WO2023071306A1 - 一种放大器和系统 - Google Patents

一种放大器和系统 Download PDF

Info

Publication number
WO2023071306A1
WO2023071306A1 PCT/CN2022/106352 CN2022106352W WO2023071306A1 WO 2023071306 A1 WO2023071306 A1 WO 2023071306A1 CN 2022106352 W CN2022106352 W CN 2022106352W WO 2023071306 A1 WO2023071306 A1 WO 2023071306A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
band
amplifier
optical
auxiliary
Prior art date
Application number
PCT/CN2022/106352
Other languages
English (en)
French (fr)
Inventor
谭斯斯
吴波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023071306A1 publication Critical patent/WO2023071306A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06716Fibre compositions or doping with active elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of optical communications, and more specifically, relate to an amplifier and a system.
  • the fifth generation mobile communication technology (5th generation mobile communication technology, 5G), augmented reality (augmented reality, AR), virtual reality (virtual reality, VR), cloud computing, high-definition video and the Internet of Things, etc.
  • 5G fifth generation mobile communication technology
  • AR augmented reality
  • VR virtual reality
  • cloud computing high-definition video and the Internet of Things, etc.
  • the optical amplifier is one of the most difficult optical devices in the spectrum bandwidth expansion technology.
  • the traditional conventional band ranges from 1530nm to 1565nm, which is located in the high emission coefficient range of the erbium-doped fiber (EDF) emission spectrum.
  • long-wavelength band, L generally 1565nm-1625nm
  • the L-band is located at the edge of the EDF emission spectrum, the emission coefficient is low, and the conversion efficiency of optical amplification is low. Therefore, the use of EDF to achieve L-band optical amplification requires high pump power, resulting in erbium-doped fiber
  • the overall power consumption of the doped fiber Amplifier (EDFA) increases, and at the same time, the cost of the wavelength division multiplexing (WDM) system becomes high.
  • the present application provides an optical fiber amplifier, which is used in the field of optical fiber communication, can improve the pumping efficiency of L-band optical amplifiers, and can realize dynamic gain adjustment of L-band optical amplification.
  • an embodiment of the present invention provides an optical fiber amplifier, which includes: at least one multiplexer, at least one amplification module, at least one auxiliary light source, the amplification module receives input signal light, and utilizes The pump light amplifies the input signal light to obtain output signal light, the input signal light is L-band signal light; the light source of the auxiliary light is used to generate auxiliary light, and the wavelength of the auxiliary light is C-band, so The optical power of the auxiliary light is less than the optical power of the input signal light, and the optical power of the auxiliary light is less than the optical power of the pumping light; the multiplexer is used to couple the auxiliary light into the in the amplification module described above.
  • this application utilizes the introduction of C-band auxiliary light into the fiber amplifier to suppress the accumulation of C-band ASE, thereby reducing the consumption of C-band ASE for pump power and improving the pumping efficiency of L-band signal light amplification.
  • the amplifier further includes: a wave splitter and a photodetector, the wave splitter is configured to separate the light to be measured in the output signal light, The wavelength of the light to be measured is in the C-band; the light detector is used to measure the optical power of the light to be measured, and the light source of the auxiliary light adjusts the auxiliary light based on the optical power of the light to be measured wavelength and/or optical power of the auxiliary light.
  • this application introduces a C/L splitter at the output end of the L-band optical amplifier to filter out the C-band light for power detection, and adjusts the power and wavelength of the C-band seed light through feedback to realize the dynamics of L-band optical amplification.
  • the gain adjustment reduces the loss of the L-band signal light, which is beneficial to the improvement of the performance of the L-band optical amplifier.
  • the amplifier further includes: a filter, configured to filter C-band spontaneous emission noise in the light to be measured.
  • the amplification module includes: a wavelength division multiplexer, a light source of pump light, and a gain fiber, and the wavelength division multiplexer is used to combine the The pump light is coupled into the gain fiber; the light source of the pump light is used to generate the pump light; the gain fiber uses the pump light to amplify the input signal light, and the gain fiber Erbium-doped fiber.
  • the wavelength of the pump light is smaller than the wavelength of the C-band signal light, and the wavelength of the first pump light is 980 nm or 1480 nm.
  • the amplifier provided in the present application uses common pump light when amplifying the L-band signal light, which can reduce the cost of the device compared with the C-band pump.
  • the multiplexer is arranged at the input end of the amplification module, and the multiplexer is also used to couple the input light with the auxiliary light generating first coupled signal light, wherein the multiplexer, configured to couple the auxiliary light into the amplifying module, includes: the multiplexer, configured to couple the first coupled signal light into In the amplification module.
  • the multiplexer is arranged at an output end of the amplification module.
  • an embodiment of the present invention provides an optical fiber communication system, including an optical amplifier site, where the optical amplifier site includes the aforementioned optical fiber amplifier, configured to amplify the input signal light.
  • FIG. 1 shows a schematic diagram of an optical fiber communication network to which this embodiment of the present application can be applied.
  • Fig. 2 shows a schematic diagram of the basic structure of an optical fiber amplifier.
  • Fig. 3 shows a schematic diagram of an L-band fiber amplifier based on C-band pump light.
  • FIG. 4 shows a schematic diagram of an optical fiber amplifier 400 provided by an embodiment of the present application.
  • FIG. 5 shows a schematic diagram of an optical fiber amplifier 500 provided by an embodiment of the present application.
  • FIG. 6 shows a schematic diagram of an optical fiber amplifier 600 provided by an embodiment of the present application.
  • FIG. 7 shows a schematic diagram of an optical fiber amplifier 700 provided by an embodiment of the present application.
  • FIG. 8 shows a schematic diagram of an optical fiber amplifier 800 provided by an embodiment of the present application.
  • FIG. 9 shows a schematic diagram of an optical fiber amplifier 900 provided by an embodiment of the present application.
  • Fig. 10 shows a schematic diagram of an optical fiber amplifier 1000 provided by an embodiment of the present application.
  • FIG. 11 shows a schematic diagram of an optical fiber amplifier 1100 provided by an embodiment of the present application.
  • FIG. 12 shows a schematic diagram of an optical fiber amplifier 1200 provided by an embodiment of the present application.
  • the technical solutions of the embodiments of the present application can be applied to optical fiber communication networks.
  • the technical solutions of the embodiments of the present application can be used in optical fiber amplifiers in optical fiber communication networks.
  • the optical fiber amplifiers are mainly located at optical amplifier sites and optical amplifiers in optical fiber communication networks. network element.
  • the technical solutions of the embodiments of the present application can be used to implement an optical fiber amplifier for amplifying L-band signals.
  • FIG. 1 is a schematic diagram of an application scenario applicable to the embodiment of the present application.
  • the optical fiber communication network may include an optical transmitter, an optical receiver, and may also include one or more optical fiber amplifiers.
  • the optical fiber amplifier is mainly located in the middle of the optical fiber line (or line optical fiber) in the optical fiber communication network to amplify the optical signal and extend the transmission distance of the optical signal.
  • FIG. 1 is only for illustration, and the present application is not limited thereto.
  • more optical devices may be included in the optical fiber communication network, or the embodiments of the present application may also be applied to any scenario including optical fiber amplifiers.
  • the fiber amplifier may include but not limited to: a pump laser, a wavelength division multiplexer (wavelength division multiplexer, WDM), an isolator, and a gain fiber.
  • WDM wavelength division multiplexer
  • the pump laser generates pump light
  • the WDM can combine the input optical signal (or input signal light) and the pump light together and send them to the gain fiber.
  • the gain fiber can be a fiber doped with a gain medium.
  • the pump light excites the gain medium ions in the gain fiber to a high energy level, and the input optical signal will cause the gain medium ions in the gain fiber to transition from a high energy level to a low energy level, and stimulated radiation occurs, thereby amplifying the input The optical signal, and the output optical signal is obtained.
  • the connection between the gain fiber and WDM, and between the gain fiber and the isolator can generally be made by fiber fusion splicing, which can reduce loss and noise figure.
  • the tail fiber of the WDM is fused with the gain fiber
  • the tail fiber of the isolator is fused with the gain fiber.
  • the gain fiber in the commonly used fiber amplifier is silica glass matrix erbium-doped fiber
  • the tail fiber of optical devices such as WDM and isolator can generally use silica glass matrix fiber, that is, the matrix of both is the same.
  • the optical fiber amplifier used to amplify the L-band in order to improve the pumping efficiency of the L-band optical amplifier, compared with the traditional 980nm or 1480nm pump, choose to use a long-wavelength pump with higher pumping efficiency, such as 1530nm
  • the C-band light is used as the pump light to amplify the L-band signal light.
  • the first stage of the three-stage L-band optical amplifier adopts the traditional 980nm pump uniform optical amplifier noise figure (noise figure, NF ), the latter two stages use 1530nm pumps with higher pump efficiency to achieve higher efficiency L-band optical amplification.
  • this application proposes an amplifier for L-band optical amplification and a method for amplifying optical signals.
  • the amplifier for L-band optical amplification and the method for amplifying optical signals provided in the present application can realize dynamic gain adjustment of L-band optical amplification by feedback adjusting the power and/or wavelength of the introduced C-band signal light.
  • the first, second, third, fourth and various numbers are only for convenience of description, and are not used to limit the scope of the embodiments of the present application. For example, distinguishing different states of the optical signal after different steps, etc.
  • the various optical components are connected by optical fibers.
  • the input or output pigtails of each component and the transmission optical fiber together form a section of optical fiber, and the optical fiber is used between the components. transmission of signal light.
  • a and/or B can be used to describe that there are three relationships between associated objects, for example, A and/or B, which can mean: A exists alone, and A and B exist at the same time , there are three cases of B alone. Among them, A and B can be singular or plural.
  • FIG. 4 shows a schematic diagram of an optical fiber amplifier 400 proposed by an embodiment of the present application, and the optical fiber amplifier 400 can be used to amplify L-band signal light.
  • the amplifier 400 may include:
  • a single-stage amplification module 410 a light source 420 for auxiliary light, and a multiplexer 430 .
  • the single-stage amplification module 410 is configured to receive input signal light, and use pump light to amplify the input signal light to obtain output signal light.
  • a light source 420 for auxiliary light is used to generate auxiliary light.
  • the multiplexer 430 is used to couple the auxiliary light into the amplification module.
  • the wavelength of the input signal light is L-band signal light
  • the wavelength of the auxiliary light is C-band light wavelength
  • the optical power of the auxiliary light is smaller than the optical power of the input signal light and the optical power of the pumping light.
  • the single-stage amplification module 410 may include a first WDM 411, an EDF 412, and a pump light source 413, and the pump light source 413 may be a 980nm or 1480nm laser pump.
  • the light source 420 of the auxiliary light generates C-band auxiliary light, which is input to the multiplexer 430 through an optical fiber, and the multiplexer 430 couples the received L-band input signal light and the C-band auxiliary light to generate a first coupled signal light, and input to the input end of the first WDM 411 through the output fiber, the first WDM 411 couples the pump light generated by the light source 413 of the first coupled signal light and the pump light into the second coupled signal light, and passes the output
  • the optical fiber is input to the input end of the EDF 412, and the EDF 412 uses the pump light in the second coupled signal light to amplify the L-band input signal light in the first coupled signal light to obtain the amplified L-band output signal light.
  • the light source 420 of the auxiliary light may be a semiconductor light emitting diode, a laser diode or a fiber laser.
  • the erbium ions in the EDF 412 absorb the photons of the pump light and jump to a high energy level, return to the base station through stimulated radiation, and release photons of the same wavelength as the L-band input signal light at the same time, thereby realizing Amplification of signal light.
  • the EDF 412 when the EDF 412 is pumped by 980nm or 1480nm laser, it will be accompanied by ASE based on EDF. That is, with the strengthening of the pump light, the number of particles will show an inverted distribution, and the spontaneous emission light generated by high-energy atoms will be continuously stimulated and amplified when propagating in the optical fiber, forming ASE in the C-band and ASE in the L-band.
  • the erbium ion absorbs the 980nm or 1480nm pump laser, it will first generate C-band ASE at the front end of EDF412, and the generated C-band ASE will be absorbed by the back-end EDF412 as a secondary pump source to shift the ASE spectrum to the L-band to form the ASE spectrum of the L-band.
  • the L-band ASE uses the tail of the erbium ion gain band, its emission and absorption coefficients are much lower than those of the C-band, and only a relatively long EDF can produce a more obvious L-band ASE. Therefore, the ASE that affects the pump conversion efficiency is mainly the ASE in the C-band.
  • the application In order to eliminate the consumption of the optical power of the pump light by the ASE of the C-band, the application simultaneously inputs the auxiliary light of the C-band into the EDF 412.
  • the optical power of the auxiliary light of the C-band is relatively large, therefore, the auxiliary light of the C-band
  • the light will first consume the optical power of the pump light. Since the auxiliary light of the C-band is a narrow-band light source compared with the ASE light source of the broadband C-band, when the same gain is obtained, the pump light consumed by the auxiliary light of the C-band
  • the optical power of the pump light is less than the optical power of the pump light consumed by the C-band ASE, so that the C-band ASE is suppressed.
  • the amplifier provided by this application can suppress the C-band ASE by introducing C-band auxiliary light, thereby improving the pumping efficiency of the L-band optical amplifier and improving the gain performance of the L-band optical amplifier.
  • the amplifier 400 may further include:
  • the first isolator 440 and/or the second isolator 450 are configured to provide first isolator 440 and/or the second isolator 450 .
  • the amplifier 400 may include a first isolator 440 .
  • a first optical isolator 440 can be arranged at the output end of the gain fiber, which can be used to isolate the reflected light from the output end of the gain fiber, so as to prevent the reflected light from entering the gain fiber and make the key performance such as noise figure
  • the index is changed to reduce the adverse effect of reflected light on the stability of the spectral output power of the light source.
  • the amplifier provided by the present application can isolate the influence of the reflected light at the output end on the amplification effect of the gain fiber, and improve the quality of the output signal light.
  • the amplifier 400 may include a first isolator 440 and a second isolator 450 .
  • a second optical isolator 450 can be arranged at the input end of the gain fiber to isolate the ASE noise leaked from the input end of the gain fiber.
  • the amplifier provided by the present application can eliminate the reverse ASE noise of the gain fiber at the input end, and at the same time isolate the influence of the reflected light at the output end on the amplification effect of the gain fiber, which can improve the working stability of the fiber amplifier and improve the output signal light the quality of.
  • FIG. 5 shows a schematic diagram of an optical fiber amplifier 500 proposed by an embodiment of the present application, and the optical fiber amplifier 500 can be used to amplify L-band signal light.
  • the multiplexer 530 is placed at the output end of the amplification module 510 thereof.
  • the multiplexer 530 reversely inputs the C-band auxiliary light from the output terminal of the amplifying module 510 .
  • the light source 520 of the auxiliary light generates the C-band auxiliary light, which is input into the multiplexer 530 through the optical fiber, and the multiplexer 530 inputs the received C-band auxiliary light into the EDF through the output optical fiber, and the first WDM 511
  • the pump light generated by the light source 513 of the L-band input signal light and the pump light is coupled into the third coupled signal light, and input to the input end of the EDF 512 through the output fiber, and the EDF 512 utilizes the pump light in the third coupled signal light.
  • Puguang amplifies the L-band input signal light to obtain the amplified L-band output signal light.
  • the amplifier 500 may further include: a first isolator 540 and/or a second isolator 550 .
  • the functions of the first isolator 540 and the second isolator 550 in the amplifier 500 can refer to the relevant description in FIG. 4 , and for the sake of brevity, details are not repeated here.
  • the multiplexer 530 should be located before the first isolator 540 along the transmission direction of the L-band output signal light.
  • the amplifier provided by this application can suppress the C-band ASE by introducing C-band auxiliary light, thereby improving the pumping efficiency of the L-band optical amplifier and improving the gain performance of the L-band optical amplifier.
  • the energy provided by a single pump source to the laser gain medium is limited, and often cannot meet the requirements of high-power lasers.
  • the solution provided by the embodiment of the present application can improve the pumping method, that is, adopt a bidirectional pumping method, such as the laser 600 and the laser 700 shown in FIG. 6 and FIG. 7 .
  • bidirectional pumping is used to provide greater energy to the laser to obtain high-power laser output.
  • the laser 600 shown in FIG. 6 may be an improvement on the structure of the laser 400 shown in FIG. Relevant instructions will not be repeated here.
  • the laser 700 shown in FIG. 7 may be an improvement on the structure of the laser 500 shown in FIG. 5. Therefore, for the convenience of description, other components in the laser 700 may refer to the relevant description in FIG. 5, here No longer.
  • the embodiment provided by this application introduces a C/L splitter at the output end of the amplifier to filter out the wavelength light of the C-band, and detects the optical power.
  • the dynamic gain adjustment of the L-band optical amplification is realized by feedback adjusting the optical power of the auxiliary light in the C-band and/or the wavelength of the auxiliary light in the C-band.
  • embodiments of the present application provide amplifier structures as shown in FIGS. 8 to 11 .
  • the dynamic gain adjustable L-band optical amplifier provided by the present application will be described with the amplifier 800 shown in FIG. 8 .
  • FIG. 8 shows a schematic diagram of an optical fiber amplifier 800 proposed by an embodiment of the present application, and the optical fiber amplifier 800 can be used to amplify L-band signal light.
  • the amplifier 800 may include:
  • a single-stage amplification module 810 a light source 820 for auxiliary light, a multiplexer 830 , a multiplexer 860 , and a photo detector (photo detector, PD) 870 .
  • the single-stage amplification module 810 is configured to receive input signal light, and use pump light to amplify the input signal light to obtain output signal light.
  • the multiplexer 830 is used to couple the auxiliary light into the amplification module.
  • the wave splitter 860 is used to separate the C-band light to be measured in the output signal light.
  • PD 870 used to measure the optical power of the C-band light to be measured.
  • the light source 820 of auxiliary light is used to generate auxiliary light, and meanwhile adjust the wavelength of the auxiliary light and/or the optical power of the auxiliary light based on the optical power of the light to be measured.
  • the wavelength of the input signal light is L-band signal light
  • the wavelength of the auxiliary light is C-band light wavelength
  • the optical power of the auxiliary light is smaller than the optical power of the input signal light and the optical power of the pumping light.
  • the single-stage amplification module 810 may include a first WDM 811, an EDF 812, and a pump light source 813, and the pump light source 813 may be a 980nm or 1480nm laser pump.
  • the light source 820 of the auxiliary light generates C-band auxiliary light, which is input into the multiplexer 830 through an optical fiber, and the multiplexer 830 couples the received L-band input signal light and the C-band auxiliary light to generate a first coupled signal light, and input to the input end of the first WDM 811 through the output optical fiber.
  • the first WDM 811 couples the first coupled signal light and the pumping light generated by the pumping light source 813 into the second coupled signal light, and inputs it to the input end of the EDF812 through the output fiber, and the EDF812 utilizes the second coupled signal light
  • the pump light in amplifies the L-band input signal light in the first coupled signal light to obtain the amplified L-band output signal light.
  • the output signal light of the L-band is transmitted to the input end of the wave splitter 860 through an optical fiber.
  • the wave splitter 860 divides the output signal light into two paths according to the wavelength, and one path is the amplified L-band light. , is output from the output end of the amplifier 800, and the other is the C-band light to be measured, which is transmitted to the PD 870 through an optical fiber.
  • the PD 870 detects the optical power of the light to be measured, and the detection result can be used for auxiliary light source adjustment The wavelength and/or power of the auxiliary light.
  • the corresponding relationship between the optical power of the C-band light to be measured and the gain of the L-band output signal light can be pre-stored in the PD 870, and the light source of the C-band auxiliary light can be adjusted according to the corresponding relationship.
  • 820 performs corresponding parameter setting, so as to change the optical wavelength and/or power of the output auxiliary light, so as to achieve the gain of the target L-band output signal light.
  • the threshold value of the optical power of the C-band light to be measured can be pre-stored in the PD 870, and if it is lower than the threshold value, it indicates that the gain of the L-band output signal light output by the amplifier 800 is small, At this time, by setting corresponding parameters of the light source 820 of the C-band auxiliary light, the optical wavelength and/or power of the output auxiliary light can be changed to achieve the target gain of the L-band output signal light.
  • the opposite threshold mechanism can also be set. For example, when the threshold is lower than the threshold, it indicates that the gain of the L-band output signal light output by the amplifier 800 is relatively large. At this time, the light source 820 of the C-band auxiliary light can be set. Corresponding parameters, so as to change the light wavelength and/or power of the output auxiliary light, so as to achieve the gain of the target L-band output signal light.
  • preset may include pre-definition, for example, it may be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate related information in PD 870, and this application does not make any specific implementation methods. limited.
  • the light source 820 of the auxiliary light may be a semiconductor light emitting diode, a laser diode or a fiber laser.
  • the amplifier provided by the present application can suppress the C-band ASE by introducing C-band auxiliary light, thereby improving the pumping efficiency of the L-band optical amplifier and improving the gain performance of the L-band optical amplifier.
  • using the correlation between the C-band optical power and the L-band signal amplification gain by detecting the C-band optical power at the output end of the optical amplifier, feedback and adjusting the power and/or wavelength of the C-band auxiliary light to realize the L-band optical amplifier dynamic gain adjustment.
  • the amplifier 800 may further include a filter 880, which is used to filter out the C-band spontaneous emission noise in the C-band light to be measured.
  • the amplifier 800 may further include:
  • the first isolator 840 and/or the second isolator 850 are configured to provide first isolator 840 and/or the second isolator 850 .
  • the first isolator 840 is used to isolate the reflected light from the output end of the gain fiber, thereby preventing the reflected light from entering the gain fiber to cause changes in key performance indicators such as noise index, and reducing the adverse effect of reflected light on the stability of the spectral output power of the light source.
  • the second isolator 850 is used to isolate ASE noise leaked from the input end of the gain fiber.
  • Figure 9- Figure 11 is based on Figure 5- Figure 7 respectively with the structure of the above-mentioned feedback regulation added, for the simplicity of description, the function of each element in Figure 9- Figure 11 can refer to the above-mentioned Figure 5 respectively - Fig. 7 and related explanations in conjunction with Fig. 8 , which will not be repeated here.
  • FIG. 12 shows a schematic diagram of an optical fiber amplifier 1200 proposed by an embodiment of the present application.
  • the optical fiber amplifier 1200 can be used for multi-stage amplification of L-band signal light and/or dynamic gain adjustment for L-band signal light.
  • the amplifier 1200 shown in FIG. 12 may be based on the structure of the amplifier 400 described in FIG. 4 or the structure of the amplifier 500 described in FIG. 5 or the structure of the amplifier 600 described in FIG. 6 or the amplifier 700 described in FIG. 7
  • the structure is cascaded to realize multi-stage L-band optical amplifiers with high pumping efficiency.
  • the amplifier 1200 shown in FIG. 12 may be based on the structure of the amplifier 800 described in FIG. 8 or the structure of the amplifier 900 described in FIG. 9 or the structure of the amplifier 1000 described in FIG. 10 or the structure of the amplifier 1100 described in FIG. 11 , cascaded multi-stage high pump efficiency L-band dynamic optical power tunable optical amplifier.
  • a gain flattening filter may be introduced between each stage of amplification modules of the amplifier 1200, or an adjustable optical attenuator may be used to adjust the gain spectrum.
  • a computer When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • a computer can be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer can be a personal computer, a server, or a network device, etc.
  • Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, computer instructions may be transmitted from a website site, computer, server or data center by wire (such as Coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) to another website site, computer, server or data center.
  • wire such as Coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless such as infrared, wireless, microwave, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

一种光纤放大器(400),该光纤放大器(400)包括:至少一个合波器(430)、至少一个放大模块(410),至少一个辅助光的光源(420),放大模块(410),接收输入信号光,并利用泵浦光放大输入信号光,得到输出信号光,输入信号光为L波段信号光,辅助光的光源(420),用于生成辅助光,辅助光的波长为C波段,辅助光的光功率小于输入信号光的光功率,且辅助光的光功率小于泵浦光的光功率;合波器(430),用于将辅助光耦合入放大模块(410)中。该光纤放大器(400)和光纤通信系统,通过利用在光纤放大器(400)中引入C波段的辅助光,来抑制C波段的ASE的积累,从而降低C波段ASE对于泵浦功率的消耗,提升L波段信号光放大的泵浦效率。

Description

一种放大器和系统
本申请要求于2021年10月28日提交中国国家知识产权局、申请号202111261103.X、申请名称为“一种放大器和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及光通信领域,并且更具体地,涉及一种放大器和系统。
背景技术
随着通信技术的发展,第五代移动通信技术(5th generation mobile communication technology,5G)、增强现实(augmented reality,AR)、虚拟现实(virtual reality,VR)、云计算、高清视频以及物联网等新业务与应用快速兴起,对网络流量的需求随之高速增长。当前,常用的两种提升网络传输容量的方案分别是通过增加光纤部署数量和提升单纤传输容量。其中基于波分技术的频谱带宽扩展具有实施方便灵活、经济效益高等优势,目前已成为首选的扩容方案。
作为光通信系统的重要组成部分,光放大器是频谱带宽扩展技术中难度最大的光器件之一。传统的常规波段(conventional band,C)范围从1530nm到1565nm,位于掺铒光纤(erbium-doped fiber,EDF)发射谱中高发射系数的区间,容易实现高粒子数反转,从而得到满足通信需求的大增益、低噪声的掺铒光纤放大器(EDFA)。但是随着C波段频谱资源耗尽,因此,利用长波长(long-wavelength band,L)波段(一般为1565nm-1625nm)来实现光通信是当前的研究热点。
相较于C波段,L波段位于EDF发射谱边缘,发射系数低,光放大的转化效率较低,因此,利用EDF实现L波段光放大对泵浦功率要求高,造成掺铒光纤放大器(erbium-doped fiber Amplifier,EDFA)的整体功耗增加,同时使得波分复用(wavelength division multiplexing,WDM)系统的成本变得高昂。
因此,如何提升L波段光放大器的泵浦效率,是亟待解决的问题。
发明内容
本申请提供一种光纤放大器,用于光纤通信领域,能够提升L波段光放泵浦效率,以及能够实现L波段光放大的动态增益调节。
第一方面,本发明实施例提供了一种光纤放大器,该光纤放大器包括:至少一个合波器、至少一个放大模块,至少一个辅助光的光源,所述放大模块,接收输入信号光,并利用泵浦光放大所述输入信号光,得到输出信号光,所述输入信号光为L波段信号光;所述辅助光的光源,用于生成辅助光,所述辅助光的波长为C波段,所述辅助光的光功率小于所述输入信号光的光功率,且所述辅助光的光功率小于所述泵浦光的光功率;所述合波器, 用于将所述辅助光耦合入所述放大模块中。
基于上述方案,本申请利用在光纤放大器中引入C波段的辅助光,来抑制C波段的ASE的积累,从而降低C波段ASE对于泵浦功率的消耗,提升L波段信号光放大的泵浦效率。
结合第一方面,在第一方面的某些实现方式中,所述放大器还包括:分波器、光探测器,所述分波器,用于分离所述输出信号光中的待测量光,所述待测量光的波长为C波段;所述光探测器,用于测量所述待测量光的光功率,所述辅助光的光源,基于所述待测量光的光功率调节所述辅助光的波长和/或所述辅助光的光功率。
基于上述方案,本申请通过在L波段光放大器的输出端引入C/L分波器滤出C波段光进行功率探测,通过反馈调节C波段种子光的功率及波长可以实现L波段光放大的动态增益调节,降低了对于L波段信号光的损耗,有利于L波段光放大器的性能提升。
结合第一方面,在第一方面的某些实现方式中,所述放大器还包括:滤波器,用于滤除所述待测量光中的C波段自发辐射噪声。
结合第一方面,在第一方面的某些实现方式中,所述放大模块包括:波分复用器、泵浦光的光源、增益光纤,所述波分复用器,用于将所述泵浦光耦合入所述增益光纤中;所述泵浦光的光源,用于生成所述泵浦光;所述增益光纤,利用所述泵浦光放大所述输入信号光,所述增益光纤为掺铒光纤。
结合第一方面,在第一方面的某些实现方式中,所述泵浦光的波长小于C波段信号光的波长,所述第一泵浦光的波长为980nm或1480nm。
基于上述方案,本申请提供的放大器,在对L波段信号光放大时,采用常见的泵浦光,相比于C波段的泵浦,能够降低装置的成本。
结合第一方面,在第一方面的某些实现方式中,所述合波器布置在所述放大模块的输入端,所述合波器还用于将所述输入光与所述辅助光耦合生成第一耦合信号光,其中,所述合波器,用于将所述辅助光耦合入所述放大模块中,包括:所述合波器,用于将所述第一耦合信号光耦合入所述放大模块中。
结合第一方面,在第一方面的某些实现方式中,所述合波器布置在所述放大模块的输出端。
第二方面,本发明实施例提供了一种光纤通信系统,包括光放站点,所述光放站点包括前述的光纤放大器,用于放大所述输入信号光。
附图说明
图1示出了本申请实施例可以应用的一种光纤通信网络示意图。
图2示出了一种光纤放大器的基本结构示意图。
图3示出了一种基于C波段泵浦光的L波段光纤放大器的装置示意图。
图4示出了本申请实施例提供的一种光纤放大器400的示意图。
图5示出了本申请实施例提供的一种光纤放大器500的示意图。
图6示出了本申请实施例提供的一种光纤放大器600的示意图。
图7示出了本申请实施例提供的一种光纤放大器700的示意图。
图8示出了本申请实施例提供的一种光纤放大器800的示意图。
图9示出了本申请实施例提供的一种光纤放大器900的示意图。
图10示出了本申请实施例提供的一种光纤放大器1000的示意图。
图11示出了本申请实施例提供的一种光纤放大器1100的示意图。
图12示出了本申请实施例提供的一种光纤放大器1200的示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于光纤通信网络中,如本申请实施例的技术方案可以用于光纤通信网络中的光纤放大器中,光纤放大器主要位于光纤通信网络中的光放站点及光放网元。本申请实施例的技术方案可以用于实现放大L波段信号的光纤放大器。
图1是适用于本申请实施例的应用场景的一示意图。在光纤通信网络中,可以包括光发射机,光接收机,还可以包括一个或者多个光纤放大器。如图1所示,光纤放大器在光纤通信网络中主要位于光纤线路(或者线路光纤)中间,实现光信号的放大,延长光信号的传输距离。
应理解,上述图1仅为示例性说明,本申请并未限定于此。例如,在光纤通信网络中还可以包括更多的光器件,或者,本申请的实施例还可以应用于包括光纤放大器的任何场景中。
为便于理解本申请实施例,首先结合图2简单介绍光纤放大器。如图2所示,光纤放大器例如可以包括但不限于:泵浦激光器、波分复用器(wavelength division multiplexer,WDM)、隔离器、增益光纤。其中,泵浦激光器产生泵浦光,WDM可以将输入的光信号(或者说输入的信号光)和泵浦光合在一起输送给增益光纤。增益光纤可以为其中掺杂了增益介质的光纤。在增益光纤中,泵浦光将增益光纤中增益介质离子激发到高能级,输入光信号输入后会导致增益光纤中增益介质离子从高能级跃迁到低能级时,发生受激辐射,从而放大输入的光信号,得到输出的光信号。
在光纤放大器中,增益光纤和WDM之间、增益光纤和隔离器之间的连接,一般可以采用光纤熔接的方式,这样可以降低损耗,降低噪声系数。例如在图2中,WDM的尾纤与增益光纤熔接在一起,隔离器的尾纤与增益光纤熔接在一起。在光纤通信网络中,常用的光纤放大器中的增益光纤是石英玻璃基质掺铒光纤,那么,WDM以及隔离器等光器件的尾纤一般都可以采用石英玻璃基质光纤,即两者基质相同。
当前,在用于放大L波段的光纤放大器中,为了提升L波段光放大器的泵浦效率,相较于传统的980nm或者1480nm泵浦,选择采用泵浦效率更高的长波长泵浦,例如1530nm的C波段光作为泵浦光对L波段的信号光进行放大。例如,在图3所示的多级(图3为三级)L波段咣当光纤放大器中,在三级L波段光放大器的第一级采用传统980nm泵浦一致光放噪声系数(noise figure,NF),后面的两级采用泵浦效率更高的1530nm泵浦,实现更高效率的L波段光放大。
然而,由于大功率的C波段泵浦信号的难获取性和高成本,以及该方案本质上也无法对光放大过程中产生的自发辐射光放大(amplified spontaneous emission,ASE)的累积进行抑制,因此,使得应用场景受到限制。
鉴于此,本申请提出了一种用于L波段光放大的放大器和放大光信号的方法,通过引 入C波段的信号光抑制C波段ASE的累计,降低C波段ASE对于泵浦光功率的消耗,从而来达到提升L波段信号光放大的泵浦效率。此外,本申请提供的用于L波段光放大的放大器和放大光信号的方法能够,通过反馈调节引入的C波段的信号光的功率和/或波长来实现L波段光放大的动态增益调节。
下面将结合附图详细说明本申请提供的各个实施例。
为了便于理解本申请实施例,作出以下说明。
第一、在下文示出的本申请实施例中,第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的步骤后光信号的不同状态等。
第二、在下文示出的本申请的实施例中,各个光学元件之间通过光纤相连,具体的,各个元件的输入或输出尾纤与传输光纤共同构成一段光纤,该光纤用于各元件之间信号光的传输。
第三、在下文示出的本申请实施例中,“和/或”可以用于描述关联对象存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。其中A,B可以是单数或者复数。
图4示出了本申请实施例提出的光纤放大器400的示意图,该光纤放大器400可以用于对L波段信号光进行放大。
在一种可实现的方式中,如图4所示,该放大器400可以包括:
单级放大模块410、辅助光的光源420、合波器430。
单级放大模块410,用于接收输入信号光,并利用泵浦光对输入信号光进行放大得到输出的信号光。
辅助光的光源420,用于生成辅助光。
合波器430,用于将辅助光耦合入放大模块中。
其中,该输入信号光的波长为L波段信号光,该辅助光的波长为C波段光波长,且该辅助光的光功率同时小于输入信号光的光功率以及泵浦光的光功率。
该单级放大模块410可以包括第一WDM 411、EDF 412、以及泵浦光的光源413,该泵浦光的光源413可以是980nm或者1480nm的激光泵浦。
具体地,辅助光的光源420生成C波段辅助光,通过光纤输入至合波器430中,该合波器430将接收到的L波段输入信号光以及该C波段辅助光耦合生成第一耦合信号光,并通过输出光纤输入至第一WDM 411的输入端,该第一WDM 411将第一耦合信号光与泵浦光的光源413生成的泵浦光耦合为第二耦合信号光,并通过输出光纤输入至EDF 412的输入端,该EDF 412利用第二耦合信号光中的泵浦光对第一耦合信号光中的L波段输入信号光进行放大,得到放大后的L波段的输出信号光。
需要说明的是,该辅助光的光源420可以是半导体发光二极管、激光二极管或者光纤激光器。
根据光纤放大器的原理可知,该EDF 412中的铒离子吸收泵浦光的光子跃迁至高能级,经过受激辐射回到基台,同时释放出与L波段输入信号光同波长的光子,从而实现对信号光的放大。
需要说明的是,该EDF 412被980nm或者1480nm激光泵浦时,会同时伴随着基于 EDF的ASE。即随着泵浦光的加强,粒子数将呈现反转分布,高能级原子产生的自发辐射光在光纤中传播时,不断地受激放大,形成C波段的ASE和L波段的ASE。不同的是,铒离子吸收980nm或者1480nm泵浦激光后,会首先在EDF412的前端产生C波段的ASE,产生的C波段ASE再被后端EDF412吸收,作为二次泵浦源从而使ASE谱位移到L波段形成L波段的ASE谱。由于L波段的ASE用到的是铒离子增益带的尾部,其发射和吸收系数都比C波段低得多,且只有比较长的EDF才能产生较明显的L波段ASE。因此,影响泵浦转换效率的ASE主要为C波段的ASE。
为了消除该C波段的ASE对泵浦光的光功率的消耗,本申请在EDF 412中同时输入C波段的辅助光,该C波段的辅助光的光功率较大,因此,该C波段的辅助光会首先消耗泵浦光的光功率,由于该C波段的辅助光与宽带C波段的ASE光源相比,为窄带光源,因此,当获得同样的增益时,该C波段的辅助光消耗的泵浦光的光功率小于C波段的ASE消耗的泵浦光的光功率,从而使得C波段的ASE得到抑制。
基于上述方案,本申请提供的放大器,通过引入C波段的辅助光,能够实现对C波段ASE的抑制,从而提升L波段光放大器的泵浦效率,提升L波段光放大器的增益性能。
在另一种可实现的方式中,如图4所示,该放大器400还可以包括:
第一隔离器440和/或第二隔离器450。
具体地,该放大器400可以包括第一隔离器440。
应理解,在放大器中或者包括放大器的系统中,由于增益光纤的输出端还会存在其他元件,这些元件与连接的增益光纤之间即使紧密耦合连接,也会存在部分光经过元件被反射重新进入到增益光纤的情况,因此,可以在增益光纤的输出端先布置一个第一光隔离器440,可以用于隔离来自增益光纤输出端的反射光,从而避免反射光进入增益光纤使得噪声指数等关键性能指标发生改变,减少反射光对光源的光谱输出功率稳定性产生的不良影响。
基于上述方案,本申请提供的放大器能够隔离输出端的反射光对增益光纤放大效果的影响,提升了输出信号光的质量。
或者,该放大器400可以包括第一隔离器440以及第二隔离器450。
应理解,在光纤放大器中,随着激活粒子从激发态返回基态并放大光信号的同时,也会产生受激粒子的随机非相干自发辐射。这种自发辐射可在任何方向,并可引起进一步受激辐射,且可被放大。简而言之,放大过程中将会产生非信号频段的放大,即ASE噪声。该ASE噪声可以从增益光纤的输入端泄露,从而影响前端部件的性能。因此,可以在增益光纤的输入端布置一个第二光隔离器450,用于隔离来自增益光纤输入端泄露的ASE噪声。
基于上述方案,本申请提供的放大器能够消除增益光纤在输入端处的反向ASE噪声,同时隔离输出端的反射光对增益光纤放大效果的影响,可以提高光纤放大器的工作稳定性以及提升输出信号光的质量。
图5示出了本申请实施例提出的光纤放大器500的示意图,该光纤放大器500可以用于对L波段信号光进行放大。
与图4所示的放大器400相比,在该放大器500中,合波器530放置在但其放大模块510的输出端。该合波器530从该放大模块510的输出端反向输入C波段辅助光。
具体地,辅助光的光源520生成C波段辅助光,通过光纤输入至合波器530中,该合波器530将接收到的C波段辅助光通过输出光纤输入至EDF中,该第一WDM 511将L波段输入信号光与泵浦光的光源513生成的泵浦光耦合为第三耦合信号光,并通过输出光纤输入至EDF 512的输入端,该EDF 512利用第三耦合信号光中的泵浦光对L波段输入信号光进行放大,得到放大后的L波段的输出信号光。
在一种可实现的方式中,如图5所示,该放大器500还可以包括:第一隔离器540和/或第二隔离器550。
需要说明的是,该放大器500的中第一隔离器540和第二隔离器550的作用可相应参考图4中的相关说明,为了简便,此处不再赘述。
此外,需要说明的是,在本申请实施例中,沿着L波段输出信号光的传输方向时,该合波器530应位于第一隔离器540之前。
应理解,该放大器500的中其他元件可相应的参考图4中的相关说明,为了简便,此处不再赘述。
基于上述方案,本申请提供的放大器,通过引入C波段的辅助光,能够实现对C波段ASE的抑制,从而提升L波段光放大器的泵浦效率,提升L波段光放大器的增益性能。
应理解,单一泵浦源对于激光增益介质提供的能量是有限的,常常不能满足大功率激光器的需求。为此,本申请实施例提供的方案,可以对泵浦的方式进行改进,即采用双向泵浦的方式,例如图6及图7所示的激光器600以及激光器700。通过对激光器的结构进行设计,采用双向泵浦为激光器提供更大的能量,以得到大功率的激光输出。
需要说明的是,对于图6所示的激光器600可以是对图4所示的激光器400的结构进行的改进,因此,为了说明的简便,该激光器600中其他元件可相应的参考图4中的相关说明,此处不再赘述。对于图7所示的激光器700可以是对图5所示的激光器500的结构进行的改进,因此,为了说明的简便,该激光器700中其他元件可相应的参考图5中的相关说明,此处不再赘述。
当前,为了实现放大器对放大的L波段输出光的动态增益调节,本申请提供的实施例在放大器的输出端引入C/L分波器滤出C波段的波长光,并进行光功率的探测,通过反馈调节C波段的辅助光的光功率和/或C波段的辅助光的波长,来实现L波段光放大的动态增益调节。分别基于图4至图7所示的放大器,本申请实施例提供了如图8至图11所示的放大器结构。
为了说明的简便性,以图8所示的放大器800对本申请提供的动态增益可调L波段光放大器进行说明。
图8示出了本申请实施例提出的光纤放大器800的示意图,该光纤放大器800可以用于对L波段信号光进行放大。
在一种可实现的方式中,如图8所示,该放大器800可以包括:
单级放大模块810、辅助光的光源820、合波器830、分波器860以及光电探测器(photo detector,PD)870。
单级放大模块810,用于接收输入信号光,并利用泵浦光对输入信号光进行放大得到输出的信号光。
合波器830,用于将辅助光耦合入放大模块中。
分波器860,用于分离输出信号光中的C波段待测量光。
PD 870,用于测量该C波段待测量光的光功率。
辅助光的光源820,用于生成辅助光,同时基于待测量光的光功率调节辅助光的波长和/或辅助光的光功率。
其中,该输入信号光的波长为L波段信号光,该辅助光的波长为C波段光波长,且该辅助光的光功率同时小于输入信号光的光功率以及泵浦光的光功率。
该单级放大模块810可以包括第一WDM 811、EDF 812、以及泵浦光的光源813,该泵浦光的光源813可以是980nm或者1480nm的激光泵浦。
具体地,辅助光的光源820生成C波段辅助光,通过光纤输入至合波器830中,该合波器830将接收到的L波段输入信号光以及该C波段辅助光耦合生成第一耦合信号光,并通过输出光纤输入至第一WDM 811的输入端。该第一WDM 811将第一耦合信号光与泵浦光的光源813生成的泵浦光耦合为第二耦合信号光,并通过输出光纤输入至EDF812的输入端,该EDF812利用第二耦合信号光中的泵浦光对第一耦合信号光中的L波段输入信号光进行放大,得到放大后的L波段的输出信号光。该L波段的输出信号光通过光纤传输至分波器860的输入端,该分波器860接收到输出信号后,按照波长将该输出信号光分为两路,一路为放大后的L波段光,由该放大器800的输出端输出,另一路为C波段的待测量光,通过光纤传输至PD 870中,该PD 870对该待测量光的光功率进行检测,该检测结果可用于辅助光源调节辅助光的波长和/或功率。
例如,在一种可实现的方式中,该PD 870中可以预存C波段待测量光的光功率与L波段输出信号光的增益之间的对应关系,根据该对应关系对C波段辅助光的光源820进行相应的参数设置,从而改变输出的辅助光的光波长和/或功率,以实现目标L波段输出信号光的增益。
或者,在另一种可实现的方式中,该PD 870中可以预存C波段待测量光的光功率的阈值,低于该阈值,表明该放大器800输出的L波段输出信号光的增益较小,此时,可通过设定C波段辅助光的光源820的相应参数,从而改变输出的辅助光的光波长和/或功率,以实现目标L波段输出信号光的增益。当然的,也可以设置相反的阈值机制,例如,低于该阈值时,表明该放大器800输出的L波段输出信号光的增益较大,此时,可通过设定C波段辅助光的光源820的相应参数,从而改变输出的辅助光的光波长和/或功率,以实现目标L波段输出信号光的增益。
应理解,该“预设”可包括预先定义,例如,可以通过在PD 870中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
需要说明的是,该辅助光的光源820可以是半导体发光二极管、激光二极管或者光纤激光器。
基于上述方案,本申请提供的放大器,通过引入C波段的辅助光,能够实现对C波段ASE的抑制,从而提升L波段光放大器的泵浦效率,提升L波段光放大器的增益性能。同时,利用C波段光功率与L波段信号放大增益的相关性,通过在光放大器的输出端进行C波段光功率的检测,反馈调节C波段辅助光的功率和/或波长,实现L波段光放大器的动态增益调节。
可选地,该放大器800中还可以包括滤波器880,该滤波器880用于滤除该C波段待测量光中的C波段自发辐射噪声。
在另一种可实现的方式中,如图8所示,该放大器800还可以包括:
第一隔离器840和/或第二隔离器850。
该第一隔离器840用于隔离来自增益光纤输出端的反射光,从而避免反射光进入增益光纤使得噪声指数等关键性能指标发生改变,减少反射光对光源的光谱输出功率稳定性产生的不良影响。
该第二隔离器850用于隔离来自增益光纤输入端泄露的ASE噪声。
应理解,图9-图11均是分别在图5-图7的基础上增加了上述反馈调节的结构,为了说明的简便性,图9-图11中各个元件的作用可分别参考上述图5-图7并结合图8的相关说明,此处不再赘述。
图12示出了本申请实施例提出的光纤放大器1200的示意图,该光纤放大器1200可以用于对L波段信号光进行多级放大和/或对L波段信号光动态增益调节。
应理解,该图12所示的放大器1200可以基于图4所述的放大器400的结构或图5所述的放大器500的结构或图6所述的放大器600的结构或图7所述的放大器700的结构,级联实现多级高泵浦效率的L波段光放大器。
或者该图12所示的放大器1200可以基于图8所述的放大器800的结构或图9所述的放大器900的结构或图10所述的放大器1000的结构或图11所述的放大器1100的结构,级联实现多级高泵浦效率的L波段动态光功率可调光放大器。
在一种可实现的方式中,该放大器1200的每一级放大模块间可引入增益平坦滤波器,或者可调光衰减器对增益谱进行调节。
针对于上述图4至图12的实施例,需要说明的是:
(1)实施例所描述的各个元件或模块或结构的编号仅为一种示例,并不构成对本申请的限制限制,本申请实施例中可以根据实际需要在各个结构图的基础上增添或者删除部分元件或模块或结构。
(2)上述图4至图12的实施例可以独立实施,也可以互相结合,例如,图4所示实施例和图12所示实施例互相结合,图5所示实施例和图12所示实施例互相结合等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的保护范围。
所属领域的技术人员可以清楚地了解到,为描述方便和简洁,上述描述的方法的具体工作过程,可以参考前述装置实施例中的对应过程,在此不再赘述
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。
当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。例如,计算机可以是个人计算机,服务器,或者网络设备等。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向 另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。关于计算机可读存储介质,可以参考上文描述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求和说明书的保护范围为准。

Claims (8)

  1. 一种放大器,其特征在于,包括:至少一个放大模块,至少一个辅助光的光源,以及至少一个合波器,
    所述放大模块,接收输入信号光,并利用泵浦光放大所述输入信号光,得到输出信号光,所述输入信号光为L波段信号光;
    所述辅助光的光源,用于生成辅助光,所述辅助光的波长为C波段,所述辅助光的光功率小于所述输入信号光的光功率,且所述辅助光的光功率小于所述泵浦光的光功率;
    所述合波器,用于将所述辅助光耦合入所述放大模块中。
  2. 根据权利要求1所述的放大器,其特征在于,所述放大器还包括:分波器、光探测器,
    所述分波器,用于分离所述输出信号光中的待测量光,所述待测量光的波长为C波段;
    所述光探测器,用于测量所述待测量光的光功率;
    所述辅助光的光源,基于所述待测量光的光功率调节所述辅助光的波长和/或所述辅助光的光功率。
  3. 根据权利要求2所述的放大器,其特征在于,所述放大器还包括:
    滤波器,用于滤除所述待测量光中的C波段自发辐射噪声。
  4. 根据权利要求1至3中任一项所述的放大器,其特征在于,所述放大模块包括:波分复用器、泵浦光的光源、增益光纤,
    所述波分复用器,用于将所述泵浦光耦合入所述增益光纤中;
    所述泵浦光的光源,用于生成所述泵浦光;
    所述增益光纤,利用所述泵浦光放大所述输入信号光,所述增益光纤为掺铒光纤。
  5. 根据权利要求1至4中任一项所述的放大器,其特征在于,
    所述泵浦光的波长小于C波段信号光的波长,所述泵浦光的波长为980nm或1480nm。
  6. 根据权利要求1至5中任一项所述的放大器,其特征在于,
    所述合波器布置在所述放大模块的输入端,所述合波器还用于将所述输入光与所述辅助光耦合生成第一耦合信号光,
    其中,所述合波器,用于将所述辅助光耦合入所述放大模块中,包括:
    所述合波器,用于将所述第一耦合信号光耦合入所述放大模块中。
  7. 根据权利要求1至5中任一项所述的放大器,其特征在于,
    所述合波器布置在所述放大模块的输出端。
  8. 一种光纤通信系统,其特征在于,包括:
    光放站点,所述光放站点包括如权利要求1-7任一项所述的光纤放大器,所述光纤放大器用于放大所述输入信号光。
PCT/CN2022/106352 2021-10-28 2022-07-19 一种放大器和系统 WO2023071306A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111261103.XA CN116053901A (zh) 2021-10-28 2021-10-28 一种放大器和系统
CN202111261103.X 2021-10-28

Publications (1)

Publication Number Publication Date
WO2023071306A1 true WO2023071306A1 (zh) 2023-05-04

Family

ID=86124129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106352 WO2023071306A1 (zh) 2021-10-28 2022-07-19 一种放大器和系统

Country Status (2)

Country Link
CN (1) CN116053901A (zh)
WO (1) WO2023071306A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116960714B (zh) * 2023-09-20 2024-01-30 武汉长进光子技术股份有限公司 一种光纤放大器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020101652A1 (en) * 2001-01-31 2002-08-01 Fujitsu Limited Optical amplifier for amplifying multi-wavelength light
EP1337017A2 (en) * 2002-02-14 2003-08-20 Samsung Electronics Co., Ltd. Long-band erbium doped fiber amplifier
CN1485670A (zh) * 2002-09-23 2004-03-31 三星电子株式会社 长波长光纤放大器
WO2007034563A1 (ja) * 2005-09-26 2007-03-29 Fujitsu Limited 光増幅器
CN101895345A (zh) * 2009-05-22 2010-11-24 华为技术有限公司 突发光信号放大方法、突发光放大器及系统和通信系统
CN102540622A (zh) * 2012-01-15 2012-07-04 中国人民解放军国防科学技术大学 基于增益竞争和混合泵浦的高增益低噪声掺镱光纤放大器
CN108462024A (zh) * 2018-05-29 2018-08-28 中国人民解放军国防科技大学 一种抑制高亮度窄线宽掺镱光纤放大器中热致模式不稳定的系统
CN109256662A (zh) * 2018-09-03 2019-01-22 华南理工大学 基于增益竞争和同带泵浦的l波段大功率光纤激光器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020101652A1 (en) * 2001-01-31 2002-08-01 Fujitsu Limited Optical amplifier for amplifying multi-wavelength light
EP1337017A2 (en) * 2002-02-14 2003-08-20 Samsung Electronics Co., Ltd. Long-band erbium doped fiber amplifier
CN1485670A (zh) * 2002-09-23 2004-03-31 三星电子株式会社 长波长光纤放大器
WO2007034563A1 (ja) * 2005-09-26 2007-03-29 Fujitsu Limited 光増幅器
CN101895345A (zh) * 2009-05-22 2010-11-24 华为技术有限公司 突发光信号放大方法、突发光放大器及系统和通信系统
CN102540622A (zh) * 2012-01-15 2012-07-04 中国人民解放军国防科学技术大学 基于增益竞争和混合泵浦的高增益低噪声掺镱光纤放大器
CN108462024A (zh) * 2018-05-29 2018-08-28 中国人民解放军国防科技大学 一种抑制高亮度窄线宽掺镱光纤放大器中热致模式不稳定的系统
CN109256662A (zh) * 2018-09-03 2019-01-22 华南理工大学 基于增益竞争和同带泵浦的l波段大功率光纤激光器

Also Published As

Publication number Publication date
CN116053901A (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
Mahdi et al. Long-wavelength EDFA gain enhancement through 1550 nm band signal injection
JPH1187822A (ja) 高い小信号利得を有する光繊維増幅器
US7665909B2 (en) System and method for implementing a high capacity unrepeatered optical communication system
Kasamatsu et al. Gain-shifted dual-wavelength-pumped thulium-doped fiber amplifier for WDM signals in the 1.48-1.51-μm wavelength region
US7072100B2 (en) Optical amplifier and gain tilt compensation method
WO2023071306A1 (zh) 一种放大器和系统
JP3217037B2 (ja) 多段光ファイバ増幅器
US8363311B2 (en) Optical amplifier and a method of light amplification
US6252700B1 (en) Erbium doped fiber amplifier suitable for long wavelength light signal
KR100326039B1 (ko) 흡수체를갖는광증폭기
Aozasa et al. S-band thulium-doped fiber amplifier employing high thulium concentration doping technique
Kasamatsu et al. Novel 1.50-µm band gain-shifted thulium-doped fiber amplifier by using dual wavelength pumping of 1.05 µm and 1.56 µm
KR100334809B1 (ko) 씨드-빔을 이용한 광대역 광원
Smart et al. Experimental comparison of 980 nm and 1480 nm-pumped saturated in-line erbium-doped fiber amplifiers suitable for long-haul soliton transmission systems
US6504647B1 (en) Optical fiber amplifier, a method of amplifying optical signals, optical communications system
Roy et al. Novel pumping schemes for thulium doped fiber amplifier
KR100326119B1 (ko) 씨드-빔을 이용한 엘-밴드 광섬유 증폭기
Aozasa et al. Highly efficient S-band thulium-doped fiber amplifier employing high-thulium-concentration doping technique
Hwang et al. Gain tilt control of L-band erbium-doped fiber amplifier by using a 1550-nm band light injection
CN113659415A (zh) 一种小功率双程脉冲放大光路结构
KR100269170B1 (ko) 광섬유 반사체를 이용한 광섬유증폭기
Wysocki et al. Options for gain-flattened erbium-doped fiber amplifiers
KR100219711B1 (ko) 평탄한 이득특성을 갖는 광섬유증폭기
US6624928B1 (en) Raman amplification
Mori et al. 980 nm band pumped Er3+-doped tellurite-based fibre amplifier with low-noise figure of less than 4.5 dB

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885210

Country of ref document: EP

Kind code of ref document: A1