WO2023070794A1 - 汽车尾气中NOx浓度的测试方法、混合装置及后处理系统 - Google Patents

汽车尾气中NOx浓度的测试方法、混合装置及后处理系统 Download PDF

Info

Publication number
WO2023070794A1
WO2023070794A1 PCT/CN2021/132643 CN2021132643W WO2023070794A1 WO 2023070794 A1 WO2023070794 A1 WO 2023070794A1 CN 2021132643 W CN2021132643 W CN 2021132643W WO 2023070794 A1 WO2023070794 A1 WO 2023070794A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
nox concentration
fuel consumption
concentration distribution
work
Prior art date
Application number
PCT/CN2021/132643
Other languages
English (en)
French (fr)
Inventor
张克平
张明远
卢丰翥
徐光文
Original Assignee
无锡威孚力达催化净化器有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡威孚力达催化净化器有限责任公司 filed Critical 无锡威孚力达催化净化器有限责任公司
Publication of WO2023070794A1 publication Critical patent/WO2023070794A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2892Exhaust flow directors or the like, e.g. upstream of catalytic device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the application relates to the technical field of automobile exhaust treatment equipment, in particular to a method for testing NOx concentration in automobile exhaust, a mixing device and an aftertreatment system.
  • Automobile exhaust contains harmful gases such as CO (carbon monoxide), HC (hydrocarbons) and NOx (nitrogen oxides). In order to protect the environment and human body, it is necessary to purify the automobile exhaust.
  • CO carbon monoxide
  • HC hydrocarbons
  • NOx nitrogen oxides
  • SCR Selective catalytic reduction technology
  • the purpose of this application is to overcome the deficiencies in the prior art and provide a method for testing the concentration of NOx in automobile exhaust, a mixing device and an aftertreatment system.
  • the application provides a method for testing NOx concentration in automobile exhaust, comprising the following steps:
  • the exhaust gas enters the flow surface, the collection tube collects the gas in the flow part, and FTIR analyzes the collected gas to know the NOx concentration in the gas flowing through each flow part.
  • the flow surface is equally divided into four flow parts, and the FTIR includes four collection tubes.
  • the universal test includes multiple stages, and any stage includes multiple tests
  • the engine is made to work at a speed of N3r/min;
  • the engine is made to work at a speed of N4r/min;
  • the calibration chart includes a plurality of calibration groups, and each calibration group corresponds to a different rotational speed; any calibration group includes at least two sub-meters, and any circulation part (a) corresponds to one sub-meter.
  • the present application also provides a mixing device, including: a cylinder through which the tail gas flows downstream; a urea injection mechanism for injecting urea solution into the cylinder, the urea injection mechanism including at least two output devices; a control system for To control the output device to output urea solution; according to the test method of NOx concentration in the above-mentioned automobile exhaust gas, the cross section of the cylinder body is the flow surface of the exhaust gas, and the cross section of the cylinder body is divided into at least two flow parts, so that any flow part and The output ends of one output device are opposite; according to the NOx concentration in the gas flowing through the circulation part, the control system controls the output device to output urea solution.
  • the urea injection mechanism also includes at least two solenoid valves, and any output device is connected with a solenoid valve.
  • the cylinder body is a cylinder, and the cross section of the cylinder body is circular; the cross section of the cylinder body is equally divided into four flow parts, any flow part is a 90° right-angle sector; the urea injection mechanism includes four output device.
  • the present application also provides a post-processing system, including the above-mentioned mixing device, and also includes an SCR carrier, which is arranged downstream of the urea injection mechanism; the urea injection mechanism sprays urea solution into the cylinder, and after the tail gas enters the cylinder, it is mixed with the urea solution, The mixed gas enters the SCR carrier, and the SCR carrier can catalyze the reaction between the exhaust gas and urea.
  • the application provides a method for testing the concentration of NOx in automobile exhaust gas, comprising the following steps: dividing the flow surface of the exhaust gas into at least two flow parts; at least two collection pipes of FTIR are respectively arranged in one flow part, so that any There is a collection tube in a circulation part; start the engine to generate exhaust gas; the exhaust gas enters the circulation surface, the collection tube collects the gas in the circulation part, and FTIR analyzes the collected gas to know the content of the gas flowing through each circulation part NOx concentration.
  • the flow surface is divided into a plurality of flow sections a, and the gas flowing through each flow section is collected and analyzed to obtain the distribution of NOx on the flow surface.
  • the present application also provides a mixing device, including a cylinder, a urea injection mechanism and a control system.
  • the urea injection mechanism includes at least two output devices, which divide the cross section of the cylinder into at least two flow parts, and any flow part is connected to The output ends of one exporter are opposite.
  • the control system controls the outputter to output a corresponding amount of urea solution, so as to ensure the precise mixing of NOx and urea to improve the purification efficiency of exhaust gas.
  • the present application also provides a post-processing system, including the above-mentioned mixing device, and an SCR carrier.
  • the urea injection mechanism sprays the urea solution into the cylinder. After the tail gas enters the cylinder, it is mixed with the urea solution, and the mixed gas enters the SCR carrier.
  • the SCR carrier can catalyze the reaction between exhaust gas and urea. Since the injection amount of urea solution in each area matches the distribution amount of NOx, it can ensure the complete reaction of NOx in the SCR carrier, thereby ensuring the purification effect of exhaust gas.
  • Fig. 1 is a kind of device structure diagram of testing NOx concentration that the application provides;
  • Fig. 2 is a schematic diagram of the A-A direction shown in Fig. 1;
  • Fig. 3 is a schematic structural diagram of a post-processing system provided by the present application.
  • FIG. 4 is a schematic diagram of the A-A direction shown in FIG. 3 .
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • a first feature being "on” or “under” a second feature may mean that the first and second features are in direct contact, or that the first and second features are indirect through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • the exhaust gas is affected by its own internal factors such as flow velocity, flow direction, and gas diffusivity, as well as external factors such as flow area, pipe shape, and temperature.
  • the distribution of exhaust gas on the flow surface A may not be uniform, or in other words, the distribution of NOx on the flow surface A is not uniform.
  • the NOx concentration is high at some positions on the flow surface A, and the NOx concentration is low at some positions.
  • urea solution is sprayed to the flow surface A, so that urea and NOx can mix together, and further promote the oxidation-reduction reaction of NOx.
  • the urea solution is evenly sprayed on the entire flow surface A, since the amount of urea solution sprayed on the flow surface A is consistent, the parts with high NOx concentration may lack urea solution, while the parts with low NOx concentration may appear The surplus of urea solution will not only affect the purification effect, but also easily lead to urea crystallization.
  • the application provides a method for testing the concentration of NOx in automobile exhaust, comprising the following steps: dividing the flow surface A of the exhaust gas into at least two flow parts a; setting at least two collection pipes 11 of the FTIR10 In one flow part a, there is a collection pipe 11 in any flow part a; start the engine to generate exhaust gas; the tail gas enters the flow surface A, the collection pipe 11 collects the gas in the flow part a, and the FTIR10 collects the gas Analysis is performed so that the NOx concentration in the gas flowing through each flow-through portion a is known.
  • the test method provided in this application is a simulation experiment, so that the automobile engine works normally to generate exhaust gas, and the exhaust gas flows downstream and flows through the flow surface A. Since the flow surface A is divided into a plurality of flow parts a, and any flow part a is connected to a collection tube 11 , the FTIR can acquire gases from multiple positions in the flow surface A.
  • the collection tube 11 is connected with FTIR (infrared absorption spectrometer). After the collected gas enters the FTIR, the FTIR can analyze the composition and proportion of the gas, and then obtain the concentration of NOx in the gas.
  • the amount of NOx on the flow part a can be calculated. Further, according to the chemical reaction formula of redox reaction between NOx and urea solution, the theoretical amount of urea solution required to reduce NOx on the flow part a can be calculated.
  • the urea injection mechanism for injecting urea solution sprays a corresponding amount of urea solution according to the concentration of NOx on each flow part a in the flow surface A (the injection amount of urea solution can be omitted. greater than the theoretical amount required by the chemical reaction to ensure complete reaction of NOx), at this time, the injection amount of urea solution on each flow part a is positively correlated with the concentration of NOx, thus ensuring the precise mixing of NOx and urea in the aftertreatment system , so as to improve the purification efficiency of exhaust gas and ensure the purification effect of exhaust gas.
  • the distribution of NOx on the distribution surface A can be obtained by dividing the distribution surface A into a plurality of distribution sections a, and collecting and analyzing the gas flowing through each circulation section a. According to the distribution of NOx, it is possible to accurately inject an appropriate amount of urea solution to each flow part a.
  • the flow surface A is a position on the flow path of the exhaust gas.
  • the exhaust gas flows through a pipe, and the flow surface A is a cross section of the pipe or a cross section with a certain pipe length.
  • this location is perpendicular to the flow direction of the exhaust gas.
  • the exhaust gas flows from left to right, and the flow surface A is a section parallel to the up-down direction.
  • the flow surface A may be the end face of the inlet end of the pipe, the end face of the outlet end of the pipe, or any cross section on the pipe.
  • the flow surface A can be the exhaust gas circulation part facing the output end of the urea injection mechanism; After the NOx concentration on the circulation part a is reached, the urea injection mechanism can spray a suitable amount of urea solution correspondingly, which can further ensure the precise mixing of the urea solution and NOx.
  • the flow surface A can have various shapes.
  • the exhaust gas flows along the circular pipe, and the flow surface A is circular.
  • the present application does not limit the quantity, size and position of the circulation parts a on the circulation surface A.
  • the collection pipe 11 can collect the gas within the range of the flow part a, and the mechanism for spraying the urea solution can spray the urea solution to the flow part a.
  • the flow surface A can be divided into two flow sections a.
  • the shapes of the two flow-through portions a may or may not be the same.
  • the flow surface A can be divided into three flow sections a.
  • the shapes of the three flow parts a may be the same, or two of the flow parts a may have the same shape and the other flow part a may have a different shape, or the shapes of the three flow parts a may not be the same.
  • the shape of the flow part a can be designed according to the injection range of the urea injection mechanism.
  • the injection range of the urea injection mechanism can cover a semicircle
  • the circular flow surface A of the circular tube can be divided into two semicircular flow parts a.
  • the flow surface A is a circular surface, and the flow surface A is equally divided into four flow portions a. At this time, each flow portion a is a 90° right-angle sector.
  • FTIR includes four collection tubes 11, and the collection end of any collection tube 11 is opposite to a circulation part a, which can accurately collect the gas in the corresponding circulation part a. gas.
  • a thin plate can be installed at the dividing position of the flow surface A, and each flow part a is isolated by the thin plate.
  • the thickness of the thin plate should be as small as possible, so as to prevent the plate from affecting the flow area of the exhaust gas or hindering the normal flow of the exhaust gas.
  • the urea spraying mechanism includes at least two output ports, and any flow part a corresponds to one output port; the spraying range of each output port can cover the corresponding flow part a.
  • the above test method can obtain the distribution of NOx on a certain node during the exhaust gas circulation process. But actually in the vehicle, as the driving state changes, the exhaust emission will also change. During driving, it is difficult to collect and test the gas on the flow surface A from time to time. For this reason, the present application also provides a universal test, combined with the above test method, for obtaining the corresponding relationship between NOx distribution and the engine.
  • the engine is started to perform a universal test. It can be seen that the performance of the engine is usually related to the speed and fuel consumption.
  • the test is performed with the rotational speed as a variable.
  • first NOx concentration distribution “second NOx concentration distribution”, . . . all include the NOx concentration on each flow portion a.
  • any "NOx concentration distribution” includes four NOx concentrations.
  • the idle speed is usually calibrated by the engine manufacturer, generally around 700r/min, and the rated point speed can generally reach 2-3000r/min.
  • N1 700r/min.
  • the increase of the engine speed may remain unchanged.
  • N3 900r/min.
  • the increase in engine speed may vary.
  • N3 850r/min.
  • the increase rate of the engine speed may be constant or variable, and no specific examples are given, so as to obtain the fourth NOx concentration distribution.
  • the NOx concentration distribution corresponding to the n speed movement states during the movement of the engine from the idling speed to the rated point speed is obtained.
  • the actual after-treatment system used to purify the automobile exhaust can judge the distribution of NOx on the exhaust flow surface according to the speed of the engine when the car is running, and then according to The distribution of NOx calculates the amount of NOx on each flow part, so that the urea injection device injects an appropriate amount of urea solution.
  • the engine speed and its corresponding NOx concentration distribution in the universal test are recorded by computer, and a calibration chart is drawn.
  • One of the abscissa and ordinate of the calibration chart is the speed, and the other is the NOx concentration.
  • the calibration chart corresponding to one test includes at least two sub-tables, and any sub-table corresponds to a circulation part a.
  • the electronic recording unit monitors the speed of the engine, and transmits the operating information of the engine to the control system, which is selected by the control system.
  • the closest rotational speed is used to determine the concentration distribution of NOx, and then the control system controls the urea injection device to inject an appropriate amount of urea solution.
  • N1, N2, N3... are incremented.
  • N1, N2, N3... are incrementally increased.
  • N1, N2, N3... are decremented (for example, N1 is rated point speed, Nn is idle speed).
  • N1, N2, N3 . . . decrease in arithmetic difference.
  • test is carried out with fuel consumption as a variable.
  • M1 5mg/hub.
  • M2 10mg/hub, so that the engine works at the fuel consumption of 10mg/hub, and lasts for Xmin, to obtain the second NOx concentration distribution.
  • the increase in fuel consumption can remain unchanged.
  • M3 15 mg/hub.
  • N3 12 mg/hub.
  • the increase rate of fuel consumption may be constant or variable, and no specific examples are given, so as to obtain the fourth NOx concentration distribution.
  • the actual after-treatment system used to purify the exhaust gas of the vehicle can judge the distribution of NOx on the exhaust flow surface according to the fuel consumption of the engine when the vehicle is running. Then calculate the amount of NOx on each flow part according to the distribution of NOx, so that the urea injection device can inject an appropriate amount of urea solution.
  • the computer records the engine oil consumption and its corresponding NOx concentration distribution in the universal test, and draws a calibration chart.
  • One of the abscissa and ordinate of the calibration chart is the fuel consumption, and the other is the NOx concentration. The details are similar to those in the previous embodiment, and will not be repeated here.
  • M1, M2, M3... are incremented.
  • M1, M2, M3... are incrementally increased.
  • M1, M2, M3... are decremented.
  • the arithmetic difference of M1, M2, M3... is decreasing.
  • the universal test can be further improved so that the test results can be better applied to the actual equipment.
  • the universal test includes multiple stages, and any stage includes multiple tests;
  • the engine is made to work at a speed of N3r/min;
  • the engine is made to work at a speed of N4r/min;
  • the concentration distribution of NOx on the flow surface A can be accurately determined in combination with the engine speed and fuel consumption.
  • universal test comprises n stages:
  • the engine was operated at a fuel consumption of 5 mg/hub to obtain the first NOx concentration distribution
  • the engine is made to work at a speed of 800r/min;
  • the engine was operated at a fuel consumption of 5 mg/hub to obtain the first NOx concentration distribution
  • the engine was operated at a fuel consumption of 15 mg/hub to obtain the third NOx concentration distribution
  • the engine is made to work at a speed of 900r/min;
  • the engine was operated at a fuel consumption of 5 mg/hub to obtain the first NOx concentration distribution
  • the engine was operated at a fuel consumption of 15 mg/hub to obtain the third NOx concentration distribution
  • the engine is made to work at a speed of 1000r/min;
  • N1, N2, N3... are incrementally increased, and the difference is 100r/min.
  • the relationship between the fuel consumption of the engine and the NOx concentration distribution in the exhaust gas at various speeds is obtained, and it is drawn into a calibration chart, and one of the abscissa and ordinate of the calibration chart is the fuel consumption of the speed (For example, mg/hub (700r/min), mg/hub (800r/min), mg/hub (900r/min)...), the other is the NOx concentration.
  • the calibration chart includes multiple calibration groups, each calibration group corresponds to a different rotational speed; any calibration group includes at least two sub-meters, and any circulation part a corresponds to one sub-meter.
  • the calibration chart includes n calibration groups.
  • the rotation speed corresponding to the first calibration group is 700r/min; when the circulation surface A is divided into four circulation parts a, the first calibration group includes four sub-tables, each circulation part a corresponds to a sub-table, and each sub-table records The change of fuel consumption and NOx concentration on the flow part a is shown.
  • the computer can construct a NOx cross-sectional concentration model through a calibration chart of fuel consumption and NOx concentration distribution, and/or a calibration chart of rotational speed and NOx concentration distribution.
  • the present application also provides a mixing device, including: a cylinder 20, through which the exhaust gas flows downstream; a urea injection mechanism 30, used to inject urea solution into the cylinder 20, and the urea injection mechanism 30 includes at least two outputs device 31; control system 40, for controlling output device 31 to output urea solution; according to the test method of NOx concentration in the above-mentioned automobile exhaust gas, the cross section of cylinder body 20 is the flow surface A of exhaust gas, and the cross section of cylinder body 20 is divided into There are at least two flow parts a, so that any flow part a is opposite to the output end of an output device 31; according to the NOx concentration in the gas flowing through the flow part a, the control system 40 controls the output device 31 to output a corresponding amount of urea solution.
  • a mixing device including: a cylinder 20, through which the exhaust gas flows downstream; a urea injection mechanism 30, used to inject urea solution into the cylinder 20, and the urea injection mechanism 30 includes at least two outputs device 31;
  • the cylinder body 20 can be regarded as a circulation pipe for exhaust gas. After the engine is working, the exhaust gas produced flows out from one end of the barrel 20 and the other end of the barrel 20 .
  • One end of any exporter 31 is connected to the urea supply equipment (not shown), and the other end is connected to the cylinder 20;
  • the exhaust gas is mixed to facilitate the chemical reaction between NOx and urea.
  • the mixing device not only has more exporters 31, but also writes in the control logic of the control system 40 used to control the work of the exporters 31 on each flow part a in the flow surface A
  • the corresponding relationship between NOx concentration distribution and engine speed and/or fuel consumption Therefore, when the automobile is working, the engine starts, has a certain speed and fuel consumption, and the electronic recording unit can monitor the operation of the engine and feed it back to the control system 40; Calculate the amount of NOx on each circulation part a according to the exhaust gas discharge, and calculate the required amount of urea solution according to the amount of NOx. Then, the control system 40 controls each output device 31 to output an appropriate amount of urea solution.
  • the output device 31 needs to adjust the output of urea solution in real time to meet the reaction needs.
  • the urea injection mechanism 30 also includes at least two solenoid valves 32, any output device 31 is connected with a solenoid valve 32, and the solenoid valve 32 It is used to control the output device 31 to work.
  • the solenoid valve 32 is electrically connected to the control system 40. After the control system 40 calculates the injection amount of the urea solution, it can control the solenoid valve 32 to adjust the opening, thereby regulating the injection amount of the urea solution.
  • the cylinder body 20 is a cylinder, and the cross section of the cylinder body 20 (that is, the flow surface A of exhaust gas) is circular; the cross section of the cylinder body 20 is divided into four There are two flow sections a, any flow section a is a 90° right-angle sector.
  • the urea injection mechanism 30 includes four outlets 31 , any flow part a is connected to one output device 31 , and when any output device 31 outputs urea solution, the urea solution can cover the corresponding flow part a.
  • the universal test is used to test the NOx concentration distribution in the exhaust of the engine under different working conditions.
  • the universal test includes n stages:
  • the four collection pipes 11 are put into the four circulation parts a of the cross section of the cylinder 20, and then the engine is started, so that the engine works at the speed of N1r/min and the fuel consumption of M1mg/hub; the collection pipes 11
  • the gas on the corresponding flow part a is collected, and the gas is analyzed by FTIR, so as to obtain the first NOx concentration distribution on each flow part a.
  • the four collection pipes 11 are in the four flow parts a, so that the engine works at the speed of N2r/min and the fuel consumption of M1mg/hub; the collection pipes 11 collect the gas on the corresponding flow part a, and FTIR analyzes the gas , so as to obtain the first NOx concentration distribution on each flow part a.
  • the fuel consumption of the engine is the same as that on the cross section Corresponding relationship of NOx concentration distribution.
  • the corresponding relationship between the NOx concentration distribution on the cross section of the barrel 20 and the engine speed and fuel consumption is obtained.
  • the corresponding relationship is constructed into a NOx cross-sectional concentration model, and the NOx cross-sectional concentration model is written into the control logic of the control system 40 .
  • the automobile that is equipped with the engine and cylinder 20 used for testing can use the control system 40 written with the NOx cross-sectional concentration model to regulate the injection amount of the urea solution.
  • the electronic recording unit monitors the engine speed and fuel consumption, and transmits the engine operation information to the control system 40, and the control system 40 infers the four circulation parts a in the flow surface A Based on the concentration of NOx, four NOx quantities and four corresponding injection quantities of urea solutions are calculated according to the emission of exhaust gas. Then, the control system 40 controls the four output devices 31 to output corresponding quantities of urea solutions.
  • the present application also provides a post-processing system, including the above-mentioned mixing device, and also includes an SCR carrier 50, located downstream of the urea injection mechanism 30; the urea injection mechanism 30 sprays urea solution into the cylinder 20, and the exhaust gas , mixed with the urea solution, the mixed gas enters the SCR carrier 50, and the SCR carrier 50 can catalyze the reaction between the exhaust gas and the urea.
  • a post-processing system including the above-mentioned mixing device, and also includes an SCR carrier 50, located downstream of the urea injection mechanism 30; the urea injection mechanism 30 sprays urea solution into the cylinder 20, and the exhaust gas , mixed with the urea solution, the mixed gas enters the SCR carrier 50, and the SCR carrier 50 can catalyze the reaction between the exhaust gas and the urea.
  • the SCR carrier 50 is loaded with a catalyst, and after the tail gas is mixed with the urea solution and enters the SCR carrier 50, the mixed gas contacts the catalyst.
  • the catalyst can enhance the activity of the exhaust gas so as to facilitate the redox reaction between NOx and urea, thereby realizing the purification of the exhaust gas.
  • the SCR carrier 50 is a porous ceramic
  • the catalyst is a noble metal (such as platinum, rhodium, palladium) coated on the surface of the ceramic.
  • the exhaust gas flows to the SCR carrier 50 through the cylinder 20; the mixed gas enters the SCR carrier 50 through the holes in the ceramic and contacts the catalyst.
  • the catalyst promotes the reduction of NOx in the exhaust gas to nitrogen and oxygen.
  • the SCR carrier 50 is disposed in the cylinder body 20 and downstream of the flow surface A.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Testing Of Engines (AREA)

Abstract

本申请公开了一种汽车尾气中NOx浓度的测试方法,通过将流通面分为多个流通部分,并对流经各流通部分的气体进行采集分析,能够获得流通面上NOx的分布情况;根据NOx的分布情况,能够精准地对各流通部分喷射合适量的尿素溶液。本申请还公开了一种混合装置,包括筒体、尿素喷射机构和控制系统,尿素喷射机构包括至少两个输出器,将筒体的横截面分为至少两个流通部分,任一流通部分与一个输出器的输出端相对,根据流经流通部分的气体中的NOx浓度,控制系统控制输出器输出对应量的尿素溶液。本申请还公开了一种后处理系统,包括上述混合装置,还包括SCR载体,SCR载体能够催化尾气与尿素发生反应。

Description

汽车尾气中NOx浓度的测试方法、混合装置及后处理系统 技术领域
本申请涉及汽车尾气处理设备技术领域,尤其是一种汽车尾气中NOx浓度的测试方法、混合装置及后处理系统。
背景技术
汽车尾气中含有CO(一氧化碳)、HC(碳氢化合物)和NOx(氮氧化物)等有害气体,为保护环境和人体,需要对汽车尾气进行净化。
选择性催化还原技术(SCR)是针对汽车尾气中NOx的一项处理工艺。具体为尾气进入SCR设备后,向其喷入还原剂氨或者尿素,在催化剂的作用下,使得NOx还原为氮气和氧气。
由于流体的不均匀性,尾气进入混合腔后,可能会出现部分位置NOx含量高、而部分位置NOx含量低的情况,当尿素被均匀地喷入混合腔时,混合腔内各位置接收的尿素量接近,也就无法保证混合效果,最终导致催化效率不高。另外,由于尿素的喷射轨迹固定,当混合腔的空间较大时,远离尿素喷射方向的位置无法较好地接收尿素,亦会影响混合的均匀性。
发明内容
本申请的目的是在于克服现有技术中存在的不足,提供一种汽车尾气中NOx浓度的测试方法、混合装置及后处理系统。
为实现以上技术目的,本申请提供了一种汽车尾气中NOx浓度的测试方法,包括以下步骤:
将尾气的流通面分为至少两个流通部分;
将FTIR的至少两根采集管分别设置在一个流通部分中,使得任一流通部分中具有一根采集管;
启动发动机,产生尾气;
尾气进入流通面,采集管采集流通部分中的气体,FTIR对采集到的气体进行分析,从而获知流经各个流通部分的气体中的NOx浓度。
进一步地,流通面被等分为四个流通部分,FTIR包括四根采集管。
进一步地,采集管插入流通部分后,启动发动机,进行万有试验;
在万有试验中,使得发动机以N1r/min的转速工作,获得第一个NOx浓度分布;
使得发动机以N2r/min的转速工作,获得第二个NOx浓度分布;
使得发动机以N3r/min的转速工作,获得第三个NOx浓度分布;
……
以此类推,获得发动机的转速与NOx浓度分布的对应关系;
或者,
在万有试验中,使得发动机以M1mg/hub的油耗工作,获得第一个NOx浓度分布;
使得发动机以M2mg/hub的油耗工作,获得第二个NOx浓度分布;
使得发动机以M3mg/hub的油耗工作,获得第三个NOx浓度分布;
……
以此类推,获得发动机的油耗与NOx浓度分布的对应关系。
进一步地,万有试验包括多个阶段,任一阶段包括多次试验;
第一阶段中,使得发动机以N1r/min的转速工作;
第一次试验时,使得发动机以M1mg/hub的油耗工作,获得第一个NOx浓度分布;
第二次试验时,使得发动机以M2mg/hub的油耗工作,获得第二个NOx浓度分布;
第三次试验时,使得发动机以M3mg/hub的油耗工作,获得第三个NOx浓度分布;
……
以此类推,获得发动机在转速为N1r/min时,油耗与NOx浓度分布的对应关系;
第二阶段中,使得发动机以N2r/min的转速工作;
第一次试验时,使得发动机以M1mg/hub的油耗工作,获得第一个NOx浓度分布;
第二次试验时,使得发动机以M2mg/hub的油耗工作,获得第二个NOx浓度分布;
第三次试验时,使得发动机以M3mg/hub的油耗工作,获得第三个NOx浓度 分布;
……
以此类推,获得发动机在转速为N2r/min时,油耗与NOx浓度分布的对应关系;
第三阶段中,使得发动机以N3r/min的转速工作;
第一次试验时,使得发动机以M1mg/hub的油耗工作,获得第一个NOx浓度分布;
第二次试验时,使得发动机以M2mg/hub的油耗工作,获得第二个NOx浓度分布;
第三次试验时,使得发动机以M3mg/hub的油耗工作,获得第三个NOx浓度分布;
……
以此类推,获得发动机在转速为N3r/min时,油耗与NOx浓度分布的对应关系;
第四阶段中,使得发动机以N4r/min的转速工作;
……
通过万有试验,获得不同转速下、发动机的油耗与尾气中NOx浓度分布的关系。
进一步地,获得不同转速下、发动机的油耗与尾气中NOx浓度分布的关系后,绘制标定图表,标定图表的横坐标和纵坐标中的一者为转速油耗、另一者为NOx浓度;标定图表包括多个标定组,各标定组对应的转速不同;任一标定组包括至少两张子表,任一流通部分(a)与一张子表对应。
进一步地,N1、N2、N3……等差递增;和/或,M1、M2、M3……等差递增。
本申请还提供了一种混合装置,包括:筒体,尾气通过筒体向下游流动;尿素喷射机构,用于向筒体内喷射尿素溶液,尿素喷射机构包括至少两个输出器;控制系统,用于控制输出器输出尿素溶液;根据上述汽车尾气中NOx浓度的测试方法,筒体的横截面为尾气的流通面,将筒体的横截面分为至少两个流通部分,使得任一流通部分与一个输出器的输出端相对;根据流经流通部分的气体中的NOx浓度,控制系统控制输出器输出尿素溶液。
进一步地,尿素喷射机构还包括至少两个电磁阀,任一输出器与一个电磁 阀相连。
进一步地,筒体为圆筒,筒体的横截面为圆形;将筒体的横截面等分为四个流通部分,任一流通部分为90°的直角扇形;尿素喷射机构包括四个输出器。
本申请还提供了一种后处理系统,包括上述混合装置,还包括SCR载体,设于尿素喷射机构的下游;尿素喷射机构向筒体内喷射尿素溶液,尾气进入筒体后,与尿素溶液混合,混合后的气体进入SCR载体,SCR载体能够催化尾气与尿素发生反应。
本申请提供了一种汽车尾气中NOx浓度的测试方法,包括以下步骤:将尾气的流通面分为至少两个流通部分;将FTIR的至少两根采集管分别设置在一个流通部分中,使得任一流通部分中具有一根采集管;启动发动机,产生尾气;尾气进入流通面,采集管采集流通部分中的气体,FTIR对采集到的气体进行分析,从而获知流经各个流通部分的气体中的NOx浓度。通过本申请提供的测试方法,将流通面分为多个流通部分a,并对流经各流通部分的气体进行采集分析,能够获得流通面上NOx的分布情况。
本申请还提供了一种混合装置,包括筒体、尿素喷射机构和控制系统,尿素喷射机构包括至少两个输出器,将筒体的横截面分为至少两个流通部分,任一流通部分与一个输出器的输出端相对,根据流经流通部分的气体中的NOx浓度,控制系统控制输出器输出对应量的尿素溶液,从而保证NOx与尿素精准混合,以提高尾气的净化效率。
本申请还提供了一种后处理系统,包括上述混合装置,还包括SCR载体,尿素喷射机构向筒体内喷射尿素溶液,尾气进入筒体后,与尿素溶液混合,混合后的气体进入SCR载体,SCR载体能够催化尾气与尿素发生反应。由于每一区域内尿素溶液的喷射量与NOx的分布量相匹配,能够确保NOx在SCR载体中彻底反应,进而保证尾气的净化效果。
附图说明
图1为本申请提供的一种测试NOx浓度的装置结构示意图;
图2为图1所示的A-A方向示意图;
图3为本申请提供的一种后处理系统结构示意图;
图4为图3所示的A-A方向示意图。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可 以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
首先,需要说明的是,实际到汽车尾气排放的工作环境中,尾气受到其自身的流速、流向、气体扩散性等内部因素,以及流通面积、管道形状、温度等外部因素的影响,到达流通面A时,流通面A上尾气的分布可能并不均匀,或者说,流通面A上NOx的分布并不均匀。此时,流通面A上部分位置NOx浓度高,部分位置NOx浓度低。
为净化NOx,向流通面A喷射尿素溶液,以便于尿素与NOx混合、进而促使NOx发生氧化还原反应。混合时,若均匀地对整个流通面A喷射尿素溶液,由于流通面A上各处喷洒的尿素溶液量一致,NOx浓度高的部位可能出现缺少尿素溶液的情况,而NOx浓度低的部位可能出现尿素溶液盈余的情况,既会影响净化效果,又容易导致尿素结晶。
为解决上述问题,本申请提供了一种汽车尾气中NOx浓度的测试方法,包括以下步骤:将尾气的流通面A分为至少两个流通部分a;将FTIR10的至少两根采集管11分别设置在一个流通部分a中,使得任一流通部分a中具有一根采集管11;启动发动机,产生尾气;尾气进入流通面A,采集管11采集流通部分a中的气体,FTIR10对采集到的气体进行分析,从而获知流经各个流通部分a的气体中的NOx浓度。
本申请提供的测试方法为仿真实验,使得汽车发动机正常工作,产生尾气,尾气向下游流动,流经流通面A。由于流通面A被分为多个流通部分a,且任一流通部分a与一根采集管11连通,也就使得FTIR能够获取流通面A内多个位置的气体。采集管11与FTIR(红外吸收光谱仪)相连,被采集的气体进入FTIR后,FTIR能够分析气体的组成及比例,进而获得气体中NOx的浓度。
容易想到的,已知一个流通部分a上NOx的浓度、以及尾气的排量,能够计算得该流通部分a上NOx的量。进一步根据NOx与尿素溶液产生氧化还原反应的化学反应式,能够计算得还原该流通部分a上的NOx所需的尿素溶液的理论量。
实际到用于净化汽车尾气的后处理系统中,使得用于喷射尿素溶液的尿素 喷射机构根据流通面A中各流通部分a上NOx的浓度喷射对应量的尿素溶液(尿素溶液的喷射量可以略大于化学反应所需的理论量,以确保NOx彻底反应),此时,各流通部分a上尿素溶液的喷射量与NOx的浓度正相关,由此,能够保证后处理系统中NOx与尿素精准混合,从而提高尾气的净化效率、保证尾气的净化效果。
综上,通过本申请提供的测试方法,将流通面A分为多个流通部分a,并对流经各流通部分a的气体进行采集分析,能够获得流通面A上NOx的分布情况。根据NOx的分布情况,能够精准地对各流通部分a喷射合适量的尿素溶液。
需要补充的是,流通面A是尾气流通路径上的一个位置。例如,尾气流经一个管道,流通面A是该管道的一个横截面或者具备一定管长的一个横截段。一般来说,该位置垂直于尾气的流动方向。例如,图1和图2所示的实施例中,尾气自左向右流动,流通面A为平行于上下方向的一个截面。
还需要解释的是,本申请并不限定流通面A的具体位置。例如,尾气流经管道时,流通面A可以是管道入口端的端面,也可以是管道出口端的端面,还可以是管道上的任一截面。实际到用于净化汽车尾气的后处理系统中,流通面A可以是与尿素喷射机构的输出端正对的尾气流通部位;此时,流通面A正对尿素喷射口,获知该流通面A中各流通部分a上的NOx浓度后,尿素喷射机构即可对应喷出合适量的尿素溶液,能够进一步确保尿素溶液与NOx精确混合。
根据尾气流经的环境,流通面A可以是各种形状。例如,图1和图2所示的实施例中,尾气沿圆管流动,流通面A为圆形。
另外,本申请并不限定流通面A上流通部分a的数量、大小和位置。只要采集管11能够采集到该流通部分a范围内的气体,且用于喷射尿素溶液的机构能够对该流通部分a喷射尿素溶液即可。
例如,流通面A可被分为两个流通部分a。此时,两个流通部分a的形状可以一致,也可以不一致。
又例如,流通面A可被分为三个流通部分a。此时,三个流通部分a的形状可以一致,也可以其中两个流通部分a的形状一致、另一个流通部分a的形状与之不同,还可以三个流通部分a的形状均不一致。
实际到用于净化汽车尾气的后处理系统中,流通部分a的形状可以根据尿素喷射机构的喷射范围进行设计。例如,尿素喷射机构的喷射范围能够覆盖一 个半圆时,可以将圆管的圆形流通面A分为两个半圆形的流通部分a。
一具体实施例中,参照图1和图2,流通面A为圆面,且流通面A被等分为四个流通部分a。此时,各流通部分a为90°的直角扇形。为测试尾气排放的同一节点上各流通部分a上的气体组成,FTIR包括四根采集管11,任一采集管11的采集端与一个流通部分a相对,能够准确采集对应的流通部分a内的气体。
在测试过程中,为防止采集管11采集到其他流通部分a上的气体,可以在流通面A的分割位置设置薄板,通过薄板隔离各流通部分a。其中,薄板的厚度越小越好,以避免板件影响尾气的流通面积或者妨碍尾气的正常流通。
需要注意的是,实际到用于净化汽车尾气的后处理系统中,流通面A上不存在薄板,尾气正常在管道内流通。此时,用于尿素喷射机构包括至少两个输出端,任一流通部分a与一个输出端对应;各输出端的喷射范围能够覆盖与之对应的流通部分a。
需要解释的是,采用上述测试方法,能够获得尾气流通过程中,某一节点上NOx的分布情况。但实际到车辆中,随着驾驶状态的变换,尾气的排量亦会改变。驾驶过程中,难以时时对流通面A上的气体进行采集和测试。为此,本申请还提供了一种万有试验,结合上述测试方法,用于获取NOx分布和发动机的对应关系。
具体地,将采集管11置入流通部分a后,启动发动机,进行万有试验。可知,发动机的性能通常与转速和油耗相关。
因此,一实施方式中,以转速为变量进行试验。
此时,在万有试验中:
使得发动机以N1r/min的转速工作,获得第一个NOx浓度分布;
使得发动机以N2r/min的转速工作,获得第二个NOx浓度分布;
使得发动机以N3r/min的转速工作,获得第三个NOx浓度分布;
……
以此类推,获得发动机的转速与NOx浓度分布的对应关系。
需要注意的是,上述“第一个NOx浓度分布”、“第二个NOx浓度分布”、……均包括各流通部分a上的NOx浓度。例如,流通面A被分为四个流通部分a时,任一“NOx浓度分布”包括四个NOx浓度。
一般情况下,万有试验中发动机工作,会从怠速转速运动至额定点转速。 其中,怠速转速通常由发动机厂商标定,一般在700r/min左右,而额定点转速一般能到达2-3000r/min。
因此,一具体实施例中,N1=700r/min。使得发动机以700r/min的转速工作,并持续Xmin,其中,X>0。使得发动机以预设转速持续工作一段时间,以便于发动机处于稳定的工作状态,如此,尾气的排量较为稳定,以便于FTIR检测获得较为准确的NOx浓度。
一次试验结束,增加发动机的转速。例如,N2=800r/min。使得发动机以800r/min的转速工作,并持续Xmin,获得第二个NOx浓度分布。
二次试验结束,继续增加发动机的转速。此时,发动机转速的增幅可以不变。例如,N3=900r/min。使得发动机以900r/min的转速工作,并持续Xmin,获得第三个NOx浓度分布。或者,发动机转速的增幅可以变化。例如,N3=850r/min。使得发动机以850r/min的转速工作,并持续Xmin,获得第三个NOx浓度分布。
三次试验结束,继续增加发动机的转速。此时,发动机转速的增幅可以不变,也可以变化,具体不再举例说明,由此获得第四个NOx浓度分布。
……
以此类推,直到发动机转速增加至额定点转速,由此获得第n个NOx浓度分布。
通过上述试验,获得发动机从怠速转速运动至额定点转速的过程中,n个转速运动状态下对应的NOx浓度分布。获得发动机的转速、与其排放的尾气中的NOx浓度分布后,实际到用于净化汽车尾气的后处理系统中,可以根据汽车运行时,发动机的转速,判断尾气流通面上NOx的分布,再根据NOx的分布计算各流通部分上NOx的量,以便于尿素喷射装置喷射合适量的尿素溶液。
需要补充的是,发动机转速的增幅越小、测试次数越多,发动机的转速与排放的尾气中NOx的浓度分布关系越准确。
可选地,通过计算机记录万有试验中发动机转速及其对应的NOx浓度分布,绘制呈标定图表,标定图表的横坐标和纵坐标中的一者为转速、另一者为NOx浓度。此时,一次试验对应的标定图表包括至少两张子表,任一子表对应一个流通部分a。
实际到用于净化汽车尾气的后处理系统中,通过电子记录单元(常规设备, 一般情况下汽车中均设有)监控发动机的转速,并将发动机的运行信息传递给控制系统,由控制系统选择最接近的转速从而判断NOx的浓度分布,再由控制系统控制尿素喷射装置对应喷射合适量的尿素溶液。
可选地,N1、N2、N3……递增。可选地,N1、N2、N3……等差递增。
可选地,N1、N2、N3……递减(例如,N1为额定点转速,Nn为怠速转速)。可选地,N1、N2、N3……等差递减。
需要补充的是,油耗会影响尾气排量,因此,以转速为变量进行试验时,油耗保持不变。
另一实施方式中,以油耗为变量进行试验。
此时,在万有试验中:
使得发动机以M1mg/hub的油耗工作,获得第一个NOx浓度分布;
使得发动机以M2mg/hub的油耗工作,获得第二个NOx浓度分布;
使得发动机以M3mg/hub的油耗工作,获得第三个NOx浓度分布;
……
以此类推,获得发动机的油耗与NOx浓度分布的对应关系。
可知,油耗不仅受到汽车本身性能的影响,还会受到外界环境(如司机的驾驶方式、路况等)的影响。因此,以油耗为变量时,可以理想工作状态下,发动机处于最低功率时对应的油耗量为M1。
一具体实施例中,M1=5mg/hub。使得发动机以5mg/hub的油耗工作,并持续Xmin,其中,X>0;获得第一个NOx浓度分布。
一次试验结束,增加发动机的油耗。例如,M2=10mg/hub,使得发动机以10mg/hub的油耗工作,并持续Xmin,获得第二个NOx浓度分布。
二次试验结束,继续增加发动机的油耗。此时,油耗的增幅可以不变。例如,M3=15mg/hub。使得发动机以15mg/hub的转速工作,并持续Xmin,获得第三个NOx浓度分布。或者,油耗的增幅可以变化。例如,N3=12mg/hub。使得发动机以12mg/hub的转速工作,并持续Xmin,获得第三个NOx浓度分布。
三次试验结束,继续增加发动机的油耗。此时,油耗的增幅可以不变,也可以变化,具体不再举例说明,由此获得第四个NOx浓度分布。
……
以此类推,直到油耗增加至预设点或者最高点,由此获得第n个NOx浓度 分布。
获得发动机的油耗、与其排放的尾气中NOx浓度分布的对应关系后,实际到用于净化汽车尾气的后处理系统中,可以根据汽车运行时,发动机的油耗,判断尾气流通面上NOx的分布,再根据NOx的分布计算各流通部分上NOx的量,以便于尿素喷射装置喷射合适量的尿素溶液。
可选地,通过计算机记录万有试验中发动机油耗及其对应的NOx浓度分布,绘制呈标定图表,标定图表的横坐标和纵坐标中的一者为油耗、另一者为NOx浓度。具体与上一实施例类似,此处不再赘述。
可选地,M1、M2、M3……递增。可选地,M1、M2、M3……等差递增。
可选地,M1、M2、M3……递减。可选地,M1、M2、M3……等差递减。
需要补充的是,发动机的转速会影响尾气的排量,因此,以油耗为变量进行试验时,发动机的转速保持不变。
结合上述两种变量,能够进一步完善万有试验,以便于试验结果更好地适用于实际设备中。具体地,万有试验包括多个阶段,任一阶段包括多次试验;
第一阶段中,使得发动机以N1r/min的转速工作;
第一次试验时,使得发动机以M1mg/hub的油耗工作,获得第一个NOx浓度分布;
第二次试验时,使得发动机以M2mg/hub的油耗工作,获得第二个NOx浓度分布;
第三次试验时,使得发动机以M3mg/hub的油耗工作,获得第三个NOx浓度分布;
……
以此类推,获得发动机在转速为N1r/min时,油耗与NOx浓度分布的对应关系;
第二阶段中,使得发动机以N2r/min的转速工作;
第一次试验时,使得发动机以M1mg/hub的油耗工作,获得第一个NOx浓度分布;
第二次试验时,使得发动机以M2mg/hub的油耗工作,获得第二个NOx浓度分布;
第三次试验时,使得发动机以M3mg/hub的油耗工作,获得第三个NOx浓度 分布;
……
以此类推,获得发动机在转速为N2r/min时,油耗与NOx浓度分布的对应关系;
第三阶段中,使得发动机以N3r/min的转速工作;
第一次试验时,使得发动机以M1mg/hub的油耗工作,获得第一个NOx浓度分布;
第二次试验时,使得发动机以M2mg/hub的油耗工作,获得第二个NOx浓度分布;
第三次试验时,使得发动机以M3mg/hub的油耗工作,获得第三个NOx浓度分布;
……
以此类推,获得发动机在转速为N3r/min时,油耗与NOx浓度分布的对应关系;
第四阶段中,使得发动机以N4r/min的转速工作;
……
通过上述万有试验,获得不同转速下、发动机的油耗与尾气中NOx浓度分布的关系。
通过上文可知,万有试验的每一阶段中,发动机保持预设的转速持续运行,运行过程中,增加或者减少油耗,进而获知预设转速下、不同油耗状态时NOx的浓度分布。
此时,实际到用于净化汽车尾气的后处理系统中,汽车运行时,能够结合发动机的转速和油耗,精准地判定流通面A上NOx的浓度分布。
一具体实施例中,万有试验包括n个阶段:
第一阶段中,使得发动机以700r/min的转速工作;
第一次试验时,使得发动机以5mg/hub的油耗工作,获得第一个NOx浓度分布;
第二次试验时,使得发动机以10mg/hub的油耗工作,获得第二个NOx浓度分布;
第三次试验时,使得发动机以15mg/hub的油耗工作,获得第三个NOx浓度 分布;
……
以此类推,获得发动机在转速为700r/min时,油耗与NOx浓度分布的对应关系;
第二阶段中,使得发动机以800r/min的转速工作;
第一次试验时,使得发动机以5mg/hub的油耗工作,获得第一个NOx浓度分布;
第二次试验时,使得发动机以10mg/hub的油耗工作,获得第二个NOx浓度分布;
第三次试验时,使得发动机以15mg/hub的油耗工作,获得第三个NOx浓度分布;
……
以此类推,获得发动机在转速为800r/min时,油耗与NOx浓度分布的对应关系;
第三阶段中,使得发动机以900r/min的转速工作;
第一次试验时,使得发动机以5mg/hub的油耗工作,获得第一个NOx浓度分布;
第二次试验时,使得发动机以10mg/hub的油耗工作,获得第二个NOx浓度分布;
第三次试验时,使得发动机以15mg/hub的油耗工作,获得第三个NOx浓度分布;
……
以此类推,获得发动机在转速为900r/min时,油耗与NOx浓度分布的对应关系;
第四阶段中,使得发动机以1000r/min的转速工作;
……
以此类推,直至发动机完成第n阶段的试验。
该实施例中,N1、N2、N3……等差递增,差值为100r/min。M1、M2、M3……等差递增,差值为5mg/hub。
通过具有多个阶段的万有试验,获得多种转速下、发动机的油耗与尾气中 NOx浓度分布的关系,将之绘制成标定图表,标定图表的横坐标和纵坐标中的一者为转速油耗(例如,mg/hub(700r/min)、mg/hub(800r/min)、mg/hub(900r/min)……)、另一者为NOx浓度。
此时,标定图表包括多个标定组,各标定组对应的转速不同;任一标定组包括至少两张子表,任一流通部分a与一张子表对应。
例如,上述具体实施例中,标定图表包括n个标定组。第一个标定组对应的转速为700r/min;当流通面A被分为四个流通部分a时,第一个标定组包括四张子表,每一个流通部分a对应一张子表,每一张子表都记录了该流通部分a上油耗与NOx浓度的变化。
进一步地,计算机可通过油耗与NOx浓度分布的标定图表、和/或转速与NOx浓度分布的标定图表构建NOx截面浓度模型。将NOx截面浓度模型写入汽车内控制系统的控制逻辑中,控制系统即可根据发动机的运行状况得到NOx的浓度分布,进一步控制尿素喷射机构对应喷出合适量的尿素溶液。
本申请还提供了一种混合装置,包括:筒体20,尾气通过筒体20向下游流动;尿素喷射机构30,用于向筒体20内喷射尿素溶液,尿素喷射机构30包括至少两个输出器31;控制系统40,用于控制输出器31输出尿素溶液;根据上述汽车尾气中NOx浓度的测试方法,筒体20的横截面为尾气的流通面A,将筒体20的横截面分为至少两个流通部分a,使得任一流通部分a与一个输出器31的输出端相对;根据流经流通部分a的气体中的NOx浓度,控制系统40控制输出器31输出对应量的尿素溶液。
其中,筒体20可看作尾气的流通管道。发动机工作后,产生的尾气从筒体20的一端、并从筒体20的另一端流出。任一输出器31的一端连通尿素供应设备(未图示)、另一端连通筒体20;净化尾气时,输出器31将尿素供应设备中的尿素溶液喷入筒体20中,使得尿素溶液与尾气混合,以便于NOx与尿素发生化学反应。
区别于传统的混合装置,本申请提供的混合装置不仅具有更多的输出器31,而且用于控制输出器31工作的控制系统40的控制逻辑中写入了流通面A中各流通部分a上的NOx浓度分布、与发动机的转速和/或油耗的对应关系。因此,汽车工作时,发动机启动、具备一定转速和油耗,电子记录单元能够监测发动机的运行、并将之反馈给控制系统40;控制系统40根据测试获得的标定图表判 断尾气中NOx分布,再根据尾气排量计算各流通部分a上NOx的量,并根据NOx的量计算所需的尿素溶液量,接着,控制系统40控制各输出器31对应输出合适量的尿素溶液。
需要注意的是,发动机不同时,尾气的排量不同;汽车不同(如筒体20的构型不同)时,同量的尾气分布状况也不同。因此,每一类型的车辆、或者每一类型发动机装配本申请提供的混合装置前,需要先通过上述测试方法获得所需流通面A上、NOx浓度分布与发动机的关系。进一步地,车辆处于不同驾驶状态时,尾气的排量和NOx的浓度分布会变化,为实时调整尿素溶液的喷射量、保证NOx与尿素精确混合,需要通过上述万有试验,测定所需流通面A上、NOx的浓度分布与设定的发动机的转速和/或油耗的关系。
可知,汽车运行过程中,转速以及油耗均会变化,也就是说,排出的NOx的量也会变化,因此,输出器31需要实时调整尿素溶液的输出量,以满足反应需要。
为确保输出器31准确、及时地输出所需量的尿素溶液,一实施方式中,尿素喷射机构30还包括至少两个电磁阀32,任一输出器31与一个电磁阀32相连,电磁阀32用于控制输出器31工作。
具体地,电磁阀32与控制系统40电连接,控制系统40计算得到尿素溶液的喷射量后,能够控制电磁阀32调整开度,进而调控尿素溶液的喷射量。
一具体实施例中,参照图3和图4,筒体20为圆筒,筒体20的横截面(也就是尾气的流通面A)为圆形;将筒体20的横截面等分为四个流通部分a,任一流通部分a为90°的直角扇形。尿素喷射机构30包括四个输出器31,任一流通部分a与一个输出器31相连通,任一输出器31输出尿素溶液时、尿素溶液能够覆盖对应的流通部分a。
具体地,先采用万有试验测试发动机不同工作状态下、尾气中的NOx浓度分布,万有试验包括n个阶段:
第一阶段中,先将四根采集管11置入筒体20横截面的四个流通部分a中,再启动发动机,使得发动机以N1r/min的转速、M1mg/hub的油耗工作;采集管11采集对应的流通部分a上的气体,FTIR分析气体、从而获知各流通部分a上的第一个NOx浓度分布。使得发动机以N1r/min的转速、M2mg/hub的油耗工作,获得横截面上的第二个NOx浓度分布。使得发动机以N1r/min的转速、M3mg/hub 的油耗工作,获得横截面上的第三个NOx浓度分布……以此类推,获得发动机的转速为N1r/min时,发动机的油耗与横截面上NOx浓度分布的对应关系。
第二阶段中,四根采集管11处于四个流通部分a中,使得发动机以N2r/min的转速、M1mg/hub的油耗工作;采集管11采集对应的流通部分a上的气体,FTIR分析气体、从而获知各流通部分a上的第一个NOx浓度分布。使得发动机以N2r/min的转速、M2mg/hub的油耗工作,获得横截面上的第二个NOx浓度分布。使得发动机以N2r/min的转速、M3mg/hub的油耗工作,获得横截面上的第三个NOx浓度分布……以此类推,获得发动机的转速为N2r/min时,发动机的油耗与横截面上NOx浓度分布的对应关系。
第三阶段中,……
以此类推,获得该混合装置中,筒体20横截面上NOx浓度分布与发动机的转速和油耗的对应关系。将该对应关系构建成NOx截面浓度模型,并将NOx截面浓度模型写入控制系统40的控制逻辑中。
采用与测试用的发动机和筒体20同配的汽车可以采用写入有NOx截面浓度模型的控制系统40以调控尿素溶液的喷射量。
具体地,发动机工作后,尾气排入筒体20中,电子记录单元监测发动机的转速和油耗、并将发动机的运行信息传递给控制系统40,控制系统40推断流通面A中四个流通部位a上NOx的浓度,再根据尾气的排量计算获得四个NOx量、以及四个对应的尿素溶液的喷射量,随后,控制系统40控制四个输出器31输出对应量的尿素溶液。
本申请还提供了一种后处理系统,包括上述混合装置,还包括SCR载体50,设于尿素喷射机构30的下游;尿素喷射机构30向筒体20内喷射尿素溶液,尾气进入筒体20后,与尿素溶液混合,混合后的气体进入SCR载体50,SCR载体50能够催化尾气与尿素发生反应。
其中,SCR载体50装载有催化剂,尾气与尿素溶液混合、进入SCR载体50后,混合后的气体接触催化剂。催化剂能够增强尾气的活性,以便于NOx与尿素发生氧化还原反应,从而实现对尾气的净化。
一具体实施例中,SCR载体50为一块多孔陶瓷,催化剂为涂覆在陶瓷表面的贵金属(如铂、铑、钯)。尾气经由筒体20向SCR载体50流动;混合后的气体通过陶瓷上的孔洞进入SCR载体50、并接触催化剂。催化剂促使尾气中的 NOx还原成氮气和氧气。
可选地,SCR载体50设于筒体20内、并处于流通面A下游。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种汽车尾气中NOx浓度的测试方法,其特征在于,包括以下步骤:
    将尾气的流通面(A)分为至少两个流通部分(a);
    将FTIR(10)的至少两根采集管(11)分别设置在一个所述流通部分(a)中,使得任一所述流通部分(a)中具有一根所述采集管(11);
    启动发动机,产生尾气;
    尾气进入所述流通面(A),所述采集管(11)采集所述流通部分(a)中的气体,所述FTIR(10)对采集到的气体进行分析,从而获知流经各个所述流通部分(a)的气体中的NOx浓度。
  2. 根据权利要求1所述的汽车尾气中NOx浓度的测试方法,其特征在于,所述流通面(A)被等分为四个所述流通部分(a),所述FTIR(10)包括四根所述采集管(11)。
  3. 根据权利要求1所述的汽车尾气中NOx浓度的测试方法,其特征在于,所述采集管(11)插入所述流通部分(a)后,启动发动机,进行万有试验;
    在所述万有试验中,使得所述发动机以N1r/min的转速工作,获得第一个NOx浓度分布;
    使得所述发动机以N2r/min的转速工作,获得第二个NOx浓度分布;
    使得所述发动机以N3r/min的转速工作,获得第三个NOx浓度分布;
    ……
    以此类推,获得所述发动机的转速与NOx浓度分布的对应关系;
    或者,
    在所述万有试验中,使得所述发动机以M1mg/hub的油耗工作,获得第一个NOx浓度分布;
    使得所述发动机以M2mg/hub的油耗工作,获得第二个NOx浓度分布;
    使得所述发动机以M3mg/hub的油耗工作,获得第三个NOx浓度分布;
    ……
    以此类推,获得所述发动机的油耗与NOx浓度分布的对应关系。
  4. 根据权利要求3所述的汽车尾气中NOx浓度的测试方法,其特征在于,所述万有试验包括多个阶段,任一所述阶段包括多次试验;
    第一阶段中,使得所述发动机以N1r/min的转速工作;
    第一次试验时,使得所述发动机以M1mg/hub的油耗工作,获得第一个NOx浓度分布;
    第二次试验时,使得所述发动机以M2mg/hub的油耗工作,获得第二个NOx浓度分布;
    第三次试验时,使得所述发动机以M3mg/hub的油耗工作,获得第三个NOx浓度分布;
    ……
    以此类推,获得发动机在转速为N1r/min时,油耗与NOx浓度分布的对应关系;
    第二阶段中,使得所述发动机以N2r/min的转速工作;
    第一次试验时,使得所述发动机以M1mg/hub的油耗工作,获得第一个NOx浓度分布;
    第二次试验时,使得所述发动机以M2mg/hub的油耗工作,获得第二个NOx浓度分布;
    第三次试验时,使得所述发动机以M3mg/hub的油耗工作,获得第三个NOx浓度分布;
    ……
    以此类推,获得发动机在转速为N2r/min时,油耗与NOx浓度分布的对应关系;
    第三阶段中,使得所述发动机以N3r/min的转速工作;
    第一次试验时,使得所述发动机以M1mg/hub的油耗工作,获得第一个NOx浓度分布;
    第二次试验时,使得所述发动机以M2mg/hub的油耗工作,获得第二个NOx浓度分布;
    第三次试验时,使得所述发动机以M3mg/hub的油耗工作,获得第三个NOx浓度分布;
    ……
    以此类推,获得发动机在转速为N3r/min时,油耗与NOx浓度分布的对应关系;
    第四阶段中,使得所述发动机以N4r/min的转速工作;
    ……
    通过所述万有试验,获得不同转速下、发动机的油耗与尾气中NOx浓度分布的关系。
  5. 根据权利要求4所述的汽车尾气中NOx浓度的测试方法,其特征在于,获得不同转速下、发动机的油耗与尾气中NOx浓度分布的关系后,绘制标定图表,所述标定图表的横坐标和纵坐标中的一者为转速油耗、另一者为NOx浓度;
    所述标定图表包括多个标定组,各所述标定组对应的转速不同;
    任一所述标定组包括至少两张子表,任一所述流通部分(a)与一张所述子表对应。
  6. 根据权利要求3-5任一项所述的汽车尾气中NOx浓度的测试方法,其特征在于,N1、N2、N3……等差递增;
    和/或,M1、M2、M3……等差递增。
  7. 一种混合装置,其特征在于,包括:
    筒体(20),尾气通过所述筒体(20)向下游流动;
    尿素喷射机构(30),用于向所述筒体(20)内喷射尿素溶液,所述尿素喷射机构(30)包括至少两个输出器(31);
    控制系统(40),用于控制所述输出器(31)输出尿素溶液;
    根据权利要求1-6任一项所述的汽车尾气中NOx浓度的测试方法,所述筒体(20)的横截面为尾气的流通面(A),将所述筒体(20)的横截面分为至少两个流通部分(a),使得任一所述流通部分(a)与一个所述输出器(31)的输出端相对;
    根据流经所述流通部分(a)的气体中的NOx浓度,控制系统(40)控制所述输出器(31)输出尿素溶液。
  8. 根据权利要求7所述的混合装置,其特征在于,所述尿素喷射机构(30)还包括至少两个电磁阀(32),任一所述输出器(31)与一个所述电磁阀(32)相连。
  9. 根据权利要求7所述的混合装置,其特征在于,所述筒体(20)为圆筒,所述筒体(20)的横截面为圆形;
    将所述筒体(20)的横截面等分为四个流通部分(a),任一所述流通部分 (a)为90°的直角扇形;
    所述尿素喷射机构(30)包括四个输出器(31)。
  10. 一种后处理系统,其特征在于,包括权利要求7-9任一项所述的混合装置,还包括SCR载体,设于所述尿素喷射机构(30)的下游;
    所述尿素喷射机构(30)向所述筒体(20)内喷射尿素溶液,尾气进入所述筒体(20)后,与尿素溶液混合,混合后的气体进入所述SCR载体,所述SCR载体能够催化尾气与尿素发生反应。
PCT/CN2021/132643 2021-10-26 2021-11-24 汽车尾气中NOx浓度的测试方法、混合装置及后处理系统 WO2023070794A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111251798.3 2021-10-26
CN202111251798.3A CN113818949A (zh) 2021-10-26 2021-10-26 汽车尾气中NOx浓度的测试方法、混合装置及后处理系统

Publications (1)

Publication Number Publication Date
WO2023070794A1 true WO2023070794A1 (zh) 2023-05-04

Family

ID=78917388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132643 WO2023070794A1 (zh) 2021-10-26 2021-11-24 汽车尾气中NOx浓度的测试方法、混合装置及后处理系统

Country Status (2)

Country Link
CN (1) CN113818949A (zh)
WO (1) WO2023070794A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101842148A (zh) * 2007-10-30 2010-09-22 巴布科克能源环境公司 Scr反应器中的试剂分布控制的自适应控制系统
CN102202769A (zh) * 2008-09-04 2011-09-28 阿尔斯托姆科技有限公司 用于控制还原剂到scr系统的供给的方法与装置
CN104226110A (zh) * 2014-10-09 2014-12-24 河南合众电力技术有限公司 一种燃煤锅炉scr脱硝控制方法与控制系统
CN105854598A (zh) * 2016-05-11 2016-08-17 中国大唐集团科学技术研究院有限公司华东分公司 一种均匀喷氨系统及其控制方法
CN106000087A (zh) * 2016-05-12 2016-10-12 西安西热锅炉环保工程有限公司 一种基于分区混合调节的高性能scr超低排放控制系统
CN109736925A (zh) * 2019-01-02 2019-05-10 北京工业大学 一种柴油机大管径尾气管道氮氧化物测定方法
CN110426249A (zh) * 2019-08-06 2019-11-08 无锡威孚力达催化净化器有限责任公司 多探头采样装置、氨气混合均匀度的测试系统及方法
WO2020221540A1 (de) * 2019-05-02 2020-11-05 Siemens Aktiengesellschaft Reduktion von stickoxiden im abgasstrom einer feuerungsanlage mit einem scr-katalysator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4435103A1 (de) * 1994-09-30 1996-04-04 Siemens Ag Verfahren und Anordnung zur Verbesserung der Wirksamkeit von SCR-DeNOx-Anlagen
CN103867273A (zh) * 2014-04-04 2014-06-18 北京科领动力科技有限公司 一种柴油机scr系统还原剂分布均匀性测量装置及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101842148A (zh) * 2007-10-30 2010-09-22 巴布科克能源环境公司 Scr反应器中的试剂分布控制的自适应控制系统
CN102202769A (zh) * 2008-09-04 2011-09-28 阿尔斯托姆科技有限公司 用于控制还原剂到scr系统的供给的方法与装置
CN104226110A (zh) * 2014-10-09 2014-12-24 河南合众电力技术有限公司 一种燃煤锅炉scr脱硝控制方法与控制系统
CN105854598A (zh) * 2016-05-11 2016-08-17 中国大唐集团科学技术研究院有限公司华东分公司 一种均匀喷氨系统及其控制方法
CN106000087A (zh) * 2016-05-12 2016-10-12 西安西热锅炉环保工程有限公司 一种基于分区混合调节的高性能scr超低排放控制系统
CN109736925A (zh) * 2019-01-02 2019-05-10 北京工业大学 一种柴油机大管径尾气管道氮氧化物测定方法
WO2020221540A1 (de) * 2019-05-02 2020-11-05 Siemens Aktiengesellschaft Reduktion von stickoxiden im abgasstrom einer feuerungsanlage mit einem scr-katalysator
CN110426249A (zh) * 2019-08-06 2019-11-08 无锡威孚力达催化净化器有限责任公司 多探头采样装置、氨气混合均匀度的测试系统及方法

Also Published As

Publication number Publication date
CN113818949A (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
KR101707759B1 (ko) 배기 가스 촉매 변환기의 진단 방법, 진단 장치 및 상기 장치를 구비한 자동차
US10113464B2 (en) Method and apparatus for controlling reductant injection into an exhaust gas feedstream from an internal combustion engine
JP4585787B2 (ja) パティキュレート・フィルター再生速度の推定システム
KR101777986B1 (ko) 배기가스 촉매 컨버터의 진단 방법 및 자동차
US8713914B2 (en) Method and apparatus for monitoring a hydrocarbon-selective catalytic reduction device
US20060080953A1 (en) Method for regenerating a particle trap and exhaust system
US20070214777A1 (en) Methods Of Controlling Reductant Addition
CN102753794B (zh) 内燃机的排气净化装置
EP1451453A1 (en) System and methods for improved emission control of internal combustion engines
AU2004239253A1 (en) System and methods for improved emission control of internal combustion engines using pulsed fuel flow
US8966965B2 (en) Selective catalytic reduction outlet mixing device
KR101886088B1 (ko) 배기 가스 정화 장치 및 배기 가스 정화 방법
CN105378242A (zh) 内燃机的排气净化系统
CN104514598A (zh) 废气处理装置
JP2006138322A (ja) エンジンシステム、エンジンの制御方法、エンジン制御用コンピューターが読み取り可能な記憶媒体及び、エンジン制御用コンピュータープログラム
JP2006138321A (ja) 機械装置、同機械装置における排気ガス処理方法、同機械装置の制御用コンピュータープログラム、及び、排気ガス浄化用触媒
EP3115583A1 (en) Deterioration diagnosis apparatus for an exhaust gas purification apparatus
US20140366510A1 (en) Exhaust gas sampling device
Arunachalam et al. Modeling the thermal and soot oxidation dynamics inside a ceria-coated gasoline particulate filter
US20040265198A1 (en) Power generation aftertreatment system
WO2023070794A1 (zh) 汽车尾气中NOx浓度的测试方法、混合装置及后处理系统
CN204357536U (zh) 一种废气处理系统
KR102440575B1 (ko) 배기가스 정화장치 및 그 제어 방법
KR20160116571A (ko) 배기 가스 정화 장치의 린 녹스 트랩에서 발생되는 암모니아의 양을 계산하는 방법 및 배기 가스 정화 장치
CN113864031B (zh) 车辆尾气模拟发生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE