,不同的是前者在各项指标上略微高于后者。
除方格网街区D与G外,所有街区都在网络构型上表现出了极强的层级性, 街道类型的差异化是街区的一个显著的基本特征。层级性较强的样本A、C及E都位于老城环境中,涵盖了自明清时期至今的多个历史肌理,自下而上的自主更新对层级的构建具有明显的正相关影响。样本B虽然毗邻老城,由于采用了相对整体的改造方式,现存肌理的历史跨度较小,所以层级性并不突出。样本F与H是在明确设计意图下形成的街区,虽然设计师已经极力想通过网络构型来塑造多样化场所,但是由于街道和建筑的尺度过于均质化从而抑制了几何构成的层级性。样本D和G处于均质化方格网中,虽然后期经历过具有目的性的差异化改造,但是仍然难以改变层级性羸弱的结构本底。
表3 八个样本街区的层级结构
Figure PCTCN2022113618-appb-000005
在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业 的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。

Claims (5)

  1. 一种针对超级街区层级结构的测量方法,其特征在于,所述方法包括以下步骤:
    S1:根据城市街区形态研究类别,确立“构成”与“构型”作为认识视角,确定测量对象包括“网络”与“面域”,建立一套由“视角”与“对象”相交所构成的层级矩阵十字坐标图;
    S2:确定超级街区的不同方面形态特征测量关系在坐标图各个象限中的位置;
    S3:根据层级矩阵基础,为各象限提出量化方法,描述模式的层级秩序,对各街区间的层级结构进行准确的分析比较。
  2. 根据权利要求1所述的一种针对超级街区层级结构的测量方法,其特征在于,所述步骤S1中“视角”分为“构成”与“构型”两个方向,“对象”包括“网络”与“面域”两个方面。
  3. 根据权利要求1所述的一种针对超级街区层级结构的测量方法,其特征在于,所述步骤S2中各象限对应的街区形态测量关系为:
    上象限:描述某一条街道在网络中的拓扑连接关系;
    右象限:描述某一街道的宽度和长度等几何构成;
    左象限:描述地块与街道的连接关系以及地块之间的连接关系;
    下象限:描述地块的尺度大小及其开发强度。
  4. 根据权利要求1所述的一种针对超级街区层级结构的测量方法,其特征在于,所述步骤S3中对各街区间的层级结构的分析包括对个体要素类型等级的计算、象限指标的计算以及得出整体街区在各象限上的层级性结果。
  5. 根据权利要求4所述的一种针对超级街区层级结构的测量方法,其特征 在于,所述个体要素类型等级的计算包括:
    1),对网络构型、网络构成、面域构型以及面域构成基础数据的确定;
    2),根据得到的个体要素基础数据,对个体要素进行聚类分析,寻找要素之间的相似性,归类;
    3),依据等级关系的判断,对聚类得出的各类型进行排序,得出各类型的等级值。
    所述象限指标的计算包括:
    根据个体要素类型等级值结果,对每个象限的要素进行方差运算,得到每个象限的绝对层级值,计算公式如下:
    Figure PCTCN2022113618-appb-100001
    注:α:绝对层级值;
    xi:序号为i的个体要素(街道或地块)的值;
    M:街区内该类个体要素类型等级值的平均数;
    n:街区内该类型等级的个体总数。
    将所有街区的各项绝对层级值结果依次进行归一化计算,得到0至1之间的数值,即街区每个象限的相对层级值结果,计算公式如下:
    β=(α-α min)/(α maxmin)
    注:β:相对层级值;
    α:该象限的绝对层级值;
    αmin:所有要素中最小绝对层级值;
    αmax:所有要素中最大绝对层级值。
    所述整体街区在各象限上的层级性结果的得出包括:
    基于街区内个体要素的类型等级值结果,经过绝对层级值计算,将四个象 限的数据进行归一化处理,进而得到可以用作比较与分析的相对层级值。
PCT/CN2022/113618 2021-10-27 2022-08-19 一种针对超级街区层级结构的测量方法 WO2023071455A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111257532.XA CN114444836B (zh) 2021-10-27 2021-10-27 一种针对超级街区层级结构的测量方法
CN202111257532.X 2021-10-27

Publications (1)

Publication Number Publication Date
WO2023071455A1 true WO2023071455A1 (zh) 2023-05-04

Family

ID=81362871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113618 WO2023071455A1 (zh) 2021-10-27 2022-08-19 一种针对超级街区层级结构的测量方法

Country Status (2)

Country Link
CN (1) CN114444836B (zh)
WO (1) WO2023071455A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116977469A (zh) * 2023-08-02 2023-10-31 中国水利水电科学研究院 一种基于随机切片的社区尺度城市形态数据批量生成方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114444836B (zh) * 2021-10-27 2023-04-07 东南大学 一种针对超级街区层级结构的测量方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5921701A (en) * 1997-06-25 1999-07-13 Clayton; Robert F. Traffic interchange
CN109409662A (zh) * 2018-09-20 2019-03-01 北京大学 基于空间句法的城市交通与商业空间关联的测度方法
CN109583698A (zh) * 2018-10-29 2019-04-05 北京工业大学 一种基于模糊数学理论的城市街区空间形态综合评估方法
CN111429550A (zh) * 2020-03-27 2020-07-17 东南大学 一种针对老城街区形态的复杂性结构的测量方法
CN111696195A (zh) * 2020-05-09 2020-09-22 东南大学 一种街区三维空间形态量化分析方法
CN114444836A (zh) * 2021-10-27 2022-05-06 东南大学 一种针对超级街区层级结构的测量方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5921701A (en) * 1997-06-25 1999-07-13 Clayton; Robert F. Traffic interchange
CN109409662A (zh) * 2018-09-20 2019-03-01 北京大学 基于空间句法的城市交通与商业空间关联的测度方法
CN109583698A (zh) * 2018-10-29 2019-04-05 北京工业大学 一种基于模糊数学理论的城市街区空间形态综合评估方法
CN111429550A (zh) * 2020-03-27 2020-07-17 东南大学 一种针对老城街区形态的复杂性结构的测量方法
CN111696195A (zh) * 2020-05-09 2020-09-22 东南大学 一种街区三维空间形态量化分析方法
CN114444836A (zh) * 2021-10-27 2022-05-06 东南大学 一种针对超级街区层级结构的测量方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116977469A (zh) * 2023-08-02 2023-10-31 中国水利水电科学研究院 一种基于随机切片的社区尺度城市形态数据批量生成方法
CN116977469B (zh) * 2023-08-02 2024-01-23 中国水利水电科学研究院 一种基于随机切片的社区尺度城市形态数据批量生成方法

Also Published As

Publication number Publication date
CN114444836A (zh) 2022-05-06
CN114444836B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
WO2023071455A1 (zh) 一种针对超级街区层级结构的测量方法
WO2020233152A1 (zh) 基于城市建筑空间数据的建成区边界识别方法及设备
CN111651545B (zh) 一种基于多源数据融合的城市边缘区提取方法
CN106126816B (zh) 重复建筑自动感知下的大规模als建筑点云建模方法
CN109272170A (zh) 一种基于Louvain算法的交通小区划分系统
CN109345434B (zh) 一种开放式小区内外部道路设计安全评价的方法
CN112132840B (zh) 一种车载行道树点云分类与特征信息提取方法
CN113112595B (zh) 综合体实景三维模型的点线面混合立体路网自动构建方法
He et al. What is the developmental level of outlying expansion patches? A study of 275 Chinese cities using geographical big data
CN111797188A (zh) 一种基于开源地理空间矢量数据的城市功能区定量识别方法
CN112365391A (zh) 一种基于“国土调查”数据的用地多样性计量方法
CN113505999A (zh) 应用于城市空间质量评估的指标计算方法
Ding et al. Urban-rural fringe identification and spatial form transformation during rapid urbanization: A case study in Wuhan, China
CN116151013A (zh) 小流域城市河道设计洪水的推求方法
CN111914052B (zh) 一种区域空间关联关系确定方法及装置
CN111291954A (zh) 一种城市景观量化分析方法
Sun et al. Using spatial syntax and GIS to identify spatial heterogeneity in the main urban area of Harbin, China
CN116246076B (zh) 一种传统民居院落肌理特征识别应用方法和系统
CN117494859A (zh) 一种基于地统计的城市碳排放形态分区构建的方法
CN116307927A (zh) 一种基于人流预测的生活圈规划合理性评估方法及系统
CN108874841A (zh) 基于格网化的旅游功能区识别方法
CN110070109B (zh) 一种适用于建筑排列密集区的地物散乱点自动聚类的方法
Yin et al. The ventilation path assessment of urban street in Wuhan
Vialard Typological atlases of block and block-face
Pont¹ et al. Typology based on three density variables central to Spacematrix using cluster analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE