WO2023071081A1 - Led调光电路、调光器和照明装置 - Google Patents

Led调光电路、调光器和照明装置 Download PDF

Info

Publication number
WO2023071081A1
WO2023071081A1 PCT/CN2022/087629 CN2022087629W WO2023071081A1 WO 2023071081 A1 WO2023071081 A1 WO 2023071081A1 CN 2022087629 W CN2022087629 W CN 2022087629W WO 2023071081 A1 WO2023071081 A1 WO 2023071081A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
electrically connected
voltage
capacitor
terminal
Prior art date
Application number
PCT/CN2022/087629
Other languages
English (en)
French (fr)
Inventor
张小平
江清波
Original Assignee
上海先钧光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海先钧光电科技有限公司 filed Critical 上海先钧光电科技有限公司
Publication of WO2023071081A1 publication Critical patent/WO2023071081A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the embodiments of the present application relate to the technical field of lighting, for example, to an LED dimming circuit, a dimmer and a lighting device.
  • LED Light Emitting Diode
  • LED lighting devices can be divided into three categories, namely replacement, retrofit and new.
  • replacement retrofit
  • new dimmers can be classified into the following three ways according to their working principles:
  • the first is the thyristor dimming method, as shown in Figure 1, this method will adjust the effective value of the input voltage, and the LED lighting device will realize the dimming effect according to the power signal generated by the dimmer; as shown in Figure 2,
  • the second dimming method is to transmit the dimming signal to the signal demodulation circuit inside the LED lighting device through the dimmer, and the signal demodulation circuit adjusts the output voltage or current according to the received dimming signal, thereby realizing the dimming function;
  • the third dimming method is to connect a dimmer capable of synthesizing the power signal and dimming signal in the original circuit, and transmit the synthesized dimming signal to the LED lighting device through the dimmer, and then pass the dimmer inside the device.
  • the dimming function is realized.
  • one type of implementation is that no components dedicated to signal demodulation may be provided in the LED lighting device (that is, the above-mentioned signal demodulation circuit does not necessarily need to have an actual signal demodulation function).
  • the dimmer can provide an adjustable output voltage, and the dimmer can know the voltage value to be provided, so that the LED lighting device can display different power correspondingly under different voltages.
  • this method will generate voltage waveform distortion and reduce lighting efficiency; for the second dimming method, this method requires each LED lighting device to be equipped with a signal line to accept the dimming in the scene of multiple LED lighting devices.
  • the optical signal will increase the engineering complexity of the LED lighting device and increase the difficulty of engineering construction of the lighting system; the third dimming method has special requirements for the LED lighting device, and the LED lighting device needs to be replaced to realize the dimming function. Based on this, This method not only increases the engineering cost, but also discards the original normally working LED lighting device, resulting in a waste of resources.
  • the LED lighting device using the above three dimming methods also has the risk of electric shock caused by powering on one end and conducting electricity at the other end, which seriously threatens the safety of installers.
  • Embodiments of the present application provide an LED dimming circuit, a dimmer and a lighting device.
  • an LED dimming circuit including:
  • An AC-DC conversion module configured to convert the first AC voltage into a first DC voltage; wherein, the first AC voltage is an input AC voltage;
  • a DC-DC conversion module configured to convert the first DC voltage into a second DC voltage; wherein, the voltage of the second DC voltage matches the specified brightness of the LED;
  • the dimming command transmission module is used to couple the dimming command, and generate a control signal for controlling the DC-DC conversion module according to the dimming command, so as to transmit the dimming command.
  • the embodiment of the present application further provides an LED dimmer, including the LED dimming circuit provided in any embodiment of the present application.
  • the embodiment of the present application further provides an LED lighting device, including the LED dimmer provided in any embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of an LED dimming circuit in the related art
  • FIG. 2 is a schematic structural diagram of another LED dimming circuit in the related art
  • FIG. 3 is a schematic structural diagram of another LED dimming circuit in the related art.
  • Fig. 4 is a schematic structural diagram of an LED dimming circuit provided by an embodiment of the present application.
  • FIG. 5 is a circuit diagram of a DC-DC conversion module provided in an embodiment of the present application.
  • Fig. 6 is a circuit diagram of a dimming instruction transmission module provided by an embodiment of the present application.
  • FIG. 7 is a circuit diagram of a current detection module provided by an embodiment of the present application.
  • FIG. 8 is a circuit diagram of an AC-DC conversion module provided in an embodiment of the present application.
  • Fig. 9 is a circuit diagram of another DC-DC conversion module provided by the embodiment of the present application.
  • Fig. 10 is a circuit diagram of another dimming command transmission module provided by the embodiment of the present application.
  • Fig. 11 is a circuit diagram of another current detection module provided by the embodiment of the present application.
  • Fig. 12 is a circuit diagram of another AC-DC conversion module provided by the embodiment of the present application.
  • Fig. 13 is a circuit diagram of a power factor correction module provided by an embodiment of the present application.
  • Fig. 14 is a schematic structural diagram of another LED dimming circuit provided by the embodiment of the present application.
  • Fig. 15 is a schematic structural diagram of a DC-AC conversion module provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an LED dimming circuit provided by an embodiment of the present application. As shown in FIG. 4 , the LED dimming circuit includes: an AC-DC conversion module 101 , a dimming instruction transmission module 102 and a DC-DC conversion module 103 .
  • the AC-DC conversion module 101 is used for converting the first AC voltage AC1 into a first DC voltage DC1; wherein, the first AC voltage AC1 is an input AC voltage.
  • the dimming command transmission module 102 is used for coupling the dimming command, and generating a control signal for controlling the DC-DC conversion module 103 according to the dimming command, so as to transmit the dimming command.
  • the DC-DC conversion module 103 is used for converting the first DC voltage DC1 into a second DC voltage DC2; wherein, the voltage magnitude of the second DC voltage DC2 matches the specified brightness of the LED.
  • the AC-DC conversion module 101 includes an AC voltage input terminal and a first DC voltage output terminal, the AC voltage input terminal receives the first AC voltage AC1, and the first DC voltage output terminal outputs the first DC voltage DC1.
  • the first AC voltage AC1 is an adjustable voltage; correspondingly, the first DC voltage DC1 is an adjustable voltage; the voltage value of the first DC voltage DC1 corresponds to the voltage value of the first AC voltage AC1 one by one.
  • the voltage effective value range of the first AC voltage AC1 may be any voltage value in the interval [120, 277], and the voltage value range of the first DC voltage DC1 may be any voltage value in the interval [150, 400].
  • a voltage value which is not limited in the embodiments of the present application.
  • the frequency parameter of the first AC voltage AC1 may be 50 Hz, or may be between 47-63 Hz (for example, may be 60 Hz).
  • the AC-DC conversion module 101 can be any kind of rectification circuit, which is not limited in the embodiment of the present application, for example, it can be an uncontrollable rectification circuit, or it can be a half-controlled rectification circuit, or it can be a fully-controlled rectification circuit. rectifier circuit.
  • the conversion object of the AC-DC conversion module 101 may be any single-phase AC power signal generated by an external AC power source, such as commercial power.
  • the dimming command transmission module 102 includes a dimming command input terminal and a control signal output terminal, the dimming command input terminal receives the dimming command, and the control signal output terminal outputs a control signal.
  • the DC-DC conversion module 103 includes a control signal input terminal, a first DC voltage input terminal and a second DC voltage output terminal, the first DC voltage input terminal is connected to the first DC voltage DC1, and the control signal input terminal is connected to the control signal , the second direct current voltage output terminal outputs the second direct current voltage DC2. It can be understood that the first DC voltage input terminal is electrically connected to the first DC voltage output terminal, and the control signal input terminal is electrically connected to the control signal output terminal.
  • the transmission signal type between the control signal input terminal and the control signal output terminal, and between the first DC voltage input terminal and the first DC voltage output terminal may be a level signal, which is not limited in this embodiment of the present application.
  • the second direct current voltage DC2 is an adjustable voltage.
  • the voltage value range of the second direct current voltage DC2 may be any voltage value in the interval [40, 125];
  • the signal type of the control signal and the dimming instruction may be a digital signal;
  • the transmission mode of the dimming instruction may be Wired transmission, or can be wireless transmission;
  • the number system of the control signal and the dimming command can be binary.
  • the basic principle circuit of the DC-DC conversion module 103 can be any type of chopper circuit.
  • the basic principle circuit of the DC-DC conversion module 103 may be a Buck circuit, or may be a Boost circuit, or may be a Buck-Boost circuit, or may be a Cuk circuit or the like.
  • the input first AC voltage AC1 is converted into the first DC voltage DC1 to be coupled with the dimming command; secondly, by setting the dimming command transmission module 102 , couple the dimming command, and generate a control signal capable of transmitting the dimming command; finally, by setting the DC-DC conversion module 103, according to the control signal, the first DC voltage DC1 is converted into a second DC voltage that can match the specified brightness of the LED. DC voltage DC2.
  • the embodiment of the present application fills in the defect that the thyristor dimming method will generate voltage waveform distortion and reduce the lighting efficiency; it solves the problem of adjusting the output based on the dimming signal through the signal demodulation circuit in the related technology.
  • the voltage or current dimming method needs to be equipped with multiple signal lines, the connection lines are redundant and the engineering implementation is difficult; it overcomes the dimming method of adjusting the output voltage or current based on the synthesized dimming signal through the signal demodulation circuit in the related technology Therefore, it is necessary to abandon the original LED lighting device that works normally, which increases the engineering cost and causes the disadvantage of waste of resources.
  • the embodiment of the present application not only achieves accurate, high-efficiency, and real-time dimming of LEDs, but also reduces signal demodulation steps, which helps reduce system hardware costs and implementation difficulties, and reduces system signal distortion.
  • the embodiment of the present application can be compatible with a plurality of different types of retrofit LED lighting devices, that is, Type B lighting devices, without making additional changes to the LED lighting devices.
  • Fig. 5 is a circuit diagram of a DC-DC conversion module provided by the embodiment of the present application.
  • the DC-DC conversion module 103 includes a first transformer T1 and a feedback unit 210 .
  • the first transformer T1 includes a primary winding and a secondary winding, the primary winding is used to access the first DC voltage DC1, and the secondary winding is used to output the second DC voltage DC2.
  • the feedback unit 210 is connected in series between the primary side winding and the first ground terminal, and the feedback unit 210 is used for receiving a dimming command and controlling the on-off between the primary side winding and the first ground terminal according to the dimming command.
  • the DC-DC conversion module 103 converts the first DC voltage DC1 into the second DC voltage DC2 through the first transformer T1.
  • the primary side winding of the first transformer T1, the feedback unit 210 and the first ground terminal can form a closed loop.
  • the feedback unit 210 controls the connection between the primary side winding and the first ground terminal.
  • the on-off of the second direct current voltage DC2 can be realized in a controllable manner. It can be understood that the feedback unit 210 may, but is not limited to, control the on-off frequency or duty cycle between the primary winding and the first ground terminal to achieve controllable adjustment of the second direct current voltage DC2.
  • FIG. 6 is a circuit diagram of a dimming instruction transmission module provided by an embodiment of the present application.
  • the dimming command transfer module 102 includes a first comparator U2B.
  • the first input terminal of the first comparator U2B is connected to the dimming command
  • the second input terminal of the first comparator U2B is connected to the comparison voltage signal
  • the light emitter IC1A in the first photocoupler is connected in series to the first comparator U2B between the output end of the power supply and the first power supply end.
  • the first comparator U2B is used for outputting a level signal according to the dimming command and the comparison voltage signal;
  • the comparison voltage signal can be a voltage signal of any size. It can be seen that when the dimming command is inconsistent with the comparison voltage signal, the level signal can cause the light emitter IC1A in the first photocoupler to generate a light signal, thereby realizing the transmission of the dimming command.
  • the feedback unit 210 includes a feedback control chip U1 and a first transistor Q1 .
  • the feedback control chip U1 includes a feedback pin FB and a gate drive output pin GATE.
  • the first transistor Q1 is connected in series between the primary side winding and the first ground terminal.
  • the gate of the first transistor Q1 is electrically connected to the gate drive output pin GATE.
  • the photoreceptor OP1B in the first optocoupler is connected in series between the feedback pin FB and the first ground terminal.
  • the feedback control chip U1 can identify the optical signal generated by the light emitter IC1A in the first optocoupler based on the light receiver OP1B in the first optocoupler, and realize the adjustment of the dimming command through the voltage change of the feedback pin FB. take over.
  • the gate drive output pin GATE of the feedback control chip U1 will adaptively output a gate drive signal, and the first transistor Q1 is turned on or off according to the gate drive signal
  • the feedback unit 210 receives the dimming instruction and controls the on-off function between the primary side winding and the first ground terminal according to the dimming instruction.
  • the LED dimming circuit further includes a first photocoupler, and the feedback unit 210 and the dimming command transmission module 102 transmit the dimming command through the first photocoupler.
  • the DC-DC conversion module 103 further includes a first inductor L1, a first resistor R1, a first capacitor C1, a second capacitor C2, a first varistor V1, and a third capacitor C7 , the first diode D6 and the second resistor.
  • the first inductor L1 is connected in series between the AC-DC conversion module 101 and the primary winding; wherein, the first inductor L1 is electrically connected to the first end of the primary winding.
  • the first resistor R1 is connected in parallel with the first inductor L1.
  • the first end of the first capacitor C1 is electrically connected to the first end of the first resistor R1, and the second end of the first capacitor C1 is electrically connected to the first ground end.
  • the first end of the second capacitor C2 is electrically connected to the second end of the first resistor R1, and the second end of the second capacitor C2 is electrically connected to the first ground end.
  • the first varistor V1 is connected in parallel with the second capacitor C2.
  • the first end of the third capacitor C7 is electrically connected to the first end of the second capacitor C2.
  • the cathode of the first diode D6 is electrically connected to the second end of the third capacitor C7, and the anode of the first diode D6 is electrically connected to the second end of the primary winding.
  • the second resistor is connected in parallel with the third capacitor C7.
  • the first inductor L1, the first resistor R1, the first capacitor C1 and the second capacitor C2 are used to filter out the AC component doped in the first DC voltage DC1, reduce the pulsation of the first DC voltage DC1, and smooth the first DC voltage DC1.
  • the third capacitor C7, the first diode D6 and the second resistor can form an RCD clamping snubber circuit, and the RCD clamping snubber circuit can effectively reduce the switching loss of the first transistor Q1, which is beneficial to improve the LED dimming circuit Electromagnetic Interference (EMI) characteristics.
  • EMI Electromagnetic Interference
  • FIG. 5 exemplarily shows that the second resistor can be formed by connecting six resistors in series and/or in parallel, which does not limit the present application.
  • the second resistor can also be formed by connecting 2, 3, 4 or 8 resistors in series and/or in parallel.
  • the second resistor includes resistor R14, resistor R11, resistor R7, resistor R13, resistor R10 and resistor R6, and after resistor R14 and resistor R13 are connected in series, the resistor R11 and resistor R10 connected in series with each other, and the resistor R10 connected in series The connected resistor R7 and resistor R6 are connected in parallel.
  • the DC-DC conversion module 103 further includes a third resistor, a fourth capacitor, a second diode, a fifth capacitor C8, a fourth resistor, a fifth resistor R34 and a third two Pole tube D13.
  • the first end of the third resistor is electrically connected to the first end of the secondary winding.
  • the first terminal of the fourth capacitor is electrically connected to the second terminal of the third resistor, and the second terminal of the fourth capacitor serves as the first output terminal Vout+ of the LED dimming circuit.
  • the first end of the second diode is electrically connected to the first end of the secondary side winding, and the second end of the second diode is electrically connected to the first output end of the LED dimming circuit.
  • the first end of the fifth capacitor C8 is electrically connected to the first output end of the LED dimming circuit, and the second end of the fifth capacitor C8 is electrically connected to the second end of the secondary winding and is electrically connected to the second ground end.
  • the fourth resistor is connected in parallel with the fifth capacitor C8.
  • the first end of the fifth resistor R34 is electrically connected to the second end of the secondary winding, and the second end of the fifth resistor R34 is electrically connected to the second output end Vout- of the LED dimming circuit.
  • the anode of the third diode D13 is electrically connected to the second output end of the LED dimming circuit, and the cathode of the third diode D13 is electrically connected to the second end of the secondary winding.
  • Vout represents the output voltage value.
  • the third resistor, the fourth capacitor and the second diode can form the absorption circuit of the secondary side winding, and the absorption circuit can absorb the self-inductance potential generated by the primary side winding of the first transformer T1 during the working process of the LED dimming circuit, At the same time, at the moment when the first transistor Q1 is turned off, the risk of damaging the first transistor Q1 due to the excessively high reverse peak voltage in the primary side winding of the first transformer T1 can be effectively avoided.
  • the third resistor and the fourth capacitor can also suppress the reverse peak voltage, that is, the impact of the surge voltage on the second diode, so as to protect the The second diode is not damaged.
  • FIG. 5 exemplarily shows that both the third resistor and the fourth resistor can be formed by connecting three resistors in parallel, the fourth capacitor can be formed by connecting two capacitors in parallel, and the second diode can be formed by connecting two capacitors in parallel.
  • the diodes are connected in parallel, which does not limit the present application.
  • the third resistor and the fourth resistor may only include 1 resistor, or may be formed by connecting 2, 3 or 4 resistors in parallel; the fourth capacitor may only include 1 capacitor, or may be composed of 2 and 2 resistors. More than two capacitors are connected in parallel; the second diode may only include one diode, or may be formed by connecting two or more diodes in parallel.
  • the third resistor includes resistor R44, resistor R45 and resistor R46
  • the fourth resistor includes resistor R23, resistor R27 and resistor R36
  • the fourth capacitor includes capacitor C4 and capacitor C19
  • the second diode includes diode D10 and diode D11.
  • the feedback unit 210 further includes a capacitor C3, a switch tube Q2, a Schottky diode Z1, a resistor R2, a capacitor C6, a resistor R3, a diode D5, a resistor R4, a resistor R5, and an auxiliary coil i , capacitor C10, resistor R21, resistor R22, capacitor C21, capacitor C11, capacitor C13, diode D1, resistor R9, resistor R8, resistor R12, resistor R24, resistor R18, resistor R19, resistor R20 and capacitor C20.
  • the first end of the capacitor C3 is connected to the voltage VCC, the second end of the capacitor C3 is electrically connected to the first ground end; the first end of the switch tube Q2 is electrically connected to the first end of the capacitor C3, and the second end of the switch tube Q2
  • the two ends are electrically connected to the first end of the Schottky diode Z1, the third end of the switch tube Q2 is electrically connected to the second end of the resistor R2; the second end of the Schottky diode Z1 is electrically connected to the second end of the capacitor C3 ;
  • the first end of the resistor R2 is electrically connected to the first end of the Schottky diode Z1; the first end of the capacitor C6 is electrically connected to the second end of the resistor R2, and the second end of the capacitor C6 is electrically connected to the first grounding end;
  • the first end of the resistor R3 is electrically connected to the second end of the resistor R2, the second end of the resistor R3 is electrically connected
  • the dimming command transfer module 102 further includes a resistor R26, a capacitor C14, a resistor R28, a capacitor C16, a diode D2, a resistor R15, a resistor R16, a capacitor C5, a resistor R58, a resistor R52, a resistor R55, resistor R60, resistor R59, resistor R62, capacitor C36, diode D7 and resistor R38.
  • the first end of the resistor R26 is connected to the dimming command PWM, the second end of the resistor R26 is electrically connected to the first end of the capacitor C14; the second end of the capacitor C14 is electrically connected to the second ground terminal GNDE; the second end of the resistor R28 The first end is electrically connected to the first end of the capacitor C14, the second end of the resistor R28 is electrically connected to the first end of the capacitor C16; the second end of the capacitor C16 is electrically connected to the second ground end; the first end of the diode D2 is electrically connected to the second end of the capacitor C16.
  • the first end of the capacitor C16 is electrically connected, the second end of the diode D2 is connected between the resistor R15 and the resistor R16; the first end of the resistor R15 is connected to +5V voltage, the second end of the resistor R15 is connected to the first end of the resistor R16 electrical connection; the second end of the resistor R16 is electrically connected to the second grounding end; the capacitor C5 is connected in parallel to the two ends of the resistor R16; the first end of the resistor R58 is electrically connected to the first input end of the first comparator U2B, and the resistor R58 The second end is connected between the resistor R15 and the resistor R16; the first end of the resistor R52 is connected to the comparison voltage signal Vout, the second end of the resistor R52 is electrically connected to the first end of the resistor R55; the second end of the resistor R55 is connected to the resistor The first end of R60 is electrically connected, the second end of resistor R60 is electrically connected to the second ground
  • the working process of the DC-DC conversion module 103 and the dimming command delivery module 102 provided in this embodiment is as follows:
  • the dimming command PWM is transmitted to the first input terminal of the first comparator U2B through the resistor R26, the resistor R28, the diode D2 and the resistor R58, and at the same time, the comparison voltage signal Vout is passed through the resistor R52 and The resistor R55 is transmitted to the second input terminal of the first comparator U2B.
  • the first comparator U2B generates a level signal according to the dimming instruction and the comparison voltage signal, and the level signal causes the light emitter IC1A in the first photocoupler to generate a light signal.
  • the feedback control chip U1 After the light receiver OP1B in the first optocoupler receives the light signal, the voltage of the feedback pin FB of the feedback control chip U1 is pulled down, and the feedback control chip U1 can recognize the dimming demand of the LED dimming circuit. According to the dimming requirements of the LED dimming circuit, the feedback control chip U1 outputs a gate drive signal through the gate drive output pin GATE, the first transistor Q1 is turned on or off according to the gate drive signal, and then the DC-DC conversion module 103 The second output direct current voltage DC2 is controlled to realize the adaptive adjustment of the dimming command and the specified brightness of the LED.
  • FIG. 7 is a circuit diagram of a current detection module provided by an embodiment of the present application.
  • the LED dimming circuit further includes a current detection module 104, the current detection module 104 is electrically connected to the second output terminal of the LED dimming circuit, and the current detection module 104 is used to detect the second output terminal current.
  • the current detection module 104 by setting the current detection module 104 to detect the current of the second output terminal of the LED dimming circuit, it overcomes the problem that in the installation process of the LED lighting device in the related art, it is easy to be powered on at one end and the other end is powered on. The problem of electric shock accidents caused by conduction effectively avoids the risk of electric shock for installers.
  • the embodiment of the present application includes but is not limited to detecting the current of the second output terminal.
  • the current detection module 104 can also be used to detect the current of the first output terminal.
  • the current detection module 104 includes a fifth comparator U2A, an eighth resistor R47, a ninth resistor R49, a tenth resistor R51, an eleventh resistor R48, a twelfth resistor R50, a thirteenth resistor R25, The seventh capacitor C28, the fourteenth resistor R35 and the eighth capacitor C29.
  • the fifth comparator U2A includes a first input terminal, a second input terminal and an output terminal. The first end of the eighth resistor R47 is electrically connected to the second output end of the LED dimming circuit.
  • the first end of the ninth resistor R49 is electrically connected to the second end of the eighth resistor R47, and the second end of the ninth resistor R49 is electrically connected to the first input end of the fifth comparator U2A.
  • a first end of the tenth resistor R51 is electrically connected to the second ground end, and a second end of the tenth resistor R51 is electrically connected to the first input end of the fifth comparator U2A.
  • a first end of the eleventh resistor R48 is electrically connected to the second ground end.
  • the first end of the twelfth resistor R50 is electrically connected to the second end of the eleventh resistor R48; the second end of the twelfth resistor R50 is electrically connected to the second input end of the fifth comparator U2A.
  • the first end of the thirteenth resistor R25 is electrically connected to the second end of the twelfth resistor R50; the second end of the thirteenth resistor R25 is electrically connected to the output end of the fifth comparator U2A.
  • the first end of the seventh capacitor C28 is electrically connected to the first end of the ninth resistor R49, and the second end of the seventh capacitor C28 is electrically connected to the first end of the twelfth resistor R50.
  • the first end of the fourteenth resistor R35 is electrically connected to the output end of the fifth comparator U2A, and the second end of the fourteenth resistor R35 is used as the output end of the current detection module 104 .
  • the first end of the eighth capacitor C29 is electrically connected to the second end of the fourteenth resistor R35, and the second end of the eighth capacitor C29 is electrically connected to the second ground end.
  • the current detection module 104 further includes a resistor R29 , and the first end of the eighth resistor R47 is electrically connected to the second output end of the LED dimming circuit through the resistor R29 . It can be seen that when it is detected that there is current at the second output terminal of the LED dimming circuit, the fifth comparator U2A outputs a high level; when it is detected that there is no current at the second output terminal of the LED dimming circuit, the fifth comparator U2A U2A outputs low level.
  • the embodiment of the present application may, but is not limited to, amplify the output signal of the current detection module 104 through a post-amplification circuit, and issue warnings based on warning devices such as buzzers or warning lights, so as to further protect the safety of installers. life safety.
  • Iout represents the output current value.
  • FIG. 8 is a circuit diagram of an AC-DC conversion module provided by the embodiments of the present application.
  • the AC-DC conversion module 101 includes an electromagnetic compatibility unit 220 and a rectifier bridge B1 .
  • the electromagnetic compatibility unit 220 is used for anti-electromagnetic interference, and transmits the filtered first AC voltage AC1 to the subsequent circuit.
  • the rectifier bridge B1 is used to convert the filtered first AC voltage AC1 into a first DC voltage DC1.
  • the electromagnetic compatibility unit 220 may be any kind of circuit capable of realizing the electromagnetic compatibility function
  • the rectifier bridge B1 may be any kind of rectification circuit, which is not limited in this embodiment of the present application.
  • the rectifier bridge B1 may be an uncontrolled rectification circuit, or may be a half-controlled rectification circuit, or may be a fully-controlled rectification circuit.
  • the EMC unit 220 includes a fuse FR1 , a varistor V2 , a transformer LF2 , a capacitor CX1 , a transformer LF1 , a diode D3 and a diode D4 .
  • the first end of the fuse FR1 is electrically connected to the input terminal P3 of the electromagnetic compatibility unit 220, the second end of the fuse FR1 is electrically connected to the third end of the transformer LF2; the second end of the varistor V2 is electrically connected to the electromagnetic compatibility unit 220
  • the input terminal P4 of the transformer is electrically connected, the varistor V2 is connected in parallel between the third terminal of the transformer LF2 and the first terminal of the transformer LF2; the capacitor CX1 is connected in parallel between the fourth terminal of the transformer LF2 and the second terminal of the transformer LF2, and It is connected in parallel between the third terminal of transformer LF1 and the first terminal of transformer LF1; the fourth terminal of transformer LF2 and the second terminal of transformer LF2 have the same name; the fourth terminal of transformer LF1 is electrically connected to the first terminal of diode D3 connection, the second end of the transformer LF1 is electrically connected to the second end of the diode D4; the fourth end of the transformer LF1 and
  • the first end of the diode D3 is electrically connected to the third end of the rectifier bridge B1
  • the second end of the diode D4 is electrically connected to the first end of the rectifier bridge B1
  • the first end of the rectifier bridge B1 The four terminals are electrically connected to the first ground terminal.
  • the second terminal of the rectifier bridge B1 is used as the output terminal of the AC-DC conversion module 101 for outputting the first DC voltage DC1.
  • the technical solution of this embodiment weakens the electromagnetic interference suffered by the LED dimming circuit by setting the electromagnetic compatibility unit 220, improves the anti-electromagnetic interference capability of the LED dimming circuit, and also converts the first AC
  • the voltage AC1 is converted into a first DC voltage DC1.
  • the circuit structure provided by this embodiment is simple, the hardware cost is low, and it is easy to realize.
  • FIG. 9 is a circuit diagram of another DC-DC conversion module provided by the embodiment of the present application.
  • the DC-DC conversion module 103 includes a second transformer T2', a first switch unit Q2', a second switch unit Q4', a first control unit 310, and a third switch unit Q5 ', the fourth switch unit Q1' and the second control unit 320.
  • the second transformer T2' includes a primary winding and two secondary windings connected in series, the connection point of the two secondary windings is defined as an output node, and the two ends of the two secondary windings that are different from the output node are respectively for the first and second ends.
  • the first switch unit Q2' is connected in series between the output end of the AC-DC conversion module 101 and the primary winding.
  • the second switching unit Q4' is connected in parallel with the primary winding.
  • the first control unit 310 is used for receiving the dimming instruction and controlling the on-off of the first switch unit Q2' and the second switch unit Q4' according to the dimming instruction.
  • the third switch unit Q5' is connected in series between the first end of the secondary winding and the first voltage end.
  • the fourth switch unit Q1' is connected in series between the second terminal of the secondary winding and the second voltage terminal.
  • the second control unit 320 is used to control the on-off of the third switch unit Q5' and the fourth switch unit Q1'.
  • the output node is electrically connected to the first output end of the LED dimming circuit
  • the second voltage end is electrically connected to the second output end of the LED dimming circuit.
  • the first switch unit Q2' can form a closed loop with the output terminal of the AC-DC conversion module 101, the primary side winding of the second transformer T2' and the first ground terminal, and the second switch unit Q4' can be connected with the second transformer T2 'The primary side winding and the first ground terminal form a closed loop.
  • the first switch unit Q2' when the first switch unit Q2' is turned on and the second switch unit Q4' is turned off, the first DC voltage DC1 output by the AC-DC conversion module 101 passes through the first switch unit Q2' and the second transformer T2'
  • the primary side winding of the transformer is connected to the first ground terminal; when the first switch unit Q2' is turned off and the second switch unit Q4' is turned on, the current flowing through the primary side winding of the second transformer T2' is difficult to change abruptly, and the primary side winding
  • the voltage at both ends is maintained until the first control unit 310 again controls the first switch unit Q2 ′ to be turned on and the second switch unit Q4 ′ to be turned off.
  • the first switch unit Q2' and the second switch unit Q4' cannot be turned on or off at the same time, when the first switch unit Q2' and the second switch unit Q4' are turned on at the same time, the AC-DC conversion module
  • the first DC voltage DC1 output by 101 is directly connected to the first ground terminal through the first switch unit Q2' and the second switch unit Q4'.
  • Short circuit when the first switch unit Q2' and the second switch unit Q4' are turned off at the same time, the LED dimming circuit is in a disconnected state and cannot perform dimming work.
  • the first switch unit Q2', the second switch unit Q4', the third switch unit Q5', and the fourth switch unit Q1' may be MOS transistors or triodes.
  • the terminals with the same name of the two secondary side windings are located on the side adjacent to the output node. Based on this, when the third switch unit Q5' and/or the fourth switch unit Q1' are turned on, the current induced by the two secondary side windings is transmitted to the first output terminal of the LED dimming circuit through the output node.
  • FIG. 10 is a circuit diagram of another dimming instruction transmission module provided by the embodiment of the present application.
  • the dimming command transmission module 102 includes a third comparator U3A' and a fourth comparator U3B'.
  • the first input terminal of the third comparator U3A' is connected to the dimming command, and the second input terminal of the third comparator U3A' is connected to the comparison voltage signal.
  • the first end of the fourth comparator U3B' is electrically connected to the second ground end, and the second end of the fourth comparator U3B' is connected to the comparison voltage signal.
  • the light emitter OP1A' in the second photocoupler is connected in series between the output terminal of the third comparator U3A' and the first power supply terminal; the output terminal of the fourth comparator U3B' is connected to the output terminal of the third comparator U3A' electrical connection.
  • the third comparator U3A' and the fourth comparator U3B' are used to form a window comparator.
  • the window comparator has two reference comparison terminals, namely the second input terminal of the third comparator U3A' and the second terminal of the fourth comparator U3B'.
  • the window comparator will maintain at In the initial high-level output state, the light emitter OP1A' in the second photocoupler does not emit light; correspondingly, when the level value of the dimming command CV_ADJ is lower than +5V, or higher than +10V, the third comparator The output end of U3A' or the fourth comparator U3B' is turned to a low level state, and the light emitter OP1A' in the second photocoupler emits light to transmit the dimming instruction.
  • the dimming instruction transmission module 102 provided in this embodiment is no longer limited to setting the dimming when the dimming instruction is higher or lower than a certain comparison voltage signal. It is understandable that such setting can effectively broaden the adjustment range of the LED dimming circuit, improve the flexibility and practicability of the LED dimming circuit, and in addition, the parallel output of the comparator can also save the I/O port of the subsequent stage circuit, which is beneficial to Realize miniaturization of LED dimming circuit.
  • the first control unit includes a resonant control chip U2'.
  • the resonance control chip U2' includes a resonance control pin RFMIN, a first gate drive output pin HVG and a second gate drive output pin LVG, and the light receiver OP2B' in the second photocoupler is connected in series to the resonance control pin RFMIN and Between the first ground terminals, the first gate drive output pin HVG is electrically connected to the first switch unit Q2', and the second gate drive output pin LVG is electrically connected to the second switch unit Q4'.
  • the resonance control chip U2' can identify the optical signal generated by the light emitter OP1A' in the second optocoupler based on the optical receiver OP2B' in the second optocoupler, and receive the modulation through the voltage change of the resonance control pin RFMIN. light command.
  • the first gate drive output pin HNG and the second gate drive output pin LVG of the resonant control chip U2' will adaptively output the first gate drive signal and the second gate drive signal.
  • the LED dimming circuit further includes a second photocoupler, and the first control unit 310 and the dimming command transmission module 102 transmit the dimming command through the second photocoupler.
  • the second control unit 320 includes an LLC synchronous rectifier IC2'.
  • the LLC synchronous rectifier IC2' includes a first voltage pin VDD, a second voltage pin VSS, a third voltage pin VD1, a fourth voltage pin VD2, a third gate drive pin VG1 and a fourth gate drive pin VG2.
  • the first voltage pin VDD is connected to the second voltage signal
  • the second voltage pin VSS is electrically connected to the first voltage terminal
  • the second voltage pin VSS is electrically connected to the second voltage terminal.
  • the third voltage pin VD1 is electrically connected to the first end of the secondary winding
  • the fourth voltage pin VD2 is electrically connected to the second end of the secondary winding.
  • the third gate drive pin VG1 is electrically connected to the third switch unit Q5'
  • the fourth gate drive pin VG2 is electrically connected to the fourth switch unit Q1'.
  • the LLC synchronous rectifier IC2' can be based on the second voltage signal, the voltage signal of the first voltage terminal, the voltage signal of the second voltage terminal, the voltage signal of the first terminal of the secondary side winding and the voltage signal of the second terminal of the secondary side winding , adaptively generating the third gate drive signal and the fourth gate drive signal to control the on-off of the third switch unit Q5 ′ and the fourth switch unit Q1 ′.
  • an LLC synchronous rectifier can be used to improve the power conversion efficiency of the dimmer.
  • the LLC synchronous rectifier can use a control IC (integrated circuit, integrated circuit) to control the MOS tube to replace the conventional diode to improve the efficiency of the whole machine.
  • the DC-DC conversion module 103 further includes a second inductor L1A, and the second inductor L1A is connected in series between the first switch unit Q2' and the primary winding.
  • the second inductor L1A is used to make it more difficult for the current flowing through the primary side winding of the second transformer T2' to suddenly change when the first switch unit Q2' is turned off and the second switch unit Q4' is turned on. It is beneficial to maintain the voltage at both ends of the primary winding until the first control unit 310 again controls the first switch unit Q2' to be turned on and the second switch unit Q4' to be turned off.
  • the DC-DC conversion module 103 further includes a sixth resistor R24', a seventh resistor and a sixth capacitor C4'.
  • the sixth resistor R24' is connected in series between the third switch unit Q5' and the second output terminal of the LED dimming circuit.
  • the first end of the seventh resistor is electrically connected to the first output end of the LED dimming circuit, and the second end of the seventh resistor is electrically connected to the third switch unit Q5'.
  • the sixth capacitor C4' is connected in parallel with the seventh resistor.
  • FIG. 9 exemplarily shows that the seventh resistor can be formed by connecting three resistors in parallel, which does not limit the present application.
  • the seventh resistor may only include 1 resistor, or may be formed by connecting 2, 4 or 5 resistors in parallel.
  • the seventh resistor includes a resistor R12', a resistor R8' and a resistor R9'.
  • the DC-DC conversion module 103 further includes a diode D3', a resistor R11', a resistor R17', a resistor R21', a diode D5', a resistor R25', a resistor R28', and a resistor R31' , capacitor C19', diode D7', capacitor C24' and capacitor C25'.
  • the first end of the diode D3' is connected to the first gate drive signal DRH, the second end of the diode D3' is electrically connected to the first end of the resistor R11'; the second end of the resistor R11' is connected to the first switch unit Q2 'The gate is electrically connected; the resistor R17' is connected in parallel between the first end of the diode D3' and the second end of the resistor R11'; the first end of the resistor R21' is electrically connected to the second end of the resistor R17', and the resistor R21 The second end of 'is connected to the voltage HB, and the second end of the resistor R21' is connected between the second switch unit Q4' and the second inductor L1A; the first end of the diode D5' is connected to the second gate drive signal DRL, The second end of the diode D5' is electrically connected to the first end of the resistor R25'; the second end of the resistor R25' is electrically
  • the DC-DC conversion module further includes a resistor R1', a capacitor C1', a resistor R7', a resistor R20', a capacitor C12', a resistor R26', a capacitor C8', a capacitor C9', capacitor C3', capacitor C14' and resistor R10'.
  • the resistor R1' and the capacitor C1' are connected in series, they are connected in parallel to both ends of the fourth switching tube Q1'; the first end of the resistor R7' is connected to the fourth gate drive signal DRV2, and connected to the fourth switching tube Q1'
  • the gate is electrically connected, the second end of the resistor R7' is connected between the second end of the capacitor C1' and the second end of the capacitor C12'; the first end of the capacitor C12' is electrically connected to the second end of the resistor R20' ;
  • the first end of the resistor R20' is connected between the first end of the secondary side winding and the third switch tube Q5'; the first end of the resistor R26' is connected to the third gate drive signal, and connected to the third switch tube Q5 ' is electrically connected to the gate, the second end of the resistor R26' is electrically connected to the second end of the capacitor C12', and is electrically connected to the first voltage terminal Vout+; the capacitor C8' is connected in
  • the first control unit 310 further includes a resistor R35', a resistor R36', a resistor R39', a resistor R42', a capacitor C29', a capacitor C33', a capacitor C34', a resistor R46', Capacitor C23', capacitor C26', capacitor C27', resistor R40', capacitor C28', capacitor C35', capacitor C40', transistor Q7', resistor R51', capacitor C42', resistor R55', resistor R64', resistor R60 ', capacitor C44', resistor R62', capacitor C45', capacitor C43', resistor R65', diode D10', diode D12' and resistor R56'.
  • the first end of the resistor R35' is connected to the voltage VBUS+, the second end of the resistor R35' is electrically connected to the first end of the resistor R36'; the second end of the resistor R36' is electrically connected to the first end of the resistor R39' ;
  • the second end of the resistor R39' is electrically connected to the LINE end of the resonance control chip U2'; the resistor R42' is connected in parallel to the two ends of the capacitor C29'; the first end of the capacitor C29' is electrically connected to the first ground terminal, and the capacitor C29'
  • the second terminal of the capacitor C33' is electrically connected to the second terminal of the resistor R39'; the first terminal of the capacitor C33' is electrically connected to the first terminal of the capacitor C29', and the second terminal of the capacitor C33' is electrically connected to the DELAY terminal of the resonance control chip U2' connection; the resistance R46' is connected in parallel to both ends of the capacitor C33'; the first end of the capacitor
  • the second control unit 320 further includes a diode D8', a resistor R37', a resistor R43', a capacitor C32', a resistor R45', a diode D9', a resistor R38', a resistor R44', capacitor C30' and capacitor C31'.
  • the first end of the diode D8' outputs the fourth gate drive signal DRV2
  • the second end of the diode D8' is electrically connected to the fourth gate drive pin VG2 of the LLC synchronous rectifier IC2'
  • the resistor R37' is connected in parallel with the diode D8'
  • the first end of the resistor R43' is electrically connected to the LL end of the LLC synchronous rectifier IC2'
  • the second end of the resistor R43' is electrically connected to the second output end of the LED dimming circuit (see VOGND in FIG.
  • the capacitor C32 ' is connected in parallel with the resistor R43'; the first end of the resistor R45' is electrically connected to the fourth voltage pin VD2 of the LLC synchronous rectifier IC2', and the second end of the resistor R45' is electrically connected to the second voltage end; the first end of the diode D9'
  • the two ends output the third gate drive signal DRV1, the first end of the diode D9' is electrically connected to the third gate drive pin VG1 of the LLC synchronous rectifier IC2'; the resistor R38' is connected in parallel with the diode D9'; the first end of the resistor R44' It is electrically connected to the third voltage pin VD1 of the LLC synchronous rectifier IC2', the second end of the resistor R44' is electrically connected to the first voltage end; the first end of the capacitor C30' is connected to the second voltage signal, and is connected to the LLC synchronous rectifier The first voltage pin VDD of IC2' is electrically connected, the second
  • the dimming command transfer module 102 further includes a resistor R52', a resistor R57', a diode D11', a diode D13', a resistor R63', a resistor R74', a capacitor C39', and a resistor R59' , capacitor C46', resistor R66', resistor R67', resistor R58', resistor R54', capacitor C41', resistor R69', resistor R73', resistor R71', capacitor C48', resistor R75', capacitor C51', resistor R78', resistor R79', capacitor R49' and resistor R80'.
  • the first end of the resistor R52' is connected to a voltage of 15V, and the second end of the resistor R52' is electrically connected with the first end of the light emitter OP1A' in the second photocoupler; the resistor R57' is connected with the second photocoupler The light emitter OP1A' in the parallel connection; the first end of the diode D11' is electrically connected to the second end of the light emitter OP1A' in the second optocoupler, and the second end of the diode D11' is electrically connected to the first end of the resistor R63' connection; the second end of the resistor R63' is electrically connected to the output end of the third comparator U3A'; after the capacitor C39' is connected in series with the resistor R59', it is connected in parallel between the output end of the third comparator U3A' and the second input end between; the second end of the resistor R58' is electrically connected to the second input end of the third comparator U3A',
  • this embodiment by setting the dimming instruction transfer module 102 including the third comparator U3A' and the fourth comparator U3B', and including the second transformer T2', the first switch unit Q2', the second switch unit Q4', the first control unit 310, the third switch unit Q5', the fourth switch unit Q1' and the DC-DC conversion module 103 of the second control unit 320 realize the transformation from the first DC voltage DC1 to the second DC voltage DC2 conversion.
  • this embodiment realizes the adaptive adjustment of the dimming command and the specified brightness of the LED by controlling the second DC voltage DC2.
  • the specific circuit structure has the advantages of simple circuit structure, stable operation and easy realization.
  • FIG. 11 is a circuit diagram of another current detection module provided by the embodiment of the present application.
  • the LED dimming circuit further includes a current detection module 104, the current detection module 104 is electrically connected to the second output end of the LED dimming circuit, and the current detection module 104 is used to detect the second output terminal current.
  • the current detection module 104 includes a sixth comparator U5', a fifteenth resistor R81', a ninth capacitor C53', a sixteenth resistor R85', a seventeenth resistor R84' and a tenth capacitor C54'.
  • the sixth comparator U5' includes a first input terminal, a second input terminal and an output terminal.
  • the first end of the fifteenth resistor R81' is electrically connected to the second output end of the LED dimming circuit, and the second end of the fifteenth resistor R81' is electrically connected to the first input end of the sixth comparator U5'.
  • the first end of the ninth capacitor C53' is electrically connected to the first input end of the sixth comparator U5', and the second end of the ninth capacitor C53' is electrically connected to the second input end of the sixth comparator U5'.
  • the first end of the sixteenth resistor R85' is connected to the comparison voltage signal, and the second end of the sixteenth resistor R85' is electrically connected to the second input end of the sixth comparator U5'.
  • the first end of the seventeenth resistor R84' is electrically connected to the output end of the sixth comparator U5', and the second end of the seventeenth resistor R84' is used as the output end of the current detection module 104.
  • the first end of the tenth capacitor C54' is electrically connected to the output end of the current detection module 104, and the second end of the tenth capacitor C54' is electrically connected to the second output end of the LED dimming circuit.
  • the current detection module 104 further includes a resistor R83', a resistor R86', a capacitor C53', a resistor R82', and a capacitor C52'. It can be seen that the first end of the resistor R83' is electrically connected to the second grounding end, and the second end of the resistor R83' is electrically connected to the second end of the sixteenth resistor R85'; the resistor R86' is connected in parallel with the capacitor C55'; the capacitor C53 'connected in parallel between the first input terminal and the second input terminal of the sixth comparator U5', the first terminal of the capacitor C53' is electrically connected to the second terminal of the fifteenth resistor R81'; the first terminal of the resistor R82' Connected between the fifteenth resistor R81' and the capacitor C53', the second end of the resistor R82' is connected between the output end of the sixth comparator U5' and the seventeenth resistor R84'; the first end of
  • the sixth comparator U5' when it is detected that there is current at the second output terminal of the LED dimming circuit, the sixth comparator U5' outputs a high level; when it is detected that there is no current at the second output terminal of the LED dimming circuit, the sixth comparator Device U5' outputs low level.
  • the embodiment of the present application may, but is not limited to, amplify the output signal of the current detection module 104 through a post-amplification circuit, and issue warnings based on warning devices such as buzzers or warning lights, so as to further protect the safety of installers. life safety.
  • the current detection module 104 by setting the current detection module 104 to detect the current of the second output terminal of the LED dimming circuit, it overcomes the problem that the LED lighting device is easily damaged due to power on at one end and conduction at the other end during the installation process of the LED lighting device.
  • the problem of electric shock accidents caused by it effectively avoids the risk of electric shock of installers.
  • FIG. 12 is a circuit diagram of another AC-DC conversion module provided by the embodiment of the present application.
  • the AC-DC conversion module 101 includes an electromagnetic compatibility unit 220 and a rectifier bridge B1 .
  • the electromagnetic compatibility unit 220 is used for anti-electromagnetic interference, and transmits the filtered first AC voltage AC1 to a subsequent circuit.
  • the rectifier bridge B1 is used to convert the filtered first AC voltage AC1 into a first DC voltage DC1.
  • the electromagnetic compatibility unit 220 may be any kind of circuit capable of realizing the electromagnetic compatibility function
  • the rectifier bridge B1 may be any kind of rectification circuit, which is not limited in this embodiment of the present application.
  • the rectifier bridge B1 may be an uncontrolled rectification circuit, or may be a half-controlled rectification circuit, or may be a fully-controlled rectification circuit.
  • the EMC unit includes a fuse F1', a varistor MOV1', a capacitor CX1', a capacitor CY4', a capacitor CY3', a transformer LF, a resistor RX2', a resistor RX1', and a resistor RX3 ' and negative temperature coefficient resistor RTH1'.
  • the first end of the fuse F1' is electrically connected to the first end of the varistor MOV1', and the second end of the fuse F1' is electrically connected to the third input end of the electromagnetic compatibility unit 220; the first end of the varistor MOV1' The two ends are electrically connected to the second input end of the electromagnetic compatibility unit 220; the capacitor CX1' is connected in parallel with the varistor MOV1'; the first end of the capacitor CY4' is connected to the second end of the capacitor CX1' and the varistor MOV1' Between the second ends, the second end of the capacitor CY4' is electrically connected to the first input end of the electromagnetic compatibility unit 220; the capacitor CY3' is connected in parallel between the first end of the capacitor CX1' and the second end of the capacitor CY4', and the capacitor The second end of CY3' is electrically connected to the third ground end; the first end of the transformer LF is electrically connected to the first end of the capacitor CY3', the second end of
  • the rectifier bridge B1 includes four diodes connected end to end, and the AC-DC conversion module 101 further includes a capacitor CY1' and a capacitor C10'.
  • the first end of the rectifier bridge B1 is electrically connected to the first end of the resistor RX2', the second end of the rectifier bridge B1 is used to output the first DC voltage DC1, and the third end of the rectifier bridge B1 is connected to the negative temperature coefficient resistor RTH1 ', the fourth end of the rectifier bridge B1 is electrically connected to the third ground end through the capacitor CY1'; the first end of the capacitor C10' is electrically connected to the second end of the rectifier bridge B1, and the first end of the capacitor C10' The two terminals are electrically connected to the first terminal of the capacitor CY1', and the second terminal of the capacitor C10' is also electrically connected to the first ground terminal.
  • the negative temperature coefficient resistor RTH1' since the negative temperature coefficient resistor RTH1' has the characteristic of high resistance when powering on, during the initial power-on process of the LED dimming circuit, the negative temperature coefficient resistor RTH1' can weaken the impact of the sudden voltage or current on the circuit system. Impact, enhance the impact resistance of LED dimming circuit. And when the LED dimming circuit works stably, the resistance value of the negative temperature coefficient resistor RTH1' decreases, which can reduce the degree of influence on the power supply efficiency.
  • the technical solution of this embodiment weakens the electromagnetic interference suffered by the LED dimming circuit by setting the electromagnetic compatibility unit 220, and improves the anti-electromagnetic interference capability of the LED dimming circuit.
  • the AC voltage AC1 is converted into a first DC voltage DC1.
  • the circuit provided by this embodiment is simple, low in cost and easy to realize.
  • FIG. 13 is a circuit diagram of a power factor correction module provided by the embodiments of the present application.
  • the LED dimming circuit further includes a power factor correction module 360 , and the power factor correction module 360 is connected between the AC-DC conversion module 101 and the DC-DC conversion module 103 .
  • the power factor correction module 360 is configured to perform power factor correction on the first DC voltage DC1 and transmit it to the DC-DC conversion module 103 .
  • the power factor correction module 360 may be any type of power factor correction circuit, which is not limited in this embodiment of the present application. Exemplarily, the power factor correction module 360 may be an active power factor correction circuit, or may be a passive power factor correction circuit.
  • the power factor correction module 360 includes a power factor correction chip U1', a resistor R3', a resistor R14', a resistor R19', a resistor R4', a resistor R15', a resistor R19A', a resistor R30 ', capacitor C15', capacitor C17', capacitor C16', diode D2', Zener tube ZD1', capacitor C2', resistor R2', resistor R13', capacitor C7', transformer T, capacitor C5', resistor R6' , capacitor C11', diode D4', resistor R18', resistor R23', resistor R27', resistor R29', capacitor C18', resistor R33', MOS tube Q3', diode D1', resistor R5', resistor R16', capacitor C13', resistor R22' and capacitor C6'.
  • the resistor R3', the resistor R14', the resistor R19' and the resistor R30' are connected in series between the second terminal of the rectifier bridge B1 and the first ground terminal; the capacitor C15' is connected in parallel to both ends of the resistor R30'; they are connected in series
  • the resistor R4', resistor R15' and resistor R19A' are connected to the first end of the resistor R3' and the VCC end of the power factor correction chip U1'; the first end of the capacitor C17' is connected to the second end of the resistor R19A' and the power
  • the second terminal of the capacitor C17' is electrically connected to the second terminal of the capacitor C15'; the capacitor C16' is connected in parallel with the capacitor C17'; the MUTL terminal of the power factor correction chip U1' is connected to the resistor R30 'The first end is electrically connected; the first end of the diode D2' is electrically connected to the first
  • the power factor correction module 360 by setting the power factor correction module 360, after converting the first AC voltage AC1 to the first DC voltage DC1 through the rectifier bridge B1, the power factor correction is performed on the first DC voltage DC1, reducing the harmonic Wave component improves the power factor, reduces energy consumption, and weakens external radiation and conduction interference of power equipment.
  • Fig. 14 is a schematic structural diagram of another LED dimming circuit provided by the embodiment of the present application.
  • the LED dimming circuit further includes a DC-AC conversion module 104, and the DC-AC conversion module 104 is used to invert the second DC voltage DC2 into a second AC voltage AC2, and the second The AC voltage AC2 is used as the output voltage of the LED dimming circuit.
  • the DC-AC conversion module 104 includes a second DC voltage input terminal and a second AC voltage output terminal, the second DC voltage input terminal is connected to the second DC voltage DC2, and the second AC voltage output terminal outputs the second AC voltage AC2,
  • the second DC voltage input terminal is electrically connected to the second DC voltage output terminal.
  • the transmission signal type between the second DC voltage input terminal and the second DC voltage output terminal may be a level signal, which is not limited in this embodiment of the present application.
  • the second AC voltage AC2 is an adjustable voltage; the voltage effective value range of the second AC voltage AC2 can be any voltage value in the interval [40, 125]; the frequency parameter of the second AC voltage AC2 can be less than Any frequency value of 1kHz.
  • the voltage value of the second direct current voltage DC2 may be in one-to-one correspondence with the voltage value of the second alternating current voltage AC2.
  • the basic principle circuit of the DC-AC conversion module 104 can be any kind of inverter circuit, which is not limited in the embodiment of the present application, for example, it can be a half-controlled inverter circuit, or it can be a full-controlled inverter circuit inverter circuit.
  • the circuit provided by this embodiment is simple, low in cost and easy to implement.
  • FIG. 15 is a schematic structural diagram of a DC-AC conversion module provided by an embodiment of the present application.
  • the DC-AC conversion module 104 includes an inverter bridge unit 370 and an inverter drive unit 380 .
  • the inverter bridge unit 370 is used for coupling the inverter driving signal to invert the second DC voltage DC2 into the second AC voltage AC2.
  • the inverter driving unit 380 is used to couple the control signal and convert the control signal into an inverter driving signal that can be used to drive the inverter bridge unit 370 to work.
  • the inverter bridge unit 370 can be controlled by an inverter driving signal (for example, four MOS transistors constituting the inverter), so as to invert the second DC voltage DC2 into the second AC voltage AC2.
  • an inverter driving signal for example, four MOS transistors constituting the inverter
  • the inverter driving unit 380 may receive a control signal.
  • control signal is used to control the inverter driving unit 380 to generate an inverter driving signal; the inverter driving signal is used to control the inverter bridge unit 370 to invert the second DC voltage DC2 into the second AC voltage AC2.
  • the inverter driving signal may be a pulse signal; the amplitude and frequency of the inverter driving signal may be adjusted according to actual needs, which is not limited in this embodiment of the present application.
  • the inverter bridge unit 370 includes a first bridge arm 371 and a second bridge arm 372 .
  • the first bridge arm 371 includes a first upper bridge arm 371A and a first lower bridge arm 371B.
  • the first upper bridge arm 371A and the first lower bridge arm 371B are used for coupling an inverter driving signal and are alternately conducted.
  • the second bridge arm 372 includes a second upper bridge arm 372A and a second lower bridge arm 372B.
  • the second upper bridge arm 372A and the second lower bridge arm 372B are used for coupling an inverter driving signal and are turned on alternately.
  • the inverter bridge unit 370 further includes a diode D1
  • the first upper bridge arm 371A includes a resistor R43", a metal-oxide-semiconductor field effect transistor (Metal-Oxide-Semiconductor, MOS transistor) Q8" and a capacitor C33
  • the first lower bridge arm 371B includes a resistor R45", a MOS transistor Q9” and a capacitor C34
  • the second upper bridge arm 372A includes a resistor R40", a MOS transistor Q10” and a capacitor C31
  • the second lower bridge arm 372B includes a resistor R42", MOS transistor Q11" and capacitor C32".
  • the anode of diode D1 is connected to the second DC voltage DC2
  • the cathode of diode D1 is electrically connected with the drain of MOS transistor Q8
  • the gate of MOS transistor Q8" electrode is electrically connected to the second end of the resistor R43
  • the capacitor C33" is connected in parallel between the drain and the source of the MOS transistor Q8
  • the drain of the MOS transistor Q9 is electrically connected to the source of the MOS transistor Q8
  • the MOS transistor The source of Q9" is electrically connected to the first ground terminal
  • the gate of MOS transistor Q9 is electrically connected to the second end of resistor R45
  • the capacitor C34 is connected in parallel between the source and drain of MOS transistor Q9".
  • the drain of the transistor Q10" is electrically connected to the drain of the MOS transistor Q8", the gate of the MOS transistor Q10" is electrically connected to the first end of the resistor R40", and the source of the MOS transistor Q10" is electrically connected to the drain of the MOS transistor Q11".
  • the capacitor C31" is connected in parallel between the source and drain of the MOS transistor Q10
  • the source of the MOS transistor Q11 is electrically connected to the source of the MOS transistor Q9
  • the gate of the MOS transistor Q11" is connected to the resistor R42.
  • the first end of the capacitor C32" is connected in parallel between the source and the drain of the MOS transistor Q11.
  • the source of the MOS transistor Q8" is used as the first output terminal AC1" of the second AC voltage AC2, and the MOS transistor The source of Q10" serves as the second output terminal AC2" of the second AC voltage AC2.
  • the configuration of the inverter bridge unit 370 realizes the inversion of the second direct current voltage DC2 into the second alternating current voltage AC2, and the circuit is stable and easy to implement.
  • the inverter driving unit 380 includes a first half-bridge driving circuit 381 and a second half-bridge driving circuit 382 .
  • the first half-bridge drive circuit 381 is used to couple the control signal to generate the first upper bridge arm drive signal and the first lower bridge arm drive signal
  • the first upper bridge arm drive signal is used to drive the first upper bridge arm 371A
  • the first lower bridge arm drive signal The arm drive signal is used to drive the first lower arm 371B.
  • the second half-bridge drive circuit 382 is used to couple the control signal to generate a second upper bridge arm drive signal and a second lower bridge arm drive signal.
  • the second upper bridge arm drive signal is used to drive the second upper bridge arm 372A, and the second lower bridge arm drive signal
  • the arm drive signal is used to drive the second lower arm 372B.
  • the first half-bridge driving circuit 381 includes a diode D15", a capacitor C28", a capacitor C30", a resistor R38" and a first half-bridge driving chip U3". It can be seen that the anode of the diode D15” is connected to the first power terminal Electrically connected, the cathode of the diode D15” is electrically connected to the VB terminal of the first half-bridge driver chip U3", the capacitor C30" is connected in parallel between the VB terminal and the VS terminal of the first half-bridge driver chip U3", and the capacitor C28" is connected in series Between the first power terminal and the first ground terminal, the first terminal of the resistor R38" is electrically connected to the HIN terminal and the LIN terminal of the first half-bridge driver chip U3", respectively, and the second terminal of the resistor R38” is connected to the control signal AC_CON1 , the COM terminal of the first half-bridge driver chip U3” is connected between the second terminal of the capacitor C28” and the first ground
  • the HO end of the first half-bridge driver chip U3 is electrically connected to the first end of the resistor R43
  • the VS end of the first half-bridge driver chip U3 is connected to the source of the MOS transistor Q8" and the first end of the resistor R43.
  • the LO end of the first half-bridge driver chip U3 is electrically connected to the first end of the resistor R45". It can be understood that the HO end of the first half-bridge driver chip U3" is used for output the first upper bridge arm driving signal, and the LO end of the first half bridge driving chip U3 ′′ is used to output the first lower bridge arm driving signal.
  • the second half-bridge driving circuit 382 includes a diode D14", a capacitor C27", a capacitor C29", a resistor R36" and a second half-bridge driving chip U4".
  • the anode of the diode D14" is connected to the first The power terminal is electrically connected
  • the cathode of the diode D14" is electrically connected to the VB terminal of the second half-bridge driver chip U4"
  • the capacitor C29" is connected in parallel between the VB terminal and the VS terminal of the second half-bridge driver chip U4"
  • the capacitor C27" Connected in series between the first power terminal and the first ground terminal
  • the first terminal of the resistor R36" is electrically connected to the HIN terminal and the LIN terminal of the second half-bridge driver chip U4"
  • the second terminal of the resistor R36" is connected to the control Signal AC_CON2
  • the COM terminal of the second half-bridge driver chip U4" is connected between the second terminal of the capacitor C27" and the
  • the LO end of the second half-bridge driver chip U4" is electrically connected to the second end of the resistor R42". It can be understood that the HO end of the second half-bridge driver chip U4" It is used to output the driving signal of the second upper bridge arm, and the LO end of the second half bridge driving chip U4′′ is used to output the driving signal of the second lower bridge arm.
  • the second DC voltage DC2 is inverted into the second AC voltage AC2 by providing the inverter bridge unit 370 and the inverter drive unit 380 .
  • this embodiment provides a specific circuit structure of the inverter bridge unit 370 and the inverter drive unit 380, the circuit structure of which is simple and easy to implement.
  • the specific models and characteristic parameters of the above-mentioned electronic components used to form the LED dimming circuit are related to the dimming effect to be obtained by the LED dimming circuit, which is not limited in the embodiments of the present application.
  • the above-mentioned multiple resistors may all be chip resistors.
  • the LED dimming circuit mainly includes a power converter (for example, DC (Direct Current, direct current)/DC converter or DC/DC/AC (Alternating Current, alternating current) converter), output voltage, current The detection part and an adjustment device based on a mechanical potentiometer, etc.
  • a power converter for example, DC (Direct Current, direct current)/DC converter or DC/DC/AC (Alternating Current, alternating current) converter
  • output voltage for example, DC (Direct Current, direct current)/DC converter or DC/DC/AC (Alternating Current, alternating current) converter
  • the embodiment of the present application also provides an LED dimmer.
  • the LED dimmer provided in the embodiment of the present application includes the LED dimming circuit provided in any embodiment of the present application, and the technical principles and realized effects are similar, and will not be repeated here.
  • the embodiment of the present application also provides an LED lighting device.
  • the LED illuminating device provided in the embodiment of the present application includes the LED dimmer provided in any embodiment of the present application, and the technical principle and the realized effect are similar, and will not be repeated here.
  • the LED lighting device may be Type B.
  • Embodiments of the present application provide an LED dimming circuit, a dimmer, and a lighting device, which are used to reduce system costs, reduce signal distortion, and enhance system compatibility on the basis of accurate and efficient real-time dimming.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

本申请公开了一种LED调光电路、调光器和照明装置,LED调光电路包括:交流-直流转换模块(101),用于将第一交流电压(AC1)转换为第一直流电压(DC1),其中,第一交流电压(AC1)为输入交流电压;直流-直流变换模块(103),用于将第一直流电压(DC1)变换为第二直流电压(DC2),其中,第二直流电压(DC2)的电压大小匹配LED的指定亮度;调光指令传递模块(102),用于耦合调光指令,根据调光指令生成控制直流-直流变换模块(103)的控制信号,以传递调光指令。本申请提供的LED调光电路、调光器和照明装置,能够实现多LED照明设备精准、高效和实时调光,缩减了信号解调步骤,降低了系统硬件成本和方案实施难度,减少了信号畸变程度。

Description

LED调光电路、调光器和照明装置
本申请要求在2021年10月27日提交中国专利局、申请号为202111254688.2的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及照明技术领域,例如涉及一种LED调光电路、调光器和照明装置。
背景技术
随着发光二极管(Light Emitting Diode,LED)照明技术的持续发展,市场对LED照明装置的需求愈发强劲,作为LED照明动态控制的代表性功能之一,调光功能的优化与升级已然成为智能、健康照明技术攻关的核心要素。
一般说来,在实际工程应用过程中,LED照明装置可分为三类,即替换类、改造类和新造类。通常情况下,在对替换类或改造类LED照明装置的调光功能进行升级时,需要更换原有照明装置以便于匹配现有调光器。因此,如图1-3所示,调光器可以根据工作原理归纳为以下三种方式:
第一是可控硅调光方式,如图1所示,该方式会对输入电压的有效值进行调整,LED照明装置根据调光器生成的电源信号实现调光效果;如图2所示,第二种调光方式是通过调光器将调光信号传递到LED照明装置内部的信号解调电路,信号解调电路依据接收到的调光信号调整输出电压或电流,进而实现调光功能;如图3所示,第三种调光方式是在原有回路中接入能够合成电源信号和调光信号的调光器,通过调光器将合成调光信号传递给LED照明装置,经装置内部的信号解调电路分析后实现调光功能。例如,一类实现方式为,LED照明装置内可不设置专门用来信号解调的组件(即,上文所述的信号解调电路不一定本身需要存在实际的信号解调功能)。这是考虑到,调光器可给出一个可调的输出电压,调光器能够知道需要给出的电压数值,进而LED照明装置可在不同的电压下对应表示出不一样的功率。
对于可控硅调光方式,该方式会产生电压波形畸变,降低照明效率;对于第二种调光方式,该方式在多LED照明装置场景下需要每个LED照明装置相应配备信号线以接受调光信号,因而会提高LED照明装置的工程复杂程度,增加照明系统的工程施工难度;第三种调光方式对LED照明装置有特殊要求,需要 更换LED照明装置才能实现调光功能,基于此,该方式不仅增加了工程成本,还会弃用原有正常工作的LED照明装置,造成资源浪费。除此以外,在安装过程中,采用上述三种调光方式的LED照明装置还存在易因单端上电,另一端导电而引发的触电风险,严重威胁着安装人员的生命安全。
发明内容
本申请实施例提供一种LED调光电路、调光器和照明装置。
第一方面,本申请实施例提供了一种LED调光电路,包括:
交流-直流转换模块,用于将第一交流电压转换为第一直流电压;其中,所述第一交流电压为输入交流电压;
直流-直流变换模块,用于将所述第一直流电压变换为第二直流电压;其中,所述第二直流电压的电压大小匹配所述LED的指定亮度;
调光指令传递模块,用于耦合调光指令,根据所述调光指令生成控制所述直流-直流变换模块的控制信号,以传递所述调光指令。
第二方面,本申请实施例还提供了一种LED调光器,包括本申请任意实施例提供的LED调光电路。
第三方面,本申请实施例还提供了一种LED照明装置,包括本申请任意实施例提供的LED调光器。
附图说明
图1为相关技术中的一种LED调光电路的结构示意图;
图2为相关技术中的另一种LED调光电路的结构示意图;
图3为相关技术中的又一种LED调光电路的结构示意图;
图4是本申请实施例提供的一种LED调光电路的结构示意图;
图5是本申请实施例提供的一种直流-直流变换模块的电路图;
图6是本申请实施例提供的一种调光指令传递模块的电路图;
图7是本申请实施例提供的一种电流检测模块的电路图;
图8是本申请实施例提供的一种交流-直流转换模块的电路图;
图9是本申请实施例提供的另一种直流-直流变换模块的电路图;
图10是本申请实施例提供的另一种调光指令传递模块的电路图;
图11是本申请实施例提供的另一种电流检测模块的电路图;
图12是本申请实施例提供的另一种交流-直流转换模块的电路图;
图13是本申请实施例提供的一种功率因数矫正模块的电路图;
图14是本申请实施例提供的另一种LED调光电路的结构示意图;
图15是本申请实施例提供的一种直流-交流转换模块的结构示意图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
图4是本申请实施例提供的一种LED调光电路的结构示意图。如图4所示,LED调光电路包括:交流-直流转换模块101、调光指令传递模块102和直流-直流变换模块103。
交流-直流转换模块101用于将第一交流电压AC1转换为第一直流电压DC1;其中,第一交流电压AC1为输入交流电压。调光指令传递模块102用于耦合调光指令,根据调光指令生成控制直流-直流变换模块103的控制信号,以传递调光指令。直流-直流变换模块103用于将第一直流电压DC1变换为第二直流电压DC2;其中,第二直流电压DC2的电压大小匹配LED的指定亮度。
其中,交流-直流转换模块101包括交流电压输入端和第一直流电压输出端,交流电压输入端接入第一交流电压AC1,第一直流电压输出端输出第一直流电压DC1。
在一实施例中,第一交流电压AC1为可调电压;相应地,第一直流电压DC1为可调电压;第一直流电压DC1的电压值与第一交流电压AC1的电压值一一对应。可以理解的是,第一交流电压AC1的电压有效值范围可以是[120,277]区间内的任一电压值,第一直流电压DC1的电压值范围可以是[150,400]区间内的任一电压值,本申请实施例对此均不进行限制。此外,第一交流电压AC1的频率参数可以为50Hz,或者可以为47-63Hz之间(例如可以为60Hz)。
可以理解的是,交流-直流转换模块101可以是任一种整流电路,本申请实施例对此不进行限制,例如可以是不可控整流电路,或者可以是半控整流电路,或者可以是全控整流电路。交流-直流转换模块101的转换对象可以为任一种外接交流电源产生的单相交流电源信号,例如市电。
可知地,调光指令传递模块102包括调光指令输入端和控制信号输出端,调光指令输入端接入调光指令,控制信号输出端输出控制信号。另外,直流-直 流变换模块103包括控制信号输入端、第一直流电压输入端和第二直流电压输出端,第一直流电压输入端接入第一直流电压DC1,控制信号输入端接入控制信号,第二直流电压输出端输出第二直流电压DC2。可以理解的是,第一直流电压输入端与第一直流电压输出端电连接,控制信号输入端与控制信号输出端电连接。控制信号输入端与控制信号输出端之间,以及第一直流电压输入端与第一直流电压输出端之间的传输信号类型可以是电平信号,本申请实施例对此不进行限制。可知地,第二直流电压DC2为可调电压。示例性地,第二直流电压DC2的电压值范围可以是[40,125]区间内的任一电压值;控制信号以及调光指令的信号类型可以为数字信号;调光指令的传输方式可以是有线传输,或者可以是无线传输;控制信号以及调光指令的数制可以为二进制。
可以理解的是,第二直流电压DC2的电压大小匹配LED的指定亮度是指,不同电压大小的第二直流电压DC2对应于同一LED的不同亮度。可知地,在LED固有的工作电压区间内,第二直流电压DC2越大,LED越亮。除此以外,直流-直流变换模块103的基本原理电路可以是任一类别的斩波电路。示例性地,直流-直流变换模块103的基本原理电路可以是Buck电路,或者可以是Boost电路,或者可以是Buck-Boost电路,或者可以是Cuk电路等。
本实施例的技术方案,首先,通过设置交流-直流转换模块101,将输入的第一交流电压AC1转换为待耦合调光指令的第一直流电压DC1;其次,通过设置调光指令传递模块102,对调光指令进行耦合,并生成能够传递调光指令的控制信号;最后,通过设置直流-直流变换模块103,根据控制信号,将第一直流电压DC1变换为可匹配LED指定亮度的第二直流电压DC2。由此可见,与相关技术相比,本申请实施例填补了可控硅调光方式会产生电压波形畸变,降低照明效率的缺陷;解决了相关技术中通过信号解调电路基于调光信号调整输出电压或电流的调光方式,需要配备多根信号线、连接线路冗杂和工程实施难度大的问题;克服了相关技术中通过信号解调电路基于合成调光信号调整输出电压或电流的调光方式,需要弃用原有正常工作的LED照明装置,增加工程成本,产生资源浪费的弊端。综上所述,本申请实施例不仅实现了LED精准、高效和实时调光的效果,还缩减了信号解调步骤,有利于降低系统硬件成本和方案实施难度,并减少系统信号的畸变。此外,本申请实施例能够兼容多个不同类别的改造类LED照明装置,即TypeB型照明装置,而无需对LED照明装置进行额外改动。
在上述多个实施例的基础上,图5是本申请实施例提供的一种直流-直流变 换模块的电路图。如图5所示,在一实施例中,直流-直流变换模块103包括第一变压器T1和反馈单元210。第一变压器T1包括一次侧绕组和二次侧绕组,一次侧绕组用于接入第一直流电压DC1,二次侧绕组用于输出第二直流电压DC2。反馈单元210串联连接于一次侧绕组和第一接地端之间,反馈单元210用于接收调光指令并跟据所述调光指令控制一次侧绕组与第一接地端之间的通断。
其中,直流-直流变换模块103通过第一变压器T1将第一直流电压DC1变换为第二直流电压DC2。可知地,第一变压器T1的一次侧绕组、反馈单元210和第一接地端能够组成闭合回路,当反馈单元210接收到调光指令时,反馈单元210控制一次侧绕组与第一接地端之间的通断,进而能够实现第二直流电压DC2的可控调节。可以理解的是,反馈单元210可以但不限于通过控制一次侧绕组与第一接地端之间的通断频率或占空比,实现第二直流电压DC2的可控调节。
在上述各实施例的基础上,图6是本申请实施例提供的一种调光指令传递模块的电路图。如图6所示,在一实施例中,调光指令传递模块102包括第一比较器U2B。第一比较器U2B的第一输入端接入调光指令,第一比较器U2B的第二输入端接入比较电压信号,第一光电耦合器中的发光器IC1A串联连接于第一比较器U2B的输出端和第一电源端之间。
其中,第一比较器U2B用于根据调光指令和比较电压信号输出一电平信号;比较电压信号可以任意大小的电压信号。可知地,当调光指令和比较电压信号不一致时,该电平信号能够使第一光电耦合器中的发光器IC1A产生一光信号,进而实现调光指令的传递。
继续参见图5,在一实施例中,反馈单元210包括反馈控制芯片U1和第一晶体管Q1。反馈控制芯片U1包括反馈引脚FB和门驱动输出引脚GATE,第一晶体管Q1串联连接于一次侧绕组和第一接地端之间,第一晶体管Q1的栅极与门驱动输出引脚GATE电连接,第一光电耦合器中的受光器OP1B串联连接于反馈引脚FB和第一接地端之间。
其中,反馈控制芯片U1能够基于第一光电耦合器中的受光器OP1B识别由第一光电耦合器中的发光器IC1A产生的光信号,通过反馈引脚FB的电压变化,实现对调光指令的接收。可知地,在反馈控制芯片U1接收到调光指令后,反馈控制芯片U1的门驱动输出引脚GATE将适应性输出一门驱动信号,第一晶体管Q1根据该门驱动信号导通或者关断,进而实现了反馈单元210接收调 光指令并跟据所述调光指令控制一次侧绕组与第一接地端之间的通断功能。基于此,在一实施例中,LED调光电路还包括第一光电耦合器,反馈单元210和调光指令传递模块102通过第一光电耦合器进行调光指令的传递。
继续参见图5,在一实施例中,直流-直流变换模块103还包括第一电感L1、第一电阻R1、第一电容C1、第二电容C2、第一压敏电阻V1、第三电容C7、第一二极管D6和第二电阻。第一电感L1串联连接于交流-直流转换模块101与一次侧绕组之间;其中,第一电感L1与一次侧绕组的第一端电连接。第一电阻R1与第一电感L1并联连接。第一电容C1的第一端与第一电阻R1的第一端电连接,第一电容C1的第二端与第一接地端电连接。第二电容C2的第一端与第一电阻R1的第二端电连接,第二电容C2的第二端与第一接地端电连接。第一压敏电阻V1与第二电容C2并联连接。第三电容C7的第一端与第二电容C2的第一端电连接。第一二极管D6的阴极与第三电容C7的第二端电连接,第一二极管D6的阳极与一次侧绕组的第二端电连接。第二电阻与第三电容C7并联连接。
其中,第一电感L1、第一电阻R1、第一电容C1和第二电容C2用于滤除第一直流电压DC1中掺杂的交流分量,并减小第一直流电压DC1的脉动,平滑第一直流电压DC1的电压波形。可知地,第三电容C7、第一二极管D6和第二电阻能够组成RCD钳位吸收电路,该RCD钳位吸收电路可以有效减少第一晶体管Q1的开关损耗,有利于改善LED调光电路的电磁干扰(Electromagnetic Interference,EMI)特性。
可以理解的是,图5示例性示出了第二电阻可以由6个电阻串联和/或并联连接而成,并不对本申请构成限定。示例性地,第二电阻还可以由2、3、4或8个电阻串联和/或并联连接而成。继续参见图5,可知地,第二电阻包括电阻R14、电阻R11、电阻R7、电阻R13、电阻R10和电阻R6,电阻R14和电阻R13串联后,与相互串联的电阻R11和电阻R10,以及串联连接的电阻R7和电阻R6并联连接。
继续参见图5,在一实施例中,直流-直流变换模块103还包括第三电阻、第四电容、第二二极管、第五电容C8、第四电阻、第五电阻R34和第三二极管D13。第三电阻的第一端与二次侧绕组的第一端电连接。第四电容的第一端与第三电阻的第二端电连接,第四电容的第二端作为LED调光电路的第一输出端Vout+。第二二极管的第一端与二次侧绕组的第一端电连接,第二二极管的第二端与LED调光电路的第一输出端电连接。第五电容C8的第一端与LED调光 电路的第一输出端电连接,第五电容C8的第二端与二次侧绕组的第二端电连接,并与第二接地端电连接。第四电阻与第五电容C8并联连接。第五电阻R34的第一端与二次侧绕组的第二端电连接,第五电阻R34的第二端与LED调光电路的第二输出端Vout-电连接。第三二极管D13的阳极与LED调光电路的第二输出端电连接,第三二极管D13的阴极与二次侧绕组的第二端电连接。
参见图5,Vout表示输出电压值。
其中,第三电阻、第四电容和第二二极管能够组成二次侧绕组的吸收电路,该吸收电路能够吸收LED调光电路工作过程中第一变压器T1一次侧绕组产生的自感电势,同时,在第一晶体管Q1截止的瞬间,还能有效规避因第一变压器T1一次侧绕组出现的过高反峰高电压而损坏第一晶体管Q1的风险。可以理解的是,第三电阻和第四电容还可以抑制反向峰值电压,也即浪涌电压对第二二极管的影响,以在第二二极管耐压不足的工况下,保护第二二极管不受损坏。
可以理解的是,图5示例性示出了第三电阻和第四电阻均可以由3个电阻并联而成,第四电容可以由2个电容并联而成,第二二极管可以由2个二极管并联而成,并不对本申请构成限定。示例性地,第三电阻和第四电阻还可以仅包含1个电阻,或者可以由2、3或4个电阻并联而成;第四电容可以仅包含1个电容,或者可以由2个及2个以上的电容并联而成;第二二极管可以仅包含1个二极管,或者可以由2个及2个以上的二极管并联而成。继续参见图5,可知地,第三电阻包括电阻R44、电阻R45和电阻R46,第四电阻包括电阻R23、电阻R27和电阻R36,第四电容包括电容C4和电容C19,第二二极管包括二极管D10和二极管D11。
继续参见图5,在一实施例中,反馈单元210还包括电容C3、开关管Q2、肖特基二极管Z1、电阻R2、电容C6、电阻R3、二极管D5、电阻R4、电阻R5、辅助线圈i、电容C10、电阻R21、电阻R22、电容C21、电容C11、电容C13、二极管D1、电阻R9、电阻R8、电阻R12、电阻R24、电阻R18、电阻R19、电阻R20和电容C20。可知地,电容C3的第一端接入电压VCC,电容C3的第二端与第一接地端电连接;开关管Q2的第一端与电容C3的第一端电连接,开关管Q2的第二端与肖特基二极管Z1的第一端电连接,开关管Q2的第三端与电阻R2的第二端电连接;肖特基二极管Z1的第二端与电容C3的第二端电连接;电阻R2的第一端与肖特基二极管Z1的第一端电连接;电容C6的第一端与电阻R2的第二端电连接,电容C6的第二端与第一接地端电连接;电 阻R3的第一端与电阻R2的第二端电连接,电阻R3的第二端与二极管D5的第一端电连接;二极管D5的第二端与电阻R4的第一端电连接;电阻R4的第二端与电阻R5的第一端电连接;电阻R5的第二端与辅助线圈i的第二端电连接;辅助线圈i的第一端与电阻R4的第一端电连接,辅助线圈i的第二端与第一接地端电连接;电容C10并联于电阻R5的两端,电容C10的第一端与反馈控制芯片U1的ZCD端电连接;反馈控制芯片U1的GND端与第一接地端电连接;反馈控制芯片U1的VCC端接入电压VCC,电容C11的第一端与反馈控制芯片U1的VCC端电连接,电容C11的第二端与第一接地端电连接;电阻R21的第一端接入电压VMAINS,电阻R21的第二端与电阻R22的第一端电连接;电阻R22的第二端与电容C21的第一端电连接;电容C21的第二端与第一接地端电连接;反馈控制芯片U1的HV端连接于电阻R22和电容C21之间;电容C13并联于第一光电耦合器中受光器OP1B的两端;二极管D1的第一端与反馈控制芯片U1的门驱动输出引脚GATE电连接,二极管D1的第二端与电阻R9的第一端电连接;电阻R9的第二端与第一晶体管Q1的第一端,也即第一晶体管Q1的门极电连接;电阻R8的第一端与二极管D1的第一端电连接,电阻R8的第二端与电阻R9的第二端电连接;电阻R12的第一端与电阻R8的第二端电连接,电阻R12的第二端与电阻R18的第一端电连接;电阻R18的第二端与第一接地端电连接;电阻R19并联于电阻R18的两端;电阻R20并联于电阻R19的两端,并且串联于第一晶体管Q1和第一接地端之间;电阻R24的第一端与反馈控制芯片U1的CS端电连接,电阻R24的第二端连接于电阻R12和电阻R18之间;电容C20的第一端与电阻R24的第一端电连接,电容C20的第二端与第一接地端电连接。
继续参见图6,在一实施例中,调光指令传递模块102还包括电阻R26、电容C14、电阻R28、电容C16、二极管D2、电阻R15、电阻R16、电容C5、电阻R58、电阻R52、电阻R55、电阻R60、电阻R59、电阻R62、电容C36、二极管D7和电阻R38。可知地,电阻R26的第一端接入调光指令PWM,电阻R26的第二端与电容C14的第一端电连接;电容C14的第二端与第二接地端GNDE电连接;电阻R28的第一端与电容C14的第一端电连接,电阻R28的第二端与电容C16的第一端电连接;电容C16的第二端与第二接地端电连接;二极管D2的第一端与电容C16的第一端电连接,二极管D2的第二端连接于电阻R15和电阻R16之间;电阻R15的第一端接入+5V电压,电阻R15的第二端与电阻R16的第一端电连接;电阻R16的第二端与第二接地端电连接;电容C5 并联于电阻R16的两端;电阻R58的第一端与第一比较器U2B的第一输入端电连接,电阻R58的第二端连接于电阻R15和电阻R16之间;电阻R52的第一端接入比较电压信号Vout,电阻R52的第二端与电阻R55的第一端电连接;电阻R55的第二端与电阻R60的第一端电连接,电阻R60的第二端与第二接地端电连接;电阻R59并联于电阻R60的两端;第一比较器U2B的第二输入端连接于电阻R55和电阻R60之间;电容C36和电阻R62串联后,并联于第一比较器U2B的第二输入端和输出端之间;电阻R38、第一光电耦合器中的发光器IC1A和二极管D7串联于第一比较器U2B的输出端和第一电源端之间。
在上述各实施例的基础上,本实施例所提供的直流-直流变换模块103和调光指令传递模块102的工作过程如下:
当LED调光电路存在调光需求时,调光指令PWM通过电阻R26、电阻R28、二极管D2和电阻R58传输至第一比较器U2B的第一输入端,同时,比较电压信号Vout经过电阻R52和电阻R55传输至第一比较器U2B的第二输入端。第一比较器U2B根据调光指令和比较电压信号,生成一电平信号,该电平信号使得第一光电耦合器中的发光器IC1A产生一光信号。在第一光电耦合器中的受光器OP1B接收到该光信号后,反馈控制芯片U1的反馈引脚FB的电压被拉低,反馈控制芯片U1得以识别出LED调光电路的调光需求。根据LED调光电路的调光需求,反馈控制芯片U1通过门驱动输出引脚GATE输出一门驱动信号,第一晶体管Q1根据该门驱动信号导通或者关断,进而对直流-直流变换模块103输出的第二直流电压DC2进行控制,实现了调光指令与LED指定亮度的适配调节。
由上述直流-直流变换模块103和调光指令传递模块102的工作过程可知,本实施例的技术方案,通过设置包括第一比较器U2B的调光指令传递模块102,以及包含第一变压器T1和反馈单元210的直流-直流变换模块103,实现了由第一直流电压DC1向第二直流电压DC2的转换。另外,本实施例通过控制第二直流电压DC2,实现了调光指令与LED指定亮度的适配调节,本实施例的技术方案示出了直流-直流变换模块103和调光指令传递模块102的具体电路结构,电路结构简单、运行稳定且易于实现。
在上述实施例的基础上,图7是本申请实施例提供的一种电流检测模块的电路图。如图7所示,在一实施例中,LED调光电路还包括电流检测模块104,电流检测模块104与LED调光电路的第二输出端电连接,电流检测模块104用于检测第二输出端的电流。基于此,本实施例通过设置电流检测模块104 以检测LED调光电路的第二输出端电流的手段,克服了相关技术中的LED照明装置在安装过程中,容易因单端上电,另一端导电而引发的触电事故的问题,有效规避了安装人员的触电风险。可以理解的是,本申请实施例包括但不限于检测第二输出端的电流,示例性地,电流检测模块104还可以用于检测第一输出端的电流。
在一实施例中,电流检测模块104包括第五比较器U2A、第八电阻R47、第九电阻R49、第十电阻R51、第十一电阻R48、第十二电阻R50、第十三电阻R25、第七电容C28、第十四电阻R35和第八电容C29。第五比较器U2A包括第一输入端、第二输入端和输出端。第八电阻R47的第一端与LED调光电路的第二输出端电连接。第九电阻R49的第一端与第八电阻R47的第二端电连接,第九电阻R49的第二端与第五比较器U2A的第一输入端电连接。第十电阻R51的第一端与第二接地端电连接,第十电阻R51的第二端与第五比较器U2A的第一输入端电连接。第十一电阻R48的第一端与第二接地端电连接。第十二电阻R50的第一端与第十一电阻R48的第二端电连接;第十二电阻R50的第二端与第五比较器U2A的第二输入端电连接。第十三电阻R25的第一端与第十二电阻R50的第二端电连接;第十三电阻R25的第二端与第五比较器U2A的输出端电连接。第七电容C28的第一端与第九电阻R49的第一端电连接,第七电容C28的第二端与第十二电阻R50的第一端电连接。第十四电阻R35的第一端与第五比较器U2A的输出端电连接,第十四电阻R35的第二端作为电流检测模块104的输出端。第八电容C29的第一端与第十四电阻R35的第二端电连接,第八电容C29的第二端与第二接地端电连接。
继续参见图7,在一实施例中,电流检测模块104还包括电阻R29,第八电阻R47的第一端通过电阻R29与LED调光电路的第二输出端电连接。可知地,当检测到LED调光电路的第二输出端存在电流时,第五比较器U2A输出高电平;当检测到LED调光电路的第二输出端不存在电流时,第五比较器U2A输出低电平。可以理解的是,本申请实施例可以但不限通过后级放大电路将电流检测模块104的输出信号进行放大,并基于蜂鸣器或警示灯等告警设备进行示警的形式,进一步保障安装人员的生命安全。
参见图7,Iout表示输出电流值。
在上述实施例的基础上,图8是本申请实施例提供的一种交流-直流转换模块的电路图。如图8所示,在一实施例中,交流-直流转换模块101包括电磁兼容单元220和整流桥B1。电磁兼容单元220用于抗电磁干扰,将滤波后的第一 交流电压AC1传输至后级电路。整流桥B1用于将滤波后的第一交流电压AC1转换为第一直流电压DC1。
其中,电磁兼容单元220可以是任一种可实现电磁兼容功能电路,整流桥B1可以是任一种整流电路,本申请实施例对此均不进行限制。示例性地,整流桥B1可以是不可控整流电路,或者可以是半控整流电路,或者可以是全控整流电路。
继续参见图8,在一实施例中,电磁兼容单元220包括保险丝FR1、压敏电阻V2、变压器LF2、电容CX1、变压器LF1、二极管D3和二极管D4。可知地,保险丝FR1的第一端与电磁兼容单元220的输入端P3电连接,保险丝FR1的第二端与变压器LF2的第三端电连接;压敏电阻V2的第二端与电磁兼容单元220的输入端P4电连接,压敏电阻V2并联于变压器LF2的第三端和变压器LF2的第一端之间;电容CX1并联于变压器LF2的第四端和变压器LF2的第二端之间,还并联于变压器LF1的第三端和变压器LF1的第一端之间;变压器LF2的第四端和变压器LF2的第二端互为同名端;变压器LF1的第四端与二极管D3的第一端电连接,变压器LF1的第二端与二极管D4的第二端电连接;变压器LF1的第四端和变压器LF1的第二端互为同名端;二极管D3的第二端与二极管D4的第一端电连接,并接入电压VMAINS。
继续参见图8,在一实施例中,二极管D3的第一端与整流桥B1的第三端电连接,二极管D4的第二端与整流桥B1的第一端电连接,整流桥B1的第四端与第一接地端电连接。此外,整流桥B1的第二端作为交流-直流转换模块101的输出端,用于输出第一直流电压DC1。
综上,本实施例的技术方案,通过设置电磁兼容单元220减弱了LED调光电路所受的电磁干扰,提升了LED调光电路的抗电磁干扰能力,还通过设置整流桥B1将第一交流电压AC1转换为第一直流电压DC1。本实施例提供的电路结构简单,硬件成本低廉,易于实现。
在上述实施例的基础上,图9是本申请实施例提供的另一种直流-直流变换模块的电路图。如图9所示,在一实施例中,直流-直流变换模块103包括第二变压器T2’、第一开关单元Q2’、第二开关单元Q4’、第一控制单元310、第三开关单元Q5’、第四开关单元Q1’和第二控制单元320。第二变压器T2’包括一次侧绕组和串联连接的两个二次侧绕组,定义两个二次侧绕组的连接点为输出节点,两个二次侧绕组中与输出节点不同的两个端分别为第一端和第二端。第一开关单元Q2’串联连接于交流-直流转换模块101的输出端和一次侧绕组之 间。第二开关单元Q4’与一次侧绕组并联连接。第一控制单元310用于接收调光指令并跟据所述调光指令控制第一开关单元Q2’和第二开关单元Q4’的通断。第三开关单元Q5’串联连接于二次侧绕组的第一端和第一电压端之间。第四开关单元Q1’串联连接于二次侧绕组的第二端和第二电压端之间。第二控制单元320用于控制第三开关单元Q5’和第四开关单元Q1’的通断。其中,输出节点与LED调光电路的第一输出端电连接,第二电压端与LED调光电路的第二输出端电连接。
其中,第一开关单元Q2’可以与交流-直流转换模块101的输出端、第二变压器T2’的一次侧绕组和第一接地端构成闭合回路,第二开关单元Q4’可以与第二变压器T2’的一次侧绕组和第一接地端构成闭合回路。
可知地,当第一开关单元Q2’导通且第二开关单元Q4’关断时,交流-直流转换模块101输出的第一直流电压DC1,经过第一开关单元Q2’和第二变压器T2’的一次侧绕组接入第一接地端;当第一开关单元Q2’关断且第二开关单元Q4’导通时,流过第二变压器T2’的一次侧绕组的电流难以突变,一次侧绕组两端的电压得以维持,直至第一控制单元310再次控制第一开关单元Q2’导通,并关断第二开关单元Q4’。可以理解的是,第一开关单元Q2’和第二开关单元Q4’不能同时导通或关断,当第一开关单元Q2’和第二开关单元Q4’同时导通时,交流-直流转换模块101输出的第一直流电压DC1,经过第一开关单元Q2’和第二开关单元Q4’直接接入第一接地端,此时,第二变压器T2’的一次侧绕组被第二开关单元Q4’短路;当第一开关单元Q2’和第二开关单元Q4’同时关断时,LED调光电路处于断路状态,无法进行调光工作。
在一实施例中,第一开关单元Q2’、第二开关单元Q4’、第三开关单元Q5’、第四开关单元Q1’可为MOS管或三极管。
继续参见图9,可知地,两个二次侧绕组的同名端均位于临近输出节点的一侧。基于此,当第三开关单元Q5’和/或第四开关单元Q1’导通时,两个二次侧绕组感应生成的电流均通过输出节点传输至LED调光电路的第一输出端。
在上述各实施例的基础上,图10是本申请实施例提供的另一种调光指令传递模块的电路图。如图10所示,在一实施例中,调光指令传递模块102包括第三比较器U3A’和第四比较器U3B’。第三比较器U3A’的第一输入端接入调光指令,第三比较器U3A’的第二输入端接入比较电压信号。第四比较器U3B’的第一端与第二接地端电连接,第四比较器U3B’的第二端接入比较电压信号。第二光电耦合器中的发光器OP1A’串联连接于第三比较器U3A’的输出端和第一电源 端之间;第四比较器U3B’的输出端与第三比较器U3A’的输出端电连接。
其中,第三比较器U3A’和第四比较器U3B’用于构成窗口比较器。可知地,该窗口比较器具有两个基准比较端,即第三比较器U3A’的第二输入端和第四比较器U3B’的第二端。示例性地,假设两个基准比较端的整定值分别为+5V和+10V,则当调光指令CV_ADJ的电平值处于[+5V,+10V]的区间范围内时,窗口比较器将维持在初始的高电平输出状态,第二光电耦合器中的发光器OP1A’不发光;相应地,当调光指令CV_ADJ的电平值低于+5V,或者高于+10V时,第三比较器U3A’或第四比较器U3B’的输出端翻转为低电平状态,第二光电耦合器中的发光器OP1A’发光,以传递调光指令。由此可见,本实施例所提供的调光指令传递模块102,不再局限于在调光指令高于或低于某一比较电压信号时,才能进行调光的设定。可以理解的是,这样设置能够有效拓宽LED调光电路的调节范围,提高LED调光电路的灵活性及实用性,此外,比较器并联输出也能节省后级电路的I/O口,有利于实现LED调光电路的小型化。
继续参见图9,在一实施例中,第一控制单元包括谐振控制芯片U2’。谐振控制芯片U2’包括谐振控制引脚RFMIN、第一门驱动输出引脚HVG和第二门驱动输出引脚LVG,第二光电耦合器中的受光器OP2B’串联连接于谐振控制引脚RFMIN和第一接地端之间,第一门驱动输出引脚HVG与第一开关单元Q2’电连接,第二门驱动输出引脚LVG与第二开关单元Q4’电连接。
其中,谐振控制芯片U2’能够基于第二光电耦合器中的受光器OP2B’识别由第二光电耦合器中的发光器OP1A’产生的光信号,通过谐振控制引脚RFMIN的电压变化,接收调光指令。可知地,在谐振控制芯片U2’接收到调光指令后,谐振控制芯片U2’的第一门驱动输出引脚HNG和第二门驱动输出引脚LVG将适应性输出第一门驱动信号和第二门驱动信号,第一开关单元Q2’根据第一门驱动信号导通或者关断,第二开关单元Q4’根据第二门驱动信号导通或者关断,进而实现了第一控制单元310接收调光指令并跟据所述调光指令调整LED调光电路输出电压的功能。基于此,在一实施例中,LED调光电路还包括第二光电耦合器,第一控制单元310和调光指令传递模块102通过第二光电耦合器进行调光指令的传递。
继续参见图9,在一实施例中,第二控制单元320包括LLC同步整流器IC2’。LLC同步整流器IC2’包括第一电压引脚VDD、第二电压引脚VSS、第三电压引脚VD1、第四电压引脚VD2、第三门驱动引脚VG1和第四门驱动引脚VG2。第一电压引脚VDD接入第二电压信号,第二电压引脚VSS与第一电压 端电连接,且第二电压引脚VSS与第二电压端电连接。第三电压引脚VD1与二次侧绕组的第一端电连接,第四电压引脚VD2与二次侧绕组的第二端电连接。第三门驱动引脚VG1与第三开关单元Q5’电连接,第四门驱动引脚VG2与第四开关单元Q1’电连接。
其中,LLC同步整流器IC2’能够根据第二电压信号、第一电压端的电压信号、第二电压端的电压信号、二次侧绕组的第一端的电压信号以及二次侧绕组的第二端的电压信号,适应性生成第三门驱动信号和第四门驱动信号,以控制第三开关单元Q5’和第四开关单元Q1’的通断。
在一实施例中,LLC同步整流器可用于改善调光器的功率转换效率。一般地,LLC同步整流器可使用一颗控制IC(integrated circuit,集成电路)去控制MOS管来替代常规的二极管,去提升整机的效率。
继续参见图9,在一实施例中,直流-直流变换模块103还包括第二电感L1A,第二电感L1A串联连接于第一开关单元Q2’与一次侧绕组之间。其中,可知地,第二电感L1A用于在第一开关单元Q2’关断且第二开关单元Q4’导通时,使得流过第二变压器T2’的一次侧绕组的电流更加难以突变,有利于维持一次侧绕组两端的电压,直至第一控制单元310再次控制第一开关单元Q2’导通,并关断第二开关单元Q4’。
继续参见图9,在一实施例中,直流-直流变换模块103还包括第六电阻R24’、第七电阻和第六电容C4’。第六电阻R24’串联连接于第三开关单元Q5’和LED调光电路的第二输出端之间。第七电阻的第一端与LED调光电路的第一输出端电连接,第七电阻的第二端与第三开关单元Q5’电连接。第六电容C4’与第七电阻并联连接。
其中,图9示例性示出了第七电阻可以由3个电阻并联而成,并不对本申请构成限定。示例性地,第七电阻还可以仅包含1个电阻,或者可以由2、4或5个电阻并联而成。继续参见图9,可知地,第七电阻包括电阻R12’、电阻R8’和电阻R9’。
继续参见图9,在一实施例中,直流-直流变换模块103还包括二极管D3’、电阻R11’、电阻R17’、电阻R21’、二极管D5’、电阻R25’、电阻R28’、电阻R31’、电容C19’、二极管D7’、电容C24’和电容C25’。可知地,二极管D3’的第一端接入第一门驱动信号DRH,二极管D3’的第二端与电阻R11’的第一端电连接;电阻R11’的第二端与第一开关单元Q2’的门极电连接;电阻R17’并联于二极管D3’的第一端和电阻R11’的第二端之间;电阻R21’的第一端与电阻R17’ 的第二端电连接,电阻R21’的第二端接入电压HB,并且电阻R21’的第二端连接于第二开关单元Q4’和第二电感L1A之间;二极管D5’的第一端接入第二门驱动信号DRL,二极管D5’的第二端与电阻R25’的第一端电连接;电阻R25’的第二端与第二开关单元Q4’的门极电连接;电阻R28’并联于二极管D5’的第一端和电阻R25’的第二端之间;电阻R31’的第一端与电阻R28’的第二端电连接,电阻R31’的第二端连接于第二开关单元Q4’和第一接地端之间;电容C19’串联于第二变压器T2’的一次侧绕组和第二开关单元Q4’之间,并且电容C19’的第一端与第一接地端电连接;二极管D7’并联于电容C19’的两端;电容C24’的第一端接入电压CS,电容C24’的第二端与电容C25’的第一端电连接;电容C25’的第二端与二极管D7’的第二端电连接。
继续参见图9,在一实施例中,直流-直流变换模块还包括电阻R1’、电容C1’、电阻R7’、电阻R20’、电容C12’、电阻R26’、电容C8’、电容C9’、电容C3’、电容C14’和电阻R10’。可知地,电阻R1’与电容C1’相互串联后,并联于第四开关管Q1’的两端;电阻R7’的第一端接入第四门驱动信号DRV2,并且与第四开关管Q1’的门极电连接,电阻R7’的第二端连接于电容C1’的第二端和电容C12’的第二端之间;电容C12’的第一端与电阻R20’的第二端电连接;电阻R20’的第一端连接于二次侧绕组的第一端与第三开关管Q5’之间;电阻R26’的第一端接入第三门驱动信号,并且与第三开关管Q5’的门极电连接,电阻R26’的第二端与电容C12’的第二端电连接,并且与第一电压端Vout+电连接;电容C8’并联于输出节点和第一电压端之间;电容C9’并联于电容C8’的两端;电容C3’的第一端与电容C9’的第一端电连接,电容C3’的第二端与电容C14’的第一端电连接;电容C14’的第二端与第六电阻R24’的第二端电连接,第六电阻R24’的第一端与电容C9’的第二端连接;电阻R10’并联于第六电容C4’的两端。
继续参见图9,在一实施例中,第一控制单元310还包括电阻R35’、电阻R36’、电阻R39’、电阻R42’、电容C29’、电容C33’、电容C34’、电阻R46’、电容C23’、电容C26’、电容C27’、电阻R40’、电容C28’、电容C35’、电容C40’、三极管Q7’、电阻R51’、电容C42’、电阻R55’、电阻R64’、电阻R60’、电容C44’、电阻R62’、电容C45’、电容C43’、电阻R65’、二极管D10’、二极管D12’和电阻R56’。可知地,电阻R35’的第一端接入电压VBUS+,电阻R35’的第二端与电阻R36’的第一端电连接;电阻R36’的第二端与电阻R39’的第一端电连接;电阻R39’的第二端与谐振控制芯片U2’的LINE端电连接;电阻R42’并联于电容C29’的两端;电容C29’的第一端与第一接地端电连接,电容C29’ 的第二端与电阻R39’的第二端电连接;电容C33’的第一端与电容C29’的第一端电连接,电容C33’的第二端与谐振控制芯片U2’的DELAY端电连接;电阻R46’并联于电容C33’的两端;电容C34’的第一端与电容C33’的第一端电连接,电容C34’的第二端与谐振控制芯片U2’的CF端电连接;电容C23’的第一端接入电压VCC,电容C23’的第二端与第一接地端电连接;电容C26’并联于电容C23’的两端;电容C27’并联于电容C26’的两端;电阻R40’的第一端与电容C27’的第一端电连接,电阻R40’的第二端与电容C28’的第一端电连接,并且与谐振控制芯片U2’的VCC端电连接;电容C28’的第二端与第一接地端电连接;电容C35’连接于谐振控制芯片U2’的VBOOT端和谐振控制芯U2’片的OUT端之间;谐振控制芯片U2’的OUT端接入电压HB;电容C40’并联于三极管Q7’的集电极与发射极之间;三极管Q7’的集电极与电容C42’的第二端电连接,三极管Q7’的发射极与电阻R51’的第一端电连接,三极管Q7’的基极与电容C42’的第一端电连接;电阻R51’的第二端连接于电阻R55’和电阻R64’之间;电阻R55’和电阻R64’串联后,与电容C42’并联连接;电阻R55’的第一端与谐振控制芯片U2’的CSS端电连接,电阻R55’的第二端与谐振控制芯片U2’的谐振控制引脚RFMIN电连接;谐振控制芯片U2’的DIS端与第一接地端电连接;电阻R60’的第一端与谐振控制芯片U2’的谐振控制引脚RFMIN电连接,电阻R60’的第二端与第二光电耦合器中的受光器OP2B’的第一端电连接;第二光电耦合器中的受光器OP2B’的第二端与第一接地端电连接;电容C44’并联于第二光电耦合器中的受光器OP2B’的两端;电阻R62’的第一端与电容C44’的第一端电连接,电阻R62’的第二端与电容C45’的第一端电连接,并且与谐振控制芯片U2’的STBY端电连接;电容C45’的第二端与第一接地端电连接;谐振控制芯片U2’的GND端与第一接地端电连接;电容C43’的第一端与谐振控制芯片U2’的ISEN端电连接,电容C43’的第二端与第一接地端电连接;电阻R65’与电容C43’并联;二极管D10’与二极管D12’串联后,并联在电阻R65’的两端;电阻R56’的第一端连接于二极管D10’和二极管D12’之间,电阻R56’的第二端接入电压CS’。
继续参见图9,在一实施例中,第二控制单元320还包括二极管D8’、电阻R37’、电阻R43’、电容C32’、电阻R45’、二极管D9’、电阻R38’、电阻R44’、电容C30’和电容C31’。可知地,二极管D8’的第一端输出第四门驱动信号DRV2,二极管D8’的第二端与LLC同步整流器IC2’的第四门驱动引脚VG2电连接;电阻R37’与二极管D8’并联;电阻R43’的第一端与LLC同步整流器IC2’ 的LL端电连接,电阻R43’的第二端与LED调光电路的第二输出端(参见图9中的VOGND)电连接;电容C32’与电阻R43’并联;电阻R45’的第一端与LLC同步整流器IC2’的第四电压引脚VD2电连接,电阻R45’的第二端与第二电压端电连接;二极管D9’的第二端输出第三门驱动信号DRV1,二极管D9’的第一端与LLC同步整流器IC2’的第三门驱动引脚VG1电连接;电阻R38’与二极管D9’并联;电阻R44’的第一端与LLC同步整流器IC2’的第三电压引脚VD1电连接,电阻R44’的第二端与第一电压端电连接;电容C30’的第一端接入第二电压信号,并与LLC同步整流器IC2’的第一电压引脚VDD电连接,电容C30’的第二端与LED调光电路的第二输出端电连接;电容C31’与电容C30’并联。
继续参见图10,在一实施例中,调光指令传递模块102还包括电阻R52’、电阻R57’、二极管D11’、二极管D13’、电阻R63’、电阻R74’、电容C39’、电阻R59’、电容C46’、电阻R66’、电阻R67’、电阻R58’、电阻R54’、电容C41’、电阻R69’、电阻R73’、电阻R71’、电容C48’、电阻R75’、电容C51’、电阻R78’、电阻R79’、电容R49’和电阻R80’。可知地,电阻R52’的第一端接入15V电压,电阻R52’的第二端与第二光电耦合器中的发光器OP1A’的第一端电连接;电阻R57’与第二光电耦合器中的发光器OP1A’并联;二极管D11’的第一端与第二光电耦合器中的发光器OP1A’的第二端电连接,二极管D11’的第二端与电阻R63’的第一端电连接;电阻R63’的第二端与第三比较器U3A’的输出端电连接;电容C39’与电阻R59’串联后,并联连接于第三比较器U3A’的输出端与第二输入端之间;电阻R58’的第二端与第三比较器U3A’的第二输入端电连接,电阻R58’的第一端接入电压VO+;相互串联的电阻R54’和电容C41’与电阻R58’并联;电阻R69’的第一端与电阻R58’的第二端电连接,电阻R69’的第二端与电阻R73’的第一端电连接;电阻R73’的第二端与LED调光电路的第二输出端电连接;电容C46’的第一端与第三比较器U3A’的第一输入端电连接,电容C46’的第二端与LED调光电路的第二输出端电连接;电阻R66’的第一端与电容C46’的第一端电连接,电阻R66’的第二端与电阻R67’的第一端电连接;电阻R67’的第二端接入电压Vref;调光指令CV_ADJ自电阻R66’和电阻R67’之间输入第三比较器U3A’的第一输入端;二极管D13’的第一端与二极管D11’的第一端电连接,二极管D13’的第二端与电阻R74’的第一端电连接;电阻R74’的第二端与第四比较器U3B’的输出端电连接;相互串联的电容C48’和电阻R75’并联于第四比较器U3B’的输出端与第二端之间;电阻R71’的第一端与电容C46’的第二端电连接,电阻R71’的第二端与电阻R75’的第二端电连接;电 容C51’并联于第四比较器U3B’的第三端与第四端之间,第四比较器U3B’的第三端与LED调光电路的第二输出端电连接,第四比较器U3B’的第四端接入15V电压;电阻R78’的第一端接入电压Verf,电阻R78’的第二端与第四比较器U3B’的第一端电连接;电阻R79’的第一端与电阻R78’的第二端电连接,电阻R79’的第二端与第二接地端电连接;电容C49’与电阻R78’并联;电阻R80’与电阻R79’并联。
本实施例的技术方案,通过设置包括第三比较器U3A’和第四比较器U3B’的调光指令传递模块102,以及包含第二变压器T2’、第一开关单元Q2’、第二开关单元Q4’、第一控制单元310、第三开关单元Q5’、第四开关单元Q1’和第二控制单元320的直流-直流变换模块103,实现了由第一直流电压DC1向第二直流电压DC2的转换。此外,本实施例通过控制第二直流电压DC2,实现了调光指令与LED指定亮度的适配调节,本实施例的技术方案示出了直流-直流变换模块103和调光指令传递模块102的具体电路结构,电路结构简单、运行稳定且易于实现。
在上述实施例的基础上,图11是本申请实施例提供的另一种电流检测模块的电路图。如图11所示,在一实施例中,LED调光电路还包括电流检测模块104,电流检测模块104与LED调光电路的第二输出端电连接,电流检测模块104用于检测第二输出端的电流。例如,电流检测模块104包括第六比较器U5’、第十五电阻R81’、第九电容C53’、第十六电阻R85’、第十七电阻R84’和第十电容C54’。第六比较器U5’包括第一输入端、第二输入端和输出端。第十五电阻R81’的第一端与LED调光电路的第二输出端电连接,第十五电阻R81’的第二端与第六比较器U5’的第一输入端电连接。第九电容C53’的第一端与第六比较器U5’的第一输入端电连接,第九电容C53’的第二端与第六比较器U5’的第二输入端电连接。第十六电阻R85’的第一端接入比较电压信号,第十六电阻R85’的第二端与第六比较器U5’的第二输入端电连接。第十七电阻R84’的第一端与第六比较器U5’的输出端电连接,第十七电阻R84’的第二端作为电流检测模块104的输出端。第十电容C54’的第一端与电流检测模块104的输出端电连接,第十电容C54’的第二端与LED调光电路的第二输出端电连接。
继续参见图11,在一实施例中,电流检测模块104还包括电阻R83’、电阻R86’、电容C53’、电阻R82’以及电容C52’。可知的,电阻R83’的第一端与第二接地端电连接,电阻R83’的第二端与第十六电阻R85’的第二端电连接;电阻R86’与电容C55’并联;电容C53’并联于第六比较器U5’的第一输入端和第二输 入端之间,电容C53’的第一端与第十五电阻R81’的第二端电连接;电阻R82’的第一端连接于第十五电阻R81’与电容C53’之间,电阻R82’的第二端连接于第六比较器U5’的输出端和第十七电阻R84’之间;电容C52’的第一端接入5V电压,电容C52’的第二端与LED调光电路的第二输出端电连接。
可知地,当检测到LED调光电路的第二输出端存在电流时,第六比较器U5’输出高电平;当检测到LED调光电路的第二输出端不存在电流时,第六比较器U5’输出低电平。可以理解的是,本申请实施例可以但不限通过后级放大电路将电流检测模块104的输出信号进行放大,并基于蜂鸣器或警示灯等告警设备进行示警的形式,进一步保障安装人员的生命安全。
综上所述,本实施例通过设置电流检测模块104以检测LED调光电路的第二输出端电流的手段,克服了LED照明装置在安装过程中,容易因单端上电,另一端导电而引发的触电事故的问题,有效规避了安装人员的触电风险。
在上述实施例的基础上,图12是本申请实施例提供的另一种交流-直流转换模块的电路图。如图12所示,在一实施例中,交流-直流转换模块101包括电磁兼容单元220和整流桥B1。电磁兼容单元220用于抗电磁干扰,将滤波后的第一交流电压AC1传输至后级电路。整流桥B1用于将滤波后的第一交流电压AC1转换为第一直流电压DC1。
其中,电磁兼容单元220可以是任一种可实现电磁兼容功能电路,整流桥B1可以是任一种整流电路,本申请实施例对此均不进行限制。示例性地,整流桥B1可以是不可控整流电路,或者可以是半控整流电路,或者可以是全控整流电路。
继续参见图12,在一实施例中,电磁兼容单元包括保险丝F1’、压敏电阻MOV1’、电容CX1’、电容CY4’、电容CY3’、变压器LF、电阻RX2’、电阻RX1’、电阻RX3’和负温度系数电阻RTH1’。可知地,保险丝F1’的第一端与压敏电阻MOV1’的第一端电连接,保险丝F1’的第二端与电磁兼容单元220的第三输入端电连接;压敏电阻MOV1’的第二端与电磁兼容单220元的第二输入端电连接;电容CX1’与压敏电阻MOV1’并联;电容CY4’的第一端连接于电容CX1’的第二端与压敏电阻MOV1’的第二端之间,电容CY4’的第二端与电磁兼容单元220的第一输入端电连接;电容CY3’并联于电容CX1’的第一端和电容CY4’的第二端之间,电容CY3’的第二端与第三接地端电连接;变压器LF的第一端与电容CY3’的第一端电连接,变压器LF的第二端与电容CX1’的第二端电连接,变压器LF的第三端接入电压L1,变压器LF的第四端接入电压AC2;相 互串联的电阻RX2’、电阻RX1’和电阻RX3’并联连接于变压器LF的第三端和第四端之间;负温度系数电阻RTH1’的第二端与电阻RX3’的第二端电连接。
继续参见图12,在一实施例中,整流桥B1包括首尾连接的四个二极管,交流-直流转换模块101还包括电容CY1’和电容C10’。可知地,整流桥B1的第一端与电阻RX2’的第一端电连接,整流桥B1的第二端用于输出第一直流电压DC1,整流桥B1的第三端与负温度系数电阻RTH1’的第一端电连接,整流桥B1的第四端通过电容CY1’与第三接地端电连接;电容C10’的第一端与整流桥B1的第二端电连接,电容C10’的第二端与电容CY1’的第一端电连接,电容C10’的第二端还与第一接地端电连接。
可以理解的是,由于负温度系数电阻RTH1’具备上电高阻值特性,在LED调光电路的初始上电过程中,负温度系数电阻RTH1’能够减弱突加电压或电流对电路系统产生的冲击,增强LED调光电路抗冲击能力。而当LED调光电路工作趋于稳定后,负温度系数电阻RTH1’阻值减小,能够降低对电源效率的影响程度。
由此可见,本实施例的技术方案,通过设置电磁兼容单元220减弱了LED调光电路所受的电磁干扰,提升了LED调光电路的抗电磁干扰能力,并通过设置整流桥B1将第一交流电压AC1转换为第一直流电压DC1。本实施例提供的电路简单,成本低廉,并且易于实现。
在上述实施例的基础上,图13是本申请实施例提供的一种功率因数矫正模块的电路图。如图13所示,在一实施例中,LED调光电路还包括功率因数矫正模块360,功率因数矫正模块360连接于交流-直流转换模块101和直流-直流变换模块103之间。功率因数矫正模块360用于将第一直流电压DC1进行功率因数矫正后传输至直流-直流变换模块103。
可以理解的是,功率因数矫正模块360可以是任一种功率因数矫正电路,本申请实施例对此不进行限制。示例性地,功率因数矫正模块360可以是有源功率因数矫正电路,或者可以是无源功率因数矫正电路。
继续参见图13,在一实施例中,功率因数矫正模块360包括功率因数校正芯片U1’、电阻R3’、电阻R14’、电阻R19’、电阻R4’、电阻R15’、电阻R19A’、电阻R30’、电容C15’、电容C17’、电容C16’、二极管D2’、稳压管ZD1’、电容C2’、电阻R2’、电阻R13’、电容C7’、变压器T、电容C5’、电阻R6’、电容C11’、二极管D4’、电阻R18’、电阻R23’、电阻R27’、电阻R29’、电容C18’、电阻R33’、MOS管Q3’、二极管D1’、电阻R5’、电阻R16’、电容 C13’、电阻R22’和电容C6’。可知地,电阻R3’、电阻R14’、电阻R19’和电阻R30’串联连接于整流桥B1的第二端与第一接地端之间;电容C15’并联于电阻R30’的两端;相互串联的电阻R4’、电阻R15’和电阻R19A’连接于电阻R3’的第一端与功率因数校正芯片U1’的VCC端;电容C17’的第一端连接于电阻R19A’的第二端和功率因数校正芯片U1’的VCC端之间,电容C17’的第二端与电容C15’的第二端电连接;电容C16’与电容C17’并联;功率因数校正芯片U1’的MUTL端与电阻R30’的第一端电连接;二极管D2’的第一端与电容C17’的第一端电连接,二极管D2’的第二端通过稳压管ZD1’与第一接地端电连接;电容C2’的第一端与二极管D2’的第二端电连接,电容C2’的第二端与电阻R2’的第一端电连接;电阻R2’的第二端与电阻R13’的第一端电连接,电阻R13’的第二端与功率因数校正芯片U1’的ZCD端电连接;电容C7’连接于功率因数校正芯片U1’的ZCD端与第一接地端之间;变压器T的第一端与电阻R2’的第二端电连接,变压器T的第二端与整流桥B1的第二端电连接,变压器T的第四端与第一接地端电连接;功率因数校正芯片U1’的GND端与第一接地端电连接;电容C11’连接于功率因数校正芯片U1’的COMP端与功率因数校正芯片U1’的INV端之间;相互串联的电容C5’和电阻R6’并联连接于电容C11’的两端;二极管D1’的第一端与变压器T的第三端电连接,二极管D1’的第二端通过电阻R5’、电阻R16’和电阻R22’与第一接地端电连接;电容C13’并联于电阻R22’的两端,电容C13’的第一端与电容C11’的第二端电连接;电阻R23’连接于功率因数校正芯片U1’的DRV端与MOS管Q3’的栅极之间;相互串联的二极管D4’和电阻R18’并联于电阻R23’的两端;MOS管Q3’的漏极连接于变压器T的第三端与二极管D1’的第一端之间,MOS管Q3’的源极通过电阻R33’与第一接地端电连接;电阻R27’的第一端连接于电阻R23’的第二端与MOS管Q3’的栅极之间,电阻R27’的第二端连接于电阻R29’的第二端与电阻R33’的第一端之间;电阻R29’的第一端与功率因数校正芯片U1’的CS端电连接;电容C18’连接于功率因数校正芯片U1’的CS端和第一接地端之间;电容C6’连接于二极管D1’的第二端和第一接地端之间,电容C6’的第一端接入电压VBUS+。
本实施例的技术方案,通过设置功率因数矫正模块360,在经过整流桥B1将第一交流电压AC1转换为第一直流电压DC1后,对第一直流电压DC1进行功率因数矫正,减小了谐波分量,提高了功率因数,降低了能源消耗,减弱了电源设备对外辐射和传导干扰。
在上述各实施例的基础上,图14是本申请实施例提供的另一种LED调光 电路的结构示意图。如图14所示,在一实施例中,LED调光电路还包括直流-交流转换模块104,直流-交流转换模块104用于将第二直流电压DC2逆变为第二交流电压AC2,第二交流电压AC2作为LED调光电路的输出电压。
其中,直流-交流转换模块104包括第二直流电压输入端和第二交流电压输出端,第二直流电压输入端接入第二直流电压DC2,第二交流电压输出端输出第二交流电压AC2,第二直流电压输入端与第二直流电压输出端电连接。第二直流电压输入端与第二直流电压输出端之间的传输信号类型可以是电平信号,本申请实施例对此不进行限制。示例性地,第二交流电压AC2为可调电压;第二交流电压AC2的电压有效值范围可以是[40,125]区间内的任一电压值;第二交流电压AC2的频率参数可以为小于1kHz的任一频率值。可知地,第二直流电压DC2的电压值可以与第二交流电压AC2的电压值一一对应。
可以理解的是,直流-交流转换模块104的基本原理电路可以为任一种逆变电路,本申请实施例对此不进行限制,例如可以为半控型逆变电路,或者可以为全控型逆变电路。
本实施例的技术方案,通过设置直流-交流转换模块104,在经过直流-直流变换模块103将第一直流电压DC1转换为第二直流电压DC2后,再将第二直流电压DC2逆变为第二交流电压AC2,并把第二交流电压AC2作为LED调光电路的输出电压,以根据第二交流电压AC2的电压大小匹配LED的指定亮度。本实施例提供的电路简单,成本低廉,并且易于实现。
在上述实施例的基础上,图15是本申请实施例提供的一种直流-交流转换模块的结构示意图。如图15所示,在一实施例中,直流-交流转换模块104包括逆变桥单元370和逆变驱动单元380。逆变桥单元370用于耦合逆变驱动信号,将第二直流电压DC2逆变为第二交流电压AC2。逆变驱动单元380用于耦合控制信号,并将控制信号转换为可用于驱动逆变桥单元370工作的逆变驱动信号。
例如,可通过逆变驱动信号控制逆变桥单元370(例如,控制构成逆变器的4个MOS管),进而将第二直流电压DC2逆变为第二交流电压AC2。
例如,逆变驱动单元380可接收控制信号。
其中,控制信号用于控制逆变驱动单元380生成逆变驱动信号;逆变驱动信号用于控制逆变桥单元370,以将第二直流电压DC2逆变为第二交流电压AC2。逆变驱动信号可以是脉冲信号;逆变驱动信号的幅值和频率可以依据实际需要进行相应调整,本申请实施例对此不进行限制。
继续参见图15,在一实施例中,逆变桥单元370包括第一桥臂371和第二桥臂372。第一桥臂371包括第一上桥臂371A和第一下桥臂371B,第一上桥臂371A和第一下桥臂371B用于耦合逆变驱动信号,交替导通。第二桥臂372包括第二上桥臂372A和第二下桥臂372B,第二上桥臂372A和第二下桥臂372B用于耦合逆变驱动信号,交替导通。
示例性地,逆变桥单元370还包括二极管D1”,第一上桥臂371A包括电阻R43”、金属-氧化物-半导体场效应晶体管(Metal-Oxide-Semiconductor,MOS管)Q8”和电容C33”,第一下桥臂371B包括电阻R45”、MOS管Q9”和电容C34”,第二上桥臂372A包括电阻R40”、MOS管Q10”和电容C31”,第二下桥臂372B包括电阻R42”、MOS管Q11”和电容C32”。可知地,二极管D1”的阳极接入第二直流电压DC2,二极管D1”的阴极与MOS管Q8”的漏极电连接,MOS管Q8”的栅极与电阻R43”的第二端电连接,电容C33”并联在MOS管Q8”的漏极与源极之间,MOS管Q9”的漏极与MOS管Q8”的源极电连接,MOS管Q9”的源极与第一接地端电连接,MOS管Q9”的栅极与电阻R45”的第二端电连接,电容C34”并联于MOS管Q9”的源极和漏极之间,MOS管Q10”的漏极与MOS管Q8”的漏极电连接,MOS管Q10”的栅极与电阻R40”的第一端电连接,MOS管Q10”的源极与MOS管Q11”的漏极电连接,电容C31”并联于MOS管Q10”的源极与漏极之间,MOS管Q11”的源极与MOS管Q9”的源极电连接,MOS管Q11”的栅极与电阻R42”的第一端电连接,电容C32”并联于MOS管Q11”的源极和漏极之间。此外,MOS管Q8”的源极作为第二交流电压AC2的第一输出端AC1”,MOS管Q10”的源极作为第二交流电压AC2的第二输出端AC2”。
综上,逆变桥单元370这样设置,实现了将第二直流电压DC2逆变为第二交流电压AC2,且电路稳定、易于实现。
继续参见图15,在一实施例中,逆变驱动单元380包括第一半桥驱动电路381和第二半桥驱动电路382。第一半桥驱动电路381用于耦合控制信号生成第一上桥臂驱动信号和第一下桥臂驱动信号,第一上桥臂驱动信号用于驱动第一上桥臂371A,第一下桥臂驱动信号用于驱动第一下桥臂371B。第二半桥驱动电路382用于耦合控制信号生成第二上桥臂驱动信号和第二下桥臂驱动信号,第二上桥臂驱动信号用于驱动第二上桥臂372A,第二下桥臂驱动信号用于驱动第二下桥臂372B。
示例性地,第一半桥驱动电路381包括二极管D15”、电容C28”、电容 C30”、电阻R38”和第一半桥驱动芯片U3”。可知地,二极管D15”的阳极与第一电源端电连接,二极管D15”的阴极与第一半桥驱动芯片U3”的VB端电连接,电容C30”并联于第一半桥驱动芯片U3”的VB端和VS端之间,电容C28”串联于第一电源端和第一接地端之间,电阻R38”的第一端分别与第一半桥驱动芯片U3”的HIN端和LIN端电连接,电阻R38”的第二端接入控制信号AC_CON1,第一半桥驱动芯片U3”的COM端连接在电容C28”的第二端与第一接地端之间,第一半桥驱动芯片U3”的VCC端连接在第一电源端与电容C28”的第一端之间,第一半桥驱动芯片U3”的HO端与电阻R43”的第一端电连接,第一半桥驱动芯片U3”的VS端连接于MOS管Q8”的源极与MOS管Q9”的漏极之间,第一半桥驱动芯片U3”的LO端与电阻R45”的第一端电连接。可以理解的是,第一半桥驱动芯片U3”的HO端用于输出第一上桥臂驱动信号,第一半桥驱动芯片U3”的LO端用于输出第一下桥臂驱动信号。
另外,示例性地,第二半桥驱动电路382包括二极管D14”、电容C27”、电容C29”、电阻R36”和第二半桥驱动芯片U4”。可知地,二极管D14”的阳极与第一电源端电连接,二极管D14”的阴极与第二半桥驱动芯片U4”的VB端电连接,电容C29”并联于第二半桥驱动芯片U4”的VB端和VS端之间,电容C27”串联于第一电源端和第一接地端之间,电阻R36”的第一端分别与第二半桥驱动芯片U4”的HIN端和LIN端电连接,电阻R36”的第二端接入控制信号AC_CON2,第二半桥驱动芯片U4”的COM端连接在电容C27”的第二端与第一接地端之间,第二半桥驱动芯片U4”的VCC端连接在第一电源端与电容C27”的第一端之间,第二半桥驱动芯片U4”的HO端与电阻R40”的第二端电连接,第二半桥驱动芯片U4”的VS端连接于MOS管Q10”的源极与MOS管Q11”的漏极之间,第二半桥驱动芯片U4”的LO端与电阻R42”的第二端电连接。可以理解的是,第二半桥驱动芯片U4”的HO端用于输出第二上桥臂驱动信号,第二半桥驱动芯片U4”的LO端用于输出第二下桥臂驱动信号。
由此可见,本实施例的技术方案,通过设置逆变桥单元370和逆变驱动单元380,将第二直流电压DC2逆变为第二交流电压AC2。以及,本实施例提供了逆变桥单元370和逆变驱动单元380的具体电路结构,其电路结构简单,易于实现。
需要说明的是,上述用于构成LED调光电路的电子元件的具体型号和特征参数均与LED调光电路拟取得的调光效果相关,本申请实施例对此均不进行限制。示例性地,上述多个电阻均可以为贴片电阻。
在一实施例中,LED调光电路主要可以包括功率转换器(例如,DC(Direct Current,直流)/DC转换器或者DC/DC/AC(Alternating Current,交流)转换器),输出电压、电流检测部分以及一个基于机械电位器的调节装置等。
本申请实施例还提供了一种LED调光器。本申请实施例提供的LED调光器包括本申请任意实施例所提供的LED调光电路,技术原理和实现的效果类似,不再赘述。
本申请实施例还提供了一种LED照明装置。本申请实施例提供的LED照明装置包括本申请任意实施例所提供的LED调光器,技术原理和实现的效果类似,不再赘述。示例性地,LED照明装置可以为TypeB型。
本申请实施例提供一种LED调光电路、调光器和照明装置,用以在精准高效完成实时调光的基础上,降低系统成本,减少信号畸变,增强系统兼容性。
注意,上述仅为本申请的一些实施例及所运用技术原理。本领域技术人员会理解,本申请不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本申请的保护范围。因此,虽然通过以上实施例对本申请进行了较为详细的说明,但是本申请不仅仅限于以上实施例,在不脱离本申请构思的情况下,还可以包括更多其他等效实施例,而本申请的范围由所附的权利要求范围决定。

Claims (26)

  1. 一种发光二极管LED调光电路,包括:
    交流-直流转换模块(101),用于将第一交流电压(AC1)转换为第一直流电压(DC1);其中,所述第一交流电压(AC1)为输入交流电压;
    直流-直流变换模块(103),用于将所述第一直流电压(DC1)变换为第二直流电压(DC2);其中,所述第二直流电压(DC2)的电压大小匹配所述LED的指定亮度;
    调光指令传递模块(102),用于耦合调光指令,根据所述调光指令生成控制所述直流-直流变换模块(103)的控制信号,以传递所述调光指令。
  2. 根据权利要求1所述的LED调光电路,其中,所述第一交流电压(AC1)为可调电压;相应地,所述第一直流电压(DC1)为可调电压;所述第一直流电压(DC1)的电压值与所述第一交流电压(AC1)的电压值一一对应。
  3. 根据权利要求1所述的LED调光电路,其中,所述直流-直流变换模块(103)包括:
    第一变压器(T1),所述第一变压器(T1)包括一次侧绕组和二次侧绕组,所述一次侧绕组用于接入所述第一直流电压(DC1),所述二次侧绕组用于输出所述第二直流电压(DC2);
    反馈单元(210),所述反馈单元(210)串联连接于所述一次侧绕组和第一接地端之间,所述反馈单元(210)用于接收所述调光指令并跟据所述调光指令控制所述一次侧绕组与所述第一接地端之间的通断。
  4. 根据权利要求3所述的LED调光电路,还包括第一光电耦合器;所述反馈单元(210)和所述调光指令传递模块(102)通过所述第一光电耦合器进行所述调光指令的传递。
  5. 根据权利要求4所述的LED调光电路,其中,所述调光指令传递模块(102)包括:
    第一比较器(U2B),所述第一比较器(U2B)的第一输入端接入所述调光指令,所述第一比较器(U2B)的第二输入端接入比较电压信号;
    所述第一光电耦合器中的发光器(IC1A)串联连接于所述第一比较器(U2B)的输出端和第一电源端之间。
  6. 根据权利要求4所述的LED调光电路,其中,所述反馈单元(210)包括:
    反馈控制芯片(U1),所述反馈控制芯片(U1)包括反馈引脚(FB)和门驱动输出引脚(GATE);
    第一晶体管(Q1),所述第一晶体管(Q1)串联连接于所述一次侧绕组和所述 第一接地端之间,所述第一晶体管(Q1)的栅极与所述门驱动输出引脚(GATE)电连接;
    所述第一光电耦合器中的受光器(OP1B)串联连接于所述反馈引脚(FB)和所述第一接地端之间。
  7. 根据权利要求3所述的LED调光电路,其中,所述直流-直流变换模块(103)还包括:
    第一电感(L1),所述第一电感(L1)串联连接于所述交流-直流转换模块(101)与所述一次侧绕组之间;其中,所述第一电感(L1)与所述一次侧绕组的第一端电连接;
    第一电阻(R1),所述第一电阻(R1)与所述第一电感(L1)并联连接;
    第一电容(C1),所述第一电容(C1)的第一端与所述第一电阻(R1)的第一端电连接,所述第一电容(C1)的第二端与所述第一接地端电连接;
    第二电容(C2),所述第二电容(C2)的第一端与所述第一电阻(R1)的第二端电连接,所述第二电容(C2)的第二端与所述第一接地端电连接;
    第一压敏电阻(V1),所述第一压敏电阻(V1)与所述第二电容(C2)并联连接;
    第三电容(C7),所述第三电容(C7)的第一端与所述第二电容(C2)的第一端电连接;
    第一二极管(D6),所述第一二极管(D6)的阴极与所述第三电容(C7)的第二端电连接,所述第一二极管(D6)的阳极与所述一次侧绕组的第二端电连接;
    第二电阻,所述第二电阻与所述第三电容(C7)并联连接。
  8. 根据权利要求3所述的LED调光电路,其中,所述直流-直流变换模块(103)还包括:
    第三电阻,所述第三电阻的第一端与所述二次侧绕组的第一端电连接;
    第四电容,所述第四电容的第一端与所述第三电阻的第二端电连接,所述第四电容的第二端作为所述LED调光电路的第一输出端;
    第二二极管,所述第二二极管的第一端与所述二次侧绕组的第一端电连接,所述第二二极管的第二端与所述LED调光电路的第一输出端电连接;
    第五电容(C8),所述第五电容(C8)的第一端与所述LED调光电路的第一输出端电连接,所述第五电容(C8)的第二端与所述二次侧绕组的第二端电连接,并与第二接地端电连接;
    第四电阻,所述第四电阻与所述第五电容(C8)并联连接;
    第五电阻(R34),所述第五电阻(R34)的第一端与所述二次侧绕组的第二端电连接,所述第五电阻(R34)的第二端与所述LED调光电路的第二输出端电连接;
    第三二极管(D13),所述第三二极管(D13)的阳极与所述LED调光电路的第二输出端电连接,所述第三二极管(D13)的阴极与所述二次侧绕组的第二端电连接。
  9. 根据权利要求1所述的LED调光电路,其中,所述直流-直流变换模块(103)包括:
    第二变压器(T2’),所述第二变压器(T2’)包括一次侧绕组和串联连接的两个二次侧绕组,定义所述两个二次侧绕组的连接点为输出节点,所述两个二次侧绕组中与所述输出节点不同的两个端分别为第一端和第二端;
    第一开关单元(Q2’),所述第一开关单元(Q2’)串联连接于所述交流-直流转换模块(101)的输出端和所述一次侧绕组之间;
    第二开关单元(Q4’),所述第二开关单元(Q4’)与所述一次侧绕组并联连接;
    第一控制单元(310),所述第一控制单元(310)用于接收所述调光指令并跟据所述调光指令控制所述第一开关单元(Q2’)和所述第二开关单元(Q4’)的通断;
    第三开关单元(Q5’),所述第三开关单元(Q5’)串联连接于所述二次侧绕组的第一端和第一电压端(Vout+)之间;
    第四开关单元(Q1’),所述第四开关单元(Q1’)串联连接于所述二次侧绕组的第二端和第二电压端(Vout-)之间;
    第二控制单元(320),所述第二控制单元(320)用于控制所述第三开关单元(Q5’)和所述第四开关单元(Q1’)的通断;
    其中,所述输出节点与所述LED调光电路的第一输出端电连接,所述第二电压端(Vout-)与所述LED调光电路的第二输出端电连接。
  10. 根据权利要求9所述的LED调光电路,还包括:第二光电耦合器;所述第一控制单元(310)和所述调光指令传递模块(102)通过所述第二光电耦合器进行所述调光指令的传递。
  11. 根据权利要求10所述的LED调光电路,其中,所述调光指令传递模块(102)包括:
    第三比较器(U3A’),所述第三比较器(U3A’)的第一输入端接入所述调光指令,所述第三比较器(U3A’)的第二输入端接入比较电压信号;
    第四比较器(U3B’),所述第四比较器(U3B’)的第一端与第二接地端电连接,所述第四比较器(U3B’)的第二端接入所述比较电压信号;
    所述第二光电耦合器中的发光器(OP1A’)串联连接于所述第三比较器(U3A’)的输出端和第一电源端之间;所述第四比较器(U3B’)的输出端与所述第三比较器(U3A’)的输出端电连接。
  12. 根据权利要求10所述的LED调光电路,其中,所述第一控制单元(310)包括:
    谐振控制芯片(U2’),所述谐振控制芯片包括谐振控制引脚(RFMIN)、第一门驱动输出引脚(HVG)和第二门驱动输出引脚(LVG);
    所述第二光电耦合器中的受光器(OP2B’)串联连接于所述谐振控制引脚(RFMIN)和第一接地端之间;所述第一门驱动输出引脚(HVG)与所述第一开关单元(Q2’)电连接,所述第二门驱动输出引脚(LVG)与所述第二开关单元(Q4’)电连接。
  13. 根据权利要求10所述的LED调光电路,其中,所述第二控制单元(320)包括:
    LLC同步整流器(IC2’),所述LLC同步整流器(IC2’)包括第一电压引脚(VDD)、第二电压引脚(VSS)、第三电压引脚(VD1)、第四电压引脚(VD2)、第三门驱动引脚(VG1)和第四门驱动引脚(VG2);
    所述第一电压引脚(VDD)接入第二电压信号,所述第二电压引脚(VSS)与所述第一电压端(Vout+)电连接,且所述第二电压引脚(VSS)与所述第二电压端(Vout-)电连接;所述第三电压引脚(VD1)与所述二次侧绕组的第一端电连接,所述第四电压引脚(VD2)与所述二次侧绕组的第二端电连接;所述第三门驱动引脚(VG1)与所述第三开关单元(Q5’)电连接,所述第四门驱动引脚(VG2)与所述第四开关单元(Q1’)电连接。
  14. 根据权利要求9所述的LED调光电路,其中,所述直流-直流变换模块(103)还包括:
    第二电感(L1A),所述第二电感(L1A)串联连接于所述第一开关单元(Q2’)与所述一次侧绕组之间。
  15. 根据权利要求9所述的LED调光电路,其中,所述直流-直流变换模块(103)还包括:
    第六电阻(R24’),所述第六电阻(R24’)串联连接于所述第三开关单元(Q5’)和所述LED调光电路的第二输出端之间;
    第七电阻,所述第七电阻的第一端与所述LED调光电路的第一输出端电连接,所述第七电阻的第二端与所述第三开关单元(Q5’)电连接;
    第六电容(C4’),所述第六电容(C4’)与所述第七电阻并联连接。
  16. 根据权利要求8或9所述的LED调光电路,还包括:
    电流检测模块(104),所述电流检测模块(104)与所述LED调光电路的第二输出端电连接,所述电流检测模块(104)用于检测所述第二输出端的电流。
  17. 根据权利要求16所述的LED调光电路,其中,所述电流检测模块(104)包括:
    第五比较器(U2A),所述第五比较器(U2A)包括第一输入端、第二输入端和输出端;
    第八电阻(R47),所述第八电阻(R47)的第一端与所述LED调光电路的第二输出端电连接;
    第九电阻(R49),所述第九电阻(R49)的第一端与所述第八电阻(R47)的第二端电连接,所述第九电阻(R49)的第二端与所述第五比较器(U2A)的第一输入端电连接;
    第十电阻(R51),所述第十电阻(R51)的第一端与第二接地端电连接,所述第十电阻(R51)的第二端与所述第五比较器(U2A)的第一输入端电连接;
    第十一电阻(R48),所述第十一电阻(R48)的第一端与所述第二接地端电连接;
    第十二电阻(R50),所述第十二电阻(R50)的第一端与所述第十一电阻(R48)的第二端电连接;所述第十二电阻(R50)的第二端与所述第五比较器(U2A)的第二输入端电连接;
    第十三电阻(R25),所述第十三电阻(R25)的第一端与所述第十二电阻(R50)的第二端电连接;所述第十三电阻(R25)的第二端与所述第五比较器(U2A)的输出端电连接;
    第七电容(C28),所述第七电容(C28)的第一端与所述第九电阻(R49)的第一端电连接,所述第七电容(C28)的第二端与所述第十二电阻(R50)的第一端电连接;
    第十四电阻(R35),所述第十四电阻(R35)的第一端与所述第五比较器(U2A)的输出端电连接,所述第十四电阻(R35)的第二端作为所述电流检测模块(104)的输出端;
    第八电容(C29),所述第八电容(C29)的第一端与所述第十四电阻(R35)的第 二端电连接,所述第八电容(C29)的第二端与所述第二接地端电连接。
  18. 根据权利要求16所述的LED调光电路,其中,所述电流检测模块(104)包括:
    第六比较器(U5’),所述第六比较器(U5’)包括第一输入端、第二输入端和输出端;
    第十五电阻(R81’),所述第十五电阻(R81’)的第一端与所述LED调光电路的第二输出端电连接,所述第十五电阻(R81’)的第二端与所述第六比较器(U5’)的第一输入端电连接;
    第九电容(C53’),所述第九电容(C53’)的第一端与所述第六比较器(U5’)的第一输入端电连接,所述第九电容(C53’)的第二端与所述第六比较器(U5’)的第二输入端电连接;
    第十六电阻(R85’),所述第十六电阻(R85’)的第一端接入比较电压信号,所述第十六电阻(R85’)的第二端与所述第六比较器(U5’)的第二输入端电连接;
    第十七电阻(R84’),所述第十七电阻(R84’)的第一端与所述第六比较器(U5’)的输出端电连接,所述第十七电阻(R84’)的第二端作为所述电流检测模块(104)的输出端;
    第十电容(C54’),所述第十电容(C54’)的第一端与所述电流检测模块(104)的输出端电连接,所述第十电容(C54’)的第二端与所述LED调光电路的第二输出端电连接。
  19. 根据权利要求1所述的LED调光电路,其中,所述交流-直流转换模块(101)包括:
    电磁兼容单元(220),用于抗电磁干扰,将滤波后的所述第一交流电压(AC1)传输至后级电路;
    整流桥(B1),用于将滤波后的所述第一交流电压(AC1)转换为所述第一直流电压(DC1)。
  20. 根据权利要求1所述的LED调光电路,还包括:
    功率因数矫正模块(360),连接于所述交流-直流转换模块(101)和所述直流-直流变换模块(103)之间;所述功率因数矫正模块(360)用于将所述第一直流电压(DC1)进行功率因数矫正后传输至所述直流-直流变换模块(103)。
  21. 根据权利要求1所述的LED调光电路,还包括:
    直流-交流转换模块(104),用于将所述第二直流电压(DC2)逆变为第二交流电压(AC2),所述第二交流电压(AC2)作为所述LED调光电路的输出电压。
  22. 根据权利要求21所述的LED调光电路,其中,所述直流-交流转换模块(104)包括:
    逆变桥单元(370),用于耦合逆变驱动信号,将所述第二直流电压(DC2)逆变为所述第二交流电压(AC2);
    逆变驱动单元(380),用于耦合控制信号,并将所述控制信号转换为可用于驱动所述逆变桥单元(370)工作的所述逆变驱动信号。
  23. 根据权利要求22所述的LED调光电路,其中,所述逆变桥单元(370)包括:
    第一桥臂(371),所述第一桥臂(371)包括第一上桥臂(371A)和第一下桥臂(371B),所述第一上桥臂(371A)和所述第一下桥臂(371B)用于耦合所述逆变驱动信号,交替导通;
    第二桥臂(372),所述第二桥臂(372)包括第二上桥臂(372A)和第二下桥臂(372B),所述第二上桥臂(372A)和所述第二下桥臂(372B)用于耦合所述逆变驱动信号,交替导通。
  24. 根据权利要求22或23所述的LED调光电路,其中,所述逆变驱动单元(380)包括:
    第一半桥驱动电路(381),用于耦合所述控制信号生成第一上桥臂驱动信号和第一下桥臂驱动信号,所述第一上桥臂驱动信号用于驱动所述第一上桥臂(371A),所述第一下桥臂驱动信号用于驱动所述第一下桥臂(371B);
    第二半桥驱动电路(382),用于耦合所述控制信号生成第二上桥臂驱动信号和第二下桥臂驱动信号,所述第二上桥臂驱动信号用于驱动所述第二上桥臂(372A),所述第二下桥臂驱动信号用于驱动所述第二下桥臂(372B)。
  25. 一种LED调光器,包括:如权利要求1-24任一项所述的LED调光电路。
  26. 一种LED照明装置,包括:如权利要求25所述的LED调光器。
PCT/CN2022/087629 2021-10-27 2022-04-19 Led调光电路、调光器和照明装置 WO2023071081A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111254688.2A CN114007299A (zh) 2021-10-27 2021-10-27 Led调光电路、调光器和照明装置
CN202111254688.2 2021-10-27

Publications (1)

Publication Number Publication Date
WO2023071081A1 true WO2023071081A1 (zh) 2023-05-04

Family

ID=79924234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087629 WO2023071081A1 (zh) 2021-10-27 2022-04-19 Led调光电路、调光器和照明装置

Country Status (2)

Country Link
CN (1) CN114007299A (zh)
WO (1) WO2023071081A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116546687A (zh) * 2023-07-07 2023-08-04 广东东菱电源科技有限公司 多机并联三合一电流调节抗干扰电路
CN116582968A (zh) * 2023-07-12 2023-08-11 无锡安特源科技股份有限公司 调光电路

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114007299A (zh) * 2021-10-27 2022-02-01 上海先钧光电科技有限公司 Led调光电路、调光器和照明装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102548143A (zh) * 2011-12-28 2012-07-04 凹凸电子(武汉)有限公司 对led光源进行电能控制的驱动电路、调光控制器和方法
CN104703371A (zh) * 2013-12-10 2015-06-10 通用电气公司 调光电路及调光方法
CN109429413A (zh) * 2017-09-05 2019-03-05 三星电子株式会社 Led驱动设备和照明设备
US10716184B1 (en) * 2019-04-22 2020-07-14 Ch Lighting Technology Co., Ltd. LED tube
CN212064441U (zh) * 2020-05-29 2020-12-01 深圳市鼎盛光电有限公司 一种三合一调光电路及led灯具
CN114007299A (zh) * 2021-10-27 2022-02-01 上海先钧光电科技有限公司 Led调光电路、调光器和照明装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102769960A (zh) * 2011-05-06 2012-11-07 欧司朗股份有限公司 可调光led驱动器及其控制方法
CN110572899A (zh) * 2019-08-21 2019-12-13 东莞华明灯具有限公司 一种调光电路
CN110602822A (zh) * 2019-08-27 2019-12-20 杭州士兰微电子股份有限公司 Led驱动电路及其调光控制方法
CN211630461U (zh) * 2020-01-08 2020-10-02 漳州立达信光电子科技有限公司 一种具有休眠渐灭功能的灯具控制电路及灯具
CN112804792B (zh) * 2021-04-13 2021-07-13 深圳市安规科技有限公司 一种稳压供电的调光电源模块及led调光装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102548143A (zh) * 2011-12-28 2012-07-04 凹凸电子(武汉)有限公司 对led光源进行电能控制的驱动电路、调光控制器和方法
CN104703371A (zh) * 2013-12-10 2015-06-10 通用电气公司 调光电路及调光方法
CN109429413A (zh) * 2017-09-05 2019-03-05 三星电子株式会社 Led驱动设备和照明设备
US10716184B1 (en) * 2019-04-22 2020-07-14 Ch Lighting Technology Co., Ltd. LED tube
CN212064441U (zh) * 2020-05-29 2020-12-01 深圳市鼎盛光电有限公司 一种三合一调光电路及led灯具
CN114007299A (zh) * 2021-10-27 2022-02-01 上海先钧光电科技有限公司 Led调光电路、调光器和照明装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116546687A (zh) * 2023-07-07 2023-08-04 广东东菱电源科技有限公司 多机并联三合一电流调节抗干扰电路
CN116546687B (zh) * 2023-07-07 2023-09-19 广东东菱电源科技有限公司 多机并联三合一电流调节抗干扰电路
CN116582968A (zh) * 2023-07-12 2023-08-11 无锡安特源科技股份有限公司 调光电路
CN116582968B (zh) * 2023-07-12 2023-09-22 无锡安特源科技股份有限公司 调光电路

Also Published As

Publication number Publication date
CN114007299A (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
WO2023071081A1 (zh) Led调光电路、调光器和照明装置
CN202455590U (zh) 具有创新架构的大功率led智能电源驱动器
CN106793293B (zh) 调光装置及led调光驱动电源
CN103874267B (zh) 一种太阳能路灯
CN106851927A (zh) 一种语音识别的多路调光调色led驱动电路
WO2018126557A1 (zh) 基于pfc与llc谐振的智能半桥正弦波电压转换电路
CN105491713A (zh) 一种大功率led路灯驱动电路
CN102333406A (zh) 照明用led驱动器
CN204733408U (zh) 射频调光照明系统
WO2020007171A1 (zh) 复式隔离型的led应急灯控制电路
CN103152896A (zh) 具有创新架构的大功率led智能电源驱动器
WO2018126555A1 (zh) 基于pfc、全桥和半桥的智能型正弦波电压转换电路
CN102545580A (zh) 一种可在线编程的通用pfc多功能处理器
CN204191008U (zh) 一种简易高pfc架构可控硅调光led驱动电源
Prado et al. A high-power-factor electronic ballast using a flyback push-pull integrated converter
CN110461072A (zh) 一种隔离调光电路及一种灯具
CN217037504U (zh) Led调光电路及调光led灯
WO2018129833A1 (zh) 一种基于mos管全桥整流的智能型正弦波电压转换电路
CN201887991U (zh) 模块集成化高效大功率led驱动电源电路
CN212063833U (zh) 输出电流和电压可调节的电源电路
CN104378888A (zh) 一种简易高pfc架构可控硅调光led驱动电源
CN103228083A (zh) 一种智能调光led驱动电源
CN105163416B (zh) 一种改进的led灯用可控硅调光驱动电路
CN211128311U (zh) 一种基于lora调光及状态监控的led驱动电源
CN209914105U (zh) 一种调光调色温驱动电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22884997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE