WO2023070991A1 - 一种多通道并行超分辨激光直写系统 - Google Patents

一种多通道并行超分辨激光直写系统 Download PDF

Info

Publication number
WO2023070991A1
WO2023070991A1 PCT/CN2022/076330 CN2022076330W WO2023070991A1 WO 2023070991 A1 WO2023070991 A1 WO 2023070991A1 CN 2022076330 W CN2022076330 W CN 2022076330W WO 2023070991 A1 WO2023070991 A1 WO 2023070991A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
direct writing
suppression
wavefront
wave plate
Prior art date
Application number
PCT/CN2022/076330
Other languages
English (en)
French (fr)
Inventor
匡翠方
孙秋媛
徐良
丁晨良
朱大钊
刘旭
马程鹏
杨臻垚
Original Assignee
之江实验室
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 之江实验室, 浙江大学 filed Critical 之江实验室
Publication of WO2023070991A1 publication Critical patent/WO2023070991A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2053Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a laser
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams

Definitions

  • the invention relates to the field of laser direct writing processing, in particular to a multi-channel parallel super-resolution laser direct writing system.
  • Sensor technology is one of the three pillars of today's information system, which can greatly expand human perception of nature and society, and will play an important role in the future Internet of Things and intelligent society.
  • Micro-nano manufacturing technology is one of the core roles in the development of sensors.
  • the current mainstream micro-nano manufacturing technologies play an important role in industrial development, there are inevitably some deficiencies and defects.
  • extreme ultraviolet light sources can achieve extremely high-precision nano-etching, but they must rely on optical masks and vacuum manufacturing environments, and the cost and complexity of a complete nano-manufacturing lithography machine are extremely high; for example, electron beam exposure technology can be used without In the case of a mask plate, nanometer-level processing accuracy can be achieved, but the device is expensive and the processing speed is slow, and it cannot realize large-area preparation and industrial application; such as a single-beam laser direct writing system, which does not require a mask plate and a vacuum processing environment, but the processing The speed is slow and cannot meet the requirements of actual production and application.
  • an embodiment of the present invention provides a high-throughput multi-channel parallel super-resolution laser direct writing system to solve the problem of slow processing speed in the prior art.
  • a multi-channel parallel super-resolution laser direct writing system which is characterized in that it includes: a first laser for generating a direct writing beam, a second laser for generating a suppression beam, at least one A direct writing-inhibiting beam combination unit, a secondary beam combining module, and a writing module, wherein the direct writing beam and the inhibiting beam are simultaneously incident on the direct writing-inhibiting beam combining unit to form a pair of direct writing-inhibiting beams combination, and then sequentially pass through the secondary beam combining module and the writing module to form a direct writing-suppression spot combination.
  • the direct writing-suppression beam combination unit includes a first anti-drift module, a second anti-drift module, a first secondary light splitting module, a second secondary light splitting module, a first energy regulation module, and a second energy regulation module , the third energy regulation module, the fourth energy regulation module, the first wavefront regulation module, the second wavefront regulation module, the third wavefront regulation module, the fourth wavefront regulation module, the first level beam combining module and the first The second-level beam combining module, in which:
  • the direct writing beam passes through the first anti-drifting module and the first secondary spectroscopic module in turn to form a first direct writing sub-beam and a second direct writing sub-beam, and the first direct writing sub-beam sequentially passes through the first An energy regulation module and the first wavefront regulation module, the second direct writing path sub-beam passes through the second energy regulation module and the second wavefront regulation module in sequence
  • the suppression beam passes through the second anti-drifting module and the second secondary spectroscopic module in turn to form a first suppression beam and a second suppression beam, and the first suppression beam passes through the third energy control module and The third wavefront control module, the second suppression path sub-beam sequentially passes through the fourth energy control module and the fourth wavefront control module;
  • the beams emitted by the first wavefront control module and the third wavefront control module pass through the first-level beam combining module to form a combination of direct writing and suppression beams; the second wavefront control module and the The light beam emitted by the fourth wavefront control module passes through the second-level beam combining module to form another direct writing-suppression beam combination.
  • first anti-drift module and the second anti-drift module are used for the stability and adaptive adjustment of the optical path.
  • the first two-stage optical splitting module is used to divide the direct writing beam into a first direct writing sub-beam and a second direct writing sub-beam whose polarization directions are perpendicular to each other;
  • the second secondary beam splitting module is used to divide the suppression path beam into a first suppression path sub-beam and a second suppression path sub-beam whose polarization directions are perpendicular to each other.
  • first energy regulation module, the second energy regulation module, the third energy regulation module and the fourth energy regulation module are used for stabilizing and on-off regulation of the beam energy.
  • first wavefront modulating module and the second wavefront modulating module are used to modulate the two polarization components of the light beam.
  • the first-level beam combining module is used to combine beam centers generated by the first direct writing path sub-beam and the first suppression path sub-beam to form a direct writing-suppression beam combination;
  • the second-level beam combining module is respectively used to combine beam centers generated by the second direct writing sub-beam and the second suppression sub-beam to form another direct writing-suppression beam combination.
  • the first-level beam combining module includes a first half-wave plate, a second half-wave plate and a first dichroic mirror, and the first half-wave plate and the second The two-half wave plates are respectively arranged on the two incident surfaces of the first dichroic mirror.
  • the second primary beam combining module includes a third half-wave plate, a fourth half-wave plate and a second dichroic mirror, and the third half-wave plate and the first The four half-wave plates are respectively arranged on the two incident surfaces of the second dichroic mirror.
  • the secondary beam combining module includes a mirror group, a 4f system lens group, and a beam combining mirror in sequential steps along the beam direction.
  • the direct writing beam and the suppression beam are simultaneously incident on the direct writing-suppression beam combination unit to form a pair of direct writing-suppression beam combination, and then sequentially pass through the The two-level beam combination module and the writing module form a direct writing-suppression spot combination, and the number of channels is determined by the number of direct writing-suppression beam combination units.
  • Fig. 1 is a schematic structural diagram of a multi-channel parallel super-resolution laser direct writing system according to an exemplary embodiment.
  • Fig. 2 is a schematic structural diagram of a direct write-suppress beam combination unit according to an exemplary embodiment.
  • Fig. 3 is a schematic structural diagram of a first-level beam combining module according to an exemplary embodiment.
  • Fig. 4 is a schematic structural diagram of a second-level beam combining module according to an exemplary embodiment.
  • Fig. 5 is a schematic structural diagram of a secondary beam combining module according to an exemplary embodiment.
  • Fig. 6 is a schematic diagram showing direct writing light spots and suppressing light spots according to an exemplary embodiment.
  • Fig. 7 is a schematic diagram showing ten pairs of direct writing-suppressing light spots according to an exemplary embodiment.
  • Direct writing-suppression beam combination unit 301, first anti-drifting module; 302, second anti-drifting module; 303, first and second-level light splitting module; 304, second and second-level light splitting module; 305, first energy regulation module; 306, the second energy regulation module; 307, the third energy regulation module; 308, the fourth energy regulation module; 309, the first wavefront regulation module; 310, the second wavefront regulation module; 311, the third wavefront Control module; 312, fourth wavefront control module; 313, first-level beam combining module; 314, second-level beam combining module; 315, mirror; 3131, first half-wave plate; 3132, The second half wave plate; 3133, the first dichroic mirror; 3141, the third half wave plate; 3142, the fourth half wave plate; 3143, the second dichroic mirror;
  • Secondary beam combining module 401, mirror group; 402, 4f system lens group; 403, beam combining mirror;
  • Fig. 1 is a schematic structural diagram of a multi-channel parallel super-resolution laser direct writing system according to an exemplary embodiment.
  • an embodiment of the present invention provides a multi-channel parallel super-resolution laser direct writing system, which may include: A first laser 1 for generating a direct writing beam, a second laser 2 for generating a suppression beam, at least one direct writing-suppression beam combination unit 3, a secondary beam combining module 4 and a writing module 5, the direct The writing beam and the suppressing beam are simultaneously incident on the direct writing-suppressing beam combination unit 3 to form two pairs of direct writing-suppressing beam combinations, and then pass through the secondary beam combining module 4 and the writing module in sequence 5.
  • a first laser 1 for generating a direct writing beam a direct writing beam
  • a second laser 2 for generating a suppression beam
  • at least one direct writing-suppression beam combination unit 3 a secondary beam combining module 4 and a writing module 5
  • the direct The writing beam and the suppressing beam are simultaneously incident on the direct writing-
  • the direct writing beam and the suppression beam are simultaneously incident on the direct writing-suppression beam combination unit to form a pair of direct writing-suppression beam combination, and then sequentially pass through the The two-stage beam combining module and the writing module form a direct writing-suppression spot combination, and the number of channels is determined by the number of direct writing-suppression beam combination units 3.
  • the two-stage beam combining module and the writing module form a direct writing-suppression spot combination, and the number of channels is determined by the number of direct writing-suppression beam combination units 3.
  • the first laser 1 is used to generate a direct-write beam.
  • the 780nm laser emitted by an X-780nm femtosecond laser is used as a direct-write beam;
  • the second laser 2 is used to generate Inhibiting the light beam, the present embodiment adopts the 532nm laser emitted by the Y-532nm continuous laser as the inhibiting light beam.
  • the number of channels of a multi-channel parallel super-resolution laser direct writing system provided by the embodiment of the present invention is determined by the direct writing-suppression beam combination unit 3, and 5 are shown in FIG. 1
  • five direct writing-suppression beam combination units 3 can realize ten-channel parallel super-resolution laser direct writing.
  • the laser light emitted by the first laser 1 and the second laser 2 is firstly split, and is respectively incident on five direct writing-inhibiting beam combining units 3 with the same structure, in each of the five direct writing-inhibiting beam combining units 3 Two pairs of direct writing-inhibiting beam combinations are formed respectively, and ten direct writing-inhibiting beam combinations of L1-L10 are formed in total.
  • the internal structure of the direct write-suppress beam combination unit 3 will be described in detail below.
  • the direct writing-suppression beam combination unit 3 includes a first anti-drift module 301, a second anti-drift module 302, a first secondary optical splitting module 303, a second secondary optical splitting module 304, and a first energy regulation module 305, the second energy regulation module 306, the third energy regulation module 307, the fourth energy regulation module 308, the first wavefront regulation module 309, the second wavefront regulation module 310, the third wavefront regulation module 311, the fourth wavefront regulation module
  • the first two-stage optical splitting module 303 is used to divide the direct-write beam into a first direct-write beam sub-beam and a second direct-write beam whose polarization directions are perpendicular to each other;
  • the second two-stage beam splitter 304 is used to divide the suppression
  • the first energy regulation module 305 , the second energy regulation module 306 , the third energy regulation module 307 and the fourth energy regulation module 308 are used for stabilizing and on-off regulation of the beam energy.
  • the first wavefront modulation module 309 and the second wavefront modulation module 310 are used to modulate the two polarization components of the light beam.
  • the first-level beam combining module 313 is used to combine the beam centers generated by the first direct-writing sub-beam and the first suppression sub-beam to form a direct-writing-suppression beam combination; the second-level beam combining The module 314 is respectively used to combine beam centers generated by the second direct writing sub-beam and the second suppression sub-beam to form another direct writing-suppression beam combination.
  • the direct writing beam passes through the first anti-drifting module 301 and the first two-stage spectroscopic module 303 in sequence to form a first direct writing beam and a second direct writing beam.
  • the first direct writing beam The light beam sequentially passes through the first energy regulation module 305 and the first wavefront regulation module 309, and the second direct writing path sub-beam passes through the second energy regulation module 306 and the second wavefront regulation module 310 in sequence;
  • the suppressed beam passes through the second anti-drifting module 302 and the second secondary spectroscopic module 304 in turn to form a first suppressed sub-beam and a second suppressed sub-beam, and the first suppressed sub-beam sequentially undergoes a third energy regulation module 307 and the third wavefront regulation module 311, the second suppression path sub-beam sequentially passes through the fourth energy regulation module 308 and the fourth wavefront regulation module 312;
  • the light beams emitted by the first wavefront control module 309 and the third wavefront control module 311 pass through the first-level beam combination module 313 to form a direct writing-suppression beam combination L1; the second wavefront The light beams emitted by the control module 310 and the fourth wavefront control module 312 pass through the second primary beam combination module 314 to form another direct write-suppression beam combination L2.
  • the first energy regulation module 305, the second energy regulation module 306, the third energy regulation module 307, and the fourth energy regulation module 308 have the same structure, and all include an electro-optic adjuster and a half-wave plate for spot energy adjustment Regulators and switches.
  • the first wavefront regulation module 309, the second wavefront regulation module 310, the third wavefront regulation module 311, and the fourth wavefront regulation module 312 have the same structure, and all include a spatial light modulator and a half-wave plate, Used to control the wavefront of the beam.
  • the first primary beam combining module 313 includes a first half-wave plate 3131, a second half-wave plate 3132 and a first dichroic mirror 3133, and the first half-wave plate 3131 and the second half-wave plate 3132 are respectively arranged on the two incident surfaces of the first dichroic mirror 3133 .
  • the first direct writing sub-beam passes through the first half-wave plate 3131 and the first suppressed writing sub-beam passes through the second half-wave plate 3132 and simultaneously enters the first dichroic mirror 3133 for combination to form a direct writing path - Suppress beam combination L1.
  • the second primary beam combining module 314 includes a third half-wave plate 3141, a fourth half-wave plate 3142 and a second dichroic mirror 3143, and the third half-wave plate 3141 and the fourth half-wave plate 3142 are respectively arranged on the two incident surfaces of the second dichroic mirror 3143 .
  • the sub-beam of the second direct writing path passes through the third half-wave plate 3141 and the sub-beam of the second suppression path passes through the fourth half-wave plate 3142 and simultaneously enters the second dichroic mirror 3143 for beam combining, forming another direct writing path - Suppress beam combination L2.
  • a mirror 315 is arranged between the drift module 302 and the second secondary spectroscopic module 304 to change the optical path angle; between the first secondary spectroscopic module 303 and the first energy regulation module 305, the first energy regulation module 305 and all Between the first wavefront control module 309, between the first secondary light splitting module 303 and the second energy control module 306, between the second energy control module 306 and the second wavefront control module 310, the second Between the secondary light splitting module 304 and the third energy control module 307, between the second secondary light splitting module 304 and the fourth energy control module 308, two first reflectors 315 are arranged to change the optical path angle; the third wavefront A mirror 315 is arranged between the control module 311 and the first-level beam combining module 313 , and between the fourth wavefront control module 312 and the second-level beam combining module 314 to change the angle of the optical path.
  • FIG. 5 it is a schematic structural diagram of the secondary beam combining module 4 in the present invention.
  • the secondary beam combination module 4 is used to combine the beams L1-L10 emitted by the five direct-write-suppressed beam combination units 3, including a mirror group 401, a 4f system lens group 402 and a beam combination step by step along the beam direction. Mirror 403 .
  • the direct write-suppression beam combination L1 enters the secondary beam combining module 4 and passes through the mirror group 401 , the 4f system lens group 402 and the beam combining mirror 403 in sequence.
  • the mirror group 401 is used for refracting and adjusting the optical path
  • the 4f system lens group 402 is used for adjusting the optical path
  • the beam combining mirror 403 is used for adjusting the beam combining angle.
  • the optical path principle of L2-L10 is the same as that of L1. Afterwards, adjacent beams form an included angle of 2°, and are simultaneously incident on the objective lens of the writing module 5 to form ten pairs of direct writing-suppression spot combinations.
  • two pairs of direct writing-suppression beam combinations are formed first through the first-level beam combining module, and then ten pairs of direct writing-suppression spot combinations are formed through the second-level beam combining module 4 .
  • Increase the processing speed to ten times that of traditional single-channel direct writing processing (ten channels are ten times).
  • the embodiment of the present invention achieves ten focal spot parallel PPI direct writing processing through ten channels of parallel writing, overcomes the problems of slow speed and low processing efficiency of the traditional single-channel laser direct writing processing system, increases the writing speed by ten times, and Two-stage light splitting is used to achieve multiplexing of light sources, and PPI technology is used to obtain higher feature size and processing resolution, while wavefront modulation is used to achieve independent regulation of the energy of each spot.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)

Abstract

一种多通道并行超分辨激光直写系统,能成倍提升传统单路激光直写打印系统的速度,包括:用于产生直写路光束的第一激光器(1)、用于产生抑制路光束的第二激光器(2)、至少一个直写-抑制光束组合单元(3)、二级合束模块(4)和刻写模块(5),直写路光束和抑制路光束同时入射到直写-抑制光束组合单元(3)后形成一对直写-抑制光束组合,之后再依次经过二级合束模块(4)和刻写模块(5),形成直写-抑制光斑组合。

Description

一种多通道并行超分辨激光直写系统 技术领域
本发明涉及激光直写加工领域,尤其涉及一种多通道并行超分辨激光直写系统。
背景技术
传感器技术是当今信息系统的三大支柱之一,可以极大地拓展人类对自然和社会的感知能力,在未来的物联网和智能社会中将会扮演重要的角色。而微纳制造技术是传感器的发展中的核心角色之一。然而,目前几种主流的微纳制造技术,在产业发展中发挥重要作用的同时,也不可避免的存在着一些方面的不足和缺陷。如极紫外光源可以实现极高精度的纳米刻蚀,但必须依赖光学掩模板和真空的制造环境,且完整的纳米制造光刻机的成本与复杂程度极高;如电子束曝光技术可以在无需掩模板的情况下实现纳米量级的加工精度,但装置价格昂贵且加工速度慢,无法实现大面积制备和工业应用;如单光束激光直写系统,不需要掩模板和真空加工环境,但加工速度较慢,达不到实际生产和应用的要求。
因此在当前的技术背景下,人们急需开发一种可以在常温空气中实现高精度、快速加工制造能力的纳米光刻装置。
发明内容
鉴于此,本发明实施例提供一种高通量的多通道并行超分辨激光直写系统,以解决现有技术中存在的加工速度慢的问题。
根据本发明实施例,提供一种多通道并行超分辨激光直写系统,其特征在于,包括:用于产生直写路光束的第一激光器、用于产生抑制路光束的第二激 光器、至少一个直写-抑制光束组合单元、二级合束模块和刻写模块,所述直写路光束和所述抑制路光束同时入射到所述直写-抑制光束组合单元后形成一对直写-抑制光束组合,之后再依次经过所述二级合束模块和所述刻写模块,形成直写-抑制光斑组合。
进一步地,所述直写-抑制光束组合单元包括第一防漂模块、第二防漂模块、第一二级分光模块、第二二级分光模块、第一能量调控模块、第二能量调控模块、第三能量调控模块、第四能量调控模块、第一波前调控模块、第二波前调控模块、第三波前调控模块、第四波前调控模块、第一一级合束模块和第二一级合束模块,其中:
所述直写路光束依次经过所述第一防漂模块和第一二级分光模块后形成第一直写路子光束和第二直写路子光束,所述第一直写路子光束依次经过第一能量调控模块和所述第一波前调控模块,所述第二直写路子光束依次经过第二能量调控模块和所述第二波前调控模块
所述抑制路光束依次经过所述第二防漂模块和第二二级分光模块后形成第一抑制路子光束和第二抑制路子光束,所述第一抑制路子光束依次经过第三能量调控模块和所述第三波前调控模块,所述第二抑制路子光束依次经过第四能量调控模块和所述第四波前调控模块;
所述第一波前调控模块和所述第三波前调控模块出射的光束通过所述第一一级合束模块后形成一路直写-抑制光束组合;所述第二波前调控模块和所述第四波前调控模块出射的光束通过所述第二一级合束模块后形成另一路直写-抑制光束组合。
进一步地,所述第一防漂模块和第二防漂模块用于光路的稳定和自适应调节。
进一步地,所述第一二级分光模块用于将所述直写路光束分为偏振方向互相垂直的第一直写路子光束和第二直写路子光束;
所述第二二级分光模块用于将抑制路光束分为偏振方向互相垂直的第一抑 制路子光束和第二抑制路子光束。
进一步地,所述第一能量调控模块、第二能量调控模块、第三能量调控模块和第四能量调控模块用于对光束能量稳定和通断调控。
进一步地,所述第一波前调控模块和第二波前调控模块用于对光束的两个偏振分量进行调制。
进一步地,所述第一一级合束模块用于对第一直写路子光束和第一抑制路子光束产生的光束中心进行合束,形成一路直写-抑制光束组合;
所述第二一级合束模块分别用于对第二直写路子光束和第二抑制路子光束产生的光束中心进行合束,形成另一路直写-抑制光束组合。
进一步地,所述第一一级合束模块包括第一二分之一波片、第二二分之一波片和第一二向色镜,所述第一二分之一波片和第二二分之一波片分别布置在所述第一二向色镜两个入射面。
进一步地,所述第二一级合束模块包括第三二分之一波片、第四二分之一波片和第二二向色镜,所述第三二分之一波片和第四二分之一波片分别布置在所述第二二向色镜两个入射面。
进一步地,所述二级合束模块包括沿光束方向依次步骤的反射镜组、4f系统透镜组和合束反射镜。
本发明的实施例提供的技术方案可以包括以下有益效果:
由上述实施例可知,本发明实施例将直写路光束和所述抑制路光束同时入射到所述直写-抑制光束组合单元后形成一对直写-抑制光束组合,之后再依次经过所述二级合束模块和所述刻写模块,形成直写-抑制光斑组合,通道数由直写-抑制光束组合单元的数量决定,通过多通道并行刻写,实现了多个焦斑并行PPI直写加工,克服了传统单路激光直写加工系统速度慢,加工效率低的问题,将刻写速度成倍提升。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一示例性实施例示出的一种多通道并行超分辨激光直写系统的结构示意图。
图2是根据一示例性实施例示出的直写-抑制光束组合单元的结构示意图。
图3是根据一示例性实施例示出的第一一级合束模块的结构示意图。
图4是根据一示例性实施例示出的第二一级合束模块的结构示意图。
图5是根据一示例性实施例示出的二级合束模块的结构示意图。
图6是根据一示例性实施例示出的直写光斑和抑制光斑的示意图。
图7是根据一示例性实施例示出的十对直写-抑制光斑示意图。
图中的附图标记有:
1、第一激光器;
2、第二激光器;
3、直写-抑制光束组合单元;301、第一防漂模块;302、第二防漂模块;303、第一二级分光模块;304、第二二级分光模块;305、第一能量调控模块;306、第二能量调控模块;307、第三能量调控模块;308、第四能量调控模块;309、第一波前调控模块;310、第二波前调控模块;311、第三波前调控模块;312、第四波前调控模块;313、第一一级合束模块;314、第二一级合束模块;315、反射镜;3131、第一二分之一波片;3132、第二二分之一波片;3133、第一二向色镜;3141、第三二分之一波片;3142、第四二分之一波片;3143、第二二向色镜;
4、二级合束模块;401、反射镜组;402、4f系统透镜组;403、合束反射镜;
5、刻写模块;
6、实际作用区域;
7、被抑制区域。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
在本发明使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
图1是根据一示例性实施例示出的一种多通道并行超分辨激光直写系统的结构示意图,参考图1,本发明实施例提供一种多通道并行超分辨激光直写系统,可以包括:用于产生直写路光束的第一激光器1、用于产生抑制路光束的第二激光器2、至少一个直写-抑制光束组合单元3、二级合束模块4和刻写模块5,所述直写路光束和所述抑制路光束同时入射到所述直写-抑制光束组合单元3后形成两对直写-抑制光束组合,之后再依次经过所述二级合束模块4和所述刻写模块5,形成直写-抑制光斑组合,从而实现多通道并行超分辨激光直写。
由上述实施例可知,本发明实施例将直写路光束和所述抑制路光束同时入射到所述直写-抑制光束组合单元后形成一对直写-抑制光束组合,之后再依次经过所述二级合束模块和所述刻写模块,形成直写-抑制光斑组合,通道数由直写-抑制光束组合单元3的数量决定,通过多通道并行刻写,实现了多个焦斑并行 PPI直写加工,克服了传统单路激光直写加工系统速度慢,加工效率低的问题,将刻写速度成倍提升。
在本发明一实施例中,所述第一激光器1用于产生直写路光束,本实例采用X-780nm飞秒激光器发出的780nm激光为直写路光束;所述用第二激光器2于产生抑制路光束,本实施例采用Y-532nm连续激光器发出的532nm激光为抑制路光束。
在本发明一实施例中,参考图1,本发明实施例提供的一种多通道并行超分辨激光直写系统的通道数由直写-抑制光束组合单元3决定,图1中示出了5个,现以5个直写-抑制光束组合单元3为例,5个直写-抑制光束组合单元3可以实现十通道并行超分辨激光直写。
由第一激光器1和第二激光器2发出的激光首先经过分光,分别入射到结构相同的五个直写-抑制光束组合单元3,在五个直写-抑制光束组合单元3的每个单元中各形成两对直写-抑制光束组合,共形成L1-L10十个直写-抑制光束组合。下面对直写-抑制光束组合单元3的内部构造进行细化说明。
参考图2,所述直写-抑制光束组合单元3包括第一防漂模块301、第二防漂模块302、第一二级分光模块303、第二二级分光模块304、第一能量调控模块305、第二能量调控模块306、第三能量调控模块307、第四能量调控模块308、第一波前调控模块309、第二波前调控模块310、第三波前调控模块311、第四波前调控模块312、第一一级合束模块313和第二一级合束模块314,其中:所述第一防漂模块301和第二防漂模块302用于光路的稳定和自适应调节;所述第一二级分光模块303用于将所述直写路光束分为偏振方向互相垂直的直写光束第一直写路子光束和第二直写路子光束;所述第二二级分光模块304用于将抑制路光束分为偏振方向互相垂直的第一抑制路子光束和第二抑制路子光束。所述第一能量调控模块305、第二能量调控模块306、第三能量调控模块307和第四能量调控模块308用于对光束能量稳定和通断调控。所述第一波前调控模块309和第二波前调控模块310用于对光束的两个偏振分量进行调制。所述第一一级合束模块313用于对第一直写路子光束和第一抑制路子光束产生的光束 中心进行合束,形成一路直写-抑制光束组合;所述第二一级合束模块314分别用于对第二直写路子光束和第二抑制路子光束产生的光束中心进行合束,形成另一路直写-抑制光束组合。
具体地,所述直写路光束依次经过所述第一防漂模块301和第一二级分光模块303后形成第一直写路子光束和第二直写路子光束,所述第一直写路子光束依次经过第一能量调控模块305和所述第一波前调控模块309,所述第二直写路子光束依次经过第二能量调控模块306和所述第二波前调控模块310;
所述抑制路光束依次经过所述第二防漂模块302和第二二级分光模块304后形成第一抑制路子光束和第二抑制路子光束,所述第一抑制路子光束依次经过第三能量调控模块307和所述第三波前调控模块311,所述第二抑制路子光束依次经过第四能量调控模块308和所述第四波前调控模块312;
所述第一波前调控模块309和所述第三波前调控模块311出射的光束通过所述第一一级合束模块313后形成一路直写-抑制光束组合L1;所述第二波前调控模块310和所述第四波前调控模块312出射的光束通过所述第二一级合束模块314后形成另一路直写-抑制光束组合L2。
所述第一能量调控模块305、第二能量调控模块306、第三能量调控模块307、第四能量调控模块308结构相同,均包括电光调整器和二分之一波片,用于光斑能量的调控和开关。
所述第一波前调控模块309、第二波前调控模块310、第三波前调控模块311、第四波前调控模块312结构相同,均包括空间光调制器和二分之一波片,用于控制光束的波前。
如图3所示,为本发明中第一一级合束模块的结构示意图。所述第一一级合束模块313包括第一二分之一波片3131、第二二分之一波片3132和第一二向色镜3133,所述第一二分之一波片3131和第二二分之一波片3132分别布置在所述第一二向色镜3133两个入射面。第一直写路子光束通过第一二分之一波片3131和第一抑制写路子光束通过第二二分之一波片3132同时进入第一二向色镜3133进行合束,形成一路直写-抑制光束组合L1。
如图4所示,为本发明中第二一级合束模块的结构示意图。所述第二一级合束模块314包括第三二分之一波片3141、第四二分之一波片3142和第二二向色镜3143,所述第三二分之一波片3141和第四二分之一波片3142分别布置在所述第二二向色镜3143两个入射面。第二直写路子光束通过第三二分之一波片3141和第二抑制路子光束通过第四二分之一波片3142同时进入第二二向色镜3143进行合束,形成另一路直写-抑制光束组合L2。
需要说明的是,为了转折光路及调节光斑位置,在图2中,在第一防漂模块301和第一二级分光模块303之间布置一块反射镜315进行光路角度的变化,在第二防漂模块302和第二二级分光模块304之间布置一块反射镜315进行光路角度的变化;在第一二级分光模块303和第一能量调控模块305之间、第一能量调控模块305和所述第一波前调控模块309之间、在第一二级分光模块303和第二能量调控模块306之间、第二能量调控模块306和所述第二波前调控模块310之间、第二二级分光模块304和第三能量调控模块307之间、第二二级分光模块304和第四能量调控模块308之间均布置有两块第反射镜315进行光路角度的变化;第三波前调控模块311和第一一级合束模块313之间、第四波前调控模块312和第二一级合束模块314之间均布置有一块反射镜315进行光路角度的变化。
在本发明一实施例中,如图5所示,为本发明中二级合束模块4的结构示意图。所述二级合束模块4用于对五个直写-抑制光束组合单元3出射的光束L1-L10进行合束,包括沿光束方向依次步骤的反射镜组401、4f系统透镜组402和合束反射镜403。
直写-抑制光束组合L1进入二级合束模块4后依次经过反射镜组401、4f系统透镜组402和合束反射镜403。反射镜组401用于光路折转和调节,4f系统透镜组402用于调整光程;合束反射镜403用于调节光束合束角度。L2-L10光路原理与L1相同。之后相邻光束间形成2°的夹角,同时入射到刻写模块5的物镜中,形成十对直写-抑制光斑组合。
如图6所示,其中(a)为直写光斑为实心光斑,(b)为抑制光斑为空心 光斑,(c)为叠加光斑,叠加光斑中有实际作用区域6和被抑制区域7,传统单路在焦面上只有一个光斑。
如图7所示,在本发明实施例中,首先经过一级合束模块,形成两对直写-抑制光束组合,再经过二级合束模块4,形成十对直写-抑制光斑组合,将加工速度提升至传统单路直写加工的十倍(十通道就是十倍)。
本发明实施例通过十通道并行刻写,实现了十个焦斑并行PPI直写加工,克服了传统单路激光直写加工系统速度慢,加工效率低的问题,将刻写速度提升了十倍,并采用两级分光实现了光源复用,利用PPI技术获得了更高的特征尺寸和加工分辨率,同时利用波前调制实现每个光斑能量的独立调控。
本领域技术人员在考虑说明书及实践这里公开的内容后,将容易想到本发明的其它实施方案。本发明旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本发明未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (10)

  1. 一种多通道并行超分辨激光直写系统,其特征在于,包括:用于产生直写路光束的第一激光器、用于产生抑制路光束的第二激光器、至少一个直写-抑制光束组合单元、二级合束模块和刻写模块,所述直写路光束和所述抑制路光束同时入射到所述直写-抑制光束组合单元后形成一对直写-抑制光束组合,之后再依次经过所述二级合束模块和所述刻写模块,形成直写-抑制光斑组合。
  2. 如权利要求1所述的多通道并行超分辨激光直写系统,其特征在于,所述直写-抑制光束组合单元包括第一防漂模块、第二防漂模块、第一二级分光模块、第二二级分光模块、第一能量调控模块、第二能量调控模块、第三能量调控模块、第四能量调控模块、第一波前调控模块、第二波前调控模块、第三波前调控模块、第四波前调控模块、第一一级合束模块和第二一级合束模块,其中:
    所述直写路光束依次经过所述第一防漂模块和第一二级分光模块后形成第一直写路子光束和第二直写路子光束,所述第一直写路子光束依次经过第一能量调控模块和所述第一波前调控模块,所述第二直写路子光束依次经过第二能量调控模块和所述第二波前调控模块
    所述抑制路光束依次经过所述第二防漂模块和第二二级分光模块后形成第一抑制路子光束和第二抑制路子光束,所述第一抑制路子光束依次经过第三能量调控模块和所述第三波前调控模块,所述第二抑制路子光束依次经过第四能量调控模块和所述第四波前调控模块;
    所述第一波前调控模块和所述第三波前调控模块出射的光束通过所述第一一级合束模块后形成一路直写-抑制光束组合;所述第二波前调控模块和所述第四波前调控模块出射的光束通过所述第二一级合束模块后形成另一路直写-抑制光束组合。
  3. 如权利要求2所述的多通道并行超分辨激光直写系统,其特征在于,所述第一防漂模块和第二防漂模块用于光路的稳定和自适应调节。
  4. 如权利要求2所述的多通道并行超分辨激光直写系统,其特征在于,所述第一二级分光模块用于将所述直写路光束分为偏振方向互相垂直的第一直写路 子光束和第二直写路子光束;
    所述第二二级分光模块用于将抑制路光束分为偏振方向互相垂直的第一抑制路子光束和第二抑制路子光束。
  5. 如权利要求2所述的多通道并行超分辨激光直写系统,其特征在于,所述第一能量调控模块、第二能量调控模块、第三能量调控模块和第四能量调控模块用于对光束能量稳定和通断调控。
  6. 如权利要求2所述的多通道并行超分辨激光直写系统,其特征在于,所述第一波前调控模块和第二波前调控模块用于对光束的两个偏振分量进行调制。
  7. 如权利要求4所述的多通道并行超分辨激光直写系统,其特征在于,所述第一一级合束模块用于对第一直写路子光束和第一抑制路子光束产生的光束中心进行合束,形成一路直写-抑制光束组合;
    所述第二一级合束模块分别用于对第二直写路子光束和第二抑制路子光束产生的光束中心进行合束,形成另一路直写-抑制光束组合。
  8. 如权利要求2所述的多通道并行超分辨激光直写系统,其特征在于,所述第一一级合束模块包括第一二分之一波片、第二二分之一波片和第一二向色镜,所述第一二分之一波片和第二二分之一波片分别布置在所述第一二向色镜两个入射面。
  9. 如权利要求2所述的多通道并行超分辨激光直写系统,其特征在于,所述第二一级合束模块包括第三二分之一波片、第四二分之一波片和第二二向色镜,所述第三二分之一波片和第四二分之一波片分别布置在所述第二二向色镜两个入射面。
  10. 如权利要求1所述的多通道并行超分辨激光直写系统,其特征在于,所述二级合束模块包括沿光束方向依次步骤的反射镜组、4f系统透镜组和合束反射镜。
PCT/CN2022/076330 2021-10-25 2022-02-15 一种多通道并行超分辨激光直写系统 WO2023070991A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111241111.8A CN113985706A (zh) 2021-10-25 2021-10-25 一种多通道并行超分辨激光直写系统
CN202111241111.8 2021-10-25

Publications (1)

Publication Number Publication Date
WO2023070991A1 true WO2023070991A1 (zh) 2023-05-04

Family

ID=79740971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076330 WO2023070991A1 (zh) 2021-10-25 2022-02-15 一种多通道并行超分辨激光直写系统

Country Status (2)

Country Link
CN (1) CN113985706A (zh)
WO (1) WO2023070991A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113985706A (zh) * 2021-10-25 2022-01-28 之江实验室 一种多通道并行超分辨激光直写系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050080059A (ko) * 2005-07-06 2005-08-11 (주)영원테크 레이저 기반의 평판 디스플레이 제조용 노광장치
KR20130100490A (ko) * 2012-03-02 2013-09-11 마이크로 인스펙션 주식회사 레이저 다이렉트 이미징 노광장치
CN109283805A (zh) * 2018-11-29 2019-01-29 暨南大学 基于达曼光栅的激光直写装置
CN111879737A (zh) * 2019-09-10 2020-11-03 之江实验室 一种产生高通量超衍射极限焦斑的装置和方法
CN112068400A (zh) * 2020-09-01 2020-12-11 浙江大学 一种实现高通量并行激光扫描直写超分辨光刻的方法和装置
CN112363322A (zh) * 2020-10-12 2021-02-12 之江实验室 一种用于激光直写的共轴超分辨焦斑阵列产生装置
CN113189846A (zh) * 2021-04-12 2021-07-30 之江实验室 一种基于光场调控的双路并行超分辨激光直写装置
CN113189848A (zh) * 2021-04-21 2021-07-30 之江实验室 一种基于光纤阵列的多通道并行式超分辨直写式光刻系统
CN113985706A (zh) * 2021-10-25 2022-01-28 之江实验室 一种多通道并行超分辨激光直写系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102621823A (zh) * 2012-04-17 2012-08-01 中国科学院上海光学精密机械研究所 多光束并行激光直写装置及其直写方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050080059A (ko) * 2005-07-06 2005-08-11 (주)영원테크 레이저 기반의 평판 디스플레이 제조용 노광장치
KR20130100490A (ko) * 2012-03-02 2013-09-11 마이크로 인스펙션 주식회사 레이저 다이렉트 이미징 노광장치
CN109283805A (zh) * 2018-11-29 2019-01-29 暨南大学 基于达曼光栅的激光直写装置
CN111879737A (zh) * 2019-09-10 2020-11-03 之江实验室 一种产生高通量超衍射极限焦斑的装置和方法
CN112068400A (zh) * 2020-09-01 2020-12-11 浙江大学 一种实现高通量并行激光扫描直写超分辨光刻的方法和装置
CN112363322A (zh) * 2020-10-12 2021-02-12 之江实验室 一种用于激光直写的共轴超分辨焦斑阵列产生装置
CN113189846A (zh) * 2021-04-12 2021-07-30 之江实验室 一种基于光场调控的双路并行超分辨激光直写装置
CN113189848A (zh) * 2021-04-21 2021-07-30 之江实验室 一种基于光纤阵列的多通道并行式超分辨直写式光刻系统
CN113985706A (zh) * 2021-10-25 2022-01-28 之江实验室 一种多通道并行超分辨激光直写系统

Also Published As

Publication number Publication date
CN113985706A (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
US10691026B2 (en) Illumination optical system, exposure apparatus, device production method, and light polarization unit
JP6742604B2 (ja) 照明光学系、露光装置、およびデバイス製造方法
TW201234051A (en) Light beam converter, optical illuminating apparatus, exposure device, and exposure method
WO2023070991A1 (zh) 一种多通道并行超分辨激光直写系统
CN112505915B (zh) 一种激光束漂移实时探测与快速校正装置及方法
CN112666804B (zh) 基于干涉点阵和dmd的边缘光抑制阵列并行直写装置
CN113703170B (zh) 一种新型三维中空形光场生成方法与装置
CN113189846B (zh) 一种基于光场调控的双路并行超分辨激光直写装置
JP2001023919A (ja) ダブルビーム用精密可変型矩形ビーム光学系
JPH02144526A (ja) 光集光素子
JPH01209304A (ja) 位置検出装置
JPH0380765A (ja) レーザ露光装置
JPH02127608A (ja) ホログラムを用いた光走査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22884908

Country of ref document: EP

Kind code of ref document: A1