WO2023071156A1 - Fmcw激光雷达及其光路转换模块、探测方法 - Google Patents

Fmcw激光雷达及其光路转换模块、探测方法 Download PDF

Info

Publication number
WO2023071156A1
WO2023071156A1 PCT/CN2022/093560 CN2022093560W WO2023071156A1 WO 2023071156 A1 WO2023071156 A1 WO 2023071156A1 CN 2022093560 W CN2022093560 W CN 2022093560W WO 2023071156 A1 WO2023071156 A1 WO 2023071156A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
module
optical path
output
signal
Prior art date
Application number
PCT/CN2022/093560
Other languages
English (en)
French (fr)
Inventor
潘政清
孙恺
向少卿
Original Assignee
上海禾赛科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海禾赛科技有限公司 filed Critical 上海禾赛科技有限公司
Publication of WO2023071156A1 publication Critical patent/WO2023071156A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the embodiment of this description relates to the field of optical detection technology, and in particular to an FMCW lidar, an optical path conversion module, and a detection method thereof.
  • FMCW lidar emits frequency-modulated continuous laser light as detection light, and there is a certain frequency shift between the echo signal reflected by obstacles and the corresponding optical signal, and space detection is realized by measuring the frequency shift.
  • a light source and corresponding detectors are usually called a "line", and multiple light sources and corresponding detectors are used to form a multi-line radar, and multiple light sources are used to sequentially emit detection light from different angles. way to detect.
  • the lidar can reduce the angle between two beams of detection light adjacent to the spatial angle, thereby improving the angular resolution.
  • the FMCW lidar using coherent detection has higher requirements on the light source, such as narrow line width.
  • the line width represents the full width at half maximum of the emission spectrum of the laser light source, that is, the width between the two frequencies corresponding to half the peak height.
  • the line width of the light source is narrowed to improve the coherence of the detection signal.
  • an external cavity feedback device is used in the light source to select the frequency, so that the light of a specific frequency/wavelength can be output.
  • each light source needs an amplifier to enhance the optical power. Therefore, the structure of the light source of the FMCW lidar is complicated, the cost of the light source is high, and the volume is large. Therefore, if the number of lines of the FMCW lidar is increased by increasing the number of light sources, the cost of the FMCW lidar will be very high, and the radar will be too large.
  • the embodiment of this specification provides an FMCW laser radar and its optical path conversion module and detection method, which can increase the number of lines of the FMCW laser radar and effectively reduce the hardware cost of the FMCW laser radar.
  • This specification provides an optical path conversion module for FMCW laser radar, which is coupled with the optical transmission module and is suitable for receiving and outputting the optical signal sent by the optical transmission module.
  • the optical signal is a frequency-modulated continuous laser, and the optical path conversion
  • the module includes: at least one first port and a plurality of second ports; wherein:
  • the at least one first port is coupled to the light emitting module
  • the plurality of second ports are arranged at least along the first direction, and are arranged on the focal plane of the FMCW laser radar transmitting optical component, and the optical signals output by different second ports are directed at different angles after passing through the transmitting optical component shoot out
  • the optical path conversion module is adapted to receive the optical signal input from the first port, and select one or more second ports to output.
  • the optical path conversion module includes a first conversion device, and the first conversion device is adapted to perform one-terminal output or multi-terminal output of the optical signal of the optical transmission module.
  • the first conversion device includes a first light splitting unit; the first light splitting unit includes: a first input end corresponding to the first port and a plurality of first output ends, adapted to convert the The optical signal is divided into multiple channels, which are respectively output from the multiple first output terminals.
  • the first output terminals are in one-to-one correspondence with the second ports.
  • the first conversion device further includes: a light intensity adjustment unit, wherein:
  • the light intensity adjustment unit is coupled to the plurality of first output terminals, and is adapted to enhance the detection light output from at least one first output terminal, and attenuate the detection light output from the remaining first output terminals.
  • the light intensity adjustment unit includes a semiconductor optical amplifier.
  • the first conversion device includes a first optical switch assembly; the first optical switch assembly includes a plurality of first transmission paths, and the plurality of first transmission paths are located at the first port and the second port Between; the first optical switch assembly is adapted to transmit the optical signal along at least one first transmission path.
  • the optical path conversion module further includes a second conversion device adapted to perform one-terminal output or multi-terminal output of the optical signal output by the first conversion device.
  • the second converting device includes a second splitting unit, and the second splitting unit includes: a second input terminal and a plurality of second output terminals; the second input terminal is coupled to the first converting device connected, the plurality of second output terminals correspond to the plurality of second ports respectively; the second splitting unit is adapted to divide the received optical signal into multiple paths, and output terminal output.
  • the second conversion device includes: a second optical switch assembly; the second optical switch assembly includes a plurality of second transmission paths, and the second transmission paths are located between the first conversion device and the second port Between; the second optical switch assembly is adapted to transmit the optical signal along at least one second transmission path.
  • the optical path converting module further includes: an amplifying device, located between the optical transmitting module and the first converting device, adapted to amplify the optical signal output by the optical transmitting module, and convert the amplified light The signal is output to the first converting means.
  • an amplifying device located between the optical transmitting module and the first converting device, adapted to amplify the optical signal output by the optical transmitting module, and convert the amplified light The signal is output to the first converting means.
  • the optical path conversion module is further adapted to determine the second port for outputting the optical signal according to the optical path control signal.
  • the second port of the optical path conversion module is further adapted to receive an echo signal of the optical signal reflected by an obstacle.
  • the second ports are arranged at equal intervals.
  • the second ports are not equidistantly arranged.
  • the interval between adjacent second ports located in the central area is smaller than the interval between adjacent second ports located in the edge area.
  • This manual also provides a FMCW lidar, including:
  • An optical transmitting module is suitable for emitting an optical signal, and the optical signal is a frequency-modulated continuous laser;
  • the optical path conversion module described in any one of the above embodiments is coupled to the optical transmitting module, and is suitable for receiving the optical signal and selecting one or more second ports for output.
  • the conversion frequency of the optical path conversion module is configured according to the preset angular resolution and scanning frequency of the FMCW lidar.
  • the FMCW lidar also includes:
  • a frequency mixing module adapted to mix the local oscillator light with the echo signal reflected by the optical signal by the obstacle to obtain a beat frequency signal, the local oscillator light is part of the light separated from the optical signal;
  • a light receiving module adapted to perform photoelectric conversion on the beat frequency signal
  • the data processing module is suitable for sampling and data processing the electrical signal output by the receiving module.
  • the frequency mixing module is in one-to-one correspondence with the second ports of the optical path conversion module.
  • the FMCW lidar further includes: a scanning module adapted to reflect the optical signal, and reflect the echo signal to the optical path conversion module.
  • the scanning module deflects the optical signal at least in a second direction, and the first direction and the second direction have an included angle.
  • the scanning module includes at least one of the following:
  • a two-dimensional scanning device adapted to rotate about a first axis of rotation at a first frequency and about a second axis of rotation at a second frequency;
  • one one-dimensional scanning device is adapted to rotate around a first axis of rotation at a first frequency, and the other one-dimensional scanning device rotates along a second axis of rotation at a second frequency;
  • first direction is perpendicular to the first rotation axis
  • second direction is perpendicular to the second rotation axis
  • the scanning module includes a one-dimensional scanning device that rotates around a third rotation axis at a third frequency.
  • the third rotation axis is parallel to the first direction.
  • This specification also provides a detection method for FMCW lidar, including:
  • A1 generating an optical signal, the optical signal being a frequency-modulated continuous laser
  • A2) Select at least one from a plurality of second ports to output the optical signal; wherein, the second ports are arranged at least along the first direction; the plurality of second ports are arranged on the FMCW lidar emission On the focal plane of the optical component, the optical signals output from different second ports pass through the emitting optical component and exit towards different angles;
  • the detection method also includes:
  • the detection method also includes:
  • the optical path conversion module for FMCW lidar according to the embodiment of this specification, after the optical transmission module sends out the optical signal, the optical path conversion module can receive the optical signal through at least one first port coupled with the optical transmission module, And one or more second ports arranged at the focal plane of the transmitting optical component can be selected to output the optical signal; after the optical signals output by different second ports are shaped by the transmitting optical component, they will exit towards different angles, and through the optical path conversion The module selects and switches the second port of the output optical signal, and can emit optical signals to different angles for detection, which is equivalent to multiple "lines".
  • the optical path conversion module can flexibly convert the optical path of the optical signal, so that the FMCW lidar has the ability to output multiple optical signals, and can be adjusted according to the number of lines, which improves the diversity and universality of the number of lines of the FMCW lidar. Adaptability; and, since the structure of the optical emission module is not changed, the number of light sources does not need to be increased, but the optical path conversion is performed through the optical path conversion module, so that the optical emission module of the FMCW lidar can achieve more lines with a smaller number of light sources.
  • the volume of the optical path conversion module provided by the embodiment of this specification is much smaller than the light emitting module including the external cavity feedback device and the amplifier, and can even be integrated on a chip, and the device cost is very low. Therefore, the optical path conversion module provided by the embodiment of this specification can increase the number of lines of the FMCW lidar and effectively reduce the hardware cost of the FMCW lidar.
  • Fig. 1 is a schematic connection diagram of an optical path conversion module for FMCW lidar provided by the embodiment of this specification.
  • FIG. 2 is a structural block diagram of an optical path conversion module provided by an embodiment of this specification.
  • Fig. 3 is a structural block diagram of another optical path conversion module provided by the embodiment of this specification.
  • FIG. 4 is a specific structural diagram of the light intensity adjustment unit shown in FIG. 3 .
  • Fig. 5 is a structural block diagram of another optical path conversion module provided by the embodiment of this specification.
  • FIG. 6 is a specific structural diagram of the first optical switch assembly shown in FIG. 5 .
  • FIG. 7 is a structural block diagram of another optical path conversion module provided by the embodiment of this specification.
  • FIG. 8 is a structural block diagram of another optical path conversion module provided by the embodiment of this specification.
  • FIG. 9 is a structural block diagram of another optical path conversion module provided by the embodiment of this specification.
  • FIG. 10 is a structural block diagram of another optical path conversion module provided by the embodiment of this specification.
  • FIG. 11 is a structural block diagram of an FMCW lidar according to an embodiment of this specification.
  • FIG. 12 is a structural block diagram of another FMCW lidar according to the embodiment of this specification.
  • FIG. 13 is a structural block diagram of another FMCW lidar according to the embodiment of this specification.
  • FIG. 14 is a schematic diagram of internal optical path deflection of a scanning and rotating FMCW lidar provided by an embodiment of this specification.
  • FIG. 15 is a schematic diagram of internal optical path deflection of another scanning and rotating FMCW lidar provided by the embodiment of this specification.
  • FIG. 16 is a structural block diagram of another FMCW lidar according to the embodiment of this specification.
  • Fig. 17 is a flow chart of a laser detection method according to the embodiment of this specification.
  • this specification provides an optical path conversion module for FMCW lidar.
  • the optical path conversion module can receive the signal through at least one first port coupled with the optical transmission module.
  • the optical signal may select one or more second ports arranged on the focal plane of the FMCW lidar transmitting optical component to output the received optical signal. Therefore, using the optical path conversion module to flexibly adjust the number of optical signal lines can take into account the need to increase the number of lines of the FMCW lidar and effectively reduce the hardware cost of the FMCW lidar.
  • the optical path conversion module 10 may include: a first Port A1 and N second ports B1 to BN, wherein N is an integer greater than 1.
  • the first port A1 is coupled to the light emitting module 11; the plurality of second ports B1 to BN are arranged at least along the first direction (as shown in Figure 1, the plurality of second ports B1 to BN are arranged along the vertical direction Arrangement), and the plurality of second ports B1 to BN are arranged on the focal plane of the FMCW laser radar transmitting optical component, and the optical signals output by different second ports are emitted towards different angles after passing through the transmitting optical component .
  • the light emitting module 11 can emit a frequency-modulated continuous laser with a narrow linewidth (eg, the linewidth is not greater than 1 nanometer).
  • the specific structure of the light emitting module 11 may be determined according to specific application scenarios and requirements, which is not specifically limited in this specification.
  • the light emitting module 11 may include a light source, an amplifier and the like.
  • the light source may include: a distributed feedback laser (Distributed Feedback Laser, DFB), a distributed Bragg reflector (distributed Bragg reflector, DBR) laser, a fiber laser, an external cavity laser, and the like.
  • DFB distributed Feedback Laser
  • DBR distributed Bragg reflector
  • the optical path conversion module 10 shown in FIG. 1 includes only one first port A1 and multiple second ports B1 to BN matched with the first port A1 .
  • the optical path conversion module may include multiple first ports and multiple second ports that cooperate with each first port. The numbers of the first port and the second port are not specifically limited.
  • the second ports B1 to BN of the optical path conversion module 10 shown in FIG. Direction (such as horizontal direction) arrangement.
  • the multiple second ports may also be arranged in a two-dimensional array along multiple directions. The embodiment of this specification does not specifically limit the arrangement manner of the second ports.
  • the optical signal is input from the first port A1 of the optical path conversion module 10 . Then, a corresponding second port is selected from the second port B1 to the second port BN to output the optical signal.
  • the optical path conversion module 10 may select a second port Bi (1 ⁇ i ⁇ N and i is an integer) to output an optical signal.
  • the optical path conversion module 10 can also select a plurality of second ports to output optical signals, for example, the optical signal can select the second port Bi and the second port Bj (1 ⁇ i ⁇ N, 1 ⁇ j ⁇ N, and j is an integer , i ⁇ j) output.
  • the optical path conversion module 10 can also sequentially select the corresponding second port from the second port B1 to the second port BN to output the optical signal, wherein, when the optical path conversion module 10 sequentially outputs the optical signal, one second port can be selected each time Bi output, it is also possible to select a plurality of second ports (for example, select the second port Bi and the second port Bj) to simultaneously output the optical signal.
  • the optical path conversion module 10 selects or switches the second port for outputting the optical signal, so that the optical signal is emitted at different angles without affecting the modulation frequency of the optical signal or the FMCW lidar coherent detection.
  • the FMCW lidar separates part of the light from the optical signal as the local oscillator light, and the rest as the detection light, which is collimated by the emission optical component (scanning mirror can also be set to deflect the detection light angle) and then emitted, and the reflection reflected by the obstacle
  • the wave light is guided to the mixer, where it is mixed with the local oscillator light, and the distance and speed information of the obstacle is obtained according to the difference frequency between the echo light and the local oscillator light.
  • the FMCW lidar can also be provided with the ability to output multiple optical signals through the optical path conversion module, namely Equivalent to multi-line FMCW lidar.
  • the description of this example is only for illustration, and in specific applications, the second port selection configuration of the optical path conversion module can be adjusted according to specific scenarios and requirements. This specification does not specifically limit the selection configuration of the second port of the optical path conversion module.
  • the optical path conversion module can flexibly convert the optical path of the optical signal, so that the FMCW lidar has the ability to output multiple optical signals, and can be adjusted according to the number of lines, which improves the diversity and universality of the number of lines of the FMCW lidar. Adaptability; and, since the structure of the optical emission module is not changed, the number of light sources does not need to be increased, but the optical path conversion is performed through the optical path conversion module, so that the optical emission module of the FMCW lidar can achieve more lines with a smaller number of light sources.
  • the volume of the optical path conversion module provided by the embodiment of this specification is much smaller than the light emitting module including the external cavity feedback device and the amplifier, and can even be integrated on a chip, and the device cost is very low. Therefore, the optical path conversion module provided by the embodiment of this specification can increase the number of lines of the FMCW lidar and effectively reduce the hardware cost of the FMCW lidar.
  • first port and the second port of the optical path conversion module are named features for the convenience of description and understanding. In practical applications, the first port and the second port of the optical path conversion module It may be realized by the input and output of the same optical device, or by the input and output of different optical devices. This specification does not specifically limit this.
  • the optical path conversion module may include a first conversion device capable of performing one-terminal output or multi-terminal output of the optical signal sent by the optical transmission module.
  • the first switching device may adopt one or more combination of light splitting and path switching to realize the function of optical path switching. Examples are given below in conjunction with the accompanying drawings.
  • the optical path conversion module 20 may include a first port A21 , a plurality of second ports B21 to B2N and a first conversion device 21 .
  • the first conversion module 21 may include a first light splitting unit 211, and the first light splitting unit 211 may include: a first input terminal a21 and N first output terminals b21 to b2n.
  • the first input terminal a21 may correspond to the first port A21 of the optical path conversion module 20, and the multiple first output terminals b21 to b2n may correspond to the multiple second ports B21 to B2N respectively.
  • the optical signal input to the first port A21 can be divided into multiple paths for transmission, and output from the plurality of first output terminals b21 to b2n respectively, so that the first conversion device 21 can Multi-port output is performed on the optical signal, so that the second ports B21 to B2N of the optical path conversion module 20 can respectively output optical signals. Therefore, in this embodiment, one beam of optical signals can be expanded into N beams of optical signals.
  • the first light splitting unit 211 only includes one first input end a21 and a plurality of first output ends b21 to b2n matched with one first input end.
  • the first light splitting unit may include multiple first input terminals and multiple first output terminals that cooperate with each first input terminal.
  • the embodiment of the present specification does not specifically limit the numbers of the first output terminals and the first input terminals of the first light splitting unit.
  • the first optical splitting unit may be a free-space optical splitter, a fiber coupler, a PLC directional coupler, a silicon optical MMI coupler, a silicon optical directional coupler, and the like.
  • the number and corresponding relationship of the first conversion devices included in the optical path conversion module can be set, and the number and corresponding relationship of the first light splitting units included in the first conversion device can be set.
  • the embodiments of this specification do not limit this.
  • the first input end of the first optical splitting unit may correspond to the first port of the optical path conversion module one by one, and the first output end of the first optical splitting unit may correspond to the second port of the optical path conversion module.
  • One to one correspondence may be
  • the first light splitting unit can select the light splitting device included in it according to specific application scenarios and requirements.
  • the first optical splitting unit may include a 1:N coupler, and the 1:N coupler may divide a received optical signal into N optical signals in equal proportions, and output them.
  • the N coupler is a mature optical device with low cost and small volume, and is suitable for integration in a chip to further reduce the cost and volume of the optical device.
  • the first splitting unit 211 divides the optical signal into multiplexed transmissions, for example splitting the light at a ratio of 1:N, and then from each first output end (that is, any of the first output ends b21 to b2n a)
  • the output optical signal power is only 1/N of the original optical signal (that is, the optical signal input from the first port A21), and the low optical signal power will reduce the distance measuring capability of the laser radar.
  • the optical path conversion module 30 may include: a first port A31, a plurality of second ports B31 to B3N, and a first conversion device 31; the first conversion device 31 may include: a first light splitting unit 311 and a light intensity Adjustment unit 312 .
  • the first conversion device 31 of this embodiment at least one second port can be selected from the plurality of second ports B31 to B3N to output the optical signal from the first port A31.
  • the first light splitting unit 311 may include: a first input terminal a31 and a plurality of first output terminals b31 to b3n.
  • the first input terminal a31 may correspond to the first port A31 of the optical path conversion module 30 .
  • the optical signal input to the first port A31 can be divided into multiple paths for transmission, and output from the plurality of first output terminals b31 to b3n respectively.
  • the input end of the light intensity adjustment unit 312 may be coupled to a plurality of first output ends b31 to b3n of the first light splitting unit 311; the output end of the light intensity adjustment unit 312 may be coupled to a plurality of second ports B31 Corresponding to B3N.
  • the optical signal output from at least one of the multiple first output terminals b31 to b3n can be enhanced, and the optical signals output from the remaining first output terminals can be attenuated.
  • the enhanced optical signal can be output from the light intensity adjustment unit 312 and continue to propagate backward, while the attenuated optical signal is stopped at the light intensity adjustment unit 312 .
  • the enhanced optical signal can be output from at least one second port among the plurality of second ports B31 to B3N. Therefore, in this embodiment, one beam of optical signals can be expanded into N beams of optical signals.
  • the optical intensity adjustment unit is coupled to the multiple first output ends of the first light splitting unit one by one, which can enhance the subsequent optical signal output from the selected second port (for example, the power of the original optical signal is enhanced or even higher. High), so as to ensure or improve the distance measurement capability of lidar.
  • the number of enhanced optical signals output by the optical path conversion module and the positions of ports may be determined by the corresponding relationship between the plurality of second ports and the plurality of first output ports. For example, if the plurality of first output terminals b31 to b3n and the plurality of second ports B31 to B3N are in one-to-one correspondence in sequence through the light intensity adjustment unit 312, then the light intensity adjustment unit enhances the first When the optical signal at the output terminal b31 is attenuated and the optical signals output from the first output terminals b32 to b3n are attenuated, the enhanced optical signal can be output from the second port B31.
  • the transmission status of each optical signal output by the first splitting unit can be controlled respectively through the light intensity adjustment unit, so as to ensure that the optical signal is transmitted from the The predetermined second port output in the optical path conversion module.
  • the light intensity adjustment unit may select components with a light intensity adjustment function included therein according to specific application scenarios and requirements. This specification does not limit the specific structure of the light intensity adjustment unit.
  • the light intensity adjustment unit 312 may include: a plurality of Semiconductor Optical Amplifiers (Semiconductor Optical Amplifier, SOA), namely SOA321 to SOA32N in the figure.
  • SOA Semiconductor Optical Amplifier
  • the SOA321 can be between the first output terminal b31 and the second port B31, and so on, through SOA321 to SOA32N, multiple first output terminals b31 to b3n can be connected to multiple second ports There is a one-to-one correspondence between B31 and B3N.
  • the SOA321 to SOA32N may enhance or attenuate the optical signal, and transmit the enhanced optical signal to the corresponding second port, so that the optical signal is output from the predetermined second port.
  • multiple SOAs, multiple first output terminals, and multiple second ports can also be coupled in other orders, so that the three It is also a one-to-one correspondence, which is not limited in this specification.
  • the first switching device adopts a path switching manner.
  • FIG. 5 it is a structural block diagram of another optical path conversion module provided by the embodiment of this specification.
  • the optical path conversion module 40 may include: a first port A41, a plurality of second ports B41 to B4S, and a first conversion device 41; the first conversion device 41 may include: a first optical switch assembly 411 .
  • the first optical switch assembly 411 may include a plurality of first transmission paths (not shown in FIG. 5 ), and the plurality of first transmission paths are respectively located between the first port A41 and the plurality of second ports B41 to B4S ;
  • the first optical switch component 411 can transmit the optical signal along at least one first transmission path.
  • the first optical switch component 411 may include at least one optical switch (not shown in FIG. 5 ), and one optical switch may provide multiple paths for optical signals, thereby forming multiple first transmission paths. Controlling each optical switch according to specific application scenarios and requirements can flexibly switch the first transmission path, thereby obtaining the first transmission path required for optical signal transmission, and ensuring that the optical signal is transmitted to the predetermined second port.
  • At least one second port can be selected from the plurality of second ports B41 to B4S to output the optical signal from the first port A41.
  • the number of input ports of the first optical switch assembly is not less than the number of first ports, so as to receive the optical signal of the corresponding first port; the number of output ports of the first optical switch assembly is not less than the number of second ports , so that the optical signal converted by the first optical switch component can be output from the corresponding second port.
  • the number of input terminals and the number of output terminals of the first optical switch component may be different.
  • the numbers at both ends of the first optical switch assembly may have a proportional relationship.
  • the first optical switch assembly can select the optical switch it contains according to specific application scenarios and requirements, for example, the first optical switch assembly can include Mach-Zehnder (Mach–Zehnder interferometer, M-Z) intensity Modulation type optical switch. This specification does not limit the specific structure of the first optical switch assembly.
  • the first optical switch assembly may include a plurality of cascaded optical switch groups, the optical switch group of the first stage corresponds to the first port, and the optical switch group of the last stage corresponds to the second port.
  • the optical switch group of each level includes at least one optical switch, and the output of the optical switch of the previous stage is respectively coupled to the input of a plurality of optical switches of the subsequent stage.
  • An optical switch can provide two output paths for optical signals, and an optical signal input to the optical switch can be output from any one of its two output terminals. Therefore, the number of stages of the first optical switch assembly and the number of optical switches of each optical switch group can be configured according to the number requirements of the input end and the input end of the first optical switch assembly, or the number requirements of the first transmission path, thereby forming A plurality of first transmission paths.
  • the first transmission path required for transmitting optical signals can be obtained by using the paths of the corresponding optical switches in the optical switch group, so that the optical signal output from the intended second port.
  • the first optical switch assembly 411 may include a plurality of optical switch groups, that is, an optical switch group 411-1, an optical switch group 411-2, an optical switch group 411-3 to an optical switch group 411-P.
  • the optical switch group 411-1 is the first-level optical switch group
  • the optical switch group 411-2 is the second-level optical switch group, and so on.
  • Each optical switch in the optical switch groups 411-1 to 411-P is a 2 ⁇ 2 (two input ends and two output ends) M-Z type optical switch.
  • At least one input terminal of at least one optical switch in the optical switch group 411-1 may correspond to the first port A41 to receive an optical signal; the optical switch of the previous stage (such as the optical switch group 411-1).
  • the output terminals of each optical switch in the group 411-2 can be respectively coupled to the input terminals of multiple optical switches in the subsequent stage (for example, two optical switches in the optical switch group 411-2).
  • the output terminals of the optical switches in the optical switch group 411-P may correspond to the second ports B41 to B4S.
  • the optical switch MZ11 in the optical switch group 411-1 receives the optical signal corresponding to the first port, the optical switch MZ11 outputs the optical signal to the optical switch MZ21 of the optical switch group 411-2, and then the optical switch MZ21 transmits the optical signal to the optical
  • the optical switch MZ31 of the switch group 411-3 outputs, and so on, after multi-stage transmission, the optical switch MZP1 of the optical switch group 411-P outputs the optical signal to the corresponding second port.
  • the optical switch MZ12 in the optical switch group 411-1 receives the optical signal corresponding to the first port, the optical switch MZ12 outputs the optical signal to the optical switch MZ22 in the optical switch group 411-2, and then the optical switch MZ22 sends the optical signal to The optical switch MZ32 of the optical switch group 411-3 outputs, and so on, after multi-stage transmission, the optical switch MZP2 of the optical switch group 411-P outputs the optical signal to the corresponding second port.
  • the above description is only a schematic illustration.
  • the corresponding optical switch can be selected to form one or more A required first transmission path is provided, so that the optical signal is output from a predetermined second port.
  • a second converting device may be further included.
  • the second conversion device may be coupled to the first conversion device, so as to perform one-terminal output or multi-terminal output of the optical signal output by the first conversion device.
  • the second switching device may adopt one or more combination of light splitting and path switching to realize the function of optical path switching. Examples are given below in conjunction with the accompanying drawings.
  • the optical path conversion module 60 may include: a first port A61, The first conversion device 61 , the second conversion device 62 and a plurality of second ports B6A1 - B6AX to B6W1 - B6WX.
  • the first port A61 corresponds to the first conversion device 61 , and the specific structure, connection relationship and implementation principle of the first conversion device 61 can refer to the relevant description above, and will not be repeated here.
  • the second conversion device 62 may include a plurality of second light splitting units, such as the second light splitting units 6A to 6W in FIG. 7 .
  • the second light splitting units 6A to 6W are respectively coupled to the output ends of the first conversion device 61, and the second output ends bA1 to bAx of the second light splitting unit 6A can be respectively connected to the plurality of second ports B6A1 to Corresponding to B6AX, and so on, the second output end of the second light splitting unit 6B can be respectively corresponding to the plurality of second ports B6B1 to B6BX...
  • the second output end of the second light splitting unit 6W can be respectively connected to the said multiple second ports B6B1 to B6BX A plurality of second ports B6W1 to B6WX correspond.
  • the enhanced optical signal can be divided into multiplexed transmissions, and output from the second output terminals bA1 to bAx to
  • the second ports B6A1 to B6AX further enable optical signals to be output from the second ports B6A1 to B6AX.
  • the second converting device 62 can increase the number of optical signal lines by X times, where X is the number of second light splitting units.
  • the second light splitting units 6A to 6W illustrated in FIG. 7 include the same number of second output ends, in practical applications, the number of second output ends of the second light splitting units 6A to 6W may not be exactly the same, This specification does not limit the number of second output terminals of the second light splitting unit.
  • the second light splitting units 6A to 6W shown in FIG. output may include multiple second input terminals and multiple second output terminals that cooperate with each second input terminal.
  • the embodiment of the present specification does not specifically limit the numbers of the second output terminals and the second input terminals of the second light splitting unit.
  • first port, the first conversion device, the second conversion device and the second port may also be connected in other orders, which is not limited in this specification.
  • the number and corresponding relationship of the second light splitting units included in the optical path conversion module can be set, which is not limited in the embodiment of this specification.
  • the optical path converting module 70 may include a first converting device 71 and a second converting device 72 .
  • first converting device 71 and a second converting device 72 .
  • the optical path conversion module 70 may include a first port A71 and a plurality of second ports B71 to B7X.
  • the first port A71 corresponds to the first conversion device 71; the first conversion device 71 is coupled to the second conversion device 72; the second conversion device 72 is connected to the second port B71 Corresponding to B7X.
  • the second conversion device 72 may include a second optical switch assembly 721; the second optical switch assembly 721 may include a plurality of second transmission paths (not shown in FIG. 8 ), and the second transmission paths Located between the first conversion device 71 and the second ports B71 to B7X; the second optical switch component 72 can transmit the optical signal along at least one second transmission path.
  • the second optical switch assembly 721 For the specific structure, connection relationship and implementation principle of the second optical switch assembly 721, reference may be made to the relevant description of the first optical switch assembly above, and details will not be repeated here.
  • the number of input terminals of the second optical switch component is not less than the number of output terminals of the first conversion device, so as to receive the optical signal output by the first conversion device; the number of output terminals of the second optical switch component is not less than the second The number of ports, so that the optical signal converted by the second optical switch component can be output from the corresponding second port.
  • the number of input terminals and the number of output terminals of the second optical switch component may be different.
  • the optical switch included in the second optical switch component can be selected according to specific application scenarios and requirements.
  • the second optical switch assembly may comprise a Mach-Zehnder type optical switch. This specification does not limit the specific structure of the second optical switch assembly.
  • the second optical switch assembly may include a plurality of cascaded optical switch groups, the optical switch group of the first stage corresponds to the output end of the first conversion device, and the optical switch group of the last stage corresponds to the output end of the second port correspondence.
  • the optical switch group of each stage includes at least one optical switch, and the output of the optical switch of the previous stage is respectively coupled to the input of a plurality of optical switches of the subsequent stage.
  • the second conversion device may include a plurality of second optical switch components.
  • the optical path conversion module 80 may include: a first conversion device 81 and a second conversion device 82 .
  • first conversion device 81 the specific structure, connection relationship and implementation principle of the first converting device 81, reference may be made to the description of the relevant part above, and details are not repeated here.
  • the optical path conversion module 80 may include a first port A81, a plurality of second ports B8A1-B8A4, B8B1-B8B2 to B8N1-B8N4.
  • the first port A81 corresponds to the first conversion device 81; the first conversion device 81 is coupled to the second conversion device 82; the second conversion device 82 is connected to the second port B8A1 ⁇ B8A4, B8B1 ⁇ B8B2, and B8N1 ⁇ B8N4 correspond.
  • the second conversion device 82 may include a plurality of second optical switch assemblies 82a to 82n; the plurality of second optical switch assemblies 82a to 82n may respectively include a plurality of second transmission paths, with the second optical switch assembly 82a as For example, a first-level optical switch and two second-level optical switches are included to form four second transmission paths.
  • the structure of other second optical switch components can refer to the structure of the second optical switch component 82a, which is not described here. Let me repeat.
  • the second transmission paths of the second optical switch components 82a to 82n may be located between the first conversion device 81 and the second ports B8A1-B8A4, B8B1-B8B2 to B8N1-B8N4; the second optical switch components 82a-82n
  • the optical signal may be transmitted along at least one second transmission path.
  • the second optical switch components 82a to 82n reference may be made to the related description of the first optical switch component above, which will not be repeated here.
  • the second converting device 82 can increase the number of optical signal lines by up to 4 times on this basis.
  • the two-stage cascaded structure of the second optical switch assembly is only for illustration, and in practical applications, the cascaded structure can be adjusted according to specific application scenarios and requirements. This specification does not limit this.
  • the number of output terminals of the second optical switch component is 4, which is only for illustration. Switch components. In a specific implementation, the number of output terminals of the multiple second optical switch components may be different. This specification does not limit this.
  • the transmitting module may further include an amplifying device, located between the optical transmitting module and the first converting device, adapted to amplify the light output by the optical transmitting module signal, and output the amplified optical signal to the first conversion device.
  • an amplifying device located between the optical transmitting module and the first converting device, adapted to amplify the light output by the optical transmitting module signal, and output the amplified optical signal to the first conversion device.
  • the optical path conversion module is further adapted to determine the second port for outputting optical signals according to the optical path control signal. Therefore, the position and quantity of optical signals output by the optical path conversion module can be changed through the optical path control signal.
  • the optical path control signal may be a signal generated by a control device included in the optical path conversion module, or may be generated by a control module other than the optical path conversion module, which is not specifically limited in this specification.
  • the receiving object and function of the optical path conversion control signal are determined by the specific structure of the optical path conversion module.
  • the optical path conversion control signal can set or adjust the enhancement coefficient and attenuation coefficient of each SOA in the light intensity adjustment unit, so that the light intensity adjustment unit can enhance the corresponding one or more optical signals and attenuate the optical signals of the remaining optical paths.
  • the optical path conversion control signal may set or adjust the state of each optical switch in the first optical switch assembly, so that the first optical switch assembly performs path switching and transmits the optical signal along the required first transmission path.
  • a logic device In practical applications, a logic device, a logic circuit, or a combination of the two can be selected for generating the optical path conversion control signal according to specific application scenarios and requirements.
  • the logic device may include processing chips such as CPU (Central Processing Unit, central processing unit), FPGA (Field Programmable Gate Array, Field Programmable Logic Gate Array), and may also include ASIC (Application Specific Integrated Circuit, specific integration circuits), may also include one or more logic combinational circuits configured to implement embodiments of the present specification. This description is not limited to this.
  • the optical path conversion module further includes a third port, and the third port is suitable for outputting local oscillator light.
  • the local oscillator light is part of the light separated from the optical signal.
  • the optical path conversion module may include: a coupling device adapted to separate part of the light from the optical signal as local oscillator light.
  • the above-mentioned coupling device can be set according to specific application scenarios and requirements, for example, the coupling device can be coupled with the light emitting module to separate the local oscillator light from the optical signal sent by the light emitting module; the coupling device can also It can be coupled with the first conversion device, and correspond to the output end of the first conversion device one by one, and separate the local oscillator light from the optical signal output by the first conversion device; the coupling device can also be coupled with the second conversion device connected, and corresponding to the output terminals of the second conversion device one by one, and the local oscillator light is separated from the optical signal output by the second conversion device.
  • This manual does not impose specific limitations on the settings for separating out local oscillator light.
  • the input ends of the coupling device correspond one-to-one to the optical signals of the part of light to be separated.
  • the output terminals of the coupling device are in one-to-one correspondence with the third ports.
  • the specific components and quantity contained in the coupling device can be selected according to specific application scenarios and requirements.
  • the coupling means may include couplers, and the number of the couplers is the same as the number of the optical signals. This specification does not limit this.
  • the second port of the optical path conversion module is also adapted to receive the echo signal of the optical signal reflected by the obstacle, that is, the same second port can transmit the optical signal and receive the corresponding echo signal, thereby forming Coaxial optical path.
  • the optical path conversion module may further include a fourth port adapted to output an echo signal corresponding to the optical signal.
  • the number of the fourth ports is the same as the number of the second ports.
  • the optical path conversion module may also include an isolating device, which can optically isolate the optical signal and the echo signal reflected by the optical signal by an obstacle, so that the optical signal is separated from the The second port is output, and the echo signal is output from the fourth port.
  • an isolating device which can optically isolate the optical signal and the echo signal reflected by the optical signal by an obstacle, so that the optical signal is separated from the The second port is output, and the echo signal is output from the fourth port.
  • the optical path conversion module 110 may include a first conversion device 111 , a second conversion device 112 and an isolation device 113 .
  • the optical path conversion module 110 receives the optical signal 0 from the optical transmitting module through the first port, it outputs the optical signal 1 from the second port through the first conversion device 111 , the second conversion device 112 and the isolation device 113 .
  • the isolation device 113 can also receive the echo signal 1 corresponding to the optical signal 1 through the second port, and perform optical path isolation on the optical signal 1 and the echo signal 1, and then transmit the echo signal 1 from the fourth port output.
  • the devices and quantity with isolation effect contained in the isolation device can be selected, for example, the isolation device can include a circulator and a polarization beam splitter (Polarization Beam Splitter, PBS) At least one of them, the total number of devices is the same as the number of the second ports.
  • the isolation device can include a circulator and a polarization beam splitter (Polarization Beam Splitter, PBS) At least one of them, the total number of devices is the same as the number of the second ports.
  • the isolating device is a PBS
  • the PBS can directly transmit the P light and deflect the S light. Therefore, when the detection light signal is the P light, the detection light signal directly passes through the PBS and exits, and is blocked The echo signal reflected by the object needs to be mode-converted into S light, and the PBS deflects its optical path to isolate it from the detection light signal.
  • the circulator has no requirement on the polarization state of the optical signal.
  • the distance between the second ports can be set according to specific application scenarios and requirements.
  • the second ports may be arranged at equal intervals, so as to achieve uniform angular resolution.
  • the second ports may be arranged at unequal intervals.
  • the interval between adjacent second ports located in the central area is smaller than the interval between adjacent second ports located in the edge area. Therefore, after the optical signal output from the second port is collimated and emitted by the transmitting optical component, the angle between two adjacent optical signals in the central area is smaller than the angle between two adjacent optical signals in the edge area, and the angle between the central area Higher resolution than edge areas.
  • the central area and the edge area can be adjusted and determined according to a specific scene, which is not specifically limited in this specification.
  • obstacles are mainly distributed in the central area of the field of view (for example, in automatic driving application scenarios, FMCW lidar is usually installed on the roof or In front of the vehicle, obstacles are mainly distributed near the horizontal plane within the field of view), so that the distance between the adjacent second ports in the central area is smaller than the interval between the adjacent second ports in the edge area, and then the distance between the detection light signals emitted by the lidar is adjusted.
  • the included angle is such that the included angle between two adjacent probe light signals in the central area is smaller than the included angle between two adjacent probe light signals in the edge area, so that more probe light can be used without further increasing the number of second ports.
  • the signal is concentrated in the central area (such as the horizontal plane) of the lidar field of view.
  • Making the angular resolution of the center area higher than that of the edge area can increase the laser beam density of the Region Of Interest (ROI), which is more suitable for the application scenario of automatic driving.
  • ROI Region Of Interest
  • This specification also provides an FMCW laser radar corresponding to the optical path conversion module described in any of the above embodiments, which will be described in detail through specific embodiments below with reference to the accompanying drawings.
  • the content of the FMCW lidar described below can be referred to with the content of the optical path conversion module described above.
  • the FMCW laser radar 120 may include:
  • the light emitting module 121 is adapted to send out light signals.
  • the optical signal is a frequency-modulated continuous laser.
  • the optical path conversion module 122 coupled with the optical transmitting module 121, is adapted to receive the optical signal and select one or more second ports for output. It can be understood that, for the specific function, implementation manner and structure of the optical path conversion module 122, reference may be made to the above relevant content description and accompanying drawings, and details are not repeated here.
  • the optical path conversion module provided by the embodiment of this specification can flexibly convert the optical path of the optical signal, so that the FMCW laser radar has the ability to output multiple optical signals, and can be adjusted according to the number of lines, which improves the FMCW laser radar.
  • the FMCW lidar using the above-mentioned optical path conversion module can flexibly adjust the number and position of the output optical signals within a detection cycle, so as to meet various requirements for the number of lines, and effectively reduce its hardware while increasing the number of lines. cost.
  • the conversion frequency of the optical path conversion module (that is, in a single detection period of the FMCW laser radar, the optical path conversion module changes differently from the second port frequency) to configure.
  • the FMCW lidar can be divided into a mechanical rotation type FMCW lidar and a solid-state scanning type FMCW lidar.
  • the functional modules may include: an optical component, a frequency mixing module, a light receiving module, a data processing module, an isolation module, a coupling module, a rotating mechanism, a scanning module, and the like.
  • the functional modules may include: an optical component, a frequency mixing module, a light receiving module, a data processing module, an isolation module, a coupling module, a rotating mechanism, a scanning module, and the like.
  • a mechanically rotating FMCW laser radar 130 may include: a rotating mechanism 131, an optical transmitting module 132, an optical path conversion module 133, an optical assembly 134, a frequency mixing module 135, an optical receiving module 136 and data processing module 137.
  • the rotation mechanism 131 can drive the FMCW lidar 130 to rotate.
  • the light emitting module 132 can send out light signals.
  • the optical signal is a frequency-modulated continuous laser.
  • the optical path conversion module 133 can receive the optical signal through the first port, and select one or more second ports to output, and receive the corresponding echo signal of the optical signal through the second port; output this signal through the third port. vibrating light; and outputting echo signals through the fourth port.
  • the optical component 134 can shape (collimate or converge, etc.) the optical signal and the echo signal.
  • the shaped optical signal can be emitted to the target space to detect obstacles in the target space.
  • the shaped echo signal can be transmitted to the optical path conversion module 133 .
  • the frequency mixing module 135 can mix the local oscillator light and the echo signal to obtain a beat frequency signal. Wherein, the frequency mixing module 135 corresponds to the second port of the optical path conversion module 133 one by one.
  • the light receiving module 136 can perform photoelectric conversion on the beat frequency signal.
  • the data processing module 137 can perform sampling and data processing on the electrical signal output by the light receiving module 136 .
  • the optical transmission module 132 transmits the optical signal a, and the optical path conversion module 133 can sequentially output the optical signal 1 to the optical signal n to the optical component 134, and output to the frequency mixing module 135 Local oscillator light; through the optical component 134, the optical path conversion module 133 sequentially receives the echo signal 1 corresponding to the optical signal 1 to the echo signal n corresponding to the optical signal n, and then the optical path conversion module 133 converts the echo signal 1 to the echo signal n
  • the signal n is sequentially output to the frequency mixing module 135; the frequency mixing module 135 sequentially combines the echo signal 1 to the echo signal n with the local oscillator light to obtain the beat frequency signal 1 to the beat frequency signal n; the light receiving unit 136 sequentially beats
  • the electrical signal corresponding to the beat frequency signal 1 to the beat frequency signal n is photoelectrically converted to the data processing module 137 .
  • a solid-state scanning FMCW laser radar 140 includes: an optical transmitting module 141, an optical path conversion module 142, an optical component 143 and a scanning module 144, a frequency mixing module 145, an optical receiving module module 146 and data processing module 147.
  • the light emitting module 141 can send out light signals.
  • the optical signal is a frequency-modulated continuous laser.
  • the optical path conversion module 142 can receive the optical signal through the first port, and select one or more second ports to output, and receive the echo signal corresponding to the optical signal through the second port; output this signal through the third port. vibrating light; and outputting echo signals through the fourth port.
  • the optical component 143 can perform optical path shaping (collimation or convergence, etc.) on the optical signal and the echo signal.
  • the shaped optical signal can be transmitted to the scanning module 144 .
  • the shaped echo signal can be transmitted to the optical path conversion module 142 .
  • the scanning module 144 can reflect the optical signal, make the optical signal emit to the target space to detect obstacles in the target space, and reflect the echo signal to the optical component 143 .
  • the scanning module 143 can rotate along the same direction, or can swing back and forth within a certain angle range, so that the optical signal scans at least in the second direction, and the first direction and the second direction have an included angle.
  • the frequency mixing module 145 can mix the local oscillator light and the echo signal to obtain a beat frequency signal. Wherein, the frequency mixing module 145 corresponds to the third port of the optical path conversion module 142 one by one.
  • the light receiving module 136 can perform photoelectric conversion on the beat frequency signal.
  • the data processing module 137 can perform sampling and data processing on the electrical signal output by the light receiving module 136 .
  • the signal flow between the optical transmitting module 141, the optical path conversion module 142, the scanning module 143, the optical component 144, the frequency mixing module 145, the optical receiving module 146 and the data processing module 147 can refer to FIG. Let me repeat.
  • the specific devices included in each module of the FMCW lidar can be selected according to specific application scenarios and requirements.
  • the light receiving module may include multiple light receiving devices, and the light receiving devices may include: photodiodes (Photo Diode, PD).
  • the data processing module may include: an analog-to-digital converter (ADC), a filter, a processing chip, and the like.
  • the mixing module may include a plurality of mixers.
  • the optical component may include at least one of a collimating mirror and a microlens.
  • the number of devices and corresponding relationships contained in each module in the FMCW lidar can be determined.
  • the number of light receiving devices included in the light receiving module is no less than the number of the second ports, so that after the light signals output by the second ports are reflected by obstacles, the corresponding echo signals can be received and processed, and the The plurality of light receiving devices may correspond to the plurality of second ports one by one through a frequency mixing module.
  • the number of mixers included in the frequency mixing module is not less than the number of the fourth ports, so that the detection signals output by the fourth ports can be mixed with local oscillator light to obtain corresponding beat signals.
  • the rotation direction of the scanning module can be set according to application scenarios and requirements.
  • the scanning module includes at least one of the following devices.
  • a two-dimensional scanning device adapted to rotate about a first axis of rotation at a first frequency and about a second axis of rotation at a second frequency.
  • Two one-dimensional scanning devices wherein one one-dimensional scanning device is adapted to rotate around a first rotation axis at a first frequency, and the other one-dimensional scanning device rotates at a second frequency along a second rotation axis.
  • first direction is perpendicular to the first rotation axis
  • second direction is perpendicular to the second rotation axis
  • the scanning module may include a one-dimensional scanning device, and the one-dimensional scanning device rotates around a third rotation axis at a third frequency.
  • the rotation axis of the one-dimensional scanning device may be parallel to the first direction, or may have a certain angle with the first direction.
  • the included angle between the third rotation axis and the first direction may vary according to specific application scenarios and requirements, for example, the included angle may range from 0° to 45°.
  • both the two-dimensional scanning device and the one-dimensional scanning device can select scanning devices included in them according to specific application scenarios and requirements.
  • the two-dimensional scanning device may include at least one of an oscillating mirror and a rotating mirror;
  • the one-dimensional scanning device may include at least one of an oscillating mirror, a rotating mirror, and a prism.
  • the two-dimensional scanning device and the one-dimensional scanning device may also include other components adapted to the scanning device, for example, a driving unit for rotating the scanning device, etc., which are not specifically limited in this specification .
  • FIG. 14 it is a schematic diagram of internal optical path deflection of a scanning and rotating FMCW lidar. It should be noted that, in order to facilitate understanding and description, some components (such as optical transmitting module, frequency mixing module, optical receiving module, etc.) are omitted in Fig. and data processing to complete the detection task of the target space, which is not specifically limited in this specification.
  • the FMCW lidar 150 may include: an optical path conversion module 151 and a scanning module.
  • the optical path conversion module 151 may include a plurality of second ports arranged vertically.
  • the scanning module may include two one-dimensional scanning devices 1521 and 1522 .
  • the optical path conversion module 151 may select at least one second port to output an optical signal according to a predetermined sequence.
  • the optical path conversion module 151 may select at least one second port to output an optical signal according to a predetermined sequence.
  • the one-dimensional scanning device 1521 can rotate around a first horizontal rotation axis at a first frequency, and the one-dimensional scanning device 1522 can rotate along a second horizontal rotation axis at a second frequency; there is a clamp between the first rotation shaft and the second rotation shaft. horn.
  • the optical signal is deflected in two dimensions through the reflection of the one-dimensional scanning devices 1521 and 1522 , so that the FMCW lidar can scan the target space two-dimensionally.
  • FIG. 15 it is a schematic diagram of internal optical path deflection of a scanning and rotating FMCW lidar. It should be noted that, in order to facilitate understanding and description, some components (such as optical transmitting module, frequency mixing module, optical receiving module, etc.) are omitted in Fig. and data processing to complete the detection task of the target space, which is not specifically limited in this manual.
  • the FMCW lidar 160 may include: an optical path replacement module 161 and a scanning module.
  • the optical path conversion module 161 may include a plurality of second ports along the first direction.
  • the scanning module may include a one-dimensional scanning device 162, and the one-dimensional scanning device 162 may rotate around a third vertical rotation axis at a third frequency.
  • the optical path conversion module 161 may select at least one second port to output an optical signal according to a predetermined sequence.
  • the optical path conversion module 161 may select at least one second port to output an optical signal according to a predetermined sequence.
  • the optical signal is deflected by the reflection of the one-dimensional scanning device 162, and the angle of the one-dimensional scanning device 162 is different at different times, so that the optical signal is deflected in two dimensions, so that the FMCW lidar can perform two-dimensional scanning of the target space .
  • the optical receiving module in order to adapt to the situation that the optical path conversion module outputs multiple optical signals, the optical receiving module usually includes a plurality of optical receiving devices, so as to ensure that the optical-to-electrical conversion of multiple beat frequency signals can be performed. If the optical path conversion module only uses part of the ports to output optical signals during a single transmission, some components of the data processing module can be multiplexed by means of signal switching, thereby further reducing the hardware cost of the FMCW lidar.
  • the FMCW lidar 170 may include an optical path conversion module 171 , a frequency mixing module 172 , an optical receiving module 173 , a signal switching module 174 and a data processing module 175 .
  • the optical path converting module 171 includes a first converting device 1711 , a coupling device 1712 and an isolating device 1713 .
  • the coupling device 1712 may include a plurality of couplers 1712-1 to 1712-n;
  • the isolation device 1713 may include a plurality of isolators 1713-1 to 1713-n.
  • the isolation device may include an isolator 1713-1 to an isolator 1713-n.
  • optical path conversion module 171 For the specific structures, connections and implementation principles of the optical path conversion module 171 , the frequency mixing module 172 , the optical receiving module 173 and the data processing module 175 , reference may be made to the relevant description above, and details will not be repeated here.
  • the signal switching module 174 is located between the light receiving module 173 and the data processing module 175, and can connect the light receiving device corresponding to the second port and the data processing module 175 according to the second port selected by the light path conversion module 171 The path between them is used to enable the electrical signal generated by the light receiving device to be transmitted to the data processing module 175 .
  • the mixing module 172 may include a mixing device 172-1 to a mixing device 172-n.
  • the light receiving module 173 may include a light receiving device 173-1 to a light receiving device 173-n.
  • the signal switching module 174 includes a switch 174-1 to a switch 174-n.
  • the data processing module 175 may include an analog-to-digital converter 1751 .
  • optical signal 1 passes through coupler 1712-1 and isolator 1713-1 in sequence output.
  • the coupler 1712-1 separates part of the light from the probe light 1 as the local oscillator light 1, and outputs it to the mixing device 172-1.
  • the isolator 1713-1 receives the echo signal 1 corresponding to the optical signal 1, the echo signal 1 is transmitted to the frequency mixing device 172-1 through the isolator 1713-1.
  • the frequency mixing device 172-1 mixes the local oscillator light 1 and the echo signal 1 to obtain a beat frequency signal 1, and inputs it into the light receiving device 173-1.
  • the light receiving device 173 - 1 performs photoelectric conversion on the beat frequency signal 1 to obtain a corresponding electrical signal 1 .
  • the signal switching module 174 performs path switching and turns on the switch 174 - 1 corresponding to the light receiving device 173 - 1 , so that the electrical signal 1 is transmitted to the data processing module 175 .
  • the analog-to-digital converter 1751 of the data processing module 175 performs a sampling operation on the electrical signal 1 .
  • the scenario that the optical path conversion module 171 sequentially outputs several other optical signals can be deduced, which will not be repeated here.
  • the multiplexing of the analog-to-digital converters 1751 of the data processing module 175 is realized, the number of analog-to-digital converters is reduced, and the cost is further reduced.
  • the signal switching module can determine the switch to be turned on according to the switching control signal, wherein the switching control signal can be a signal generated by a control device included in the signal switching module, or can be a signal generated by a control device other than the signal switching module.
  • the generation of the control module is not specifically limited in this manual.
  • the above example is only a schematic description, and in practical applications, specific components included in the signal switching module can be selected according to specific application scenarios and requirements, for example, the signal switching module can include an analog switch and the like. This specification does not specifically limit this.
  • the embodiment of this specification also provides a detection method corresponding to the above-mentioned FMCW lidar, which will be described in detail below through specific embodiments with reference to the accompanying drawings. It should be known that the content of the detection method described below can be referred to with the content of the FMCW lidar described above.
  • the detection method may include:
  • A1 generating an optical signal, the optical signal being a frequency-modulated continuous laser
  • A2) Select at least one from a plurality of second ports to output the optical signal; wherein, the second ports are arranged at least along the first direction; the plurality of second ports are arranged on the FMCW lidar emission On the focal plane of the optical component, the optical signals output from different second ports pass through the emitting optical component and exit towards different angles;
  • the quantity and position of the optical signals output within one detection period can be flexibly adjusted, thereby meeting various requirements for the number of lines, and effectively reducing the hardware cost while increasing the number of lines.
  • the laser detection method may further include: B1) deflecting the optical signal in at least the second direction, and outputting it to the target space; wherein, The first direction and the second direction have an included angle.
  • the laser detection method may further include: C1) configuring the conversion frequency of the optical signal according to the preset angular resolution and scanning frequency of the FMCW laser radar.
  • step C1) can be executed before the start of the FMCW lidar, or can be executed after at least one of the angular resolution and scanning frequency of the FMCW lidar is modified. This specification actually does not specifically limit the execution of step G1).
  • first and second in the embodiments of this specification are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features.
  • a feature defined by terms such as “first”, “second”, etc. may explicitly or implicitly include one or more of such features.
  • terms such as “first” and “second” are used to distinguish similar objects, and are not necessarily used to describe a specific order or indicate importance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种FMCW激光雷达及其光路转换模块(10)、探测方法,其中,光路转换模块(10)包括:至少一个第一端口(A1)和多个第二端口(B1,BN),至少一个第一端口(A1)与光发射模块(11)耦接;多个第二端口(B1,BN)至少沿第一方向排布,且设置于FMCW激光雷达发射光学组件的焦平面上,不同第二端口(B1,BN)输出的光信号经过发射光学组件后朝向不同的角度出射;光路转换模块(10)适于接收第一端口(A1)输入的光信号,并选择一个或多个第二端口(B1,BN)输出。该光路转换模块(10)能够兼顾增加FMCW激光雷达的线数和有效降低FMCW激光雷达的硬件成本。

Description

FMCW激光雷达及其光路转换模块、探测方法 技术领域
本说明书实施例涉及光学探测技术领域,尤其涉及一种FMCW激光雷达及其光路转换模块、探测方法。
背景技术
基于调频连续波(Frequency Modulated Continuous Wave,FMCW)原理的激光雷达引起了越来越多的重视。FMCW激光雷达发射调频连续激光作为探测光,被障碍物反射回来的回波信号与相应的光信号之间有一定的频移,通过测量频移来实现空间探测。
面对越来越高的精度要求,需要增加激光雷达的线数,从而提升激光雷达的角分辨率。
对于激光雷达,通常以一个光源和相对应的探测器被称为一条“线”,采用多个光源和对应的多个探测器组成多线雷达,通过多个光源依次向不同角度发出探测光的方式进行探测。激光雷达通过增加光源数量,对于同样的视场范围,就可以缩小空间角度相邻的两束探测光之间的夹角,从而提升角分辨率。
然而,采用相干探测的FMCW激光雷达对于光源的要求更高,例如要求窄线宽,线宽表示激光光源发射光谱的半高全宽,即达到峰值一半高度所对应的两个频率中间的宽度,为了将光源线宽压窄,提高探测信号相干性,通常在光源中使用外腔反馈器件来选频,使特定频率/波长的光才能输出。另外,为了提高雷达的测远能力,每个光源都需要放大器对光功率进行增强。因此,FMCW激光雷达的光源结构复杂,其光源成本高,且体积大。因此,若通过增加光源数量来增加FMCW激光雷达的线数,将会使FMCW激光雷达的成本非常高,且雷达体积过大。
因此,如何兼顾增加FMCW激光雷达的线数需求和降低硬件成本,有待本领域技术人员解决。
发明内容
有鉴于此,本说明书实施例提供一种FMCW激光雷达及其光路转换模块、探测方法,能够兼顾增加FMCW激光雷达的线数和有效降低FMCW激光雷达 的硬件成本。
本说明书提供一种用于FMCW激光雷达的光路转换模块,与光发射模块耦接,适于接收所述光发射模块发出的光信号并输出,所述光信号为调频连续激光,所述光路转换模块包括:至少一个第一端口和多个第二端口;其中:
所述至少一个第一端口与所述光发射模块耦接;
所述多个第二端口至少沿第一方向排布,且设置于所述FMCW激光雷达发射光学组件的焦平面上,不同第二端口输出的光信号经过所述发射光学组件后朝向不同的角度出射;
所述光路转换模块适于接收所述第一端口输入的所述光信号,并选择一个或多个第二端口输出。
可选地,所述光路转换模块包括第一转换装置,所述第一转换装置适于对所述光发射模块的光信号进行一端输出或多端输出。
可选地,所述第一转换装置包括第一分光单元;所述第一分光单元包括:与所述第一端口相对应的第一输入端和多个第一输出端,适于将所述光信号分为多路,分别从所述多个第一输出端输出。
可选地,所述第一输出端与所述第二端口一一对应。
可选地,所述第一转换装置还包括:光强调节单元,其中:
所述光强调节单元与所述多个第一输出端耦接,适于使至少一个第一输出端输出的探测光增强,并使其余第一输出端输出的探测光衰减。
可选地,所述光强调节单元包括半导体光放大器。
可选地,所述第一转换装置包括第一光开关组件;所述第一光开关组件包括多个第一传输路径,所述多个第一传输路径位于所述第一端口和第二端口之间;所述第一光开关组件适于使所述光信号沿至少一个第一传输路径传输。
可选地,所述光路转换模块还包括第二转换装置,适于对所述第一转换装置输出的光信号进行一端输出或多端输出。
可选地,所述第二转换装置包括第二分光单元,所述第二分光单元包括:第二输入端和多个第二输出端;所述第二输入端与所述第一转换装置耦接,所述多个第二输出端分别与所述多个第二端口相对应;所述第二分光单元适于将接收到的光信号分为多路,分别从所述多个第二输出端输出。
可选地,所述第二转换装置包括:第二光开关组件;所述第二光开关组件包括多个第二传输路径,所述第二传输路径位于所述第一转换装置和第二端口 之间;所述第二光开关组件适于使所述光信号沿至少一个第二传输路径传输。
可选地,所述光路转换模块还包括:放大装置,位于所述光发射模块和所述第一转换装置之间,适于放大所述光发射模块输出的光信号,并将放大后的光信号输出至所述第一转换装置。
可选地,所述光路转换模块还适于根据光路控制信号,确定输出光信号的第二端口。
可选地,所述光路转换模块的第二端口还适于接收所述光信号被障碍物反射的回波信号。
可选地,所述第二端口等间距设置。
可选地,所述第二端口非等间距设置。
可选地,所述光路转换模块中,位于中心区域的相邻第二端口的间隔小于位于边缘区域的相邻第二端口的间隔。
本说明书还提供一种FMCW激光雷达,包括:
光发射模块,适于发出光信号,所述光信号为调频连续激光;
以上任一实施例所述的光路转换模块,与所述光发射模块耦接,适于接收所述光信号,并选择一个或多个第二端口输出。
可选地,所述光路转换模块的转换频率根据所述FMCW激光雷达的预设角分辨率和扫描频率进行配置。
可选地,所述FMCW激光雷达还包括:
混频模块,适于将本振光与所述光信号被障碍物反射的回波信号混合得到拍频信号,所述本振光为从所述光信号中分离出的部分光;
光接收模块,适于对所述拍频信号进行光电转换;
数据处理模块,适于对所述接收模块输出的电信号进行采样和数据处理。
可选地,所述混频模块与所述光路转换模块的第二端口一一对应。
可选地,所述FMCW激光雷达还包括:扫描模块,适于反射所述光信号,以及,将所述回波信号反射至所述光路转换模块。
可选地,所述扫描模块使所述光信号至少在第二方向上偏转,所述第一方向和所述第二方向具有夹角。
可选地,所述扫描模块包括以下至少一种:
一个二维扫描装置,适于以第一频率沿第一转动轴转动,以及,以第二频率绕第二转动轴转动;
两个一维扫描装置,其中一个一维扫描装置适于以第一频率绕第一转动轴转动,另一个一维扫描装置以第二频率沿第二转动轴转动;
其中,所述第一方向与所述第一转动轴垂直,所述第二方向与所述第二转动轴垂直。
可选地,所述扫描模块包括一维扫描装置,以第三频率绕第三转动轴转动。
可选地,所述第三转动轴与所述第一方向平行。
本说明书还提供一种用于FMCW激光雷达的探测方法,包括:
A1)生成光信号,所述光信号为调频连续激光;
A2)从多个第二端口中选择至少一个,以输出所述光信号;其中,所述第二端口至少沿第一方向排布;所述多个第二端口设置于所述FMCW激光雷达发射光学组件的焦平面上,不同第二端口输出的光信号经过所述发射光学组件后朝向不同的角度出射;
A3)将本振光与所述光信号被障碍物反射的回波信号混合得到拍频信号;其中,所述本振光为从所述光信号中分离出的部分光;
A4)对所述拍频信号进行光电转换;
A5)对光电转换得到的电信号进行采样和数据处理。
可选地,所述探测方法还包括:
B1)使所述光信号至少在第二方向上偏转,并输出至目标空间;其中,所述第一方向和所述第二方向具有夹角。
可选地,所述探测方法还包括:
C1)根据所述FMCW激光雷达的预设角分辨率和扫描频率,配置所述光信号的转换频率。
采用本说明书实施例的用于FMCW激光雷达的光路转换模块,在光发射模块发出光信号后,光路转换模块可通过与所述光发射模块耦接的至少一个第一端口接收所述光信号,并可以选择一个或多个设置于发射光学组件焦平面处的第二端口输出所述光信号;不同第二端口输出的光信号经过发射光学组件整形之后,会朝向不同的角度出射,通过光路转换模块对输出光信号的第二端口进行选择和切换,可以向不同的角度发射光信号进行探测,相当于多“线”。由此可知,光路转换模块能够灵活地转换光信号的光路,使得FMCW激光雷达具有输出多路光信号的能力,且能够根据线数需求进行调整,提高了FMCW激光雷达的线数多样性和普适性;并且,由于未改变光发射模块的结构,不需要增 加光源数量,而是通过光路转换模块进行光路转换,使得FMCW激光雷达的光发射模块采用较少数量的光源即可实现更多线数探测;此外,本说明书实施例提供的光路转换模块的体积远小于包括外腔反馈器件和放大器的光发射模块,甚至可以集成在一个芯片上,器件成本很低。故本说明书实施例提供的光路转换模块,能够兼顾增加FMCW激光雷达的线数和有效降低FMCW激光雷达的硬件成本。
附图说明
为了更清楚地说明本说明书实施例的技术方案,下面将对本说明书实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本说明书的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本说明书实施例提供的一种用于FMCW激光雷达的光路转换模块的连接示意图。
图2为本说明书实施例提供的一种光路转换模块的结构框图。
图3为本说明书实施例提供的另一种光路转换模块的结构框图。
图4为图3所示光强调节单元的一种具体结构图。
图5为本说明书实施例提供的另一种光路转换模块的结构框图。
图6为图5所示的第一光开关组件的一种具体结构图。
图7为本说明书实施例提供的另一种光路转换模块的结构框图。
图8为本说明书实施例提供的另一种光路转换模块的结构框图。
图9为本说明书实施例提供的另一种光路转换模块的结构框图。
图10为本说明书实施例提供的另一种光路转换模块的结构框图。
图11为本说明书实施例的一种FMCW激光雷达的结构框图。
图12为本说明书实施例的另一种FMCW激光雷达的结构框图。
图13为本说明书实施例的另一种FMCW激光雷达的结构框图。
图14为本说明书实施例提供的一种扫描转动式FMCW激光雷达的内部光路偏转示意图。
图15为本说明书实施例提供的另一种扫描转动式FMCW激光雷达的内部光路偏转示意图。
图16为本说明书实施例的另一种FMCW激光雷达的结构框图。
图17为本说明书实施例的一种激光探测方法的流程图。
具体实施方式
由背景技术可知,提高FMCW激光雷的光信号线数会造成其硬件成本大幅提高,现有技术无法兼顾光信号增加线数的需求和硬件成本。
为了解决上述问题,本说明书提供了一种用于FMCW激光雷达的光路转换模块,在光发射模块发出光信号后,光路转换模块可通过与所述光发射模块耦接的至少一个第一端口接收所述光信号,并可以选择一个或多个设置于所述FMCW激光雷达发射光学组件的焦平面上第二端口输出接收到的光信号。由此,利用光路转换模块灵活调整光信号线数,能够兼顾增加FMCW激光雷达的线数需求和有效降低FMCW激光雷达的硬件成本。
为使本领域技术人员更加清楚地了解及实施本发明的构思、实现方案及优点,以下参照附图和具体实施方式进行详细说明。
参照图1,为本说明书实施例提供的一种用于FMCW激光雷达的光路转换模块的连接示意图,在本说明书实施例中,如图1所示,所述光路转换模块10可以包括:第一端口A1和N个第二端口B1至BN,其中N为大于1的整数。所述第一端口A1与所述光发射模块11耦接;所述多个第二端口B1至BN至少沿第一方向排布(如图1中,多个第二端口B1至BN沿垂直方向排布),且所述多个第二端口B1至BN设置于所述FMCW激光雷达发射光学组件的焦平面上,不同第二端口输出的光信号经过所述发射光学组件后朝向不同的角度出射。
其中,光发射模块11可以发出窄线宽(如线宽不大于1纳米)的调频连续激光。所述光发射模块11的具体结构可根据具体应用场景和需求确定,本说明书对此不做具体限定。例如,所述光发射模块11可以包括光源、放大器等。所述光源可以包括:分布式反馈激光器(Distributed Feedback Laser,DFB)、分布式布拉格反射(distributed Bragg reflector,DBR)激光器、光纤激光器、外腔激光器等。
需要说明的是,为了便于描述和理解,在本示例中,图1示出的光路转换模块10仅包括一个第一端口A1、以及与第一端口A1配合的多个第二端口B1至BN。但是,在实际实施本说明书实施例提供的光路转换模块时,该光路转换模块可以包括多个第一端口、以及与各第一端口配合的多个第二端口,本说明书实施例对光路转换模块的第一端口和第二端口的数量不做具体限制。
还需要说明的是,虽然在本示例中,图1示出的光路转换模块10的第二端 口B1至BN沿垂直方向排布,但是,在实际应用中,多个第二端口可以沿着其他方向(如水平方向)排布。此外,多个第二端口也可以沿多个方向呈现二维阵列形式的排布。本说明书实施例对第二端口的排布方式不做具体限制。
继续参考图1,在所述光发射模块11发出光信号后,所述光信号从所述光路转换模块10的第一端口A1输入。然后,从第二端口B1至第二端口BN中选择相应的第二端口输出光信号。
具体地,按照光路转换模块10的第二端口选择配置,所述光路转换模块10可以选择一个第二端口Bi(1≤i≤N且i为整数)输出光信号。所述光路转换模块10也可以选择多个第二端口输出光信号,例如,光信号可以选择第二端口Bi和第二端口Bj(1≤i≤N,1≤j≤N,且j为整数,i≠j)输出。所述光路转换模块10还可以依次从第二端口B1至第二端口BN中选择相应的第二端口输出光信号,其中,光路转换模块10依次输出光信号时,每次可以选择一个第二端口Bi输出,也可以选择多个第二端口(如选择第二端口Bi和第二端口Bj)同时输出光信号。
本领域技术人员可以理解,光路转换模块10对输出光信号的第二端口进行选择或切换,以使光信号向不同的角度出射,而并不影响光信号的调制频率,也不影响FMCW激光雷达的相干探测。FMCW激光雷达从光信号中分离部分光作为本振光,剩余部分作为探测光,经过发射光学组件准直(也可设置扫描镜,将探测光进行角度偏转)后出射,被障碍物反射的回波光被引导至混频器,在混频器中与本振光混频,根据回波光与本振光的差频获取障碍物的距离和速度信息。
由上述描述可知,即使FMCW激光雷达的光发射模块(如光发射模块11)中只包含一个激光光源,但是,通过光路转换模块,也可以使FMCW激光雷达具有输出多路光信号的能力,即等效为多线的FMCW激光雷达。
需要说明的是,本示例的描述仅为示意说明,在具体应用时,可以根据具体场景和需求调整光路转换模块的第二端口选择配置。本说明书对光路转换模块的第二端口选择配置不做具体限定。
综上可知,光路转换模块能够灵活地转换光信号的光路,使得FMCW激光雷达具有输出多路光信号的能力,且能够根据线数需求进行调整,提高了FMCW激光雷达的线数多样性和普适性;并且,由于未改变光发射模块的结构,不需要增加光源数量,而是通过光路转换模块进行光路转换,使得FMCW激光 雷达的光发射模块采用较少数量的光源即可实现更多线数探测;此外,本说明书实施例提供的光路转换模块的体积远小于包括外腔反馈器件和放大器的光发射模块,甚至可以集成在一个芯片上,器件成本很低。故本说明书实施例提供的光路转换模块,能够兼顾增加FMCW激光雷达的线数和有效降低FMCW激光雷达的硬件成本。
需要说明的是,在本说明书中,光路转换模块的第一端口和第二端口等是为了便于描述和理解而命名的特征,在实际应用时,光路转换模块的第一端口和第二端口等可能由同一光学器件的输入端和输出端实现,也可能由不同光学器件的输入端和输出端实现。本说明书对此不做具体限制。
在具体实施中,所述光路转换模块可以包括第一转换装置,可以对所述光发射模块发出的光信号进行一端输出或多端输出。其中,所述第一转换装置可以采用分光和路径切换中的一种方式或多种组合方式,实现光路转换的功能。以下结合附图进行举例说明。
在本说明书一实施例中,如图2所示,为本说明书实施例提供的一种光路转换模块的结构框图。在本示例中,所述光路转换模块20可以包括第一端口A21、多个第二端口B21至B2N和第一转换装置21。
具体地,所述第一转换模块21可以包括第一分光单元211,所述第一分光单元211可以包括:第一输入端a21和N个第一输出端b21至b2n。其中,第一输入端a21可与光路转换模块20的第一端口A21相对应,多个第一输出端b21至b2n可以分别与多个第二端口B21至B2N相对应。
通过所述第一分光单元211,可以将输入第一端口A21的光信号分为多路进行传输,并分别从所述多个第一输出端b21至b2n输出,从而使第一转换装置21可以对光信号进行多端输出,进而使光路转换模块20的第二端口B21至B2N可以分别输出光信号。因此,本实施例可以将一束光信号扩展为N束光信号。
可以理解的是,为了便于描述和理解,本说明书中,第一分光单元211仅包括一个第一输入端a21、以及与一个第一输入端配合的多个第一输出端b21至b2n。但是,在实际应用本说明书实施例提供的光路转换模块时,第一分光单元可以包括多个第一输入端、以及与各第一输入端配合的多个第一输出端。本说明书实施例对第一分光单元的第一输出端和第一输入端的数量不做具体限制。
第一分光单元可以是自由空间的分光器、光纤耦合器、PLC定向耦合器、硅光MMI耦合器、硅光定向耦合器等。
此外,根据具体应用场景和需求,可以设定光路转换模块中包括的第一转换装置的数量和对应关系,以及,可以设定第一转换装置中包括的第一分光单元的数量和对应关系。本说明书实施例对此均不做限制。
在具体实施时,第一分光单元的第一输入端可以与光路转换模块的第一端口一一对应,所述第一分光单元的第一输出端可以与所述光路转换模块的第二端口一一对应。
在实际应用中,所述第一分光单元可以根据具体应用场景和需求选择其包含的分光器件。例如,所述第一分光单元可以包括1:N耦合器,1:N耦合器可以将接收到的一束光信号等比例分为N束光信号,并进行输出。1:N耦合器是成熟的光学器件,成本低且体积较小,并且适宜于集成在芯片中,以进一步降低成本、减小光学器件的体积。
具体地,结合参考图2,第一分光单元211将光信号分为多路传输,例如以1:N的比例分光,则从每个第一输出端(即第一输出端b21至b2n中任意一个)输出的光信号功率仅为原光信号(即从第一端口A21输入的光信号)的1/N,光信号功率低,会降低激光雷达的测远能力。
在本说明书另一实施例中,如图3所示,为本说明书实施例提供的另一种光路转换模块的结构框图。在本示例中,所述光路转换模块30可以包括:第一端口A31、多个第二端口B31至B3N和第一转换装置31;第一转换装置31可以包括:第一分光单元311和光强调节单元312。由此,采用本实施例的第一转换装置31,能够从多个第二端口B31至B3N中选择至少一个第二端口输出来自第一端口A31的光信号。
具体地,第一分光单元311可以包括:第一输入端a31和多个第一输出端b31至b3n。其中,第一输入端a31可与所述光路转换模块30的第一端口A31相对应。通过所述第一分光单元311,可以将输入第一端口A31的光信号分为多路进行传输,并分别从所述多个第一输出端b31至b3n输出。
所述光强调节单元312的输入端可与所述第一分光单元311的多个第一输出端b31至b3n耦接;所述光强调节单元312的输出端可与多个第二端口B31至B3N相对应。通过所述光强调节单元312,可以使多个第一输出端b31至b3n中至少一个第一输出端输出的光信号增强,并使其余第一输出端输出的光信号 衰减。
增强的光信号可以从光强调节单元312输出并继续向后传播,而衰减的光信号则截止于光强调节单元312。相应地,根据光强调节单元312与所述多个第二端口B31至B3N的对应关系,增强的光信号可以从所述多个第二端口B31至B3N中至少一个第二端口输出。因此,本实施例可以将一束光信号扩展为N束光信号。
本实施例采用光强调节单元与第一分光单元的多个第一输出端一一耦接,能够增强后续从选定的第二端口输出的光信号(例如增强至原光信号的功率甚至更高),从而保证或提升激光雷达的测远能力。
可以理解的是,光路转换模块输出增强光信号的数量和端口位置可以由所述多个第二端口与所述多个第一输出端的对应关系决定。例如,若所述多个第一输出端b31至b3n和所述多个第二端口B31至B3N通过所述光强调节单元312按照顺序一一对应,则在所述光强调节单元增强第一输出端b31的光信号,并衰减第一输出端b32至b3n输出的光信号时,增强的光信号可以从第二端口B31输出。
由上可知,在通过第一分光单元将光信号进行多路分光输出后,通过光强调节单元,可以分别控制第一分光单元输出的各路光信号的传输状态,从而确保光信号从所述光路转换模块中预定的第二端口输出。
在实际应用中,所述光强调节单元可以根据具体应用场景和需求选择其包含的具有光强调节功能的器件。本说明书对光强调节单元的具体结构不作限制。
例如,如图4所示,为图3所示光强调节单元的一种具体结构图。所述光强调节单元312可以包括:多个半导体光放大器(Semiconductor Optical Amplifier,SOA),即图中SOA321至SOA32N。
结合参考图3和图4,SOA321可以处于第一输出端b31和第二端口B31之间,以此类推,通过SOA321至SOA32N,可以使多个第一输出端b31至b3n与多个第二端口B31至B3N一一对应。
在SOA321至SOA32N中至少一个接收到光信号后,可以对光信号进行增强或衰减,并将增强的光信号传输至对应的第二端口,使得光信号从预定的第二端口输出。
可以理解的是,除了本示例描述的耦接方式外,多个SOA、多个第一输出端和多个第二端口这三者之间还可以按照其他顺序进行耦接,使三者之间也为 一一对应关系,本说明书对此不做限制。
还可以理解的是,虽然以上描述的是一个第二端口输出增强的光信号的情况,但是,在实际应用中,通过多个SOA的配合,可以使多个第二端口输出增强的光信号,本说明书对此不做具体限制。
在本说明书另一实施例中,第一转换装置采用路径切换的方式。如图5所示,为本说明书实施例提供的另一种光路转换模块的结构框图。在本示例中,所述光路转换模块40可以包括:第一端口A41、多个第二端口B41至B4S和第一转换装置41;所述第一转换装置41可以包括:第一光开关组件411。
所述第一光开关组件411可以包括多个第一传输路径(图5中未示出),所述多个第一传输路径分别位于第一端口A41和多个第二端口B41至B4S之间;所述第一光开关组件411可以使所述光信号沿至少一个第一传输路径传输。
具体地,所述第一光开关组件411可以包括至少一个光开关(图5中未示出),一个光开关可以为光信号提供多种通路,从而可以形成多个第一传输路径。根据具体应用场景和需求控制各个光开关,能够灵活切换第一传输路径,从而获得传输光信号所需的第一传输路径,确保光信号传输至预定的第二端口。
由此,采用本实施例的第一转换装置41,能够从多个第二端口B41至B4S中选择至少一个第二端口输出来自第一端口A41的光信号。
在具体实施中,第一光开关组件的输入端数量不少于第一端口的数量,从而接收相应第一端口的光信号;第一光开关组件的输出端数量不少于第二端口的数量,从而使经过第一光开关组件转换的光信号可以从相应第二端口输出。其中,第一光开关组件的输入端数量和输出端数量可以不同。
可选地,为了便于管理端口数量,第一光开关组件两端的数量可以存在比例关系。
由此,能够根据具体应用场景,获得所需数量的输入端和输出端。
在实际应用中,所述第一光开关组件可以根据具体应用场景和需求选择其包含的光开关,例如,所述第一光开关组件可以包括马赫-曾德尔(Mach–Zehnder interferometer,M-Z)强度调制型光开关。本说明书对第一光开关组件的具体结构不作限制。
在具体实施中,所述第一光开关组件可以包括级联的多个光开关组,第一级的光开关组与第一端口对应,最后一级的光开关组与第二端口对应。其中,各级光开关组中包括至少一个光开关,且前一级的光开关的输出分别与后一级 的多个光开关的输入耦接。
一个光开关可以为光信号提供两个输出路径,输入光开关的光信号可以从其两个输出端的任意一个输出。因而可以根据第一光开关组件的输入端和输入端的数量需求,或者,第一传输路径的数量需求,配置第一光开关组件的级数以及每一级光开关组的光开关数,从而形成多个第一传输路径。
根据第一端口、第一光开关组件和第二端口这三者之间的对应关系,利用光开关组中相应光开关的通路,可以获得传输光信号所需的第一传输路径,使光信号从预定的第二端口输出。
由此,经过不同数量的光开关级联后,能够获得更多的第一传输路径和输出端,进而可以满足不同的传输需求。
例如,如图6所示,为图5所示第一光开关组件的一种具体结构图。所述第一光开关组件411可以包括多个光开关组,即光开关组411-1、光开关组411-2、光开关组411-3至光开关组411-P。光开关组411-1为第一级光开关组、光开关组411-2为第二级光开关组,以此类推。光开关组411-1至411-P中的各光开关为2×2(两个输入端和两个输出端)的M-Z型光开关。
结合参考图5和图6,光开关组411-1中至少一个光开关的至少一个输入端可对应第一端口A41,以接收光信号;前一级的光开关(如光开关组411-1中的各光开关)的输出端可分别与后一级的多个光开关的输入端(如光开关组411-2中的两个光开关)耦接。光开关组411-P中光开关的输出端可对应第二端口B41至B4S。
例如,光开关组411-1中光开关MZ11接收对应第一端口的光信号,光开关MZ11将光信号向光开关组411-2的光开关MZ21输出,然后,光开关MZ21将光信号向光开关组411-3的光开关MZ31输出,以此类推,经过多级传输后,光开关组411-P的光开关MZP1将光信号输出至对应的第二端口。
又例如,光开关组411-1中光开关MZ12接收对应第一端口的光信号,光开关MZ12将光信号向光开关组411-2的光开关MZ22输出,然后,光开关MZ22将光信号向光开关组411-3的光开关MZ32输出,以此类推,经过多级传输后,光开关组411-P的光开关MZP2将光信号输出至对应的第二端口。
可以理解的是,以上描述仅为示意说明,在实际应用中,可以根据第一端口、第一光开关组件和第二端口这三者之间的对应关系,选择相应的光开关形成一条或多条所需的第一传输路径,使光信号从预定的第二端口输出。
当前激光雷达的实际应用中,激光雷达的测远能力在不断提升,而其线数需要与测远能力相匹配,因此要求激光雷达的线数越高越好。本发明一实施例中,在上述第一转换装置的基础上,可以进一步包含第二转换装置。所述第二转换装置可以与第一转换装置耦接,从而对所述第一转换装置输出的光信号进行一端输出或多端输出。其中,所述第二转换装置可以采用分光和路径切换中的一种方式或多种组合方式,实现光路转换的功能。以下结合附图进行举例说明。
在本说明书一实施例中,如图7所示,为本说明书实施例提供的另一种光路转换模块的结构框图,在本示例中,所述光路转换模块60可以包括:第一端口A61、第一转换装置61、第二转换装置62和多个第二端口B6A1~B6AX至B6W1~B6WX。
所述第一端口A61与所述第一转换装置61相对应,且所述第一转换装置61的具体结构、连接关系和实现原理可参考以上相关描述,在此不再赘述。
所述第二转换装置62可以包括多个第二分光单元,如图7的第二分光单元6A至6W。所述第二分光单元6A至6W分别与所述第一转换装置61的输出端耦接,且第二分光单元6A的第二输出端bA1至bAx可以分别与所述多个第二端口B6A1至B6AX相对应,以此类推,第二分光单元6B的第二输出端可以分别与所述多个第二端口B6B1至B6BX相对应……第二分光单元6W的第二输出端可以分别与所述多个第二端口B6W1至B6WX相对应。
以所述第二分光单元6A为例,在所述第二分光单元6A接收到光信号后,则可以将增强的光信号分为多路传输,并分别从第二输出端bA1至bAx输出至所述第二端口B6A1至B6AX,进而使光信号从第二端口B6A1至B6AX输出。
由此,根据第一转换装置61输出的光信号线数,所述第二转换装置62可以在此基础上,增加X倍的光信号线数,X为第二分光单元的数量。
需要说明的是,虽然图7示意的第二分光单元6A至6W包括相同数量的第二输出端,但在实际应用中,第二分光单元6A至6W的第二输出端数量可以不完全相同,本说明书对第二分光单元的第二输出端数量不作限制。
还需要说明的是,为了便于描述和理解,在上述示例中,图7示出的第二分光单元6A至6W仅包括一个第二输入端、以及与一个第二输入端配合的多个第二输出端。但是,在实际应用本说明书实施例提供的光路转换模块时,第二分光单元可以包括多个第二输入端、以及与各第二输入端配合的多个第二输 出端。本说明书实施例对第二分光单元的第二输出端和第二输入端的数量不做具体限制。
可以理解的是,除了本示例描述的对应顺序外,第一端口、第一转换装置、第二转换装置和第二端口之间还可以按照其他顺序进行对应,本说明书对此不做限制。
还可以理解的是,根据具体应用场景和需求,可以设定光路转换模块中包括的第二分光单元的数量和对应关系,本说明书实施例对此不做限制。
在本说明书另一实施例中,如图8所示,为本说明书实施例提供的另一种光路转换模块的结构框图。在本示例中,所述光路转换模块70可以包括第一转换装置71和第二转换装置72。其中,所述第一转换装置71的具体结构、连接关系和实现原理可参照上述相关部分的描述,在此不再赘述。
所述光路转换模块70可以包括第一端口A71、多个第二端口B71至B7X。所述第一端口A71与所述第一转换装置71相对应;所述述第一转换装置71与所述第二转换装置72耦接;所述第二转换装置72与所述第二端口B71至B7X相对应。
具体地,所述第二转换装置72可以包括第二光开关组件721;所述第二光开关组件721可以包括多个第二传输路径(图8中未示出),所述第二传输路径位于所述第一转换装置71和第二端口B71至B7X之间;所述第二光开关组件72可以使所述光信号沿至少一个第二传输路径传输。所述第二光开关组件721的具体结构、连接关系和实现原理可参照上第一光开关组件的相关描述,在此不再赘述。
在具体实施中,第二光开关组件的输入端数量不少于第一转换装置输出端的数量,从而接收第一转换装置输出的光信号;第二光开关组件的输出端数量不少于第二端口的数量,从而使经过第二光开关组件转换的光信号可以从相应第二端口输出。其中,第二光开关组件的输入端数量和输出端数量可以不同。
由此,能够根据具体应用场景,获得所需数量的输入端和输出端。
在实际应用中,所述第二光开关组件可以根据具体应用场景和需求选择其包含的光开关。例如,所述第二光开关组件可以包括马赫-曾德尔型光开关。本说明书对第二光开关组件的具体结构不作限制。
在具体实施中,所述第二光开关组件可以包括级联的多个光开关组,第一级的光开关组与第一转换装置的输出端对应,最后一级的光开关组与第二端口 对应。其中,各级光开关组中包括至少一个光开关,且前一级的光开关的输出分别与后一级的多个光开关的输入耦接。所述第二光开关组件中多个光开关组级联的具体结构、连接关系及原理,可参照图6及相关描述,在此不再赘述。
在具体实施中,第二转换装置可以包括多个第二光开关组件。
例如,如图9所示,所述光路转换模块80可以包括:第一转换装置81和第二转换装置82。其中,其中,所述第一转换装置81的具体结构、连接关系和实现原理可参照上述相关部分的描述,在此不再赘述。
所述光路转换模块80可以包括第一端口A81、多个第二端口B8A1~B8A4、B8B1~B8B2至B8N1~B8N4。所述第一端口A81与所述第一转换装置81相对应;所述述第一转换装置81与所述第二转换装置82耦接;所述第二转换装置82与所述第二端口B8A1~B8A4、B8B1~B8B2至B8N1~B8N4相对应。
所述第二转换装置82可以包括多个第二光开关组件82a至82n;所述多个第二光开关组件82a至82n可以分别包括多个第二传输路径,以第二光开关组件82a为例,包括一个第一级的光开关和两个第二级的光开关,从而形成四条第二传输路径,其他第二光开关组件的结构可参考第二光开关组件82a的结构,在此不再赘述。
第二光开关组件82a至82n的第二传输路径可位于所述第一转换装置81和第二端口B8A1~B8A4、B8B1~B8B2至B8N1~B8N4之间;所述第二光开关组件82a至82n可以使所述光信号沿至少一个第二传输路径传输。所述第二光开关组件82a至82n的实现原理可参照上第一光开关组件的相关描述,在此不再赘述。
由此,根据第一转换装置81输出的光信号线数,所述第二转换装置82可以在此基础上,可最多增加4倍的光信号线数。
可以理解的是,上述示例中,第二光开关组件的二级级联结构仅为示意说明,在实际应用中,可以根据具体应用场景和需求,调整级联结构。本说明书对此不做限制。
还可以理解的是,上述示例中,第二光开关组件的输出端数量为4,这仅用于示意说明,在实际应用中,可以根据具体应用场景和需求,选择输出端数量符合要求的光开关组件。在具体实施中,多个第二光开关组件的输出端数量可以不同。本说明书对此不做限制。
在具体实施中,为了进一步提高光信号的强度,所述发射模块还可以包括 放大装置,位于所述光发射模块和所述第一转换装置之间,适于放大所述光发射模块输出的光信号,并将放大后的光信号输出至所述第一转换装置。
在具体实施中,所述光路转换模块还适于根据光路控制信号,确定输出光信号的第二端口,因此,通过光路控制信号,可以改变光路转换模块输出光信号的位置和数量。其中,所述光路控制信号可以是由光路转换模块包含的控制装置生成的信号,也可以由光路转换模块以外的控制模块生成,本说明书对此不做具体限制。
在具体实施中,光路转换控制信号的接收对象和作用由所述光路转换模块的具体结构决定。
例如,所述光路转换控制信号可以设置或调整光强调节单元中各SOA的增强系数和衰减系数,使光强调节单元能够增强相应一路或多路的光信号,并衰减其余光路的光信号。
又例如,所述光路转换控制信号可以设置或调整第一光开关组件中各个光开关的状态,使得第一光开关组件进行路径切换,使所述光信号沿所需的第一传输路径传输。
在实际应用中,可以根据具体应用场景和需求,选择生成光路转换控制信号的逻辑器件、逻辑电路或者二者结合。其中,所述逻辑器件可以包括:CPU(Central Processing Unit,中央处理器)、FPGA(Field Programmable Gate Array,现场可编程逻辑门阵列)等处理芯片,也可以包括ASIC(Application Specific Integrated Circuit,特定集成电路),还可以包括被配置成实施本说明书实施例的一个或多个逻辑组合电路。本说明书对此均不作限制。
在具体实施中,所述光路转换模块还包括第三端口,所述第三端口适于输出本振光。其中,所述本振光为从所述光信号中分离出的部分光。
具体地,所述光路转换模块可以包括:耦合装置,适于从所述光信号中分离出部分光作为本振光。其中,上述耦合装置可根据具体应用场景和需求进行设定,例如,所述耦合装置可以与光发射模块耦接,从光发射模块发出的光信号中分离出本振光;所述耦合装置还可以与第一转换装置耦接,并与第一转换装置的输出端一一对应,从第一转换装置输出的光信号中分离出本振光;所述耦合装置还可以与第二转换装置耦接,并与第二转换装置的输出端一一对应,从第二转换装置输出的光信号中分离出本振光。本说明书对分离出本振光的设定不做具体限制。
其中,所述耦合装置的输入端与其所要分离部分光的光信号一一对应。所述耦合装置的输出端与所述第三端口一一对应。
在实际应用时,可以根据具体应用场景和需求,选择耦合装置具体包含的器件和数量。例如,所述耦合装置可以包括耦合器,所述耦合器的数量与所述光信号的数量相同。本说明书对此不做限制。
在具体实施中,所述光路转换模块的第二端口还适于接收所述光信号被障碍物反射的回波信号,即同一第二端口能够发射光信号以及接收相应的回波信号,从而形成同轴光路。
在具体实施中,相应地,所述光路转换模块还可以包括第四端口,适于输出所述光信号相应的回波信号。其中,所述第四端口的数量与所述第二端口的数量相同。
在具体实施中,所述光路转换模块还可以包括隔离装置,所述隔离装置可将所述光信号和所述光信号被障碍物反射的回波信号进行光路隔离,以使所述光信号从所述第二端口输出,而使所述回波信号从所述第四端口输出。
由此,可以确保同轴光路的收发光路隔离。
例如,参照图10所示,所述光路转换模块110可以包括第一转换装置111、第二转换装置112和隔离装置113。所述光路转换模块110在通过第一端口接收到光发射模块发出的光信号0后,通过第一转换装置111、第二转换装置112和隔离装置113,从第二端口输出光信号1。隔离装置113还可以通过第二端口接收光信号1相应的回波信号1,且对光信号1和回波信号1进行光路隔离,再将回波信号1从所述光路转换模块110的第四端口输出。
在实际应用时,可以根据具体应用场景和需求,选择所述隔离装置包含的具有隔离效果的器件和数量,例如,所述隔离装置可以包括环形器和偏振分束器(Polarization Beam Splitter,PBS)中至少一种,器件总数与所述第二端口的数量相同。具体的,所述隔离装置为PBS时,PBS可以使P光直接透过,而将S光偏转,因此,当探测光信号为P光时,探测光信号直接从PBS透过并出射,被障碍物反射的回波信号需经模式转换成为S光,PBS使其光路偏转而与探测光信号隔离。环形器对光信号的偏振态没有要求。本领域技术人员可以结合具体应用场景和需求对隔离装置进行选择和设定,本说明书对此不做具体限制。
在具体实施中,可根据具体应用场景和需求设定第二端口之间的间距。例如,所述第二端口可以是等间距设置,从而实现均匀的角度分辨率。
又例如,所述第二端口可以是非等间距设置,举例而言,所述光路转换模块中,位于中心区域的相邻第二端口的间隔小于位于边缘区域的相邻第二端口的间隔。由此,第二端口输出的光信号经发射光学组件准直出射后,中心区域相邻两束光信号之间的夹角小于边缘区域的相邻两束光信号的夹角,中心区域的角度分辨率高于边缘区域。其中,所述中心区域和边缘区域可根据具体场景进行调整和确定,本说明书对此不做具体限制。
在一些自动控制的应用场景中,在FMCW激光雷达的视场范围内,障碍物主要分布于视场范围内的中心区域(例如,在自动驾驶应用场景中,FMCW激光雷达通常安装于车顶或车前方,障碍物主要分布于视场范围内的水平面附近),使中心区域相邻第二端口的间隔小于边缘区域相邻第二端口的间隔,进而调整激光雷达出射的探测光信号之间的夹角,使得中心区域相邻两束探测光信号之间的夹角小于边缘区域相邻两束探测光信号的夹角,从而在不进一步增加第二端口数量的前提下,使更多探测光信号集中于激光雷达视场范围的中心区域(例如水平面)部分。使中心区域的角度分辨率相比于边缘区域更高,可以提高感兴趣区域(Region Of Interest,ROI)的激光光束密度,更适合于自动驾驶的应用场景。
可以理解的是,上文描述的实施例提供了多种实施方案,各实施方案可在不冲突的情况下相互结合、交叉引用,从而延伸出多种可能的实施方案,这些均可认为是本说明书实施例披露、公开的实施例方案。
本说明书还提供了与上述任意实施例所述的光路转换模块对应的FMCW激光雷达,以下参照附图,通过具体实施例进行详细介绍。需要知道的是,下文描述的FMCW激光雷达的内容,可与上文描述的光路转换模块的内容相互对应参照。
在具体实施中,如图11所示,为本说明书实施例的一种FMCW激光雷达的结构框图,在图11中,所述FMCW激光雷达120可以包括:
光发射模块121,适于发出光信号。其中,所述光信号为调频连续激光。
光路转换模块122,与所述光发射模块121耦接,适于接收所述光信号,并选择一个或多个第二端口输出。可以理解的是,所述光路转换模块122的具体功能、实现方式和结构可参考以上相关内容描述和附图,在此不再赘述。
根据上述内容可知,本说明书实施例提供的光路转换模块,能够灵活地转换光信号的光路,使得FMCW激光雷达具有输出多路光信号的能力,且能够根 据线数需求进行调整,提高了FMCW激光雷达的线数多样性和普适性;并且,由于未改变光发射模块的结构,而是通过光路转换模块进行光路转换,使得FMCW激光雷达采用较少数量的光发射模块即可实现更多类型的线数探测。故本说明书实施例提供的光路转换模块,能够兼顾增加FMCW激光雷达的线数和有效降低FMCW激光雷达的硬件成本。
由此,采用上述光路转换模块的FMCW激光雷达,可以灵活调整一个探测周期内输出的光信号的数量和位置,从而满足各种线数需求,并在提升线数的情况下,有效降低其硬件成本。
在具体实施中,可根据所述FMCW激光雷达的帧率和/或点频,对所述光路转换模块的转换频率(即FMCW激光雷达的单个探测周期内,光路转换模块变化不同第二端口的频率)进行配置。
在具体实施中,根据探测方式,所述FMCW激光雷达可以分为机械旋转式FMCW激光雷达和固态扫描式FMCW激光雷达。
根据光路转换模块的具体结构和FMCW激光雷达的探测方式,可为所述FMCW激光雷达配置其他的功能模块。其中,所述功能模块可以包括:光学组件、混频模块、光接收模块、数据处理模块、隔离模块、耦合模块、旋转机构、扫描模块等。为使本领域技术人员更加清楚地了解及实施FMCW激光雷达的技术方案,以下结合附图进行示意性说明。
在一可选示例中,参考图12,对于机械旋转式的FMCW激光雷达130,其可以包括:旋转机构131、光发射模块132、光路转换模块133、光学组件134、混频模块135、光接收模块136和数据处理模块137。
所述旋转机构131可以驱使所述FMCW激光雷达130转动。
所述光发射模块132可以发出光信号。其中,所述光信号为调频连续激光。
所述光路转换模块133可以通过第一端口接收所述光信号,并选择一个或多个第二端口输出,以及通过第二端口接收所述光信号相应的回波信号;通过第三端口输出本振光;以及,通过第四端口输出回波信号。
所述光学组件134可以对光信号和回波信号进行整形(准直或汇聚等)。整形后的光信号可以向目标空间射出,以探测目标空间的障碍物。整形后的回波信号可以传输至光路转换模块133。
所述混频模块135可以将所述本振光与所述回波信号混合得到拍频信号。其中,所述混频模块135与所述光路转换模块133的第二端口一一对应。
所述光接收模块136可以对所述拍频信号进行光电转换。
所述数据处理模块137可以对所述光接收模块136输出的电信号进行采样和数据处理。
以光路转换模块133依次输出一路光信号为例,光发射模块132发射光信号a,所述光路转换模块133可以向光学组件134依次输出光信号1至光信号n,并向混频模块135输出本振光;通过光学组件134,光路转换模块133依次接收到光信号1相应的回波信号1至光信号n相应的回波信号n,然后,光路转换模块133将回波信号1至回波信号n依次输出至混频模块135;混频模块135依次将回波信号1至回波信号n与本振光很合,得到拍频信号1至拍频信号n;光接收单元136依次对拍频信号1至拍频信号n进行光电转换,并向数据处理模块137输出拍频信号1相应的电信号至拍频信号n相应的电信号。
在另一可选示例中,参考图13,对于固态扫描式的FMCW激光雷达140,其包括:光发射模块141、光路转换模块142、光学组件143和扫描模块144、混频模块145、光接收模块146和数据处理模块147。
所述光发射模块141可以发出光信号。其中,所述光信号为调频连续激光。
所述光路转换模块142可以通过第一端口接收所述光信号,并选择一个或多个第二端口输出,以及通过第二端口接收所述光信号相应的回波信号;通过第三端口输出本振光;以及,通过第四端口输出回波信号。
所述光学组件143可以对光信号和回波信号进行光路整形(准直或汇聚等)。整形后的光信号可以传输至扫描模块144。整形后的回波信号可以传输至光路转换模块142。
所述扫描模块144可以反射所述光信号,使所述光信号向目标空间射出,以探测目标空间的障碍物,以及,将所述回波信号反射至所述光学组件143。其中,扫描模块143可以沿同一方向旋转,也可以在一定角度范围内来回摆动,从而使所述光信号至少在第二方向上扫描,所述第一方向和所述第二方向具有夹角。
所述混频模块145可以将所述本振光与所述回波信号混合得到拍频信号。其中,所述混频模块145与所述光路转换模块142的第三端口一一对应。
所述光接收模块136可以对所述拍频信号进行光电转换。
所述数据处理模块137可以对所述光接收模块136输出的电信号进行采样和数据处理。
其中,光发射模块141、光路转换模块142、扫描模块143、光学组件144、混频模块145、光接收模块146和数据处理模块147之间的信号流转可参考图12和相关描述,在此不再赘述。
在具体实施中,可以根据具体应用场景和需求,选择FMCW激光雷达中各模块具体包含的器件。例如,光接收模块可以包括多个光接收装置,所述光接收装置可以包括:光电二极管(Photo Diode,PD)。所述数据处理模块可以包括:模数转换器(ADC)、滤波器、处理芯片等。所述混频模块可以包括多个混频器。所述光学组件可以包括准直镜和微透镜中至少一种。
以及,可根据具体应用场景和需求,确定FMCW激光雷达中各模块包含的器件数量和对应关系。例如,所述光接收模块包括的光接收装置数量不少于第二端口数量,使得第二端口输出的光信号被障碍物反射后,其相应的回波信号均能被接收和处理,且所述多个光接收装置可通过混频模块与所述多个第二端口一一对应。又例如,所述混频模块包括的混频器数量不少于所述第四端口数量,使得第四端口输出的探测信号均能与本振光混合,得到相应的拍频信号。
需要说明的是,本说明书对各种模块的具体结构和器件数量不做限制。
在具体实施中,可根据应用场景和需求,设置根据所述扫描模块的转动方向。
具体而言,在一些可选示例中,所述扫描模块包括以下至少一种装置。
1)一个二维扫描装置,适于以第一频率沿第一转动轴转动,以及,以第二频率绕第二转动轴转动。
2)两个一维扫描装置,其中一个一维扫描装置适于以第一频率绕第一转动轴转动,另一个一维扫描装置以第二频率沿第二转动轴转动。
其中,所述第一方向与所述第一转动轴垂直,所述第二方向与所述第二转动轴垂直。
在另一些可选示例中,所述扫描模块可以包括一维扫描装置,所述一维扫描装置以第三频率绕第三转动轴转动。其中,所述一维扫描装置的转动轴可以与所述第一方向平行,也可以与所述第一方向存在一定夹角。进一步地,第三转动轴与第一方向之间的夹角可根据具体应用场景和需求变化,例如,夹角的变化范围可以为0°~45°。
在实际应用中,所述二维扫描装置和所述一维扫描装置均可以根据具体应用场景和需求选择其包含的扫描器件。例如,所述二维扫描装置可以包括摆镜 和转镜中至少一种;所述一维扫描装置可以包括:摆镜、转镜和棱镜中至少一种。可以理解的是,所述二维扫描装置和所述一维扫描装置还可以包括其他与扫描器件适配的组成部分,例如,使扫描器件转动的驱动单元等,本说明书对此不做具体限制。
为了便于本领域技术人员理解和实施扫描转动式的FMCW激光雷达,以下通过附图进行示意说明。
在一可选示例中,如图14所示,为一种扫描转动式FMCW激光雷达的内部光路偏转示意图。需要说明的是,为了便于理解和描述,图14中省略了一些组成部分(如光发射模块、混频模块、光接收模块等),但是,在实际应用中,FMCW激光雷达需要执行一些光路处理和数据处理,以完成目标空间的探测任务,本说明书对此不做具体限制。
参考图14,所述FMCW激光雷达150可以包括:光路转换模块151和扫描模块。所述光路转换模块151可以包括多个垂直排布的第二端口。所述扫描模块可以包括两个一维扫描装置1521和1522。
光路转换模块151可根据预定的顺序,选择至少一个第二端口输出光信号。光路转换模块151的具体结构、功能和实现方式可参考上述相关内容,在此不再赘述。
一维扫描装置1521可以以第一频率绕水平的第一转动轴转动,一维扫描装置1522以第二频率沿水平的第二转动轴转动;第一转动轴与第二转动轴之间存在夹角。
由此,通过一维扫描装置1521和1522的反射,使光信号在两个维度发生偏转,进而使FMCW激光雷达可以对目标空间进行二维扫描。
在另一可选示例中,如图15所示,为一种扫描转动式FMCW激光雷达的内部光路偏转示意图。需要说明的是,为了便于理解和描述,图15中省略了一些组成部分(如光发射模块、混频模块、光接收模块等),但是,在实际应用中,FMCW激光雷达需要执行一些光路处理和数据处理,以完成目标空间的探测任务,本说明书对此不做具体限制。
参考图15,所述FMCW激光雷达160可以包括:光路装换模块161和扫描模块。所述光路转换模块161可以包括多个沿第一方向的第二端口。所述扫描模块可以包括一维扫描装置162,所述一维扫描装置162可以以第三频率绕垂直的第三转动轴转动。
光路转换模块161可以按照预定顺序,选择至少一个第二端口输出光信号。光路转换模块161的具体结构、功能和实现方式可参考上述相关内容,在此不再赘述。
光信号经过一维扫描装置162的反射发生了偏转,在不同时刻一维扫描装置162的角度不同,从而使光信号在两个维度发生偏转,进而使FMCW激光雷达可以对目标空间进行二维扫描。
在具体实施中,为了适配光路转换模块多路输出光信号的情况,光接收模块通常包含多个光接收装置,以确保可以对多路拍频信号进行光电转换。若单次发射时所述光路转换模块仅使用部分端口输出光信号,则可以通过信号切换的方式,复用数据处理模块的部分器件,从而进一步降低FMCW激光雷达的硬件成本。
在一可选示例中,如图16所示,FMCW激光雷达170可以包括光路转换模块171、混频模块172、光接收模块173、信号切换模块174和数据处理模块175。
需要说明的是,为了便于理解和描述,图16中省略了一些组成部分(如光发射模块、光学组件等),但是,在实际应用中,FMCW激光雷达需要执行一些光路处理,以完成目标空间的探测任务,本说明书对此不做具体限制。
所述光路转换模块171包括第一转换装置1711、耦合装置1712和隔离装置1713。耦合装置1712可以包括多个耦合器1712-1至1712-n;所述隔离装置1713可以包括多个隔离器1713-1至1713-n。隔离装置可以包括隔离器1713-1至隔离器1713-n。
所述光路转换模块171、混频模块172、光接收模块173和数据处理模块175的具体结构、连接关系和实现原理可参考以上相关描述,在此不再赘述。
所述信号切换模块174位于所述光接收模块173和数据处理模块175之间,可根据所述光路转换模块171选择的第二端口,导通第二端口对应的光接收装置和数据处理模块175之间的路径,以使光接收装置生成电信号能够传输至数据处理模块175。
混频模块172可以包括混频装置172-1至混频装置172-n。光接收模块173可以包括光接收装置173-1至光接收装置173-n。所述信号切换模块174包括开关174-1至开关174-n。所述数据处理模块175可以包括模数转换器1751。
以所述第一转换装置1711依次输出光信号1至光信号n为例,在所述第一 转换装置1711输出光信号1时,光信号1依次经过耦合器1712-1和隔离器1713-1输出。
所述耦合装器1712-1从探测光1中分离出部分光作为本振光1,并输出至混频装置172-1。当所述隔离器1713-1接收到光信号1相应的回波信号1后,回波信号1经由隔离器1713-1传输至混频装置172-1。混频装置172-1将所述本振光1与所述回波信号1混合得到拍频信号1,并输入光接收装置173-1。
光接收装置173-1拍频信号1进行光电转换,得到相应的电信号1。信号切换模块174进行路径切换,导通光接收装置173-1对应的开关174-1,从而使电信号1传输至数据处理模块175。数据处理模块175的模数转换器1751对电信号1进行采样操作。
根据上述内容,可以推导出光路转换模块171依次输出其他几路光信号的情景,在此不再赘述。由此,实现数据处理模块175的模数转换器1751的复用,减少模数转换器的数量,进一步降低成本。
其中,所述信号切换模块可根据切换控制信号,确定所要导通的开关,其中,所述切换控制信号可以是由信号切换模块包含的控制装置生成的信号,也可以是由信号切换模块以外的控制模块生成,本说明书对此不做具体限制。
可以理解的是,上述示例仅为示意性描述,在实际应用中,可以根据具体应用场景和需求选择信号切换模块中具体包含的器件,例如,所述信号切换模块可以包括模拟开关等。本说明书对此不做具体限制。
可以理解的是,上文描述的实施例提供了多种实施方案,各实施方案可在不冲突的情况下相互结合、交叉引用,从而延伸出多种可能的实施方案,这些均可认为是本申请实施例披露、公开的实施例方案。
本说明书实施例还提供了与上述FMCW激光雷达对应的探测方法,以下参照附图,通过具体实施例进行详细介绍。需要知道的是,下文描述的探测方法的内容,可与上文描述的FMCW激光雷达的内容相互对应参照。
在具体实施中,如图17所示,为本实施例的一种探测方法的流程图。参照图17,所述探测方法可以包括:
A1)生成光信号,所述光信号为调频连续激光;
A2)从多个第二端口中选择至少一个,以输出所述光信号;其中,所述第二端口至少沿第一方向排布;所述多个第二端口设置于所述FMCW激光雷达发射光学组件的焦平面上,不同第二端口输出的光信号经过所述发射光学组件后 朝向不同的角度出射;
A3)将本振光与所述光信号被障碍物反射的回波信号混合得到拍频信号;其中,所述本振光为从所述光信号中分离出的部分光;
A4)对所述拍频信号进行光电转换;
A5)对光电转换得到的电信号进行采样和数据处理。
由此,可以灵活调整一个探测周期内输出的光信号的数量和位置,从而满足各种线数需求,并在提升线数的情况下,有效降低其硬件成本。
在具体实施中,在所述步骤A2)和步骤A3)之间,所述激光探测方法还可以包括:B1)使所述光信号至少在第二方向上偏转,并输出至目标空间;其中,所述第一方向和所述第二方向具有夹角。
在具体实施中,所述激光探测方法还可以包括:C1)根据所述FMCW激光雷达的预设角分辨率和扫描频率,配置所述光信号的转换频率。
其中,步骤C1)可以在FMCW激光雷达启动前执行,也可以在FMCW激光雷达的设角分辨率和扫描频率中至少一个修改后执行,本说明书对步骤G1)的执行实际不做具体限制。
需要说明的是,本说明书实施例中“第一”、“第二”等术语仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等术语的特征可以明示或者隐含的包括一个或者多个该特征。而且,“第一”、“第二”等术语是用于区别类似的对象,而不必用于描述特定的顺序或表示重要性。
虽然本发明实施例披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (28)

  1. 一种用于FMCW激光雷达的光路转换模块,与光发射模块耦接,适于接收所述光发射模块发出的光信号并输出,所述光信号为调频连续激光,其特征在于,所述光路转换模块包括:至少一个第一端口和多个第二端口;其中:
    所述至少一个第一端口与所述光发射模块耦接;
    所述多个第二端口至少沿第一方向排布,且设置于所述FMCW激光雷达发射光学组件的焦平面上,不同第二端口输出的光信号经过所述发射光学组件后朝向不同的角度出射;
    所述光路转换模块适于接收所述第一端口输入的所述光信号,并选择一个或多个第二端口输出。
  2. 根据权利要求1所述的用于FMCW激光雷达的光路转换模块,其特征在于,所述光路转换模块包括第一转换装置,所述第一转换装置适于对所述光发射模块的光信号进行一端输出或多端输出。
  3. 根据权利要求2所述的用于FMCW激光雷达的光路转换模块,其特征在于,所述第一转换装置包括第一分光单元;所述第一分光单元包括:与所述第一端口相对应的第一输入端和多个第一输出端,适于将所述光信号分为多路,分别从所述多个第一输出端输出。
  4. 根据权利要求3所述的用于FMCW激光雷达的光路转换模块,其特征在于,所述第一输出端与所述第二端口一一对应。
  5. 根据权利要求3所述的用于FMCW激光雷达的光路转换模块,其特征在于,所述第一转换装置还包括:光强调节单元,其中:
    所述光强调节单元与所述多个第一输出端耦接,适于使至少一个第一输出端输出的探测光增强,并使其余第一输出端输出的探测光衰减。
  6. 根据权利要求5所述的用于FMCW激光雷达的光路转换模块,其特征在于,所述光强调节单元包括半导体光放大器。
  7. 根据权利要求2所述的用于FMCW激光雷达的光路转换模块,其特征在于,所述第一转换装置包括第一光开关组件;所述第一光开关组件包括多个第一传输路径,所述多个第一传输路径位于所述第一端口和第二端口之间;所述第一光开关组件适于使所述光信号沿至少一个第一传输路径传输。
  8. 根据权利要求2所述的用于FMCW激光雷达的光路转换模块,其特征 在于,所述光路转换模块还包括第二转换装置,适于对所述第一转换装置输出的光信号进行一端输出或多端输出。
  9. 根据权利要求8所述的用于FMCW激光雷达的光路转换模块,其特征在于,所述第二转换装置包括第二分光单元,所述第二分光单元包括:第二输入端和多个第二输出端;所述第二输入端与所述第一转换装置耦接,所述多个第二输出端分别与所述多个第二端口相对应;所述第二分光单元适于将接收到的光信号分为多路,分别从所述多个第二输出端输出。
  10. 根据权利要求8所述的用于FMCW激光雷达的光路转换模块,其特征在于,所述第二转换装置包括:第二光开关组件;所述第二光开关组件包括多个第二传输路径,所述第二传输路径位于所述第一转换装置和第二端口之间;所述第二光开关组件适于使所述光信号沿至少一个第二传输路径传输。
  11. 根据权利要求2-10任一项所述的用于FMCW激光雷达的光路转换模块,其特征在于,还包括:放大装置,位于所述光发射模块和所述第一转换装置之间,适于放大所述光发射模块输出的光信号,并将放大后的光信号输出至所述第一转换装置。
  12. 根据权利要求1-10任一项所述的用于FMCW激光雷达的光路转换模块,其特征在于,所述光路转换模块还适于根据光路控制信号,确定输出光信号的第二端口。
  13. 根据权利要求1-10任一项所述的用于FMCW激光雷达的光路转换模块,其特征在于,所述光路转换模块的第二端口还适于接收所述光信号被障碍物反射的回波信号。
  14. 根据权利要求1-10任一项所述的用于FMCW激光雷达的光路转换模块,其特征在于,所述第二端口等间距设置。
  15. 根据权利要求1-10任一项所述的用于FMCW激光雷达的光路转换模块,其特征在于,所述第二端口非等间距设置。
  16. 根据权利要求15所述的用于FMCW激光雷达的光路转换模块,其特征在于,所述光路转换模块中,位于中心区域的相邻第二端口的间隔小于位于边缘区域的相邻第二端口的间隔。
  17. 一种FMCW激光雷达,其特征在于,包括:
    光发射模块,适于发出光信号,所述光信号为调频连续激光;
    权利要求1至16任一项所述的光路转换模块,与所述光发射模块耦接,适 于接收所述光信号,并选择一个或多个第二端口输出。
  18. 根据权利要求17所述的FMCW激光雷达,其特征在于,所述光路转换模块的转换频率根据所述FMCW激光雷达的预设角分辨率和扫描频率进行配置。
  19. 根据权利要求17所述的FMCW激光雷达,其特征在于,还包括:
    混频模块,适于将本振光与所述光信号被障碍物反射的回波信号混合得到拍频信号,所述本振光为从所述光信号中分离出的部分光;
    光接收模块,适于对所述拍频信号进行光电转换;
    数据处理模块,适于对所述接收模块输出的电信号进行采样和数据处理。
  20. 根据权利要求19所述的FMCW激光雷达,其特征在于,所述混频模块与所述光路转换模块的第二端口一一对应。
  21. 根据权利要求19所述的FMCW激光雷达,其特征在于,还包括:扫描模块,适于反射所述光信号,以及,将所述回波信号反射至所述光路转换模块。
  22. 根据权利要求21所述的激光雷达,其特征在于,所述扫描模块使所述光信号至少在第二方向上偏转,所述第一方向和所述第二方向具有夹角。
  23. 根据权利要求22所述的FMCW激光雷达,其特征在于,所述扫描模块包括以下至少一种:
    一个二维扫描装置,适于以第一频率沿第一转动轴转动,以及,以第二频率绕第二转动轴转动;
    两个一维扫描装置,其中一个一维扫描装置适于以第一频率绕第一转动轴转动,另一个一维扫描装置以第二频率沿第二转动轴转动;
    其中,所述第一方向与所述第一转动轴垂直,所述第二方向与所述第二转动轴垂直。
  24. 根据权利要求22所述的FMCW激光雷达,其特征在于,所述扫描模块包括一维扫描装置,以第三频率绕第三转动轴转动。
  25. 根据权利要求24所述的FMCW激光雷达,其特征在于,所述第三转动轴与所述第一方向平行。
  26. 一种用于FMCW激光雷达的探测方法,其特征在于,包括:
    A1)生成光信号,所述光信号为调频连续激光;
    A2)从多个第二端口中选择至少一个,以输出所述光信号;其中,所述第 二端口至少沿第一方向排布;所述多个第二端口设置于所述FMCW激光雷达发射光学组件的焦平面上,不同第二端口输出的光信号经过所述发射光学组件后朝向不同的角度出射;
    A3)将本振光与所述光信号被障碍物反射的回波信号混合得到拍频信号;其中,所述本振光为从所述光信号中分离出的部分光;
    A4)对所述拍频信号进行光电转换;
    A5)对光电转换得到的电信号进行采样和数据处理。
  27. 根据权利要求26所述的用于FMCW激光雷达的探测方法,其特征在于,还包括:
    B1)使所述光信号至少在第二方向上偏转,并输出至目标空间;其中,所述第一方向和所述第二方向具有夹角。
  28. 根据权利要求26所述的用于FMCW激光雷达的探测方法,其特征在于,还包括:
    C1)根据所述FMCW激光雷达的预设角分辨率和扫描频率,配置所述光信号的转换频率。
PCT/CN2022/093560 2021-10-26 2022-05-18 Fmcw激光雷达及其光路转换模块、探测方法 WO2023071156A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111248881.5A CN116027303A (zh) 2021-10-26 2021-10-26 Fmcw激光雷达及其光路转换模块、探测方法
CN202111248881.5 2021-10-26

Publications (1)

Publication Number Publication Date
WO2023071156A1 true WO2023071156A1 (zh) 2023-05-04

Family

ID=86074678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093560 WO2023071156A1 (zh) 2021-10-26 2022-05-18 Fmcw激光雷达及其光路转换模块、探测方法

Country Status (2)

Country Link
CN (1) CN116027303A (zh)
WO (1) WO2023071156A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117452376A (zh) * 2023-08-15 2024-01-26 深圳市速腾聚创科技有限公司 光芯片、fmcw激光雷达及可移动设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107153194A (zh) * 2016-12-30 2017-09-12 深圳市速腾聚创科技有限公司 多线激光雷达及多线激光雷达控制方法
CN207440290U (zh) * 2017-11-03 2018-06-01 长春理工大学 用于车载三维成像固态激光雷达系统
WO2019136854A1 (zh) * 2018-01-15 2019-07-18 上海禾赛光电科技有限公司 激光雷达及其工作方法
CN212229160U (zh) * 2020-05-09 2020-12-25 青岛镭测创芯科技有限公司 一种相干激光雷达设备
CN112147636A (zh) * 2019-06-26 2020-12-29 华为技术有限公司 一种激光雷达及激光雷达的探测方法
CN113219438A (zh) * 2020-01-21 2021-08-06 苏州一径科技有限公司 一种高精度mems激光雷达发射装置和方法
US20210255324A1 (en) * 2020-02-18 2021-08-19 Analog Devices, Inc. Highly multiplexed coherent lidar system
CN113406603A (zh) * 2021-08-19 2021-09-17 武汉镭晟科技有限公司 一种用于相干激光雷达的激光器模块

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107153194A (zh) * 2016-12-30 2017-09-12 深圳市速腾聚创科技有限公司 多线激光雷达及多线激光雷达控制方法
CN207440290U (zh) * 2017-11-03 2018-06-01 长春理工大学 用于车载三维成像固态激光雷达系统
WO2019136854A1 (zh) * 2018-01-15 2019-07-18 上海禾赛光电科技有限公司 激光雷达及其工作方法
CN112147636A (zh) * 2019-06-26 2020-12-29 华为技术有限公司 一种激光雷达及激光雷达的探测方法
CN113219438A (zh) * 2020-01-21 2021-08-06 苏州一径科技有限公司 一种高精度mems激光雷达发射装置和方法
US20210255324A1 (en) * 2020-02-18 2021-08-19 Analog Devices, Inc. Highly multiplexed coherent lidar system
CN212229160U (zh) * 2020-05-09 2020-12-25 青岛镭测创芯科技有限公司 一种相干激光雷达设备
CN113406603A (zh) * 2021-08-19 2021-09-17 武汉镭晟科技有限公司 一种用于相干激光雷达的激光器模块

Also Published As

Publication number Publication date
CN116027303A (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
CN115639543B (zh) 调频连续波激光雷达及自动驾驶设备
US11880000B2 (en) Switchable coherent pixel array for frequency modulated continuous wave light detection and ranging
CN115685147B (zh) 调频连续波激光雷达及自动驾驶设备
CN112764050B (zh) 激光雷达测量方法及激光雷达系统
US11789124B2 (en) Ranging using a shared path optical coupler
CN114325639A (zh) 可用于雷达的光学组件及硅光芯片
CN114779277A (zh) 调频连续波激光雷达
WO2022062105A1 (zh) 一种阵列式相干测距芯片及其系统
CN115542345A (zh) Fmcw激光雷达、自动驾驶系统及可移动设备
CN114791611A (zh) 调频连续波激光雷达
CN114460601A (zh) 一种激光雷达系统
WO2023071156A1 (zh) Fmcw激光雷达及其光路转换模块、探测方法
CN114879208B (zh) 一种调频连续波激光雷达系统
CN115128579A (zh) 激光雷达芯片模组、激光雷达系统及激光探测方法
WO2023065149A1 (zh) 激光雷达及激光雷达控制方法
CN115166696B (zh) 用于激光雷达的扫描转镜组、激光雷达装置
CN209417296U (zh) 一种激光雷达及单线激光雷达
CN116243279B (zh) 光芯片及激光雷达
CN116755189B (zh) 硅光芯片、激光雷达及可移动设备
WO2024045550A1 (zh) 激光雷达的发射模块、收发装置和激光雷达
CN116626696A (zh) 一种调频连续波激光测距装置
WO2024108407A1 (zh) 一种光信号处理装置、光芯片、探测装置和终端
WO2023207600A1 (zh) 调频连续波激光雷达
US20240151831A1 (en) Dual-polarized light detection and ranging receiving end based on optical chip
CN116908814B (zh) 激光雷达及可移动设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885069

Country of ref document: EP

Kind code of ref document: A1