WO2023070455A1 - 数据处理的方法与雷达芯片 - Google Patents

数据处理的方法与雷达芯片 Download PDF

Info

Publication number
WO2023070455A1
WO2023070455A1 PCT/CN2021/127116 CN2021127116W WO2023070455A1 WO 2023070455 A1 WO2023070455 A1 WO 2023070455A1 CN 2021127116 W CN2021127116 W CN 2021127116W WO 2023070455 A1 WO2023070455 A1 WO 2023070455A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
low
module
gear
order data
Prior art date
Application number
PCT/CN2021/127116
Other languages
English (en)
French (fr)
Inventor
徐江丰
陈希磊
荆涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/127116 priority Critical patent/WO2023070455A1/zh
Publication of WO2023070455A1 publication Critical patent/WO2023070455A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction

Definitions

  • the embodiment of the present application relates to the field of automatic driving sensors, and more specifically, relates to a data processing method and a radar chip.
  • Imaging radar is the development direction of radar in the field of autonomous driving.
  • imaging radar in order to improve the detection accuracy, imaging radar generally adopts a linear frequency modulation system, and in the data processing process of this mechanism, it needs to wait for a complete frame of data to be collected before performing subsequent data processing, so it is necessary to wait for the data to be collected. Store data in the same process.
  • imaging radars in order to improve performance, imaging radars generally use multi-input multi-output (MIMO) antennas and large-bandwidth transmission waveforms to collect more abundant target echo information.
  • MIMO multi-input multi-output
  • the embodiment of the present application provides a data processing method and a radar chip. Through the data processing method and the radar chip, the embodiment of the present application can realize data compression with a higher compression rate, and reduce the storage of certain types of data by the radar chip. The required storage space can reduce the cost pressure of radar chips.
  • a radar chip which is applied to a radar device, and the radar device also includes a receiving antenna, and the radar chip includes: a processing module, which is used to process the echo information of the target object obtained by the receiving antenna and output at least A piece of data; a compression module, configured to determine the first gear value in the first gear table according to the value of the first data in the first data set, and use the first gear value to Each of the data is compressed to obtain a second data set, the first gear value is greater than or equal to the value of the first data, and the first data set includes at least one data.
  • the value of the data can be expressed in decimal form or in binary form. If it is expressed in decimal form, then in the process of data compression, the radar chip needs to convert it from decimal to binary. conversion; if it is embodied in binary form, the radar chip can directly use this value for data compression processing.
  • the first gear table includes multiple gear values, and the first gear value is one of the gear values in the first gear table.
  • the compression processing method may be that the compression module of the radar chip divides each data in the first data set by the first gear value, or may be that the compression module of the radar chip divides each data in the first data set Each data is divided by a numerical value that is multiplied by the value of the first gear, or it can be multiplied.
  • the first gear value in the first gear table to compress each data in the first data set
  • data compression can be realized with a higher compression rate, and the storage capacity of the radar chip can be reduced.
  • the storage space required for certain types of data can reduce the cost pressure of radar chips.
  • the manner of the compression processing is a division operation.
  • the value of the first data is a maximum value among the values of all data in the first data set.
  • the numerical value of the first data is the maximum value among the numerical values of all data, which may refer to: among the absolute values of the numerical values of all data in the first data set, the numerical value of the first data is the maximum value; it may also be Means: among the values of all the data in the first data set, the value of the first data is the maximum value.
  • the first gear value is determined by using the maximum value in the first data set, and each data in the first data set is compressed based on the first gear value determined based on the maximum value. In this way, A higher compression rate can be obtained, thereby better saving storage space and reducing the cost of radar chips.
  • the first gear value is the minimum value among the gear values in the first gear table that are greater than or equal to the value of the first data.
  • the first data set further includes at least one piece of data output by the processing module of the second radar chip.
  • the compression module of the first radar chip can compress at least one data output by the processing module of the first radar chip and at least one data output by the processing module of the second radar chip at the same time, so that the embodiment of the present application can Realize data mutual transmission between different radar chips and flexible scheduling of data, so as to obtain data of various dimensions and sources.
  • the compression module is configured to perform rounding processing on each data in the second data set based on a configured compression ratio.
  • the embodiment of the present application can further improve the compression ratio, and further reduce the cost pressure of the radar chip.
  • the compression module is further configured to determine the first gear information, the first gear information is used to index the first gear value, and the first gear information belongs to the first gear A gear table.
  • the radar chip further includes: a decompression module, configured to acquire the second data set and the first gear information, and determine the first gear information according to the first gear information. gear value, and use the first gear value to decompress each data in the second data set to obtain the first data set.
  • a decompression module configured to acquire the second data set and the first gear information, and determine the first gear information according to the first gear information. gear value, and use the first gear value to decompress each data in the second data set to obtain the first data set.
  • the embodiment of the present application can complete the decompression processing of the compressed data.
  • the decompression module is also used to obtain the third data set and the second gear information output by the compression module of the second radar chip, and according to the second gear bit information, determine the second gear value, and use the second gear value to decompress each data in the third data set, wherein the first gear table includes the second gear information and the first Second gear value, the second gear information is used to index the second gear value.
  • the embodiments of the present application can flexibly schedule and transfer data according to current data processing requirements, so as to obtain data of various dimensions and sources for use by subsequent modules of the decompression module.
  • the embodiments of the present application can reduce the storage space required for data processing without causing additional requirements.
  • the compression module is further configured to synchronously complete the transposition process of each data in the first data set.
  • the compression module when the compression module performs compression processing on each data in the first data set, it will also synchronously complete the transposition processing on each data in the first data set.
  • the compression module compresses a piece of data in the first data set, the piece of data is transposed and then compressed; then, the compression module completes the compression and processing of the remaining data in this manner. Transpose processing.
  • the synchronous completion of the transposition processing can be understood as: the compression module completes the transposition processing at the same time during the compression process, it does not complete the transposition processing first and then complete the compression processing, nor does it complete the compression processing first and then complete the compression processing Transpose processing, but compression and transposition at the same time.
  • the embodiment of the present application can shorten the delay of data processing, improve the effect of real-time performance, and help the post-stage module of the decompression module to directly transpose and then process the data. Skip the link of transposition, thereby shortening the time of data processing and improving the efficiency of data processing.
  • the decompression module is further configured to synchronously complete the transposition process of each data in the second data set.
  • the decompression module when the decompression module performs decompression processing on each data in the second data set, it also synchronously completes transposition processing on each data in the second data set.
  • the decompression module decompresses a piece of data in the second data set, it transposes the piece of data at the same time, and then performs decompression processing; then, the decompression module completes the remaining data in this way Decompression and transposition processing.
  • the decompression module completes the transposition processing at the same time during the decompression process, and does not complete the transposition processing first, and then complete the decompression processing, nor complete the decompression processing first, Then complete the transposition process, but decompression and transposition at the same time.
  • the data transposition process may also be completed during the decompression process.
  • the embodiment of the present application can shorten the delay of data processing, improve the effect of real-time performance, and help the post-stage module of the decompression module to be able to transpose and then process the data.
  • the link of transposition is directly skipped, thereby shortening the time of data processing and improving the efficiency of data processing.
  • the decompression module is further configured to synchronously complete the transposition process of each data in the second data set and/or the third data set.
  • the decompression module of the first radar chip can perform "transpose + decompression” synchronously on the second data set, or can perform “transpose + decompression” synchronously on the third data set,
  • the "transposition + decompression” of the second data set and the third data set may also be performed synchronously, which may be determined according to a specific scenario, which is not limited in this embodiment of the present application.
  • the embodiment of the present application can shorten the delay of data processing, improve the effect of real-time performance, and help the post-stage module of the decompression module to be able to transpose and then process the data.
  • the link of transposition is directly skipped, thereby shortening the time of data processing and improving the efficiency of data processing.
  • a radar chip which is applied to a radar device, the radar device also includes a receiving antenna, and the radar chip includes: a processing module, which is used to process the echo information of the target object obtained by the receiving antenna and output at least A data; a compression module, used to determine the first high-order data group and the first low-order data group, the first high-order data group includes the high-order bit part of all data in the fourth data set, and the first low-order data group includes the fourth data The low-order bit part of all data in the set, the fourth data set includes the at least one data; the compression module is used to right-shift each low-order data in the first low-order data group by N bits to obtain the second low-order data group, N is a positive integer; the compression module is also used to determine the first codeword set from the code table according to the mapping relationship between the numerical value of each high-order data in the first high-order data group and the code table, and the first codeword set includes and Multiple codewords corresponding to the value of
  • the compression module of the first radar chip splits each data in the fourth data set according to the high-order bits and low-order bits, and obtains the first high-order data group and the first low-order data group respectively, and The first low-order data group is compressed by shifting N bits to the right, and the first high-order data group is compressed according to the mapping relationship with the code table to obtain the first codeword set.
  • the compressed data has a certain compression rate and a higher fidelity rate, so that the storage space required by the radar chip for storing this type of data can be further reduced, thereby further reducing the cost pressure of the radar chip.
  • the fourth data set further includes at least one piece of data output by the processing module of the second radar chip.
  • the compression module of the first radar chip can compress at least one data output by the processing module of the first radar chip and at least one data output by the processing module of the second radar chip at the same time, so that the embodiment of the present application can Realize data mutual transmission between different radar chips and flexible scheduling of data, so as to obtain data of various dimensions and sources.
  • the radar chip further includes: a decompression module, configured to obtain the second low-order data group, N and the first codeword set, and perform the analysis on the second low-order data group
  • a decompression module configured to obtain the second low-order data group, N and the first codeword set, and perform the analysis on the second low-order data group
  • Each of the low-order data is shifted to the left by N bits and filled with zeros to obtain the first low-order data group. It is also used to obtain the value of each high-order data corresponding to the code table according to the multiple codewords to obtain the first high-order data.
  • data group, and splicing the first high-order data group and the first low-order data group to obtain a fourth data set.
  • the embodiment of the present application can complete the decompression processing of the compressed data.
  • the decompression module is also used to obtain the second codeword set output by the compression module of the second radar chip, the third low-order data group and M, and perform the first Each low-order data in the three low-order data groups is left-shifted by M bits and zero-filled to obtain the fourth low-order data group, and is also used to obtain the value of the corresponding high-order data in the code table according to the second codeword set to obtain The second high-order data group, and splicing the second high-order data group and the fourth low-order data group.
  • the compression module of the second radar chip is also used for compressing at least one piece of data output by the processing module of the second radar chip after processing the target echo information acquired by the receiving antenna.
  • the decompression module of the first radar chip when the decompression module of the first radar chip obtains the third low-order data group and the second codeword set output by the compression module of the second radar chip, it will also obtain the third low-order data group at the same time.
  • the decompression processing method for the third low-order data group and the second codeword set is consistent with the decompression processing method for the second low-order data group and the first codeword set.
  • the embodiments of the present application can flexibly schedule and transfer data according to current data processing requirements, so as to obtain data of various dimensions and sources for use by subsequent modules of the decompression module.
  • the embodiments of the present application can reduce the storage space required for data processing without causing additional requirements.
  • the compression module is further configured to synchronously complete the transposition processing of the first high-order data group and the first low-order data group.
  • the compression module when the compression module performs compression processing on each low-order data in the first low-order data group, it will also complete the transposition processing of each low-order data in the first low-order data group synchronously.
  • the compression module compresses a low-order data in the first low-order data group, it transposes the low-order data at the same time, and then performs compression processing; then, the compression module completes the remaining data in this way compression and transposition processing.
  • This method is also applicable to the synchronous processing of the compression module's transposition and compression of the first high-order data group.
  • the synchronous completion of the transposition processing can be understood as: the compression module completes the transposition processing at the same time during the compression process, it does not complete the transposition processing first and then complete the compression processing, nor does it complete the compression processing first and then complete the compression processing Transpose processing, but compression and transposition at the same time.
  • the embodiment of the present application can shorten the delay of data processing, improve the effect of real-time performance, and help the post-stage module of the decompression module to directly transpose and then process the data. Skip the link of transposition, thereby shortening the time of data processing and improving the efficiency of data processing.
  • the decompression module is further configured to synchronously complete the transposition process during the decompression process of the second low order data group and the first codeword set.
  • the decompression module when the decompression module decompresses each low-order data in the second low-order data group, it will also complete the transposition process of each low-order data in the second low-order data group synchronously.
  • the decompression module when the decompression module decompresses a low-order data in the second low-order data group, it transposes the low-order data at the same time, and then performs decompression processing; then, the compression module completes the Decompression and transposition processing of the remaining data. This method is also applicable to the synchronous processing of transposition and decompression of the first codeword set by the compression module.
  • the data transposition process may also be completed during the decompression process.
  • the embodiment of the present application can shorten the delay of data processing, improve the effect of real-time performance, and help the post-stage module of the decompression module to be able to transpose and then process the data.
  • the link of transposition is directly skipped, thereby shortening the time of data processing and improving the efficiency of data processing.
  • the decompression module is also used to complete the transposition process synchronously during the decompression process of the second low-order data group and the first codeword set; or, decompress
  • the compression module is also used to complete the transposition process synchronously during the decompression process of the second low-order data group, the third low-order data group, the first codeword set and the second codeword set; or, the decompression module is also used During the decompression process of the third low-order data group and the second codeword set, the transposition process is completed synchronously.
  • the decompression module of the first radar chip can perform "transpose+decompression” synchronously on the second low-order data group and the first codeword set, or can perform "transposition + decompression” on the third low-order data group and the second codeword set Synchronous "transposition + decompression” of the word set, and "transposition + decompression” synchronization of the second low-order data group, the third low-order data group, the first codeword set and the second codeword set This can be determined according to a specific scenario, which is not limited in this embodiment of the present application.
  • the embodiment of the present application can shorten the delay of data processing, improve the effect of real-time performance, and help the post-stage module of the decompression module to be able to transpose and then process the data.
  • the link of transposition is directly skipped, thereby shortening the time of data processing and improving the efficiency of data processing.
  • a data processing method is provided, the method is applied to a radar device, the radar device includes a receiving antenna and a first radar chip, the first radar chip includes a processing module and a compression module, and the method includes: a processing module Process the echo information of the target object acquired by the receiving antenna and output at least one data; the compression module determines the first gear value in the first gear table according to the value of the first data in the first data set, and uses the first gear value A gear value, each data in the first data set is compressed to obtain a second data set, the first gear value is greater than or equal to the value of the first data, and the first data set includes at least one data.
  • the manner of the compression processing is a division operation.
  • the value of the first data is a maximum value among the values of all data in the first data set.
  • the first gear value is the minimum value among the gear values in the first gear table that are greater than or equal to the value of the first data.
  • the first data set further includes at least one piece of data output by the processing module of the second radar chip.
  • the compression module is configured to perform rounding processing on each data in the second data set based on a configured compression ratio.
  • the method further includes: the compression module determines first gear information, the first gear information is used to index the first gear value, and the first gear Bit information belongs to the first gear table.
  • the first radar chip further includes a decompression module
  • the method further includes: the decompression module obtains the second data set and the first gear information, and The first gear information determines the first gear value, and uses the first gear value to decompress each data in the second data set to obtain the first data set.
  • the method further includes: the decompression module also obtains the third data set and the second gear information output by the compression module of the second radar chip, and according to the first Second gear information, determine the second gear value, and use the second gear value to decompress each data in the third data set, wherein the first gear table includes the second gear information and the second gear value, the second gear information is used to index the second gear value.
  • the method further includes: the compression module synchronously completes the transposition process of each data in the first data set.
  • the method further includes: the decompression module completes the transposition processing of each data in the second data set synchronously.
  • the method further includes: the decompression module synchronously completes the transposition process of each data in the second data set and/or the third data set.
  • a data processing method is provided, which is applied to a radar device.
  • the radar device includes a receiving antenna and a first radar chip, and the first radar chip includes a processing module and a compression module.
  • the method includes: the processing module processes Receiving the echo information of the target object acquired by the antenna and outputting at least one data; the compression module determines the first high-order data group and the first low-order data group, the first high-order data group includes the high-order bits of all data in the fourth data set, and the first A low-order data group includes the low-order bits of all data in the fourth data set, and the fourth data set includes the at least one piece of data; the compression module right-shifts each low-order data in the first low-order data group by N bits to obtain the first low-order data.
  • N is a positive integer; the compression module determines the first codeword set from the code table according to the mapping relationship between the numerical value of each high-order data in the first high-order data group and the code table, and the first codeword set includes A number of codewords corresponding to the value of each high-order data.
  • the fourth data set further includes at least one piece of data output by the processing module of the second radar chip.
  • the first radar chip further includes a decompression module
  • the method further includes: the decompression module acquires the second low-order data group, N and the first codeword set, And perform left-shift N bit and zero-fill processing on each low-order data in the second low-order data group to obtain the first low-order data group, and also used to obtain each corresponding high-order data in the code table according to the multiple codewords
  • the value of the data is obtained by obtaining the first high-order data group, and splicing the first high-order data group and the first low-order data group to obtain the fourth data set.
  • the method further includes: the decompression module acquires the second codeword set output by the compression module of the second radar chip, the third low-order data group and M, and Each low-order data in the third low-order data group is left-shifted by M bits and zero-filled to obtain the fourth low-order data group, and according to the second codeword set, obtain the value of the corresponding high-order data in the code table to obtain the first Two high-order data groups, and splicing the second high-order data group and the fourth low-order data group.
  • the method further includes: the compression module synchronously completes the transposition processing of the first high-order data group and the first low-order data group.
  • the method further includes: the decompression module synchronously completes the transposition process during the decompression process of the second low order data group and the first codeword set.
  • the method further includes: the decompression module synchronously completes the transposition process during the decompression process of the second low-order data group and the first codeword set; or, decompression The compression module synchronously completes the transposition process during the decompression process of the second low-order data group, the third low-order data group, the first codeword set and the second codeword set; or, the decompression module completes the transposition process between the third low-order data group and the The transposition processing is completed synchronously during the decompression process of the binary code word set.
  • a chip system including a logic circuit and a communication interface, the communication interface is used to receive data and/or information to be processed, and transmit the data and/or information to be processed to the logic circuit, the The logic circuit is used to execute the method provided by any one of the third aspect to the fourth aspect and any possible implementation of this aspect.
  • a computer-readable storage medium which stores instructions, and when the instructions are run on a computer, the computer executes any one of the third to fourth aspects and any possible The method provided by the implementation of .
  • a computer program product is provided.
  • the computer program product is run on a computer, the computer is made to execute the computer program as provided in any one of the third to fourth aspects and any possible implementation of this aspect. Methods.
  • a radar device including the radar chip provided in any one of the first to second aspects and any possible implementation of this aspect, and the radar device further includes: a transmitter, a receiver , transmitting antenna, receiving antenna and display module.
  • FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a compression granularity division provided by an embodiment of the present application.
  • Fig. 3 is a schematic flowchart of a data processing method provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of another data processing method provided by an embodiment of the present application.
  • Fig. 5 is a schematic block diagram of the structure of a radar chip provided by an embodiment of the present application.
  • Fig. 6 is a schematic block diagram of another radar chip provided by an embodiment of the present application.
  • a radar device is an electronic device that uses electromagnetic waves to detect targets. Its working principle is: the transmitter shoots electromagnetic wave energy to a certain direction in space through the transmitting antenna, and the target object in this direction reflects the electromagnetic waves encountered, and the receiver passes through The receiving antenna receives this reflected wave and processes it to extract some information about the target object (the distance from the target object to the radar device, the rate of change of distance or radial velocity, azimuth, height, etc.).
  • radar devices The specific uses and structures of various radar devices are not the same, but the basic form is the same, including: transmitter, transmitting antenna, receiver, receiving antenna, display, radar chip (for processing target echo information, data compression , data storage, etc.) etc.
  • the embodiment of the present application takes the imaging radar device as an example for illustration, but this description method cannot be used for the actual application of the data processing method and the radar chip provided by the embodiment of the present application Scope creates any limitations.
  • Fig. 1 shows a schematic diagram of an application scenario provided by an embodiment of the present application.
  • a smart vehicle equipped with an imaging radar device activates the imaging radar device to obtain surrounding information during driving, such as vehicle distance, vehicle speed, and surrounding environment information.
  • the imaging radar device will generate a large amount of data, which needs to be processed and stored.
  • the radar radiation direction may be forward or backward, which is not specifically limited in this embodiment of the present application.
  • the linear frequency modulation system and the use of MIMO antennas to obtain richer target echo information will require a larger storage space for the radar chip, which will increase the cost pressure of the radar chip. Efficient compression processing, thereby reducing the requirement for storage space and achieving the purpose of reducing the cost of the radar chip.
  • each data in the specified data is shifted right by N bits, thereby discarding the low-order bits in each data (such as , N bits at the end), to achieve the purpose of compressing data.
  • BFP block floating point
  • the embodiment of the present application provides a data processing method.
  • the embodiment of the present application can achieve data compression with a higher compression rate and reduce the number of radar chips storing certain types of data.
  • the required data storage space can greatly reduce the cost pressure of radar chips.
  • FIG. 2 is a schematic diagram of a compression granularity division provided by an embodiment of the present application. Specifically as shown in Figure 2.
  • the processing module of the radar chip needs to perform certain processing on the echo information.
  • This processing can be understood as: the processing module of the radar chip processes these echo information
  • the echo information of the target object is directly processed, and at least one data is output correspondingly; or, after the echo information of the target object obtained by the receiving antenna is processed by other modules of the radar device, it is processed by the processing module of the radar chip. further processing, and correspondingly output at least one piece of data.
  • the at least one piece of data output by the processing module of the radar chip can be compressed and processed by the compression module of the radar chip in the form of compressed granularity.
  • the compression granularity can be understood as: the amount of data that the compression module can process at one time, and the amount of data processed each time can be different or the same.
  • each small box represents a piece of data output by the processing module of the radar chip after processing the echo information of the target object, and the data bit width of each data is 16 bits. That is, this means that each data is composed of 16 bits.
  • the data bit width of each data may also be 10 bits, 12 bits, etc., and the embodiment of the present application does not limit the data bit width of each data.
  • each large dotted box represents a compression granularity
  • each compression granularity includes a plurality of data, which represents the amount of data processed by the compression module of the radar chip at one time
  • different compression Granularity can include different amounts of data.
  • the embodiment of the present application supports configuring multiple different compression granularities for the amount of data included in one compression task.
  • this embodiment of the present application supports configuring a compression in the form of data_num_1d (each data in one-dimensional data represents the echo data of a single antenna) and data_num_2d (each data in two-dimensional data represents each receiving antenna)
  • the 1-dimensional and 2-dimensional data volume of the data volume of the task is data_num_1d*data_num_2d.
  • compressed granularity may correspond to antenna dimension (receiving antenna) (4 antennas/8 antennas/16 antennas, etc.), time dimension (sampling point) (Rang distance, long distance, short distance) and speed dimension, etc.
  • antenna dimension 4 antennas/8 antennas/16 antennas, etc.
  • time dimension sampling point
  • speed dimension etc.
  • the embodiment of the present application supports variable compression granularity, and can adapt different algorithm performances according to scenarios.
  • the embodiment of the present application supports the configuration of multiple compression granularities in all data to be processed, and supports the switching of compression algorithms between multiple compression granularities, so as to achieve high-fidelity or high compression of data in a specific area need.
  • the embodiment of the present application uses the concept of data set instead of the expression of compression granularity, but the two are equivalent concepts.
  • FIG. 3 is a schematic diagram of a data processing method #300 provided by an embodiment of the present application. It should be understood that the method #300 is applied to a radar device, and the radar device includes a receiving antenna and a first radar chip, and the first radar chip includes a processing module and a compression module.
  • the processing module processes the echo information of the target object acquired by the receiving antenna and outputs at least one piece of data.
  • the processing module of the radar chip needs to process the echo information.
  • This processing can be understood as: the processing module of the radar chip Directly process the echo information of these target objects, and output at least one data accordingly; or, after the echo information of the target object acquired by the receiving antenna is processed by other modules of the radar device, it is processed by the first radar chip The module further processes it and outputs at least one data accordingly.
  • the processing module of the first radar chip may be a Fourier transform module (for example, it may be a distance-dimensional Fourier transform module, or a velocity-dimensional Fourier transform module), or it may be other modules or unit etc.
  • the type of data output by the processing module of the first radar chip can be fast time-dimensional data (for example, when the processing module is a range-dimensional Fourier transform module, its output is fast time-dimensional data), and it can also be slow time-dimensional data.
  • dimensional data for example, when the processing module is a velocity-dimensional Fourier transform module, its output is slow-time dimensional data
  • other data types for example, when the processing module is a velocity-dimensional Fourier transform module, its output is slow-time dimensional data.
  • the first radar chip may include a plurality of processing modules, for example, a pre-processing module before the compression module, and a decompression module.
  • the post-processing module after the module, and the data scheduling between different modules can be carried out through the bus (bus), which will be described in a unified manner here, and will not be described later.
  • the compression module determines the first gear value in the first gear table according to the value of the first data in the first data set, and uses the first gear value to process each data in the first data set
  • the compression process is to obtain a second data set, the first gear value is greater than or equal to the value of the first data, and the first data set includes the at least one data.
  • the first data set may be understood as the aforementioned compression granularity.
  • the quantity of data included in the first data set may be determined in a configuration manner, or determined in other ways.
  • the first data set includes at least one data output by the processing module of the first radar chip, which can be understood as: the first data set includes at least one data output by the processing module of the first radar chip, and may also include data from other radar chips. at least one piece of data output by the processing module.
  • the first data may be any data in the first data set, therefore, the value of the first data may be the value of any data in the first data set, for example, the value of the first data may be the first The mean, minimum, maximum, etc. among the values of all data in a data set.
  • the value of the data can be expressed in decimal form or in binary form. If it is expressed in decimal form, then in the process of data compression, the radar chip needs Convert it from decimal to binary; if it is embodied in binary form, the radar chip can directly use this value for data compression processing.
  • each data in the first data set may be a positive number or a negative number.
  • the tabulation process of the first gear table is completed offline, and after completion, the first gear table is saved between the compression module and the decompression module of the first radar chip. middle.
  • the first gear table can be common, that is, the compression module and the decompression module of any radar chip share the first gear table, so that it is convenient When data is transmitted between radar chips, different radar chips can perform unified compression and decompression processing.
  • the embodiment of the present application supports that the number of gears in the first gear table can be adjusted during the tabulation process.
  • the number of gears in the first gear table is at least 1 gear, and the maximum number of gears is 1 gear.
  • the number can be flexibly adjusted according to specific scenarios.
  • the first gear table is common to multiple radar chips, and the compression module and decompression module of each radar chip may include the first gear table, or each radar chip All the chips can access the first gear table. In this way, after multiple radar chips transmit data, it is convenient to perform unified compression and decompression processing on the data obtained after the transmission.
  • the first gear table can be understood as a 3*3 table, a total of 9 tables, each table has a value, for example, there are values 1-9, each value corresponds to a table Position, for example, the value 1 can correspond to the position of 1 row and 1 column of the table, then the value in the table can be simply understood as the gear value, and the table position corresponding to the value in the table can be simply understood as the gear information, wherein, Each gear information has a one-to-one correspondence with each gear value, and the corresponding gear value can be indexed through the gear information.
  • the first gear table includes multiple gear values and gear information corresponding to the multiple gear values, and the first gear value is one of the gear values.
  • the processing module of the first radar chip uses the first gear value to perform compression processing on each data in the first data set, and the way of the compression processing may be: divide each data in the first data set by The first gear value, or dividing each data in the first data set by a numerical value that is a multiple of the first gear value, or it can also be in other ways, such as multiplication.
  • the compression process is a division operation.
  • the embodiment of the present application compresses each data in the first data set by using the first gear value in the first gear table.
  • This method can obtain a higher compression rate, so that The storage space required by the processing module for the output data after processing the target echo information acquired by the receiving antenna of the radar device is reduced, thereby reducing the cost of the radar chip.
  • the embodiments of the present application can realize data compression with a higher compression rate, reduce the storage space required by the radar chip for storing certain types of data, and thereby reduce the cost pressure of the radar chip.
  • the value of the first data is a maximum value among the values of all data in the first data set.
  • the numerical value of the first data is the maximum value among the numerical values of all data, which may refer to: among the absolute values of the numerical values of all data in the first data set, the numerical value of the first data is the maximum value; it may also be Means: among the values of all the data in the first data set, the value of the first data is the maximum value.
  • the compression module of the radar chip determines the value of the first data by scanning each data in the first data set. Exemplarily, if the value of the first data is the maximum value among the values of all the data in the first data set, the compression module of the radar chip scans each data in the first data set, and passes Comparing the values of the respective data to determine the value of the first data that meets the requirements.
  • the first gear value is determined by using the maximum value in the first data set, and each data in the first data set is compressed based on the first gear value determined based on the maximum value. In this way, A higher compression rate can be obtained, thereby better saving storage space and reducing the cost of radar chips.
  • the first gear value is a minimum value among gear values greater than or equal to the value of the first data in the first gear table.
  • the first data set further includes at least one piece of data output by the processing module of the second radar chip.
  • the compression module of the first radar chip can also obtain the data output by the processing module of the second radar chip, and perform unified compression on the two parts of data. Compression processing, and the compression method for the two parts of data is the same, in other words, the first gear value determined by the first radar chip is based on at least one data output by the processing module including the first radar chip and the second The value of one of the data in the data set composed of at least one data output by the processing module of the radar chip is determined. Therefore, the first gear value is suitable for compression processing of the data set.
  • the compression module of the first radar chip can compress at least one data output by the processing module of the first radar chip and at least one data output by the processing module of the second radar chip at the same time, so that the embodiment of the present application can Realize data mutual transmission between different radar chips and flexible scheduling of data, so as to obtain data of various dimensions and sources.
  • the embodiment of the present application supports flexible scheduling and mutual transmission of data, so as to obtain data of various dimensions and sources.
  • the method also includes:
  • the compression module determines first notch information, the first notch information is used to index the first notch value, and the first notch information belongs to the first notch table.
  • the compression module determines the first gear value from the first gear table according to the value of the first data, it also determines the first gear information, and the first gear information is used to index the first gear value .
  • the first gear table includes multiple gear values and multiple gear information corresponding to the multiple gear values.
  • the process of determining the first gear value and the first gear information in the first gear table based on the value of the first data in the embodiment of the present application may be determined directly or indirectly. , which is not specifically limited in this embodiment of the present application.
  • the embodiment of the present application can realize that the decompression module of the radar chip can quickly decompress the second data set. Complete the decompression process.
  • the compression module can perform rounding processing on each data in the second data set based on a configured compression rate.
  • the embodiment of the present application can further improve the compression ratio, and further reduce the cost pressure of the radar chip.
  • the compression module of the first radar chip compresses the first gear information to the second data set.
  • the compression module of the first radar chip determines the total width of the data bits required to store the first gear information, and records it as K bits, K is a positive integer, and keeps the first gear information to the second data
  • K is a positive integer
  • one low-order bit of each of the K data in the second data set can be used to store the first gear information, that is, K bits are used to store the first gear information.
  • K data in the second data set may be the top K data, the last K data, or the middle K data, which is not limited in this embodiment of the present application.
  • the compression module stores the information of the first gear in the memory.
  • the compression module can separately store the first gear information in a designated location of the internal memory.
  • a gear information is associated with a gear value, and a gear information is also associated with a data set. Therefore, when the decompression module of the radar chip decompresses the compressed data output by the compression module, It needs to obtain the compressed data set and the corresponding gear information.
  • This acquisition can be understood as: when the gear information is stored in the compressed data set, the decompression module needs to first obtain from the compressed data set Part of the data extracts low-order bits, and splicing them together to obtain complete gear information, and uses the gear information to determine the gear value, and decompresses the compressed data; when the gear information is independently stored in a separate memory address, the decompression module needs to first access the address and obtain the gear information, and use the gear information to determine the gear value, and decompress the compressed data. Therefore, no matter whether the gear information is stored in the compressed data set or in a separate memory address, the decompression module needs to obtain the compressed data set and the corresponding gear information.
  • the first radar chip also includes a decompression module, and the method also includes:
  • the decompression module obtains the second data set and the first gear information, and determines the first gear value according to the first gear information, and uses the first gear value to decompress each data in the second data set Compression processing to obtain the first data set.
  • the decompression module needs to obtain the first gear information first, for example, extract the first gear information from part of the second data set a gear information, and use the first gear information to determine the first gear value in the first gear table, and use the first gear value to decompress each data in the second data set
  • the manner of the decompression processing is opposite to the manner of the compression processing. For details, please refer to the manner of the compression processing, which will not be repeated here.
  • the decompression module can read the designated area of the memory to obtain the first gear information, and use the first gear information to determine the first gear in the first gear table. A gear value, and use the first gear value to decompress each data in the second data set.
  • the embodiment of the present application completes the decompression processing of the compressed data.
  • the method also includes:
  • the decompression module obtains the third data set and the second gear information output by the compression module of the second radar chip, and determines the second gear value according to the second gear information, and uses the second gear value to calculate the third gear value.
  • Each data in the data set is decompressed, wherein the first gear table includes second gear information and a second gear value, and the second gear information is used to index the second gear value.
  • the compression module of the second radar chip is also used for compressing at least one piece of data outputted after the processing module of the second radar chip processes the target echo information acquired by the receiving antenna.
  • each data set corresponds to a gear information, which is used to determine the corresponding gear value for decompressing the data set, and the gear information can be Compressed in the data set, it can also be independently stored in a designated area of the memory, which is not limited in the embodiment of the present application, but it should be understood that the decompression module of the first radar chip obtains the compression module of the second radar chip
  • the third data set is output, the second gear information corresponding to the third data set will also be obtained at the same time, and then the decompression processing on the third data set is consistent with the decompression processing on the second data set.
  • the embodiments of the present application can flexibly schedule and transfer data according to current data processing requirements, so as to obtain data of various dimensions and sources for use by subsequent modules of the decompression module.
  • the embodiments of the present application can reduce the storage space required for data processing without causing additional requirements.
  • the method further includes: the compression module synchronously completes the transposition process on each data in the first data set.
  • the compression module when the compression module performs compression processing on each data in the first data set, it will also synchronously complete the transposition processing on each data in the first data set.
  • the compression module compresses a piece of data in the first data set, the piece of data is transposed and then compressed; then, the compression module completes the compression and processing of the remaining data in this manner. Transpose processing.
  • the synchronous completion of the transposition processing can be understood as: the compression module completes the transposition processing at the same time during the compression process, it does not complete the transposition processing first and then complete the compression processing, nor does it complete the compression processing first and then complete the compression processing Transpose processing, but compression and transposition at the same time.
  • the embodiment of the present application can shorten the delay of data processing, improve the effect of real-time performance, and help the post-stage module of the decompression module to directly transpose and then process the data. Skip the link of transposition, thereby shortening the time of data processing and improving the efficiency of data processing.
  • the method further includes: the decompression module synchronously completes the transposition process of each data in the second data set.
  • the decompression module when the decompression module performs decompression processing on each data in the second data set, it also synchronously completes transposition processing on each data in the second data set.
  • the decompression module decompresses a piece of data in the second data set, it transposes the piece of data at the same time, and then performs decompression processing; then, the decompression module completes the remaining data in this way Decompression and transposition processing.
  • the decompression module completes the transposition processing at the same time during the decompression process, and does not complete the transposition processing first, and then complete the decompression processing, nor complete the decompression processing first, Then complete the transposition process, but decompression and transposition at the same time.
  • the data transposition process may also be completed during the decompression process.
  • the embodiment of the present application can shorten the delay of data processing, improve the effect of real-time performance, and help the post-stage module of the decompression module to be able to transpose and then process the data.
  • the link of transposition is directly skipped, thereby shortening the time of data processing and improving the efficiency of data processing.
  • the method further includes: the decompression module synchronously completes the transposition process of each data in the second data set and/or the third data set.
  • the decompression module of the first radar chip can perform "transpose + decompression” synchronously on the second data set, or can perform “transpose + decompression” synchronously on the third data set,
  • the "transposition + decompression” of the second data set and the third data set may also be performed synchronously, which may be determined according to a specific scenario, which is not limited in this embodiment of the present application.
  • the embodiment of the present application can shorten the delay of data processing, improve the effect of real-time performance, and help the post-stage module of the decompression module to be able to transpose and then process the data.
  • the link of transposition is directly skipped, thereby shortening the time of data processing and improving the efficiency of data processing.
  • FIG. 4 is a schematic diagram of a data processing method #400 provided by an embodiment of the present application. It should be understood that the method #400 is applied to a radar device, and the radar device includes a receiving antenna and a first radar chip, and the first radar chip includes a processing module and a compression module.
  • S410 is the same as S310 and will not be repeated here.
  • the compression module determines the first high-order data group and the first low-order data group, the first high-order data group includes the high-order bits of all the data in the fourth data set, and the first low-order data group includes all the data in the fourth data set
  • the lower bit part of the fourth data set includes at least one data.
  • the compression module right-shifts each low-order data in the first low-order data group by N bits to obtain a second low-order data group, where N is a positive integer.
  • the compression module determines the first codeword set from the code table according to the mapping relationship between the numerical value of each high-order data in the first high-order data group and the code table, and the first codeword set includes the numerical value corresponding to each high-order data. multiple codewords.
  • step S420 the compression module of the first radar chip will split each data in a data set according to the high and low bits, and obtain a high bit data and a low bit data respectively.
  • the data can be regarded as composed of One high-order data and one low-order data are composed, and the high-order data includes a high-order bit part of a data, and the low-order data includes a low-order bit part of a data.
  • the first 10 bits of the piece of data can be regarded as the high-order bits
  • the last 6 bits of the piece of data can be regarded as the low-order bits bit part, and store the high-order bit part and the low-order bit part respectively. Therefore, the first high-order data group includes the high-order bit part of all data in the fourth data set, the first low-order data group includes the low-order bit part of all data in the fourth data set, and the fourth data set includes the first radar chip.
  • Process at least one data output from the module.
  • first high-order data group may also include the high-order bit part of the data output from the processing module of the second radar chip
  • first low-order data group may also include the low-order bits of the data output from the processing module of the second radar chip part.
  • the first 10 bits are regarded as high-order bits, and the last 6 bits are regarded as low-order bits, but the embodiment of the present application also supports other division methods, for example, the first 8 bits are regarded as For high bits, the last 8 bits are regarded as low bits, which is not specifically limited in this embodiment of the present application.
  • step S430 the compression module right-shifts each low-order data in the first low-order data group by N bits, and obtains the second low-order data group, in other words, the difference between the second low-order data group and the first low-order data group
  • the data bit width of each low-order data in the first low-order data group is 6 bits, but the data bit width of each low-order data in the second low-order data group is 6-N bits, so the first radar chip
  • the compression module realizes the compression processing of the first low-order data group.
  • step S440 the compression module acquires the codeword corresponding to the numerical value in the code table according to the value of each high-order data in the first high-order data group, and determines the first codeword set from the code table, the first The set of codewords includes a plurality of codewords corresponding to the value of each high-order data.
  • the code table includes at least one codeword and a numerical value corresponding to the at least one codeword.
  • the embodiment of the present application uses a multi-gear code table (typically such as 512/1024 gears) to complete the compression processing of the first high-order data group, and the tabulation process of the code table is completed offline, and in After completion, the code table is stored in the compression module and the decompression module of the first radar chip.
  • the code table can be universal, that is, the compression module and the decompression module of any radar chip all share the code table, so that it is convenient to carry out the code table between the radar chips. When data is transmitted to each other, different radar chips can perform unified compression and decompression processing.
  • the code table is common to multiple radar chips, and the compression module and decompression module of each radar chip may include the code table, or each radar chip may have access to the code table. In this way, after multiple radar chips transmit data, it is convenient to perform unified compression and decompression processing on the data obtained after the transmission.
  • the compression module of the first radar chip is based on the mapping relationship between the first high-order data group and the code table, that is, using the mapping relationship between the value of each data in the first high-order data group and the codeword, to obtain Corresponding codewords, and based on the obtained codewords, form a first codeword set according to a certain sequence.
  • steps S420 and S430 may be performed synchronously or sequentially, which is not specifically limited in this embodiment of the present application.
  • the embodiment of the present application compresses the fourth data set and outputs the second low-order data group and the first codeword set.
  • the compression module of the first radar chip right-shifts each low-order data in the first low-order data group.
  • the N-bit value of N is stored in the second low-order data group.
  • It may be stored in part of the low-order data in the second low-order data group, for example, in the first few bits of the part of the low-order data, or in other specified fixed positions, which are not specifically limited in this embodiment of the present application.
  • the compression module of the first radar chip splits each data in the fourth data set according to the high-order bits and low-order bits, and obtains the first high-order data group and the first low-order data group respectively, and The first low-order data group is compressed by shifting N bits to the right, and the first high-order data group is compressed according to the mapping relationship with the code table to obtain the first codeword set.
  • the compressed data has a certain compression rate and a higher fidelity rate, so that the storage space required by the radar chip for storing this type of data can be further reduced, thereby further reducing the cost pressure of the radar chip.
  • the fourth data set further includes at least one piece of data output by the processing module of the second radar chip.
  • the compression module of the first radar chip can also obtain the data output by the processing module of the second radar chip, and perform compression processing on the two parts of data , and the compression methods for the two parts of the data are the same.
  • the compression module of the first radar chip can compress at least one data output by the processing module of the first radar chip and at least one data output by the processing module of the second radar chip at the same time, so that the embodiment of the present application can Realize data mutual transmission between different radar chips and flexible scheduling of data, so as to obtain data of various dimensions and sources.
  • the embodiment of the present application supports flexible scheduling and mutual transmission of data, so as to obtain data of various dimensions and sources.
  • the first radar chip further includes a decompression module
  • the method further includes: the decompression module obtains the second low-order data group, N and the first codeword set, and performs the second low-order data group Each low-order data in the data is left-shifted by N bits and zero-filled to obtain the first low-order data group. It is also used to obtain the value of each corresponding high-order data in the code table according to the multiple codewords to obtain the first The high-order data group, and splicing the first high-order data group and the first low-order data group to obtain a fourth data set.
  • the decompression module when the decompression module decompresses the second low-order data group, it needs to obtain the value of N, and then perform left-shift N bits and zero-fill processing on each low-order data in the second low-order data group , more specifically, by shifting each low-order data in the second low-order data group to the left, the data bit width of each low-order data in the second low-order data group can be completed, but the bit value of the newly complemented bit to zero. In this manner, the decompression module decompresses the second low-order data group to obtain the first low-order data group.
  • the decompression module obtains the corresponding value in the code table based on multiple codewords in the first codeword set, and then obtains the first high-order data group, and finally splices the first high-order data group and the first low-order data group to obtain A fourth data set.
  • the decompression module since the second low-order data group includes the value information of N, the decompression module only needs to obtain the value information of N from the second low-order data group.
  • the embodiment of the present application can complete the decompression processing of the compressed data.
  • the method further includes: the decompression module acquires the second codeword set output by the compression module of the second radar chip, the third low-order data group and M, and calculates the Each low-order data is left-shifted by M bits and zero-filled to obtain the fourth low-order data group, and is also used to obtain the value of the corresponding high-order data in the code table according to the second codeword set to obtain the second high-order data group. And splicing the second high-order data group and the fourth low-order data group.
  • the compression module of the second radar chip is also used for compressing at least one piece of data outputted after the processing module of the second radar chip processes the target echo information acquired by the receiving antenna.
  • the decompression module of the first radar chip when the decompression module of the first radar chip obtains the third low-order data group and the second codeword set output by the compression module of the second radar chip, it will also obtain the third low-order data group at the same time.
  • the decompression processing method for the third low-order data group and the second codeword set is consistent with the decompression processing method for the second low-order data group and the first codeword set.
  • the embodiments of the present application can flexibly schedule and transfer data according to current data processing requirements, so as to obtain data of various dimensions and sources for use by subsequent modules of the decompression module.
  • the embodiment of the present application can reduce the storage space required for data processing without causing additional requirements.
  • the method further includes: the compression module synchronously completes the transposition processing of the first high-order data group and the first low-order data group.
  • the compression module when the compression module performs compression processing on each low-order data in the first low-order data group, it will also complete the transposition processing of each low-order data in the first low-order data group synchronously.
  • the compression module compresses a low-order data in the first low-order data group, it transposes the low-order data at the same time, and then performs compression processing; then, the compression module completes the remaining data in this way compression and transposition processing.
  • This method is also applicable to the synchronous processing of the compression module's transposition and compression of the first high-order data group.
  • the synchronous completion of the transposition processing can be understood as: the compression module completes the transposition processing at the same time during the compression process, it does not complete the transposition processing first and then complete the compression processing, nor does it complete the compression processing first and then complete the compression processing Transpose processing, but compression and transposition at the same time.
  • the embodiment of the present application can shorten the delay of data processing, improve the effect of real-time performance, and help the post-stage module of the decompression module to directly transpose and then process the data. Skip the link of transposition, thereby shortening the time of data processing and improving the efficiency of data processing.
  • the method further includes: the decompression module synchronously completes the transposition process during the decompression process of the second low-order data group and the first codeword set.
  • the decompression module when the decompression module decompresses each low-order data in the second low-order data group, it will also complete the transposition process of each low-order data in the second low-order data group synchronously.
  • the decompression module when the decompression module decompresses a low-order data in the second low-order data group, it transposes the low-order data at the same time, and then performs decompression processing; then, the compression module completes the Decompression and transposition processing of the remaining data. This method is also applicable to the synchronous processing of transposition and decompression of the first codeword set by the compression module.
  • the data transposition process may also be completed during the decompression process.
  • the embodiment of the present application can shorten the delay of data processing, improve the effect of real-time performance, and help the post-stage module of the decompression module to be able to transpose and then process the data.
  • the link of transposition is directly skipped, thereby shortening the time of data processing and improving the efficiency of data processing.
  • the method further includes: the decompression module synchronously completes the transposition process during the decompression process of the second low-order data group and the first codeword set; group, the third low-order data group, the first codeword set and the second codeword set during the decompression process, synchronously complete the transposition process; or, the decompression module decompresses the third low-order data group and the second codeword set During compression, the transpose process is done synchronously.
  • the decompression module of the first radar chip can perform "transpose+decompression” synchronously on the second low-order data group and the first codeword set, or can perform "transposition + decompression” on the third low-order data group and the second codeword set Synchronous "transposition + decompression” of the word set, and "transposition + decompression” synchronization of the second low-order data group, the third low-order data group, the first codeword set and the second codeword set This can be determined according to a specific scenario, which is not limited in this embodiment of the present application.
  • the embodiment of the present application can shorten the delay of data processing, improve the effect of real-time performance, and help the post-stage module of the decompression module to be able to transpose and then process the data.
  • the link of transposition is directly skipped, thereby shortening the time of data processing and improving the efficiency of data processing.
  • the radar chip provided by the embodiment of the present application will be described below with reference to FIG. 5 and FIG. 6 .
  • Fig. 5 is a schematic block diagram of a structure of a radar chip according to an embodiment of the present application.
  • the radar chip #500 includes a processing module #510 and a compression module #520.
  • the processing module #510 is configured to perform the processing of the echo information of the target object acquired by the receiving antenna of the radar device in the embodiment of the aforementioned method #300 and output at least one piece of data.
  • Compression module #520 configured to perform compression processing on at least one piece of data output by the processing module in the foregoing method #300 embodiment.
  • the radar chip #500 may further include a decompression module, and the decompression module is used for performing the decompression operation related to data in the foregoing method embodiments.
  • the radar chip #500 may further include a storage module for storing the compressed data output by the compression module.
  • the radar chip may include multiple processing modules, for example, a first processing module, a second processing module, etc., and the processing module described in the foregoing method embodiment may be the preceding compression module.
  • the compression module of the stage module (for example, the first processing module) is used to perform compression processing on the output data of the previous stage module, and store the compressed data in the storage module.
  • the subsequent module of the decompression module may be a second processing module for processing the decompressed data output by the decompression module.
  • the compression module of the radar chip can be separately mounted on the bus, and supports scheduling output data of different processing modules into the compression module through the bus for compression.
  • the decompression module of the radar chip can also be mounted on the bus separately, and the bracket dispatches the compressed data to the decompression module through the bus for decompression.
  • FIG. 6 is a schematic block diagram of another radar chip according to an embodiment of the present application.
  • the radar chip #600 includes a processing module #610 and a compression module #620.
  • the processing module #610 is configured to execute the processing of the echo information of the target object acquired by the receiving antenna of the radar device in the embodiment of the aforementioned method #400 and output at least one piece of data.
  • Compression module #620 configured to perform compression processing on at least one piece of data output by the processing module in the foregoing method #400 embodiment.
  • processing module #610 and the compression module #620 are also used to execute other steps or methods in the foregoing method embodiments, which will not be repeated here.
  • the radar chip #600 may further include a decompression module, and the decompression module is used to perform the data decompression operation involved in the foregoing method embodiments.
  • the radar chip #600 may further include a storage module for storing the compressed data output by the compression module.
  • the radar chip may include multiple processing modules, for example, a first processing module, a second processing module, etc., and the processing module described in the foregoing method embodiment may be the preceding compression module.
  • the compression module of the stage module (for example, the first processing module) is used to perform compression processing on the output data of the previous stage module, and store the compressed data in the storage module.
  • the subsequent module of the decompression module may be a second processing module for processing decompressed data output by the decompression module.
  • the compression module of the radar chip can be separately mounted on the bus, and supports scheduling output data of different processing modules into the compression module through the bus for compression.
  • the decompression module of the radar chip can also be mounted on the bus separately, and the bracket dispatches the compressed data to the decompression module through the bus for decompression.
  • the embodiment of the present application further provides a computer-readable storage medium, on which is stored the method executed by the radar chip #500 in the above method embodiment.
  • the computer program when executed by a computer, the computer can realize the method executed by the radar chip #500 in the above method embodiment.
  • the embodiment of the present application also provides a computer program product including instructions, and when the instructions are executed by a computer, the computer implements the method executed by the radar chip #600 in the above method embodiment.
  • the embodiment of the present application also provides a chip system, including a logic circuit and a communication interface, the communication interface is used to receive data and/or information to be processed, and transmit the data and/or information to be processed to the logic circuit; To execute the data processing method in the aforementioned method embodiment.
  • An embodiment of the present application further provides a radar device, the radar device includes any one of the aforementioned radar chips, and the radar device further includes: a transmitter, a receiver, a transmitting antenna, a receiving antenna, and a display module.
  • a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device can be components.
  • One or more components can reside within a process and/or thread of execution and a component can be localized on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more packets of data (e.g., data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet via a signal interacting with other systems). Communicate through local and/or remote processes.
  • packets of data e.g., data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet via a signal interacting with other systems.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .
  • At least one means one or more, and “multiple” means two or more.
  • At least one of the following" or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • at least one item (piece) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Theoretical Computer Science (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

一种数据处理的方法与雷达芯片(500),雷达芯片(500)应用于雷达装置,雷达装置还包括接收天线。雷达芯片(500)包括:处理模块(510),处理模块(510)用于处理接收天线获取的目标物体的回波信息并输出至少一个数据(S310);压缩模块(520),压缩模块(520)用于根据第一数据集合中第一数据的数值,确定第一档位表中的第一档位值,并使用第一档位值,对第一数据集合内的每个数据进行压缩处理,获得第二数据集合,第一档位值大于或等于第一数据的数值,第一数据集合包括处理模块输出的至少一个数据(S320)。由此,能够以更高的压缩率来实现数据的压缩,降低雷达芯片(500)存储某类数据时所需的存储空间,从而能够大幅降低雷达芯片(500)的成本压力。

Description

数据处理的方法与雷达芯片 技术领域
本申请实施例涉及自动驾驶传感器领域,更具体地,涉及一种数据处理的方法与雷达芯片。
背景技术
成像雷达是自动驾驶领域雷达的发展方向。一方面,为了提高探测精度,成像雷达一般采用线性调频体制,而在该机制的数据处理过程中,其需要等待一帧完整的数据收齐之后才能进行后续的数据处理,因此需要在等待数据收齐的过程中存储数据。另一方面,为了提高性能,成像雷达一般使用多发多收的多输入多输出(multipe input multipe output,MIMO)天线及大带宽发射波形,以便收集更丰富的目标回波信息。
上述两个方面均导致数据存储空间需要大幅提升,这增加了雷达芯片的成本压力,因此如何更好地压缩数据,以便降低雷达芯片的成本压力是目前亟待解决的问题。
发明内容
本申请实施例提供一种数据处理的方法与雷达芯片,通过该数据处理的方法与雷达芯片,本申请实施例能够实现以更高的压缩率来实现数据的压缩,降低雷达芯片存储某类数据时所需的存储空间,从而能够降低雷达芯片的成本压力。
第一方面,提供了一种雷达芯片,其应用于雷达装置,该雷达装置还包括接收天线,该雷达芯片包括:处理模块,用于处理该接收天线获取的目标物体的回波信息并输出至少一个数据;压缩模块,用于根据第一数据集合中第一数据的数值,确定第一档位表中的第一档位值,并使用该第一档位值,对该第一数据集合内的每个数据进行压缩处理,获得第二数据集合,该第一档位值大于或等于该第一数据的数值,该第一数据集合包括至少一个数据。
应理解,数据的数值可以是以十进制的形式体现,也可以是以二进制的形式体现,若以十进制的形式体现时,则在进行数据压缩的过程中,该雷达芯片需要对其进行十进制到二进制的转换;若以二进制的形式体现时,该雷达芯片可以直接使用该数值进行数据的压缩处理。
应理解,该第一档位表包括多个档位值,该第一档位值是第一档位表中的其中一个档位值。
应理解,该压缩处理的方式,可以是雷达芯片的压缩模块使第一数据集合内的每个数据除以第一档位值,或者,可以是雷达芯片的压缩模块使第一数据集合内的每个数据除以与第一档位值呈倍数关系的一个数值,或者,也可以以乘法运算的方式。
本申请实施例通过使用第一档位表中的第一档位值对第一数据集合内的每个数据进 行压缩处理,能够实现以更高的压缩率来实现数据的压缩,降低雷达芯片存储某类数据时所需的存储空间,从而能够降低雷达芯片的成本压力。
作为一种可能的实现方式,该压缩处理的方式为除法运算。
结合第一方面,在第一方面的某些实现方式中,该第一数据的数值是该第一数据集合内的所有数据的数值中的最大值。
应理解,第一数据的数值是所有数据的数值中的最大值,可以是指:在第一数据集合内的所有数据的数值的绝对值中,第一数据的数值是最大值;也可以是指:在第一数据集合内的所有数据的数值中,第一数据的数值就是最大值。
本申请实施例通过使用第一数据集合中的最大值确定第一档位值,并基于该最大值确定的第一档位值对第一数据集合内的每个数据进行压缩处理,如此,就能够实现获取更高的压缩率,从而更好地节约存储空间,降低雷达芯片的成本。
结合第一方面,在第一方面的某些实现方式中,第一档位值是该第一档位表中大于或等于第一数据的数值的档位值中的最小值。
结合第一方面,在第一方面的某些实现方式中,第一数据集合还包括第二雷达芯片的处理模块输出的至少一个数据。
具体而言,第一雷达芯片的压缩模块可以对第一雷达芯片的处理模块输出的至少一个数据与第二雷达芯片的处理模块输出的至少一个数据同时进行压缩处理,如此,本申请实施例能够实现不同雷达芯片之间的数据互传以及对数据的灵活调度,从而获取各种维度、各种来源的数据。
结合第一方面,在第一方面的某些实现方式中,压缩模块,用于基于配置的压缩率,对第二数据集合内的每个数据进行舍入处理。
通过这样的方式,本申请实施例能够进一步的提高压缩率,进一步地降低雷达芯片的成本压力。
结合第一方面,在第一方面的某些实现方式中,压缩模块,还用于确定第一档位信息,第一档位信息用于索引第一档位值,第一档位信息属于第一档位表。
结合第一方面,在第一方面的某些实现方式中,雷达芯片还包括:解压缩模块,用于获取第二数据集合与第一档位信息,并根据第一档位信息,确定第一档位值,并使用第一档位值,对第二数据集合内的每个数据进行解压缩处理,获得第一数据集合。
通过上述方式,本申请实施例能够完成对压缩数据的解压缩处理。
结合第一方面,在第一方面的某些实现方式中,解压缩模块,还用于获取第二雷达芯片的压缩模块输出的第三数据集合与第二档位信息,并根据该第二档位信息,确定第二档位值,并使用该第二档位值,对该第三数据集合内的每个数据进行解压缩处理,其中,第一档位表包括第二档位信息与第二档位值,该第二档位信息用于索引该第二档位值。
通过上述技术方案,本申请实施例能够根据当前数据处理的需求,灵活调度及数据互传,以获取各种维度、各种来源的数据,供该解压缩模块的后级模块使用。通过采取“级联+压缩后数据”的技术方案,本申请实施例能够降低数据处理中所需要的存储空间,且不会导致额外的需求。
结合第一方面,在第一方面的某些实现方式中,压缩模块,还用于同步完成对该第一数据集合内的每个数据的转置处理。
应理解,压缩模块在对第一数据集合内的每个数据进行压缩处理时,还会同步完成对该第一数据集合内的每个数据的转置处理。示例性地,该压缩模块对第一数据集合内的一个数据进行压缩时,同时将该一个数据转置过来,然后进行压缩处理;接着,该压缩模块按照此方式完成对剩余的数据的压缩与转置处理。
应理解,该同步完成转置处理,可以理解为:该压缩模块在压缩过程中同时完成转置处理,并非先完成转置处理,而后再完成压缩处理,也并非先完成压缩处理,而后再完成转置处理,而是压缩与转置同时进行。
通过转置与压缩同时进行的方案,本申请实施例能够缩短数据处理的时延,提高实时性的效果,有助于解压缩模块的后级模块在需要对数据先转置再处理时能够直接跳过转置这一环节,从而缩短数据处理的时间,提高数据处理的效率。
结合第一方面,在第一方面的某些实现方式中,解压缩模块,还用于同步完成对该第二数据集合内的每个数据的转置处理。
应理解,解压缩模块在对第二数据集合内的每个数据进行解压缩处理时,还会同步完成对该第二数据集合内的每个数据的转置处理。示例性地,解压缩模块对第二数据集合内的一个数据进行解压缩时,同时将该一个数据转置过来,然后进行解压缩处理;接着,解压缩模块按照此方式完成对剩余的数据的解压缩与转置处理。
应理解,该同步完成转置处理,可以理解为:解压缩模块在解压缩过程中同时完成转置处理,并非先完成转置处理,而后再完成解压缩处理,也并非先完成解压缩处理,而后再完成转置处理,而是解压缩与转置同时进行。
具体而言,该数据的转置处理也可以是在解压缩处理过程中完成。通过转置与解压缩同时进行的方案,本申请实施例能够缩短数据处理的时延,提高实时性的效果,有助于解压缩模块的后级模块在需要对数据先转置再处理时能够直接跳过转置这一环节,从而缩短数据处理的时间,提高数据处理的效率。
结合第一方面,在第一方面的某些实现方式中,解压缩模块,还用于同步完成对第二数据集合和/或第三数据集合内的每个数据的转置处理。
具体而言,该第一雷达芯片的解压缩模块可以对第二数据集合进行“转置+解压缩”的同步进行,也可以对第三数据集合进行“转置+解压缩”的同步进行,也可以对第二数据集合与第三数据集合进行“转置+解压缩”的同步进行,这可以根据具体的场景而决定,本申请实施例对此不做限定。
通过转置与解压缩同时进行的方案,本申请实施例能够缩短数据处理的时延,提高实时性的效果,有助于解压缩模块的后级模块在需要对数据先转置再处理时能够直接跳过转置这一环节,从而缩短数据处理的时间,提高数据处理的效率。
第二方面,提供了一种雷达芯片,其应用于雷达装置,该雷达装置还包括接收天线,该雷达芯片包括:处理模块,用于处理该接收天线获取的目标物体的回波信息并输出至少一个数据;压缩模块,用于确定第一高位数据组与第一低位数据组,该第一高位数据组包括第四数据集合内所有数据的高位比特部分,该第一低位数据组包括第四数据集合内所有数据的低位比特部分,第四数据集合包括该至少一个数据;压缩模块,用于对第一低位数据组内的每个低位数据进行右移N位比特,获得第二低位数据组,N为正整数;压缩模块,还用于根据第一高位数据组内的每个高位数据的数值与码表的映射关系,从码表中确定第 一码字集合,第一码字集合包括与每个高位数据的数值对应的多个码字。
通过上述技术方案中,该第一雷达芯片的压缩模块对第四数据集合内的每个数据按照高位比特与低位比特进行拆分,并分别得到第一高位数据组与第一低位数据组,且对该第一低位数据组按照右移N位比特的方式进行压缩,对第一高位数据组按照与码表的映射关系获得第一码字集合的方式进行压缩,如此,本申请实施例能够获得具有一定压缩率且也具有较高保真率的压缩后的数据,如此,从而能够进一步地降低雷达芯片存储该类型的数据时所需要的存储空间,从而进一步地降低雷达芯片的成本压力。
结合第二方面,在第二方面的某些实现方式中,第四数据集合还包括第二雷达芯片的处理模块输出的至少一个数据。
具体而言,第一雷达芯片的压缩模块可以对第一雷达芯片的处理模块输出的至少一个数据与第二雷达芯片的处理模块输出的至少一个数据同时进行压缩处理,如此,本申请实施例能够实现不同雷达芯片之间的数据互传以及对数据的灵活调度,从而获取各种维度、各种来源的数据。
结合第二方面,在第二方面的某些实现方式中,雷达芯片还包括:解压缩模块,用于获取第二低位数据组、N与第一码字集合,并对第二低位数据组内的每个低位数据进行左移N位比特与补零处理,获得第一低位数据组,还用于根据该多个码字,获取码表中对应的每个高位数据的数值,获得第一高位数据组,并拼接第一高位数据组与第一低位数据组,获得第四数据集合。
通过上述方案,本申请实施例能够完成对压缩数据的解压缩处理。
结合第二方面,在第二方面的某些实现方式中,解压缩模块,还用于获取第二雷达芯片的压缩模块输出的第二码字集合、第三低位数据组与M,并对第三低位数据组中的每个低位数据进行左移M位比特与补零处理,获得第四低位数据组,还用于根据第二码字集合,获取码表中对应的高位数据的数值,获得第二高位数据组,并拼接第二高位数据组与第四低位比特数据组。
应理解,该第二雷达芯片的压缩模块也是用于对该第二雷达芯片的处理模块对接收天线获取的目标回波信息进行处理之后并输出的至少一个数据进行压缩处理。
在本申请实施例中,第一雷达芯片的解压缩模块在获取第二雷达芯片的压缩模块输出的第三低位数据组与第二码字集合时,也会同时获取与该第三低位数据组对应的M的取值信息,之后,对第三低位数据组与第二码字集合的解压缩处理方式与对第二低位数据组与第一码字集合的解压缩处理方式是一致的。
通过上述技术方案,本申请实施例能够根据当前数据处理的需求,灵活调度及数据互传,以获取各种维度、各种来源的数据,供该解压缩模块的后级模块使用。通过采取“级联+压缩后数据”的技术方案,本申请实施例能够降低数据处理中所需要的存储空间,且不会导致额外的需求。
结合第二方面,在第二方面的某些实现方式中,压缩模块,还用于同步完成对第一高位数据组与第一低位数据组的转置处理。
应理解,压缩模块在对第一低位数据组内的每个低位数据进行压缩处理时,还会同步完成对该第一低位数据组内的每个低位数据的转置处理。示例性地,该压缩模块对第一低位数据组内的一个低位数据进行压缩时,同时将该一个低位数据转置过来,然后进行压缩 处理;接着,该压缩模块按照此方式完成对剩余的数据的压缩与转置处理。该方式同样适用于该压缩模块对第一高位数据组的转置与压缩的同步处理。
应理解,该同步完成转置处理,可以理解为:该压缩模块在压缩过程中同时完成转置处理,并非先完成转置处理,而后再完成压缩处理,也并非先完成压缩处理,而后再完成转置处理,而是压缩与转置同时进行。
通过转置与压缩同时进行的方案,本申请实施例能够缩短数据处理的时延,提高实时性的效果,有助于解压缩模块的后级模块在需要对数据先转置再处理时能够直接跳过转置这一环节,从而缩短数据处理的时间,提高数据处理的效率。
结合第二方面,在第二方面的某些实现方式中,解压缩模块,还用于在第二低位数据组与第一码字集合的解压缩过程中,同步完成转置处理。
应理解,解压缩模块在对第二低位数据组内的每个低位数据进行解压缩处理时,还会同步完成对该第二低位数据组内的每个低位数据的转置处理。示例性地,该解压缩模块对第二低位数据组内的一个低位数据进行解压缩时,同时将该一个低位数据转置过来,然后进行解压缩处理;接着,该压缩模块按照此方式完成对剩余的数据的解压缩与转置处理。该方式同样适用于该压缩模块对第一码字集合的转置与解压缩的同步处理。
具体而言,该数据的转置处理也可以是在解压缩处理过程中完成。通过转置与解压缩同时进行的方案,本申请实施例能够缩短数据处理的时延,提高实时性的效果,有助于解压缩模块的后级模块在需要对数据先转置再处理时能够直接跳过转置这一环节,从而缩短数据处理的时间,提高数据处理的效率。
结合第二方面,在第二方面的某些实现方式中,解压缩模块,还用于在第二低位数据组与第一码字集合的解压缩过程中,同步完成转置处理;或者,解压缩模块,还用于在第二低位数据组、第三低位数据组、第一码字集合与第二码字集合的解压缩过程中,同步完成转置处理;或者,解压缩模块,还用于在第三低位数据组与第二码字集合的解压缩过程中,同步完成转置处理。
具体而言,该第一雷达芯片的解压缩模块可以对第二低位数据组与第一码字集合进行“转置+解压缩”的同步进行,也可以对第三低位数据组与第二码字集合进行“转置+解压缩”的同步进行,也可以对第二低位数据组、第三低位数据组、第一码字集合与第二码字集合进行“转置+解压缩”的同步进行,这可以根据具体的场景而决定,本申请实施例对此不做限定。
通过转置与解压缩同时进行的方案,本申请实施例能够缩短数据处理的时延,提高实时性的效果,有助于解压缩模块的后级模块在需要对数据先转置再处理时能够直接跳过转置这一环节,从而缩短数据处理的时间,提高数据处理的效率。
第三方面,提供了一种数据处理的方法,该方法应用于雷达装置,该雷达装置包括接收天线与第一雷达芯片,该第一雷达芯片包括处理模块与压缩模块,该方法包括:处理模块处理该接收天线获取的目标物体的回波信息并输出至少一个数据;压缩模块根据第一数据集合中第一数据的数值,确定第一档位表中的第一档位值,并使用该第一档位值,对该第一数据集合内的每个数据进行压缩处理,获得第二数据集合,该第一档位值大于或等于该第一数据的数值,该第一数据集合包括至少一个数据。
作为一种可能的实现方式,该压缩处理的方式为除法运算。
结合第三方面,在第三方面的某些实现方式中,该第一数据的数值是该第一数据集合内的所有数据的数值中的最大值。
结合第三方面,在第三方面的某些实现方式中,第一档位值是该第一档位表中大于或等于第一数据的数值的档位值中的最小值。
结合第三方面,在第三方面的某些实现方式中,第一数据集合还包括第二雷达芯片的处理模块输出的至少一个数据。
结合第三方面,在第三方面的某些实现方式中,压缩模块,用于基于配置的压缩率,对第二数据集合内的每个数据进行舍入处理。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:压缩模块确定第一档位信息,该第一档位信息用于索引该第一档位值,该第一档位信息属于该第一档位表。
结合第三方面,在第三方面的某些实现方式中,该第一雷达芯片还包括解压缩模块,该方法还包括:解压缩模块获取第二数据集合与第一档位信息,并根据第一档位信息,确定第一档位值,并使用第一档位值,对第二数据集合内的每个数据进行解压缩处理,获得第一数据集合。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:解压缩模块还获取第二雷达芯片的压缩模块输出的第三数据集合与第二档位信息,并根据该第二档位信息,确定第二档位值,并使用该第二档位值,对该第三数据集合内的每个数据进行解压缩处理,其中,第一档位表包括第二档位信息与第二档位值,该第二档位信息用于索引该第二档位值。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:压缩模块同步完成对该第一数据集合内的每个数据的转置处理。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:解压缩模块同步完成对该第二数据集合内的每个数据的转置处理。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:解压缩模块同步完成对该第二数据集合和/或第三数据集合内的每个数据的转置处理。
第四方面,提供了一种数据处理的方法,其应用于雷达装置,该雷达装置包括接收天线与第一雷达芯片,该第一雷达芯片包括处理模块与压缩模块,该方法包括:处理模块处理接收天线获取的目标物体的回波信息并输出至少一个数据;压缩模块确定第一高位数据组与第一低位数据组,第一高位数据组包括第四数据集合内所有数据的高位比特部分,第一低位数据组包括第四数据集合内所有数据的低位比特部分,第四数据集合包括该至少一个数据;压缩模块对第一低位数据组内的每个低位数据进行右移N位比特,获得第二低位数据组,N为正整数;压缩模块根据第一高位数据组内的每个高位数据的数值与码表的映射关系,从码表中确定第一码字集合,第一码字集合包括与每个高位数据的数值对应的多个码字。
结合第四方面,在第四方面的某些实现方式中,第四数据集合还包括第二雷达芯片的处理模块输出的至少一个数据。
结合第四方面,在第四方面的某些实现方式中,该第一雷达芯片还包括解压缩模块,该方法还包括:解压缩模块获取第二低位数据组、N与第一码字集合,并对第二低位数据组内的每个低位数据进行左移N位比特与补零处理,获得第一低位数据组,还用于根据该 多个码字,获取码表中对应的每个高位数据的数值,获得第一高位数据组,并拼接第一高位数据组与第一低位数据组,获得第四数据集合。
结合第四方面,在第四方面的某些实现方式中,该方法还包括:解压缩模块获取第二雷达芯片的压缩模块输出的第二码字集合、第三低位数据组与M,并对第三低位数据组中的每个低位数据进行左移M位比特与补零处理,获得第四低位数据组,并根据第二码字集合,获取码表中对应的高位数据的数值,获得第二高位数据组,并拼接第二高位数据组与第四低位比特数据组。
结合第四方面,在第四方面的某些实现方式中,该方法还包括:压缩模块同步完成对第一高位数据组与第一低位数据组的转置处理。
结合第四方面,在第四方面的某些实现方式中,该方法还包括:解压缩模块在第二低位数据组与第一码字集合的解压缩过程中同步完成转置处理。
结合第四方面,在第四方面的某些实现方式中,该方法还包括:解压缩模块在第二低位数据组与第一码字集合的解压缩过程中同步完成转置处理;或者,解压缩模块在第二低位数据组、第三低位数据组、第一码字集合与第二码字集合的解压缩过程中同步完成转置处理;或者,解压缩模块在第三低位数据组与第二码字集合的解压缩过程中同步完成转置处理。
第五方面,提供了一种芯片系统,包括逻辑电路和通信接口,该通信接口用于接收待处理的数据和/或信息,并将待处理的数据和/或信息传输至该逻辑电路,该逻辑电路用于执行如第三方面至第四方面中任一方面及该方面中任一可能的实现方式所提供的方法。
第六方面,提供了一种计算机可读存储介质,存储有指令,当该指令在计算机上运行时,使得该计算机执行如第三方面至第四方面中任一方面及该方面中任一可能的实现方式所提供的方法。
第七方面,提供了一种计算机程序产品,当计算机程序产品在计算机上运行时,使得该计算机执行如第三方面至第四方面中任一方面及该方面中任一可能的实现方式所提供的方法。
第八方面,提供了一种雷达装置,包括第一方面至第二方面中任一方面及该方面中任一可能的实现方式所提供的雷达芯片,该雷达装置还包括:发射机、接收机、发射天线、接收天线与显示模块。
附图说明
图1是本申请实施例提供的一种应用场景的示意图。
图2是本申请实施例提供的一种压缩粒度的划分示意图。
图3是本申请实施例提供的一种数据处理的方法的示意流程图。
图4是本申请实施例提供的另一种数据处理的方法的示意流程图。
图5是本申请实施例提供的一种雷达芯片的结构示意框图。
图6是本申请实施例提供的另一种雷达芯片的结构示意框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
雷达装置是一种利用电磁波探测目标的电子设备,其工作原理是:发射机通过发射天线把电磁波能量射向空间某一方向,处在此方向上的目标物体反射碰到的电磁波,接收机通过接收天线接收此反射波并进行处理,从而提取有关该目标物体的某些信息(目标物体至雷达装置的距离,距离变化率或径向速度、方位、高度等)。
各种雷达装置的具体用途和结构不尽相同,但基本形式是一致的,均包括:发射机、发射天线、接收机、接收天线、显示器、雷达芯片(用于处理目标回波信息、数据压缩、数据存储等)等。
为了便于描述本申请实施例提供的数据处理方法与雷达芯片,本申请实施例以成像雷达装置为例进行说明,但是该描述方式不能对本申请实施例提供的数据处理的方法与雷达芯片的实际应用范围造成任何的限定。
图1示出了本申请实施例提供的一种应用场景的示意图。在图1所示的示意图中,装置有成像雷达装置的智能车辆在行进的过程中启动成像雷达装置来获取周边信息,例如,车距、车速,以及周边环境等信息。在获取上述信息的过程中,该成像雷达装置会生成大量的数据,这些数据需要得到处理与存储。
应理解,在图1所示的示意图中,该雷达辐射方向可以是前向的,也可以是后向的,本申请实施例不做具体限定。
由前文可知,线性调频体制以及使用MIMO天线获取更为丰富的目标回波信息均会要求较大的雷达芯片的存储空间,这会增加雷达芯片的成本压力,因此需要对所收集到的数据进行高效的压缩处理,以此降低对存储空间的要求,达到降低雷达芯片的成本的目的。
目前,存在一种块浮点(block floating point,BFP)压缩方案,即,对于指定的多个数据中的每个数据均进行右移N位比特,从而丢弃每个数据中的低位比特(比如,末端的N位比特),实现压缩数据的目的。在进行数据的解压缩处理时,则对压缩后的多个数据中的每个数据均进行左移N位比特与补零处理,从而完成数据的解压缩过程。
上述技术方案虽然能够保证压缩前后的每个数据的数据位的总宽度保持一致,但是由于在解压缩的处理过程中,需要对在压缩处理过程中被丢弃的低位比特进行补零处理,这会引入较大的压缩误差和产生较低的压缩率,从而会损失较大的算法性能。
鉴于上述技术问题,本申请实施例提供了一种数据处理的方法,通过该数据处理的方法,本申请实施例能够实现以更高的压缩率来实现数据的压缩,降低雷达芯片存储某类数据时所需的数据存储空间,从而能够大幅降低雷达芯片的成本压力。
下文将结合图2至图4对本申请实施例提供的数据处理的方法进行描述。
图2是本申请实施例提供的一种压缩粒度的划分示意图。具体如图2所示。
应理解,雷达装置的接收天线在获取了目标物体的回波信息之后,便需要由雷达芯片的处理模块对这些回波信息进行一定的处理,该处理可以理解为:雷达芯片的处理模块对这些目标物体的回波信息进行直接的处理,并相应的输出至少一个数据;或者,接收天线获取的目标物体的回波信息经雷达装置的其他模块处理之后,再由雷达芯片的处理模块对其做进一步的处理,并相应的输出至少一个数据。
应理解,雷达芯片的处理模块所输出的至少一个数据可以以压缩粒度的形式被雷达芯片的压缩模块进行压缩处理。该压缩粒度可以理解为:该压缩模块可以一次处理的数据的数量,每一次处理的数据的数量可以不同,也可以相同。
在图2所示的示意图中,每个小方框表示雷达芯片的处理模块对目标物体的回波信息进行处理后所输出的一个数据,且每个数据的数据位宽度均是16位比特,即,这表示每个数据均是由16位比特组成的。
可选地,每个数据的数据位宽度也可以是10位比特、12位比特等,本申请实施例对每个数据的数据位宽度不限定。
其中,在图2所示的示意图中,每个大虚线框表示一种压缩粒度,每个压缩粒度均包括多个数据,这表示雷达芯片的压缩模块一次处理的数据的数量,且不同的压缩粒度可以包括不同数量的数据。
应理解,本申请实施例支持对一次压缩任务所包括的数据量配置多个不同的压缩粒度。例如,本申请实施例支持以data_num_1d(一维数据中的每个数据表示单根天线的回波数据)和data_num_2d(二维数据中的每个数据表示属于每根接收天线)的形式配置一次压缩任务的数据量的1维和2维的数据量。一次压缩任务的数据量为data_num_1d*data_num_2d。
应理解,图2所示的内容仅作为示例性理解,该压缩粒度还存在其他的划分方案,本申请实施例不做具体限定。
应理解,压缩粒度的物理含义可对应于天线维(接收天线)(4天线/8天线/16天线等)、时间维(采样点)(Rang距离,远距、近距)和速度维等。本申请实施例支持压缩粒度可变,且可以根据场景适配不同的算法性能。
需要说明的是,本申请实施例支持在所有待处理的数据中配置多个压缩粒度,且在多个压缩粒度之间支持压缩算法的切换,从而实现对特定区域的数据的高保真或高压缩需求。
为便于描述本申请实施例提供的技术方案,本申请实施例以数据集合的概念来代替压缩粒度这一说法,但二者是等同的概念。
图3是本申请实施例提供的一种数据处理的方法#300的示意图。应理解,该方法#300应用于雷达装置,该雷达装置包括接收天线与第一雷达芯片,该第一雷达芯片包括处理模块与压缩模块。
S310,处理模块处理接收天线获取的目标物体的回波信息并输出至少一个数据。
如上文所述,雷达装置的接收天线在获取了目标物体的回波信息之后,便需要由雷达芯片的处理模块对这些回波信息进行一定的处理,该处理可以理解为:雷达芯片的处理模块对这些目标物体的回波信息进行直接的处理,并相应的输出至少一个数据;或者,接收天线获取的目标物体的回波信息经雷达装置的其他模块处理之后,再由第一雷达芯片的处理模块对其做进一步的处理,并相应地输出至少一个数据。
示例性地,该第一雷达芯片的处理模块可以是傅里叶变换模块(例如,可以是距离维傅里叶变换模块,或者,速度维傅里叶变换模块),也可以是其他的模块或者单元等。该第一雷达芯片的处理模块所输出的数据的类型可以是快时间维数据(例如,处理模块是距离维傅里叶变换模块时,其输出的是快时间维数据),也可以是慢时间维数据(例如,处理模块是速度维傅里叶变换模块时,其输出的是慢时间维数据),或者其他的数据类型。
需要说明的是,本申请实施例不限定第一雷达芯片的处理模块的数量与类别,该第一雷达芯片可以包括多个处理模块,例如,处于压缩模块之前的前级处理模块,处于解压缩 模块之后的后级处理模块,且不同的模块之间可以通过总线(bus)的方式进行数据的调度,在此做统一说明,后文就不再赘述。
S320,压缩模块根据第一数据集合中第一数据的数值,确定第一档位表中的第一档位值,并使用该第一档位值对该第一数据集合内的每个数据进行压缩处理,获得第二数据集合,该第一档位值大于或等于第一数据的数值,该第一数据集合包括该至少一个数据。
应理解,第一数据集合可以理解为前文所述的压缩粒度。第一数据集合所包括的数据的数量可以是以配置的方式确定,或者以其他方式确定。第一数据集合包括第一雷达芯片的处理模块输出的至少一个数据,可以理解为:第一数据集合包括该第一雷达芯片的处理模块所输出的至少一个数据,还可以包括来自其他雷达芯片的处理模块所输出的至少一个数据。
应理解,第一数据可以是第一数据集合中的任意一个数据,因此,第一数据的数值可以是第一数据集合中任意数据的数值,示例性地,第一数据的数值可以是第一数据集合的所有数据的数值中的均值、最低值和最大值等等。
应理解,在本申请实施例中,数据的数值可以是以十进制的形式体现,也可以是以二进制的形式体现,若以十进制的形式体现,则在进行数据压缩的过程中,该雷达芯片需要对其进行十进制到二进制的转换;若以二进制的形式体现时,该雷达芯片可以直接使用该数值进行数据的压缩处理。
应理解,第一数据集合内的每个数据的数值可以为正数,也可以为负数。
应理解,在本申请实施例中,第一档位表的制表过程是以离线方式完成的,并在完成之后将第一档位表保存至第一雷达芯片的压缩模块与解压缩模块之中。需要说明的是,当该雷达装置存在多个雷达芯片时,该第一档位表可以是通用的,即任意一个雷达芯片的压缩模块与解压缩模块均共用第一档位表,如此,便于在雷达芯片之间进行数据互传时,不同的雷达芯片能够进行统一的压缩与解压缩处理。
应理解,本申请实施例支持在制表过程中可以调整第一档位表的档位个数,示例性地,该第一档位表的档位个数最少是1档,最多档位个数可以依据具体场景灵活调整。
在本申请实施例中,第一档位表是多个雷达芯片所通用的,且可以是每个雷达芯片的压缩模块与解压缩模块均包括该第一档位表,也可以是每个雷达芯片均可以访问该第一档位表,如此,多个雷达芯片在对传数据之后,便于对对传后得到的数据进行统一的压缩与解压缩的处理。
作为一种通俗的解释,第一档位表可以理解为一张3*3的表格,共计9个表格,每个表格均有一个数值,例如,有数值1-9,每个数值对应一个表格位置,例如,数值1可以对应表格的1行1列的位置,则该表格中的数值可以简单理解为档位值,该表格中与数值对应的表格位置可以简单理解为档位信息,其中,每个档位信息与每个档位值呈一一对应,且可以通过档位信息索引到对应的档位值。
应理解,第一档位表包括多个档位值以及与该多个档位值对应的档位信息,第一档位值是其中的一个档位值。
应理解,第一雷达芯片的处理模块使用第一档位值对第一数据集合内的每个数据进行压缩处理,该压缩处理的方式可以是:使第一数据集合内的每个数据除以第一档位值,或者,使第一数据集合内的每个数据除以与第一档位值呈倍数关系的一个数值,或者,也可 以是其他的方式,例如进行乘法运算的方式。
可选地,该压缩处理的方式为除法运算。
通过上述方法,本申请实施例通过使用第一档位表中的第一档位值对第一数据集合内的每个数据进行压缩处理,该方式能够获取较高的压缩率,如此,就能够降低该处理模块对雷达装置的接收天线获取的目标回波信息进行处理后所输出的数据所需要的存储空间,从而降低了该雷达芯片的成本。
更具体地说,本申请实施例能够实现以更高的压缩率来实现数据的压缩,降低雷达芯片存储某类数据时所需的存储空间,从而能够降低雷达芯片的成本压力。
作为一种可能的实现方式,第一数据的数值是第一数据集合的所有数据的数值中的最大值。
应理解,第一数据的数值是所有数据的数值中的最大值,可以是指:在第一数据集合内的所有数据的数值的绝对值中,第一数据的数值是最大值;也可以是指:在第一数据集合内的所有数据的数值中,第一数据的数值就是最大值。
具体而言,雷达芯片的压缩模块通过对第一数据集合内的每个数据进行扫描处理,进而确定第一数据的数值。示例性地,若第一数据的数值是第一数据集合内的所有数据的数值中的最大值时,该雷达芯片的压缩模块通过对第一数据集合内的每个数据进行扫描处理,并通过对比各个数据的数值之间的大小,确定符合要求的第一数据的数值。
本申请实施例通过使用第一数据集合中的最大值确定第一档位值,并基于该最大值确定的第一档位值对第一数据集合内的每个数据进行压缩处理,如此,就能够实现获取更高的压缩率,从而更好地节约存储空间,降低雷达芯片的成本。
作为一种可能的实现方式,第一档位值是该第一档位表中大于或等于第一数据的数值的档位值中的最小值。
作为一种可能的实现方式,第一数据集合还包括第二雷达芯片的处理模块输出的至少一个数据。
具体地,第一雷达芯片的压缩模块除了获取该第一雷达芯片的处理模块所输出的数据外,还能获取第二雷达芯片的处理模块输出的数据,并对这两部分的数据进行统一的压缩处理,且对这两部分的数据的压缩方式是相同的,换言之,该第一雷达芯片确定的第一档位值是基于该包括第一雷达芯片的处理模块输出的至少一个数据与第二雷达芯片的处理模块输出的至少一个数据组成的数据集合中的其中一个数据的数值而确定的,因此,该第一档位值适用于该数据集合的压缩处理。
具体而言,第一雷达芯片的压缩模块可以对第一雷达芯片的处理模块输出的至少一个数据与第二雷达芯片的处理模块输出的至少一个数据同时进行压缩处理,如此,本申请实施例能够实现不同雷达芯片之间的数据互传以及对数据的灵活调度,从而获取各种维度、各种来源的数据。
通过“对传+压缩”的处理方式,本申请实施例支持数据的灵活调度及互传,以获取各种维度、各种来源的数据。
作为一种可能的实现方式,该方法还包括:
压缩模块确定第一档位信息,该第一档位信息用于索引第一档位值,第一档位信息属于第一档位表。
应理解,该压缩模块根据第一数据的数值从第一档位表中确定第一档位值时,还确定了第一档位信息,该第一档位信息用于索引第一档位值。
应理解,第一档位表包括至多个档位值和该多个档位值对应的多个档位信息。
还需要说明的是,本申请实施例基于该第一数据的数值确定第一档位表中的第一档位值和第一档位信息的过程可以是直接确定的,也可以是间接确定的,本申请实施例不做具体限定。
通过基于第一数据的数值确定第一档位表中的第一档位值与第一档位信息,本申请实施例能够实现雷达芯片的解压缩模块在解压缩第二数据集合时能够快速的完成解压缩处理。
作为一种可能的实现方式,该压缩模块能够基于配置的压缩率,对第二数据集合内的每个数据进行舍入处理。
通过这样的方式,本申请实施例能够进一步的提高压缩率,进一步地降低雷达芯片的成本压力。
作为一种可能的实现方式,该第一雷达芯片的压缩模块将第一档位信息压缩至第二数据集合。
具体而言,第一雷达芯片的压缩模块确定存储第一档位信息所需的数据位的总宽度,并记为K比特,K为正整数,并将第一档位信息保持至第二数据集合的部分数据中,示例性地,可以使用第二数据集合的K个数据中每个数据的一位低位比特来存储第一档位信息,即,有K位比特用于存储第一档位信息。
应理解,第二数据集合的K个数据可以是居首的K个数据,也可以是末尾的K个数据,也可以是中间的K个数据,本申请实施例对此不做限定。
作为一种可能的实现方式,该压缩模块将第一档位信息存储至内存中。
具体而言,该压缩模块可以单独存储第一档位信息至内存的指定位置之中。
应理解,一个档位信息与一个档位值是关联的,一个档位信息与一个数据集合也是关联的,因此,雷达芯片的解压缩模块在对压缩模块输出的压缩数据进行解压缩处理时,其需要获取压缩后的数据集合与对应的档位信息,该获取可以理解为:当档位信息是被存储在该压缩的数据集合中,则解压缩模块需要先从该压缩的数据集合中的部分数据提取低位比特,并拼接起来获得完整的档位信息,并使用该档位信息确定档位值,对该压缩后的数据进行解压缩处理;当该档位信息是独立存储在单独的内存地址中,则解压缩模块需要先访问该地址并获取该档位信息,并使用该档位信息确定档位值,对该压缩后的数据进行解压缩处理。因此,无论该档位信息是存储在该压缩后的数据集合中还是单独的内存地址中,解压缩模块均需要获取该压缩后的数据集合与对应的档位信息。
作为一种可能的实现方式,该第一雷达芯片还包括解压缩模块,该方法还包括:
解压缩模块获取第二数据集合与第一档位信息,并根据第一档位信息,确定第一档位值,并使用第一档位值,对第二数据集合内的每个数据进行解压缩处理,获得第一数据集合。
具体而言,当第一档位信息是被压缩模块压缩至第二数据集合中时,则解压缩模块需要先获取该第一档位信息,例如,从第二数据集合的部分数据中取出第一档位信息,并使用该第一档位信息确定第一档位表中的第一档位值,并使用该第一档位值对第二数据集合 内的每个数据进行解压缩处理,解压缩处理的方式与压缩处理的方式相反,具体可以参见压缩处理的方式,在此不再赘述。当第一档位信息是单独存储在内存的指定区域时,解压缩模块可以读取该内存的指定区域获取第一档位信息,并使用第一档位信息确定第一档位表中的第一档位值,并使用该第一档位值对第二数据集合内的每个数据进行解压缩处理。
通过上述方式,本申请实施例完成了对压缩数据的解压缩处理。
作为一种可能的实现方式,该方法还包括:
解压缩模块获取第二雷达芯片的压缩模块输出的第三数据集合与第二档位信息,并根据第二档位信息,确定第二档位值,并使用第二档位值,对第三数据集合内的每个数据进行解压缩处理,其中,第一档位表包括第二档位信息与第二档位值,第二档位信息用于索引第二档位值。
需要说明的是,该第二雷达芯片的压缩模块也是用于对该第二雷达芯片的处理模块对接收天线获取的目标回波信息进行处理之后并输出的至少一个数据进行压缩处理。
在本申请实施例中,每个数据集合均对应着一个档位信息,该档位信息是用于确定对应的用于解压缩该数据集合用的档位值,且该档位信息可以是被压缩在该数据集合中,也可以是独立的存储在内存的指定区域,本申请实施例对此不做限定,但应理解,第一雷达芯片的解压缩模块在获取第二雷达芯片的压缩模块输出的第三数据集合时也会同时获取与该第三数据集合对应的第二档位信息,之后,对第三数据集合的解压缩处理与对第二数据集合的解压缩处理是一致的。
通过上述技术方案,本申请实施例能够根据当前数据处理的需求,灵活调度及数据互传,以获取各种维度、各种来源的数据,供该解压缩模块的后级模块使用。通过采取“级联+压缩后数据”的技术方案,本申请实施例能够降低数据处理中所需要的存储空间,且不会导致额外的需求。
作为一种可能的实现方式,该方法还包括:压缩模块同步完成对第一数据集合内的每个数据的转置处理。
应理解,压缩模块在对第一数据集合内的每个数据进行压缩处理时,还会同步完成对该第一数据集合内的每个数据的转置处理。示例性地,该压缩模块对第一数据集合内的一个数据进行压缩时,同时将该一个数据转置过来,然后进行压缩处理;接着,该压缩模块按照此方式完成对剩余的数据的压缩与转置处理。
应理解,该同步完成转置处理,可以理解为:该压缩模块在压缩过程中同时完成转置处理,并非先完成转置处理,而后再完成压缩处理,也并非先完成压缩处理,而后再完成转置处理,而是压缩与转置同时进行。
通过转置与压缩同时进行的方案,本申请实施例能够缩短数据处理的时延,提高实时性的效果,有助于解压缩模块的后级模块在需要对数据先转置再处理时能够直接跳过转置这一环节,从而缩短数据处理的时间,提高数据处理的效率。
作为一种可能的实现方式,该方法还包括:解压缩模块同步完成对第二数据集合内的每个数据的转置处理。
应理解,解压缩模块在对第二数据集合内的每个数据进行解压缩处理时,还会同步完成对该第二数据集合内的每个数据的转置处理。示例性地,解压缩模块对第二数据集合内的一个数据进行解压缩时,同时将该一个数据转置过来,然后进行解压缩处理;接着,解 压缩模块按照此方式完成对剩余的数据的解压缩与转置处理。
应理解,该同步完成转置处理,可以理解为:解压缩模块在解压缩过程中同时完成转置处理,并非先完成转置处理,而后再完成解压缩处理,也并非先完成解压缩处理,而后再完成转置处理,而是解压缩与转置同时进行。
具体而言,该数据的转置处理也可以是在解压缩处理过程中完成。通过转置与解压缩同时进行的方案,本申请实施例能够缩短数据处理的时延,提高实时性的效果,有助于解压缩模块的后级模块在需要对数据先转置再处理时能够直接跳过转置这一环节,从而缩短数据处理的时间,提高数据处理的效率。
作为一种可能的实现方式,该方法还包括:解压缩模块同步完成对第二数据集合和/或第三数据集合内的每个数据的转置处理。
具体而言,该第一雷达芯片的解压缩模块可以对第二数据集合进行“转置+解压缩”的同步进行,也可以对第三数据集合进行“转置+解压缩”的同步进行,也可以对第二数据集合与第三数据集合进行“转置+解压缩”的同步进行,这可以根据具体的场景而决定,本申请实施例对此不做限定。
通过转置与解压缩同时进行的方案,本申请实施例能够缩短数据处理的时延,提高实时性的效果,有助于解压缩模块的后级模块在需要对数据先转置再处理时能够直接跳过转置这一环节,从而缩短数据处理的时间,提高数据处理的效率。
图4是本申请实施例提供的一种数据处理的方法#400的示意图。应理解,该方法#400应用于雷达装置,该雷达装置包括接收天线与第一雷达芯片,该第一雷达芯片包括处理模块与压缩模块。
S410,同S310,在此不再赘述。
S420,压缩模块确定第一高位数据组与第一低位数据组,第一高位数据组包括第四数据集合内所有数据的高位比特部分,第一低位数据组包括所述第四数据集合内所有数据的低位比特部分,第四数据集合包括至少一个数据。
S430,压缩模块对第一低位数据组内的每个低位数据进行右移N位比特,获得第二低位数据组,N为正整数。
S440,压缩模块根据第一高位数据组内的每个高位数据的数值与码表的映射关系,从码表中确定第一码字集合,第一码字集合包括与每个高位数据的数值对应的多个码字。
在步骤S420中,第一雷达芯片的压缩模块会将一个数据集合内的每个数据按照高低位比特进行拆分,分别得到一个高位数据与一个低位数据,换言之,该一个数据可以视为是由一个高位数据与一个低位数据组成,且高位数据包括一个数据的高位比特部分,低位数据包括一个数据的低位比特部分。
示例性地,在本申请实施例中,一个数据的数据位宽度是16比特,则可以将该一个数据的前10位比特视为高位比特部分,将该一个数据的后6位比特视为低位比特部分,并分别存储该高位比特部分与低位比特部分。因此,第一高位数据组包括第四数据集合内所有数据的高位比特部分,第一低位数据组包括第四数据集合内所有数据的低位比特部分,且第四数据集合包括该第一雷达芯片的处理模块输出的至少一个数据。
应理解,第一高位数据组还可以包括来自于第二雷达芯片的处理模块输出的数据的高位比特部分,第一低位数据组还可以包括来自第二雷达芯片的处理模输出的数据的低位比 特部分。
需要说明的是,本申请实施例将前10位比特视为高位比特,将后6位比特视为低位比特,但是本申请实施例还支持其他的划分方式,例如,将前8位比特视为高比特,将后8位比特视为低位比特,本申请实施例不作具体限定。
在步骤S430中,该压缩模块对第一低位数据组内的每个低位数据进行右移N位比特,并获得第二低位数据组,换言之,第二低位数据组与第一低位数据组的差异在于第一低位数据组的每个低位数据的数据位宽度是6位比特,但是第二低位数据组内的每个低位数据的数据位宽度是6-N位比特,如此该第一雷达芯片的压缩模块实现了对第一低位数据组的压缩处理。
在步骤S440中,压缩模块根据第一高位数据组内的每个高位数据的数值去获取该码表中与该数值对应的码字,并从该码表中确定第一码字集合,第一码字集合包括与每个高位数据的数值对应的多个码字。
应理解,该码表包括至少一个码字以及至少一个码字对应的数值。
应理解,本申请实施例使用多档位码表(典型如512/1024档位)完成对第一高位数据组的压缩处理,且该码表的制表过程是以离线方式完成的,并在完成之后将该码表分辨保持之第一雷达芯片的压缩模块与解压缩模块之中。需要说明的是,当该雷达装置存在多个雷达芯片时,该码表可以是通用的,即任意一个雷达芯片的压缩模块与解压缩模块均共用码表,如此,便于在雷达芯片之间进行数据互传时,不同的雷达芯片能够进行统一的压缩与解压缩处理。
在本申请实施例中,码表是多个雷达芯片所通用的,且可以是每个雷达芯片的压缩模块与解压缩模块均包括该吗表,也可以是每个雷达芯片均可以访问该吗表,如此,多个雷达芯片在对传数据之后,便于对对传后得到的数据进行统一的压缩与解压缩的处理。
具体而言,该第一雷达芯片的压缩模块基于该第一高位数据组与码表的映射关系,即,利用第一高位数据组的每个数据的数值与码字之间的映射关系,获得对应的码字,并基于该获得的码字,按照一定的排列顺序组成第一码字集合。
需要说明的是,上述步骤S420和S430可以是同步进行的,也可以是分先后进行的,本申请实施例对此不做具体限定。
通过上述方式,本申请实施例对第四数据集合进行压缩之后输出第二低位数据组与第一码字集合。
需要说明的是,该第一雷达芯片的压缩模块对第一低位数据组中的每个低位数据进行右移的N位比特的N的取值保存在第二低位数据组中,示例性地,可以保存在第二低位数据组中的部分低位数据中,例如,部分低位数据的前几位比特中,也可以是规定的其他固定位置,本申请实施例不做具体限定。
通过上述技术方案中,该第一雷达芯片的压缩模块对第四数据集合内的每个数据按照高位比特与低位比特进行拆分,并分别得到第一高位数据组与第一低位数据组,且对该第一低位数据组按照右移N位比特的方式进行压缩,对第一高位数据组按照与码表的映射关系获得第一码字集合的方式进行压缩,如此,本申请实施例能够获得具有一定压缩率且也具有较高保真率的压缩后的数据,如此,从而能够进一步地降低雷达芯片存储该类型的数据时所需要的存储空间,从而进一步地降低雷达芯片的成本压力。
作为一种可能的实现方式,第四数据集合还包括第二雷达芯片的处理模块输出的至少一个数据。
具体地,第一雷达芯片的压缩模块除了获取该第一雷达芯片的处理模块所输出的数据外,还能获取第二雷达芯片的处理模块输出的数据,并对这两部分的数据进行压缩处理,且对这两部分的数据的压缩方式是相同的。
具体而言,第一雷达芯片的压缩模块可以对第一雷达芯片的处理模块输出的至少一个数据与第二雷达芯片的处理模块输出的至少一个数据同时进行压缩处理,如此,本申请实施例能够实现不同雷达芯片之间的数据互传以及对数据的灵活调度,从而获取各种维度、各种来源的数据。
通过“对传+压缩”的处理方式,本申请实施例支持数据的灵活调度及互传,以获取各种维度、各种来源的数据。
作为一种可能的实现方式,第一雷达芯片还包括解压缩模块,该方法还包括:解压缩模块获取所述第二低位数据组、N与第一码字集合,并对第二低位数据组内的每个低位数据进行左移N位比特与补零处理,获得第一低位数据组,还用于根据该多个码字,获取码表中对应的每个高位数据的数值,获得第一高位数据组,并拼接第一高位数据组与第一低位数据组,获得第四数据集合。
具体而言,解压缩模块在对第二低位数据组进行解压缩处理时,需要获取N的取值,之后对第二低位数据组中的每个低位数据进行左移N位比特和补零处理,更具体地说,通过左移第二低位数据组中的每个低位数据,可以补全该第二低位数据组中的每个低位数据的数据位宽度,但是新补的比特位的比特值为零。通过该方式,解压缩模块对第二低位数据组进行解压缩处理后得到第一低位数据组。另外,解压缩模块基于第一码字集合中的多个码字去获取该码表中对应的数值,进而得到第一高位数据组,最后拼接第一高位数据组与第一低位数据组,得到第四数据集合。
应理解,因为第二低位数据组包括N的取值信息,因此解压缩模块仅需要从第二低位数据组中获取N的取值信息即可。
通过上述方式,本申请实施例能够完成对压缩数据的解压缩处理。
作为一种可能的实现方式,所述方法还包括:解压缩模块获取第二雷达芯片的压缩模块输出的第二码字集合、第三低位数据组与M,并对第三低位数据组中的每个低位数据进行左移M位比特与补零处理,获得第四低位数据组,还用于根据第二码字集合,获取码表中对应的高位数据的数值,获得第二高位数据组,并拼接第二高位数据组与第四低位比特数据组。
需要说明的是,该第二雷达芯片的压缩模块也是用于对该第二雷达芯片的处理模块对接收天线获取的目标回波信息进行处理之后并输出的至少一个数据进行压缩处理。
在本申请实施例中,第一雷达芯片的解压缩模块在获取第二雷达芯片的压缩模块输出的第三低位数据组与第二码字集合时,也会同时获取与该第三低位数据组对应的M的取值信息,之后,对第三低位数据组与第二码字集合的解压缩处理方式与对第二低位数据组与第一码字集合的解压缩处理方式是一致的。
通过上述技术方案,本申请实施例能够根据当前数据处理的需求,灵活调度及数据互传,以获取各种维度、各种来源的数据,供该解压缩模块的后级模块使用。通过采取“级 联+压缩后数据”的技术方案,本申请实施例能够降低数据处理中所需要的存储空间,且不会导致额外的需求。
作为一种可能的实现方式,该方法还包括:压缩模块同步完成对第一高位数据组与第一低位数据组的转置处理。
应理解,压缩模块在对第一低位数据组内的每个低位数据进行压缩处理时,还会同步完成对该第一低位数据组内的每个低位数据的转置处理。示例性地,该压缩模块对第一低位数据组内的一个低位数据进行压缩时,同时将该一个低位数据转置过来,然后进行压缩处理;接着,该压缩模块按照此方式完成对剩余的数据的压缩与转置处理。该方式同样适用于该压缩模块对第一高位数据组的转置与压缩的同步处理。
应理解,该同步完成转置处理,可以理解为:该压缩模块在压缩过程中同时完成转置处理,并非先完成转置处理,而后再完成压缩处理,也并非先完成压缩处理,而后再完成转置处理,而是压缩与转置同时进行。
通过转置与压缩同时进行的方案,本申请实施例能够缩短数据处理的时延,提高实时性的效果,有助于解压缩模块的后级模块在需要对数据先转置再处理时能够直接跳过转置这一环节,从而缩短数据处理的时间,提高数据处理的效率。
作为一种可能的实现方式,该方法还包括:解压缩模块在第二低位数据组与第一码字集合的解压缩过程中,同步完成转置处理。
应理解,解压缩模块在对第二低位数据组内的每个低位数据进行解压缩处理时,还会同步完成对该第二低位数据组内的每个低位数据的转置处理。示例性地,该解压缩模块对第二低位数据组内的一个低位数据进行解压缩时,同时将该一个低位数据转置过来,然后进行解压缩处理;接着,该压缩模块按照此方式完成对剩余的数据的解压缩与转置处理。该方式同样适用于该压缩模块对第一码字集合的转置与解压缩的同步处理。
具体而言,该数据的转置处理也可以是在解压缩处理过程中完成。通过转置与解压缩同时进行的方案,本申请实施例能够缩短数据处理的时延,提高实时性的效果,有助于解压缩模块的后级模块在需要对数据先转置再处理时能够直接跳过转置这一环节,从而缩短数据处理的时间,提高数据处理的效率。
作为一种可能的实现方式,该方法还包括:解压缩模块在第二低位数据组与第一码字集合的解压缩过程中,同步完成转置处理;或者,解压缩模块在第二低位数据组、第三低位数据组、第一码字集合与第二码字集合的解压缩过程中,同步完成转置处理;或者,解压缩模块在第三低位数据组与第二码字集合的解压缩过程中,同步完成转置处理。
具体而言,该第一雷达芯片的解压缩模块可以对第二低位数据组与第一码字集合进行“转置+解压缩”的同步进行,也可以对第三低位数据组与第二码字集合进行“转置+解压缩”的同步进行,也可以对第二低位数据组、第三低位数据组、第一码字集合与第二码字集合进行“转置+解压缩”的同步进行,这可以根据具体的场景而决定,本申请实施例对此不做限定。
通过转置与解压缩同时进行的方案,本申请实施例能够缩短数据处理的时延,提高实时性的效果,有助于解压缩模块的后级模块在需要对数据先转置再处理时能够直接跳过转置这一环节,从而缩短数据处理的时间,提高数据处理的效率。
下文将结合附图5和图6对本申请实施例提供的雷达芯片进行描述。
图5是本申请实施例的一种雷达芯片的结构示意框图。该雷达芯片#500包括处理模块#510和压缩模块#520。
处理模块#510,用于执行前述方法#300实施例中的处理雷达装置的接收天线获取的目标物体的回波信息并输出至少一个数据。
压缩模块#520,用于执行前述方法#300实施例中的对处理模输出的至少一个数据进行压缩处理。
应理解,上述的内容仅作为一种示例性性描述,该处理模块#510与压缩模块#520还用于执行前述方法实施例中其他的步骤或者方法,在此不再赘述。
可选地,该雷达芯片#500还可以包括解压缩模块,解压缩模块用于执行前述方法实施例中涉及数据的解压缩操作的方式。
可选地,该雷达芯片#500还可以包括存储模块,存储模块用于存储该压缩模块输出的压缩数据。
应理解,在本申请实施例中,雷达芯片可以包括多个处理模块,例如,第一处理模块,第二处理模块等等,且前述方法实施例所述的处理模块可以是该压缩模块的前级模块(例如是第一处理模块)该压缩模块用于对该前级模块的输出数据进行压缩处理,并将该压缩数据存储至存储模块中。解压缩模块的后级模块可以是第二处理模块,其用于处理解压缩模块的输出的解压缩数据。
应理解,在本申请实施例中,雷达芯片的压缩模块可以单独挂载在总线上,支持将不同处理模块的输出数据通过总线调度到压缩模块内进行压缩。同理,该雷达芯片的解压缩模块也可以单独挂载在总线上,支架通过总线将压缩后的数据通过总线调度到解压缩模块内进行解压缩。
应理解,各模块执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
图6是本申请实施例的另一种雷达芯片的结构示意框图。该雷达芯片#600包括处理模块#610和压缩模块#620。
处理模块#610,用于执行前述方法#400实施例中的处理雷达装置的接收天线获取的目标物体的回波信息并输出至少一个数据。
压缩模块#620,用于执行前述方法#400实施例中的对处理模输出的至少一个数据进行压缩处理。
应理解,上述的内容仅作为一种示例性性描述,该处理模块#610与压缩模块#620还用于执行前述方法实施例中其他的步骤或者方法,在此不再赘述。
可选地,该雷达芯片#600还可以包括解压缩模块,解压缩模块用于执行前述方法实施例中涉及数据的解压缩操作的方式。
可选地,该雷达芯片#600还可以包括存储模块,存储模块用于存储该压缩模块输出的压缩数据。
应理解,在本申请实施例中,雷达芯片可以包括多个处理模块,例如,第一处理模块,第二处理模块等等,且前述方法实施例所述的处理模块可以是该压缩模块的前级模块(例如是第一处理模块)该压缩模块用于对该前级模块的输出数据进行压缩处理,并将该压缩数据存储至存储模块中。解压缩模块的后级模块可以是第二处理模块,其用于处理解压缩 模块的输出的解压缩数据。
应理解,在本申请实施例中,雷达芯片的压缩模块可以单独挂载在总线上,支持将不同处理模块的输出数据通过总线调度到压缩模块内进行压缩。同理,该雷达芯片的解压缩模块也可以单独挂载在总线上,支架通过总线将压缩后的数据通过总线调度到解压缩模块内进行解压缩。
应理解,各模块执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由雷达芯片#500执行的方法。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由雷达芯片#500执行的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被计算机执行时使得该计算机实现上述方法实施例中由雷达芯片#600执行的方法。
本申请实施例还提供一种芯片系统,包括逻辑电路和通信接口,通信接口用于接收待处理的数据和/或信息,并将待处理的数据和/或信息传输至逻辑电路;逻辑电路用于执行前述方法实施例中的数据处理方法。
本申请实施例还提供一种雷达装置,该雷达装置包括前述的任一项雷达芯片,该雷达装置还包括:发射机、接收机、发射天线、接收天线与显示模块。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间 接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
在本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (36)

  1. 一种雷达芯片,其特征在于,所述雷达芯片应用于雷达装置,所述雷达装置还包括接收天线,所述雷达芯片包括:
    处理模块,用于处理所述接收天线获取的目标物体的回波信息并输出至少一个数据;
    压缩模块,用于根据第一数据集合中第一数据的数值,确定第一档位表中的第一档位值,并使用所述第一档位值,对所述第一数据集合内的每个数据进行压缩处理,获得第二数据集合,所述第一档位值大于或等于所述第一数据的数值,所述第一数据集合包括所述至少一个数据。
  2. 根据权利要求1所述的雷达芯片,其特征在于,所述第一数据的数值是所述第一数据集合内的所有数据的数值中的最大值。
  3. 根据权利要求1或2所述的雷达芯片,其特征在于,所述第一档位值是所述第一档位表中大于或等于所述第一数据的数值的档位值中的最小值。
  4. 根据权利要求1至3中任一项所述的雷达芯片,其特征在于,所述第一数据集合还包括第二雷达芯片的处理模块输出的至少一个数据。
  5. 根据权利要求1至4中任一项所述的雷达芯片,其特征在于,所述压缩模块,还用于确定第一档位信息,所述第一档位信息用于索引所述第一档位值,所述第一档位信息属于所述第一档位表。
  6. 根据权利要求5所述的雷达芯片,其特征在于,所述雷达芯片还包括:
    解压缩模块,用于获取所述第二数据集合与所述第一档位信息,并根据所述第一档位信息,确定所述第一档位值,并使用所述第一档位值,对所述第二数据集合内的每个数据进行解压缩处理,获得所述第一数据集合。
  7. 根据权利要求6所述的雷达芯片,其特征在于,
    所述解压缩模块,还用于获取第二雷达芯片的压缩模块输出的第三数据集合与第二档位信息,并根据所述第二档位信息,确定第二档位值,并使用所述第二档位值,对所述第三数据集合内的每个数据进行解压缩处理,
    其中,所述第一档位表包括所述第二档位信息与所述第二档位值,所述第二档位信息用于索引所述第二档位值。
  8. 根据权利要求1至7中任一项所述的雷达芯片,其特征在于,所述压缩模块,还用于同步完成对所述第一数据集合内的每个数据的转置处理。
  9. 根据权利要求6所述的雷达芯片,其特征在于,所述解压缩模块,还用于同步完成对所述第二数据集合内的每个数据的转置处理。
  10. 根据权利要求7所述的雷达芯片,其特征在于,所述解压缩模块,还用于同步完成对所述第二数据集合和/或所述第三数据集合内的每个数据的转置处理。
  11. 一种雷达芯片,其特征在于,所述雷达芯片应用于雷达装置,所述雷达装置还包括接收天线,所述雷达芯片包括:
    处理模块,用于处理所述接收天线获取的目标物体的回波信息并输出至少一个数据;
    压缩模块,用于确定第一高位数据组与第一低位数据组,所述第一高位数据组包括第 四数据集合内所有数据的高位比特部分,所述第一低位数据组包括所述第四数据集合内所有数据的低位比特部分,所述第四数据集合包括所述至少一个数据;
    所述压缩模块,用于对所述第一低位数据组内的每个低位数据进行右移N位比特,获得第二低位数据组,所述N为正整数;
    所述压缩模块,还用于根据所述第一高位数据组内的每个高位数据的数值与码表的映射关系,从所述码表中确定第一码字集合,所述第一码字集合包括与所述每个高位数据的数值对应的多个码字。
  12. 根据权利要求11所述的雷达芯片,其特征在于,所述第四数据集合还包括第二雷达芯片的处理模块输出的至少一个数据。
  13. 根据权利要求11或12所述的雷达芯片,其特征在于,所述雷达芯片还包括:
    解压缩模块,用于获取所述第二低位数据组、所述N与所述第一码字集合,并对所述第二低位数据组内的每个低位数据进行左移所述N位比特与补零处理,获得所述第一低位数据组,还用于根据所述多个码字,获取所述码表中对应的所述每个高位数据的数值,获得所述第一高位数据组,并拼接所述第一高位数据组与所述第一低位数据组,获得所述第四数据集合。
  14. 根据权利要求13所述的雷达芯片,其特征在于,
    所述解压缩模块,还用于获取第二雷达芯片的压缩模块输出的第二码字集合、第三低位数据组与M,并对所述第三低位数据组中的每个低位数据进行左移所述M位比特与补零处理,获得第四低位数据组,还用于根据所述第二码字集合,获取所述码表中对应的高位数据的数值,获得第二高位数据组,并拼接所述第二高位数据组与所述第四低位比特数据组。
  15. 根据权利要求11至14中任一项所述的雷达芯片,其特征在于,
    所述压缩模块,还用于同步完成对所述第一高位数据组与所述第一低位数据组的转置处理。
  16. 根据权利要求13所述的雷达芯片,其特征在于,
    所述解压缩模块,还用于在所述第二低位数据组与所述第一码字集合的解压缩过程中,同步完成转置处理。
  17. 根据权利要求14所述的雷达芯片,其特征在于,
    所述解压缩模块,还用于在所述第二低位数据组与所述第一码字集合的解压缩过程中,同步完成转置处理;或者,
    所述解压缩模块,还用于在所述第二低位数据组、所述第三低位数据组、所述第一码字集合与所述第二码字集合的解压缩过程中,同步完成转置处理;或者,
    所述解压缩模块,还用于在所述第三低位数据组与所述第二码字集合的解压缩过程中,同步完成转置处理。
  18. 一种数据处理的方法,其特征在于,所述方法应用于雷达装置,所述雷达装置包括接收天线与第一雷达芯片,所述第一雷达芯片包括处理模块与压缩模块,所述方法包括:
    所述处理模块处理所述接收天线获取的目标物体的回波信息并输出至少一个数据;
    所述压缩模块根据第一数据集合中第一数据的数值,确定第一档位表中的第一档位值,并使用所述第一档位值,对所述第一数据集合内的每个数据进行压缩处理,获得第二 数据集合,所述第一档位值大于或等于所述第一数据的数值,所述第一数据集合包括所述至少一个数据。
  19. 根据权利要求17所述的方法,其特征在于,所述第一数据的数值是所述第一数据集合内的所有数据的数值中的最大值。
  20. 根据权利要求18或19所述的方法,其特征在于,所述第一档位值是所述第一档位表中大于或等于所述第一数据的数值的档位值中的最小值。
  21. 根据权利要求18至20中任一项所述的方法,其特征在于,所述第一数据集合还包括第二雷达芯片的处理模块输出的至少一个数据。
  22. 根据权利要求18至21中任一项所述的方法,其特征在于,所述方法还包括:
    所述压缩模块确定第一档位信息,所述第一档位信息用于索引所述第一档位值,所述第一档位信息属于所述第一档位表。
  23. 根据权利要求22所述的方法,其特征在于,所述第一雷达芯片还包括解压缩模块,所述方法还包括:
    所述解压缩模块获取所述第二数据集合与所述第一档位信息,并根据所述第一档位信息,确定所述第一档位值,并使用所述第一档位值,对所述第二数据集合内的每个数据进行解压缩处理,获得所述第一数据集合。
  24. 根据权利要求23所述的方法,其特征在于,所述方法还包括:
    所述解压缩模块获取第二雷达芯片的压缩模块输出的第三数据集合与第二档位信息,并根据所述第二档位信息,确定第二档位值,并使用所述第二档位值,对所述第三数据集合内的每个数据进行解压缩处理,
    其中,所述第一档位表包括所述第二档位信息与所述第二档位值,所述第二档位信息用于索引所述第二档位值。
  25. 根据权利要求18至24中任一项所述的方法,其特征在于,所述方法还包括:
    所述压缩模块同步完成对所述第一数据集合内的每个数据的转置处理。
  26. 根据权利要求23所述的方法,其特征在于,所述方法还包括:
    所述解压缩模块同步完成对所述第二数据集合内的每个数据的转置处理。
  27. 根据权利要求24所述的方法,其特征在于,所述方法还包括:
    所述解压缩模块同步完成对所述第二数据集合和/或所述第三数据集合内的每个数据的转置处理。
  28. 一种数据处理的方法,其特征在于,所述方法应用于雷达装置,所述雷达装置包括接收天线与第一雷达芯片,所述第一雷达芯片包括处理模块与压缩模块,所述方法包括:
    所述处理模块处理所述接收天线获取的目标物体的回波信息并输出至少一个数据;
    所述压缩模块确定第一高位数据组与第一低位数据组,所述第一高位数据组包括第四数据集合内所有数据的高位比特部分,所述第一低位数据组包括所述第四数据集合内所有数据的低位比特部分,所述第四数据集合包括所述至少一个数据;
    所述压缩模块对所述第一低位数据组内的每个低位数据进行右移N位比特,获得第二低位数据组,所述N为正整数;
    所述压缩模块根据所述第一高位数据组内的每个高位数据的数值与码表的映射关系,从所述码表中确定第一码字集合,所述第一码字集合包括与所述每个高位数据的数值对应 的多个码字。
  29. 根据权利要求28所述的方法,其特征在于,所述第四数据集合还包括第二雷达芯片的处理模块输出的至少一个数据。
  30. 根据权利要求28或29所述的方法,其特征在于,所述第一雷达芯片还包括解压缩模块,所述方法还包括:
    所述解压缩模块获取所述第二低位数据组、所述N与所述第一码字集合,并对所述第二低位数据组内的每个低位数据进行左移所述N位比特与补零处理,获得所述第一低位数据组,还用于根据所述多个码字,获取所述码表中对应的所述每个高位数据的数值,获得所述第一高位数据组,并拼接所述第一高位数据组与所述第一低位数据组,获得所述第四数据集合。
  31. 根据权利要求30所述的方法,其特征在于,所述方法还包括:
    所述解压缩模块获取第二雷达芯片的压缩模块输出的第二码字集合、第三低位数据组与M,并对所述第三低位数据组中的每个低位数据进行左移所述M位比特与补零处理,获得第四低位数据组,还用于根据所述第二码字集合,获取所述码表中对应的高位数据的数值,获得第二高位数据组,并拼接所述第二高位数据组与所述第四低位比特数据组。
  32. 根据权利要求28至30中任一项所述的方法,其特征在,所述方法还包括:
    所述压缩模块同步完成对所述第一高位数据组与所述第一低位数据组的转置处理。
  33. 根据权利要求30所述的方法,其特征在于,所述方法还包括:
    所述解压缩模块在所述第二低位数据组与所述第一码字集合的解压缩过程中,同步完成转置处理。
  34. 根据权利要求31所述的方法,其特征在于,所述方法还包括:
    所述解压缩模块在所述第二低位数据组与所述第一码字集合的解压缩过程中,同步完成转置处理;或者,
    所述解压缩模块在所述第二低位数据组、所述第三低位数据组、所述第一码字集合与所述第二码字集合的解压缩过程中,同步完成转置处理;或者,
    所述解压缩模块在所述第三低位数据组与所述第二码字集合的解压缩过程中,同步完成转置处理。
  35. 一种雷达装置,其特征在于,所述雷达装置包括权利要求1至17中任一项所述的雷达芯片,所述雷达装置还包括:
    发射机、接收机、发射天线、接收天线与显示模块。
  36. 一种芯片系统,其特征在于,包括逻辑电路和通信接口,
    所述通信接口用于接收待处理的数据和/或信息,并将所述待处理的数据和/或信息传输至所述逻辑电路;
    所述逻辑电路用于执行如权利要求18至34中任一项所述的方法。
PCT/CN2021/127116 2021-10-28 2021-10-28 数据处理的方法与雷达芯片 WO2023070455A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/127116 WO2023070455A1 (zh) 2021-10-28 2021-10-28 数据处理的方法与雷达芯片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/127116 WO2023070455A1 (zh) 2021-10-28 2021-10-28 数据处理的方法与雷达芯片

Publications (1)

Publication Number Publication Date
WO2023070455A1 true WO2023070455A1 (zh) 2023-05-04

Family

ID=86160382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127116 WO2023070455A1 (zh) 2021-10-28 2021-10-28 数据处理的方法与雷达芯片

Country Status (1)

Country Link
WO (1) WO2023070455A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000244744A (ja) * 1998-12-21 2000-09-08 Nikon Corp 画像データ圧縮方法及び画像データ管理方法
US20070160287A1 (en) * 2005-12-26 2007-07-12 Fujifilm Corporation Data compression apparatus and data compression program storage medium
CN107923971A (zh) * 2015-08-19 2018-04-17 德克萨斯仪器股份有限公司 用于压缩雷达信号的方法和系统
CN109600618A (zh) * 2018-12-19 2019-04-09 上海数迹智能科技有限公司 视频压缩方法、解压缩方法、装置、终端和介质
CN112671412A (zh) * 2020-12-24 2021-04-16 北京海兰信数据科技股份有限公司 一种雷达回波数据压缩方法及装置
US20210208236A1 (en) * 2020-01-03 2021-07-08 Qualcomm Incorporated Techniques for radar data compression

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000244744A (ja) * 1998-12-21 2000-09-08 Nikon Corp 画像データ圧縮方法及び画像データ管理方法
US20070160287A1 (en) * 2005-12-26 2007-07-12 Fujifilm Corporation Data compression apparatus and data compression program storage medium
CN107923971A (zh) * 2015-08-19 2018-04-17 德克萨斯仪器股份有限公司 用于压缩雷达信号的方法和系统
CN109600618A (zh) * 2018-12-19 2019-04-09 上海数迹智能科技有限公司 视频压缩方法、解压缩方法、装置、终端和介质
US20210208236A1 (en) * 2020-01-03 2021-07-08 Qualcomm Incorporated Techniques for radar data compression
CN112671412A (zh) * 2020-12-24 2021-04-16 北京海兰信数据科技股份有限公司 一种雷达回波数据压缩方法及装置

Similar Documents

Publication Publication Date Title
CN108229645B (zh) 卷积加速和计算处理方法、装置、电子设备及存储介质
JP7379546B2 (ja) レーダー信号の圧縮のための方法及びシステム
US10866306B2 (en) Increasing performance of a receive pipeline of a radar with memory optimization
US9104473B2 (en) Conversion and compression of floating-point and integer data
Bartík et al. LZ4 compression algorithm on FPGA
EP3640863B1 (en) Computation device and method
US20140167987A1 (en) Systems and methods for data compression and parallel, pipelined decompression
US20130262538A1 (en) Data compression for direct memory access transfers
CN110488228B (zh) 线性调频信号生成方法、装置及存储介质
US9727531B2 (en) Fast fourier transform circuit, fast fourier transform processing method, and program recording medium
US20230385369A1 (en) Fft engine having combined bit-reversal and memory transpose operations
WO2023070455A1 (zh) 数据处理的方法与雷达芯片
US20240137043A1 (en) Data compression method and apparatus, and data decompression method and apparatus
US11454697B2 (en) Increasing performance of a receive pipeline of a radar with memory optimization
US20230342419A1 (en) Matrix calculation apparatus, method, system, circuit, and device, and chip
CN114764615A (zh) 卷积运算的实现方法、数据处理方法及装置
Reddy et al. Computing the Discrete Fourier Transform of signals with spectral frequency support
Risojević et al. A simple pipelined squaring circuit for DSP
US9805000B1 (en) Method and apparatus for reordering mixed radix fast Fourier transform outputs
US20240184521A1 (en) Computation apparatus, method, system, circuit, and device, and chip
EP4379541A1 (en) Computing apparatus, method and system, and circuit, chip and device
CN112083875B (zh) 用于在存储系统中减少读取端口并加速解压缩的方法
Huang et al. A 13 bits 4.096 GHz 45 nm CMOS digital decimation filter chain using Carry-Save format numbers
WO2019191904A1 (zh) 一种数据处理方法及装置
US8732224B1 (en) Method and apparatus for implementation of high order MASH by reuse of single stage MASH

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961821

Country of ref document: EP

Kind code of ref document: A1