WO2023070742A1 - 柱塞泵系统及其压力脉动补偿方法、压裂设备 - Google Patents

柱塞泵系统及其压力脉动补偿方法、压裂设备 Download PDF

Info

Publication number
WO2023070742A1
WO2023070742A1 PCT/CN2021/129434 CN2021129434W WO2023070742A1 WO 2023070742 A1 WO2023070742 A1 WO 2023070742A1 CN 2021129434 W CN2021129434 W CN 2021129434W WO 2023070742 A1 WO2023070742 A1 WO 2023070742A1
Authority
WO
WIPO (PCT)
Prior art keywords
plunger pump
pressure
linear motor
fluid
plunger
Prior art date
Application number
PCT/CN2021/129434
Other languages
English (en)
French (fr)
Inventor
王洪力
张海波
于晓晨
张磊
Original Assignee
烟台杰瑞石油装备技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台杰瑞石油装备技术有限公司 filed Critical 烟台杰瑞石油装备技术有限公司
Publication of WO2023070742A1 publication Critical patent/WO2023070742A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/04Combinations of two or more pumps
    • F04B23/06Combinations of two or more pumps the pumps being all of reciprocating positive-displacement type
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/2607Surface equipment specially adapted for fracturing operations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B11/00Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/08Regulating by delivery pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/20Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by changing the driving speed

Definitions

  • At least one embodiment of the present disclosure relates to a plunger pump system, a pressure pulsation compensating method thereof, and a fracturing device.
  • the periodic motion of the crankshaft driving the plunger generates flow pulsation, which causes pressure pulsation in the high-pressure pulsating fluid discharged from the multi-cylinder plunger pump.
  • the pressure pulsation manifests as continuous vibration, which reduces the service life of pipelines and components, and then damages the equipment and systems connected to the liquid end of the multi-cylinder plunger pump.
  • the pressure pulsation of the high-pressure pulsating fluid will also be accompanied by relatively large noise, which may easily cause environmental pollution.
  • At least one embodiment of the present disclosure provides a plunger pump system, a pressure fluctuation compensating method thereof, and a fracturing device.
  • At least one embodiment of the present disclosure provides a plunger pump system, including a first plunger pump and a fluid pressure compensation structure.
  • the fluid pressure compensating structure is configured to compensate the pressure pulsation of the fluid output from the output end of the first plunger pump.
  • the fluid pressure compensation structure includes at least one linear motor and a second plunger pump driven by the at least one linear motor, the output end of the second plunger pump is connected to the output end of the first plunger pump connected.
  • the number of the second plunger pump driven by each linear motor is two, and the two ends of the mover of the linear motor are respectively connected to drive two second plunger pumps, so
  • the linear motor and the two second plunger pumps are arranged along a straight line, and the linear motor is configured to reciprocate and linearly move between the two second plunger pumps.
  • the at least one linear motor includes a plurality of linear motors, and the number of the second plunger pump driven by at least one linear motor in the plurality of linear motors is one.
  • the first plunger pump includes a multi-cylinder plunger pump.
  • the plunger pump system further includes a controller electrically connected to the linear motor.
  • the controller is configured to adjust the speed of the linear motor according to the rotation speed of the first plunger pump, so that the period of the pressure pulsation of the fluid output from the output end of the second plunger pump is the same as that of the first plunger pump.
  • the period of the pressure pulsation of the fluid output by the output end of the plunger pump is equal, and the phases of the two are opposite; and/or, the controller is configured to adjust the pressure of the fluid output by the first plunger pump.
  • the plunger pump system further includes a rotational speed acquisition unit and/or a pressure acquisition unit.
  • the rotational speed acquisition part is connected with the first plunger pump and configured to acquire the rotational speed of the first plunger pump.
  • the pressure collection part is connected with the first plunger pump and configured to collect a pressure pulsation signal of the fluid output by the first plunger pump.
  • the pressure acquisition part is electrically connected to the controller, and the controller is configured to control the thrust of the linear motor according to the pressure pulsation signal collected by the pressure acquisition part .
  • the input end of the second plunger pump communicates with the input end of the first plunger pump.
  • At least one embodiment of the present disclosure provides a fracturing equipment, including any one of the above-mentioned plunger pump systems.
  • At least one embodiment of the present disclosure provides a pressure pulsation compensation method applied to the above plunger pump system, including: adjusting the speed of the linear motor according to the speed of the first plunger pump, so that the second plunger The period of the pressure pulsation of the fluid output from the output end of the pump is equal to the period of the pressure pulsation of the fluid output from the output end of the first plunger pump, and the phases of the two are opposite; and/or, according to the first column
  • the pressure of the fluid output by the piston pump adjusts the thrust of the linear motor, so that the pressure amplitude of the pressure pulsation of the fluid output by the output end of the second piston pump is the same as that output by the output end of the first piston pump.
  • the pressure amplitudes of the pressure pulsations of the fluid are equal, and the phases of the two are opposite.
  • adjusting the thrust of the linear motor according to the pressure of the fluid output by the first plunger pump includes: collecting a pressure pulsation signal of the fluid output by the first plunger pump; A pressure pulse signal controls the thrust of the linear motor.
  • Fig. 1 is a structural block diagram of a plunger pump system provided according to an embodiment of the present disclosure
  • Fig. 2 is a schematic diagram of a fluid pressure compensation structure provided according to an example of an embodiment of the present disclosure
  • Fig. 4 is a schematic diagram of at least part of the process of the controller shown in Fig. 1 adjusting the speed of the linear motor according to the rotational speed of the first plunger pump;
  • Fig. 6 is a structural block diagram of a fracturing device provided according to an embodiment of the present disclosure.
  • first plunger pump and “second plunger pump” may be interchanged, one of which is driven by a linear motor, and the other is driven by an electric motor or a turbine engine as a power source.
  • Ways to eliminate flow pulsation include passive compensation and active compensation.
  • Passive compensation refers to installing an energy storage buffer on the pulsation pipeline, and setting a pressure for the energy storage buffer according to the pressure of the system that generates flow pulsation, so as to reduce the amplitude of the pressure pulsation of the system.
  • Active compensation refers to eliminating the initial pulsation in the system by adding an external power source and introducing a secondary pulsation equal to the amplitude and period of the pulsating pressure and opposite in phase to the system.
  • Active pulsation compensation includes three forms: inflow compensation, shunt compensation and shunt inflow compensation. Active pulsation compensation makes the system finally output a stable flow by actively controlling the flow.
  • Inflow active compensation refers to adding additional energy to the system, such as adding a supplementary flow pump to the system. The supply of the pump is controlled by a servo valve to supplement the trough of the flow pulsation in the pipeline of the system, so that the flow in the pipeline tends to Smooth, reducing pressure pulsation in the system.
  • Split-type active compensation means that by adjusting the valve opening in a pipeline, a part of the peak flow is diverted to achieve the purpose of smooth flow output and stable pressure.
  • the shunt inflow type active compensation couples the shunt flow type and the inflow type, that is, the flow of the fluid output from the pipeline is shunted when it is at the peak flow rate, and supplemented when it is at the flow valley value to keep the system flow and pressure stable and reduce pressure pulsation. Effect.
  • the volume of the energy storage buffer installed on the discharge pipeline using the passive pulsation compensation method is too large, and the compensation effect of this method for low-frequency pulsation is poor.
  • pipeline vibration is strong. Due to the complex process, active pulsation compensation has only a small amount of application in the system of about 20MPa, but has no substantive application in the operation of more than 50MPa, so the life of the pipeline and equipment is low and the replacement is frequent.
  • the inventor of the present application found that the working pressure of the multi-cylinder plunger pump is very high. If the split flow active compensation method is adopted, the discharge process is highly dangerous, and the injection device is easy to wear, resulting in a reduction in the life of the equipment.
  • Embodiments of the present disclosure provide a plunger pump system, a pressure pulsation compensating method thereof, and fracturing equipment.
  • the plunger pump system includes a first plunger pump and a fluid pressure compensation structure.
  • the fluid pressure compensating structure is configured to compensate the pressure pulsation of the fluid output from the output end of the first plunger pump.
  • the fluid pressure compensating structure includes at least one linear motor and a second plunger pump driven by the at least one linear motor, and the output end of the second plunger pump communicates with the output end of the first plunger pump.
  • a fluid pressure compensation structure with a linear motor and a second plunger pump is added. It is convenient to adjust and control to realize the compensation of the pressure pulsation of the fluid output by the first plunger pump.
  • Fig. 1 is a structural block diagram of a plunger pump system provided according to an embodiment of the present disclosure.
  • the plunger pump system includes a first plunger pump 100 and a fluid pressure compensation structure 200 .
  • the fluid pressure compensating structure 200 is configured to compensate the pressure pulsation of the fluid output from the output end 101 of the first plunger pump 100 .
  • the fluid pressure compensation structure 200 includes at least one linear motor 210 and a second plunger pump 220 driven by the at least one linear motor 210, the output end 221 of the second plunger pump 220 communicates with the output end 101 of the first plunger pump 100, The pressure pulsation of the fluid output from the output end 101 of the first plunger pump 100 is compensated by the fluid output from the output end 221 of the second plunger pump 220 .
  • a fluid pressure compensation structure with a linear motor and a second plunger pump is added. It is convenient to adjust and control to realize the compensation of the pressure pulsation of the fluid output by the first plunger pump.
  • the above-mentioned fluid pressure compensation system including the linear motor and the second plunger pump adopts an inflow active compensation method, and the second plunger pump column driven by the linear motor can compensate the pressure artery of the fluid output by the first plunger pump.
  • the plunger pump system provided by the embodiments of the present disclosure can avoid the noise caused by the discharge of the high-pressure fluid and the wear of the equipment connected to the output end of the first plunger pump by using the inflow active compensation method.
  • a linear motor is used to drive the second plunger pump, which can realize pressure pulsation compensation through a small displacement.
  • the first plunger pump 100 when the first plunger pump 100 is working, the mechanical energy is directly converted into the pressure energy of the transported liquid through the plunger pump.
  • the first plunger pump 100 may include a power end assembly 110 and a fluid end assembly 120, the fluid end assembly includes a plunger and a valve box, and the power end assembly includes a crankshaft, a connecting rod, a slide rail and a crosshead , the power is transmitted from the crosshead to the plunger.
  • the output port 101 of the first plunger pump 100 may refer to a port through which the first plunger pump 100 discharges high-pressure fluid.
  • the first plunger pump 100 includes a multi-cylinder plunger pump.
  • a multi-cylinder piston pump may include a multi-cylinder valve box.
  • Figure 1 schematically shows that the multi-cylinder valve box includes a three-cylinder valve box, but is not limited thereto, and the multi-cylinder valve box may also include a two-cylinder valve box, a four-cylinder valve box, a five-cylinder valve box, and a six-cylinder valve box Or a seven-cylinder valve box.
  • the plunger pump system further includes a power source 300 configured to drive the first plunger pump 100 .
  • the power source 300 may be connected to the power end of the first plunger pump 100 and configured to provide power to the power end of the first plunger pump 100 .
  • the power source may be an electric motor or a turbine engine, which is not limited in this embodiment of the present disclosure.
  • each linear motor 210 may be a double-acting linear motor, that is, one linear motor 210 drives two second plunger pumps 220 , and the linear motor 210 is located between the two second plunger pumps 220 .
  • the two ends of the mover of the linear motor 210 are respectively connected and drive two second plunger pumps 220, the linear motor 210 and the two second plunger pumps 220 are arranged in a straight line, and the mover of the linear motor 210 is It is configured to reciprocate linearly between the two second plunger pumps 220 .
  • the linear motor can directly drive the second plunger pump by utilizing its linear motion characteristics.
  • the second plunger pump 220 includes a fluid end assembly, and the linear motor 210 may be connected to the fluid end assembly through a connection assembly.
  • a liquid end assembly may include a plunger and valve box.
  • the connection assembly may include a plunger connector, a support rod and a mover connector, one end of the support rod is connected to the plunger connector, the other end of the support rod is connected to the mover connector, and the other end of the plunger connector It is connected with the plunger, and the other end of the mover connector is connected with the mover of the linear motor.
  • the linear motor can drive the plunger to reciprocate in the valve box through the connection assembly, so that the liquid is sucked into the pump cylinder and discharged at high pressure, realizing the flow of low-pressure fluid. Suction and discharge of high pressure fluids.
  • the embodiment of the present disclosure is not limited thereto, and the mover of the linear motor may also be directly connected with the plunger of the second plunger pump.
  • the second plunger pump 220 may include a single cylinder plunger pump.
  • two ends of the mover of the linear motor 210 are respectively connected to drive two single-cylinder plunger pumps.
  • an example of an embodiment of the present disclosure uses a double-acting linear motor to drive two single-cylinder plunger pumps.
  • the linear motion characteristic of the linear motor is easy to integrate with the double-acting single-cylinder plunger pump, and the design is compact and easy to implement.
  • the output port 221 of the second plunger pump 220 may refer to a port through which the second plunger pump 220 discharges high-pressure fluid.
  • the communication between the output end 101 of the first plunger pump 100 and the output end 221 of the second plunger pump 220 may refer to the pipeline for discharging high-pressure fluid of the first plunger pump 100 and the discharge high-pressure fluid of the second plunger pump 220.
  • the pipelines are connected so that the high-pressure fluids discharged from the two pipelines can merge, so that the fluid output by the second piston pump 220 can compensate the pressure pulsation of the fluid output by the first piston pump 100 .
  • the input port 222 of the second plunger pump 220 communicates with the input port 102 of the first plunger pump 100 .
  • the input end 102 of the first plunger pump 100 may refer to the port through which the first plunger pump 100 flows into the low-pressure fluid
  • the input end 222 of the second plunger pump 220 may refer to the port through which the second plunger pump 220 flows into the low-pressure fluid
  • the input end 222 of the second plunger pump 220 communicates with the input end 102 of the first plunger pump 100, which may mean that the pipeline through which the first plunger pump 100 flows into the low-pressure fluid communicates with the pipeline through which the second plunger pump 220 flows into the low-pressure fluid.
  • the embodiment of the present disclosure is not limited thereto, and the input end of the second plunger pump may not communicate with the input end of the first plunger pump, and the two are separated from each other, and low-pressure fluid may be sucked in from different pipelines.
  • the linear motor 210 drives the second plunger pump 220, which has many advantages.
  • the intermediate conversion mechanism that converts the rotary motion into the linear motion can be omitted, the overall structure is simplified, and the weight and volume of the fluid pressure compensation structure are reduced. It saves cost and facilitates the maintenance and maintenance of the second plunger pump; for example, direct transmission can be realized when linear motion is required, so various positioning errors caused by intermediate links can be eliminated, so the positioning accuracy of linear motors is high; for example ,
  • the linear motor has fast response speed, high sensitivity, and good follow-up; for example, the linear motor has less mechanical friction loss, so there are fewer failures and maintenance-free, so it is safe and reliable in operation and has a long life.
  • the linear motor may include a DC linear motor, an AC linear motor, a linear asynchronous motor, a linear synchronous motor or a linear stepper motor.
  • the linear motor may be a flat linear motor, including a mover, a stator and a guide rail, the guide rail is fixed, and the stator drives the mover to reciprocate on the guide rail.
  • the left and right ends of the mover of the double-acting linear motor 210 are directly connected to a plunger respectively, and each double-acting linear motor alternately drives the two plungers on the left and right sides, and then drives the second column respectively located on both sides of the linear motor 210.
  • the output ends of the second plunger pumps 2201 and 2202 are both in communication with the output end of the first plunger pump 100 .
  • the linear motor 210 drives the single-cylinder plunger pumps on both sides (that is, the two second plunger pumps) to work.
  • the second plunger pump 2202 When the mover of the linear motor 210 moves to one side, the second plunger pump 2202 sucks low-pressure fluid, and the output end of the second plunger pump 2201 discharges high-pressure fluid, which is the same as the high-pressure fluid discharged by the first plunger pump 100.
  • the check valve of the second plunger pump 2202 is opened to move toward the second plunger pump 2202. Inject high-pressure fluid into the pipeline connected with the output end of the first plunger pump 100; when the mover of the linear motor 210 moves away from the second plunger pump 2202, the one-way valve of the second plunger pump 2202 is closed , the second plunger pump 2202 sucks low-pressure fluid, and the high-pressure fluid in the output end (such as the output pipeline) of the second plunger pump 2202 is sealed by the one-way valve, so as to circulate.
  • a linear motor is used to drive the double-acting second plunger pump for compensation.
  • the second plunger pump located at one end of the linear motor is sucking liquid.
  • the second plunger pump located at the other end of the linear motor is pressurizing fluid, so that the two second plunger pumps can work alternately, which improves the use efficiency of the linear motor and increases the output flow of the second plunger pump.
  • Fig. 1 schematically shows that the fluid pressure compensation structure includes a linear motor and two second plunger pumps driven by the linear motor, but not limited thereto, the fluid pressure compensation structure may include two linear motors and four second plunger pumps Two plunger pumps, or three linear motors and six second plunger pumps, the output ends of all the second plunger pumps are connected to the output ends of the first plunger pumps.
  • the fluid pressure compensation structure provided by the embodiments of the present disclosure can set the number of linear motors and second plunger pumps according to actual engineering requirements.
  • the linear motor 210 may further include a linear motor driver 400 electrically connected to the mover of the linear motor 210 and configured to control the mover of the linear motor 210 to perform high-speed linear reciprocating motion.
  • Linear motors are easy to adjust and control. For example, by adjusting the voltage or frequency of linear motors, the linear motors have different speeds and electromagnetic thrusts. Therefore, linear motors are suitable for various reciprocating operations.
  • FIG. 2 is a schematic diagram of a fluid pressure compensation structure provided according to another example of an embodiment of the present disclosure.
  • the fluid pressure compensation structure provided in this example is different from the fluid pressure compensation structure shown in FIG. 1 in that: in the fluid pressure compensation structure 200, at least one linear motor 210 includes multiple linear motors 210 , the number of the second plunger pump 220 driven by at least one linear motor 210 among the plurality of linear motors 210 is one.
  • each linear motor 210 is a single-acting linear motor, and the mover of each linear motor 210 independently drives a second plunger pump 220 .
  • the fluid pressure compensation structure 200 includes at least two linear motors 210 and a second plunger pump 220 driven by the at least two linear motors 210 , so as to realize pressure pulsation compensation for the high-pressure fluid discharged from the first plunger pump.
  • the output ends of the second plunger pump 220 driven by the at least two linear motors 210 are all in communication with the output end of the first plunger pump.
  • the input ends of the second plunger pump 220 driven by the at least two linear motors 210 may all communicate with the input end of the first plunger pump, or at least one may communicate with the input end of the first plunger pump, or both may communicate with the input end of the first plunger pump. Not connected.
  • the fluid pressure compensation structure 200 may include a combination of 2-7 linear motors 210 , and the number of the second plunger pump 220 is the same as the number of the linear motors 210 .
  • the multiple linear motors may all be single-acting linear motors, or all be double-acting linear motors, or include a part of single-acting linear motors and a part of double-acting linear motors, which is not limited by the embodiments of the present disclosure. , which can be set according to actual needs.
  • the plunger pump system further includes a controller 500 electrically connected to the linear motor 210 .
  • the controller 500 is configured to adjust the speed of the linear motor 210 according to the rotational speed of the first plunger pump 100, so that the period of the pressure pulsation of the fluid output from the output port 221 of the second plunger pump 220 is the same as that of the first plunger pump.
  • the period of the pressure pulsation of the fluid output from the output port 101 of the 100 is equal, and the phases of the two are opposite.
  • the rotation speed of the above-mentioned first plunger pump 100 includes the rotation speed of the crankshaft.
  • the controller 500 can calculate the first pulsation period of the pressure pulsation of the fluid output by the first plunger pump 100 according to the rotational speed of the first plunger pump 100, and the controller 500 controls the linear motor driver 400 according to the first pulsation period to adjust
  • the speed of the linear motor 210 is such that the fluid output by the second plunger pump 220 can have the same second pulsation period as the first pulsation period, and the phases of the two pressure pulsations are opposite.
  • the controller 500 can adjust the motion of the mover of the linear motor 210 by adjusting the speed of the linear motor 210, and adjust the moving speed of the plunger in the second plunger pump 220, so as to realize the output of the second plunger pump 220. Period and phase adjustment of pressure pulsation.
  • the embodiment of the present disclosure adjusts the speed of the linear motor by collecting the rotational speed of the first plunger pump (such as a multi-cylinder plunger pump), so that the output pressure pulsation period of the second plunger pump (such as a single-cylinder plunger pump) driven by the linear motor It matches the output pressure pulsation period of the first plunger pump (such as a multi-cylinder plunger pump), thereby realizing compensation for the output pressure pulsation of the first plunger pump.
  • the first plunger pump such as a multi-cylinder plunger pump
  • the plunger pump system further includes a rotational speed acquisition unit 600 connected to the first plunger pump 100 and configured to acquire the rotational speed of the first plunger pump 100 .
  • the rotational speed acquisition unit 600 may include a rotational speed sensor, an encoder, a photoelectric sensor, and the like.
  • FIG. 3 is a schematic diagram of the electrical connection between the controller shown in FIG. 1 and the rotational speed acquisition unit.
  • the controller 500 is electrically connected to the rotational speed acquisition unit 600 , and the rotational speed acquisition unit 600 transmits the acquired rotational speed data of the first plunger pump 100 to the controller 500 .
  • FIG. 4 is a schematic diagram of at least part of the process of the controller shown in FIG. 1 adjusting the speed of the linear motor according to the rotational speed of the first plunger pump.
  • the controller 500 includes a linear conversion unit 510 and a speed adjustment unit 520 .
  • the linear conversion unit 510 is configured to linearly convert and calculate the pulsation period of the fluid output by the first piston pump 100 according to the rotational speed of the first plunger pump 100 , the pulsation period is equal to the pulsation period of the fluid output by the fluid pressure compensation structure 200 cycle.
  • "Equal to" in the embodiments of the present disclosure means that the meaning of the concept of equality includes approximately equal and complete equality, and approximately equal means that the ratio of the difference between the two to any one of the two is not greater than 10%.
  • the linear conversion calculation can be performed by collecting the unsteady speed of the multi-cylinder plunger pump Obtain the varying pulsation period of the linear motor.
  • the above-mentioned linear conversion unit 510 can be a module realized by software, or a hardware circuit built to realize corresponding functions, and the hardware circuit includes conventional very large scale integration (VLSI) circuits or gate arrays and such as logic chips, transistors Such existing semiconductors or other discrete components.
  • VLSI very large scale integration
  • the movement period of the second plunger pump (60 ⁇ the reduction ratio of the first plunger pump)/(the rotational speed of the first plunger pump ⁇ the number of cylinders of the first plunger pump).
  • the speed regulator 520 is configured to calculate the preset speed of the linear motor 210 according to the pulsation cycle of the fluid, and the controller 500 adjusts the speed of the linear motor 210 according to the preset rotational speed.
  • the controller 500 is configured to control the linear motor driver 400 to adjust the moving speed of the linear motor 210 to reach the aforementioned preset speed.
  • the plunger pump system also includes a speed feedback part 01, which can collect the speed of the linear motor and feed back the collected speed data of the linear motor to the control controller 500, the controller 500 can compare the preset speed with the actual speed of the linear motor, if the difference between the two is large, the controller 500 can adjust at least one of the linear conversion part and the speed adjustment part to adjust the actual speed of the linear motor Almost equal to the preset speed.
  • a speed feedback part 01 can collect the speed of the linear motor and feed back the collected speed data of the linear motor to the control controller 500, the controller 500 can compare the preset speed with the actual speed of the linear motor, if the difference between the two is large, the controller 500 can adjust at least one of the linear conversion part and the speed adjustment part to adjust the actual speed of the linear motor Almost equal to the preset speed.
  • the plunger pump system further includes a pressure acquisition part 700 connected to the first plunger pump 100 and configured to collect the pressure pulsation signal of the fluid output by the first plunger pump 100 .
  • the pressure acquisition unit 700 may include a pressure sensor or a pressure transmitter to measure fluid pressure.
  • FIG. 5 is a schematic diagram of the electrical connection between the controller shown in FIG. 1 and the pressure acquisition unit.
  • the pressure acquisition unit 700 is electrically connected to the controller 500 , and the controller 500 is configured to control the thrust of the linear motor 210 according to the pressure pulsation signal collected by the pressure acquisition unit 700 .
  • the pressure collecting part 700 transmits the collected data of the pressure of the fluid output by the first plunger pump 100 to the controller 500.
  • the controller 500 is configured to adjust the thrust and speed of the linear motor 210 according to the pressure of the fluid output by the first plunger pump 100, so that the pressure amplitude of the pressure pulsation of the fluid output by the output end of the second plunger pump 220
  • the pressure amplitudes of the pressure pulsations of the fluid output from the output end of the first plunger pump 100 are equal, and the phases of the two are opposite.
  • the discharge pressure of the first plunger pump (such as a multi-cylinder plunger pump) is collected and fed back to the controller.
  • the controller controls the linear motor driver and then adjusts the thrust of the linear motor so that the second plunger pump forms a
  • the pressure pulsation of the fluid discharged by a plunger pump forms a pulsation with equal effective value and opposite phase.
  • the pressure of the fluid discharged from the first plunger pump may be determined by the load at the rear end connected to the output end of the first plunger pump.
  • the embodiment of the present disclosure does not change the pressure of the fluid discharged by the first plunger pump (such as a multi-cylinder plunger pump), but only compensates the pressure pulsation of the fluid discharged by the first plunger pump through the fluid pressure compensation structure.
  • the controller can adjust the thrust of the linear motor according to the change of the pressure of the fluid discharged by the first plunger pump, so as to adapt to the rise and fall of the pressure of the fluid discharged by the first plunger pump, and then adjust the pressure of the fluid discharged by the first plunger pump. The pressure of the fluid is better compensated.
  • the aforementioned controller is configured to adjust the speed of the linear motor, and/or, adjust the thrust of the linear motor.
  • the above-mentioned controller can not only adjust the speed of the linear motor, but also adjust the thrust of the linear motor, and mainly adjust the speed.
  • the controller in the embodiments of the present disclosure can be implemented by software so as to be executed by various types of processors, or it can be a hardware circuit constructed to realize corresponding functions, and the hardware circuit includes a conventional very large-scale integration (VLSI) Circuits or gate arrays as well as existing semiconductors such as logic chips, transistors, or other discrete components.
  • VLSI very large-scale integration
  • Fig. 6 is a structural block diagram of a fracturing device provided according to an embodiment of the present disclosure.
  • the fracturing equipment includes the plunger pump system provided in the above embodiments.
  • a fluid pressure compensation structure with a linear motor and a second plunger pump is added. Adjustment and control are performed to compensate for pressure pulsations of the fluid output by the first plunger pump.
  • adjusting the speed of the linear motor according to the rotational speed of the first plunger pump includes: collecting the rotational speed of the first plunger pump; performing linear conversion calculation according to the rotational speed of the first plunger pump to obtain the pulsation period of the fluid output by the fluid pressure compensation structure; And calculate the preset speed of the linear motor according to the pulsation period of the fluid, and adjust the rotation speed of the linear motor according to the preset speed.
  • the rotational speed acquisition unit 600 is connected to the first plunger pump 100 and configured to acquire the rotational speed of the first plunger pump 100 .
  • the controller 500 can calculate the first pulsation period of the pressure pulsation of the fluid output by the first plunger pump 100 according to the rotational speed of the first plunger pump 100, and the controller 500 controls the linear motor driver 400 according to the first pulsation period to adjust
  • the speed of the linear motor 210 is such that the fluid output by the second plunger pump 220 can have the same second pulsation period as the first pulsation period, and the phases of the two pressure pulsations are opposite.
  • the linear conversion unit 510 is configured to linearly convert and calculate the pulsation period of the fluid output by the first piston pump 100 according to the rotational speed of the first plunger pump 100, and the pulsation period is equal to the fluid pressure compensation structure 200 output fluid pulse cycles.
  • the speed adjusting part 520 is configured to calculate the preset speed of the linear motor 210 according to the pulsation period of the fluid, and the controller 500 adjusts the speed of the linear motor 210 according to the preset speed.
  • the controller 500 is configured to control the linear motor driver 400 to adjust the moving speed of the linear motor 210 to reach the aforementioned preset speed.
  • adjusting the thrust of the linear motor according to the pressure of the fluid output by the first plunger pump includes: collecting a pressure pulsation signal of the fluid output by the first piston pump; and controlling the thrust of the linear motor according to the pressure pulsation signal.
  • the pressure collection unit 700 is connected to the first plunger pump 100 and configured to collect a pressure pulsation signal of the fluid output by the first plunger pump 100 .
  • the pressure acquisition unit 700 is electrically connected to the controller 500 , and the controller 500 is configured to control the thrust of the linear motor 210 according to the pressure pulsation signal collected by the pressure acquisition unit 700 .
  • the pressure collecting part 700 transmits the collected data of the pressure of the fluid output by the first plunger pump 100 to the controller 500 .
  • the pressure pulsation compensation method applied to any of the above-mentioned plunger pump systems provided by the embodiments of the present disclosure can adjust the phase, period and pressure of the fluid output by the fluid pressure compensation structure according to at least one of the rotation speed of the first plunger pump and its output fluid At least one of the amplitudes, thereby realizing compensation for the pressure pulsation of the output fluid of the first plunger pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Reciprocating Pumps (AREA)

Abstract

一种柱塞泵系统及其压力脉动补偿方法、压裂设备。柱塞泵系统包括第一柱塞泵(100)和流体压力补偿结构(200)。流体压力补偿结构(200)被配置为对第一柱塞泵(100)的输出端(101)输出的流体的压力脉动进行补偿。流体压力补偿结构(200)包括至少一个直线电机(210)和由至少一个直线电机(210)驱动的第二柱塞泵(220),第二柱塞泵(220)的输出端(221)与第一柱塞泵(100)的输出端(101)连通。本公开实施例提供的柱塞泵系统中增加了具有直线电机和第二柱塞泵的流体压力补偿结构,直线电机的体积小,便于与第二柱塞泵集成以实现紧凑设计,且直线电机便于调节和控制以实现对第一柱塞泵输出的流体的压力脉动进行补偿。

Description

柱塞泵系统及其压力脉动补偿方法、压裂设备
本申请要求于2021年10月27日递交的中国专利申请第202111258032.8号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开至少一个实施例涉及一种柱塞泵系统及其压力脉动补偿方法、压裂设备。
背景技术
目前,在多缸柱塞泵中,驱动柱塞的曲轴的周期性运动产生了流量脉动,该流量脉动使得多缸柱塞泵排出的高压脉动流体出现了压力脉动。压力脉动表现为持续的振动,降低了管路和部件的使用寿命,进而损坏与多缸柱塞泵出液端连接的设备和系统。此外,高压脉动流体出现的压力脉动还会伴有较大的噪声,较大的噪声容易造成环境污染。
发明内容
本公开的至少一实施例提供一种柱塞泵系统及其压力脉动补偿方法、压裂设备。
本公开的至少一实施例提供一种柱塞泵系统,包括第一柱塞泵和流体压力补偿结构。流体压力补偿结构被配置为对所述第一柱塞泵的输出端输出的流体的压力脉动进行补偿。所述流体压力补偿结构包括至少一个直线电机和由所述至少一个直线电机驱动的第二柱塞泵,所述第二柱塞泵的输出端与所述第一柱塞泵的所述输出端连通。
例如,根据本公开实施例,每个直线电机驱动的所述第二柱塞泵的数量为两个,所述直线电机的动子的两端分别连接并驱动两个第二柱塞泵,所述直线电机和所述两个第二柱塞泵沿一直线方向排列,且所述直线电机被配置为在所述两个第二柱塞泵之间往复直线运动。
例如,根据本公开实施例,所述至少一个直线电机包括多个直线电机,所 述多个直线电机中的至少一个直线电机驱动的所述第二柱塞泵的数量为一个。
例如,根据本公开实施例,所述第一柱塞泵包括多缸柱塞泵。
例如,根据本公开实施例,所述第二柱塞泵包括单缸柱塞泵。
例如,根据本公开实施例,柱塞泵系统还包括控制器与所述直线电机电连接。所述控制器被配置为根据所述第一柱塞泵的转速调节所述直线电机的速度,以使所述第二柱塞泵的输出端输出的流体的压力脉动的周期与所述第一柱塞泵的输出端输出的流体的压力脉动的周期相等,且两者的相位相反;和/或,所述控制器被配置为根据所述第一柱塞泵输出的流体的压力调节所述直线电机的推力,以使所述第二柱塞泵的输出端输出的流体的压力脉动的压力幅值与所述第一柱塞泵的输出端输出的流体的压力脉动的压力幅值相等,且两者的相位相反。
例如,根据本公开实施例,柱塞泵系统还包括转速采集部和/或压力采集部。转速采集部与所述第一柱塞泵连接且被配置为采集所述第一柱塞泵的转速。压力采集部与所述第一柱塞泵连接,且被配置为采集所述第一柱塞泵输出的流体的压力脉动信号。
例如,根据本公开实施例,所述控制器与所述转速采集部电连接,所述控制器包括线性转换部和速度调节部,所述线性转换部被配置为根据所述第一柱塞泵的转速进行线性转换计算得到所述流体压力补偿结构输出的流体的脉动周期;所述速度调节部被配置为根据所述流体的脉动周期计算所述直线电机的预设速度,所述控制器根据所述预设转速调节所述直线电机的速度。
例如,根据本公开实施例,所述压力采集部与所述控制器电连接,所述控制器被配置为根据所述压力采集部采集的所述压力脉动信号控制所述直线电机的所述推力。
例如,根据本公开实施例,所述第二柱塞泵的输入端与所述第一柱塞泵的输入端连通。
本公开至少一实施例提供一种压裂设备,包括上述任一柱塞泵系统。
本公开至少一实施例提供一种应用于上述柱塞泵系统的压力脉动补偿方法,包括:根据所述第一柱塞泵的转速调节所述直线电机的速度,以使所述第二柱塞泵的输出端输出的流体的压力脉动的周期与所述第一柱塞泵的输出端输出的流体的压力脉动的周期相等,且两者的相位相反;和/或,根据所述第一柱塞泵输出的流体的压力调节所述直线电机的推力,以使所述第二柱塞泵的输 出端输出的流体的压力脉动的压力幅值与所述第一柱塞泵的输出端输出的流体的压力脉动的压力幅值相等,且两者的相位相反。
例如,根据本公开实施例,根据所述第一柱塞泵的转速调节所述直线电机的速度包括:采集所述第一柱塞泵的转速;根据所述第一柱塞泵的转速进行线性转换计算得到所述流体压力补偿结构输出的流体的脉动周期;以及根据所述流体的脉动周期计算所述直线电机的预设速度,并根据所述预设转速调节所述直线电机的速度。
例如,根据本公开实施例,根据所述第一柱塞泵输出的流体的压力调节所述直线电机的推力包括:采集所述第一柱塞泵输出的流体的压力脉动信号;以及根据所述压力脉动信号控制所述直线电机的所述推力。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为根据本公开实施例提供的柱塞泵系统的结构框图;
图2为根据本公开实施例的一示例提供的流体压力补偿结构的示意图;
图3为图1所示的控制器与转速采集部电连接的示意图;
图4为图1所示的控制器根据第一柱塞泵的转速调节直线电机的速度的至少部分过程示意图;
图5为图1所示的控制器与压力采集部电连接的示意图;以及
图6为根据本公开实施例提供的压裂设备的结构框图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二” 以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。本公开中,“第一柱塞泵”和“第二柱塞泵”的名称可以互换,其中一者被直线电机驱动,另一者被作为动力源的电动机或者涡轮发动机驱动。
消除流量脉动的方式包括被动式补偿和主动式补偿。被动式补偿指在脉动管路上加装蓄能缓冲器,根据产生流量脉动的系统的压力情况,对蓄能缓冲器设定一个压力,以降低系统的压力脉动的幅值。主动式补偿指通过加入外动力源,对系统引入与脉动压力幅值和周期相等,相位相反的次级脉动来消除系统中的初始脉动。
主动式脉动补偿包括三种形式:入流式补偿,分流式补偿和分流入流式补偿。主动式脉动补偿通过主动控制流量的方式,使得系统最终输出平稳的流量。入流式主动补偿指在系统中加入额外的能源,例如在系统中加入补流量泵,泵的补给量由伺服阀控制,针对系统的管道中流量脉动的波谷进行补充,使管道中的流量趋于平稳,减少系统中的压力脉动。分流式主动补偿指通过调节一个管路中阀门开度,分流一部分峰值流量,达到平稳流量输出,稳定压力的目的。分流入流式主动补偿将分流式和入流式进行耦合,即对管道输出的流体处于流量峰值时进行分流,处于流量谷值时进行补充的方式保持系统流量和压力的平稳,达到消减压力脉动的效果。
在实际使用过程中,采用被动式脉动补偿方式在排出管路上加装蓄能缓冲器的体积过大,该方式对低频脉动的补偿效果差。在高压大排量作业中,管路振动较强。主动式脉动补偿由于工艺复杂,在20MPa左右的系统中仅有少量应用,而在超过50MPa的作业中则没有实质性的应用,所以造成管路和设备的寿命低,更换频繁。
在研究中,本申请的发明人发现多缸柱塞泵的工作压力非常高,如果采用分流式主动补偿方式,泄放过程危险性高,容易磨损喷射装置,造成设备的寿命降低。
本公开的实施例提供一种柱塞泵系统及其压力脉动补偿方法、压裂设备。柱塞泵系统包括第一柱塞泵和流体压力补偿结构。流体压力补偿结构被配置为对第一柱塞泵的输出端输出的流体的压力脉动进行补偿。流体压力补偿结构包括至少一个直线电机和由至少一个直线电机驱动的第二柱塞泵,第二柱塞泵的 输出端与第一柱塞泵的输出端连通。本公开实施例提供的柱塞泵系统中增加了具有直线电机和第二柱塞泵的流体压力补偿结构,直线电机的体积小,便于与第二柱塞泵集成以实现紧凑设计,且直线电机便于调节和控制以实现对第一柱塞泵输出的流体的压力脉动进行补偿。
下面结合附图对本公开实施例提供的柱塞泵系统及其压力脉动补偿方法、压裂设备进行描述。
图1为根据本公开实施例提供的柱塞泵系统的结构框图。如图1所示,柱塞泵系统包括第一柱塞泵100和流体压力补偿结构200。流体压力补偿结构200被配置为对第一柱塞泵100的输出端101输出的流体的压力脉动进行补偿。流体压力补偿结构200包括至少一个直线电机210和由至少一个直线电机210驱动的第二柱塞泵220,第二柱塞泵220的输出端221与第一柱塞泵100的输出端101连通,以使第二柱塞泵220的输出端221输出的流体对第一柱塞泵100的输出端101输出的流体的压力脉动进行补偿。本公开实施例提供的柱塞泵系统中增加了具有直线电机和第二柱塞泵的流体压力补偿结构,直线电机的体积小,便于与第二柱塞泵集成以实现紧凑设计,且直线电机便于调节和控制以实现对第一柱塞泵输出的流体的压力脉动进行补偿。
上述包括直线电机和第二柱塞泵的流体压力补偿系统采用入流式主动补偿方式,使用直线电机驱动的第二柱塞泵柱可以对第一柱塞泵输出的流体的压力动脉进行补偿。本公开实施例提供的柱塞泵系统通过使用入流式主动补偿的方式,可以避免高压流体的泄放引起的噪声,以及对与第一柱塞泵输出端连接的设备的磨损等。此外,采用直线电机驱动第二柱塞泵,可以通过较小的排量实现压力脉动补偿。
例如,第一柱塞泵100在工作时,机械能经柱塞泵直接转化为输送液体的压力能。例如,第一柱塞泵100可以包括动力端总成110和液力端总成120,液力端总成包括柱塞和阀箱,动力端总成包括曲轴、连杆、滑轨和十字头,动力从十字头传递到柱塞。例如,柱塞和十字头之间可以设置拉杆,拉杆固定在十字头上,柱塞固定在拉杆上,十字头在滑轨内部往复运动,十字头通过拉杆带动柱塞在液力端总成内部(例如阀箱内)往复运动,使液体吸入泵杠并高压排出管路,实现低压流体的吸入和高压流体的排出。此外,在一些示例中,柱塞也可以直接安装到动力端总成内部的十字头上。然而,上述第一柱塞泵的结构仅仅是示例性的,根据本公开实施例中的第一柱塞泵可以选择任意合适结构 的柱塞泵。
例如,第一柱塞泵100的输出端101可以指第一柱塞泵100排出高压流体的端口。
例如,第一柱塞泵100包括多缸柱塞泵。例如,多缸柱塞泵可以包括多缸阀箱。例如,图1示意性的示出多缸阀箱包括三缸阀箱,但不限于此,多缸阀箱也可以包括两缸阀箱、四缸阀箱、五缸阀箱、六缸阀箱或者七缸阀箱。
例如,如图1所示,柱塞泵系统还包括动力源300,动力源300被配置为驱动第一柱塞泵100。例如,动力源300可以与第一柱塞泵100的动力端连接,且配置为对第一柱塞泵100的动力端提供动力。例如,动力源可以为电动机,也可以为涡轮发动机,本公开实施例对此不作限制。
例如,如图1所示,每个直线电机210驱动的第二柱塞泵220的数量为两个。例如,每个直线电机210可以为双作用直线电机,即一个直线电机210驱动两个第二柱塞泵220,且该直线电机210位于两个第二柱塞泵220之间。例如,直线电机210的动子的两端分别连接并驱动两个第二柱塞泵220,直线电机210和两个第二柱塞泵220沿一直线方向排列,且直线电机210的动子被配置为在两个第二柱塞泵220之间往复直线运动。直线电机利用其直线运动的特性,可以直接驱动第二柱塞泵。
例如,第二柱塞泵220包括液力端总成,直线电机210可以通过连接总成与液力端总成连接。例如,液力端总成可以包括柱塞和阀箱。例如,连接总成可以包括柱塞连接件、支撑杆和动子连接件,支撑杆的一端与柱塞连接件连接,支撑杆的另一端与动子连接件连接,柱塞连接件的另一端与柱塞连接,动子连接件的另一端与直线电机的动子连接,直线电机可以通过连接总成驱动柱塞在阀箱内往复运动,使液体吸入泵缸并高压排出,实现低压流体的吸入和高压流体的排出。当然,本公开实施例不限于此,直线电机的动子还可以与第二柱塞泵的柱塞直接连接。
例如,第二柱塞泵220可以包括单缸柱塞泵。例如,直线电机210的动子的两端分别连接并驱动两个单缸柱塞泵,例如,本公开实施例的一示例使用双作用直线电机驱动两个单缸柱塞泵。直线电机的直线运动特性,便于与双作用单缸柱塞泵集成,设计紧凑,易于实现。
例如,第二柱塞泵220的输出端221可以指第二柱塞泵220排出高压流体的端口。例如,第一柱塞泵100的输出端101与第二柱塞泵220的输出端221 连通可以指第一柱塞泵100的排出高压流体的管路与第二柱塞泵220的排出高压流体的管路连通以实现两者的管路排出的高压流体可以汇合,从而实现第二柱塞泵220输出的流体对第一柱塞泵100输出的流体的压力脉动进行补偿。
例如,如图1所示,第二柱塞泵220的输入端222与第一柱塞泵100的输入端102连通。例如,第一柱塞泵100的输入端102可以指第一柱塞泵100流入低压流体的端口,第二柱塞泵220的输入端222可以指第二柱塞泵220流入低压流体的端口,第二柱塞泵220的输入端222与第一柱塞泵100的输入端102连通可以指第一柱塞泵100流入低压流体的管路与第二柱塞泵220流入低压流体的管路连通,可以方便柱塞泵系统的设计。本公开实施例不限于此,第二柱塞泵的输入端与第一柱塞泵的输入端也可以不连通,两者彼此分隔,可以从不同的管道吸入低压流体。
例如,直线电机210驱动第二柱塞泵220,具有诸多优势,例如,可以省去了把旋转运动转化为直线运动的中间转换机构,整体结构简化,缩小了流体压力补偿结构的重量和体积,节约了成本,方便第二柱塞泵的维护和保养;例如,在需要直线运动时可以实现直接传动,因而可以消除中间环节所带来的各种定位误差,故直线电机的定位精度高;例如,直线电机的反应速度快、灵敏度高,随动性好;例如,直线电机的机械摩擦损耗少,所以故障少,免维修,因而工作安全可靠、寿命长。
例如,直线电机可以包括直流直线电机、交流直线电机、直线异步电机、直线同步电机或者直线步进电机。例如,直线电机可以为平板式直线电机,包括动子、定子以及导轨,导轨固定,定子驱动动子在导轨上往复运动。
例如,双作用直线电机210的动子左右两端分别直接连接一个柱塞,每个双作用直线电机交替驱动左右两侧的两个柱塞,进而驱动分别位于直线电机210两侧的第二柱塞泵2201和2202。第二柱塞泵2201和2202的输出端均与第一柱塞泵100的输出端连通。例如,直线电机210推动两侧的单缸柱塞泵(即两个第二柱塞泵)进行工作。当直线电机210的动子向一侧运动时,第二柱塞泵2202吸入低压流体,第二柱塞泵2201的输出端排出高压流体,该高压流体与第一柱塞泵100排出的高压流体可以在高压管路中汇合;当直线电机210的动子向另一侧运动时,第二柱塞泵2201吸入低压流体,第二柱塞泵2202排出高压流体,该高压流体与第一柱塞泵100排出的高压流体可以在高压管路中汇合;如此反复,流体压力补偿结构可以通过两个第二柱塞泵交替排出高压流体 以实现对第一柱塞泵排出的高压流体进行脉动补偿。
例如,如图1所示,以第二柱塞泵2202为例,直线电机210的动子向靠近第二柱塞泵2202的方向运动时,第二柱塞泵2202的单向阀打开,向与第一柱塞泵100的输出端连通的管路中打入高压流体;直线电机210的动子向远离第二柱塞泵2202的方向运动时,第二柱塞泵2202的单向阀关闭,第二柱塞泵2202吸入低压流体,第二柱塞泵2202的输出端(如输出管路)中的高压流体被单向阀封住,以此循环工作。
本公开实施例提供的柱塞泵系统中采用直线电机驱动双作用第二柱塞泵进行补偿,通过直线电机动子的往复运动,位于直线电机一端的第二柱塞泵在吸液的同时,位于直线电机另一端的第二柱塞泵在压液,可以实现两个第二柱塞泵交替工作,提升了直线电机的使用效率,提高了第二柱塞泵的输出流量。
例如,图1示意性的示出流体压力补偿结构包括一个直线电机和该直线电机驱动的两个第二柱塞泵,但不限于此,流体压力补偿结构可以包括两个直线电机和四个第二柱塞泵,或者三个直线电机和六个第二柱塞泵,所有第二柱塞泵的输出端均与第一柱塞泵的输出端连接。本公开实施例提供的流体压力补偿结构可以根据实际工程需求设置直线电机和第二柱塞泵的数量。
例如,如图1所示,直线电机210还可以包括直线电机驱动器400,直线电机驱动器400与直线电机210的动子电连接,且被配置为控制直线电机210的动子进行高速直线往复运动。直线电机便于调节和控制,例如可以通过调节直线电机的电压或频率,使得直线电机具有不同的速度和电磁推力,由此,直线电机适用于各种不同的往复运行场合。
例如,图2为根据本公开实施例的另一示例提供的流体压力补偿结构的示意图。例如,如图2所示,本示例提供的流体压力补偿结构与图1所示的流体压力补偿结构的不同之处在于:流体压力补偿结构200中,至少一个直线电机210包括多个直线电机210,多个直线电机210中的至少一个直线电机210驱动的第二柱塞泵220的数量为一个。
例如,如图2所示,每个直线电机210为单作用直线电机,每个直线电机210的动子单独驱动一个第二柱塞泵220。流体压力补偿结构200包括至少两个直线电机210以及该至少两个直线电机210驱动的第二柱塞泵220,从而实现对第一柱塞泵排出的高压流体的压力脉动补偿。例如,该至少两个直线电机210驱动的第二柱塞泵220的输出端均与第一柱塞泵的输出端连通。例如,该 至少两个直线电机210驱动的第二柱塞泵220的输入端可以均与第一柱塞泵的输入端连通,也可以至少一个与第一柱塞泵的输入端连通,或者均不连通。
例如,流体压力补偿结构200可以包括2-7个直线电机210的组合,第二柱塞泵220的数量与直线电机210的数量相同。
当然,本公开实施例中,多个直线电机可以均为单作用直线电机,或者均为双作用直线电机,或者包括一部分单作用直线电机,一部分双作用直线电机,本公开实施例对此不作限制,可以根据实际需求进行设置。
例如,如图1所示,柱塞泵系统还包括与直线电机210电连接的控制器500。例如,控制器500被配置为根据第一柱塞泵100的转速调节直线电机210的速度,以使第二柱塞泵220的输出端221输出的流体的压力脉动的周期与第一柱塞泵100的输出端101输出的流体的压力脉动的周期相等,且两者的相位相反。上述第一柱塞泵100的转速包括曲轴的转速。
例如,控制器500可以根据第一柱塞泵100的转速计算第一柱塞泵100输出的流体的压力脉动的第一脉动周期,控制器500根据该第一脉动周期控制直线电机驱动器400以调节直线电机210的速度,从而使得第二柱塞泵220输出的流体可以具有与第一脉动周期相同的第二脉动周期,且两个压力脉动的相位相反。例如,控制器500可以通过调节直线电机210的速度以调整直线电机210的动子的运动,调节第二柱塞泵220中的柱塞的运动速度,实现第二柱塞泵220输出的流体的压力脉动的周期以及相位的调节。
本公开实施例通过采集第一柱塞泵(如多缸柱塞泵)的转速,调节直线电机的速度,使直线电机驱动的第二柱塞泵(如单缸柱塞泵)输出压力脉动周期与第一柱塞泵(如多缸柱塞泵)输出压力脉动周期相匹配,进而实现对第一柱塞泵输出压力脉动的补偿。
例如,如图1所示,柱塞泵系统还包括转速采集部600,转速采集部600与第一柱塞泵100连接,且被配置为采集第一柱塞泵100的转速。例如,转速采集部600可以包括转速传感器,编码器,光电传感器等。
例如,图3为图1所示的控制器与转速采集部电连接的示意图。如图1和图3所示,控制器500与转速采集部600电连接,转速采集部600将其采集到的第一柱塞泵100的转速的数据传输给控制器500。
例如,图4为图1所示的控制器根据第一柱塞泵的转速调节直线电机的速度的至少部分过程示意图。如图1和图4所示,控制器500包括线性转换部510 和速度调节部520。例如,线性转换部510被配置为根据第一柱塞泵100的转速进行线性转换计算得到第一柱塞泵100输出的流体的脉动周期,该脉动周期等于流体压力补偿结构200输出的流体的脉动周期。本公开实施例中的“等于”等表示相等的概念的含义包括大致相等和完全相等,大致相等指两者差值与两者中任一个的比值不大于10%。
由于现场作业中的第一柱塞泵(如多缸柱塞泵)的转速可以是变化的,为了适应各种实际作业情况,可以通过采集多缸柱塞泵的非稳定转速,进行线性转换计算得到直线电机的变化的脉动周期。
例如,上述线性转换部510可以为采用软件实现的模块,也可以是搭建的硬件电路来实现相应的功能,该硬件电路包括常规的超大规模集成(VLSI)电路或者门阵列以及诸如逻辑芯片、晶体管之类的现有半导体或者是其它分立的元件。
例如,线性转换计算可以包括如下公式:
第二柱塞泵运动周期=(60×第一柱塞泵减速比)/(第一柱塞泵转速×第一柱塞泵缸数)。
例如,如图1所示,速度调节部520被配置为根据流体的脉动周期计算直线电机210的预设速度,控制器500根据预设转速调节直线电机210的速度。例如,控制器500被配置为控制直线电机驱动器400调节直线电机210的运动速度达到上述预设速度。
例如,如图1和图4所示,柱塞泵系统还包括速度反馈部01,速度反馈部01可以对直线电机的速度进行采集,并将其采集到的直线电机的速度的数据反馈给控制器500,控制器500可以比较上述预设速度与直线电机的实际速度,如果两者差距较大,则控制器500可以调节线性转换部和速度调节部的至少之一以调节直线电机的实际速度与预设速度基本相等。
例如,如图1所示,柱塞泵系统还包括压力采集部700,压力采集部700与第一柱塞泵100连接,且被配置为采集第一柱塞泵100输出的流体的压力脉动信号。例如,压力采集部700可以包括压力传感器或者压力变送器,以对流体压力进行测量。
例如,图5为图1所示的控制器与压力采集部电连接的示意图。如图1和图5所示,压力采集部700与控制器500电连接,控制器500被配置为根据压力采集部700采集的压力脉动信号控制直线电机210的推力。例如,压力采集 部700将其采集到的第一柱塞泵100输出的流体的压力的数据传输给控制器500。
例如,控制器500被配置为根据第一柱塞泵100输出的流体的压力调节直线电机210的推力和速度,以使第二柱塞泵220的输出端输出的流体的压力脉动的压力幅值与第一柱塞泵100的输出端输出的流体的压力脉动的压力幅值相等,且两者的相位相反。
本公开实施例根据采集第一柱塞泵(如多缸柱塞泵)排出压力,反馈至控制器,控制器控制直线电机驱动器,进而调节直线电机的推力,使得第二柱塞泵形成与第一柱塞泵排出的流体的压力脉动形成有效值幅值相等,相位相反的脉动。
上述第一柱塞泵排出流体的压力可以由与第一柱塞泵的输出端连接的后端的负载决定。
本公开实施例没有对第一柱塞泵(如多缸柱塞泵)排出的流体的压力进行改变,只是通过流体压力补偿结构对第一柱塞泵排出的流体的压力脉动进行补偿。控制器可以根据第一柱塞泵排出的流体的压力的变化,调整直线电机的推力,以适应第一柱塞泵排出的流体的压力的升高和降低,进而对第一柱塞泵排出的流体的压力进行较好的补偿。
例如,上述控制器被配置为调节直线电机的速度,和/或,调节直线电机的推力。例如,上述控制器可以既调节直线电机的速度,又调节直线电机的推力,以调节速度为主。
例如,本公开实施例中的控制器可以用软件实现,以便由各种类型的处理器执行,也可以是搭建的硬件电路来实现相应的功能,该硬件电路包括常规的超大规模集成(VLSI)电路或者门阵列以及诸如逻辑芯片、晶体管之类的现有半导体或者是其它分立的元件。
图6为根据本公开实施例提供的压裂设备的结构框图。如图6所示,压裂设备包括上述实施例提供的柱塞泵系统。本公开实施例提供的压裂设备中增加了具有直线电机和第二柱塞泵的流体压力补偿结构,直线电机的体积小,便于与第二柱塞泵集成以实现紧凑设计,且直线电机便于调节和控制以实现对第一柱塞泵输出的流体的压力脉动进行补偿。
本公开另一实施例提供一种应用于上述任一柱塞泵系统的压力脉动补偿方法,该压力脉动补偿方法包括:根据第一柱塞泵的转速调节直线电机的速度, 以使第二柱塞泵的输出端输出的流体的压力脉动的周期与第一柱塞泵的输出端输出的流体的压力脉动的周期相等,且两者的相位相反;和/或,根据第一柱塞泵输出的流体的压力调节直线电机的推力,以使第二柱塞泵的输出端输出的流体的压力脉动的压力幅值与第一柱塞泵的输出端输出的流体的压力脉动的压力幅值相等,且两者的相位相反。
例如,根据第一柱塞泵的转速调节直线电机的速度包括:采集第一柱塞泵的转速;根据第一柱塞泵的转速进行线性转换计算得到流体压力补偿结构输出的流体的脉动周期;以及根据流体的脉动周期计算直线电机的预设速度,并根据预设速度调节直线电机的转速。
例如,如图1所示,转速采集部600,转速采集部600与第一柱塞泵100连接,且被配置为采集第一柱塞泵100的转速。例如,控制器500可以根据第一柱塞泵100的转速计算第一柱塞泵100输出的流体的压力脉动的第一脉动周期,控制器500根据该第一脉动周期控制直线电机驱动器400以调节直线电机210的速度,从而使得第二柱塞泵220输出的流体可以具有与第一脉动周期相同的第二脉动周期,且两个压力脉动的相位相反。
例如,如图1所示,线性转换部510被配置为根据第一柱塞泵100的转速进行线性转换计算得到第一柱塞泵100输出的流体的脉动周期,该脉动周期等于流体压力补偿结构200输出的流体的脉动周期。例如,速度调节部520被配置为根据流体的脉动周期计算直线电机210的预设速度,控制器500根据预设速度调节直线电机210的速度。例如,控制器500被配置为控制直线电机驱动器400调节直线电机210的运动速度达到上述预设速度。
例如,据第一柱塞泵输出的流体的压力调节直线电机的推力包括:采集第一柱塞泵输出的流体的压力脉动信号;以及根据压力脉动信号控制直线电机的推力。
例如,如图1所示,压力采集部700与第一柱塞泵100连接,且被配置为采集第一柱塞泵100输出的流体的压力脉动信号。例如,压力采集部700与控制器500电连接,控制器500被配置为根据压力采集部700采集的压力脉动信号控制直线电机210的推力。例如,压力采集部700将其采集到的第一柱塞泵100输出的流体的压力的数据传输给控制器500。
本公开实施例提供的应用于上述任一柱塞泵系统的压力脉动补偿方法,可以根据第一柱塞泵的转速和其输出流体的至少之一调节流体压力补偿结构输 出的流体的相位、周期以及压力幅值的至少之一,进而实现对第一柱塞泵的输出的流体的压力脉动进行补偿。
有以下几点需要说明:
(1)本公开的实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的同一实施例及不同实施例中的特征可以相互组合。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (14)

  1. 一种柱塞泵系统,包括:
    第一柱塞泵;
    流体压力补偿结构,被配置为对所述第一柱塞泵的输出端输出的流体的压力脉动进行补偿;
    其中,所述流体压力补偿结构包括至少一个直线电机和由所述至少一个直线电机驱动的第二柱塞泵,所述第二柱塞泵的输出端与所述第一柱塞泵的所述输出端连通。
  2. 根据权利要求1所述的柱塞泵系统,其中,每个直线电机驱动的所述第二柱塞泵的数量为两个,所述直线电机的动子的两端分别连接并驱动两个第二柱塞泵,所述直线电机和所述两个第二柱塞泵沿一直线方向排列,且所述直线电机的动子被配置为在所述两个第二柱塞泵之间往复直线运动。
  3. 根据权利要求1所述的柱塞泵系统,其中,所述至少一个直线电机包括多个直线电机,所述多个直线电机中的至少一个直线电机驱动的所述第二柱塞泵的数量为一个。
  4. 根据权利要求1-3任一项所述的柱塞泵系统,其中,所述第一柱塞泵包括多缸柱塞泵。
  5. 根据权利要求1-4任一项所述的柱塞泵系统,其中,所述第二柱塞泵包括单缸柱塞泵。
  6. 根据权利要求1-5任一项所述的柱塞泵系统,还包括:
    控制器,与所述直线电机电连接;
    其中,所述控制器被配置为根据所述第一柱塞泵的转速调节所述直线电机的速度,以使所述第二柱塞泵的输出端输出的流体的压力脉动的周期与所述第一柱塞泵的输出端输出的流体的压力脉动的周期相等,且两者的相位相反;和/或,
    所述控制器被配置为根据所述第一柱塞泵输出的流体的压力调节所述直线电机的推力,以使所述第二柱塞泵的输出端输出的流体的压力脉动与所述第一柱塞泵的输出端输出的流体的压力脉动的压力幅值相等,且两者的相位相反。
  7. 根据权利要求6所述的柱塞泵系统,还包括:
    转速采集部,与所述第一柱塞泵连接,且被配置为采集所述第一柱塞泵的转速;和/或,
    压力采集部,与所述第一柱塞泵连接,且被配置为采集所述第一柱塞泵输出的流体的压力脉动信号。
  8. 根据权利要求7所述的柱塞泵系统,其中,所述控制器与所述转速采集部电连接,所述控制器包括线性转换部和速度调节部,所述线性转换部被配置为根据所述第一柱塞泵的转速进行线性转换计算得到所述流体压力补偿结构输出的流体的脉动周期;所述速度调节部被配置为根据所述流体的脉动周期计算所述直线电机的预设速度,所述控制器根据所述预设速度调节所述直线电机的速度。
  9. 根据权利要求7或8所述的柱塞泵系统,其中,所述压力采集部与所述控制器电连接,所述控制器被配置为根据所述压力采集部采集的所述压力脉动信号控制所述直线电机的所述推力。
  10. 根据权利要求1-9任一项所述的柱塞泵系统,其中,所述第二柱塞泵的输入端与所述第一柱塞泵的输入端连通。
  11. 一种压裂设备,包括权利要求1-10任一项所述的柱塞泵系统。
  12. 一种应用于权利要求1所述的柱塞泵系统的压力脉动补偿方法,包括:
    根据所述第一柱塞泵的转速调节所述直线电机的速度,以使所述第二柱塞泵的输出端输出的流体的压力脉动的周期与所述第一柱塞泵的输出端输出的流体的压力脉动的周期相等,且两者的相位相反;和/或,
    根据所述第一柱塞泵输出的流体的压力调节所述直线电机的推力,以使所述第二柱塞泵的输出端输出的流体的压力脉动的压力幅值与所述第一柱塞泵的输出端输出的流体的压力脉动的压力幅值相等,且两者的相位相反。
  13. 根据权利要求12所述的压力脉动补偿方法,其中,根据所述第一柱塞泵的转速调节所述直线电机的速度包括:
    采集所述第一柱塞泵的转速;
    根据所述第一柱塞泵的转速进行线性转换计算得到所述流体压力补偿结构输出的流体的脉动周期;以及
    根据所述流体的脉动周期计算所述直线电机的预设速度,并根据所述预设速度调节所述直线电机的速度。
  14. 根据权利要求12或13所述的压力脉动补偿方法,其中,根据所述第 一柱塞泵输出的流体的压力调节所述直线电机的推力包括:
    采集所述第一柱塞泵输出的流体的压力脉动信号;以及
    根据所述压力脉动信号控制所述直线电机的所述推力。
PCT/CN2021/129434 2021-10-27 2021-11-09 柱塞泵系统及其压力脉动补偿方法、压裂设备 WO2023070742A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111258032.8A CN113790142A (zh) 2021-10-27 2021-10-27 柱塞泵系统及其压力脉动补偿方法、压裂设备
CN202111258032.8 2021-10-27

Publications (1)

Publication Number Publication Date
WO2023070742A1 true WO2023070742A1 (zh) 2023-05-04

Family

ID=78878357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129434 WO2023070742A1 (zh) 2021-10-27 2021-11-09 柱塞泵系统及其压力脉动补偿方法、压裂设备

Country Status (2)

Country Link
CN (1) CN113790142A (zh)
WO (1) WO2023070742A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829403A (ja) * 1991-05-02 1996-02-02 Sanuki Kogyo Kk 液体検出装置における二液混合送液方法
CN101832245A (zh) * 2010-04-28 2010-09-15 北京航空航天大学 一种双柱塞无脉动流量复合方法及直驱式柱塞泵
CN103397992A (zh) * 2013-08-06 2013-11-20 吉林大学 单斜盘错相位双向柱塞泵
CN106224323A (zh) * 2016-09-13 2016-12-14 华侨大学 一种多单柱塞泵重组控制非对称液压缸的闭式液压系统
CN106812737A (zh) * 2015-11-30 2017-06-09 长沙理工大学 一种基于错相位锁定的柱塞泵压力脉动抑制装置
CN107228103A (zh) * 2017-06-29 2017-10-03 同济大学 一种降低轴向柱塞泵压力脉动的控制装置
CN108291897A (zh) * 2015-11-26 2018-07-17 株式会社岛津制作所 送液装置、送液装置的送液控制方法以及送液装置的送液控制程序
CN110043236A (zh) * 2019-05-13 2019-07-23 燕山大学 一种脉动水力压裂压力发生装置及方法
US20200072025A1 (en) * 2016-11-04 2020-03-05 Schlumberger Technology Corporation Pressure exchanger pressure oscillation source
CN211900900U (zh) * 2019-08-27 2020-11-10 烟台杰瑞石油装备技术有限公司 一种用直线电机驱动的柱塞泵
CN112983798A (zh) * 2021-03-25 2021-06-18 烟台杰瑞石油装备技术有限公司 应用于电驱压裂设备的控制方法及其控制装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829403A (ja) * 1991-05-02 1996-02-02 Sanuki Kogyo Kk 液体検出装置における二液混合送液方法
CN101832245A (zh) * 2010-04-28 2010-09-15 北京航空航天大学 一种双柱塞无脉动流量复合方法及直驱式柱塞泵
CN103397992A (zh) * 2013-08-06 2013-11-20 吉林大学 单斜盘错相位双向柱塞泵
CN108291897A (zh) * 2015-11-26 2018-07-17 株式会社岛津制作所 送液装置、送液装置的送液控制方法以及送液装置的送液控制程序
CN106812737A (zh) * 2015-11-30 2017-06-09 长沙理工大学 一种基于错相位锁定的柱塞泵压力脉动抑制装置
CN106224323A (zh) * 2016-09-13 2016-12-14 华侨大学 一种多单柱塞泵重组控制非对称液压缸的闭式液压系统
US20200072025A1 (en) * 2016-11-04 2020-03-05 Schlumberger Technology Corporation Pressure exchanger pressure oscillation source
CN107228103A (zh) * 2017-06-29 2017-10-03 同济大学 一种降低轴向柱塞泵压力脉动的控制装置
CN110043236A (zh) * 2019-05-13 2019-07-23 燕山大学 一种脉动水力压裂压力发生装置及方法
CN211900900U (zh) * 2019-08-27 2020-11-10 烟台杰瑞石油装备技术有限公司 一种用直线电机驱动的柱塞泵
CN112983798A (zh) * 2021-03-25 2021-06-18 烟台杰瑞石油装备技术有限公司 应用于电驱压裂设备的控制方法及其控制装置

Also Published As

Publication number Publication date
CN113790142A (zh) 2021-12-14

Similar Documents

Publication Publication Date Title
CN110454352A (zh) 一种直线电机驱动式柱塞泵
CN110439779A (zh) 一种用直线电机驱动的柱塞泵
CN108425893B (zh) 一种伺服电机驱动双变量泵的分布式直驱挖掘机液压系统
WO2012127234A1 (en) Improvements to the power capture of wave energy converters
CN1818382A (zh) 闭式电液控制系统
CN102094780A (zh) 液压泥浆泵
JPH0478824B2 (zh)
CN108708423B (zh) 一种液电混合驱动的多执行器回路
WO2023070742A1 (zh) 柱塞泵系统及其压力脉动补偿方法、压裂设备
CN203516006U (zh) 往复压缩机无源余隙调节系统
CN108999816B (zh) 一种直线驱动系统
WO2021218585A1 (zh) 一种直线电机驱动的压裂泵
CN215979746U (zh) 柱塞泵系统以及压裂设备
CN103994042A (zh) 采用曲柄连杆结构的活塞式液压泵
CN215370386U (zh) 一种以液压缸为动力端的泵送设备
CN204041368U (zh) 采用曲柄连杆结构的活塞式液压泵
CN212055013U (zh) 一种串联式低脉冲液压隔膜计量泵
CN108895040A (zh) 一种液电混合驱动的举竖装置
CN208474062U (zh) 一种电磁轨道驱动活塞式双缸混凝土泵结构
CN109059652B (zh) 一种火炮混合驱动系统
CN109291385B (zh) 一种注塑机混合驱动系统
CN208900329U (zh) 一种隔膜泵液压动力端
CN201568250U (zh) 煤矿用新型乳化液泵站
CN207920784U (zh) 工况自适应节能控制平台、泵车及混凝土泵
CN109488257A (zh) 一种压力互补的液压抽油机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962088

Country of ref document: EP

Kind code of ref document: A1