WO2023070863A1 - 一种步行辅助外骨骼装置 - Google Patents

一种步行辅助外骨骼装置 Download PDF

Info

Publication number
WO2023070863A1
WO2023070863A1 PCT/CN2021/137591 CN2021137591W WO2023070863A1 WO 2023070863 A1 WO2023070863 A1 WO 2023070863A1 CN 2021137591 W CN2021137591 W CN 2021137591W WO 2023070863 A1 WO2023070863 A1 WO 2023070863A1
Authority
WO
WIPO (PCT)
Prior art keywords
cam
leg
connecting rod
walking
hole
Prior art date
Application number
PCT/CN2021/137591
Other languages
English (en)
French (fr)
Inventor
王琳
姜鹏
王烨
邵天琪
李光林
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Publication of WO2023070863A1 publication Critical patent/WO2023070863A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • A61H1/0237Stretching or bending or torsioning apparatus for exercising for the lower limbs
    • A61H1/0255Both knee and hip of a patient, e.g. in supine or sitting position, the feet being moved together in a plane substantially parallel to the body-symmetrical plane
    • A61H1/0262Walking movement; Appliances for aiding disabled persons to walk
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/12Driving means
    • A61H2201/1253Driving means driven by a human being, e.g. hand driven
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/14Special force transmission means, i.e. between the driving means and the interface with the user
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/14Special force transmission means, i.e. between the driving means and the interface with the user
    • A61H2201/1418Cam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/1628Pelvis
    • A61H2201/163Pelvis holding means therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/164Feet or leg, e.g. pedal
    • A61H2201/1642Holding means therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/165Wearable interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2205/00Devices for specific parts of the body
    • A61H2205/08Trunk
    • A61H2205/088Hip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2205/00Devices for specific parts of the body
    • A61H2205/10Leg
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2205/00Devices for specific parts of the body
    • A61H2205/10Leg
    • A61H2205/102Knee

Definitions

  • the invention relates to the technical field of mechanical exoskeleton, in particular to a walking assisting exoskeleton device.
  • exoskeleton rehabilitation robots In recent years, with the rapid development of mechatronics and control technology, the research of exoskeleton rehabilitation robots has been promoted. Different from orthotics, exoskeleton cannot replace the user's legs for support, but provides assistance and assistance for the user when walking. Through long-term repeated related exercise training, it can replace the help of the therapist, thus effectively reducing the rehabilitation costs.
  • HAL hybrid assistive limb
  • ReWalk lower extremity exoskeleton robot
  • exoskeletons for rehabilitation or enhancement of human performance still lack practical application.
  • Many technical challenges still need to be addressed to develop a portable lower extremity exoskeleton that can be used in practical applications.
  • exoskeletons driven by pneumatic artificial muscle drivers lack portability due to the power source, and the control accuracy of position and force is not high due to the compressibility of air. Therefore, it is not suitable for daily rehabilitation training.
  • it is not energy-efficient for the driver to generate the required braking torque during the wearer's rehabilitation training.
  • a walking aid exoskeleton device provided by the present application can solve the problem that the weight of the exoskeleton system in the prior art is large, the extra burden is heavy when used, the metabolic consumption of the wearer will be increased, and the control accuracy of the position and force is not good. High, it is not suitable for daily rehabilitation training, and the corresponding drive generates the required braking torque and does not save energy.
  • a technical solution adopted by this application is to provide a walking assisting exoskeleton device, wherein the walking assisting exoskeleton device includes: a knee joint assembly for wearing on the user's knee joint; a connecting rod , one end of the connecting rod is connected to the knee joint assembly; the hip joint assembly includes a shell, a cam and an elastic part, the shell is used to wear on the user's hip joint, the cam is connected to the shell and the other end of the connecting rod away from the knee joint assembly,
  • the component includes a first leg and a second leg arranged at a set angle, the first leg is connected to the casing, the second leg abuts against the first side of the cam, and the connecting rod drives the cam to rotate in the first direction relative to the first leg, so as to Make the second leg move away from the first leg along the partial arc surface of the first side, and when the second leg is close to the first leg and resets, the cam is driven to rotate in the second direction opposite to the first direction
  • the elastic member is a torsion spring mechanism
  • the elastic member also includes a roller
  • the second support leg includes a first support rod and a second support rod, one end of the first support rod is connected to the first support foot, and the other end of the first support rod is connected vertically
  • the roller is sheathed on the second pole and abuts against the first side surface.
  • the projection of the partial arc surface of the first side on the second side of the cam satisfies the set curve function relationship; wherein, the second side is perpendicular to the first side.
  • the hip joint assembly also includes a transmission part, one end of the transmission part is connected to the connecting rod, a first through hole is formed on the second side of the cam, the other end of the transmission part is passed through the first through hole, and the transmission part is formed by the connecting rod or
  • the cam drives the rotation, and the auxiliary connecting rod drives the cam to rotate, or the auxiliary cam drives the connecting rod to rotate.
  • part of the structure of the transmission element protrudes from the first through hole to form a protrusion, and the protrusion abuts against the housing; wherein, the radial dimension of the protrusion is larger than the radial dimension of the first through hole.
  • the hip joint assembly also includes a circlip, and a circlip groove is formed on the side of the transmission member facing the wall of the first through hole, and the circlip is sleeved in the circlip groove to limit the movement of the transmission member along the central axis direction of the first through hole. sports.
  • the first through hole includes a concave portion that is recessed close to the first side surface, and a flat key portion protrudes from the side of the transmission member facing the hole wall of the first through hole, and the flat key portion is embedded in the concave portion to limit the transmission.
  • the part rotates relative to the cam.
  • the hip joint assembly also includes a connecting rod fixing shell, which is fastened on the side of the transmission part away from the shell, and the other end of the connecting rod is connected between the transmission part and the connecting rod fixing shell, so that the transmission part and the connecting rod fixing shell can be connected together.
  • the connecting rod fixing shells cooperate with each other and are fixed.
  • a second through hole is formed on the second side of the cam, and the second through hole is meniscus-shaped and spaced apart from the first through hole.
  • the setting angle is 85°-95°
  • the range of the included angle when the first leg moves relative to the second leg is 85°-135°
  • the walking aid exoskeleton device includes: a knee joint assembly, a connecting rod, and a hip joint assembly, and the hip joint assembly further includes a shell, a cam, and an elastic member, and the elastic
  • the component includes a first leg and a second leg set at a set angle, one end of the connecting rod is connected to the knee joint assembly, the cam is connected to the shell and the other end of the connecting rod away from the knee joint assembly, the first leg is connected to the shell, and the second leg is connected to the shell.
  • the leg abuts against the first side of the cam, and the connecting rod drives the cam to rotate in the first direction relative to the first leg; wherein, the knee joint assembly is used to be worn on the user's knee joint, and the shell is used to be worn on the user's hip joint,
  • the connecting rod drives the cam to rotate in the first direction relative to the first leg so that the second leg moves away from the first leg along the partial arc surface of the first side, elastic energy storage is carried out so that the second leg can approach the first leg.
  • the cam When the legs move and reset, the cam is driven to rotate in the second direction opposite to the first direction relative to the first leg, and then the cam drives the connecting rod to rotate in the second direction, thereby avoiding the use of an additional power device to provide power assistance, and directly acting on the human body Energy is stored during the negative work stage in the walking process and fed back to the human body to achieve the purpose of assisting the human body to walk.
  • this walking assisting exoskeleton device can help patients with walking dysfunction recover their natural gait, improve walking ability, realize motor function rehabilitation, and enhance independent quality of life; and compared with existing gait assisting equipment, this
  • the walking assist exoskeleton device can naturally obtain the walking energy of the human body, and then can feed back to the human body to assist walking through the exoskeleton device, so as to reduce the walking burden of the human body;
  • Machine coordination is strong and can coordinate with human gait.
  • Fig. 1 is a schematic diagram of the exploded structure of an embodiment of the walking assistance exoskeleton device of the present application
  • Fig. 2 is a schematic diagram of the exploded structure of the hip joint assembly in the walking assistance exoskeleton device in Fig. 1;
  • Fig. 3 is a schematic diagram of a simplified 2D walking model
  • Fig. 4 is a detailed structural schematic diagram of the elastic member in the hip joint assembly in Fig. 2;
  • Fig. 5 is a detailed structural schematic diagram of the cam in the hip joint assembly in Fig. 2;
  • Figure 6 is a schematic diagram of a rope-wound cam system
  • Fig. 7 is the schematic diagram of cam profile fitting curve
  • Fig. 8 is a schematic diagram of a detailed structure of the transmission member in the hip joint assembly in Fig. 2 .
  • the inventor has found through long-term research that walking is a basic requirement of human daily life, and walking dysfunction seriously affects the quality of life of individuals. There are so many factors that contribute to walking dysfunction in our daily lives, and most people will experience some form of walking dysfunction during their lifetime. With the intensification of population aging in our country, the serious social and economic problems caused by the loss of mobility cannot be underestimated. Therefore, there is an urgent need to develop feasible mobility assistance solutions to assist and improve the mobility of patients, thereby improving the quality of life. Wearable gait aids are an effective way to address this growing problem.
  • KAFO Knee Ankle Foot Orthosis
  • KAFO Knee Ankle Foot Orthosis
  • the gait when wearing KAFO usually has the disadvantages of high metabolic cost, slow walking speed, and low wearing comfort for a long time.
  • patients often need the intervention and assistance of physical therapists in the process of rehabilitation.
  • exoskeleton rehabilitation robots In recent years, with the rapid development of mechatronics and control technology, the research of exoskeleton rehabilitation robots has been promoted. Different from orthotics, exoskeleton cannot replace the user's legs for support, but provides assistance and assistance for the user when walking. Through long-term repeated related exercise training, it can replace the help of the therapist, thus effectively reducing the rehabilitation costs.
  • the drive methods include motor drive, hydraulic drive, pneumatic drive, artificial muscle drive, etc., among which the active exoskeleton with the motor as the drive mode is the main one.
  • the motor drive is relatively flexible, and can cooperate with reducers, clutches, linkages, etc. to drive joints.
  • the HAL lower limb rehabilitation exoskeleton robot has been commercialized. It is mainly composed of a wireless LAN (Local Area Network) system, an electric drive system, a sensor system, and an actuator.
  • the robot includes both sides of the lower limbs and
  • the waist power module has a mass of 23 kg and a lower limb of 15 kg, with a total of 26 degrees of freedom.
  • the ReWalk lower limb exoskeleton robot includes lower limbs on both sides and a backpack, which integrates a power module and a control system. ReWalk can help paralyzed patients stand, walk, turn and climb up and down stairs.
  • exoskeleton robot for lower limb rehabilitation has gradually developed towards commercialization.
  • Experimental results have confirmed that exoskeletons can help patients with walking dysfunction for rehabilitation, and for able-bodied people to improve the body's exercise capacity during normal walking, weight-bearing walking and even running.
  • exoskeletons for rehabilitation or enhancement of human performance still lack practical application.
  • many technical challenges still need to be solved to develop a portable lower extremity exoskeleton that can be used in practical applications.
  • exoskeletons driven by pneumatic artificial muscle drivers lack portability due to the power source, and the control accuracy of position and force is not high due to the compressibility of air. Therefore, it is not suitable for daily rehabilitation training.
  • it is not energy-efficient for the driver to generate the required braking torque during the wearer's rehabilitation training.
  • the application provides a walking-assisting exoskeleton device.
  • the application will be described in further detail below in conjunction with the accompanying drawings and embodiments.
  • the following examples are only used to illustrate the application, but not to limit the scope of the application.
  • the following embodiments are only some of the embodiments of the present application but not all of them, and all other embodiments obtained by those skilled in the art without creative efforts fall within the protection scope of the present application.
  • FIG. 1 is a schematic exploded structure diagram of an embodiment of the walking assistance exoskeleton device of the present application
  • FIG. 2 is a schematic exploded structure diagram of the hip joint assembly in the walking assistance exoskeleton device in FIG. 1
  • the walking assistance exoskeleton device 1 includes: a knee joint assembly 10 , a connecting rod 20 and a hip joint assembly 30 .
  • a walking assisting exoskeleton device 1 provided in this application can be specifically used to assist the walking of the human body, for example, by wearing the walking assisting exoskeleton device 1 to help patients with walking dysfunction restore their natural gait and improve their walking ability , to achieve motor function rehabilitation, in order to enhance their independent quality of life. And it is specifically applicable to hemiplegic patients who still have certain mobility, elderly people with weak legs and feet who have difficulty walking, people with walking difficulties caused by accidental injuries, or sports enthusiasts who need to hike for a long time, climb mountains, etc.
  • the walking assistance exoskeleton device 1 can also be used on the joints of the intelligent robot or in any other reasonable mechanical device, which is not limited in this embodiment.
  • the knee joint assembly 10 is used to be worn on the user's knee joint, and one end of the connecting rod 20 is connected to the knee joint assembly 10,
  • the hip joint assembly 30 further includes a shell 31, a cam 33 and an elastic member 32, and the shell 31 It is used to be worn on the user's hip joint, and the cam 33 is connected to the shell 31 and the other end of the connecting rod 20 away from the knee joint assembly 10 .
  • the walking assisting exoskeleton device 1 specifically wears the knee joint assembly 10 and the hip joint assembly 30 on the knee joints and hip joints of the corresponding human body, and realizes the connection between the knee joint assembly 10 and the hip joint through the connecting rod 20.
  • the connection between the hip joint components 30 and the transmission of force can assist the walking process of the human body.
  • the elastic member 32 of the hip joint assembly 30 specifically includes a first leg 321 and a second leg 322, the first leg 321 is set at a set angle with the second leg 322 in the initial state, and the first leg 321 The included angle with the second leg 322 can gradually become larger when the corresponding external force acts on it, and when the external force disappears, it will spring back to reset.
  • the first leg 321 is connected to the housing 31, and the second leg 322 abuts against the first side 331 of the cam 33, so that the connecting rod 20 drives the cam 33 to rotate in a first direction relative to the first leg 321, for example,
  • the knee joint assembly 10 can drive the cam 33 of the hip joint assembly 30 through the connecting rod 20 relative to the first leg 321 rotates to the first direction, so that the second leg 322 moves away from the first leg 321 along the partial arc surface of the first side 331 of the cam 33, that is, the angle between the second leg 322 and the first leg 321 is Under the action of external force, it gradually becomes larger to store energy.
  • the human body drives the walking assisting exoskeleton device 1 to swing in the walking direction, that is, when walking forward, the external force driving the cam 33 to rotate in the first direction relative to the first leg 321 will disappear, and at this time the hip joint assembly
  • the elastic member 32 of 30 will rebound and reset, that is, the angle between the second leg 322 and the first leg 321 will return to the initial state, and the second leg 322 will move and reset close to the first leg 321 to drive the cam 33 relative to the first leg 321.
  • One leg 321 rotates to the second direction opposite to the first direction, and the cam 33 will drive the connecting rod 20 to rotate to the second direction, thereby providing assistance to the movement of the human body to the current walking direction, for example, providing the human body with A force to lift upwards and a force to swing forward.
  • first side 331 of the cam 33 is perpendicular to the second side 332 thereof, and the extending direction of the connecting rod 20 is parallel to the second side 332 .
  • first side surface 331 specifically refers to the outer peripheral surface of the cam 33 , that is, an annular curved surface.
  • the first direction may specifically correspond to a direction opposite to the current walking direction of the corresponding human body, and the second direction corresponds to the current walking direction of the human body.
  • FIG. 3 is a schematic diagram of a simplified 2D walking model.
  • the 2D walking model can specifically correspond to a 2D passive robot model without knee joints, and the robot has no drive and control system, has a simple mechanism, and only has one degree of freedom of the hip joint, so as to simulate the actual walking scene of the human body.
  • initial conditions of the robot such as initial joint angles (swing angles in Figure 3) and initial joint angular velocities to match the passive dynamics and environmental parameters (slope angles) of the robot, the stability of the robot can be guaranteed Walk down a slope with a certain slope.
  • each gait cycle is similar to the swing process of an inverted pendulum, and continuous walking is formed by connecting multiple inverted pendulum swing cycles.
  • the energy consumption during walking is mainly generated by the impact between the foot and the ground during the transition between two adjacent gait cycles, that is, the impact between the supporting leg and the ground in Figure 3, while the energy supplement is completely by gravity, That is to say, the gravity provided when the swing leg above the ground swings towards the walking direction.
  • the walking assisting exoskeleton device 1 can be worn on the lower limbs on one side of the corresponding human body, or on the lower limbs on both sides of the human body respectively, so that the walking assisting exoskeleton device 1 can be worn on the walking assisting exoskeleton during the walking process of the human body.
  • Skeleton device 1 stores energy when the human body swings in the opposite direction to the walking direction, and releases energy when walking forward to provide pulling force and forward swinging force for the lower limbs of the human body to assist the human body to walk.
  • the walking assisting exoskeleton device 1 when the walking assisting exoskeleton device 1 moves the second leg 322 away from the first leg 321 along the partial arc surface of the first side 331 by driving the cam 33 to rotate in the first direction relative to the first leg 321 by the connecting rod 20 , can carry out elastic energy storage, so that when the second leg 322 moves close to the first leg 321 and resets, it drives the cam 33 to rotate relative to the first leg 321 in a second direction opposite to the first direction, and then drives the connecting rod through the cam 33 20 rotates in the second direction, so that the walking assisting exoskeleton device 1 can avoid using an additional power device to provide assistance, and directly store energy in the negative work stage of the process of human walking, and feed it back to the human body to achieve assisting the human body purpose of walking.
  • wearing the walking assisting exoskeleton device 1 can help patients with walking dysfunction recover their natural gait, improve walking ability, realize motor function rehabilitation, and enhance independent quality of life; and compared with existing gait assisting equipment,
  • the walking assisting exoskeleton device 1 can naturally obtain the walking energy of the human body, and then can feed back to the human body to assist walking through the exoskeleton device, so as to reduce the walking burden of the human body; and because no additional power device is required, the corresponding weight is relatively light and easy to wear , Strong man-machine collaboration, able to coordinate with human gait.
  • Fig. 4 is a detailed structural schematic diagram of the elastic member in the hip joint assembly in Fig. 2
  • Fig. 5 is a detailed structural schematic diagram of the cam in the hip joint assembly in Fig. 2 .
  • the elastic member 32 is specifically a torsion spring mechanism, and the elastic member 32 also includes a roller 323, and the second leg 322 includes a first rod 3221 and a second rod 3222, and one end of the first rod 3221 Connected to the first leg 321 , the other end of the first pole 3221 is vertically connected to the second pole 3222 , and the roller 323 is sheathed on the second pole 3222 and abuts against the first side 331 .
  • the torsion spring mechanism is a device with one end fixed and a torque acting on the other end. And under the action of torque, the torsion spring mechanism will undergo torsional deformation, and the size of the deformation angle has a certain relationship with the torque.
  • the simplest, such as torsion spring under the action of torque, the corresponding spring material will produce bending elastic deformation, so that the spring generates torque in the plane.
  • This torsion spring is commonly used for energy storage, torque transmission and compression.
  • the roller 323 is a cylinder, an elliptical cylinder, or a sphere, which is any reasonable shape convenient for sliding, and the middle of the roller 323 is formed with a through hole in the shape of a cylinder.
  • the projection of the partial arc surface of the first side 331 of the cam 33 on the second side 332 specifically satisfies a set curve function relationship; wherein the second side 332 is perpendicular to the first side 331 .
  • FIG. 6 is a schematic diagram of a rope-wound cam system.
  • the system is specifically implemented by a linear spring, the cam 33 and an inelastic wire wound on the cam 33 and connected to the spring.
  • the effect of the torsion spring device When the cam 33 rotates, the inelastic wire wound on the cam 33 will pull the spring to generate torque, and different torque deformation angle correspondences can be obtained by designing different profiles of the cam 33, that is, F(u T ) and ⁇ corresponding relationship.
  • the working torsion angle of the torsion spring mechanism (limit torsion under working load)
  • the free angle of the torsion spring mechanism (the angle between the two pins when there is no load) is 90°.
  • d 2mm
  • the material of the torsion spring is grade C of carbon spring steel wire. Look up the table and get:
  • E is modulus of elasticity, that is, an amount of anti-elastic deformation of the material made of the torsion spring mechanism, an index of material stiffness;
  • FIG. 7 is a schematic diagram of the contour fitting curve of the cam 33 .
  • the cubic curve is the fitting curve with the lowest power satisfying this condition.
  • the cubic spline curve is used to fit the torque curve.
  • the cubic spline meets the following conditions:
  • G( ⁇ ), derivative G( ⁇ )’, second derivative G( ⁇ )”, are always continuous in the interval, that is, the function is smooth.
  • G i ( ⁇ ) a i + bi ( ⁇ - ⁇ i )+ ci ( ⁇ - ⁇ i ) 2 +d i ( ⁇ - ⁇ i ) 3
  • the projection of the partial arc surface of the first side surface 331 of the cam 33 on the second side surface 332 specifically also satisfies the above-mentioned curve function as shown in FIG. 7 as an example, and satisfies
  • the part of the arc of the curve function corresponds to the part of the arc where the second leg 322 slides back and forth along the first side 331 of the cam 33 during the walking process of the human body.
  • FIG. 8 is a detailed structural diagram of the transmission member in the hip joint assembly in FIG. 2 .
  • the hip joint assembly 30 further includes a transmission member 34, one end of the transmission member 34 is connected to the connecting rod 20, and the second side 332 of the cam 33 is formed with a first through hole 3301, so that the transmission member 34 The other end can pass through the first through hole 3301 and be fixedly connected with the cam 33 .
  • the connecting rod 20 specifically drives the transmission member 34 to rotate, and then drives the cam 33 to rotate through the transmission member 34, so that the second leg 322 can move away from the first leg 321 along the partial arc surface of the first side 331, while Perform elastic storage. And when the second leg 322 moves and resets close to the first leg 321, it can drive the cam 33 to rotate relative to the first leg 321 to the second direction opposite to the first direction, and then the cam 33 can drive the transmission member 34 to rotate to pass The transmission member 34 drives the connecting rod 20 to rotate.
  • the second side 332 is perpendicular to the first side 331 .
  • part of the structure of the transmission member 34 protrudes from the first through hole 3301 to form a protrusion 341, and the protrusion 341 abuts against the housing 31, and the radial dimension of the protrusion 341 is larger than that of the first through hole 3301.
  • the radial size of the hole 3301 is such that the cam 33 can be reliably sleeved on the transmission member 34 without directly contacting the housing 31 , so that the cam 33 can be driven and rotated by the transmission member 34 more smoothly.
  • the hip joint assembly 30 further includes a circlip 35, and the side of the transmission member 34 facing the wall of the first through hole 3301 is formed with a circlip groove 3401, and the circlip 35 is sleeved in the circlip groove 3401, so as to Movement of the transmission member 34 along the central axis of the first through hole 3301 can be restricted.
  • the first through hole 3301 of the cam 33 also includes a concave portion 3303 recessed toward the first side 331 thereof, and the side of the transmission member 34 facing the hole wall of the first through hole 3301 protrudes to form a flat key portion 342 , and the flat key portion 342 is embedded in the recessed portion 3303 to limit the rotational movement of the transmission member 34 relative to the cam 33 , that is, the transmission member 34 can be fixedly connected to the cam 33 .
  • the second side 332 of the cam 33 is also formed with a second through hole 3302, and the second through hole 3302 is specifically in the shape of a meniscus, and is spaced apart from the first through hole 3301, so as to ensure that the cam The center of gravity of 33 is near its geometric center or coincides with its geometric center, and the weight of cam 33 can be reduced as much as possible to reduce the wearing burden of the corresponding human body.
  • the second through hole 3302 may be in any other reasonable shape such as trapezoid or ellipse, which is not limited in the present application.
  • the set angle between the first leg 321 and the second leg 322 in the initial state is 85°-95°, and the range of the included angle when the first leg 321 operates relative to the second leg 322 is 85° -135°.
  • the hip joint assembly 30 further includes a connecting rod fixing shell 36, the connecting rod fixing shell 36 is fastened on the side of the transmission member 34 away from the shell 31, and the other end of the connecting rod 20 is connected to the transmission member 34 and Between the connecting rod fixing shells 36, the transmission member 34 and the connecting rod fixing shells 36 are fixed in cooperation with each other.
  • the hip joint assembly 30 includes: a housing 31 , a cam fixing housing 37 , a cam 33 , an elastic member 32 , a roller 323 , a snap spring 35 , a transmission member 34 , a connecting rod fixing housing 36 , and a bolt 38 .
  • the bolt 38 specifically includes four 9-M3*8 bolts, one 10-M2.5*8 bolt, and one 11-M4*16 bolt. And the bolts 38 of various specifications are specifically used for the connection and fixation between the corresponding structural components in the hip joint assembly 30 .
  • the hip joint assembly 30 fixes two connecting rods 20 between the connecting rod fixing shell 36 and the transmission member 34.
  • the connecting rods 20 swing with the thighs, and the connecting rods 20 will drive the transmission member 34 to rotate
  • the cam 33 is fixed axially with the transmission part 34 through the shaft shoulder, and the transmission part 34 has a retaining ring groove 3401.
  • the cam 33 is fixed axially with the transmission part 34 through the shaft shoulder, and the transmission part 34 has a retaining ring groove 3401.
  • the transmission part 34 has a retaining ring groove 3401.
  • a flat key portion 342 is formed on the transmission member 34 , so that the transmission member 34 and the cam 33 can be rotationally fixed in a circumferential direction.
  • elastic member 32 for example, the movement principle that torsion spring mechanism and cam 33 cooperate in the gait are specifically: when the bottom of the foot on the swinging side touches the ground, the roller 323 on the torsion spring mechanism is in contact with cam 33, and this moment wears walking
  • One leg of the auxiliary exoskeleton device 1 enters the support state, and the thigh swings in the opposite direction of the movement direction.
  • the connecting rod 20 drives the transmission member 34 to rotate.
  • the diameter of the contact point between the cam 33 and the roller 323 increases continuously, and the roller 323 drives the torsion spring.
  • the corresponding pins of the mechanism are twisted, and the torsion spring mechanism generates torque, and enters the end of the supporting state, and the torsion spring mechanism generates the maximum working torque.
  • the connecting rod 20 drives the transmission member 34 to rotate.
  • the diameter of the contact point between the cam 33 and the roller 323 decreases continuously, and the torque stored by the torsion spring mechanism in the supporting state will increase accordingly.
  • the released torque will drive the cam 33 to rotate, and drive the connecting rod 20 to swing through the transmission member 34 and the connecting rod fixing shell 36.
  • the connecting rod 20 is connected with the knee joint assembly 10, and the knee joint assembly 10 The swing then drives the knee joints of the corresponding human body to swing out in the walking direction.
  • the torsion spring mechanism cam 33 can save space in a compact and complex assembly environment, and is relatively light in weight.
  • the hip joint assembly 30 absorbs the energy of negative work done by the knee joint during gait, and provides a forward pulling force for the knee joint during the swing phase.
  • the walking assistance exoskeleton device 1 can effectively coordinate with the gait direction of the human body, and is more comfortable to wear than orthotics, while taking into account portability and light weight.
  • the gait data and plantar pressure data of the subject are obtained, and the kinematics and dynamics analysis is carried out on the data.
  • Experimental data proves that the walking assisting exoskeleton device 1 has an improving effect in assisting gait.
  • the subjective wearing experience is that it can provide a forward lifting effect at the knee joint during gait.
  • the walking aid exoskeleton device includes: a knee joint assembly, a connecting rod, and a hip joint assembly, and the hip joint assembly further includes a shell, a cam, and an elastic member, and the elastic
  • the component includes a first leg and a second leg set at a set angle, one end of the connecting rod is connected to the knee joint assembly, the cam is connected to the shell and the other end of the connecting rod away from the knee joint assembly, the first leg is connected to the shell, and the second leg is connected to the shell.
  • the leg abuts against the first side of the cam, and the connecting rod drives the cam to rotate in the first direction relative to the first leg; wherein, the knee joint assembly is used to be worn on the user's knee joint, and the shell is used to be worn on the user's hip joint,
  • the connecting rod drives the cam to rotate in the first direction relative to the first leg so that the second leg moves away from the first leg along the partial arc surface of the first side, elastic energy storage is carried out so that the second leg can approach the first leg.
  • the cam When the legs move and reset, the cam is driven to rotate in the second direction opposite to the first direction relative to the first leg, and then the cam drives the connecting rod to rotate in the second direction, thereby avoiding the use of an additional power device to provide power assistance, and directly acting on the human body Energy is stored during the negative work stage in the walking process and fed back to the human body to achieve the purpose of assisting the human body to walk.
  • wearing the walking assisting exoskeleton device can help patients with walking dysfunction recover their natural gait, improve walking ability, realize motor function rehabilitation, and enhance independent quality of life; and compared with existing gait assisting equipment, this
  • the walking assist exoskeleton device can naturally obtain the walking energy of the human body, and then can feed back to the human body to assist walking through the exoskeleton device, so as to reduce the walking burden of the human body; and because no additional power device is required, the corresponding weight is relatively light, easy to wear, and human Machine coordination is strong and can coordinate with human gait.

Landscapes

  • Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Therapy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Rehabilitation Tools (AREA)

Abstract

一种步行辅助外骨骼装置(1),该步行辅助外骨骼装置(1)包括:膝关节组件(10)、连接杆(20)以及髋关节组件(30),髋关节组件(30)又包括外壳(31)、凸轮(33)以及弹性件(32),且弹性件包括呈设定角度设置的第一支脚(321)和第二支脚(322);膝关节组件(10)用于穿戴在用户的膝关节部,外壳(31)用于穿戴在用户的髋关节部,以在连接杆(20)驱动凸轮(33)相对第一支脚(321)向第一方向旋转,而使第二支脚(322)沿第一侧面(331)的部分弧面远离第一支脚(321)运动,并在第二支脚(322)靠近第一支脚(321)运动复位时,带动凸轮(33)相对第一支脚(321)向与第一方向相对的第二方向旋转,凸轮(33)带动连接杆(20)向第二方向旋转。通过上述方式,该步行辅助外骨骼装置(1)能够有效减少人体行走负担,且重量轻,穿戴简单,人机协同性强,能够与人体步态相协调。

Description

一种步行辅助外骨骼装置 技术领域
本发明涉及机械外骨骼技术领域,尤其涉及一种步行辅助外骨骼装置。
背景技术
近年来,随着机械电子与控制技术的快速发展,进而带动了外骨骼康复机器人的研究。外骨骼不同于矫形器,不能替代使用者的腿部进行支撑,而是在行走时为使用者提供辅助和助力,通过长时间重复的相关运动训练,可代替治疗师的帮助,从而有效降低了康复成本。
然而,目前市场上代表性的外骨骼系统,如HAL(hybrid assistive limb,混合辅助肢体)、ReWalk(下肢外骨骼机器人),多采用刚性连接驱动设计,重量较大,使用时额外负担大,会增加穿戴者的代谢消耗。
其他用于康复或者增强人体性能的外骨骼仍缺乏实际应用。开发一种可用于实际应用的便携式下肢外骨骼仍需要解决许多技术挑战。例如,气动人工肌肉驱动器驱动的外骨骼由于动力源的原因而缺乏便携性,由于空气的压缩性而导致对位置和力的控制精度不高。因此,并不适用于日常康复训练。此外,在穿戴者进行康复训练的过程中,驱动器产生所需要的制动扭矩是不节能的。
发明内容
本申请提供的一种步行辅助外骨骼装置,能够解决现有技术中的外骨骼系统的重量较大,使用时额外负担大,会增加穿戴者的代谢消耗,且对位置和力的控制精度不高,并不适用于日常康复训练,相应驱动器产生所需要的制动扭矩不节能的问题。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种步行辅助外骨骼装置,其中,该步行辅助外骨骼装置包括:膝关节组件,用于穿戴在用户的膝关节部;连接杆,连接杆的一端连接于膝关节组件;髋关节组件,包括外壳、凸轮以及弹性件,外壳用于穿戴在用户的髋关 节部,凸轮连接于外壳和连接杆远离膝关节组件的另一端,弹性件包括呈设定角度设置的第一支脚和第二支脚,第一支脚连接于外壳,第二支脚抵接于凸轮的第一侧面,连接杆驱动凸轮相对第一支脚向第一方向旋转,以使第二支脚沿第一侧面的部分弧面远离第一支脚运动,并在第二支脚靠近第一支脚运动复位时,带动凸轮相对第一支脚向与第一方向相对的第二方向旋转,凸轮带动连接杆向第二方向旋转。
其中,弹性件为扭转弹簧机构,弹性件还包括滚轮,第二支脚包括第一支杆和第二支杆,第一支杆的一端连接于第一支脚,第一支杆的另一端垂直连接于第二支杆,滚轮套设于第二支杆,并抵接于第一侧面。
其中,第一侧面的部分弧面在凸轮的第二侧面上的投影满足设定曲线函数关系;其中,第二侧面垂直第一侧面。
其中,髋关节组件还包括传动件,传动件的一端连接于连接杆,凸轮的第二侧面形成有第一通孔,传动件的另一端穿设于第一通孔,传动件由连接杆或凸轮带动转动,以辅助连接杆带动凸轮旋转,或辅助凸轮带动连接杆旋转。
其中,传动件的部分结构凸出于第一通孔形成凸起部,凸起部抵接于外壳;其中,凸起部的径向尺寸大于第一通孔的径向尺寸。
其中,髋关节组件还包括卡簧,传动件面向第一通孔的孔壁的侧面形成有卡簧槽,卡簧套设于卡簧槽,以限制传动件沿第一通孔的中轴线方向运动。
其中,第一通孔包括向靠近第一侧面凹设的凹陷部,传动件面向第一通孔的孔壁的侧面凸出形成有平键部,平键部嵌设于凹陷部,以限制传动件相对凸轮旋转运动。
其中,髋关节组件还包括连杆固定壳,连杆固定壳扣合在传动件远离外壳的一侧面上,连接杆的另一端连接在传动件和连杆固定壳之间,以由传动件和连杆固定壳相互配合固定。
其中,凸轮的第二侧面还形成有第二通孔,所述第二通孔为弯月状,且与所述第一通孔间隔设置。
其中,设定角度为85°-95°,第一支脚相对第二支脚运行时的夹角变 化范围为85°-135°。
本申请的有益效果是:区别于现有技术,本申请提供的步行辅助外骨骼装置包括:膝关节组件、连接杆以及髋关节组件,髋关节组件又进一步包括外壳、凸轮以及弹性件,且弹性件包括呈设定角度设置的第一支脚和第二支脚,连接杆的一端连接于膝关节组件,凸轮连接于外壳和连接杆远离膝关节组件的另一端,第一支脚连接于外壳,第二支脚抵接于凸轮的第一侧面,连接杆驱动凸轮相对第一支脚向第一方向旋转;其中,膝关节组件用于穿戴在用户的膝关节部,外壳用于穿戴在用户的髋关节部,以在连接杆驱动凸轮相对第一支脚向第一方向旋转,而使第二支脚沿第一侧面的部分弧面远离第一支脚运动时,进行弹性蓄能,以能够在第二支脚靠近第一支脚运动复位时,带动凸轮相对第一支脚向与第一方向相对的第二方向旋转,进而通过凸轮带动连接杆向第二方向旋转,从而能够避免使用额外的动力装置提供助力,而直接在人体行走过程中的负功阶段进行蓄能,并反馈给人体,以达到辅助人体行走的目的。由此可知,通过穿戴该步行辅助外骨骼装置可以帮助行走功能障碍患者恢复自然步态,提高行走能力,实现运动功能康复,增强独立生活质量;且与现有的步态辅助设备相比,该步行辅助外骨骼装置能够自然获取人体行走能量,进而能够通过外骨骼装置反馈给人体进行助力行走,以减少人体行走负担;且因无需额外的动力装置,相应的重量也较轻,穿戴简单,人机协同性强,能够与人体步态相协调。
附图说明
图1是本申请步行辅助外骨骼装置一实施例的爆炸结构示意图;
图2是图1中步行辅助外骨骼装置中的髋关节组件的爆炸结构示意图;
图3是简化的2D行走模型的示意图;
图4是图2中髋关节组件中的弹性件一详细结构示意图;
图5是图2中髋关节组件中的凸轮的一详细结构示意图;
图6是绳绕凸轮系统的示意图;
图7是凸轮轮廓拟合曲线的示意图;
图8是图2中髋关节组件中的传动件一详细结构示意图。
具体实施方式
发明人经长期研究发现,行走是人类日常生活的基本需求,行走功能障碍严重影响个人生活质量。在我们的日常生活中,有太多的因素会导致行走功能障碍,并且在大多数人的一生中都会经历某种形式的行走功能障碍。随着我国人口老龄化的加剧,行动能力的丧失所造成的严重社会问题和经济问题不可小觑。因此迫切需要开发可行的助行解决方案,以辅助并提高患者的行动能力,从而改善生活质量。可穿戴步态辅助设备是解决这一日益严重问题的有效方式。
在过去的几十年里,随着技术的进步,研究人员开发了新型的步态辅助设备,以重现患者的日常活动能力。其中,膝踝足矫形器Knee Ankle Foot Orthosis(KAFO)已经被广泛采用来治疗下肢骨折、关节炎、关节手术后的患者以及异常步态的矫正治疗。KAFO用于提供膝关节和踝关节的稳定性,同时通过地面反作用力间接影响髋关节的稳定性。由于限制膝关节和踝关节的运动,穿戴者的步态产生不自然的动作,比如抬高臀部进行补偿,被动的增加了穿戴者的代谢成本。与正常步态相比,穿戴KAFO时步态通常有代谢成本高,行走速度慢,长时间穿戴舒适度低等缺点。此外,患者在康复治疗的过程中往往需要物理治疗师的介入和帮助。
近年来,随着机械电子与控制技术的快速发展,也进而带动了外骨骼康复机器人的研究。外骨骼不同于矫形器,不能替代使用者的腿部进行支撑,而是在行走时为使用者提供辅助和助力,通过长时间重复的相关运动训练,可代替治疗师的帮助,从而有效降低了康复成本。
根据外骨骼作用方式的不同,可以分为两大类:主动式外骨骼和被动式外骨骼。在主动式步态辅助外骨骼中,驱动方式包括了电机驱动、液压驱动、气压驱动、人工肌肉驱动等,其中以电机作为驱动方式的主动式外骨骼为主。电机驱动相对灵活,可以配合减速器、离合器、连杆 机构等进行关节的传动。
具体的,HAL下肢康复外骨骼机器人,已实现产品化,其主要是由无线LAN(Local Area Network,局域网)系统、电动驱动系统、传感系统、执行机构等组成,机器人包括了下肢双侧以及腰部电源模块,质量为23千克,下肢15千克,共26个自由度。
而ReWalk下肢外骨骼机器人包括了两侧下肢以及背包,背包内集成了电源模块和控制系统。ReWalk可以帮助下肢瘫痪患者站立,行走,转弯和上下楼梯。
下肢康复外骨骼机器人作为一种智能仿生辅助康复设备,已经逐渐向商业化的方向发展。实验结果已经证实,外骨骼可以帮助行走功能障碍患者进行康复治疗,并且为身体健全的人在正常行走,负重行走甚至跑步时提高人体的运动能力。
然而,目前市场上代表性的外骨骼系统,如上述HAL、ReWalk,多采用刚性连接驱动设计。虽然能够实现快速准确的位置以及角度控制,但是重量较大,使用时额外负担大,会增加穿戴者的代谢消耗,同时,刚性机构会对关节的运动自由度造成一定的限制,限制使用时长和行走效率。
其他用于康复或者增强人体性能的外骨骼仍缺乏实际应用。而开发一种可用于实际应用的便携式下肢外骨骼仍需要解决许多技术挑战。例如,气动人工肌肉驱动器驱动的外骨骼由于动力源的原因而缺乏便携性,由于空气的压缩性将导致对位置和力的控制精度不高。因此,并不适用于日常康复训练。此外,在穿戴者进行康复训练的过程中,驱动器产生所需要的制动扭矩是不节能的。
因此,通过下肢生物力学分析,基于还具备一定行动能力的行走功能障碍患者,急需设计一款简单,便携,与人体协调的被动式步态康复器,使其拥有减少关节运动约束、重量轻、方便快速穿戴等特点。
为了能够有效减少人体行走的负担,且重量轻,穿戴简单,人机协同性强,能够与人体步态相协调,本申请提供了一种步行辅助外骨骼装置。下面结合附图和实施例,对本申请作进一步的详细描述。特别指出 的是,以下实施例仅用于说明本申请,但不对本申请的范围进行限定。同样的,以下实施例仅为本申请的部分实施例而非全部实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
请参阅图1-图2,其中,图1是本申请步行辅助外骨骼装置一实施例的爆炸结构示意图,图2是图1中步行辅助外骨骼装置中的髋关节组件的爆炸结构示意图。在本实施例中,步行辅助外骨骼装置1包括:膝关节组件10、连接杆20以及髋关节组件30。
其中,本申请中提供的一种步行辅助外骨骼装置1具体可用于对人体的行走进行辅助,比如,通过穿戴该步行辅助外骨骼装置1帮助行走功能障碍患者恢复自然步态,提高其行走能力,实现运动功能康复,以增强其独立生活质量。且具体实用于还具备一定行动能力的偏瘫患者,腿脚虚弱走路困难的高龄人群,意外伤害导致的步行不便者,或者是需要长时间徒步,登山等运动爱好者。当然,在其它实施例中,该步行辅助外骨骼装置1还可以用在智能机器人的关节上或其他任一合理的机械装置中,本实施例对此并不加以限制。
具体地,膝关节组件10用于穿戴在用户的膝关节部,而连接杆20的一端连接于膝关节组件10,髋关节组件30进一步包括外壳31、凸轮33以及弹性件32,且该外壳31用于穿戴在用户的髋关节,而凸轮33连接于外壳31和连接杆20远离膝关节组件10的另一端。
则可理解的,步行辅助外骨骼装置1具体是通过将膝关节组件10和髋关节组件30分别穿戴至相应的人体的膝关节部和髋关节上,并通过连接杆20实现膝关节组件10与髋关节组件30之间的连接及力的传导,从而能够在人体行走的过程中进行辅助。
进一步地,髋关节组件30的弹性件32具体包括第一支脚321和第二支脚322,该第一支脚321在初始状态时与该第二支脚322呈设定角度设置,且该第一支脚321与该第二支脚322之间的夹角能够在受相应外力的作用时,逐渐变大,并在该外力消失时,回弹复位。
具体地,该第一支脚321连接于外壳31,而第二支脚322抵接于凸轮33的第一侧面331,以在连接杆20驱动凸轮33相对第一支脚321向第一方向旋转,比如,穿戴有步行辅助外骨骼装置1的人体在带动该步行辅助外骨骼装置1向其步行方向的相反方向摆动时,膝关节组件10能够通过连接杆20驱动髋关节组件30的凸轮33相对第一支脚321向第一方向旋转,而使第二支脚322沿凸轮33的第一侧面331的部分弧面远离第一支脚321运动,也即,第二支脚322与第一支脚321之间的夹角在外力的作用下逐渐变大,以进行蓄能。
而当该人体带动步行辅助外骨骼装置1向其步行方向摆动时,也即向前行走时,驱使凸轮33相对第一支脚321向第一方向旋转的外力便会消失,而此时髋关节组件30的弹性件32将回弹复位,也即第二支脚322与第一支脚321之间的夹角将恢复初始状态,第二支脚322将靠近第一支脚321运动复位,以带动凸轮33相对第一支脚321向与第一方向相对的第二方向旋转,而凸轮33又将带动连接杆20向第二方向旋转,从而给人体向当前的行走方向进行的运动提供助力,比如,为该人体提供一向上提升的力以及向前摆动的力。
其中,凸轮33的第一侧面331与其第二侧面332垂直,而连接杆20的延伸方向平行于该第二侧面332。且该第一侧面331具体指的是凸轮33的外周面,也即一个环状的曲面。
其中,该第一方向具体可对应于相应人体当前行走方向的反方向,而第二方向对应于人体当前的行走方向。
需说明的是,如图3所示,图3是简化的2D行走模型的示意图。该2D行走模型具体可对应于一无膝关节二维被动机器人模型,且该机器人没有驱动和控制系统,机构简单,只有髋关节一个自由度,以模拟人体实际行走的场景。由此可知,在适当调整机器人的初始条件,比如, 初始关节角度(图3中的摆动角度)和初始关节角速度来匹配机器人的被动动力学和环境参数(斜坡角度),便可保证该机器人稳定的走下具有一定坡度的斜坡。在这种纯被动行走过程中,每个步态周期都类似于一个倒立摆的摆动过程,连续行走由多个倒立摆摆动周期衔接而成。行走中的能量消耗主要是由两个相邻步态周期之间的衔接过渡过程中脚与地面,也即图3中支撑腿与地面之间的冲击产生,而能量的补充则完全由重力,也即位于地面上空的摆动腿向行走方向摆动时的重力提供。通过对该机器人的实验,便可对应分析被动行走的稳定性问题和能量问题,以得到机器人的机构参数对行走性能的影响。
则可理解的,步行辅助外骨骼装置1具体可穿戴至相应人体其中一侧的下肢上,或分别穿戴至该人体两侧的下肢上,以能够在该人体的行走过程中,使步行辅助外骨骼装置1在该人体向行走方向的相反方向摆动时进行蓄能,而向前行走时,释放能量,为人体的下肢提供一提拉力和向前摆动的力,以辅助人体行走。
上述方案,步行辅助外骨骼装置1通过在连接杆20驱动凸轮33相对第一支脚321向第一方向旋转,而使第二支脚322沿第一侧面331的部分弧面远离第一支脚321运动时,能够进行弹性蓄能,以能够在第二支脚322靠近第一支脚321运动复位时,带动凸轮33相对第一支脚321向与第一方向相对的第二方向旋转,进而通过凸轮33带动连接杆20向第二方向旋转,从而使步行辅助外骨骼装置1能够避免使用额外的动力装置提供助力,而直接在人体行走的过程中的负功阶段进行蓄能,并反馈给人体,以达到辅助人体行走的目的。由此可知,通过穿戴该步行辅助外骨骼装置1可以帮助行走功能障碍患者恢复自然步态,提高行走能力,实现运动功能康复,增强独立生活质量;且与现有的步态辅助设备相比,该步行辅助外骨骼装置1能够自然获取人体行走能量,进而能够通过外骨骼装置反馈给人体进行助力行走,以减少人体行走负担;且因无需额外的动力装置,相应的重量也较轻,穿戴简单,人机协同性强,能够与人体步态相协调。
请继续结合参阅图4-图5,其中,图4是图2中髋关节组件中的弹 性件一详细结构示意图,图5是图2中髋关节组件中的凸轮的一详细结构示意图。
在一实施例中,弹性件32具体为扭转弹簧机构,且弹性件32还包括有滚轮323,而第二支脚322包括第一支杆3221和第二支杆3222,第一支杆3221的一端连接于第一支脚321,第一支杆3221的另一端垂直连接于第二支杆3222,而滚轮323套设于第二支杆3222,并抵接于第一侧面331。
需说明的是,该扭转弹簧机构是一种一端固定而另一端作用有扭矩的装置。且在扭矩的作用下,该扭转弹簧机构会发生扭转变形,其变形角的大小与扭矩有一定的关系。最简单的,比如扭簧,该扭簧在扭矩的作用下,相应的弹簧材料会产生弯曲弹性变形,而使弹簧在平面内产生扭矩。该扭簧常用于储能,传递扭矩和压紧。
可选地,该滚轮323为圆柱体或椭圆柱体或球体等任一合理的方便滑动的形状样式,且该滚轮323的中部位置形成有呈圆柱体设置的通孔。
在一实施例中,凸轮33的第一侧面331的部分弧面在其第二侧面332上的投影具体还满足一设定曲线函数关系;其中,该第二侧面332垂直第一侧面331。
需说明的是,如图6所示,图6是绳绕凸轮系统的示意图。其中,以使用一种基于凸轮33,也即图中的凸轮A的绳绕弹簧系统为例,该系统具体是通过线性弹簧,凸轮33和绕在凸轮33上并连接弹簧的无弹性线实现模拟扭转弹簧装置的效果。当凸轮33旋转时,绕在凸轮33上的无弹性线会拉动弹簧从而产生扭矩,通过设计不同的凸轮33轮廓等可以得到不同的扭矩变形角对应关系,也即,F(u T)与α的对应关系。
相反的,我们也可以通过离散个点满足力矩-角度关系(F(u T)与α的对应关系)来进行凸轮33的轮廓的设计,也即图6中凸轮A绕设有无弹性线的部分弧段的样式设计。在这种情况下,对离散力矩点进行曲线拟合是很有必要的。下面将基于异型滚珠扭转弹簧样品的各项参数,对离散力矩点的理论值大小进行求解。
设定扭转弹簧机构工作扭转角度(工作载荷下极限扭转)
Figure PCTCN2021137591-appb-000001
扭转弹簧机构的自由角度(无载荷时两引脚间的夹角)为90°。根据髋关节外骨骼给定的结构空间考虑,我们给定扭转弹簧直径d=2mm,扭转弹簧圈数n=6。扭转弹簧材料选择碳素弹簧钢丝C级。查表得:
抗拉极限强度σ b=1710Mpa;
许用弯曲应力σ BP=0.8σ b=0.8*1710=1368Mpa;
考虑结构紧凑,暂定旋转比c=6;
曲度系数
Figure PCTCN2021137591-appb-000002
扭转弹簧机构直径D=c*d=6*2=12mm;
扭转弹簧机构刚度
Figure PCTCN2021137591-appb-000003
其中,E为弹性模量,也即扭转弹簧机构的制成材料的抗弹性变形的一个量,材料刚度的一个指标;
工作极限扭矩
Figure PCTCN2021137591-appb-000004
下面对离散力矩点进行拟合,离散力矩点如表1所示。
工作角度 力矩(N mm)
100° 233.45
110° 466.9
120° 700.35
具体地,如图7所示,图7是凸轮33轮廓拟合曲线的示意图。通过论述力矩及力矩导数连续是凸轮33轮廓平滑的必要条件,三次曲线是最低幂次的满足该条件的拟合曲线,下面利用三次样条曲线来拟合力矩曲线。
对N+1(N≥2)个离散的力矩点,表示为:
G[α(i)]=G i,i=0,1,...,N;
则可用曲线G i(α)拟合,其中G i(α)满足:
G ii-1)=G i-1,G ii)=G i,i=1,2,...,N;
该曲线G i(α)对应的凸轮33轮廓坐标可描述为:
(x,y)=[x ii),y(α i)],i=1,2,...,N;
该三次样条曲线满足以下条件:
G(α)=G i(α)为三次多项式。
G(α),导数G(α)’,二阶导数G(α)”,在区间内始终是连续的,即函数光滑。
指定样条曲线的三次微分分配,即
G” 01)=G” 11);
G” N-2N-1)=G” N-1N-1)。
则得到了N个三次多项式分段为:
G i(α)=a i+b i(α-α i)+c i(α-α i) 2+d i(α-α i) 3
其中,a i,b i,c i,d i,i=1,2,...,N代表4N个未知系数。
可理解的,在一具体的实施例中,凸轮33的第一侧面331的部分弧面在其第二侧面332上的投影具体还满足上述所例举如图7所示的曲线函数,且满足该曲线函数的部分弧面对应于人体行走过程中,第二支脚322沿凸轮33的第一侧面331进行来回滑动的那一部分弧面。
请继续结合参阅图8,图8是图2中髋关节组件中的传动件一详细结构示意图。
在一实施例中,髋关节组件30还包括传动件34,该传动件34的一端连接于连接杆20,而凸轮33的第二侧面332形成有第一通孔3301,以使传动件34的另一端能够穿设于第一通孔3301而与凸轮33固定连接。
由此可知,连接杆20具体是通过带动传动件34转动,进而通过传动件34带动凸轮33旋转,以使第二支脚322能够沿第一侧面331的部分弧面远离第一支脚321运动,而进行弹性蓄能。且在在第二支脚322靠近第一支脚321运动复位时,能够带动凸轮33相对第一支脚321向与第一方向相对的第二方向旋转,进而能够通过凸轮33带动传动件34转动,以通过传动件34带动连接杆20旋转。其中,第二侧面332垂直第一侧面331。
在一实施例中,传动件34的部分结构凸出于第一通孔3301形成凸 起部341,而凸起部341抵接于外壳31,且凸起部341的径向尺寸大于第一通孔3301的径向尺寸,以能够使凸轮33可靠地套设在传动件34上而不与外壳31直接接触,从而能够更顺利的被传动件34带动旋转。
在一实施例中,髋关节组件30还包括卡簧35,且传动件34面向第一通孔3301的孔壁的侧面形成有卡簧槽3401,卡簧35套设于卡簧槽3401,以能够限制传动件34沿第一通孔3301的中轴线方向运动。
进一步地,凸轮33的第一通孔3301还包括向靠近其第一侧面331凹设的凹陷部3303,且传动件34面向第一通孔3301的孔壁的侧面凸出形成有平键部342,而平键部342嵌设于凹陷部3303,以能够限制传动件34相对凸轮33旋转运动,也即使传动件34能够与凸轮33固定连接。
可选地,凸轮33的第二侧面332还形成有第二通孔3302,而该第二通孔3302具体为弯月状,且与第一通孔3301间隔设置,以能够尽可能的保证凸轮33的重心在其几何中心附近或与其几何中心重合,并能够尽可能的减少凸轮33的重量,以减轻相应人体的穿戴负担。而在其他实施例中,该第二通孔3302而可以呈梯形或椭圆形等其他任一合理的形状样式,本申请对此不做限定。
可选地,第一支脚321和第二支脚322之间在初始状态时的设定角度为85°-95°,而第一支脚321相对第二支脚322运行时的夹角变化范围为85°-135°。
在一实施例中,髋关节组件30还包括连杆固定壳36,连杆固定壳36扣合在传动件34远离外壳31的一侧面上,而连接杆20的另一端连接在传动件34和连杆固定壳36之间,以由传动件34和连杆固定壳36相互配合固定。
在一具体的实施例中,髋关节组件30包括:外壳31、凸轮固定外壳件37、凸轮33、弹性件32、滚轮323、卡簧35、传动件34、连杆固定壳36、螺栓38。
其中,该螺栓38具体包括9-M3*8螺栓四个、10-M2.5*8螺栓一个、11-M4*16螺栓一个。且各规格的螺栓38具体用于髋关节组件30中相应各结构件之间的连接固定。
进一步地,髋关节组件30在连杆固定壳36与传动件34之间固定了两个连接杆20,当人体步态时,连接杆20随大腿摆动,连接杆20会带动传动件34,旋转凸轮33通过轴肩与传动件34轴向固定,传动件34上留有卡簧槽3401,当凸轮33一侧与传动件34轴向接触后,另一侧通过卡簧35进行轴向固定。同时,传动件34上还形成有平键部342,使得传动件34能够与凸轮33进行周向旋转固定。
其中,弹性件32,比如,扭转弹簧机构和凸轮33配合在步态中的运动原理具体是:当摆动侧的足底接触地面后扭转弹簧机构上的滚轮323与凸轮33接触,此时穿戴步行辅助外骨骼装置1一侧腿进入支撑态,大腿向运动方向的反方向摆动,连接杆20带动传动件34转动,此时凸轮33与滚轮323接触点的直径不断增加,滚轮323进而带动扭转弹簧机构的相应引脚扭转,扭转弹簧机构产生扭矩,进入支撑态末期,扭转弹簧机构产生最大工作扭矩。
进入摆动态时,大腿向运动方向的同方向摆动,连接杆20带动传动件34转动,此时凸轮33与滚轮323接触点的直径不断减小,扭转弹簧机构在支撑态时储存的扭矩,随着步态进入摆动态释放,而释放的扭矩将带动凸轮33转动,并通过传动件34和连杆固定壳36带动连接杆20摆动,连接杆20与膝关节组件10连接,膝关节组件10的摆动随即带动相应人体的膝关节向行走方向摆出。
可理解的,扭转弹簧机构凸轮33配合在紧凑、复杂的装配环境中可以节省空间,并且相对质量轻。髋关节组件30实现了吸收步态中膝关节做负功的能量,在摆动阶段为膝关节提供一个向前的提拉力。
上述方案,当人体腿部进行负荷时,人体的耗氧量会显著增加,现有的步态辅助设备都在向着轻量化的方向发展,而本申请中的步行辅助外骨骼装置1的适用对象为还具备一定行动能力的偏瘫患者,腿脚虚弱走路困难的高龄人群,意外伤害导致的步行不便者,或者是需要长时间徒步,登山等运动爱好者。针对此类人群,该步行辅助外骨骼装置1能够有效与人体步态向协调,且比矫形器穿戴更加舒适,同时兼顾了便携与轻量化。
且通过在产品样机制作完成后进行三维运动捕捉实验,获取了受试者的步态数据和足底压力数据,对数据进行了运动学和动力学分析。实验数据证明,步行辅助外骨骼装置1在辅助步态方面具有改善效果。主观穿戴感受为在步态时可以在膝关节处提供一个向前的提拉效果。
本申请的有益效果是:区别于现有技术,本申请提供的步行辅助外骨骼装置包括:膝关节组件、连接杆以及髋关节组件,髋关节组件又进一步包括外壳、凸轮以及弹性件,且弹性件包括呈设定角度设置的第一支脚和第二支脚,连接杆的一端连接于膝关节组件,凸轮连接于外壳和连接杆远离膝关节组件的另一端,第一支脚连接于外壳,第二支脚抵接于凸轮的第一侧面,连接杆驱动凸轮相对第一支脚向第一方向旋转;其中,膝关节组件用于穿戴在用户的膝关节部,外壳用于穿戴在用户的髋关节部,以在连接杆驱动凸轮相对第一支脚向第一方向旋转,而使第二支脚沿第一侧面的部分弧面远离第一支脚运动时,进行弹性蓄能,以能够在第二支脚靠近第一支脚运动复位时,带动凸轮相对第一支脚向与第一方向相对的第二方向旋转,进而通过凸轮带动连接杆向第二方向旋转,从而能够避免使用额外的动力装置提供助力,而直接在人体行走过程中的负功阶段进行蓄能,并反馈给人体,以达到辅助人体行走的目的。由此可知,通过穿戴该步行辅助外骨骼装置可以帮助行走功能障碍患者恢复自然步态,提高行走能力,实现运动功能康复,增强独立生活质量;且与现有的步态辅助设备相比,该步行辅助外骨骼装置能够自然获取人体行走能量,进而能够通过外骨骼装置反馈给人体进行助力行走,以减少人体行走负担;且因无需额外的动力装置,相应的重量也较轻,穿戴简单,人机协同性强,能够与人体步态相协调。
以上仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

  1. 一种步行辅助外骨骼装置,其特征在于,包括:
    膝关节组件,用于穿戴在用户的膝关节部;
    连接杆,所述连接杆的一端连接于所述膝关节组件;
    髋关节组件,包括外壳、凸轮以及弹性件,所述外壳用于穿戴在用户的髋关节部,所述凸轮连接于所述外壳和所述连接杆远离所述膝关节组件的另一端,所述弹性件包括呈设定角度设置的第一支脚和第二支脚,所述第一支脚连接于所述外壳,所述第二支脚抵接于所述凸轮的第一侧面,所述连接杆驱动所述凸轮相对所述第一支脚向第一方向旋转,以使所述第二支脚沿所述第一侧面的部分弧面远离所述第一支脚运动,并在所述第二支脚靠近所述第一支脚运动复位时,带动所述凸轮相对所述第一支脚向与所述第一方向相对的第二方向旋转,所述凸轮带动所述连接杆向所述第二方向旋转。
  2. 根据权利要求1所述的步行辅助外骨骼装置,其特征在于,
    所述弹性件为扭转弹簧机构,所述弹性件还包括滚轮,所述第二支脚包括第一支杆和第二支杆,所述第一支杆的一端连接于所述第一支脚,所述第一支杆的另一端垂直连接于所述第二支杆,所述滚轮套设于所述第二支杆,并抵接于所述第一侧面。
  3. 根据权利要求1所述的步行辅助外骨骼装置,其特征在于,
    所述第一侧面的部分弧面在所述凸轮的第二侧面上的投影满足设定曲线函数关系;其中,所述第二侧面垂直于所述第一侧面。
  4. 根据权利要求1所述的步行辅助外骨骼装置,其特征在于,
    所述髋关节组件还包括传动件,所述传动件的一端连接于所述连接杆,所述凸轮的第二侧面形成有第一通孔,所述传动件的另一端穿设于所述第一通孔,所述传动件由所述连接杆或所述凸轮带动转动,以辅助所述连接杆带动所述凸轮旋转,或辅助所述凸轮带动所述连接杆旋转。
  5. 根据权利要求4所述的步行辅助外骨骼装置,其特征在于,
    所述传动件的部分结构凸出于所述第一通孔形成凸起部,所述凸起部抵接于所述外壳;其中,所述凸起部的径向尺寸大于所述第一通孔的径向尺寸。
  6. 根据权利要求5所述的步行辅助外骨骼装置,其特征在于,
    所述髋关节组件还包括卡簧,所述传动件面向所述第一通孔的孔壁的侧面形成有卡簧槽,所述卡簧套设于所述卡簧槽,以限制所述传动件沿所述第一通孔的中轴线方向运动。
  7. 根据权利要求4所述的步行辅助外骨骼装置,其特征在于,
    所述第一通孔包括向靠近所述第一侧面凹设的凹陷部,所述传动件面向所述第一通孔的孔壁的侧面凸出形成有平键部,所述平键部嵌设于所述凹陷部,以限制所述传动件相对所述凸轮旋转运动。
  8. 根据权利要求4所述的步行辅助外骨骼装置,其特征在于,
    所述髋关节组件还包括连杆固定壳,所述连杆固定壳扣合在所述传动件远离所述外壳的一侧面上,所述连接杆的另一端连接在所述传动件和所述连杆固定壳之间,以由所述传动件和所述连杆固定壳相互配合固定。
  9. 根据权利要求4-8中任一项所述的步行辅助外骨骼装置,其特征在于,
    所述凸轮的所述第二侧面还形成有第二通孔,所述第二通孔为弯月状,且与所述第一通孔间隔设置。
  10. 根据权利要求1-8中任一项所述的步行辅助外骨骼装置,其特征在于,
    所述设定角度为85°-95°,所述第一支脚相对所述第二支脚运行时的夹角变化范围为85°-135°。
PCT/CN2021/137591 2021-10-28 2021-12-13 一种步行辅助外骨骼装置 WO2023070863A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111265094.1 2021-10-28
CN202111265094.1A CN114209541A (zh) 2021-10-28 2021-10-28 一种步行辅助外骨骼装置

Publications (1)

Publication Number Publication Date
WO2023070863A1 true WO2023070863A1 (zh) 2023-05-04

Family

ID=80696202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137591 WO2023070863A1 (zh) 2021-10-28 2021-12-13 一种步行辅助外骨骼装置

Country Status (2)

Country Link
CN (1) CN114209541A (zh)
WO (1) WO2023070863A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106109181A (zh) * 2016-05-03 2016-11-16 袁博 一种复位外骨骼关节及其外骨骼助力装置
CN107398889A (zh) * 2016-05-20 2017-11-28 深圳市朗驰欣创科技股份有限公司 巡检机器人导向机构
CN107569362A (zh) * 2017-08-29 2018-01-12 中国科学院深圳先进技术研究院 一种外骨骼机器人及其髋关节部件
US20180116851A1 (en) * 2016-10-28 2018-05-03 Daegu Gyeongbuk Institute Of Science And Technology Tendon device for suit type robot for assisting human with physical strength
US20180193172A1 (en) * 2016-11-11 2018-07-12 Sarcos Corp. Tunable Actuator Joint Modules Having Energy Recovering Quasi-Passive Elastic Actuators for Use within a Robotic System
CN109124983A (zh) * 2018-07-03 2019-01-04 浙江大学 一种基于气动肌肉的下肢康复外骨骼系统
CN109938970A (zh) * 2019-03-22 2019-06-28 西安交通大学 可穿戴式下肢外骨骼康复机器人
CN209627449U (zh) * 2017-09-14 2019-11-12 桑堇馨 手机壳支架
CN110744526A (zh) * 2019-10-30 2020-02-04 重庆理工大学 一种被动式下肢运动助力外骨骼装置
CN111347458A (zh) * 2018-12-21 2020-06-30 深圳市奇诺动力科技有限公司 关节机构及具有该关节机构的机器人
CN111643320A (zh) * 2020-04-17 2020-09-11 上海理工大学 下肢外骨骼机器人髋膝联动机构及机器
CN112972209A (zh) * 2021-03-16 2021-06-18 北京工业大学 一种髋膝耦合的被动型储能助力外骨骼

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102846448B (zh) * 2012-09-28 2014-10-29 中国科学院深圳先进技术研究院 便携式可穿戴下肢康复及助行外骨骼机器人
JP2016059763A (ja) * 2014-09-22 2016-04-25 国立大学法人山梨大学 下肢動作支援装置
CN109248050A (zh) * 2018-11-09 2019-01-22 深圳华创测试技术有限公司 一种步行辅助装置
CN212490680U (zh) * 2020-03-13 2021-02-09 陕西卫康医疗设备有限公司 一种可自储弹性能的外骨骼助走器械
CN111759682B (zh) * 2020-07-14 2023-03-28 北方工业大学 一种无动力人体下肢助力外骨骼装置
CN113478466B (zh) * 2021-07-23 2023-06-20 华南理工大学 一种兼具负载传导及步行节能的无源下肢外骨骼

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106109181A (zh) * 2016-05-03 2016-11-16 袁博 一种复位外骨骼关节及其外骨骼助力装置
CN107398889A (zh) * 2016-05-20 2017-11-28 深圳市朗驰欣创科技股份有限公司 巡检机器人导向机构
US20180116851A1 (en) * 2016-10-28 2018-05-03 Daegu Gyeongbuk Institute Of Science And Technology Tendon device for suit type robot for assisting human with physical strength
US20180193172A1 (en) * 2016-11-11 2018-07-12 Sarcos Corp. Tunable Actuator Joint Modules Having Energy Recovering Quasi-Passive Elastic Actuators for Use within a Robotic System
CN107569362A (zh) * 2017-08-29 2018-01-12 中国科学院深圳先进技术研究院 一种外骨骼机器人及其髋关节部件
CN209627449U (zh) * 2017-09-14 2019-11-12 桑堇馨 手机壳支架
CN109124983A (zh) * 2018-07-03 2019-01-04 浙江大学 一种基于气动肌肉的下肢康复外骨骼系统
CN111347458A (zh) * 2018-12-21 2020-06-30 深圳市奇诺动力科技有限公司 关节机构及具有该关节机构的机器人
CN109938970A (zh) * 2019-03-22 2019-06-28 西安交通大学 可穿戴式下肢外骨骼康复机器人
CN110744526A (zh) * 2019-10-30 2020-02-04 重庆理工大学 一种被动式下肢运动助力外骨骼装置
CN111643320A (zh) * 2020-04-17 2020-09-11 上海理工大学 下肢外骨骼机器人髋膝联动机构及机器
CN112972209A (zh) * 2021-03-16 2021-06-18 北京工业大学 一种髋膝耦合的被动型储能助力外骨骼

Also Published As

Publication number Publication date
CN114209541A (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
CN109223456B (zh) 一种基于人机末端交互的下肢外骨骼机器人系统
CN106726363B (zh) 一种可穿戴仿生液压下肢康复助行机械装置
CN104552276B (zh) 气动肌肉驱动的外骨骼助力机构
CN107468487B (zh) 基于套索人工肌肉驱动的可穿戴下肢外骨骼
CN109464264A (zh) 一种人体下肢助力设备
CN106420279A (zh) 一种基于步态的可穿戴柔性膝关节机器人外骨骼装备
CN106491319A (zh) 一种可穿戴型膝关节助力机器人
CN108555890B (zh) 一种可穿戴体重支撑型步行辅助装置
CN105662780A (zh) 一种下肢助力矫形器
CN106420277A (zh) 一种便携式柔性行走辅助装备
CN109044742B (zh) 一种康复型下肢外骨骼
CN110652425A (zh) 一种可变刚度下肢外骨骼助力机器人
CN106420278B (zh) 一种作用于膝关节的便携式辅助行走机构
Liu et al. A survey on the exoskeleton rehabilitation robot for the lower limbs
CN212940468U (zh) 一种刚柔耦合可穿戴式助行外骨骼系统
WO2023070466A1 (zh) 一种步行辅助外骨骼装置
CN107042502B (zh) 闭链连杆式欠驱动下肢外骨骼机构
CN207341906U (zh) 一种可穿戴仿生液压下肢康复助行机械装置
CN112168442A (zh) 一种变刚度踝关节
CN108721047B (zh) 一种可穿戴式上肢康复训练装置
WO2023070863A1 (zh) 一种步行辅助外骨骼装置
TWI555556B (zh) 氣壓式驅動下肢步態復健訓練系統
Zhang et al. Design concepts and functional particularities of wearable walking assist devices and power-assist suits—a review
CN112388617B (zh) 下肢外骨骼机器人
Tian et al. Design of a lower limb exoskeleton driven by tendon-sheath artificial muscle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE