WO2023070968A1 - 介入手术机器人系统以及导航方法 - Google Patents

介入手术机器人系统以及导航方法 Download PDF

Info

Publication number
WO2023070968A1
WO2023070968A1 PCT/CN2022/073457 CN2022073457W WO2023070968A1 WO 2023070968 A1 WO2023070968 A1 WO 2023070968A1 CN 2022073457 W CN2022073457 W CN 2022073457W WO 2023070968 A1 WO2023070968 A1 WO 2023070968A1
Authority
WO
WIPO (PCT)
Prior art keywords
interventional
preoperative
interventional instrument
image
instrument device
Prior art date
Application number
PCT/CN2022/073457
Other languages
English (en)
French (fr)
Inventor
刘广志
Original Assignee
苏州润迈德医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州润迈德医疗科技有限公司 filed Critical 苏州润迈德医疗科技有限公司
Publication of WO2023070968A1 publication Critical patent/WO2023070968A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/007Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests for contrast media
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/105Modelling of the patient, e.g. for ligaments or bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/107Visualisation of planned trajectories or target regions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2065Tracking using image or pattern recognition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/04Heartbeat characteristics, e.g. ECG, blood pressure modulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/30Blood pressure

Definitions

  • the present application relates to the technical field of interventional surgery robots, in particular to an interventional surgery robot system and a navigation method.
  • Catheters and guidewires are used in many minimally invasive medical procedures for the diagnosis and treatment of various diseases of the vasculature. These procedures typically involve navigating a guidewire through the vasculature and advancing a working catheter, including a balloon or stent, over the guidewire to administer the treatment.
  • a guide wire is advanced to a target location, such as a coronary ostium for PCI procedures, a sheath or guide catheter is advanced over the guide wire to the target location, and a contrast procedure is performed to visualize the lesion in the patient.
  • a physician or operator can then use the imaging system to navigate a guidewire or working catheter to the lesion to perform a treatment procedure.
  • the navigation of the interventional surgery robot system for the vascular system is mainly used in PCI surgery. Doctors or operators achieve the purpose of treatment by manipulating the coronary artery guide wire or catheter to deliver it to the target position and restore normal blood flow.
  • angiography is required, and the functional evaluation parameters (such as fractional flow reserve, FFR) can be calculated through the obtained angiography images to indicate the image of the coronary artery stenosis on the distal blood flow, and to diagnose the myocardium. Ischemia to determine whether PCI should be performed.
  • FFR fractional flow reserve
  • the system is mainly used to help doctors or operators perform operations.
  • Doctors or operators remotely control guide wires or catheters by operating joysticks or screens at workstations.
  • people still rely on people to observe the position of guide wires or catheters through the display screen. shape, and perform operations such as advancing, withdrawing, and rotating the guide wire or catheter. Therefore, misjudgment inevitably occurs, resulting in a long operation time.
  • the present application provides an interventional surgery robot system, which can plan the interventional surgery path in advance, automatically control the movement of interventional instruments, improve the experience of doctors or operators, and have the ability to diagnose and treat Integrated features.
  • An interventional surgery robot system comprising: a control device and a first interventional instrument device, a second interventional instrument device, and a driving device that are communicatively connected to the control device, and the control device includes:
  • a preoperative data processing module configured to construct a first spatial coordinate system according to the preoperative image
  • the preoperative path planning module is used to perform preoperative path planning according to the preoperative image to generate the first surgical path;
  • An instrument positioning module configured to obtain position information of the interventional instrument device
  • a functional parameter acquisition module configured to acquire functional evaluation parameters
  • the control device is used to determine the position of the first interventional instrument device in the first space coordinate system according to the position information, and control the driving device to make the first interventional instrument device move along the
  • the first surgical path arrives at the first target position from the first source point, and obtains the functional evaluation parameters after radiography and judges whether a preset condition is met, so as to control the driving device to deliver the Second interventional device.
  • control device includes:
  • An intraoperative data processing module configured to construct a second spatial coordinate system according to the contrast image
  • the intraoperative path planning module is used for performing intraoperative path planning according to the angiography image, and generating a second surgical path;
  • the control device is used to determine the position of the second interventional instrument device in the second space coordinate system according to the position information, so as to control the second interventional instrument device along the The second surgical path travels from a second source point to a second target location.
  • the functional evaluation parameter is FFR
  • the preset condition is that the FFR is less than a preset value; when the preset condition is not met, the control device is used to The surgical path and the instrument positioning module control the withdrawal of the first interventional instrument device.
  • the second source point is at the same position as the first target position, and the second target position is the lesion position in the contrast image; when the preset condition is met, the control device It is used to control the second interventional instrument device to reach a second source point along the first interventional instrument device, and then control the second interventional instrument device to reach a second target position along the second operation path.
  • the preoperative image is a historical image of the patient, including: the tissue from the radial artery to the coronary artery in the human body, the first source point is set as the position of the puncture point, and the first The target position is set as the position of the coronary ostium; the angiography image includes: coronary tissue in the human body, the second source point is set as the position of the coronary ostium, and the second target position is set as the lesion Location.
  • the system includes: an image acquisition device for acquiring real-time fluoroscopic images and contrast images, and the image acquisition device is in communication connection with the control device.
  • the system includes: a contrast injection device communicated with the control device, and the control device is used to control the contrast injection device after the first interventional device reaches the first target position.
  • An injection device injects a contrast medium through said first interventional instrument device with predetermined injection parameters.
  • the contrast injection device includes: a pressure acquisition module for acquiring ECG signals and pressure data; an injection control module connected to the pressure acquisition module, and the injection control module receives the After the control signal sent by the control device, the contrast agent is injected at a predetermined period based on the ECG signal and pressure waveform.
  • the preoperative data processing module includes: a preoperative image acquisition unit for acquiring preoperative images; a preoperative three-dimensional model generation unit for performing three-dimensional modeling on the preoperative images; The first spatial coordinate establishment unit of the first spatial coordinate system is generated for three-dimensional modeling;
  • the intraoperative data processing module includes: a contrast image acquisition unit for acquiring contrast images; an intraoperative three-dimensional model generation unit for performing three-dimensional modeling on contrast images; and a unit for generating a second space coordinate system for three-dimensional modeling The second spatial coordinates establish the unit.
  • the preoperative path planning module includes:
  • a first source point generation unit for generating coordinates corresponding to the first source point in the first space coordinate system
  • a first target position generating unit for generating coordinates corresponding to the first target position in the first space coordinate system
  • a first constrained position generation unit for generating coordinates corresponding to the first constrained position in the first space coordinate system, where there is at least one first constrained position
  • a first surgical path generation unit for connecting the coordinates of the corresponding first source point, the first constraint position and the first target position to generate a first surgical path.
  • the intraoperative path planning module includes:
  • a second source point generating unit for generating coordinates corresponding to the second source point in the second space coordinate system
  • a second target position generation unit configured to generate coordinates corresponding to the second target position in a second space coordinate system, the second target position being a lesion position in the contrast image
  • a second constrained position generating unit for generating coordinates corresponding to the second constrained position in the second space coordinate system, where there is at least one second constrained position
  • a second surgical path generation unit for connecting the coordinates of the corresponding second source point, the second constrained position and the second target position to generate a second surgical path.
  • the device positioning module is used to register the collected real-time fluoroscopic images with preoperative images and angiographic images, and determine the position of the first interventional device in the first space coordinate system The real-time coordinates in , the real-time coordinates of the second interventional instrument device in the second space coordinate system.
  • the preoperative data processing module includes: a projection body position determining unit for acquiring a preferred coronary artery projection position according to the preoperative image, and the image acquisition device is based on the coronary artery preferred projection position determination unit. Projection Position Adjust the projection position.
  • the preoperative data processing module includes: a preoperative vascular parameter acquisition unit for acquiring preoperative vascular state parameters of preoperative images; wherein the preoperative vascular state parameters include: aortic diameter , coronary artery diameter, coronary artery ostium position, coronary artery twist angle, aortic length, coronary artery length.
  • the intraoperative data processing module includes: an intraoperative blood vessel parameter acquisition unit used to acquire intraoperative blood vessel state parameters of contrast images; an intraoperative flow velocity used to acquire intraoperative blood flow velocity in contrast images A calculation unit; an aortic pressure acquisition unit for acquiring patient aortic pressure data; wherein the intraoperative vascular state parameters include: coronary artery length, coronary artery diameter, and the functional parameter acquisition module is based on the coronary artery length, FFR was calculated from the coronary artery diameter, the intraoperative blood flow velocity and the aortic pressure data.
  • the system includes: a coronary artery analyzer including a blood pressure acquisition module communicatively connected with the functional parameter acquisition module, and the blood pressure acquisition module is used to acquire aortic pressure data.
  • the intraoperative data processing module further includes: a lesion analysis unit for acquiring lesion information in contrast images, and the lesion information includes lesion length, lesion minimum diameter, and lesion reference diameter.
  • the preoperative image and the contrast image are medical images, including one or more of CAG images, CT images, MRI images, ultrasound images, and OCT images.
  • control device includes: an autonomous learning module, which uses a pre-trained deep neural network model to analyze and process the input preoperative blood vessel state parameters, and output the first interventional device Information about the preferred parameters of the device.
  • control device includes: an autonomous learning module, which uses a pre-trained deep neural network model to analyze and process the input lesion information, and outputs the preferred Parameter information.
  • the system includes: a monitor for acquiring ECG signals and/or pressure data, the monitor is connected in communication with the control device, and the control device includes a process information processing module, The process information processing module is used to monitor whether the ECG signal and/or pressure data are abnormal.
  • control device includes a process information processing module, and the process information processing module is used to judge the second interventional device according to the position information of the first interventional device and the second Whether the position of an interventional device deviates from the preset range of the first surgical path and whether the position of the second interventional device deviates from the preset range of the second surgical route.
  • the first interventional instrument device has a first longitudinal axis, and the first interventional instrument device has an opposite proximal end and a deflectable distal end along its first longitudinal axis;
  • the The driving device includes: a first rotary actuation mechanism for driving the first interventional instrument device to rotate around the first longitudinal axis; for driving the first interventional instrument device to move along the first longitudinal axis a first linear movement actuation mechanism; a steering actuation mechanism for causing deflection of the distal end relative to the first longitudinal axis, the control device being configured to, based on the determined position of the distal end, controlling one or more of the first rotational actuation mechanism, the first linear movement actuation mechanism and the steering actuation mechanism to linearly move the distal end according to the first surgical path and/or Either deflect and/or rotate until the first target position is reached.
  • the second interventional instrument device has a second longitudinal axis;
  • the driving device includes: a second motor for driving the second interventional instrument device to rotate around the second longitudinal axis; a rotary actuation mechanism; a second linear movement actuation mechanism for moving the second interventional instrument arrangement along the second longitudinal axis, the control device being configured to Controlling one or more of the second rotary actuation mechanism and the second linear movement actuation mechanism to linearly move the second interventional instrument device according to the second surgical path and/or Rotate until the second target position is reached.
  • the system further includes a third interventional device with a balloon or a stent, the third interventional device has a third longitudinal axis;
  • the driving device includes: for driving the A third linear movement actuation mechanism for moving a third interventional instrument device along the third longitudinal axis, the control device is configured to control the third linear movement actuation mechanism according to the determined position of the third interventional instrument device An actuating mechanism is used to linearly move the third interventional instrument device according to the second surgical path until reaching a second target position.
  • a navigation method for an interventional surgical robot system comprising: a first interventional instrument device, a second interventional instrument device and a driving device, the first interventional instrument device has a relative proximal end and a deflectable distal end, the The navigation methods described include:
  • controlling the drive means to move the first interventional instrument arrangement along the first surgical path including actuating one or more of linear translation, rotation and distal deflection of the first interventional instrument arrangement, until the distal end reaches the first target location;
  • the method when the preset conditions are met, the method includes:
  • the movement of two interventional instruments along the second surgical path includes actuating one or more of linear movement, rotation of the second interventional instrument until the second interventional instrument reaches the second target Location.
  • the method includes: when a preset condition is not met, controlling the withdrawal of the first interventional device from the first target position.
  • the second source point is at the same position as the first target position, and the second target position is the lesion position in the contrast image; when the preset condition is met, the method includes :
  • the second interventional instrument device is controlled to reach a second source point along the first interventional instrument device, and then the second interventional instrument device is controlled to reach a second target position along the second surgical path.
  • the preoperative image is a historical image of the patient, including: the tissue from the radial artery to the coronary artery in the human body, the first source point is set as the position of the puncture point, and the first The target position is set as the position of the coronary ostium; the angiography image includes: coronary tissue in the human body, the second source point is set as the position of the coronary ostium, and the second target position is set as the lesion Location.
  • the system can obtain functional evaluation parameters and judge whether to perform a treatment procedure, so that when it is judged that a treatment procedure is required, it can perform intraoperative path planning in combination with the angiography image after angiography, that is, generate a second surgical path , so as to guide the second interventional device to reach the second target position, the second target position is the lesion position, and automatically complete the delivery of the second interventional device, so as to have the characteristics of integrated diagnosis and treatment;
  • the system can help the doctor to judge the patient's lesion, so as to end the operation process when the preset conditions are not met. On the one hand, it can prevent unnecessary waste of resources, and on the other hand, it can reduce the harm to the patient, especially the lesion. Patients with mild stenosis.
  • FIG. 1 is a schematic block diagram of the interventional surgery robot system provided by the embodiment of this specification;
  • Fig. 2 is a schematic block diagram of the preoperative data processing module provided by the embodiment of this specification.
  • Fig. 3 is a schematic block diagram of the intraoperative data processing module provided by the embodiment of this specification.
  • Fig. 4 is a schematic block diagram of the preoperative path planning module provided by the embodiment of this specification.
  • Fig. 5 is a schematic block diagram of the intraoperative path planning module provided by the embodiment of this specification.
  • Fig. 6 is a schematic block diagram of the contrast injection module device provided by the embodiment of this specification.
  • Fig. 7 is a flow chart of the navigation method of the interventional surgery robot system provided by the embodiment of this specification.
  • Control device 101. Data storage module; 105. Process information processing module; 110. Preoperative data processing module; 111. Preoperative image acquisition unit; 112. Projection body position determination unit; 113. Preoperative 3D model generation unit ; 114. First space coordinate establishment unit; 115. Preoperative flow rate calculation unit; 116. Preoperative blood vessel parameter acquisition unit; 120. Intraoperative data processing module; 121. Angiographic image acquisition unit; 122. Lesion analysis unit; 123. Intraoperative three-dimensional model generation unit; 124. Second space coordinate establishment unit; 125. Intraoperative flow velocity calculation unit; 126. Intraoperative blood vessel parameter acquisition unit; 127. Aortic pressure acquisition unit; 130. Preoperative path planning module; 131 132.
  • Driving device 210. First rotary actuation mechanism; 220. First linear movement actuation mechanism; 230. Steering actuation mechanism; 240. Second rotation actuation mechanism; 250. Second linear movement actuation mechanism; 260. The third linear movement actuating mechanism;
  • contrast injection device 310, injection module; 320, drive module; 330, injection control module;
  • the first interventional device 610.
  • the second interventional device 620.
  • the third interventional device 620.
  • An image acquisition device 700.
  • the device 610, the driving device 200, the control device 100 includes: a preoperative data processing module 110, configured to construct a first space coordinate system according to a preoperative image; a preoperative path planning module 130, used to perform preoperative path planning, generating a first surgical path; an instrument positioning module 160, configured to acquire position information of the interventional instrument device; and a functional parameter acquiring module 190, configured to acquire functional evaluation parameters.
  • the first interventional device 600 and the second interventional device 610 are percutaneous interventional devices for performing various procedures, such as guide wires, contrast catheters, guiding catheters, microcatheters, working catheters with balloons or stents.
  • the first interventional device 600 is a medical device for performing an imaging procedure
  • the second interventional device 610 is a medical device for performing a treatment procedure.
  • the first interventional instrument device 600 and the second interventional instrument device 610 in the embodiment of this specification may respectively include one or a type of instrument.
  • the driving device 200 includes various actuating mechanisms to cause the movement of the percutaneous interventional device, such as one or more forms of motion such as linear motion, rotation, and direction adjustment.
  • the control device 100 is communicatively connected with the drive device 200, so that the control device 100 can send a corresponding control signal to the drive device 200, so as to remotely control the movement of the percutaneous interventional device and send it into the patient's body.
  • the preoperative image may be a historical image of the patient, and it should be noted that all images stored by the patient before the angiography operation can be understood as the historical image.
  • the historical images may include images retained from the last or previous angiography surgery, and may include pre-taken images before the current angiography surgery.
  • the preoperative images are medical images, including one or more of CAG images, CT images, MRI images, ultrasound images, and OCT images. When there are multiple preoperative images, multiple medical images can be fused to guide the doctor to formulate an angiography plan.
  • ultrasonic images can be combined when determining the puncture point.
  • the puncture point can be set at the femoral artery of the patient.
  • the preoperative images may be images taken of patients in different projection positions.
  • the pre-operative images may be images acquired during a single phase of the cardiac cycle or images acquired during multiple phases of the cardiac cycle.
  • the preoperative images at least correspond to coronary arteries and aorta in the human body.
  • the preoperative image may correspond to tissue from the radial artery to the coronary artery in the human body.
  • the previous angiography images of a patient may only include images from the coronary artery to the aorta.
  • the human body is pre-photographed before the radiography operation, and stored in the control device 100 .
  • the past images of the patient include images of the radial artery, which are pre-stored in the control device 100 of the system, and the control device 100 can directly acquire the images of the patient and build a three-dimensional model.
  • the first surgical path may include a position of the coronary artery ostium, which is the first target position of the first surgical path, and the path can be performed according to the position of the coronary artery ostium in the preoperative image. Planning, so as to guide or replace the doctor to perform the angiography operation before the operation or during the angiography operation, and help the doctor deliver the first interventional device 600 to the position of the coronary artery opening.
  • the first target position may not be limited to the coronary ostia position.
  • the position of the first target position must also be different.
  • the first target position may be the renal artery or the carotid artery.
  • the preoperative data processing module 110 includes: a preoperative image acquisition unit 111 for obtaining a preoperative image; a preoperative three-dimensional model generation unit 113 for performing three-dimensional modeling on the preoperative image;
  • the first space coordinate establishing unit 114 is used to generate a first space coordinate system for three-dimensional modeling.
  • the preoperative data processing module 110 derives the pre-stored pre-operative image through the pre-operative image acquisition unit 111, and the pre-operative three-dimensional model generation unit 113 extracts the pre-operative image, Denoise, segment, and extract the contour features of the target blood vessel to construct a three-dimensional model, and then establish a three-dimensional spatial rectangular coordinate system on this basis through the first spatial coordinate establishment unit 114 .
  • the coronary artery image and the aortic image in the preoperative image are extracted, and the static and dynamic noise is removed, and then the images taken in different body positions are segmented to obtain Coronary Centerline, Coronary Diameter, Aortic Centerline, and Aortic Diameter. Then extract the sign points on the center line, restore these feature points in three dimensions based on the known shooting angles, and then restore the center line in three dimensions to obtain the center line and diameter of the coronary artery and the center line and diameter of the aorta.
  • the projection calculation of the artery centerline and the aorta centerline in the three-dimensional space generates a three-dimensional model, and the coronary artery length, coronary artery diameter, aortic length, and aortic diameter can be obtained.
  • the first space coordinate system it can be established directly based on the three-dimensional model, and it can be implemented according to any suitable known technology, which will not be repeated here.
  • the preoperative three-dimensional model in the preoperative data processing module 110 based on the acquired preoperative image from the radial artery to the coronary artery, the preoperative three-dimensional model in the preoperative data processing module 110 generates
  • the unit 113 processes the preoperative image, automatically segments the radial artery region, the aortic region, and the coronary artery region from the image, and establishes a three-dimensional visualization model, which is defined as the first preoperative three-dimensional model.
  • the three-dimensional visualization model of the aorta and coronary artery is obtained, and is defined as the second preoperative three-dimensional model, and then the second preoperative three-dimensional model is corresponding to the first three-dimensional model.
  • the aorta and coronary artery can be associated with the first preoperative three-dimensional model, thereby reducing the error of the aorta and coronary artery model in the first preoperative three-dimensional model.
  • the type and size of the guide wire or catheter used in the angiography operation is currently only selected based on the doctor's experience, and the guide wire or catheter is sent to the predetermined position based on experience. If the type or size of the selected guide wire or catheter is not suitable, it needs to be withdrawn, and then the guide wire or catheter will be replaced until it reaches the predetermined position, which will greatly prolong the overall operation time.
  • the system performs three-dimensional modeling based on the patient's historical images before the operation, and can help the doctor choose an appropriate size or type of imaging device according to the obtained coronary artery length, coronary artery diameter, aortic length, and aortic diameter .
  • control device 100 is used to determine the position of the first interventional instrument device 600 in the first space coordinate system according to the position information, and control the driving device 200 to make the The first interventional instrument device 600 travels from a first source point to a first target location along the first surgical path.
  • the preoperative path planning module 130 includes: a first source point generation unit 131 for generating coordinates corresponding to the first source point in the first space coordinate system; A first target position generation unit 132 for generating coordinates corresponding to the first target position in the first space coordinate system; a first constraint position generation unit 133 for generating coordinates corresponding to the first constraint position in the first space coordinate system , the first constrained position is at least one; the first surgical path generating unit 134 for connecting the coordinates of the corresponding first source point, the first constrained position and the first target position to generate the first surgical path.
  • the first target position is the end point of the first surgical path.
  • the first target position is the position of the coronary artery opening
  • the first source point is the starting point of the first surgical path.
  • the first constraint position is a key point of the first surgical path, such as a branch point or an inflection point.
  • the path between the first source point and the first target location usually includes multiple branches or bifurcations, and if the first interventional instrument device 600 travels along these branches or bifurcations, it means entering a wrong path.
  • the trunk path between the first source point and the first target position there may also be an inflection point, that is, the first interventional instrument device 600 needs to pass through the inflection point to reach the first target position, and the first constraint position may have Several, so that the first surgical path is a single path from the first source point to the first target location passing through all the first constraint locations.
  • the first source point is the starting point of the aorta, so that the first surgical route from the starting point of the aorta to the coronary artery Opening position.
  • the first source point, the first target position and the first constraint position can be selected and identified by the doctor or operator on the user interface of the surgical robot system, or can be automatically selected by the control device 100 identify.
  • the first source point is the position of the planned puncture point, so that the first surgical path is from the puncture point to the position of the coronary artery opening.
  • the difference in the puncture point leads to a difference in the generated first surgical path, and the first target position and the first constraint position can be selected and identified by the doctor or the operator on the user interface of the surgical robot system , or can be automatically identified by the control device 100 .
  • the control device 100 controls the driving device 200 so that the first interventional instrument device 600 arrives at the first target position from the first source point along the first surgical path, it is necessary to obtain the distance between the first space coordinate system and the driving device coordinate system.
  • the spatial mapping relationship and then according to the spatial mapping relationship and the corresponding coordinates of the first source point, the first constraint position and the first target position, obtain the first source point, the first constraint position and the first target position in the driving
  • the position information in the device coordinate system can ensure that the finally generated first surgical path is directly associated with the driving device 200, so that the control device 100 can automatically control the first interventional instrument device 600 to perform contrast surgery according to the first surgical path.
  • the acquisition of the spatial mapping relationship between the coordinate system of the driving device 200 and the first space coordinate system may refer to existing methods.
  • the second interventional instrument device 610 is delivered, it is also necessary to establish a spatial mapping relationship between the driving device coordinate system and the second space coordinate system, so that the second surgical path is directly associated with the driving device 200 .
  • the interventional surgery robot system provided by the embodiments of this specification can help doctors or operators to complete the planning of the surgical path in the preoperative stage to guide the contrast surgery.
  • it can help doctors to automatically complete the delivery of the first interventional device, thereby reducing the time required for contrast surgery, especially for doctors with less clinical experience, which is beneficial to doctors in There is sufficient time throughout the surgical process to develop a treatment plan.
  • the preoperative data processing module 110 further includes: a preoperative vascular parameter acquisition unit 116 for acquiring preoperative vascular state parameters in preoperative images; wherein the preoperative vascular state Parameters include: aortic diameter, coronary artery diameter, position of coronary artery opening, coronary artery twist angle, aortic length, and coronary artery length.
  • control device 100 may include: an autonomous learning module 180, the autonomous learning module 180 uses a pre-trained deep neural network model to analyze and process the input preoperative blood vessel state parameters, and output
  • the preferred parameter information of the first interventional instrument device 600 includes instrument specifications, passing performance, supporting performance, and the like.
  • the deep neural network model can be obtained through the following process:
  • the initial model is trained, and then a deep neural network model is obtained.
  • the preoperative data processing module 110 may also include: a preoperative flow velocity calculation unit 115 for obtaining the preoperative blood flow velocity in the preoperative image, for dynamic images such as CAG, the blood flow velocity information in the preoperative image can be extracted, Therefore, a suitable first interventional device 600 can be recommended using a deep neural network model in combination with preoperative blood vessel state parameters.
  • a preoperative flow velocity calculation unit 115 for obtaining the preoperative blood flow velocity in the preoperative image, for dynamic images such as CAG, the blood flow velocity information in the preoperative image can be extracted, Therefore, a suitable first interventional device 600 can be recommended using a deep neural network model in combination with preoperative blood vessel state parameters.
  • control device 100 when the control device 100 processes the preoperative images, by analyzing the historical images of the patient, it can automatically obtain the optimal parameter information of the first interventional device 600 suitable for the patient, and the doctor or operator A suitable imaging device can be directly selected according to the type selection of the recommended first interventional device device 600 .
  • control device 100 obtains the functional evaluation parameters after contrast imaging and judges whether the preset condition is satisfied, so as to control the driving device 200 to deliver the second interventional device when the preset condition is satisfied.
  • the functional evaluation parameters are arterial evaluation parameters, including: fractional flow reserve (Fractional Flow Reserve, FFR) and/or coefficient of microcirculatory resistance (Index of Microcirculatory Resistance, IMR), for judging myocardial infarction blood level. Therefore, after the angiography, the system can automatically obtain the functional evaluation parameters and judge whether to perform a therapeutic operation, so that when it is judged that a therapeutic operation is necessary, it can carry out intraoperative path planning in combination with the angiographic image after the angiography, and automatically complete the second operation.
  • the delivery of interventional devices so as to have the characteristics of integration of diagnosis and treatment.
  • the functional evaluation parameter is FFR
  • the preset condition is that the FFR is smaller than a preset value
  • the control device 100 is configured to An operation path and an instrument positioning module 160, controlling the withdrawal of the first interventional instrument device 600, and when a preset condition is met, the control device 100 controls the driving device 200 to make the second interventional instrument device 610 perform a therapeutic operation.
  • the preset value is 0.75 ⁇ 0.85.
  • the preset value is 0.8.
  • the measured FFR is less than 0.8, it indicates that the degree of coronary artery stenosis will lead to myocardial ischemia, and a treatment procedure needs to be performed; when the measured FFR is greater than or equal to 0.8, it indicates that the degree of coronary artery stenosis
  • the possibility of causing myocardial ischemia is relatively small, and the degree of treatment can not be performed, and the operation process is over, preventing unnecessary waste of resources and reducing harm to patients.
  • the control device 100 further includes: an intraoperative data processing module 120 for constructing a second spatial coordinate system according to the contrast images; an intraoperative path planning module 140 for Intraoperative path planning is performed according to the contrast images to generate a second surgical path.
  • the control device 100 is used to determine the position of the second interventional instrument device 610 in the second space coordinate system according to the position information obtained by the instrument positioning module 160, so as to control the The second interventional instrument device 610 goes from the second source point to the second target position along the second operation path, and performs a treatment procedure.
  • the intraoperative data processing module 120 includes: a contrast image acquisition unit 121 for acquiring contrast images; an intraoperative three-dimensional model generation unit 123 for performing three-dimensional modeling on the contrast images; The second space coordinate establishing unit 124 of the second space coordinate system. Specifically, before constructing the second space coordinate system, the intraoperative data processing module 120 screens out relatively clear contrast images through the contrast image acquisition unit 121, and the intraoperative three-dimensional model generation unit 123 extracts, denoises, and extracts the contrast images. Segment, and extract the contour features of the target blood vessel to construct a three-dimensional model, and then establish a three-dimensional spatial rectangular coordinate system on this basis through the second spatial coordinate establishment unit 124 .
  • the intraoperative three-dimensional model generation unit 123 please refer to the description about the preoperative image above, and this specification will not repeat them here.
  • the system includes: an image acquisition device 700 for acquiring real-time fluoroscopic images and contrast images, and the image acquisition device 700 is in communication connection with the control device 100 .
  • the image acquisition device 700 may be a DSA device for emitting X-rays, and the image acquisition device 700 may track the distal parts of the first interventional instrument device 600 and the second interventional instrument device 610 .
  • the contrast-enhanced image is a contrast-enhanced image obtained by injecting a contrast agent into a patient before contrast. Therefore, the angiography image can clearly reproduce the structure of the patient's coronary artery system.
  • the distal parts of the first interventional instrument device 600 and the second interventional instrument device 610 are all configured to be radiopaque.
  • the distal part of the guide wire is the tip of the guide wire, and the distal end of the guide wire
  • the portion may be radiopaque so that the position of the distal portion of the guidewire can be tracked by real-time fluoroscopic images acquired by the DSA device. Therefore, the real-time fluoroscopy image is an image taken without contrast.
  • the system can acquire contrast images through the image acquisition device 700 before the acquisition of the functional evaluation parameters.
  • the preset conditions it indicates that the patient needs treatment, and the control device 100 needs to perform intraoperative planning based on the contrast images, and generate a second surgical path to guide the doctor or operator to deliver the second interventional device 610 to the lesion position , the second target position is the lesion position.
  • the first surgical path is a different path from the second surgical path, or the second surgical path extends to the lesion on the basis of the first surgical path.
  • the end point of the first operation path is the position of the coronary artery ostia, while the end point of the second operation path is the lesion location, so the end points of the two operation paths are different.
  • the intraoperative path planning module 140 includes: a second source point generation unit 141 for generating coordinates corresponding to the second source point in the second space coordinate system;
  • the second target position generation unit 142 that generates coordinates corresponding to the second target position in the second space coordinate system, the second target position is the lesion position in the contrast image;
  • a second constrained position generation unit 143 that generates coordinates corresponding to the second constrained position, the second constrained position is at least one; used to connect the corresponding second source point, the second constrained position and the second constrained position
  • the second source point is the starting point of the second surgical path
  • the second constraint position is a key point of the second surgical path. Since the second interventional device 610 often needs to be delivered along the first interventional device 600, during the process of delivering the second interventional device 610 into the patient's body, the control device 100 can control the driving device 200 to automatically deliver the second interventional device 610 , until the distal end of the second interventional instrument device 610 is delivered to the coronary ostium, so that the coronary ostia can be used as the second source point, that is, the starting point of the second surgical path is the end point of the first surgical path.
  • the trunk path through the coronary artery from the second source point to the lesion location also includes identifying sub-vessels or branches, so the second constraint location is the branch point of the sub-vessel and the trunk path, and the branch and the trunk path.
  • the second source point, the second target position and the second constraint position may be selected and identified by a doctor or an operator on the user interface of the surgical robot system, or may be automatically identified by the control device 100 .
  • the system builds a three-dimensional model based on the angiography image, and can obtain the aorta diameter, coronary artery diameter, aorta length, and coronary artery length in the angiography image. These information can also help doctors choose a suitable size or type of Treatment equipment.
  • the intraoperative data processing module 120 may also include: a lesion analysis unit 122 for obtaining lesion information in contrast images, the lesion information including lesion length, lesion minimum diameter, lesion reference diameter , so as to guide the doctor or operator to select the appropriate treatment device to pass through the lesion.
  • the lesion reference diameter may be the average diameter from the proximal end of the lesion to the distal end of the lesion.
  • control device 100 includes: an autonomous learning module 180, the autonomous learning module 180 uses a pre-trained deep neural network model to analyze and process the input lesion information, and outputs the second interventional instrument Information about the preferred parameters of the device.
  • the control device 100 when the control device 100 processes the contrast image, by analyzing the lesion information of the patient, the lesion information includes lesion length, lesion minimum diameter, and lesion reference diameter, so that The optimal parameter information of the second interventional device 610 suitable for the patient can be automatically obtained, and the doctor or operator can directly select a suitable treatment device according to the recommended selection of the second interventional device 610 .
  • the preoperative data processing module 110 may further include: a projection body position determination unit 112 for obtaining a preferred coronary artery projection body position according to the preoperative image, and the image acquisition device 700 is based on the Coronary optimal projection position adjusts the projection position.
  • the preoperative images may be images taken by the patient in different projection positions, and the preferred projection position is the projection position when the lesion position of the coronary artery is not blocked by branches or sub-vessels, so
  • the projection body position determination unit 112 performs image evaluation on the projection body position according to the preoperative image, and determines the optimal projection body position.
  • the image acquisition device 70 adjusts the shooting angle based on the preferred projection body position, a better shooting image can be obtained, which is beneficial to accurately identify the location of the lesion.
  • the instrument positioning module 160 is used to obtain the position of the first interventional instrument device 600 in the first space coordinate system and the position of the second interventional instrument device 610 in the second space coordinate system.
  • the instrument positioning module 160 is configured to register the acquired real-time fluoroscopic image with the preoperative image, and determine the real-time coordinates of the first interventional instrument device 600 in the first space coordinate system; and The positioning module 160 is configured to register the acquired real-time fluoroscopic image with the angiography image, and determine the real-time coordinates of the second interventional instrument device 610 in the second space coordinate system.
  • the instrument positioning module 160 performs coordinate registration on the real-time perspective image and the preoperative image or contrast image.
  • the first interventional device 600 as an example, in the first space coordinate system established by the preoperative image, when the first interventional device 600 starts puncturing, the acquired real-time fluoroscopic image (far view of the first interventional device 600 end) to the first source point of the first space coordinate system, so that the real-time coordinates of the first interventional instrument device 600 relative to the first space coordinate system can be determined.
  • the distal ends of the first interventional instrument device 600 and the second interventional instrument device 610 may also be provided with positioning sensors,
  • the positioning sensor may be an electromagnetic sensor, an optical sensor, a laser sensor, etc. with a motion tracking and positioning function.
  • the positioning sensor is connected in communication with the instrument positioning module 160, so that the control device 100 can determine the position of the interventional instrument in the spatial coordinate system based on the position information of the instrument.
  • the intraoperative data processing module 120 includes: an intraoperative blood vessel parameter acquisition unit 126 for acquiring intraoperative blood vessel state parameters of contrast images; An intraoperative flow velocity calculation unit 125 for acquiring intraoperative blood flow velocity in contrast images; an aortic pressure acquisition unit for acquiring patient aortic pressure data; wherein the intraoperative vascular state parameters include: coronary artery length, coronary artery diameter; The acquisition module 190 for acquiring the functional parameters calculates FFR based on the coronary artery length, the coronary artery diameter, the intraoperative blood flow velocity and aortic pressure data.
  • the coronary artery length and coronary artery diameter in the angiography image can be extracted, and obtained by the intraoperative blood vessel parameter acquisition unit 126 .
  • the intraoperative flow velocity can be obtained through the TIMI frame counting method.
  • the intraoperative flow velocity calculation unit 125 scans the coronary angiography images in time series to calculate the time required for the contrast agent to flow from the blood vessel inlet to the blood vessel end, and then calculates the time required for the contrast agent to flow from the blood vessel inlet to the blood vessel end.
  • the blood flow rate is obtained by dividing the vessel length by the time.
  • the formula and principle for calculating FFR by the functional parameter acquisition module 190 based on coronary artery length, coronary artery diameter, intraoperative blood flow velocity, and aortic pressure data are prior art, and will not be repeated in this specification.
  • the system may further include: a coronary artery analyzer including a blood pressure acquisition module communicatively connected to the functional parameter acquisition module 190, and the blood pressure acquisition module is used to acquire aortic pressure data .
  • a coronary artery analyzer including a blood pressure acquisition module communicatively connected to the functional parameter acquisition module 190, and the blood pressure acquisition module is used to acquire aortic pressure data .
  • the functional evaluation parameters can be obtained by an existing coronary artery analyzer, and then collected by the functional parameter acquisition module 190 of the control device 100 .
  • the system includes: a contrast injection device 300 communicatively connected with the control device 100 , and the control device 100 is used for when the first interventional instrument device 600 reaches After the first target position, the contrast injection device 300 is controlled to inject a contrast medium through the first interventional instrument device 600 with predetermined injection parameters.
  • the contrast injection device 300 includes: a pressure acquisition module for collecting ECG signals and pressure data; an injection control module 330 connected to the pressure acquisition module, and the injection control module 330 receives the After the control signal, the contrast agent is injected at a predetermined period based on the ECG signal and pressure waveform. Further, the contrast injection device 300 further includes: a driving module 320 connected to the injection control module 330 and an injection module 310 driven by the driving module 320 .
  • the injection method of the contrast agent is usually manually pushing the injector or injecting it through a high-pressure injector.
  • Manual bolus injection is due to the difference in the force of the doctor and the speed of the pushing speed, which leads to inconcentrative injection of the contrast medium and insufficient filling of the contrast medium.
  • the quality of the contrast image collected during the operation is poor. fluctuation.
  • the coronary blood supply is mainly during the diastole period. During the systole period, due to the compression of the coronary vessels by the myocardium, the blood flow advances slowly or even stops, causing the contrast agent to overflow into the aorta. It can be seen that the time for injecting the contrast agent The relative uncertainty between the heart rate and the heartbeat cycle cannot guarantee that the contrast agent will enter the coronary artery smoothly.
  • control device 100 can control the contrast injection device 300 to inject into the patient's body through the first interventional device 600 with predetermined injection parameters, which can ensure the stability of the bolus injection efficiency, and can ensure that the contrast agent injection time is consistent with Deterministic between heartbeat cycles.
  • the injection control module 330 is configured to store the diastolic pressure waveform or/and the diastolic interval of the electrocardiogram, and then through the ECG signal collected in real time by the pressure acquisition module, the injection control module 330 controls the drive module according to the received control signal 320 is turned on or off, thereby ensuring that the contrast agent is injected synchronously at the beginning of the diastole, so that the contrast agent and blood flow quickly enter the coronary vessels during the diastole.
  • the injection control module 330 controls the working power of the driving module 320, and the working power corresponds to the injection pressure.
  • the injection pressure affects the injection rate of the injection module 310, which can effectively control the stability of the injection efficiency and improve the injection efficiency. imaging quality.
  • control device 100 includes a process information processing module 105, and the process information processing module 105 is configured to determine the Whether the position of the first interventional device 600 deviates from the preset range of the first surgical path and whether the position of the second interventional device 610 deviates from the preset range of the second surgical route.
  • the process information processing module 105 judges that the first interventional instrument device 600 and the second interventional instrument device 610 deviate from the preset range of the surgical path based on the position information acquired by the instrument positioning module 160, including that the instrument device enters the wrong place. paths, such as branch vessels, etc. In order to output an alarm message when it is judged that the interventional device has entered a wrong path.
  • the system includes: a monitor 500 for acquiring electrocardiographic signals and/or pressure data, the monitor 500 is connected to the process information processing module 105 in communication, and the process information processing module 105 It is used to monitor whether the ECG signal and/or pressure data are abnormal.
  • the monitor 500 can also be used to assist in judging whether the interventional device deviates from the preset range of the surgical path, including: the interventional device travels against the blood vessel wall, and the interventional device enters the ventricle. Therefore, when abnormalities occur in the electrocardiographic signal and/or pressure data, an alarm message is output.
  • control device 100 further includes: a data storage module 101 , a GUI module 150 and a program control module 170 .
  • the program control module 170 is used to store instruction sets for performing contrast surgery procedures, therapeutic operation procedures, and diagnostic procedures. These instruction sets can be executed using the drive device 200 to control the delivery of the first interventional instrument device 600 and the second interventional instrument device 610. to the target position.
  • the data storage module 101 is used to store preoperative images and intraoperative images as well as preoperative and intraoperative patient-specific information, the patient-specific information including the patient's name, age, gender, blood type, etc.
  • the GUI module 150 is configured to support displaying information on a display device (such as a display screen, a touch screen), such as displaying patient pressure data, displaying preoperative images, real-time fluoroscopy images, intraoperative images, projection body positions, and blood vessel status parameter information , blood flow rate information, recommended selection of interventional devices, functional evaluation parameters, etc.
  • a display device such as a display screen, a touch screen
  • the first interventional instrument device 600 has a first longitudinal axis, and the first interventional instrument device 600 has opposite proximal ends and deflectable The distal end;
  • the driving device 200 includes: a first rotary actuating mechanism 210 for driving the first interventional instrument device 600 to rotate around the first longitudinal axis; for driving the first interventional instrument device 600 600 a first linear movement actuation mechanism 220 for moving along the first longitudinal axis; a steering actuation mechanism 230 for causing the distal end to deflect relative to the first longitudinal axis, and the control device 100 is controlled by configured to control one or more of the first rotational actuation mechanism 210, the first linear movement actuation mechanism 220 and the steering actuation mechanism 230 according to the determined position of the distal end to The distal end is moved linearly and/or deflected and/or rotated according to the first surgical path until a first target position is reached.
  • the first interventional instrument device 600 may include an adjustable curved catheter, which includes three types of movement: linear motion, circumferential rotation, and distal deflection.
  • the adjustable curved catheter is usually composed of A pull wire inside its barrel is actuated to deflect the distal end.
  • the steering actuator 230 is connected to the pull wire, and under the control of the control device 100 , it can drive the pull wire to move, thereby actuating the deflection of the distal end of the adjustable bend catheter to pass through the complex vessel structure.
  • the tube body of the adjustable bend catheter can be directly or indirectly connected with the first rotary actuator 210 and the first linear movement actuator 220, and under the control of the control device 100, it can drive the adjustable bend catheter to move linearly and rotate in the circumferential direction , until reaching the first target position.
  • the second interventional device 610 has a second longitudinal axis;
  • the driving device 200 includes: a first drive for driving the second interventional device 610 to rotate around the second longitudinal axis
  • Two rotary actuation mechanisms 240 for driving the second interventional instrument device 610 to move along the second longitudinal axis
  • the control device 100 is configured according to the determined The position of the second interventional instrument device 610 is controlled, and one or more of the second rotary actuation mechanism 240 and the second linear movement actuation mechanism 250 are controlled, so that the first The two interventional instrument devices 610 are linearly moved and/or rotated until reaching the second target position.
  • the second interventional instrument device 610 may include a guide wire, and the guide wire includes two types of motion: linear motion and circumferential rotation, and the guide wire body and the second rotary actuating mechanism 240 and the second
  • the linear movement actuating mechanism 250 is directly or indirectly connected, and under the control of the control device 100 , it can drive the guide wire to move linearly and rotate around until it reaches the lesion position.
  • the system further includes a third interventional instrument device 620 having a balloon or a stent, and the third interventional instrument device 620 has a third longitudinal axis;
  • the driving device 200 includes: for driving the third interventional instrument device 620 a third linear movement actuating mechanism 260 for moving the interventional instrument device 620 along the third longitudinal axis, the control device 100 is configured to control the third linear movement according to the determined position of the third interventional instrument device 620
  • the actuating mechanism 260 is moved to linearly move the third interventional instrument device 620 according to the second surgical path until reaching a second target position.
  • the third interventional instrument device 620 may include a working catheter, on which a balloon or a stent and other therapeutic instruments are disposed, and the working catheter includes at least one movement form: linear movement, working catheter
  • the tube body is directly or indirectly connected to the third linear movement actuating mechanism 260, and under the control of the control device 100, it can drive the working catheter to move linearly to reach the location of the lesion, so as to treat the lesion.
  • the doctor selects the puncture point as the first source point, and generates the second source point, the first constraint position and the first target position A surgical approach.
  • the first target position is the position of the coronary artery opening in the preoperative image
  • the first constraint position is the branch point in the preoperative image.
  • the control device 100 drives the first rotary actuation mechanism 210, the first linear movement actuation mechanism 220 and the steering actuation mechanism 230, by controlling the linear movement, circumferential rotation and distal deflection of the adjustable bend catheter until the adjustable bend catheter to the coronary ostium.
  • the adjustable curved tube passes the first restriction position, the adjustable curved tube is controlled to rotate by a certain angle through the first rotation actuating mechanism 210 so as to pass the first restricted position.
  • a sensor may also be provided at the distal end of the adjustable curved catheter to obtain a position relative to the first space coordinate system.
  • the sensor can then form corresponding sensor information and provide the sensor information to the control device 100 for further processing to control the deflection and rotation of the distal end of the adjustable bend catheter to a certain angle, so that the distal end of the adjustable bend catheter can point to the coronary ostia.
  • coordinate registration is performed between the real-time perspective image of the distal end of the adjustable curved catheter and the preoperative image to determine the position of the distal end of the catheter relative to the first space coordinate system in real time, and provide the relative position of the distal end of the adjustable curved catheter relative to the first spatial coordinate system Real-time coordinates of a spatial coordinate system.
  • the first space coordinate system has x, y and z directions, and divides the first surgical path into multiple trajectory points.
  • the control device 100 sends a control signal to the contrast injection device 300 .
  • the injection control module 330 of the contrast injection device 300 receives the electrocardiographic signal, and analyzes the electrocardiographic signal so as to inject contrast agent during the diastole.
  • the control device 100 or the injection control module 330 can send an instruction to the DSA device to start the exposure of the DSA device, and the contrast agent will be injected formally 1 second later.
  • the contrast medium when injecting the contrast medium, it can be set as a gentle push for 1 second, 3 cardiac cycles of the pressure waveform at a standard pressure, and then a gentle push for 1 second, stop the bolus injection, and stop the DSA exposure after 3 seconds.
  • the FFR was calculated in real time to guide whether to perform PCI surgery.
  • three-dimensional modeling is performed according to the contrast image, and a second space coordinate system is generated, and a second operation path is generated according to the second source point, the second constraint position and the second target position.
  • the second source point is the position of the coronary artery opening
  • the second target position is the lesion position of the contrast image
  • the second constraint position is the branch point of the contrast image.
  • the lesion information in the contrast image is analyzed, and the system provides a recommended selection of the second interventional device 610 (such as a guide wire), which is installed on the driving device 200 by the doctor.
  • the control device 100 drives the second rotation actuation mechanism 240 and the second linear movement actuation mechanism 250 to control the linear movement and circumferential rotation of the guide wire until the guide wire reaches the lesion position.
  • the second rotation actuating mechanism 240 controls the guide wire to rotate at a certain angle so as to pass through the restriction position.
  • the control device 100 drives the third linear movement actuating mechanism 260 to control the linear movement of the working catheter until it reaches the lesion position, so as to perform subsequent treatment procedures.
  • the guide wire passes through the inside of the adjustable bend catheter.
  • the inside of the curved catheter is pierced out, so that the position of the coronary artery opening is set as the second source point of the second surgical approach, and the lesion position is set as the second target position of the second surgical approach, and the guide wire reaches the second
  • the control device 100 controls the guide wire to advance automatically until reaching the second source point.
  • the guide wire is then controlled to advance along the second surgical path.
  • the control device 100 controls the working catheter to automatically advance until reaching the second source point.
  • An interventional instrument device 600 has opposing proximal ends and deflectable distal ends, the navigation method comprising:
  • S10 Acquiring a preoperative image to generate a first space coordinate system according to three-dimensional modeling of the preoperative image
  • S20 Generate a first surgical path based on the first spatial coordinate system and a first source point, a first constraint position, and a first target position in the preoperative image;
  • S30 Control the driving device 200 to move the first interventional instrument device 600 along the first surgical path, including actuating one of linear movement, rotation and distal deflection of the first interventional instrument device 600 or a plurality of motion patterns until the distal end reaches a first target location;
  • S50 Acquiring functional evaluation parameters after angiography and judging whether a preset condition is met, so as to control the driving device 200 to deliver the second interventional device 610 when the preset condition is met.
  • the method when the preset condition is met, the method includes:
  • S501 Generate a second space coordinate system based on three-dimensional modeling of contrast images
  • S502 Generate a second surgical path based on the second spatial coordinate system and the second source point, the second constraint position, and the second target position in the contrast image, and when delivering the second interventional device, control the moving the second interventional device along the second surgical path, including actuating one or more of linear movement and rotation of the second interventional device until the second interventional device reaches the first 2. Target position.
  • the method includes: when the preset condition is not satisfied, controlling the withdrawal of the first interventional device 600 from the first target position.
  • the second source point is at the same position as the first target position, and the second target position is a lesion position in a contrast image; when a preset condition is met, the method includes:
  • the second interventional instrument device 610 is controlled to reach a second source point along the first interventional instrument device 600 , and then the second interventional instrument device 610 is controlled to reach a second target position along the second surgical path.
  • the preoperative image is a historical image of the patient, including: the tissue from the radial artery to the coronary artery in the human body, the first source point is set as the position of the puncture point, and the first target position is set as the position of coronary artery opening;
  • the angiography image includes: coronary artery tissue in the human body, the second source point is set as the position of coronary artery opening, and the second target position is set as the lesion position.
  • aspects of the present invention can be implemented as a system, method or computer program product. Therefore, various aspects of the present invention can be embodied in the following forms, that is: a complete hardware implementation, a complete software implementation (including firmware, resident software, microcode, etc.), or a combination of hardware and software implementations, These may collectively be referred to herein as “circuits," “modules,” or “systems.” Furthermore, in some embodiments, various aspects of the present invention can also be implemented in the form of a computer program product embodied in one or more computer-readable media having computer-readable program code embodied therein. Implementation of the method and/or system of embodiments of the invention may involve performing or completing selected tasks manually, automatically, or a combination thereof.
  • each block of the flowchart and/or block diagrams, and combinations of blocks in the flowchart and/or block diagrams can be implemented by computer program instructions.
  • These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine such that when executed by the processor of the computer or other programmable data processing apparatus , producing an apparatus for realizing the functions/actions specified in one or more blocks in the flowchart and/or block diagram.
  • These computer program instructions can also be stored in a computer-readable medium, and these instructions cause a computer, other programmable data processing apparatus, or other equipment to operate in a specific way, so that the instructions stored in the computer-readable medium produce information including Manufactures (ARTICLE OF MANUFACTURE) of instructions that implement the functions/actions specified in one or more blocks in a flowchart and/or block diagram.
  • Manufactures ARTICLE OF MANUFACTURE
  • Computer program instructions can also be loaded onto a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer, other programmable data processing device, or other device to produce a computer-implemented process such that the computer, other programmable Instructions executed on the apparatus or other equipment provide procedures for implementing the functions/acts specified in the flowcharts and/or one or more block diagram blocks.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Robotics (AREA)
  • Vascular Medicine (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

本申请提供了介入手术机器人系统以及导航方法,系统包括:控制装置和第一介入器械装置、第二介入器械装置,控制装置包括:术前数据处理模块,用于根据术前图像构建第一空间坐标系;术前路径规划模块,用于根据术前图像进行术前路径规划,生成第一手术路径;器械定位模块,用于获取介入器械装置的位置信息;功能学参数获取模块,用于获取功能学评价参数;控制装置用于根据位置信息确定出第一介入器械装置在第一空间坐标系中的位置,并控制第一介入器械装置沿着第一手术路径自第一源点到达第一目标位置,并在造影后获取功能学评价参数判断是否满足预设条件。本申请可以提前规划介入手术路径,自动控制介入器械运动,提高医生或者操作员的体验。

Description

介入手术机器人系统以及导航方法 技术领域
本申请涉及介入手术机器人技术领域,尤其涉及一种介入手术机器人系统以及导航方法。
背景技术
导管以及导丝可用于许多微创医疗程序,以用于各种脉管系统疾病的诊断和治疗。这些程序通常包括导航导丝通过脉管系统,并经由导丝推进包括球囊或者支架的工作导管以进行治疗。通常情况下,导丝被推进到目标位置,诸如用于PCI手术的冠状动脉口,护套或者引导导管在导丝上被推进到目标位置,再进行造影程序,以可视化患者体内的病变位置。然后,医生或者操作员可以使用成像系统,将导丝或者工作导管导航至病变位置,以执行治疗程序。
目前,介入手术机器人系统针对脉管系统的导航主要应用于PCI手术,医生或者操作员通过操纵冠状动脉导丝或者导管递送至目标位置并恢复正常血流来达到治疗的目的。但是,在PCI手术进行之前还需要进行血管造影手术,通过获得的造影图像计算功能学评价参数(例如血流储备分数,FFR)可表明冠脉狭窄病变对远端血流产生的影像,诊断心肌是否缺血,以确定是否应当进行PCI手术。
另外,该系统主要用于帮助医生或者操作员执行手术,医生或者操作员位于工作站通过操作摇杆或者屏幕远程控制导丝或者导管,基本上仍然依靠人通过显示屏观察导丝或者导管的位置、形态,并对导丝或者导管进行推进、回撤、旋转等操作。因此,不可避免的出现误判的情况,导致手术时间长的问题。
发明内容
为了解决现有技术中存在的至少一个技术问题,本申请提供了一种介入手术机器人系统,可以提前规划介入手术路径,自动控制介入器械运动,提高医生或者操作员的体验,并且具备诊断和治疗一体化的特性。
为了达到上述目的,本申请提供的技术方案如下所述:
一种介入手术机器人系统,包括:控制装置和与所述控制装置通信连接的第一介入器械装置、第二介入器械装置、驱动装置,所述控制装置包括:
术前数据处理模块,用于根据术前图像构建第一空间坐标系;
术前路径规划模块,用于根据术前图像进行术前路径规划,生成第一手术路径;
器械定位模块,用于获取所述介入器械装置的位置信息;
功能学参数获取模块,用于获取功能学评价参数;
所述控制装置用于根据所述位置信息确定出所述第一介入器械装置在所述第一空间坐标系中的位置,并通过控制所述驱动装置使所述第一介入器械装置沿着所述第一手术路径自第一源点到达第一目标位置,并在造影后获取所述功能学评价参数并判断是否满足预设条件,以在满足预设条件时控制所述驱动装置递送所述第二介入器械装置。
作为一种优选的实施方式,所述控制装置包括:
术中数据处理模块,用于根据造影图像构建第二空间坐标系;
术中路径规划模块,用于根据造影图像进行术中路径规划,生成第二手术路径;
所述控制装置用于根据所述位置信息确定出所述第二介入器械装置在所述第二空间坐标系中的位置,以在满足预设条件时,控制所述第二介入器械装置沿着所述第二手术路径自第二源点到达第二目标位置。
作为一种优选的实施方式,所述功能学评价参数为FFR,所述预设条件为所述FFR小于预设值;当不满足预设条件时,所述控制装置用于根据所述第一手术路径以及器械定位模块,控制所述第一介入器械装置撤回。
作为一种优选的实施方式,所述第二源点与所述第一目标位置为相同位置,所述第二目标位置为造影图像中的病变位置;在满足预设条件时,所述控制装置用于控制所述第二介入器械装置沿着所述第一介入器械装置到达第二源点,再控制所述第二介入器械装置沿着所述第二手术路径到达第二目标位置。
作为一种优选的实施方式,所述术前图像为患者的历史影像,包括:人体中桡动脉至冠脉的组织,所述第一源点被设定为穿刺点的位置,所述第一目标位置被设定为冠脉开口位置;所述造影图像包括:人体中的冠脉组织,所述第二源点被设定为冠脉开口位置,所述第二目标位置被设定为病变位置。
作为一种优选的实施方式,所述系统包括:用于采集实时透视图像和造影图像的图像采集装置,所述图像采集装置与所述控制装置通信连接。
作为一种优选的实施方式,所述系统包括:与所述控制装置通信连接的造影注射装置,所述控制装置用于在所述第一介入器械装置到达第一目标位置后,控制所述造影注射装置以预定注射参数通过所述第一介入器械装置注射造影剂。
作为一种优选的实施方式,所述造影注射装置包括:用于采集心电信号和压力数据的压 力采集模块;与所述压力采集模块相连的注射控制模块,所述注射控制模块在接收至所述控制装置发出的控制信号后,并基于所述心电信号和压力波形的预定周期注射造影剂。
作为一种优选的实施方式,所述术前数据处理模块包括:用于获取术前图像的术前图像获取单元;用于对术前图像进行三维建模的术前三维模型生成单元;用于对三维建模生成第一空间坐标系的第一空间坐标建立单元;
所述术中数据处理模块包括:用于获取造影图像的造影图像获取单元;用于对造影图像进行三维建模的术中三维模型生成单元;用于对三维建模生成第二空间坐标系的第二空间坐标建立单元。
作为一种优选的实施方式,所述术前路径规划模块包括:
用于在第一空间坐标系下生成与所述第一源点对应坐标的第一源点生成单元;
用于在第一空间坐标系下生成与所述第一目标位置对应坐标的第一目标位置生成单元;
用于在第一空间坐标系下生成与第一约束位置对应坐标的第一约束位置生成单元,所述第一约束位置至少为一个;
用于连接对应的第一源点、所述第一约束位置和所述第一目标位置的坐标的第一手术路径生成单元,以生成第一手术路径。
作为一种优选的实施方式,所述术中路径规划模块包括:
用于在第二空间坐标系下生成与所述第二源点对应坐标的第二源点生成单元;
用于在第二空间坐标系下生成与所述第二目标位置对应坐标的第二目标位置生成单元,所述第二目标位置为所述造影图像中的病变位置;
用于在第二空间坐标系下生成与第二约束位置对应坐标的第二约束位置生成单元,所述第二约束位置至少为一个;
用于连接对应的所述第二源点、所述第二约束位置和所述第二目标位置的坐标的第二手术路径生成单元,以生成第二手术路径。
作为一种优选的实施方式,所述器械定位模块用于将所述采集的实时透视图像与术前图像、造影图像进行配准,并确定出所述第一介入器械装置在第一空间坐标系中的实时坐标、所述第二介入器械装置在第二空间坐标系中的实时坐标。
作为一种优选的实施方式,所述术前数据处理模块包括:用于根据所述术前图像获取冠脉优选投照体位的投照体位确定单元,所述图像采集装置基于所述冠脉优选投照体位调整投照体位。
作为一种优选的实施方式,所述术前数据处理模块包括:用于获取术前图像的术前血管状态参数的术前血管参数获取单元;其中所述术前血管状态参数包括:主动脉直径、冠脉直 径、冠脉开口位置、冠脉扭曲角度、主动脉长度、冠脉长度。
作为一种优选的实施方式,所述术中数据处理模块包括:用于获取造影图像的术中血管状态参数的术中血管参数获取单元;用于获取造影图像中术中血液流速的术中流速计算单元;用于获取患者主动脉压力数据的主动脉压力获取单元;其中所述术中血管状态参数包括:冠脉长度、冠脉直径,所述功能学参数获取模块基于所述冠脉长度、所述冠脉直径、所述术中血液流速和所述主动脉压力数据计算FFR。
作为一种优选的实施方式,所述系统包括:与所述功能学参数获取模块通信连接的包括有血压采集模块的冠状动脉分析仪,所述血压采集模块用于采集主动脉压力数据。
作为一种优选的实施方式,所述术中数据处理模块还包括:用于获取造影图像中病变信息的病变分析单元,所述病变信息包括病变长度、病变最小直径、病变参考直径。
作为一种优选的实施方式,所述术前图像和所述造影图像为医学影像,包括:CAG图像、CT图像、MRI图像、超声图像、OCT图像中的一种或者多种。
作为一种优选的实施方式,所述控制装置包括:自主学习模块,所述自主学习模块采用预先训练好的深度神经网络模型对输入的术前血管状态参数进行分析处理,并输出第一介入器械装置的优选参数信息。
作为一种优选的实施方式,所述控制装置包括:自主学习模块,所述自主学习模块采用预先训练好的深度神经网络模型对输入的病变信息进行分析处理,并输出第二介入器械装置的优选参数信息。
作为一种优选的实施方式,所述系统包括:用于获取心电信号和/或压力数据的监护仪,所述监护仪与所述控制装置通信连接,所述控制装置包括过程信息处理模块,所述过程信息处理模块用于监控所述心电信号和/或压力数据是否发生异常。
作为一种优选的实施方式,所述控制装置包括过程信息处理模块,所述过程信息处理模块用于根据所述第一介入器械装置和所述第二介入器械装置的位置信息,判断所述第一介入器械装置的位置是否偏离所述第一手术路径预设范围以及所述第二介入器械装置的位置是否偏离所述第二手术路径预设范围。
作为一种优选的实施方式,所述第一介入器械装置具有第一纵长轴线,所述第一介入器械装置沿其第一纵长轴线具有相对的近端和可偏转的远端;所述驱动装置包括:用于带动所述第一介入器械装置绕所述第一纵长轴线旋转的第一旋转致动机构;用于带动所述第一介入器械装置沿所述第一纵长轴线移动的第一线性移动致动机构;用于引起所述远端相对于所述第一纵长轴线偏转的转向致动机构,所述控制装置被配置为根据所确定的所述远端的位置,控制所述第一旋转致动机构、所述第一线性移动致动机构和所述转向致动机构中的一个或者 多个,以根据所述第一手术路径使所述远端线性移动和/或者偏转和/或者旋转直至到达第一目标位置。
作为一种优选的实施方式,所述第二介入器械装置具有第二纵长轴线;所述驱动装置包括:用于带动所述第二介入器械装置绕所述第二纵长轴线旋转的第二旋转致动机构;用于带动所述第二介入器械装置沿所述第二纵长轴线移动的第二线性移动致动机构,所述控制装置被配置为根据所确定的所述第二介入器械的位置,控制所述第二旋转致动机构、所述第二线性移动致动机构中的一个或者多个,以根据所述第二手术路径使所述第二介入器械装置线性移动和/或者旋转直至到达第二目标位置。
作为一种优选的实施方式,所述系统还包括具有球囊或者支架的第三介入器械装置,所述第三介入器械装置具有第三纵长轴线;所述驱动装置包括:用于带动所述第三介入器械装置沿所述第三纵长轴线移动的第三线性移动致动机构,所述控制装置被配置为根据所确定的第三介入器械装置的位置,控制所述第三线性移动致动机构,以根据所述第二手术路径使所述第三介入器械装置线性移动直至到达第二目标位置。
一种介入手术机器人系统的导航方法,所述系统包括:第一介入器械装置、第二介入器械装置和驱动装置,所述第一介入器械装置具有相对的近端和可偏转的远端,所述导航方法包括:
获取术前图像以根据所述术前图像的三维建模生成第一空间坐标系;
基于所述第一空间坐标系以及所述术前图像中的第一源点、第一约束位置和第一目标位置生成第一手术路径;
控制驱动装置以使所述第一介入器械装置沿着所述第一手术路径运动,包括致动所述第一介入器械装置的线性移动、旋转和远端偏转中的一个或者多个运动形式,直至所述远端到达第一目标位置;
所述远端到达第一目标位置后通过所述第一介入器械装置进行造影;
造影后获取功能学评价参数并判断是否满足预设条件,以在满足预设条件时控制所述驱动装置递送所述第二介入器械装置。
作为一种优选的实施方式,在满足预设条件时,所述方法包括:
基于造影图像的三维建模生成第二空间坐标系;
基于所述第二空间坐标系以及所述造影图像中的第二源点、第二约束位置和第二目标位置生成第二手术路径,在递送所述第二介入器械装置时,控制所述第二介入器械装置沿着所述第二手术路径运动,包括致动所述第二介入器械装置的线性移动、旋转中的一个或者多个运动形式,直至所述第二介入器械装置到达第二目标位置。
作为一种优选的实施方式,所述方法包括:在不满足预设条件时,控制所述第一介入器械装置从所述第一目标位置撤回。
作为一种优选的实施方式,所述第二源点与所述第一目标位置为相同位置,所述第二目标位置为造影图像中的病变位置;在满足预设条件时,所述方法包括:
控制所述第二介入器械装置沿着所述第一介入器械装置到达第二源点,再控制所述第二介入器械装置沿着所述第二手术路径到达第二目标位置。
作为一种优选的实施方式,所述术前图像为患者的历史影像,包括:人体中桡动脉至冠脉的组织,所述第一源点被设定为穿刺点的位置,所述第一目标位置被设定为冠脉开口位置;所述造影图像包括:人体中的冠脉组织,所述第二源点被设定为冠脉开口位置,所述第二目标位置被设定为病变位置。
本申请实施方式提供的介入手术机器人系统以及导航方法具有以下优点和特点:
1、能够在术前阶段根据术前图像进行术前路径规划,即生成第一手术路径,以指导第一介入器械装置到达第一目标位置,从而在治疗手术前的造影阶段就进行手术路径的规划,并自动完成造影器械(第一介入器械装置)的递送,从而减小造影手术所需的时间,有利于医生在整个手术流程中有足够的时间制定PCI治疗方案;
2、该系统在造影后,可获取功能学评价参数并判断是否需要执行治疗程序,以在判断出需要执行治疗程序时,结合造影后的造影图像进行术中路径规划,即生成第二手术路径,从而指导第二介入器械装置到达第二目标位置,该第二目标位置为病变位置,并自动完成第二介入器械装置的递送,从而具备诊断和治疗一体化的特性;
3、该系统能帮助医生判断该患者的病变情况,以在不满足预设条件时结束手术过程,一方面能防止不必要的资源浪费,另一方面能减小对患者的伤害,尤其是病变狭窄程度较轻的患者。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术 描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动力的前提下,还可以根据这些附图获得其他的附图。
图1为本说明书实施例提供的介入手术机器人系统的方框结构示意图;
图2为本说明书实施例提供的术前数据处理模块的方框结构示意图;
图3为本说明书实施例提供的术中数据处理模块的方框结构示意图;
图4为本说明书实施例提供的术前路径规划模块的方框结构示意图;
图5为本说明书实施例提供的术中路径规划模块的方框结构示意图;
图6为本说明书实施例提供的造影注射模块装置的方框结构示意图;
图7为本说明书实施例提供的介入手术机器人系统的导航方法流程图。
附图标记说明:
100、控制装置;101、数据存储模块;105、过程信息处理模块;110、术前数据处理模块;111、术前图像获取单元;112、投照体位确定单元;113、术前三维模型生成单元;114、第一空间坐标建立单元;115、术前流速计算单元;116、术前血管参数获取单元;120、术中数据处理模块;121、造影图像获取单元;122、病变分析单元;123、术中三维模型生成单元;124、第二空间坐标建立单元;125、术中流速计算单元;126、术中血管参数获取单元;127、主动脉压力获取单元;130、术前路径规划模块;131、第一源点生成单元;132、第一目标位置生成单元;133、第一约束位置生成单元;134、第一手术路径生成单元;140、术中路径规划模块;141、第二源点生成单元;142、第二目标位置生成单元;143、第二约束位置生成单元;144、第二手术路径生成单元;150、GUI模块;160、器械定位模块;170、程序控制模块;180、自主学习模块;190、功能学参数获取模块;
200、驱动装置;210、第一旋转致动机构;220、第一线性移动致动机构;230、转向致动机构;240、第二旋转致动机构;250、第二线性移动致动机构;260、第三线性移动致动机构;
300、造影注射装置;310、注射模块;320、驱动模块;330、注射控制模块;
500、监护仪;
600、第一介入器械装置;610、第二介入器械装置;620、第三介入器械装置;
700、图像采集装置。
具体实施方式
下面将结合附图和具体实施方式,对本发明的技术方案作详细说明,应理解这些实施方式仅用于说明本发明而不用于限制范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落入本申请所限定的范围内。
需要说明的是,当元件被称为“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
下面将结合图1至图7对本说明书实施例的介入手术机器人系统以及导航方法进行解释和说明。需要说明的是,在本发明的实施例中,相同的附图标记表示相同的部件。而为了简洁,在不同的实施例中,省略对相同部件的详细说明,且相同部件的说明可互相参照和引用。
本说明书提供了一种介入手术机器人系统,如图1所示的方框结构图,该系统包括:控制装置100和与所述控制装置100通信连接的第一介入器械装置600、第二介入器械装置610、驱动装置200,所述控制装置100包括:术前数据处理模块110,用于根据术前图像构建第一空间坐标系;术前路径规划模块130,用于根据术前图像进行术前路径规划,生成第一手术路径;器械定位模块160,用于获取所述介入器械装置的位置信息;功能学参数获取模块190,用于获取功能学评价参数。
所述第一介入器械装置600和第二介入器械装置610为执行各种程序的经皮介入装置,例如导丝、造影导管、引导导管、微导管、具有球囊或者支架的工作导管。具体的,所述第一介入器械装置600为用于执行造影程序的医疗器械,所述第二介入器械装置610为用于执行治疗程序的医疗器械。本说明书实施例中的第一介入器械装置600和第二介入器械装置610可以分别包括一种或者一类器械。
所述驱动装置200包括各种致动机构,以引起经皮介入装置的移动,例如线性运动、旋转、调向等一种或者多种运动形式。所述控制装置100与驱动装置200通信连接,从而允许由控制装置100发出对应的控制信号给驱动装置200,以远程控制经皮介入装置运动并送入患者体内。
所述术前图像可以为患者的历史影像,需要说明的是,患者在本次造影手术进行前存储的影像都可以理解为所述历史影像。例如,所述历史影像可以包括上次或者上次之前造影手术保留的图像、可以包括本次造影手术进行前预先拍摄的影像。所述术前图像为医学影像,包括:CAG图像、CT图像、MRI图像、超声图像、OCT图像中的一种或者多种。当术前图像为多种时,多种医学影像可以相融合指导医生制定造影方案。例如,在进行冠脉造影手术时,在确定穿刺点时可以结合超声图像,当患者桡动脉存在一些病变情况导致造影器械通过困难时,可将穿刺点设定于患者的股动脉。
进一步的,所述术前图像可以为患者在不同投照体位下的拍摄图像。术前图像可以在心脏周期的单个阶段期间或者为心脏周期的多个阶段期间采集的图像。
所述术前图像至少对应到人体中的冠脉、主动脉。在一些实施例中,所述术前图像可以对应到人体中自桡动脉至冠脉的组织。一般而言,患者过往的造影图像中可能仅包括冠脉至主动脉组织的图像,为了获取桡动脉至主动脉这部分的图像,以进行本次造影手术的路径规划,可以在患者进行本次造影手术前对人体进行预拍摄,并存储至控制装置100中。或者,该患者的过往影像中包括桡动脉的图像,并预先存储在系统的控制装置100中,控制装置100可以直接获取该患者的图像并建立三维模型。
在冠脉造影手术中,所述第一手术路径中可以包括冠脉开口位置,该冠脉开口位置为第一手术路径的第一目标位置,能够根据术前图像中的冠脉开口位置进行路径规划,从而在术前或者造影手术中指导或者代替医生执行造影手术,帮助医生将第一介入器械装置600递送到冠脉开口位置。
当然,该第一目标位置可以不局限于冠脉开口位置。在执行不同造影和治疗手术时,该第一目标位置的位置也必然存在区别,例如该第一目标位置在其他造影和治疗场景中,可以为肾动脉、也可以为颈动脉。
如图2所示,所述术前数据处理模块110包括:用于获取术前图像的术前图像获取单元111;用于对术前图像进行三维建模的术前三维模型生成单元113;用于对三维建模生成第一空间坐标系的第一空间坐标建立单元114。
具体的,所述术前数据处理模块110在构建第一空间坐标系之前,通过术前图像获取单元111对预先存储的术前图像导出,术前三维模型生成单元113对术前图像进行提取、去噪、分割,并对目标血管的轮廓特征进行提取构建三维模型,然后通过第一空间坐标建立单元114在此基础上建立三维空间直角坐标系。
在一些可能的实施例中,在对术前图像构建三维模型时,对术前图像中的冠脉图像和主动脉图像提取,去除动静态噪声,然后对不同体位拍摄的图像进行分割,分别得到冠脉中心线、冠脉直径、主动脉中心线和主动脉直径。然后在中心线上提取体征点,基于已知的拍摄角度,三维还原这些特征点,进而三维还原中心线,得到冠脉中心线及直径、主动脉中心线及直径,将多个拍摄角度的冠脉中心线以及主动脉中心线在三维空间进行投影计算,生成三维模型,并能够获取冠脉长度、冠脉直径、主动脉长度和主动脉直径。在构建第一空间坐标系时可直接基于三维模型建立,具体可根据任意合适的已知技术来实现,在此不作赘述。
在一些可能的实施例中,基于获取的桡动脉至冠脉的术前图像,其中,针对本次造影手术前预先拍摄的人体图像,所述术前数据处理模块110中的术前三维模型生成单元113对术 前图像进行处理,从影像上自动分割出桡动脉的区域、主动脉区域、冠脉区域,并建立三维可视化模型,并定义为第一术前三维模型。然后,针对历史造影图像中人体中的主动脉、冠脉时,得到主动脉和冠脉的三维可视化模型,并定义为第二术前三维模型,然后再将第二术前三维模型对应至第一术前三维模型中,从而能够将主动脉、冠脉与第一术前三维模型进行对应,从而减小第一术前三维模型中对主动脉、冠脉模型的误差。
在造影阶段,目前仅依靠医生的经验选择造影手术用的导丝或者导管的类型、尺寸,且依靠经验将导丝或者导管送入到预定位置。若选择的导丝或者导管类型或者尺寸不合适,需要撤出,然后重新更换导丝或者导管,直至顺利到达预定位置,会极大延长整体手术时间。在本实施例中,该系统在术前通过患者的历史影像进行三维建模,根据获取的冠脉长度、冠脉直径、主动脉长度和主动脉直径能够帮助医生选择合适尺寸或者类型的造影器械。
在本说明书中,所述控制装置100用于根据所述位置信息确定出所述第一介入器械装置600在所述第一空间坐标系中的位置,并通过控制所述驱动装置200使所述第一介入器械装置600沿着所述第一手术路径自第一源点到达第一目标位置。
具体的,如图4所示,所述术前路径规划模块130包括:用于在第一空间坐标系下生成与所述第一源点对应坐标的第一源点生成单元131;用于在第一空间坐标系下生成与所述第一目标位置对应坐标的第一目标位置生成单元132;用于在第一空间坐标系下生成与第一约束位置对应坐标的第一约束位置生成单元133,所述第一约束位置至少为一个;用于连接对应的第一源点、第一约束位置和第一目标位置的坐标的第一手术路径生成单元134,以生成第一手术路径。
进一步的,所述第一目标位置为第一手术路径的终点,在进行冠脉造影手术时,该第一目标位置为冠脉开口位置,所述第一源点为第一手术路径的起点,所述第一约束位置为第一手术路径的关键点,例如分支点、拐点。在第一源点至第一目标位置之间的路径上通常包括有多个分支或者分叉,若第一介入器械装置600沿着这些分支或者分叉行进则表示进入错误的路径。另外,在第一源点至第一目标位置之间的路径上的主干路径上,还可能具有拐点,即第一介入器械装置600需要经过拐点才能到达第一目标位置,第一约束位置可能具有若干个,从而第一手术路径为第一源点至第一目标位置的穿过所有第一约束位置的单个路径。
在一些可能的实施例中,当术前影像对应到实时人体中的冠脉、主动脉时,所述第一源点为主动脉的起点,从而第一手术路径为主动脉的起点至冠脉开口位置。在本实施例中,所述第一源点、所述第一目标位置和所述第一约束位置可以由医生或者操作员在手术机器人系统的用户界面选定识别,或者可以由控制装置100自动识别。
在一些可能的实施例中,当术前影像还包括桡动脉至冠脉时,所述第一源点为规划的穿 刺点的位置,从而第一手术路径为穿刺点至冠脉开口位置。在本实施例中,所述穿刺点的不同导致生成的第一手术路径不同,所述第一目标位置和所述第一约束位置可以由医生或者操作员在手术机器人系统的用户界面选定识别,或者可以由控制装置100自动识别。
所述控制装置100控制驱动装置200使第一介入器械装置600沿着所述第一手术路径自第一源点到达第一目标位置时,要获取第一空间坐标系与驱动装置坐标系之间的空间映射关系,然后根据所述空间映射关系和所述第一源点、第一约束位置和第一目标位置的对应坐标,获取第一源点、第一约束位置和第一目标位置在驱动装置坐标系下的位置信息,从而可以保证最终生成的第一手术路径直接与驱动装置200相关联,使得控制装置100能够自动根据第一手术路径控制第一介入器械装置600执行造影手术。所述驱动装置200坐标系与第一空间坐标系之间空间映射关系的获取可参考现有方法。同理,在送入第二介入器械装置610时,也需要将驱动装置坐标系与第二空间坐标系建立空间映射关系,以使第二手术路径直接与驱动装置200相关联。
从而,本说明书实施方式提供的介入手术机器人系统可以帮助医生或者操作员在术前阶段完成手术路径的规划,以指导造影手术。另外,在生成的第一手术路径中,可帮助医生根据自动完成第一介入器械装置的递送,从而能够减小造影手术所需的时间,尤其是针对临床经验较少的医生,有利于医生在整个手术流程中有足够的时间制定治疗方案。
在本说明书中,如图2所示,所述术前数据处理模块110还包括:用于获取术前图像中术前血管状态参数的术前血管参数获取单元116;其中所述术前血管状态参数包括:主动脉直径、冠脉直径、冠脉开口位置、冠脉扭曲角度、主动脉长度、冠脉长度。
在一些可能的实施例中,所述控制装置100可以包括:自主学习模块180,所述自主学习模块180采用预先训练好的深度神经网络模型对输入的术前血管状态参数进行分析处理,并输出第一介入器械装置600的优选参数信息,包括器械的规格尺寸、通过性能、支撑性能等。具体的,所述深度神经网络模型可以通过以下过程得到:
获取训练样本;
获取所述训练样本对应的标签,所述标签用于表征所述训练样本中的血管状态参数所匹配的第一介入器械装置的型号和尺寸;
基于所述训练样本以及所述训练样本对应的标签,对初始模型进行训练,然后得到深度神经网络模型。
进一步的,所述术前数据处理模块110还可以包括:用于获取术前图像中术前血液流速的术前流速计算单元115,对于CAG等动态影像可以提取术前图像中的血液流速信息,从而可以结合术前血管状态参数采用深度神经网络模型推荐合适的第一介入器械装置600。
在本实施例中,所述控制装置100在对术前图像进行处理时,通过分析该患者的历史影像,可以自动获得适合该患者的第一介入器械装置600的优选参数信息,医生或者操作员可以根据推荐的第一介入器械装置600的选型直接选用合适的造影器械。
在本说明书中,控制装置100在造影后获取功能学评价参数并判断是否满足预设条件,以在满足预设条件时控制驱动装置200递送所述第二介入器械装置。
具体的,所述功能学评价参数为动脉血管评定参数,包括:血流储备分数(Fractional Flow Reserve,FFR)和/或微循环阻力系数(Index of Microcirculatory Resistance,IMR),以用于判断心肌缺血程度。从而,该系统在造影后,可自动获取功能学评价参数并判断是否需要执行治疗手术,以在判断出需要执行治疗手术时,结合造影后的造影图像进行术中路径规划,并自动完成第二介入器械装置的递送,从而具备诊断和治疗一体化的特性。
在一些可能的实施例中,所述功能学评价参数为FFR,所述预设条件为所述FFR小于预设值;当不满足预设条件时,所述控制装置100用于根据所述第一手术路径以及器械定位模块160,控制所述第一介入器械装置600撤回,当满足预设条件时,所述控制装置100控制驱动装置200使所述第二介入器械装置610执行治疗手术。
在本实施例中,所述预设值为0.75~0.85。优选的,所述预设值为0.8,当测得FFR小于0.8时,表明冠脉狭窄程度会导致心肌缺血,需要执行治疗程序;当测得FFR大于或者等于0.8时,表明冠脉狭窄程度造成心肌缺血的可能性比较小,可以不用执行治疗程度,手术流程结束,防止不必要的资源浪费、减小对患者的伤害。
在本说明书中,如图1和图3所示,所述控制装置100还包括:术中数据处理模块120,用于根据造影图像构建第二空间坐标系;术中路径规划模块140,用于根据造影图像进行术中路径规划,生成第二手术路径。所述控制装置100用于根据所述器械定位模块160获取的位置信息确定出所述第二介入器械装置610在所述第二空间坐标系中的位置,以在满足预设条件时,控制所述第二介入器械装置610沿着所述第二手术路径自第二源点到达第二目标位置,执行治疗程序。
具体的,所述术中数据处理模块120包括:用于获取造影图像的造影图像获取单元121;用于对造影图像进行三维建模的术中三维模型生成单元123;用于对三维建模生成第二空间坐标系的第二空间坐标建立单元124。具体的,所述术中数据处理模块120在构建第二空间坐标系之前,通过造影图像获取单元121筛选出较为清晰的造影图像,术中三维模型生成单元123对造影图像进行提取、去噪、分割,并对目标血管的轮廓特征进行提取构建三维模型,然后通过第二空间坐标建立单元124在此基础上建立三维空间直角坐标系。所述术中三维模型生成单元123基于造影图像构建三维模型的具体方法请参见上文关于术前图像的描述,本 说明书此处不再赘述。
在本说明书中,所述系统包括:用于采集实时透视图像和造影图像的图像采集装置700,所述图像采集装置700与所述控制装置100通信连接。具体的,所述图像采集装置700可以为用于发出X射线的DSA设备,该图像采集装置700可以跟踪第一介入器械装置600和第二介入器械装置610的远端部分。
在本说明书实施例中,所述造影图像是通过在造影前和将造影剂注射到患者体内而获得的对比度增强图像。从而,造影图像能够较为清楚的再现患者冠脉系统的结构。该第一介入器械装置600和第二介入器械装置610的远端部分均被构造成不透射线的,以导丝为例,导丝的远端部分为导丝的尖端,导丝的远端部分可以是不透射线的,从而导丝的远端部分的位置可以通过DSA设备采集的实时透视图像来跟踪。因此,所述实时透视图像为没有对比度的情况下拍摄的图像。
由于功能学评价参数的获取需要注射造影剂来实现,从而在功能学评价参数获取之前该系统可以通过图像采集装置700采集造影图像。而在满足预设条件时,表明该患者需要治疗,控制装置100需基于造影图像进行术中规划,并生成第二手术路径,以指导医生或者操作员将第二介入器械装置610递送至病变位置,该第二目标位置即为病变位置。
由此可见,该第一手术路径为第二手术路径为不同路径,或者第二手术路径在第一手术路径的基础上延伸至病变位置。上文所述第一手术路径的终点为冠脉开口位置,而第二手术路径的终点为病变位置,从而两个手术路径的终点不同。
具体的,如图5所示,所述术中路径规划模块140包括:用于在第二空间坐标系下生成与所述第二源点对应坐标的第二源点生成单元141;用于在第二空间坐标系下生成与所述第二目标位置对应坐标的第二目标位置生成单元142,所述第二目标位置为所述造影图像中的病变位置;用于在第二空间坐标系下生成与第二约束位置对应坐标的第二约束位置生成单元143,所述第二约束位置至少为一个;用于连接对应的所述第二源点、所述第二约束位置和所述第二目标位置的坐标的第二手术路径生成单元144,以生成第二手术路径。
进一步的,与第一手术路径类似,所述第二源点为第二手术路径的起点,所述第二约束位置为第二手术路径的关键点。由于第二介入器械装置610往往需要沿着第一介入器械装置600递送,因此在向患者体内递送第二介入器械装置610过程中,控制装置100可以控制驱动装置200自动递送第二介入器械装置610,直至将第二介入器械装置610的远端递送至冠脉开口位置,从而冠脉开口位置可以作为第二源点,也即第二手术路径的起点为第一手术路径的终点。从第二源点至病变位置穿过冠脉的主干路径还包括识别子脉管或者分支,因此第二约束位置为子脉管与主干路径、以及分支与主干路径的分支点。所述第二源点、所述第二 目标位置和所述第二约束位置可以由医生或者操作员在手术机器人系统的用户界面选定识别,或者可以由控制装置100自动识别。
在本实施例中,该系统基于造影图像构建三维模型,可以获取到造影图像中的主动脉直径、冠脉直径、主动脉长度、冠脉长度,这些信息也能够帮助医生选择合适尺寸或者类型的治疗器械。
进一步的,如图3所示,所述术中数据处理模块120还可以包括:用于获取造影图像中病变信息的病变分析单元122,所述病变信息包括病变长度、病变最小直径、病变参考直径,以便指导医生或者操作员选择合适的治疗器械能够通过病变。所述病变参考直径可以为自病变近端至病变远端的平均直径。
在一些可能的实施例中,所述控制装置100包括:自主学习模块180,所述自主学习模块180采用预先训练好的深度神经网络模型对输入的病变信息进行分析处理,并输出第二介入器械装置的优选参数信息。
与上述实施例类似,在本实施例中,所述控制装置100在对造影图像进行处理时,通过分析该患者的病变信息,所述病变信息包括病变长度、病变最小直径、病变参考直径,从而可以自动获得适合该患者的第二介入器械装置610的优选参数信息,医生或者操作员可以根据推荐的第二介入器械装置610的选型直接选用合适的治疗器械。
在一些实施例中,所述术前数据处理模块110还可以包括:用于根据所述术前图像获取冠脉优选投照体位的投照体位确定单元112,所述图像采集装置700基于所述冠脉优选投照体位调整投照体位。
在本实施例中,术前图像可以为患者在不同投照体位下的拍摄图像,所述优选投照体位为冠脉的病变位置未被分支或者子脉管所遮挡时的投照体位,所述投照体位确定单元112根据术前图像对投照体位进行图像评估,并确定出优选投照体位。当图像采集装置70基于优选投照体位调整拍摄角度时,能够获得效果较好的拍摄图像,从而有利于准确识别出病变位置。
在本说明书中,所述器械定位模块160用于获取第一介入器械装置600在第一空间坐标系中的位置、第二介入器械装置610在第二空间坐标系中的位置。
在一些实施例中,所述器械定位模块160用于将采集的实时透视图像与术前图像进行配准,并确定出第一介入器械装置600在第一空间坐标系中的实时坐标;以及器械定位模块160用于将采集的实时透视图像与造影图像进行配准,并确定出第二介入器械装置610在第二空间坐标系中的实时坐标。
具体的,器械定位模块160将实时透视图像与术前图像或者造影图像进行坐标配准。以 第一介入器械装置600为例,在术前图像建立的第一空间坐标系中,当第一介入器械装置600开始穿刺时,便将获取的实时透视图像(第一介入器械装置600的远端)配准至第一空间坐标系的第一源点,从而能够确定出第一介入器械装置600相对于第一空间坐标系中的实时坐标。
在一些可能的实施例中,为了获取第一介入器械装置600和第二介入器械装置610的位置信息,第一介入器械装置600和第二介入器械装置610的远端还可以设置有定位传感器,所述定位传感器可以是具有运动追踪定位功能的电磁传感器、光学传感器、激光传感器等。所述定位传感器与器械定位模块160通信连接,从而控制装置100可以基于器械的位置信息,确定介入器械在空间坐标系的位置。
为了在造影后获得功能学评价参数(FFR),在一些实施例中,所述术中数据处理模块120包括:用于获取造影图像的术中血管状态参数的术中血管参数获取单元126;用于获取造影图像中术中血液流速的术中流速计算单元125;用于获取患者主动脉压力数据的主动脉压力获取单元;其中所述术中血管状态参数包括:冠脉长度、冠脉直径;用于获取所述功能学参数获取模块190基于所述冠脉长度、所述冠脉直径、所述术中血液流速和主动脉压力数据计算FFR。
由上文所述,术中三维模型生成单元123对造影图像进行三维建模时,可以提取出造影图像中的冠脉长度、冠脉直径,并由术中血管参数获取单元126获取。所述术中流速可以通过TIMI计帧法获得,具体的,通过术中流速计算单元125对冠脉造影图像按时序帧进行扫描计算出造影剂从血管入口流到血管末端需要的时间,再通过血管长度除以时间得到血液流速。所述功能学参数获取模块190基于冠脉长度、冠脉直径、术中血液流速、主动脉压力数据计算FFR的公式以及原理为现有技术,本说明书不作赘述。
在一些可能的实施例中,所述系统还可以包括:与所述功能学参数获取模块190通信连接的包括有血压采集模块的冠状动脉分析仪,所述血压采集模块用于采集主动脉压力数据。
与上述实施例不同,在本实施例中,所述功能学评价参数可以通过现有冠状动脉分析仪得出,然后由控制装置100的功能学参数获取模块190采集。
在本说明书中,如图1和图6所示,所述系统包括:与所述控制装置100通信连接的造影注射装置300,所述控制装置100用于在所述第一介入器械装置600到达第一目标位置后,控制所述造影注射装置300以预定注射参数通过所述第一介入器械装置600注射造影剂。
所述造影注射装置300包括:用于采集心电信号和压力数据的压力采集模块;与所述压力采集模块相连的注射控制模块330,所述注射控制模块330在接收至所述控制装置100发出的控制信号后,并基于所述心电信号和压力波形的预定周期注射造影剂。进一步的,造影 注射装置300还包括:与注射控制模块330连接的驱动模块320以及被所述驱动模块320带动的注射模块310。
目前,造影剂的注射方法通常采用手工推动注射器或者通过高压注射器推注。手工推注因为医生的用力大小不同及推动速度的快慢不同导致造影剂推注不集中,造影剂不充盈,术中采集的造影图像质量差,通过造影剂流动获取的术中血流速度也有所波动。其次,由于心脏不断跳动,冠脉供血主要在心脏舒张期,在心脏收缩期由于心肌挤压冠脉血管导致血流前进缓慢甚至停止,造成造影剂溢出到主动脉,可见推注造影剂的时间与心跳周期之间的相对不确定性,也无法保证造影剂顺利进入冠脉。
在本实施例中,控制装置100可以控制造影注射装置300以预定注射参数通过第一介入器械装置600注射至患者体内,可以保证推注效率的稳定性,且能够保证推注造影剂的时间与心跳周期之间的确定性。
具体的,所述注射控制模块330被配置为存储舒张期压力波形或/和心电图舒张期区间,再通过压力采集模块实时采集的心电信号,注射控制模块330根据接收到的控制信号控制驱动模块320的开启或者关闭,进而保证在心脏舒张期开始时同步推注造影剂,使造影剂和血流在心脏舒张期快速进入冠脉血管。在推注造影剂时,注射控制模块330控制驱动模块320的工作功率,工作功率与推注压力相对应,推注压力影响注射模块310的注射速率,能够有效的控制注射效率的稳定性,提高了造影质量。
在一些实施例中,所述控制装置100包括过程信息处理模块105,所述过程信息处理模块105用于根据所述第一介入器械装置600和所述第二介入器械装置610的位置信息,判断所述第一介入器械装置600的位置是否偏离所述第一手术路径预设范围以及所述第二介入器械装置610的位置是否偏离所述第二手术路径预设范围。
具体的,所述过程信息处理模块105基于器械定位模块160获取的位置信息,判断所述第一介入器械装置600、所述第二介入器械装置610偏离手术路径预设范围包括器械装置进入错误的路径,例如分支脉管等。以在判断介入器械装置进入错误的路径时,输出报警信息。
在一些实施例中,所述系统包括:用于获取心电信号和/或压力数据的监护仪500,所述监护仪500与所述过程信息处理模块105通信连接,所述过程信息处理模块105用于监控所述心电信号和/或压力数据是否发生异常。所述监护仪500也可以辅助用于判断介入器械装置是否偏离手术路径预设范围,包括:介入器械装置贴着血管壁行进、介入器械装置进入心室。从而在心电信号和/或压力数据发生异常时,输出报警信息。
在本说明书中,所述控制装置100还包括:数据存储模块101、GUI模块150和程序控制模块170。所述程序控制模块170用于存储执行造影手术程序、治疗手术程序、诊断程序 的指令集,这些指令集可以使用驱动装置200执行,以控制第一介入器械装置600和第二介入器械装置610递送至目标位置。所述数据存储模块101用于存储术前图像和术中图像以及术前和术中的患者特定信息,所述患者特定信息包括患者的姓名、年龄、性别、血型等。所述GUI模块150配置为支持在显示装置(例如显示屏、触摸屏)上显示信息,例如显示患者的压力数据、显示术前图像、实时透视图像、术中图像、投照体位、血管状态参数信息、血液流速信息、介入器械装置的推荐选型、功能学评价参数等。
在一些实施例中,如图1所示,所述第一介入器械装置600具有第一纵长轴线,所述第一介入器械装置600沿其第一纵长轴线具有相对的近端和可偏转的远端;所述驱动装置200包括:用于带动所述第一介入器械装置600绕所述第一纵长轴线旋转的第一旋转致动机构210;用于带动所述第一介入器械装置600沿所述第一纵长轴线移动的第一线性移动致动机构220;用于引起所述远端相对于所述第一纵长轴线偏转的转向致动机构230,所述控制装置100被配置为根据所确定的所述远端的位置,控制所述第一旋转致动机构210、所述第一线性移动致动机构220和所述转向致动机构230中的一个或者多个,以根据所述第一手术路径使所述远端线性移动和/或者偏转和/或者旋转直至到达第一目标位置。
在本实施例中,所述第一介入器械装置600可以包括可调弯导管,所述可调弯导管包括三种运动形式:线性运动、周向旋转和远端偏转,可调弯导管通常由其管体内部的拉线致动以使远端偏转。所述转向致动机构230与所述拉线相连,在控制装置100的控制下,可带动拉线运动,从而致动可调弯导管的远端偏转以通过复杂的脉管结构。可调弯导管的管体可以与第一旋转致动机构210和第一线性移动致动机构220直接或者间接连接,在控制装置100的控制下,可带动可调弯导管线性运动和周向旋转,直至到达第一目标位置。
在一些实施例中,所述第二介入器械装置610具有第二纵长轴线;所述驱动装置200包括:用于带动所述第二介入器械装置610绕所述第二纵长轴线旋转的第二旋转致动机构240;用于带动所述第二介入器械装置610沿所述第二纵长轴线移动的第二线性移动致动机构250,所述控制装置100被配置为根据所确定的所述第二介入器械装置610的位置,控制所述第二旋转致动机构240、所述第二线性移动致动机构250中的一个或者多个,以根据所述第二手术路径使所述第二介入器械装置610线性移动和/或者旋转直至到达第二目标位置。
在本实施例中,所述第二介入器械装置610可以包括导丝,所述导丝包括两种运动形式:线性运动、周向旋转,导丝本体与第二旋转致动机构240和第二线性移动致动机构250直接或者间接连接,在控制装置100的控制下,可带动导丝线性运动和周向旋转,直至到达病变位置。
进一步的,所述系统还包括具有球囊或者支架的第三介入器械装置620,所述第三介入 器械装置620具有第三纵长轴线;所述驱动装置200包括:用于带动所述第三介入器械装置620沿所述第三纵长轴线移动的第三线性移动致动机构260,所述控制装置100被配置为根据所确定的第三介入器械装置620的位置,控制所述第三线性移动致动机构260,以根据所述第二手术路径使所述第三介入器械装置620线性移动直至到达第二目标位置。
在本实施例中,所述第三介入器械装置620可以包括工作导管,所述工作导管上配置有球囊或者支架等治疗器械,所述工作导管至少包括一种运动形式:线性运动,工作导管的管体直接或者间接与第三线性移动致动机构260连接,在控制装置100的控制下,可带动工作导管线性运动,以到达病变位置,从而对病变进行治疗。
为了更好的理解本说明书提供的介入手术机器人系统,下面将一个具体的应用场景对介入手术机器人系统的导航过程进行阐述:
根据患者的术前图像进行三维建模,并生成第一空间坐标系,然后由医生选定穿刺点作为第一源点,并根据第一源点、第一约束位置和第一目标位置生成第一手术路径。该第一目标位置为术前图像的冠脉开口位置,第一约束位置为术前图像的分支点。其中,术前图像在进行三维建模时,通过术前图像中患者的血管状态参数,由系统给出第一介入器械装置600(例如可调弯导管)的推荐选型,并由医生选择后安装于驱动装置200上。
控制装置100驱动第一旋转致动机构210、第一线性移动致动机构220和转向致动机构230,通过控制可调弯导管的线性运动、周向旋转和远端偏转,直至可调弯导管到达冠脉开口位置。其中,当可调弯导管经过第一约束位置时,通过第一旋转致动机构210控制可调弯导管旋转一定的角度,以通过第一约束位置。另外,为了更加精准的检测可调弯导管的远端取向,可调弯导管的远端也可以设置传感器,以获取相对于第一空间坐标系的位置。然后该传感器可以形成对应的传感器信息并且将传感器信息提供给控制装置100以用于进一步的处理,以控制可调弯导管的远端偏转以及旋转至一定角度,使得可调弯导管的远端能够指向冠脉开口位置。
或者,通过可调弯导管的远端实时透视图像与术前图像进行坐标配准,实时确定出导管远端相对于第一空间坐标系的位置,并提供可调弯导管的远端相对于第一空间坐标系的实时坐标。第一空间坐标系具有x、y和z方向,并将第一手术路径划分出多个轨迹点,通过计算可调弯导管的远端与下一轨迹点之间的相对位置,可获得可调弯导管的远端偏转角度以及旋转角度。
当可调完导管的远端到达冠脉开口位置后,控制装置100发送控制信号给造影注射装置300。造影注射装置300的注射控制模块330在接受到心电信号,并分析心电信号以便在舒张期推注造影剂。推注启动时可以通过控制装置100或者注射控制模块330发送指令到DSA 设备,启动DSA设备曝光,1秒后正式推注造影剂。其中,推注造影剂时可以被设置为轻推1s、以标准压力推注压力波形的3个心动周期、再轻推1s、停止推注、3秒后停止DSA曝光。
造影结束后获取造影图像并结合血液流速、主动脉压力数据实时进行计算FFR以指导是否进行PCI手术。当判断出需要进行PCI手术时,根据造影图像进行三维建模,并生成第二空间坐标系,并根据第二源点、第二约束位置和第二目标位置生成第二手术路径。该第二源点为冠脉开口位置,第二目标位置为造影图像的病变位置,第二约束位置为造影图像的分支点。其中,造影图像在进行三维建模时,分析造影图像中的病变信息,由系统给出第二介入器械装置610(例如导丝)的推荐选型,并由医生安装于驱动装置200上。
控制装置100驱动第二旋转致动机构240、第二线性移动致动机构250,通过控制导丝的线性运动和周向旋转,直至导丝到达病变位置。其中,当导丝经过第二约束位置时,通过第二旋转致动机构240控制导丝旋转一定的角度,以通过约束位置。然后,控制装置100驱动第三线性移动致动机构260,控制工作导管线性移动直至到达病变位置,以进行后续治疗程序。
其中,所述导丝在由驱动装置200递送至病变位置之前,导丝由可调弯导管的内部穿过,当导丝到达冠脉开口位置继续行进时,则导丝的远端从可调弯导管内部穿设而出,从而将冠脉开口位置设定为第二手术路径的第二源点,将病变位置设定为第二手术路径的第二目标位置,而导丝在到达第二源点之前,由控制装置100控制导丝自动行进直至到达第二源点。然后再控制导丝沿着第二手术路径行进。
同理,在递送第三介入器械装置620时,所述工作导管在由驱动装置200递送至病变位置之前,工作导管越过导丝,并从可调弯导管内部穿过,从而工作导管在到达第二源点之前,由控制装置100控制工作导管自动行进直至到达第二源点。
本说明书还提供了一种介入手术机器人系统的导航方法,如图1至图7所示,所述系统包括:第一介入器械装置600、第二介入器械装置610和驱动装置200,所述第一介入器械装置600具有相对的近端和可偏转的远端,所述导航方法包括:
S10:获取术前图像以根据所述术前图像的三维建模生成第一空间坐标系;
S20:基于所述第一空间坐标系以及所述术前图像中的第一源点、第一约束位置和第一目标位置生成第一手术路径;
S30:控制驱动装置200以使所述第一介入器械装置600沿着所述第一手术路径运动,包括致动所述第一介入器械装置600的线性移动、旋转和远端偏转中的一个或者多个运动形式,直至所述远端到达第一目标位置;
S40:所述远端到达第一目标位置后通过第一介入器械装置600进行造影;
S50:造影后获取功能学评价参数并判断是否满足预设条件,以在满足预设条件时控制所述驱动装置200递送所述第二介入器械装置610。
在一些实施例中,在满足预设条件时,所述方法包括:
S501:基于造影图像的三维建模生成第二空间坐标系;
S502:基于所述第二空间坐标系以及所述造影图像中的第二源点、第二约束位置和第二目标位置生成第二手术路径,在递送所述第二介入器械装置时,控制所述第二介入器械装置沿着所述第二手术路径运动,包括致动所述第二介入器械装置的线性移动、旋转中的一个或者多个运动形式,直至所述第二介入器械装置到达第二目标位置。
在一些实施例中,所述方法包括:在不满足预设条件时,控制所述第一介入器械装置600从所述第一目标位置撤回。
在一些实施例中,所述第二源点与所述第一目标位置为相同位置,所述第二目标位置为造影图像中的病变位置;在满足预设条件时,所述方法包括:
控制所述第二介入器械装置610沿着所述第一介入器械装置600到达第二源点,再控制所述第二介入器械装置610沿着所述第二手术路径到达第二目标位置。
在一些实施例中,所述术前图像为患者的历史影像,包括:人体中桡动脉至冠脉的组织,所述第一源点被设定为穿刺点的位置,所述第一目标位置被设定为冠脉开口位置;所述造影图像包括:人体中的冠脉组织,所述第二源点被设定为冠脉开口位置,所述第二目标位置被设定为病变位置。
所属技术领域的技术人员知道,本发明的各个方面可以实现为系统、方法或计算机程序产品。因此,本发明的各个方面可以具体实现为以下形式,即:完全的硬件实施方式、完全的软件实施方式(包括固件、驻留软件、微代码等),或硬件和软件方面结合的实施方式,这里可以统称为“电路”、“模块”或“系统”。此外,在一些实施例中,本发明的各个方面还可以实现为在一个或多个计算机可读介质中的计算机程序产品的形式,该计算机可读介质中包含计算机可读的程序代码。本发明的实施例的方法和/或系统的实施方式可以涉及到手动地、自动地或以其组合的方式执行或完成所选任务。
应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机程序指令实现。这些计算机程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些计算机程序指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。
也可以把这些计算机程序指令存储在计算机可读介质中,这些指令使得计算机、其它可编程数据处理装置、或其它设备以特定方式工作,从而,存储在计算机可读介质中的指令就产生出包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的指令的制造品(ARTICLE OF MANUFACTURE)。
还可将计算机程序指令加载到计算机或其它可编程数据处理设备上以促使在计算机、其它可编程数据处理设备或其它设备上执行一系列操作步骤以产生计算机实现过程,使得在计算机、其它可编程装置或其它设备上执行的指令提供用于实现在流程图和/或一个或多个框图方框中指定的功能/动作的过程。
应该理解,以上描述是为了进行图示说明而不是为了进行限制。通过阅读上述描述,在所提供的示例之外的许多实施方式和许多应用对本领域技术人员来说都将是显而易见的。出于全面之目的,所有文章和参考包括专利申请和公告的公开都通过参考结合在本文中。

Claims (30)

  1. 一种介入手术机器人系统,其特征在于,包括:控制装置和与所述控制装置通信连接的第一介入器械装置、第二介入器械装置、驱动装置,所述控制装置包括:
    术前数据处理模块,用于根据术前图像构建第一空间坐标系;
    术前路径规划模块,用于根据术前图像进行术前路径规划,生成第一手术路径;
    器械定位模块,用于获取所述介入器械装置的位置信息;
    功能学参数获取模块,用于获取功能学评价参数;
    所述控制装置用于根据所述位置信息确定出所述第一介入器械装置在所述第一空间坐标系中的位置,并通过控制所述驱动装置使所述第一介入器械装置沿着所述第一手术路径自第一源点到达第一目标位置,并在造影后获取所述功能学评价参数并判断是否满足预设条件,以在满足预设条件时控制所述驱动装置递送所述第二介入器械装置。
  2. 如权利要求1所述的介入手术机器人系统,其特征在于,所述控制装置包括:
    术中数据处理模块,用于根据造影图像构建第二空间坐标系;
    术中路径规划模块,用于根据造影图像进行术中路径规划,生成第二手术路径;
    所述控制装置用于根据所述位置信息确定出所述第二介入器械装置在所述第二空间坐标系中的位置,以在满足预设条件时,控制所述第二介入器械装置沿着所述第二手术路径自第二源点到达第二目标位置。
  3. 如权利要求2所述的介入手术机器人系统,其特征在于,所述功能学评价参数为FFR,所述预设条件为所述FFR小于预设值;当不满足预设条件时,所述控制装置用于根据所述第一手术路径以及器械定位模块,控制所述第一介入器械装置撤回。
  4. 如权利要求2所述的介入手术机器人系统,其特征在于,所述第二源点与所述第一目标位置为相同位置,所述第二目标位置为造影图像中的病变位置;在满足预设条件时,所述控制装置用于控制所述第二介入器械装置沿着所述第一介入器械装置到达第二源点,再控制所述第二介入器械装置沿着所述第二手术路径到达第二目标位置。
  5. 如权利要求2所述的介入手术机器人系统,其特征在于,所述术前图像为患者的历史影像,包括:人体中桡动脉至冠脉的组织,所述第一源点被设定为穿刺点的位置,所述第一目标位置被设定为冠脉开口位置;所述造影图像包括:人体中的冠脉组织,所述第二源点被 设定为冠脉开口位置,所述第二目标位置被设定为病变位置。
  6. 如权利要求2所述的介入手术机器人系统,其特征在于,所述系统包括:用于采集实时透视图像和造影图像的图像采集装置,所述图像采集装置与所述控制装置通信连接。
  7. 如权利要求1所述的介入手术机器人系统,其特征在于,所述系统包括:与所述控制装置通信连接的造影注射装置,所述控制装置用于在所述第一介入器械装置到达第一目标位置后,控制所述造影注射装置以预定注射参数通过所述第一介入器械装置注射造影剂。
  8. 如权利要求7所述的介入手术机器人系统,其特征在于,所述造影注射装置包括:用于采集心电信号和压力数据的压力采集模块;与所述压力采集模块相连的注射控制模块,所述注射控制模块在接收至所述控制装置发出的控制信号后,并基于所述心电信号和压力波形的预定周期注射造影剂。
  9. 如权利要求2或4所述的介入手术机器人系统,其特征在于,所述术前数据处理模块包括:用于获取术前图像的术前图像获取单元;用于对术前图像进行三维建模的术前三维模型生成单元;用于对三维建模生成第一空间坐标系的第一空间坐标建立单元;
    所述术中数据处理模块包括:用于获取造影图像的造影图像获取单元;用于对造影图像进行三维建模的术中三维模型生成单元;用于对三维建模生成第二空间坐标系的第二空间坐标建立单元。
  10. 如权利要求1所述的介入手术机器人系统,其特征在于,所述术前路径规划模块包括:
    用于在第一空间坐标系下生成与所述第一源点对应坐标的第一源点生成单元;
    用于在第一空间坐标系下生成与所述第一目标位置对应坐标的第一目标位置生成单元;
    用于在第一空间坐标系下生成与第一约束位置对应坐标的第一约束位置生成单元,所述第一约束位置至少为一个;
    用于连接对应的第一源点、所述第一约束位置和所述第一目标位置的坐标的第一手术路径生成单元,以生成第一手术路径。
  11. 如权利要求2所述的介入手术机器人系统,其特征在于,所述术中路径规划模块包 括:
    用于在第二空间坐标系下生成与所述第二源点对应坐标的第二源点生成单元;
    用于在第二空间坐标系下生成与所述第二目标位置对应坐标的第二目标位置生成单元,所述第二目标位置为所述造影图像中的病变位置;
    用于在第二空间坐标系下生成与第二约束位置对应坐标的第二约束位置生成单元,所述第二约束位置至少为一个;
    用于连接对应的所述第二源点、所述第二约束位置和所述第二目标位置的坐标的第二手术路径生成单元,以生成第二手术路径。
  12. 如权利要求6所述的介入手术机器人系统,其特征在于,所述器械定位模块用于将所述采集的实时透视图像与术前图像、造影图像进行配准,并确定出所述第一介入器械装置在第一空间坐标系中的实时坐标、所述第二介入器械装置在第二空间坐标系中的实时坐标。
  13. 如权利要求6所述的介入手术机器人系统,其特征在于,所述术前数据处理模块包括:用于根据所述术前图像获取冠脉优选投照体位的投照体位确定单元,所述图像采集装置基于所述冠脉优选投照体位调整投照体位。
  14. 如权利要求1所述的介入手术机器人系统,其特征在于,所述术前数据处理模块包括:用于获取术前图像的术前血管状态参数的术前血管参数获取单元,其中所述术前血管状态参数包括:主动脉直径、冠脉直径、冠脉开口位置、冠脉扭曲角度、主动脉长度、冠脉长度。
  15. 如权利要求2所述的介入手术机器人系统,其特征在于,所述术中数据处理模块包括:用于获取造影图像的术中血管状态参数的术中血管参数获取单元;用于获取造影图像中术中血液流速的术中流速计算单元;用于获取患者主动脉压力数据的主动脉压力获取单元;其中所述术中血管状态参数包括:冠脉长度、冠脉直径,所述功能学参数获取模块基于所述冠脉长度、所述冠脉直径、所述术中血液流速和所述主动脉压力数据计算FFR。
  16. 如权利要求1所述的介入手术机器人系统,其特征在于,所述系统包括:与所述功能学参数获取模块通信连接的包括有血压采集模块的冠状动脉分析仪,所述血压采集模块用于采集主动脉压力数据。
  17. 如权利要求2所述的介入手术机器人系统,其特征在于,所述术中数据处理模块还包括:用于获取造影图像中病变信息的病变分析单元,所述病变信息包括病变长度、病变最小直径、病变参考直径。
  18. 如权利要求2所述的介入手术机器人系统,其特征在于,所述术前图像和所述造影图像为医学影像,包括:CAG图像、CT图像、MRI图像、超声图像、OCT图像中的一种或者多种。
  19. 如权利要求14所述的介入手术机器人系统,其特征在于,所述控制装置包括:自主学习模块,所述自主学习模块采用预先训练好的深度神经网络模型对输入的术前血管状态参数进行分析处理,并输出第一介入器械装置的优选参数信息。
  20. 如权利要求17所述的介入手术机器人系统,其特征在于,所述控制装置包括:自主学习模块,所述自主学习模块采用预先训练好的深度神经网络模型对输入的病变信息进行分析处理,并输出第二介入器械装置的优选参数信息。
  21. 如权利要求1所述的介入手术机器人系统,其特征在于,所述系统包括:用于获取心电信号和/或压力数据的监护仪,所述监护仪与所述控制装置通信连接,所述控制装置包括过程信息处理模块,所述过程信息处理模块用于监控所述心电信号和/或压力数据是否发生异常。
  22. 如权利要求2所述的介入手术机器人系统,其特征在于,所述控制装置包括过程信息处理模块,所述过程信息处理模块用于根据所述第一介入器械装置和所述第二介入器械装置的位置信息,判断所述第一介入器械装置的位置是否偏离所述第一手术路径预设范围以及所述第二介入器械装置的位置是否偏离所述第二手术路径预设范围。
  23. 如权利要求1所述的介入手术机器人系统,其特征在于,所述第一介入器械装置具有第一纵长轴线,所述第一介入器械装置沿其第一纵长轴线具有相对的近端和可偏转的远端;所述驱动装置包括:用于带动所述第一介入器械装置绕所述第一纵长轴线旋转的第一旋转致动机构;用于带动所述第一介入器械装置沿所述第一纵长轴线移动的第一线性移动致动机构;用于引起所述远端相对于所述第一纵长轴线偏转的转向致动机构,所述控制装置被配 置为根据所确定的所述远端的位置,控制所述第一旋转致动机构、所述第一线性移动致动机构和所述转向致动机构中的一个或者多个,以根据所述第一手术路径使所述远端线性移动和/或者偏转和/或者旋转直至到达第一目标位置。
  24. 如权利要求2所述的介入手术机器人系统,其特征在于,所述第二介入器械装置具有第二纵长轴线;所述驱动装置包括:用于带动所述第二介入器械装置绕所述第二纵长轴线旋转的第二旋转致动机构;用于带动所述第二介入器械装置沿所述第二纵长轴线移动的第二线性移动致动机构,所述控制装置被配置为根据所确定的所述第二介入器械的位置,控制所述第二旋转致动机构、所述第二线性移动致动机构中的一个或者多个,以根据所述第二手术路径使所述第二介入器械装置线性移动和/或者旋转直至到达第二目标位置。
  25. 如权利要求2所述的介入手术机器人系统,其特征在于,所述系统还包括具有球囊或者支架的第三介入器械装置,所述第三介入器械装置具有第三纵长轴线;所述驱动装置包括:用于带动所述第三介入器械装置沿所述第三纵长轴线移动的第三线性移动致动机构,所述控制装置被配置为根据所确定的第三介入器械装置的位置,控制所述第三线性移动致动机构,以根据所述第二手术路径使所述第三介入器械装置线性移动直至到达第二目标位置。
  26. 一种介入手术机器人系统的导航方法,其特征在于,所述系统包括:第一介入器械装置、第二介入器械装置和驱动装置,所述第一介入器械装置具有相对的近端和可偏转的远端,所述导航方法包括:
    获取术前图像以根据所述术前图像的三维建模生成第一空间坐标系;
    基于所述第一空间坐标系以及所述术前图像中的第一源点、第一约束位置和第一目标位置生成第一手术路径;
    控制驱动装置以使所述第一介入器械装置沿着所述第一手术路径运动,包括致动所述第一介入器械装置的线性移动、旋转和远端偏转中的一个或者多个运动形式,直至所述远端到达第一目标位置;
    所述远端到达第一目标位置后通过所述第一介入器械装置进行造影;
    造影后获取功能学评价参数并判断是否满足预设条件,以在满足预设条件时控制所述驱动装置递送所述第二介入器械装置。
  27. 如权利要求26所述的导航方法,其特征在于,在满足预设条件时,所述方法包括:
    基于造影图像的三维建模生成第二空间坐标系;
    基于所述第二空间坐标系以及所述造影图像中的第二源点、第二约束位置和第二目标位置生成第二手术路径,在递送所述第二介入器械装置时,控制所述第二介入器械装置沿着所述第二手术路径运动,包括致动所述第二介入器械装置的线性移动、旋转中的一个或者多个运动形式,直至所述第二介入器械装置到达第二目标位置。
  28. 如权利要求26所述的导航方法,其特征在于,所述方法包括:在不满足预设条件时,控制所述第一介入器械装置从所述第一目标位置撤回。
  29. 如权利要求27所述的导航方法,其特征在于,所述第二源点与所述第一目标位置为相同位置,所述第二目标位置为造影图像中的病变位置;在满足预设条件时,所述方法包括:
    控制所述第二介入器械装置沿着所述第一介入器械装置到达第二源点,再控制所述第二介入器械装置沿着所述第二手术路径到达第二目标位置。
  30. 如权利要求27所述的导航方法,其特征在于,所述术前图像为患者的历史影像,包括:人体中桡动脉至冠脉的组织,所述第一源点被设定为穿刺点的位置,所述第一目标位置被设定为冠脉开口位置;所述造影图像包括:人体中的冠脉组织,所述第二源点被设定为冠脉开口位置,所述第二目标位置被设定为病变位置。
PCT/CN2022/073457 2021-10-29 2022-01-24 介入手术机器人系统以及导航方法 WO2023070968A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111273429.4 2021-10-29
CN202111273429.4A CN116999167A (zh) 2021-10-29 2021-10-29 介入手术机器人系统以及导航方法

Publications (1)

Publication Number Publication Date
WO2023070968A1 true WO2023070968A1 (zh) 2023-05-04

Family

ID=86160422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073457 WO2023070968A1 (zh) 2021-10-29 2022-01-24 介入手术机器人系统以及导航方法

Country Status (2)

Country Link
CN (1) CN116999167A (zh)
WO (1) WO2023070968A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117252927A (zh) * 2023-11-20 2023-12-19 华中科技大学同济医学院附属协和医院 一种基于小目标检测的导管下介入目标定位方法及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117224348B (zh) * 2023-11-16 2024-02-06 北京唯迈医疗设备有限公司 一种自动调整造影位置的系统
CN117338427B (zh) * 2023-12-05 2024-02-27 四川大学华西医院 一种光动力介入式导管端部定位系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150356753A1 (en) * 2014-06-04 2015-12-10 Günter Lauritsch Fluid-dynamic analysis of a vascular tree using angiography
CN108013934A (zh) * 2018-01-19 2018-05-11 上海联影医疗科技有限公司 用于介入对象的腔内介入系统
CN110327114A (zh) * 2019-06-28 2019-10-15 中国人民解放军北部战区总医院 一种路线规划方法、终端及存储介质
CN112245003A (zh) * 2020-10-20 2021-01-22 哈尔滨医科大学 一种基于2d和3d造影图像转换的栓塞放置点定位方法
CN112641515A (zh) * 2021-01-19 2021-04-13 河南省儿童医院郑州儿童医院 用于诊断或治疗的机器人微创手术导管系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150356753A1 (en) * 2014-06-04 2015-12-10 Günter Lauritsch Fluid-dynamic analysis of a vascular tree using angiography
CN108013934A (zh) * 2018-01-19 2018-05-11 上海联影医疗科技有限公司 用于介入对象的腔内介入系统
CN110327114A (zh) * 2019-06-28 2019-10-15 中国人民解放军北部战区总医院 一种路线规划方法、终端及存储介质
CN112245003A (zh) * 2020-10-20 2021-01-22 哈尔滨医科大学 一种基于2d和3d造影图像转换的栓塞放置点定位方法
CN112641515A (zh) * 2021-01-19 2021-04-13 河南省儿童医院郑州儿童医院 用于诊断或治疗的机器人微创手术导管系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117252927A (zh) * 2023-11-20 2023-12-19 华中科技大学同济医学院附属协和医院 一种基于小目标检测的导管下介入目标定位方法及系统
CN117252927B (zh) * 2023-11-20 2024-02-02 华中科技大学同济医学院附属协和医院 一种基于小目标检测的导管下介入目标定位方法及系统

Also Published As

Publication number Publication date
CN116999167A (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
US11918423B2 (en) System and method for navigating a device through a path to a target location
WO2023070968A1 (zh) 介入手术机器人系统以及导航方法
US11707242B2 (en) Methods and systems for dynamic coronary roadmapping
US20180070855A1 (en) System and method for determining the position of the tip of a medical catheter within the body of a patient
US7065395B2 (en) Method and apparatus for cardiac radiological examination in coronary angiography
JP5269376B2 (ja) 画像表示装置及びx線診断治療装置
JP6177314B2 (ja) 管腔内データと管腔外イメージングとの併用
CN110248603B (zh) 3d超声和计算机断层摄影结合用于引导介入医疗规程
US8295577B2 (en) Method and apparatus for guiding a device in a totally occluded or partly occluded tubular organ
JP2021090802A (ja) ガイドワイヤをナビゲートするシステムと方法
US20090105579A1 (en) Method and apparatus for remotely controlled navigation using diagnostically enhanced intra-operative three-dimensional image data
US20110144658A1 (en) Catheter simulation and assistance system
CN108778393B (zh) 用于控制成像系统的x射线帧速率的系统和方法
US9603578B2 (en) Method and apparatus for graphical assistance in a medical procedure
CN114667099A (zh) 组合成像的系统和方法
US10420478B2 (en) X-ray recording with superimposed planning information
JP5459886B2 (ja) 画像表示装置
JP4233326B2 (ja) 放射線心臓検査方法及び装置
JP7408362B2 (ja) 医用情報提供装置、医用情報提供装置の制御方法、及びプログラム
RO136019A0 (ro) Sistem şi metodă de compensare a mişcării pentru navigaţia electromagnetică în angioplastia coronariană

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22884887

Country of ref document: EP

Kind code of ref document: A1