WO2023071254A1 - 停堆瞬态不停机的运行系统及方法 - Google Patents

停堆瞬态不停机的运行系统及方法 Download PDF

Info

Publication number
WO2023071254A1
WO2023071254A1 PCT/CN2022/101691 CN2022101691W WO2023071254A1 WO 2023071254 A1 WO2023071254 A1 WO 2023071254A1 CN 2022101691 W CN2022101691 W CN 2022101691W WO 2023071254 A1 WO2023071254 A1 WO 2023071254A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
generator
steam turbine
shutdown
main
Prior art date
Application number
PCT/CN2022/101691
Other languages
English (en)
French (fr)
Inventor
张瑞祥
姚尧
孙文钊
康祯
祁沛垚
Original Assignee
西安热工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安热工研究院有限公司 filed Critical 西安热工研究院有限公司
Publication of WO2023071254A1 publication Critical patent/WO2023071254A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/04Safety arrangements
    • G21D3/06Safety arrangements responsive to faults within the plant
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D5/00Arrangements of reactor and engine in which reactor-produced heat is converted into mechanical energy
    • G21D5/04Reactor and engine not structurally combined
    • G21D5/08Reactor and engine not structurally combined with engine working medium heated in a heat exchanger by the reactor coolant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the disclosure belongs to the technical field of nuclear power, and in particular relates to an operation system and method for transient non-shutdown during shutdown.
  • the steam turbine of the conventional island is automatically shut down: the main steam valve/regulating valve of the steam turbine is closed, the generator outlet circuit breaker is opened, the sensible heat of the reactor and the remaining steam in the steam pipeline It enters the condenser for cooling through the side row.
  • the purpose of the present disclosure is to provide an operation system and method for non-shutdown in the transient state of reactor shutdown.
  • the system and method can increase power generation while avoiding thermal shock, and can normally export the heat of the reactor with high safety.
  • an operation system for transient non-shutdown during reactor shutdown including a steam generator, a main steam main pipe, a main steam valve/valve regulating group, a steam turbine, a condenser, a side discharge Valve group, side pipe, generator and generator outlet circuit breaker;
  • the outlet of the steam generator is divided into two routes, one of which is connected to the inlet of the steam turbine through the main steam valve/regulating valve group, and the other is connected through the bypass valve group It is connected with the inlet of the condenser, the exhaust port of the steam turbine is connected with the inlet of the condenser, the output shaft of the steam turbine is connected with the driving shaft of the generator, and the output end of the generator is connected to the power grid through the generator outlet circuit breaker. connect.
  • the outlet of the steam generator communicates with the inlet of the steam turbine through the main steam main pipe and the main steam valve/adjusting valve group.
  • the outlet of the steam generator communicates with the inlet of the condenser through a bypass valve group and a bypass pipe.
  • a non-shutdown operation method for transient shutdown including:
  • the steam turbine When the reactor is in the transient state of shutdown, the steam turbine is not interlocked and shut down, the generator outlet circuit breaker remains closed, the steam turbine and generator continue to run, the steam in the main steam main pipe enters the steam turbine to do work, and at the same time, the steam generates
  • the reactor continues to export the sensible heat and decay heat after the shutdown of the reactor in the form of forced circulation to generate steam, which is then supplied to the steam turbine through the main steam main pipe to do work, the bypass valve group is kept closed, and the steam turbine is in a state of rapid power reduction to match the The amount of steam produced by the generator, the main steam valve/regulating valve group is kept open and gradually adjusted to close, so as to gradually reduce the power of the steam turbine;
  • the steam turbine and generator are automatically shut down, the generator outlet circuit breaker is automatically opened, the main steam valve/regulating valve group is automatically closed, the bypass valve group is automatically opened, and the reactor waste heat is released in the steam
  • the low-temperature and low-pressure steam generated in the generator enters the condenser for cooling through the bypass valve group and the bypass pipe.
  • the preset load is 10% of the rated load of the steam turbine.
  • the pressure of the main steam main pipe after the steam turbine has been running for a period of time is obviously reduced.
  • the pressure fluctuation of the pipe will not have any impact on the main steam safety valve and the atmospheric release valve, and the safety is high; the continued operation of the steam turbine is conducive to the export of heat from the reactor, which makes the steam temperature and pressure significantly lower, and has a negative impact on the bypass pipeline and condenser.
  • the thermal shock is small; in addition, the generator outlet circuit breaker is used to delay opening to increase power generation, improve economic benefits, and have less impact on the power grid when disconnecting.
  • Fig. 1 is a schematic structural diagram of an operation system for transient non-shutdown during reactor shutdown according to an embodiment of the present disclosure.
  • 1 is the steam generator
  • 2 is the main steam pipe
  • 3 is the main steam valve/valve control group
  • 4 is the steam turbine
  • 5 is the condenser
  • 6 is the side valve group
  • 7 is the side pipe
  • 8 is the Generator
  • 9 is generator outlet circuit breaker.
  • FIG. 1 A schematic structural diagram according to an embodiment of the present disclosure is shown in the accompanying drawings.
  • the figures are not drawn to scale, with certain details exaggerated and possibly omitted for clarity of presentation.
  • the shapes of various regions and layers shown in the figure and their relative sizes and positional relationships are only exemplary, and may deviate due to manufacturing tolerances or technical limitations in practice, and those skilled in the art may Regions/layers with different shapes, sizes, and relative positions can be additionally designed as required.
  • the operating system of the embodiment of the present disclosure includes a steam generator 1, a main steam main pipe 2, a main steam valve/valve control group 3, a steam turbine 4, a condenser 5, and a bypass valve in the embodiment of the present disclosure.
  • the outlet of the steam generator 1 is divided into two paths, one of which is connected to the inlet of the steam turbine 4 through the main steam main pipe 2 and the main steam valve/adjusting valve group 3, and the other path is connected to the inlet of the steam turbine 4 through the side discharge valve group 6 and the side discharge pipeline 7
  • the inlet of the condenser 5 is connected, the exhaust port of the steam turbine 4 is connected with the inlet of the condenser 5, the output shaft of the steam turbine 4 is connected with the drive shaft of the generator 8, and the output end of the generator 8 passes through the outlet of the generator
  • the circuit breaker 9 is connected to the grid.
  • the steam turbine 4 When the reactor is in the shutdown transient state, the steam turbine 4 is not interlocked and shut down, the generator outlet circuit breaker 9 remains closed, the steam turbine 4 and the generator 8 continue to run, and the steam in the main steam main pipe 2 enters the steam turbine 4 acting.
  • the steam generator 1 continues to export the sensible heat and decay heat after the shutdown of the reactor in the form of forced circulation to generate steam, which is then supplied to the steam turbine 4 through the main steam main pipe 2 to do work.
  • the bypass valve group 6 remains closed, and the steam turbine 4 is in the state of rapid power reduction to match the steam production of steam generator 1, and the main steam valve/regulating valve group 3 is kept open and gradually adjusted to reduce the power of steam turbine 4.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Control Of Turbines (AREA)

Abstract

本公开提供了一种停堆瞬态不停机的运行系统及方法,该系统包括蒸汽发生器、主蒸汽母管、主汽阀/调阀组、汽轮机、凝汽器、旁排阀组、旁排管道、发电机及发电机出口断路器;蒸汽发生器的出口分为两路,其中一路经主汽阀/调阀组与汽轮机的入口相连通,另一路经旁排阀组与凝汽器的入口相连通,汽轮机的排汽口与凝汽器的入口相连通,汽轮机的输出轴与发电机的驱动轴相连接,发电机的输出端经发电机出口断路器与电网相连接。

Description

停堆瞬态不停机的运行系统及方法
相关申请的交叉引用
本申请基于申请号为202111258578.3、申请日为2021年10月27日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开属于核电技术领域,具体涉及一种停堆瞬态不停机的运行系统及方法。
背景技术
当前核电机组在反应堆出现异常停堆而常规岛可用的瞬态时,常规岛汽轮机自动停机:汽轮机主汽阀/调阀关闭,发电机出口断路器分闸,反应堆显热和蒸汽管线剩余的蒸汽通过旁排进入凝汽器冷却。
在上述运行方式中,汽轮机主汽阀/调阀关闭瞬间,主蒸汽管道压力陡增,造成压力冲击,可能导致主蒸汽管道上大气释放阀和安全阀意外开启,安全性较低。汽轮机停运延缓了反应堆热量的导出。反应堆显热和蒸汽管线剩余的高温高压蒸汽通过旁排进入凝汽器,对旁排管线和凝汽器产生热冲击。停堆同时发电机出口断路器分闸,减少了发电量,降低了经济效益,同时对电网产生冲击。
发明内容
本公开的目的在于提供一种停堆瞬态不停机的运行系统及方法,该系统及方法能够提高发电量,同时避免热冲击,并且能够正常将反应堆的热量导出,安全性较高。
根据本公开实施例的第一方面,提供了一种停堆瞬态不停机的运行系统,包括蒸汽发生器、主蒸汽母管、主汽阀/调阀组、汽轮机、凝汽器、旁排阀组、旁排管道、发电机及发电机出口断路器;蒸汽发生器的出口分为两路,其中一路经主汽阀/调阀组与汽轮机的入口相连通,另一路经旁排阀组与凝汽器的入口相连通,汽轮机的排汽口与凝汽器的入口相连通,汽轮机的输出轴与发电机的驱动轴相连接,发电机的输出端经发电机出口断路器与电网相连接。
在一些实施例中,蒸汽发生器的出口经主蒸汽母管及主汽阀/调阀组与汽轮机的入口相连通。
在一些实施例中,蒸汽发生器的出口经旁排阀组及旁排管道与凝汽器的入口相连通。
根据本公开实施例的第二方面,提供了一种停堆瞬态不停机的运行方法,包括:
当反应堆处于停堆瞬态时,汽轮机不联锁停运,发电机出口断路器保持合闸,汽轮机及发电机继续保持运行,主蒸汽母管中的蒸汽进入到汽轮机中做功,同时,蒸汽发生器持续以强迫循环的方式导出反应堆停堆后的显热及衰变热并产生蒸汽,然后经主蒸汽母管供给汽轮机做功,旁排阀组保持关闭,汽轮机处于快速降功率运行状态,以匹配蒸 汽发生器的蒸汽产生量,主汽阀/调阀组保持开启并逐渐调节关小,以逐渐降低汽轮机的功率;
当汽轮机的负荷降低至预设负荷时,则触发汽轮机及发电机自动停机,发电机出口断路器自动分闸,主汽阀/调阀组自动关闭,旁排阀组自动打开,反应堆余热在蒸汽发生器中产生的低温低压蒸汽通过旁排阀组及旁排管道进入凝汽器中冷却。
在一些实施例中,所述预设负荷为10%的汽轮机的额定负荷。
本公开实施例的停堆瞬态不停机的运行系统及方法在具体操作时,汽轮机运行一段时间后主蒸汽母管的压力明显降低,此时主汽阀/调阀组关闭瞬间,主蒸汽母管的压力波动对主蒸汽安全阀及大气释放阀不会产生任何影响,安全性较高;汽轮机继续运行有利于反应堆热量的导出,使得蒸汽温度及压力明显降低,对旁排管线及凝汽器产生热冲击较小;另外,通过发电机出口断路器延时分闸,以增加发电量,提升经济效益,解列时对电网影响更小。
附图说明
图1为本公开实施例的停堆瞬态不停机的运行系统的结构示意图。其中,1为蒸汽发生器、2为主蒸汽母管、3为主汽阀/调阀组、4为汽轮机、5为凝汽器、6为旁排阀组、7为旁排管道、8为发电机、9为发电机出口断路器。
具体实施方式
为了使本技术领域的人员更好地理解本公开方案,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分的实施例,不是全部的实施例,而并非要限制本公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要的混淆本公开的概念。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本公开保护的范围。
在附图中示出了根据本公开实施例的结构示意图。这些图并非是按比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。
参考图1,本公开实施例的停堆瞬态不停机的运行系统包括蒸汽发生器1、主蒸汽母管2、主汽阀/调阀组3、汽轮机4、凝汽器5、旁排阀组6、旁排管道7、发电机8及发电机出口断路器9。
蒸汽发生器1的出口分为两路,其中一路经主蒸汽母管2及主汽阀/调阀组3与汽轮机4的入口相连通,另一路经旁排阀组6及旁排管道7与凝汽器5的入口相连通,汽轮机4的排汽口与凝汽器5的入口相连通,汽轮机4的输出轴与发电机8的驱动轴相连接, 发电机8的输出端经发电机出口断路器9与电网相连接。
本公开实施例的停堆瞬态不停机的运行方法包括:
当反应堆处于停堆瞬态时,汽轮机4不联锁停运,发电机出口断路器9保持合闸,汽轮机4及发电机8继续保持运行,主蒸汽母管2中的蒸汽进入到汽轮机4中做功。同时,蒸汽发生器1持续以强迫循环的方式导出反应堆停堆后的显热及衰变热并产生蒸汽,然后经主蒸汽母管2供给汽轮机4做功,此时旁排阀组6保持关闭,汽轮机4处于快速降功率运行状态,以匹配蒸汽发生器1的蒸汽产生量,主汽阀/调阀组3保持开启并逐渐调节关小,以降低汽轮机4的功率。
当汽轮机4的负荷降低至10%的额定负荷时,则触发汽轮机4及发电机8自动停机,发电机出口断路器9自动分闸,主汽阀/调阀组3自动关闭,旁排阀组6自动打开,反应堆余热在蒸汽发生器1中产生的低温低压蒸汽通过旁排阀组6及旁排管道7进入凝汽器5中冷却。

Claims (5)

  1. 一种停堆瞬态不停机的运行系统,包括:蒸汽发生器(1)、主蒸汽母管(2)、主汽阀/调阀组(3)、汽轮机(4)、凝汽器(5)、旁排阀组(6)、旁排管道(7)、发电机(8)及发电机出口断路器(9);
    所述蒸汽发生器(1)的出口分为两路,其中一路经所述主汽阀/调阀组(3)与所述汽轮机(4)的入口相连通,另一路经所述旁排阀组(6)与所述凝汽器(5)的入口相连通,所述汽轮机(4)的排汽口与所述凝汽器(5)的入口相连通,所述汽轮机(4)的输出轴与所述发电机(8)的驱动轴相连接,所述发电机(8)的输出端经所述发电机出口断路器(9)与电网相连接。
  2. 根据权利要求1所述的停堆瞬态不停机的运行系统,其中,所述蒸汽发生器(1)的出口经所述主蒸汽母管(2)及所述主汽阀/调阀组(3)与所述汽轮机(4)的入口相连通。
  3. 根据权利要求2所述的停堆瞬态不停机的运行系统,其中,所述蒸汽发生器(1)的出口经所述旁排阀组(6)及所述旁排管道(7)与所述凝汽器(5)的入口相连通。
  4. 一种停堆瞬态不停机的运行方法,其中,基于权利要求1至3中任一项所述的停堆瞬态不停机的运行系统,所述停堆瞬态不停机的运行方法包括:
    当反应堆处于停堆瞬态时,汽轮机(4)不联锁停运,发电机出口断路器(9)保持合闸,所述汽轮机(4)及发电机(8)继续保持运行,主蒸汽母管(2)中的蒸汽进入到所述汽轮机(4)中做功,同时,蒸汽发生器(1)持续以强迫循环的方式导出反应堆停堆后的显热及衰变热并产生蒸汽,然后经所述主蒸汽母管(2)供给所述汽轮机(4)做功,旁排阀组(6)保持关闭,所述汽轮机(4)处于快速降功率运行状态,以匹配所述蒸汽发生器(1)的蒸汽产生量,主汽阀/调阀组(3)保持开启并逐渐调节关小,以逐渐降低所述汽轮机(4)的功率;
    当所述汽轮机(4)的负荷降低至预设负荷时,则触发所述汽轮机(4)及所述发电机(8)自动停机,所述发电机出口断路器(9)自动分闸,所述主汽阀/调阀组(3)自动关闭,所述旁排阀组(6)自动打开,反应堆余热在所述蒸汽发生器(1)中产生的低温低压蒸汽通过所述旁排阀组(6)及旁排管道(7)进入凝汽器(5)中冷却。
  5. 根据权利要求4所述的停堆瞬态不停机的运行方法,其中,所述预设负荷为10%的所述汽轮机(4)的额定负荷。
PCT/CN2022/101691 2021-10-27 2022-06-27 停堆瞬态不停机的运行系统及方法 WO2023071254A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111258578.3A CN113990536B (zh) 2021-10-27 2021-10-27 一种停堆瞬态不停机的运行系统及方法
CN202111258578.3 2021-10-27

Publications (1)

Publication Number Publication Date
WO2023071254A1 true WO2023071254A1 (zh) 2023-05-04

Family

ID=79742869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101691 WO2023071254A1 (zh) 2021-10-27 2022-06-27 停堆瞬态不停机的运行系统及方法

Country Status (2)

Country Link
CN (1) CN113990536B (zh)
WO (1) WO2023071254A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113990536B (zh) * 2021-10-27 2024-03-26 西安热工研究院有限公司 一种停堆瞬态不停机的运行系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129707A (en) * 1980-03-14 1981-10-12 Toshiba Corp Controlling device for cooling of bypass steam in steam turbine
JPH05134090A (ja) * 1991-11-13 1993-05-28 Toshiba Corp 全容量タービンバイパス原子力プラント
CN110259532A (zh) * 2019-07-10 2019-09-20 西安热工研究院有限公司 压水堆核电机组二回路热力系统自适应供汽系统及方法
CN111140299A (zh) * 2020-01-14 2020-05-12 西安热工研究院有限公司 一种核电站瞬态工况下除氧器加热汽源配置系统及方法
CN113990536A (zh) * 2021-10-27 2022-01-28 西安热工研究院有限公司 一种停堆瞬态不停机的运行系统及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5268939A (en) * 1992-10-19 1993-12-07 General Electric Company Control system and method for a nuclear reactor
CN106981322B (zh) * 2017-04-26 2018-10-23 西安热工研究院有限公司 一种用于验证高温气冷堆启停堆设备功能的系统及方法
CN109147976A (zh) * 2017-06-16 2019-01-04 苏州热工研究院有限公司 一种应用于核电站的安稳装置切机方法
CN109767852B (zh) * 2019-02-22 2024-06-04 西安热工研究院有限公司 一种用于反应堆紧急停堆的二回路安全系统及其工作方法
CN112768101A (zh) * 2021-02-07 2021-05-07 西安热工研究院有限公司 一种高温气冷堆核电机组滑压启动的系统和方法
CN113187563A (zh) * 2021-05-13 2021-07-30 西安热工研究院有限公司 一种采用磁流体发电装置的闭式高温气冷堆系统与方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129707A (en) * 1980-03-14 1981-10-12 Toshiba Corp Controlling device for cooling of bypass steam in steam turbine
JPH05134090A (ja) * 1991-11-13 1993-05-28 Toshiba Corp 全容量タービンバイパス原子力プラント
CN110259532A (zh) * 2019-07-10 2019-09-20 西安热工研究院有限公司 压水堆核电机组二回路热力系统自适应供汽系统及方法
CN111140299A (zh) * 2020-01-14 2020-05-12 西安热工研究院有限公司 一种核电站瞬态工况下除氧器加热汽源配置系统及方法
CN113990536A (zh) * 2021-10-27 2022-01-28 西安热工研究院有限公司 一种停堆瞬态不停机的运行系统及方法

Also Published As

Publication number Publication date
CN113990536B (zh) 2024-03-26
CN113990536A (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
CN109296408B (zh) 一种给泵汽轮机汽源切换控制方法
CN111140299A (zh) 一种核电站瞬态工况下除氧器加热汽源配置系统及方法
CN206035552U (zh) 热电联供汽轮机系统
CN206055732U (zh) 一种新型供热机组
WO2023071254A1 (zh) 停堆瞬态不停机的运行系统及方法
CN109767852B (zh) 一种用于反应堆紧急停堆的二回路安全系统及其工作方法
CN111255529B (zh) 供热切缸机组运行时快速响应自动发电控制系统及方法
WO2021179660A1 (zh) 核电厂非能动脉冲冷却方法以及系统
CN210118175U (zh) 压水堆核电机组二回路热力系统自适应供汽系统
CN110131003A (zh) 一种高温气冷堆核电机组二回路启停的系统和方法
CN115263476B (zh) 一种超临界二氧化碳串联式双透平发电系统的控制方法
CN211343042U (zh) 一种核电站瞬态工况下除氧器加热汽源配置系统
CN106246251A (zh) 联合循环热电联供系统及其高排抽汽控制方法
CN211879023U (zh) 核电厂汽机旁路系统
CN113374539B (zh) 双缸双压余热发电机组的进汽控制系统及其补汽控制方法
CN206572497U (zh) 一种加热核电机组蒸发器给水的系统
CN113107625A (zh) 一种多热源的宽负荷低压工业供汽系统及工作方法
CN113250770A (zh) 一种火电机组无外来汽源启动系统及方法
CN112081635A (zh) 一种消除汽轮机中压缸鼓风现象的方法及系统
CN114876597B (zh) 一种耦合熔盐储能实现火电机组孤岛运行系统及方法
CN213235139U (zh) 一种通过向心涡轮机供热的蒸汽能量梯级利用系统
US3951737A (en) Power generating plant with a gas-cooled nuclear reactor with closed gas circulation
CN108506921B (zh) 一种电站锅炉的中高压工业供汽系统及方法
CN217001994U (zh) 一种高参数联合循环超发空冷机组
CN210637123U (zh) 一种塔式光热电站旁路阀减压系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885160

Country of ref document: EP

Kind code of ref document: A1