WO2023070744A1 - 一种光斑轨迹形状可变的激光切割头及其切割工艺 - Google Patents

一种光斑轨迹形状可变的激光切割头及其切割工艺 Download PDF

Info

Publication number
WO2023070744A1
WO2023070744A1 PCT/CN2021/129595 CN2021129595W WO2023070744A1 WO 2023070744 A1 WO2023070744 A1 WO 2023070744A1 CN 2021129595 W CN2021129595 W CN 2021129595W WO 2023070744 A1 WO2023070744 A1 WO 2023070744A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
cutting
mirror
vibrating mirror
laser
Prior art date
Application number
PCT/CN2021/129595
Other languages
English (en)
French (fr)
Inventor
杨绪广
张成顺
陈传明
张钦溟
牛满钝
马驰
贾文祺
李伟
张永泽
Original Assignee
济南邦德激光股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 济南邦德激光股份有限公司 filed Critical 济南邦德激光股份有限公司
Priority to US17/617,640 priority Critical patent/US20240100630A1/en
Priority to EP21962090.3A priority patent/EP4241914A1/en
Publication of WO2023070744A1 publication Critical patent/WO2023070744A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/035Aligning the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0736Shaping the laser spot into an oval shape, e.g. elliptic shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • B23K26/703Cooling arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof

Definitions

  • the present application relates to the field of laser cutting processing, in particular to a laser cutting head with a variable track shape of a light spot, and a cutting process.
  • Laser cutting uses a focused high-power-density laser beam to irradiate the metal sheet to rapidly melt, gasify, ablate or reach the ignition point, and at the same time blow off the molten material with the help of a high-speed airflow coaxial with the beam, thereby realizing the metal sheet. cutting.
  • laser cutting Compared with plasma cutting, flame cutting, wire cutting and other methods, laser cutting has the advantages of small heat-affected zone, fast cutting speed and good cutting quality, and has been widely used in sheet metal cutting.
  • laser cutting has higher requirements on the cutting precision of the beam, such as 0.1mm, and laser cutting needs to consider issues such as slits and timely discharge of molten metal, otherwise problems such as blast holes or impermeability will occur.
  • the present application provides a laser cutting head with a variable shape of the track of the light spot that can change the shape of the track of the light spot during the movement of the laser head and improve the cutting ability.
  • the technical solution adopted in this application is a laser cutting head with variable spot trajectory shape, including a beam shaper, a trajectory control component, a focusing component and a nozzle arranged in sequence along the direction of the optical path.
  • the trajectory control component includes X axis vibrating mirror and Y-axis vibrating mirror, the rotation axis of the X-axis vibrating mirror is a vertical axis, the rotating axis of the Y-axis vibrating mirror is a horizontal axis, and the reflection surface of the Y-axis vibrating mirror is opposite to that of the X-axis vibrating mirror.
  • the laser is transmitted between the X-axis vibrating mirror and the Y-axis vibrating mirror.
  • the laser spot is controlled during the laser cutting process when the main body of the laser head moves.
  • the circular reciprocating movement in the horizontal plane according to the set figure enables the existing power laser to achieve higher power cutting effect and speed, and reduces the purchase cost; the modular design is adopted, which is easy to assemble and reduces interference.
  • the trajectory control assembly includes a mounting seat, the mounting seat is an internal hollow structure, and an X-axis vibrating mirror assembly and a Y-axis vibrating mirror assembly are installed on the mounting seat.
  • the X-axis vibrating mirror assembly includes an X-axis motor, and the X-axis vibrating mirror assembly The mirror is installed on the output shaft of the X-axis motor, and the X-axis vibrating mirror is located inside the mounting base;
  • the Y-axis vibrating mirror assembly includes the Y-axis motor, and the Y-axis vibrating mirror is installed on the output shaft of the Y-axis motor, and the Y-axis vibrating mirror is located on the inside of the mount.
  • the X-axis galvanometer assembly and the Y-axis galvanometer assembly also include a motor frame respectively.
  • the motor frame includes a fixed block.
  • a movable block is arranged on one side of the fixed block.
  • the fixed block and the movable block are connected by bolts.
  • the motor is installed between the fixed block and the movable block.
  • a motor cooling assembly is arranged in the fixed block, and a tail shield is also arranged at the tail of the motor.
  • the vibrating mirror is controlled by the motor, which can better cooperate with the control program and achieve more precise trajectory control; the motor is firmly installed and easy to disassemble.
  • the trajectory control assembly further includes a reflector.
  • the reflector In the direction of the optical path, the reflector is located in front of the X-axis galvanometer, the Y-axis galvanometer is located behind the X-axis galvanometer, and the reflector is installed inside the mount.
  • the laser emitted by the laser source hits the reflector, the reflector reflects the laser to the X-axis galvanometer, the X-axis galvanometer reflects the laser to the Y-axis galvanometer again, and the Y-axis galvanometer outputs the laser to the next component.
  • the trajectory control assembly further includes a reflector.
  • the Y-axis vibrating mirror In the direction of the optical path, the Y-axis vibrating mirror is located in front of the X-axis vibrating mirror, and the reflecting mirror is located behind the X-axis vibrating mirror.
  • the laser emitted by the laser source hits the Y-axis vibrating mirror, the Y-axis vibrating mirror reflects the laser light to the X-axis vibrating mirror, and the X-axis vibrating mirror reflects the laser light to the reflector again, and the reflector reflects the laser light to the next component.
  • the beam shaper is arranged horizontally, and the Y-axis galvanometer is located behind the X-axis galvanometer in the direction of the optical path.
  • the trajectory control component can remove the reflector and directly project the incident light on the vibrating mirror. It has various installation forms and is more flexible to use.
  • the X-axis vibrating mirror assembly and the Y-axis vibrating mirror assembly further include a vibrating mirror cooling assembly
  • the vibrating mirror cooling assembly includes a vibrating mirror cooling plate
  • the front of the vibrating mirror cooling plate is close to the X-axis vibrating mirror or the Y-axis vibrating mirror.
  • On the back of the reflective surface of the mirror there is a cooling water tank on the cooling plate of the vibrating mirror, and the distance between the cooling plate of the vibrating mirror and the X-axis vibrating mirror or the Y-axis vibrating mirror is 2-10mm.
  • the cooling component can avoid the decrease of accuracy caused by the curvature change of the mirror caused by the heating of the vibrating mirror.
  • the distance between the cooling plate and the vibrating mirror is reasonable to ensure the cooling effect without interfering with the vibrating mirror rotation.
  • a limit plate is provided in front or behind the reflective surface of the X-axis galvanometer, and a limit plate is provided in front or behind the reflective surface of the Y-axis galvanometer.
  • the beam shaper includes a beam filter assembly and a collimator lens assembly.
  • the beam filter assembly In the direction of the optical path, the beam filter assembly is located in front of the collimator lens assembly, and an upper protective mirror is installed on the beam shaper.
  • the beam filter component filters the stray light from the laser source, and the collimator lens component converges the divergent beam into a beam of parallel light.
  • the upper protective lens can prevent dust from falling into the laser head.
  • a beam passing hole is provided in the middle of the beam filtering assembly, a tapered beam absorbing surface is provided above the beam passing hole, and the cone angle from the light exit point of the laser to the beam passing hole is greater than or equal to the beam divergence angle of the laser, A tapered beam absorbing surface can also be provided under the beam passage hole according to requirements. Through this setting, the high-energy beam in the middle of the beam can pass through, thereby improving the laser cutting precision.
  • the collimating mirror assembly includes a collimating mirror housing and a collimating mirror, and a coaxial adjustment member is installed on the collimating mirror housing to ensure the coaxiality between the output laser beam and the nozzle.
  • the divergent laser light in the laser source passes through the collimating mirror assembly and then enters the next assembly in parallel.
  • a coaxial adjustment part is set to ensure the coaxiality of the optical path through fine adjustment of the position of the collimating mirror.
  • the focusing assembly includes a focusing mirror, a focusing protection mirror and a lifting mechanism.
  • the focusing mirror is installed in the lens barrel.
  • a compression spring is arranged above the focusing lens, and the compression spring compresses the focusing mirror.
  • the lifting mechanism includes a lifting motor.
  • the output shaft of the motor is provided with a lead screw, which is matched with a lens group mounting seat, which can drive the lens group mounting seat to move along the lead screw, the lens barrel is installed on the lens group mounting seat, and the lower end of the focusing protection lens is set There is a lower protective mirror, and there are nozzles and cutting gas passages under the focusing assembly.
  • the focus is adjusted by lifting the focusing mirror; at the same time, the lower protective mirror is installed to prevent the damage of the focusing lens caused by the anti-slag; the cutting gas path sprays high-speed gas through the nozzle to blow off the molten metal in time.
  • the zoom ratio of the focusing assembly and the beam shaper is 1.2-3.5.
  • the present invention also provides a cutting process, the steps are as follows:
  • the light spot parameters include the light spot trajectory graphics, the light spot radius and the swing frequency or swing speed;
  • the host computer presets material options and thickness options; in S2, the light spot trajectory graphics include "8", horseshoe, " ⁇ " and "O”.
  • the spot parameters and cutting parameters include at least one of the following parameters:
  • the spot track diameter is 40-160 pixels
  • the swing frequency is 80-300Hz
  • negative focus cutting is used
  • the cutting auxiliary gas is nitrogen or air
  • the gas pressure is 5-25bar
  • the diameter of the spot track is 10-80 pixels, the oscillation frequency is 100-200Hz, the positive focus cutting is adopted, the cutting auxiliary gas is oxygen, and the gas pressure is 0.4-2.8bar;
  • the diameter of the spot track is 40-90 pixels
  • the oscillation frequency is 100-300Hz
  • negative focus cutting is used
  • the cutting auxiliary gas is nitrogen or air
  • the gas pressure is 5-25bar.
  • the axis motion system of the cutting machine cuts according to the set cutting pattern, while the X-axis galvanometer and the Y-axis galvanometer are continuously oscillating, and the light spot is set according to the set The movement of the spot parameters.
  • the coaxiality adjustment includes: adjusting the position of the collimating mirror through the coaxial adjustment member to determine the centering of the input beam and/or by adjusting the deflection angle of the X-axis galvanometer and the Y-axis galvanometer to determine the coaxiality of the output beam and the nozzle.
  • Axis; height calibration includes: controlling the axis system of the cutting machine so that the laser head touches the cutting plate for the first time, lifts up to the preset height, then falls again, and rises to the limited height of the laser head after touching the plate again;
  • Calibration of the cutting range includes: the laser head emits guiding light, the laser head runs along the preset cutting pattern track, and confirms whether the pattern to be cut falls into the plate completely.
  • the advantage of the present application is that by controlling the X-axis vibrating mirror and the Y-axis vibrating mirror, the shape of the spot track can be changed, and the spot moves reciprocatingly in the horizontal plane, compared with the existing laser beam relative Since the mechanical body of the cutting head is still, there will be no movement track relative to the mechanical body of the laser head.
  • the highest energy point of the laser can be well transmitted to the area to be processed on the plate, thereby improving the energy utilization rate of the laser beam and cutting Efficiency, greatly improving the thickness and cutting speed of the plate that can be cut, so that the existing power laser can achieve higher power cutting effect and speed, and reduce production and procurement costs; it has a heat dissipation function to ensure the long-term operation of the laser head; it has a protective mirror , to prevent damage and pollution to the inside of the laser head; the overall modular design is adopted, and the trajectory control components have various usage forms, which are easy to assemble and use; using the cutting process provided by this application, a faster cutting speed can be obtained, and the same power can Cut sheet thickness is greater.
  • Fig. 1 is a schematic diagram of the optical path structure of the existing cutting laser head.
  • FIG. 2 is a schematic structural diagram of Embodiment 1 of the present application.
  • FIG. 3 is a second structural diagram of Embodiment 1 of the present application.
  • FIG. 4 is a schematic structural diagram of a trajectory control component in Embodiment 1 of the present application.
  • FIG. 5 is a schematic structural diagram of an X-axis vibrating mirror assembly and a Y-axis vibrating mirror assembly in Embodiment 1 of the present application.
  • FIG. 6 is a schematic structural diagram of a collimating mirror assembly in Embodiment 1 of the present application.
  • FIG. 7 is a schematic structural diagram of the lifting mechanism in Embodiment 1 of the present application.
  • FIG. 8 is a first schematic diagram of an optical path of a laser head in Embodiment 1 of the present application.
  • FIG. 9 is a second schematic diagram of the optical path of the laser head in the first embodiment of the present application.
  • FIG. 10 is a schematic diagram of an optical path of a laser head in Embodiment 2 of the present application.
  • FIG. 11 is a schematic diagram of the optical path of the laser head in Embodiment 3 of the present application.
  • FIG. 12 is a schematic structural diagram of a cooling assembly in an embodiment of the present application.
  • Fig. 13 is a schematic diagram of the "8"-shaped light spot trajectory of the cutting head of the present application.
  • Fig. 14 is a flowchart of the cutting process in this application.
  • a laser cutting head with a variable spot trajectory shape includes a beam shaper 4, a trajectory control component, a focusing component and a nozzle arranged in sequence along the direction of the optical path.
  • the beam shaper 4 includes a beam filter component and The collimating mirror assembly, in the direction of the light path, the beam filtering assembly is located in front of the collimating mirror assembly, and the upper protective mirror 5 is installed on the beam shaper 4, and the upper protective mirror 5 is located between the beam filtering assembly and the collimating mirror assembly.
  • a sheet metal casing 1 is provided outside the control assembly.
  • the middle part of the beam filtering component is provided with a beam passing hole, and a conical beam absorbing surface is arranged above the beam passing hole.
  • the tapered beam absorption surface can be set according to the requirements. Through this setting, the high-energy beam in the middle of the beam can pass through, thereby improving the laser cutting precision.
  • the collimating mirror assembly includes a collimating mirror housing 12 and a collimating mirror 11, and a coaxial adjustment member is installed on the collimating mirror housing 12 to ensure that the laser beam passes symmetrically through the center of the nozzle to ensure cutting accuracy And ensure that the cutting effect of the cutting surface is consistent.
  • the coaxial adjustment member adopts an adjustment screw 13, and the adjustment screw 13 is arranged around the collimator mirror 11.
  • the number of adjustment screws 13 is four, and they are respectively arranged on four of the collimator mirror 11.
  • the adjustment screw 13 passes through the collimator housing 12, and one end of the adjustment screw 13 located in the collimator housing 12 is against the side of the collimator 11, and a nut is installed on the section of the adjustment screw 13 located outside the collimator housing 12 14.
  • the trajectory control assembly includes a mounting base 10, the mounting base 10 is an internal hollow structure, and an X-axis vibrating mirror assembly 7-1 and a Y-axis vibrating mirror assembly 7-2 are installed on the mounting base 10.
  • the structures of the assembly 7-1 and the Y-axis galvanometer assembly 7-2 are shown in Figure 5.
  • the X-axis galvanometer assembly 7-1 includes an X-axis motor 708-1, and the output shaft of the X-axis motor 708-1 is passed through a coupling
  • the device 706 is equipped with an X-axis vibrating mirror 705-1;
  • the Y-axis vibrating mirror assembly 7-2 includes a Y-axis motor 708-2, and the output shaft of the Y-axis motor 708-2 is equipped with a Y-axis vibrating mirror 705 through a coupling 706 -2.
  • the front or rear of the reflection surface of the X-axis galvanometer 705-1 and the front or rear of the reflection surface of the Y-axis galvanometer 705-2 are respectively provided with a limit plate 704, and the distance m between the limit plate and the corresponding galvanometer is k l, k is a coefficient, l is the length of the galvanometer, and m is generally set to 0.5-13.5mm.
  • the X-axis vibrating mirror 705-1 rotates to the first preset position and the second preset position, the X-axis vibrating mirror 705-1 is respectively in contact with the two sides of the limit plate 704, the first preset position and the second preset position
  • the second preset position is the limit position at both ends of the X-axis galvanometer rotation range; similarly, when the Y-axis galvanometer 705-2 rotates to the third preset position and the fourth preset position, the Y-axis galvanometer 705-2 respectively It is in contact with the two sides of the limit plate 704; the X-axis galvanometer assembly 7-1 and the Y-axis galvanometer assembly 7-2 are installed on the mounting base 10, in the direction of use (that is, the output laser of the laser head is vertical)
  • the X-axis vibrating mirror assembly 7-1 is vertically installed, that is, the output shaft of the X-axis motor 708-1 is vertically arranged, and the rotating shaft of the X-axis vibrating mirror
  • the Y-axis vibrating mirror assembly 7-2 is installed horizontally, that is, the output shaft of the Y-axis motor 708-2 is set horizontally, the rotating shaft of the Y-axis vibrating mirror 705-2 is a horizontal axis, and the X-axis vibrating mirror 705-1 and the Y-axis vibrating mirror
  • the mirrors 705-2 are all located inside the installation base 10, and the inside of the installation base 10 is also provided with a reflector 6, the reflective surface of the reflector 6 is inclined upward, and in the direction of the optical path, the reflector 6 is located at the side of the X-axis vibrating mirror 705-1.
  • the Y-axis vibrating mirror 705-2 is located behind the X-axis vibrating mirror 705-1, the reflecting surface of the mirror 6 is opposite to the reflecting surface of the X-axis vibrating mirror 705-1, and the reflecting surface of the Y-axis vibrating mirror 705-2 is opposite to that of the X-axis vibrating mirror 705-1.
  • the reflective surfaces of the X-axis vibrating mirror 705-1 are opposite to each other.
  • the first preset position and the second preset position are the limit positions at both ends of the X-axis galvanometer rotation range
  • the third preset position and the fourth preset position are the limit positions at both ends of the Y-axis galvanometer rotation range
  • a limit plate is set Limiting the rotation range of the two galvanometers can prevent the output laser scanning from exceeding the safe range due to over-rotation of the galvanometers.
  • the motors are installed on the motor frame, the motor frame includes a fixed block 703 and a movable block 707, and the movable block 707 is located on one side of the fixed block 703,
  • the fixed block 703 is connected with the movable block 707 by bolts, the motor is installed between the fixed block 703 and the movable block 707, and is clamped and fixed by the two, the motor cooling assembly 702 is also installed in the fixed block 703, and a motor cooling assembly 702 is also installed at the tail of the motor.
  • the focusing assembly includes a focusing lens 15, a focusing protective lens and a lifting mechanism 3.
  • the focusing lens 15 is installed in the lens barrel 22, and a compression spring is arranged above the focusing lens 15, and the compression spring compresses the focusing lens 15.
  • the lifting mechanism adopts a motor-driven
  • the leading screw includes a lifting motor 17, the output shaft of the lifting motor 17 is provided with a leading screw 18, and the leading screw 18 is equipped with a mirror group mounting seat 19, and the leading screw 18 can drive the mirror group mounting seat 19 to move along the leading screw 18.
  • the lens barrel is installed on the lens group mounting seat 19, and the lifting mechanism drives the lens barrel, the focusing lens, and the focusing protective lens to move up and down, and the lower end of the focusing protective lens is provided with a lower protective lens.
  • the zoom ratio of the focusing mirror and the collimating mirror is set to 1.2-3.5.
  • nozzles and cutting air passages under the focusing assembly.
  • the distance between the nozzle head and the plate is set to 0.2-2mm.
  • the beam output by the focusing component is ejected from the nozzle nozzle.
  • the gas becomes a high-speed gas.
  • the gas blows the cut slag to the bottom of the plate to prevent the slag from sticking in the molten pool. even.
  • the optical path structure of this embodiment is shown in Figures 8 and 9.
  • the laser beam emitted by the laser source of the cutting machine passes through the beam filter assembly to filter out stray light from the optical fiber, it enters the collimator assembly through the upper protective mirror, and the collimator 11 will diffuse
  • the beam is shaped into a parallel beam, the beam hits the reflector 6, and is reflected by the reflector 6 to the X-axis galvanometer 705-1, and the X-axis galvanometer 705-1 reflects the beam to the Y-axis galvanometer 705-2
  • the Y-axis vibrating mirror 705-2 reflects the beam downward again, focuses it through the focusing mirror 15 and outputs it as a cutting laser through the lower protective mirror 8 from the nozzle;
  • the spot of the output laser can move along the predetermined track in the plane, as shown in Figure 13.
  • the X-axis shown in the figure be the direction in which the laser head moves with the cutting machine axis system, that is, the current cutting direction
  • the Y-axis be the direction perpendicular to the X-axis.
  • the X-axis motor drives the X-axis vibration
  • the high-speed swing of the mirror makes the light spot move at high speed in the X direction.
  • the Y-axis motor drives the Y-axis vibrating mirror to swing at high speed to make the light spot move at a high speed in the Y-axis direction.
  • the two directions cooperate to realize the main movement of the light spot along the cutting direction.
  • the "8"-shaped micro-movement is continuously carried out, so that the cutting track has higher heat, and the cutting width is increased, and a better cutting surface can be obtained. Compared with the traditional completely straight cutting, it has higher cutting efficiency. , using the laser head can achieve the cutting effect of higher power equipment through the existing laser equipment, greatly saving production costs.
  • the optical path of the laser beam from the oscillating mirror to the spray head is short, and when forming the spot of the predetermined pattern, the oscillating angle of the oscillating mirror motor is large, and the precision of the motor output is high, thereby further achieving the high precision of laser cutting. Accuracy requirements.
  • the X-axis and Y-axis are two directions perpendicular to each other in the processing plane, which are only set for convenience of explanation, rather than limiting the direction of axis movement in actual processing, nor does it refer to the X-axis galvanometer and the Y-axis The rotation axis direction of the vibrating mirror.
  • the structure of the laser head of this embodiment is basically the same as that of Embodiment 1, the difference is that in the track control assembly of this embodiment, in the direction of the optical path, the Y-axis vibrating mirror 705-2 is located in front of the X-axis vibrating mirror 705-1, The reflector 6 is located behind the X-axis vibrating mirror 705-1, and the reflective surface of the reflector 6 is inclined downward;
  • the optical path structure in this embodiment is shown in Figure 10.
  • the laser beam emitted by the laser source passes through the beam filter assembly to filter out the stray light of the optical fiber, it enters the collimator assembly through the upper protective mirror, and the collimator 11 will diffuse
  • the beam is shaped into a beam of parallel beams, the beam hits the Y-axis galvanometer 705-2, and is reflected by the Y-axis galvanometer 705-2 to the X-axis galvanometer 705-1, and the X-axis galvanometer 705-1 reflects the beam
  • the reflector 6 reflects the light beam downward again, focuses it through the focusing mirror 15 and passes through the lower protective mirror 8, and outputs it as a cutting laser from the nozzle.
  • the control principle of the spot track is the same as that of the first embodiment.
  • the X-axis vibrating mirror assembly 7-1 and the Y-axis vibrating mirror assembly 7-2 in this embodiment are also equipped with a vibrating mirror cooling assembly, as shown in Figure 12, the vibrating mirror cooling assembly Including the vibrating mirror cooling plate 24, the front of the vibrating mirror cooling plate 24 is close to the back of the reflective surface of the X-axis vibrating mirror 705-1 or the Y-axis vibrating mirror 705-2, and the vibrating mirror cooling plate 24 is provided with a cooling water tank 25 to cool the vibrating mirror
  • the distance between the plate 24 and the X-axis vibrating mirror 705-1 or the Y-axis vibrating mirror 705-2 is 2-10mm, and the cooling effect can be guaranteed without interfering with the vibration of the vibrating mirror.
  • the present invention also provides a cutting process, the steps are as follows:
  • the light spot parameters include the light spot trajectory graphics, the light spot radius and the swing frequency or swing speed;
  • the material options in the host computer include commonly used sheet metal materials such as stainless steel and/or carbon steel and/or copper and/or aluminum;
  • the thickness options include thin plates, medium plates and thick plates, specifically, the thickness 1mm ⁇ 6mm is a thin plate, 7mm ⁇ 15mm is a medium plate, and 16mm or more is a thick plate;
  • the plate to be cut is placed on the cutting console, the shape of the spot track is selected on the spot track control software and its radius and swing frequency are set, cutting height, cutting focus, cutting speed, and cutting gas are set.
  • the pressure parameter is completed;
  • the method of adjusting the collimation mirror and the angle of the vibrating mirror in the present invention is more intelligent and convenient; then the height is calibrated, and the axis motion system of the cutting machine is controlled so that the laser head touches the cutting plate and then lifts up to the preset height and then again Descend, and the second touch plate rises to the limited height of the laser head. At this time, the height of the laser head is set; You can cut with the specified spot parameters and cutting parameters.
  • the cutting parameters can be set according to the following:
  • the diameter of the spot track is 40-160 pixels
  • the oscillation frequency is 80-300Hz
  • negative focus cutting is used
  • the pressure is 5-25bar when the cutting auxiliary gas is nitrogen or air.
  • the diameter of the spot track is 10-80 pixels
  • the oscillation frequency is 100-200Hz
  • the positive focus cutting is adopted
  • the pressure is 0.4-2.8bar when the cutting auxiliary gas is oxygen.
  • the diameter of the spot track is 40-90 pixels
  • the swing frequency is 100-300Hz
  • the negative focus cutting is used.
  • the cutting auxiliary gas is nitrogen or air
  • the pressure is 5-25bar. Compared with the laser cutting process with the same cutting parameters but non-adjustable light spot, the cutting speed can be increased by 20-300%.
  • the actual output beam is at a certain angle to the vertical direction, the slit becomes larger correspondingly, and the molten pool of the sheet becomes larger, which is conducive to the outflow of the molten sheet and greatly reduces the possibility of hole explosion during the cutting process
  • the focus position of the beam during the cutting process is also reduced accordingly, ensuring the uniformity of the laser energy in the plate, making the cutting speed faster, and the increase of the molten pool of the cutting plate provides good conditions for cutting thicker plates.
  • the pressure of the cutting gas is lower than that of the non-adjustable spot track. Therefore, this method can reduce the cooling effect of the cutting gas and improve the heat utilization rate of laser cutting while accelerating the discharge of molten metal.
  • the above example is a specific processing example of setting the track of the light spot as a circle, to help illustrate the beneficial effect of this solution.
  • the laser head of this application can be selected according to the actual cutting requirements. If the motor is not started to drive the vibrating mirror to rotate, that is, the adjustable light spot function will not be turned on.
  • the beneficial effect of the present application is that by controlling the X-axis vibrating mirror and the Y-axis vibrating mirror, the shape of the spot trajectory can be changed, and the spot moves reciprocatingly in the horizontal plane, greatly increasing the thickness and thickness of the plate that can be cut.
  • Cutting speed enables the existing power laser to achieve higher power cutting effect and speed, reducing production and procurement costs; it has a heat dissipation function to ensure the long-term operation of the laser head; it has a protective mirror to prevent damage and pollution to the inside of the laser head ;
  • the overall modular design is adopted, and the trajectory control components have multiple usage forms, which are convenient for assembly and use; using the cutting process provided by this application, a faster cutting speed can be obtained, and the thickness of the plate that can be cut under the same power is greater.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

本申请为一种光斑轨迹形状可变的激光切割头及切割工艺,属于激光切割加工领域。其技术方案为,一种光斑轨迹形状可变的激光切割头,包括沿光路方向依次设置的光束整形器、轨迹控制组件和聚焦组件,轨迹控制组件包括反射镜,X轴振镜和Y轴振镜,X轴振镜的转动轴为竖直轴,Y轴振镜的转动轴为水平轴,反射镜的反射面与X轴振镜的反射面相对,Y轴振镜的反射面与X轴振镜的反射面相对。本发明的有益效果为,通过控制X轴振镜和Y轴振镜的摆动,在激光头主体移动进行激光切割的过程中,控制光斑在水平面内做循环往复运动,使现有功率的激光器能够实现更高功率的切割效果和速度,降低生产采购成本。

Description

一种光斑轨迹形状可变的激光切割头及其切割工艺 技术领域
本申请涉及激光切割加工领域,特别是涉及一种光斑轨迹形状可变的激光切割头,以及切割工艺。
本申请要求于2021年10月29日提交中国专利局、申请号为20211126435.7、发明名称为"一种光斑轨迹形状可变的激光切割头及其切割工艺"的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
背景技术
激光切割利用经聚焦后的高功率密度激光束照射金属板材,使金属板材迅速熔化、气化、烧蚀或达到燃点,同时借助与光束同轴的高速气流吹除熔融物质,从而实现金属板材的切割。与等离子切割、火焰切割、线切割等方法相比,激光切割具有热影响区小,切割速度快,切割质量好等优点,在金属板材切割加工中迅速得到了广泛应用。而且激光切割对光束的切割精度要求更高,比如0.1mm,而且激光切割需要考虑切缝、熔融金属的及时排出等问题,否则会出现爆孔或穿不透等问题。
随着市场需求的变化,传统技术对激光切割机的要求逐渐提高,希望能够在不采购新机的情况下,通过相同功率的设备实现更快的切割速度、更好的切割面以及更大的切割厚度等。若使用更长焦距的聚焦镜以增大聚焦光斑获得更宽的切缝,会导致焦点附近的激光能量密度减小,降低切割效率,也会导致激光发散角减小,导致在焦点两侧的板材厚度处光斑大小与焦点处光斑大小差别较小,无法满足所有厚度处更宽切缝的要求。目前的激光切割头的光路结构如图1所示,激光源发出的光束经过准直镜、聚焦镜等结构输出后的光斑只能实现基本的上下移动,不能实现平面内方向的变化,其切割速度、切割厚度、切割面受到局限性。
发明内容
根据本申请的各种实施例,本申请提供了一种能够在激光头移动过程中同时改变光斑轨迹形状,提高切割能力的光斑轨迹形状可变的激光切割头。
为解决以上问题,本申请采用的技术方案为,一种光斑轨迹形状可变的激光切割头,包括沿光路方向依次设置的光束整形器、轨迹控制组件、聚焦组件和喷嘴,轨迹控制组件包括X轴振镜和Y轴振镜,X轴振镜的转动轴为竖直轴,Y轴振镜的转动轴为水平轴,Y轴振镜的反射面与X轴振镜的反射面相对。在轨迹控制组件中,激光在X轴振镜和Y轴振镜之间传递,通过控制X轴振镜和Y轴振镜的摆动,在激光头主体移动进行激光切割的过程中,控制光斑在水平面内按照设定的图形做循 环往复运动,使现有功率的激光器能够实现更高功率的切割效果和速度,降低采购成本;采用模块化的设计,便于装配,减少干涉。
在一个实施例中,轨迹控制组件包括安装座,安装座为内部中空结构,安装座上安装有X轴振镜组件和Y轴振镜组件,X轴振镜组件包括X轴电机,X轴振镜安装在X轴电机的输出轴上,X轴振镜位于安装座的内部;Y轴振镜组件包括Y轴电机,Y轴振镜安装在Y轴电机的输出轴上,Y轴振镜位于安装座的内部。X轴振镜组件和Y轴振镜组件还分别包括电机架,电机架包括固定块,固定块的一侧设有活动块,固定块和活动块之间通过螺栓连接,电机安装在固定块和活动块之间,固定块中设有电机冷却组件,电机的尾部还设有尾部护罩。通过电机控制振镜,能够更好的配合控制程序,实现更精确的轨迹控制;电机安装牢固且便于拆装。
在一个实施例中,轨迹控制组件还包括反射镜,在光路方向上,反射镜位于X轴振镜的前方,Y轴振镜位于X轴振镜的后方,反射镜安装在安装座内部。激光源发出的激光打在反射镜上,反射镜将激光反射到X轴振镜上,X轴振镜将激光再次反射到Y轴振镜上,Y轴振镜将激光输出至下一组件。
在一个实施例中,轨迹控制组件还包括反射镜,在光路方向上,Y轴振镜位于X轴振镜的前方,反射镜位于X轴振镜的后方。激光源发出的激光打在Y轴振镜上,Y轴振镜将激光反射到X轴振镜上,X轴振镜将激光再次反射到反射镜上,反射镜将激光反射到下一组件。
在一个实施例中,光束整形器为水平设置,在光路方向上,Y轴振镜位于X轴振镜的后方。当激光源为水平设置时,轨迹控制组件能够拆除反射镜,直接使入射光投射在振镜上,具有多种安装形式,使用更加灵活。
在一个实施例中,X轴振镜组件和Y轴振镜组件还分别包括振镜冷却组件,振镜冷却组件包括振镜冷却板,振镜冷却板的正面靠近X轴振镜或Y轴振镜反光面的背面,振镜冷却板上设有冷却水槽,振镜冷却板与X轴振镜或Y轴振镜之间的距离为2-10mm。冷却组件能够避免振镜发热造成镜片曲率变化而引起的精度下降,冷却板与振镜距离合理,保证冷却效果的同时不会干涉振镜转动。
在一个实施例中,X轴振镜的反射面前方或后方设有限位板,Y轴振镜的反射面前方或后方设有限位板,当X轴振镜转动到两侧的预设位置时,X轴振镜分别与限位板的两侧边相接触;当Y轴振镜转动到两侧的设定位置时,Y轴振镜分别与限位板的两侧边相接触,防止振镜意外过转导致输出激光超出安全范围发生危险。
在一个实施例中,限位板与X轴振镜或Y轴振镜之间的距离为m,m=kl,k为设定的系数,l为X轴振镜或Y轴振镜的长度,m为0.5-13.5mm。
在一个实施例中,光束整形器包括光束过滤组件和准直镜组件,在光路方向上, 光束过滤组件位于准直镜组件的前方,光束整形器上安装有上保护镜。光束过滤组件将激光源的杂光滤除,准直镜组件将发散的光束汇聚为一束平行光,安装光纤时,上保护镜能够避免灰尘落入激光头内。
在一个实施例中,光束过滤组件的中部设置有光束通过孔,光束通过孔的上方设置有锥形的光束吸收面,激光器的出光点到光束通过孔的锥角大于等于激光器的光束发散角,光束通过孔的下方也可根据需求设置锥形的光束吸收面。通过该设置,可将光束的中部高能量光束通过,进而提高激光切割精度。
在一个实施例中,准直镜组件包括准直镜外壳和准直镜,准直镜外壳上安装有同轴调节件,用于保证输出激光束与喷嘴的同轴性。激光源中的发散激光通过准直镜组件后平行射入下一组件,同时设置同轴调节件,通过对准直镜位置的微调保证光路的同轴性。
在一个实施例中,聚焦组件包括聚焦镜、聚焦保护镜和升降机构,聚焦镜安装在镜筒中,聚焦镜的上方设有压簧,压簧将聚焦镜压紧,升降机构包括升降电机,升降电机的输出轴上设有丝杠,丝杠上配合安装有镜组安装座,丝杠能够驱动镜组安装座沿丝杠运动,镜筒安装在镜组安装座上,聚焦保护镜的下端设有下保护镜,聚焦组件下方还设有喷嘴和切割气路。通过升降聚焦镜进行调焦;同时设置下保护镜,防止反渣对聚焦透镜造成损伤;切割气路经喷嘴喷出高速气体,及时吹除熔融金属。
在一个实施例中,聚焦组件和光束整形器的变倍比为1.2-3.5。
基于以上切割头,本发明还提供一种切割工艺,步骤如下:
S1.确定所切割板材参数,如材料和厚度等;
S2.设置光斑参数,光斑参数包括光斑轨迹图形、光斑半径和摆动频率或摆动速度;
S3.设置切割参数,切割参数包括切割图形、切割高度、切割焦点、切割速度和切割气体压力等;
S4.标定,包括同轴性调整、高度标定和切割范围标定;
S5.对板材进行切割,切割过程中,激光切割头根据所设置的切割参数进行切割,同时X轴振镜与Y轴振镜配合光斑参数使光斑进行连续微小运动;
S6.完成切割。
在一个实施例中,S1中,上位机预设材料选项和厚度选项;S2中,光斑轨迹图形包括“8”字形、马蹄形、“∞”形和“O”形。
在一个实施例中,光斑参数和切割参数包括以下参数的至少一种:
切割不锈钢中板或厚板时,光斑轨迹直径为40-160像素,摆动频率为80-300Hz, 采用负焦切割,切割辅助气体为氮气或空气,气体压力为5-25bar;
切割碳钢中板或厚板时,光斑轨迹直径为10-80像素,摆动频率为100-200Hz,采用正焦切割,切割辅助气体为氧气,气体压力为0.4-2.8bar;
切割铜或铝的中板或厚板时,光斑轨迹直径为40-90像素,摆动频率为100-300Hz,采用负焦切割,切割辅助气体为氮气或空气,气体压力为5-25bar。
在一个实施例中,切割机的轴动系统按照所设置的切割图形切割,同时X轴振镜和Y轴振镜连续摆动,通过X轴振镜和Y轴振镜的摆动使光斑按照设定的光斑参数运动。
在一个实施例中,S4中:
同轴性调整包括:通过同轴调节件调整准直镜的位置,确定输入光束的对中性和/或通过调节X轴振镜和Y轴振镜的偏转角度,确定输出光束与喷嘴的同轴度;高度标定包括:控制切割机的轴动系统使激光头第一次碰到切割板材后上抬至预设高度后再次下降,再次碰板后上升至激光头限定高度;
切割范围标定包括:激光头发出引导光,激光头沿预设的切割图形轨迹运行,确认待切割图形是否完全落入板材之内。
通过以上技术方案可以看出,本申请的优点在于,通过控制X轴振镜和Y轴振镜,可改变光斑轨迹形状,光斑在水平面内做循环往复运动,相比于现有的激光束相对于切割头机械本体静止,不会产生相对于激光头机械本体的运动轨迹的情况,本方案中激光的最高能量点可良好的传递到板材的待加工区域,进而提高激光光束能量利用率和切割效率,大幅提高能够切割的板材厚度和切割速度,使现有功率的激光器能够实现更高功率的切割效果和速度,降低生产采购成本;具有散热功能,保证激光头的长时间运行;具有保护镜,防止对激光头内部的损坏与污染;整体采用模块化设计,轨迹控制组件具有多种使用形式,便于装配使用;利用本申请提供的切割工艺,能够获得更快的切割速度,相同功率下能够切割的板材厚度更大。
附图说明
为了更清楚地说明本申请的技术方案,下面将对描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有切割激光头的光路结构示意图。
图2为本申请实施例一的结构示意图一。
图3为本申请实施例一的结构示意图二。
图4为本申请实施例一中轨迹控制组件的结构示意图。
图5为本申请实施例一中X轴振镜组件和Y轴振镜组件的结构示意图。
图6为本申请实施例一中准直镜组件的结构示意图。
图7为本申请实施例一中升降机构的结构示意图。
图8为本申请实施例一中激光头的光路示意图一。
图9为本申请实施例一中激光头的光路示意图二。
图10为本申请实施例二中激光头的光路示意图。
图11为本申请实施例三中激光头的光路示意图。
图12为本申请实施例中冷却组件的结构示意图。
图13为本申请切割头“8”字形光斑轨迹示意图。
图14为本申请中切割工艺的流程图。
图中:1.钣金外壳,2.喷嘴,3.升降机构,4.光束整形器,5.上保护镜,6.反射镜,7-1.X轴振镜组件,7-2.Y轴振镜组件,701.尾部护罩,702.电机冷却组件,703.固定块,704.限位板,705-1.X轴振镜,705-2.Y轴振镜,706.联轴器,707.活动块,708-1.X轴电机,708-2.Y轴电机,8.下保护镜,10.安装座,11.准直镜,12.准直镜外壳,13.调节螺丝,14.螺母,15.聚焦镜,16.光斑轨迹,17.升降电机,18.丝杠,19.镜组安装座,20.导轨,21.丝杠联轴器,22.镜筒,23.压簧,24.振镜冷却板,25.冷却水槽。
实施方式
为使得本申请的目的、特征、优点能够更加的明显和易懂,下面将结合本具体实施例中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,下面所描述的实施例仅仅是本发明一部分实施例,而非全部的实施例。基于本专利中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本专利保护的范围。
实施例一
如图2-6所示,一种光斑轨迹形状可变的激光切割头,包括沿光路方向依次设置的光束整形器4、轨迹控制组件、聚焦组件和喷嘴,光束整形器4包括光束过滤组件和准直镜组件,在光路方向上,光束过滤组件位于准直镜组件的前方,光束整形器4上安装有上保护镜5,上保护镜5位于光束过滤组件和准直镜组件之间,轨迹控制组件的外部设有钣金外壳1。
光束过滤组件的中部设置有光束通过孔,光束通过孔的上方设置有锥形的光束吸收面,激光器的出光点到光束通过孔的锥角大于等于激光器的光束发散角,光束 通过孔的下方也可根据需求设置锥形的光束吸收面。通过该设置,可将光束的中部高能量光束通过,进而提高激光切割精度。
如图6所示,准直镜组件包括准直镜外壳12和准直镜11,准直镜外壳12上安装同轴调节件,用以保证激光束由喷嘴的中心对称通过,以确保切割精度并保证切割面的切割效果一致。
在本实施例中,同轴调节件采用调节螺丝13,调节螺丝13环绕于准直镜11设置,在本实施例中,调节螺丝13数量为四个,分别设置在准直镜11的四个侧面,调节螺丝13穿过准直镜外壳12,调节螺丝13位于准直镜外壳12内的一端抵在准直镜11的侧面,调节螺丝13位于准直镜外壳12外部的一段上安装有螺母14,使用过程中通过调节四周的螺丝13,微调准直镜11的位置,实现光路的同轴度调节。
如图4所示,轨迹控制组件包括安装座10,安装座10为内部中空结构,安装座10上安装有X轴振镜组件7-1和Y轴振镜组件7-2,X轴振镜组件7-1和Y轴振镜组件7-2的结构如图5所示,X轴振镜组件7-1包括X轴电机708-1,X轴电机708-1的输出轴上通过联轴器706安装有X轴振镜705-1;Y轴振镜组件7-2包括Y轴电机708-2,Y轴电机708-2的输出轴上通过联轴器706安装有Y轴振镜705-2。
X轴振镜705-1的反射面前方或后方和Y轴振镜705-2的反射面前方或后方分别设有限位板704,限位板与相应的振镜间的距离m为k l,k为系数,l为振镜的长度,m一般设置为0.5-13.5mm。当X轴振镜705-1转动到第一预设位置和第二预设位置时,X轴振镜705-1分别与限位板704的两侧边相接触,第一预设位置和第二预设位置为X轴振镜转动范围两端的极限位置;同理,当Y轴振镜705-2转动到第三预设位置和第四预设位置时,Y轴振镜705-2分别与限位板704的两侧边相接触;X轴振镜组件7-1和Y轴振镜组件7-2均安装在安装座10上,以使用时的方向(即激光头的输出激光竖直向下时)为参考,X轴振镜组件7-1为竖直安装,即X轴电机708-1的输出轴为竖直设置,X轴振镜705-1的转轴为竖直轴,Y轴振镜组件7-2为水平安装,即Y轴电机708-2的输出轴为水平设置,Y轴振镜705-2的转轴为水平轴,X轴振镜705-1和Y轴振镜705-2均位于安装座10的内部,安装座10的内部还设有反射镜6,反射镜6的反射面倾斜向上,在光路方向上,反射镜6位于X轴振镜705-1的前方,Y轴振镜705-2位于X轴振镜705-1的后方,反射镜6的反射面与X轴振镜705-1的反射面相对,Y轴振镜705-2的反射面与X轴振镜705-1的反射面相对。
第一预设位置和第二预设位置为X轴振镜转动范围两端的极限位置,第三预设位置和第四预设位置为Y轴振镜转动范围两端的极限位置,设置限位板对两振镜进 行转动范围限位,能够避免振镜过转导致输出激光扫描超出安全范围。
在X轴振镜组件7-1和Y轴振镜组件7-2中,电机均安装在电机架上,电机架包括固定块703和活动块707,活动块707位于固定块703的一侧,固定块703与活动块707通过螺栓连接,电机安装在固定块703和活动块707之间,并被二者夹紧固定,固定块703中还安装有电机冷却组件702,在电机的尾部还设有尾部护罩701。
聚焦组件包括聚焦镜15、聚焦保护镜和升降机构3,聚焦镜15安装在镜筒22中,聚焦镜15的上方设有压簧,压簧将聚焦镜15压紧,升降机构采用电机驱动的丝杠,包括升降电机17,升降电机17的输出轴上设有丝杠18,丝杠18上配合安装有镜组安装座19,丝杠18能够驱动镜组安装座19沿丝杠18运动,镜筒安装在镜组安装座19上,升降机构带动镜筒及聚焦透镜、聚焦保护镜升降运动,聚焦保护镜的下端设置有下保护镜。聚焦镜与准直镜的变倍比设置为1.2-3.5。
聚焦组件的下方设有喷嘴及切割气路,激光切割时,喷嘴的喷头与板材间的距离设置为0.2-2mm。聚焦组件输出的光束从喷嘴的喷头射出,切割气路的切割辅助气体通过喷嘴后,气体变为高速气体,气体在切割过程中将切割的熔渣吹到板材下方,防止熔渣在熔池内黏连。
本实施例的光路结构如图8、9所示,切割机激光源发出的激光束经过光束过滤组件滤除光纤杂散光后,经上保护镜射入准直镜组件,准直镜11将扩散的光束整形为一束平行光束,光束打在反射镜6上,经反射镜6反射到X轴振镜705-1上,X轴振镜705-1将光束反射到Y轴振镜705-2上,Y轴振镜705-2再次将光束向下反射,经过聚焦镜15聚焦并透过下保护镜8由喷头输出为切割激光;
由于经过X轴振镜和Y轴振镜两次反射,可以通过程序控制,通过控制两个振镜的摆动,使输出激光的光斑能够在平面内沿预定轨迹动作,如图13所示,在加工平面中,设图示X轴为激光头随切割机轴动系统运行的方向,即当前的切割方向,Y轴为与X轴垂直的方向,在切割过程中,X轴电机驱动X轴振镜高速摆动,使光斑在X方向上不断高速位移,Y轴电机驱动Y轴振镜高速摆动,使光斑在Y轴方向上不断高速位移,两个方向配合,实现光斑在沿切割方向作主运动的同时,不断进行“8”字形微运动,使切割轨迹上具有更高的热量,并增大了切割宽度,能够获得更好的切割面,相对于传统的完全直线切割具有更高的切割效率,利用本激光头可以通过现有的激光设备实现更高功率设备的切割效果,大大节约生产成本。另外,本设计中,激光束经由振镜到喷头喷出的光束光路短,进而在形成预定图形的光斑时,振镜电机摆动的角度大,电机输出的精度高,进而进一步达成激光切割的高精度要求。
需要说明,图13所示的“8”字形轨迹只是一种切割方式,通过控制两个振镜,还能够实现马蹄形、“∞”形、圆形等其他轨迹形状。
同时,X轴、Y轴为在加工平面内相互垂直的两个方向,仅为便于说明作出的设置,而非对实际加工中轴动方向的限定,也并非是指X轴振镜和Y轴振镜的转轴方向。
实施例二
本实施例的激光头结构与实施例一基本相同,区别在于,在本实施例的轨迹控制组件中,在光路方向上,Y轴振镜705-2位于X轴振镜705-1的前方,反射镜6位于X轴振镜705-1的后方,反射镜6的反射面倾斜向下设置;
基于此设置,本实施例中光路结构如图10所示,激光源发出的激光束经过光束过滤组件滤除光纤杂散光后,经上保护镜射入准直镜组件,准直镜11将扩散的光束整形为一束平行光束,光束打在Y轴振镜705-2上,经Y轴振镜705-2反射到X轴振镜705-1上,X轴振镜705-1将光束反射到反射镜6上,反射镜6再次将光束向下反射,经过聚焦镜15聚焦并透过下保护镜8由喷嘴输出为切割激光,光斑轨迹控制原理与实施例一相同。
实施例三
适配于激光源光纤接口为水平设置的激光切割机,在本实施例的轨迹控制组件中不设置反射镜,光纤接口横向插入光束整形器,本实施例中光路如图11所示,此时经光束整形器处理过的光束直接投射在X轴振镜705-1上,经X轴振镜705-1反射至Y轴振镜705-2,然后经过聚焦镜15聚焦并透过下保护镜8由喷嘴输出为切割激光,光斑轨迹控制原理与实施例一相同。
实施例四
在以上三个实施例的基础上,本实施例中X轴振镜组件7-1和Y轴振镜组件7-2中还安装有振镜冷却组件,如图12所示,振镜冷却组件包括振镜冷却板24,振镜冷却板24的正面靠近X轴振镜705-1或Y轴振镜705-2反光面的背面,振镜冷却板24上设有冷却水槽25,振镜冷却板24与X轴振镜705-1或Y轴振镜705-2之间的距离为2-10mm,在不干涉振镜摆动的前提下保证冷却效果。
另一方面,基于以上设备和原理,本发明还提供一种切割工艺,步骤如下:
S1.确定所切割板材参数,如材料和厚度等;
S2.设置光斑参数,光斑参数包括光斑轨迹图形、光斑半径和摆动频率或摆动速度;
S3.设置切割参数,切割参数包括切割图形、切割高度、切割焦点、切割速度和切割气体压力等;
S4.标定,包括同轴性调整、高度标定和切割范围标定;
S5.对板材进行切割,切割过程中,激光切割头根据所设置的切割参数进行切割,同时X轴振镜与Y轴振镜配合光斑参数使光斑进行连续微小运动;
S6.完成切割。
在一种实施例中,上位机中的材料选项包括不锈钢和/或碳钢和/或铜和/或铝等常用的金属板材原料;厚度选项包括薄板、中板和厚板,具体的,厚度为1mm~6mm为薄板,7mm~15mm为中板,16mm以上为厚板;
在一种实施例中,将被切割板材放置在切割操作台上,在光斑轨迹控制软件上选取光斑轨迹的形状并设置其半径大小及摆动频率,设置切割高度,切割焦点,切割速度,切割气体压力参数完成;
标定板材,先通过调节同轴调节件调整准直镜11的位置,确定输入光束的对中性,并通过调节X轴振镜和Y轴振镜的偏转角度,确定输出光束与喷嘴的同轴度,本发明采用调节准直镜和调节振镜角度的方式更加的智能与便利;然后进行高度标定,控制切割机的轴动系统使激光头碰到切割板材后上抬至预设高度后再次下降,第二次碰板上升至激光头限定高度,此时为激光头高度设置完毕;然后使激光头按照预设轨迹运行,确认待切割图形是否完全落入板材之内;标定结束后按照设定的光斑参数和切割参数进行切割即可。
对于不同厚度的各种板材,切割参数可依照以下设置:
切割不锈钢中板或厚板时,光斑轨迹直径为40-160像素,摆动频率为80-300Hz,采用负焦切割,切割辅助气体为氮气或空气时压力为5-25bar,采用本方法,相对同种切割参数但光斑不可调的激光切割工艺,对不锈钢中厚板的切割速度能够提高30-80%;
切割碳钢中板及厚板时,光斑轨迹直径为10-80像素,摆动频率为100-200Hz,采用正焦切割,切割辅助气体为氧气时压力为0.4-2.8bar,采用本方法后,切割碳钢中厚板时切割速度能够相对同种切割参数参数但光斑不可调的激光切割工艺提高10-45%;
切割铜或铝的中板或厚板时,光斑轨迹直径为40-90像素,摆动频率为100-300Hz,采用负焦切割,切割辅助气体为氮气或空气时压力为5-25bar,采用本切割工艺,相对同种切割参数但光斑不可调的激光切割工艺,切割速度能够提高20-300%。
此外,对于不锈钢薄板、碳钢的薄板和中板、铜或铝的薄板,切割时可根据切割需求选择开启或关闭光斑轨迹可调功能。
由于光斑发生连续微小运动,实际输出光束与垂直方向成一定的角度,切缝相 应的变大,板材熔池变大,有利于板材熔融物的流出,大大的减小切割过程中爆孔的可能性,并且光束在切割过程中焦点位置也相应的降低,保证激光能量在板材中的均匀性,使切割速度更快,切割板材熔池的增大为切割更厚的板材提供良好的条件,此外切割气体压力相比光斑轨迹不可调时数值降低,因此本方式能够在加速排出熔融金属的情况下,减弱切割气体的冷却效果,提高激光切割的热量利用率。
下给出四个加工例,以说明本申请的有益效果:
Figure PCTCN2021129595-appb-000001
其中上述例子为设置光斑轨迹为圆形的具体加工例,以辅助说明本方案的有益效果。
本申请的激光头可根据实际切割需求进行选择,若不启动电机驱动振镜转动,即不开启光斑可调功能。
通过以上实施方式可以看出,本申请的有益效果为,通过控制X轴振镜和Y轴振镜,可改变光斑轨迹形状,光斑在水平面内做循环往复运动,大幅提高能够切割的板材厚度和切割速度,使现有功率的激光器能够实现更高功率的切割效果和速度,降低生产采购成本;具有散热功能,保证激光头的长时间运行;具有保护镜,防止对激光头内部的损坏与污染;整体采用模块化设计,轨迹控制组件具有多种使用形式,便于装配使用;利用本申请提供的切割工艺,能够获得更快的切割速度,相同功率下能够切割的板材厚度更大。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (16)

  1. 一种光斑轨迹形状可变的激光切割头,其特征在于,包括沿光路方向依次设置的光束整形器(4)、轨迹控制组件、聚焦组件和喷嘴,所述轨迹控制组件包括X轴振镜(705-1)和Y轴振镜(705-2),所述X轴振镜(705-1)的转动轴为竖直轴,所述Y轴振镜(705-2)的转动轴为水平轴,所述Y轴振镜(705-2)的反射面与所述X轴振镜(705-1)的反射面相对。
  2. 根据权利要求1所述的光斑轨迹形状可变的激光切割头,其特征在于,所述轨迹控制组件包括安装座(10),所述安装座(10)上安装有X轴振镜组件(7-1)和Y轴振镜组件(7-2),所述X轴振镜组件(7-1)包括X轴电机(708-1),所述X轴振镜(705-1)安装在所述X轴电机(708-1)的输出轴上,所述X轴振镜(705-1)位于所述安装座(10)的内部;所述Y轴振镜组件(7-2)包括Y轴电机(708-2),所述Y轴振镜(705-2)安装在所述Y轴电机(708-2)的输出轴上,所述Y轴振镜(705-2)位于所述安装座(10)的内部。
  3. 根据权利要求2所述的光斑轨迹形状可变的激光切割头,其特征在于,所述轨迹控制组件还包括反射镜(6),在光路方向上,所述反射镜(6)位于所述X轴振镜(705-1)的前方,所述Y轴振镜(705-2)位于所述X轴振镜(705-1)的后方,所述反射镜安装在安装座内。
  4. 根据权利要求2所述的光斑轨迹形状可变的激光切割头,其特征在于,所述轨迹控制组件还包括反射镜(6),在光路方向上,所述Y轴振镜(705-2)位于所述X轴振镜(705-1)的前方,所述反射镜(6)位于所述X轴振镜(705-1)的后方。
  5. 根据权利要求2所述的光斑轨迹形状可变的激光切割头,其特征在于,所述光束整形器(4)为水平设置,在光路方向上,所述Y轴振镜(705-2)位于所述X轴振镜(705-1)的后方。
  6. 根据权利要求2-5任一所述的光斑轨迹形状可变的激光切割头,其特征在于,所述X轴振镜组件(7-1)和Y轴振镜组件(7-2)还分别包括振镜冷却组件,所述振镜冷却组件包括振镜冷却板(24),所述振镜冷却板(24)的正面靠近所述X 轴振镜(705-1)或Y轴振镜(705-2)反光面的背面,所述振镜冷却板(24)上设有冷却水槽(25),振镜冷却板(24)与所述X轴振镜(705-1)或Y轴振镜(705-2)之间的距离为2-10mm。
  7. 根据权利要求1-5任一所述的光斑轨迹形状可变的激光切割头,其特征在于,所述X轴振镜(705-1)的反射面前方或后方设有限位板(704),所述Y轴振镜(705-2)的反射面前方或后方设有限位板(704),当所述X轴振镜(705-1)转动到两侧的预设位置时,所述X轴振镜(705-1)分别与所述限位板(704)的两侧边相接触;当所述Y轴振镜(705-2)转动到两侧的设定位置时,所述Y轴振镜(705-2)分别与所述限位板(704)的两侧边相接触。
  8. 根据权利要求7所述的光斑轨迹形状可变的激光切割头,其特征在于,所述限位板(704)与所述X轴振镜(705-1)或Y轴振镜(705-2)之间的距离为m,m=kl,k为设定的系数,l为所述X轴振镜或所述Y轴振镜的长度,m为0.5-13.5mm。
  9. 根据权利要求1-5任一所述的光斑轨迹形状可变的激光切割头,其特征在于,所述光束整形器(4)包括光束过滤组件和准直镜组件,在光路方向上,所述光束过滤组件位于所述准直镜组件的前方;所述光束过滤组件的中部设置有光束通过孔,光束通过孔的上方设置有锥形的光束吸收面,激光器的出光点到光束通过孔的锥角大于等于激光器的光束发散角。
  10. 根据权利要求9所述的光斑轨迹形状可变的激光切割头,其特征在于,所述准直镜组件包括准直镜外壳(12)和准直镜(11),所述准直镜外壳(12)上安装有同轴调节件,用于保证输出激光束与所述喷嘴的同轴性。
  11. 根据权利要求1-5任一所述的光斑轨迹形状可变的激光切割头,其特征在于,所述聚焦组件包括聚焦镜(15)、聚焦保护镜和升降机构(3),所述聚焦镜(15)安装在镜筒(22)中,所述聚焦镜(15)的上方设有压簧(23),所述压簧(23)将所述聚焦镜(15)压紧,所述升降机构包括升降电机(17),升降电机(17)的输出轴上设有丝杠(18),所述丝杠(18)上配合安装有镜组安装座(19),所述丝杠(18)能够驱动所述镜组安装座(19)沿所述丝杠(18)运动,所述镜筒安装 在所述镜组安装座(19)上,所述聚焦保护镜的下端设有下保护镜(8),所述聚焦组件下方设有喷嘴和切割气路。
  12. 根据权利要求11所述的光斑轨迹形状可变的激光切割头,其特征在于,所述聚焦组件和所述光束整形器的变倍比为1.2-3.5。
  13. 一种切割工艺,其特征在于,步骤如下:
    S1.确定切割板材参数;
    S2.设置光斑参数,光斑参数包括光斑轨迹图形、光斑半径和摆动频率或摆动速度;
    S3.设置切割参数,切割参数包括切割图形、切割高度、切割焦点、切割速度和切割气体压力;
    S4.标定,包括同轴性调整、高度标定和切割范围标定;
    S5.对板材进行切割,切割过程中,激光切割头根据所设置的切割参数进行切割,同时X轴振镜与Y轴振镜配合光斑参数使光斑进行连续微小运动;
    S6.完成切割。
  14. 根据权利要求13所述的切割工艺,其特征在于,
    所述S1中,通过上位机预设材料选项和厚度选项;
    所述S2中,光斑运动轨迹图形包括“8”字形、马蹄形、“∞”形、椭圆形中的一种或多种。
  15. 根据权利要求14所述的切割工艺,其特征在于,光斑参数和切割参数包括以下参数的至少一种:
    切割不锈钢中板或厚板时,光斑轨迹直径为40-160像素,摆动频率为80-300Hz,采用负焦切割,切割辅助气体为氮气或空气,气体压力为5-25bar;
    切割碳钢中板或厚板时,光斑轨迹直径为10-80像素,摆动频率为100-200Hz,采用正焦切割,切割辅助气体为氧气,气体压力为0.4-2.8bar;
    切割铜或铝的中板或厚板时,光斑轨迹直径为40-90像素,摆动频率为100-300Hz,采用负焦切割,切割辅助气体为氮气或空气,气体压力为5-25bar。
  16. 根据权利要求13-15任一所述的切割工艺,其特征在于,所述S4中:
    同轴性调整包括:通过同轴调节件调整准直镜(11)的位置,确定输入光束的对中性和/或通过调节X轴振镜和Y轴振镜的偏转角度,确定输出光束与喷嘴的同轴度;
    高度标定包括:控制切割机的轴动系统使激光头第一次碰到切割板材后上抬至预设高度后再次下降,再次碰板后上升至激光头限定高度;
    切割范围标定包括:激光头发出引导光,激光头沿预设的切割图形轨迹运行,确认待切割图形是否完全落入板材之内。
PCT/CN2021/129595 2021-10-29 2021-11-09 一种光斑轨迹形状可变的激光切割头及其切割工艺 WO2023070744A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/617,640 US20240100630A1 (en) 2021-10-29 2021-11-09 Laser cutting head with variable spot trajectory shape and cutting process thereof
EP21962090.3A EP4241914A1 (en) 2021-10-29 2021-11-09 Laser cutting head having variable spot trajectory shape and cutting process therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111266435.7A CN113695766B (zh) 2021-10-29 2021-10-29 一种光斑轨迹形状可变的激光切割头及其切割工艺
CN202111266435.7 2021-10-29

Publications (1)

Publication Number Publication Date
WO2023070744A1 true WO2023070744A1 (zh) 2023-05-04

Family

ID=78647334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129595 WO2023070744A1 (zh) 2021-10-29 2021-11-09 一种光斑轨迹形状可变的激光切割头及其切割工艺

Country Status (4)

Country Link
US (1) US20240100630A1 (zh)
EP (1) EP4241914A1 (zh)
CN (1) CN113695766B (zh)
WO (1) WO2023070744A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108465949A (zh) * 2018-05-22 2018-08-31 安徽斯塔克机器人有限公司 一种激光专用机器人及其机器手臂

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115351439B (zh) * 2022-10-21 2023-02-03 广东宏石激光技术股份有限公司 一种基于激光角度控制的激光切割装置及快速切割方法
CN115673569A (zh) * 2022-11-21 2023-02-03 长沙大科激光科技有限公司 一种中厚板摆动激光切割方法
CN116021174B (zh) * 2023-02-22 2023-08-15 济南邦德激光股份有限公司 一种激光光斑的动态控制方法和激光切割装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101419336A (zh) * 2008-11-17 2009-04-29 华中科技大学 一种振镜式激光三维扫描系统
CN206677387U (zh) * 2017-04-13 2017-11-28 深圳市铭镭激光设备有限公司 一种激光摆动焊接装置
CN107414293A (zh) * 2017-08-03 2017-12-01 大族激光科技产业集团股份有限公司 一种周期摆动激光焊接方法及焊接组件
CN207083357U (zh) * 2017-08-28 2018-03-09 镇江金海创科技有限公司 水冷系统及激光振镜
US20200122274A1 (en) * 2018-03-14 2020-04-23 Amada Holdings Co., Ltd. Laser processing machine and laser processing method
CN111367071A (zh) * 2020-04-01 2020-07-03 重庆金樾光电科技有限公司 气动单轴扫描系统
CN112912201A (zh) * 2018-10-22 2021-06-04 株式会社天田集团 激光加工机及激光加工方法
CN113084343A (zh) * 2021-04-14 2021-07-09 武汉锐科光纤激光技术股份有限公司 电梯复合面板焊接装置及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103128450B (zh) * 2013-02-19 2015-08-19 深圳市海目星激光科技有限公司 一种紫外激光加工装置
CN103831539B (zh) * 2014-01-10 2016-01-20 合肥鑫晟光电科技有限公司 激光打孔方法及激光打孔系统
CN106526872B (zh) * 2016-12-13 2022-09-20 华中科技大学 一种透射式激光光束整形系统
CN108568597A (zh) * 2018-05-04 2018-09-25 深圳市有道腾达科技有限公司 一种激光束往复摆动式加工装置及方法
CN211840637U (zh) * 2020-01-22 2020-11-03 苏州德龙激光股份有限公司 激光成像法切割pi网板的装置
CN214264347U (zh) * 2021-01-15 2021-09-24 武汉松盛光电科技有限公司 一种激光旋转切割精密切割头

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101419336A (zh) * 2008-11-17 2009-04-29 华中科技大学 一种振镜式激光三维扫描系统
CN206677387U (zh) * 2017-04-13 2017-11-28 深圳市铭镭激光设备有限公司 一种激光摆动焊接装置
CN107414293A (zh) * 2017-08-03 2017-12-01 大族激光科技产业集团股份有限公司 一种周期摆动激光焊接方法及焊接组件
CN207083357U (zh) * 2017-08-28 2018-03-09 镇江金海创科技有限公司 水冷系统及激光振镜
US20200122274A1 (en) * 2018-03-14 2020-04-23 Amada Holdings Co., Ltd. Laser processing machine and laser processing method
CN112912201A (zh) * 2018-10-22 2021-06-04 株式会社天田集团 激光加工机及激光加工方法
CN111367071A (zh) * 2020-04-01 2020-07-03 重庆金樾光电科技有限公司 气动单轴扫描系统
CN113084343A (zh) * 2021-04-14 2021-07-09 武汉锐科光纤激光技术股份有限公司 电梯复合面板焊接装置及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108465949A (zh) * 2018-05-22 2018-08-31 安徽斯塔克机器人有限公司 一种激光专用机器人及其机器手臂
CN108465949B (zh) * 2018-05-22 2024-05-03 安徽斯塔克机器人有限公司 一种激光专用机器人及其机器手臂

Also Published As

Publication number Publication date
CN113695766A (zh) 2021-11-26
EP4241914A1 (en) 2023-09-13
US20240100630A1 (en) 2024-03-28
CN113695766B (zh) 2022-02-22

Similar Documents

Publication Publication Date Title
WO2023070744A1 (zh) 一种光斑轨迹形状可变的激光切割头及其切割工艺
US9931712B2 (en) Laser drilling and trepanning device
CN100436031C (zh) 激光精密熔覆光粉同轴装置
CN101468393B (zh) 一种金属粉末激光成形系统的金属粉末送给装置
CN109989060B (zh) 一种同轴送粉高速激光喷涂装置
CN108326554B (zh) 一种激光水射流复合加工系统
CN110039178B (zh) 一种激光焊接头
CN113199160B (zh) 一种激光同步扫描加工群孔系统及扫描方法
CN112108760A (zh) 连续激光器环形光斑amb加蓝光复合出射头
CN109202304A (zh) 一种千瓦级光纤激光切割机用自适应调焦切割头及其操作使用方法
CN113634874A (zh) 多聚焦点透镜大功率水导激光水光耦合装置
WO2024098648A1 (zh) 一种精密激光深孔加工装置及加工方法
CN220029000U (zh) 一种防飞溅的手持激光焊接机的焊枪
CN110842381B (zh) 一种激光加工头
CN107378240A (zh) 一种振镜激光叠焊工艺
CN207223180U (zh) 一种新型振镜激光叠焊设备
CN112828442B (zh) 一种可变摆动频率和幅度的手持激光焊接头
CN201168781Y (zh) 一种激光成形系统的金属粉末送给装置
CN107309546A (zh) 一种振镜激光叠焊设备
CN211247615U (zh) 激光清洗装置
CN114643410A (zh) 一种同轴送丝激光制造方法及装置
CN215432096U (zh) 激光切割头
CN116021174B (zh) 一种激光光斑的动态控制方法和激光切割装置
CN219786950U (zh) 简易飞行光路激光切割机
CN110976431B (zh) 激光清洗装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962090

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021962090

Country of ref document: EP

Effective date: 20230608