WO2023068828A1 - 산화철 자성 입자를 포함하는 간암 치료용 조성물의 제조방법 및 산화철 자성 입자를 포함하는 간암 치료용 조성물 - Google Patents

산화철 자성 입자를 포함하는 간암 치료용 조성물의 제조방법 및 산화철 자성 입자를 포함하는 간암 치료용 조성물 Download PDF

Info

Publication number
WO2023068828A1
WO2023068828A1 PCT/KR2022/016001 KR2022016001W WO2023068828A1 WO 2023068828 A1 WO2023068828 A1 WO 2023068828A1 KR 2022016001 W KR2022016001 W KR 2022016001W WO 2023068828 A1 WO2023068828 A1 WO 2023068828A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron oxide
group
magnetic particles
oxide magnetic
iron
Prior art date
Application number
PCT/KR2022/016001
Other languages
English (en)
French (fr)
Inventor
장형석
이윤식
류지영
이형석
박용선
Original Assignee
주식회사 지티아이바이오사이언스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210140933A external-priority patent/KR20230057010A/ko
Priority claimed from KR1020210140936A external-priority patent/KR20230057011A/ko
Application filed by 주식회사 지티아이바이오사이언스 filed Critical 주식회사 지티아이바이오사이언스
Publication of WO2023068828A1 publication Critical patent/WO2023068828A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/12Carboxylic acids; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/22Heterocyclic compounds, e.g. ascorbic acid, tocopherol or pyrrolidones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/12Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Abstract

본 발명은 산화철 자성 입자를 포함하는 조성물을 제조하는 방법 및 산화철 자성 입자를 포함하는 조성물에 관한 것으로서, 상기 제조방법에 의해 제조된 조성물은 간세포 특이적으로 전달되어 다른 장기의 손상을 최소화할 수 있고, 몇 주 이내에 체내에서 배설되어 안전하다. 또한, 우수한 간세포 표적성을 가지므로, 간암 치료 및 간세포 표적 전달체로 이용될 수 있다.

Description

산화철 자성 입자를 포함하는 간암 치료용 조성물의 제조방법 및 산화철 자성 입자를 포함하는 간암 치료용 조성물
본 발명은 산화철 자성 입자를 포함하는 조성물을 제조하는 방법 및 산화철 자성 입자를 포함하는 간암 치료용 조성물에 관한 것으로서, 상기 제조방법에 의해 제조된 조성물은 간세포 특이적으로 전달되어 간암 치료 및 간세포 표적 전달체로 이용될 수 있다.
자성 입자는 세포 표지, 자기공명영상(magnetic resonance imaging, MRI), 약물 전달, 발열요법을 포함하는 생체의학 분야에서 널리 이용되어 왔다. 다양한 종류의 자성 입자 중에서 초상자성 산화철 자성 입자는 높은 자성 감수율과 초상자성 때문에, 생체의약 분야에서 폭넓게 연구되어 왔다. 또한, 자성 입자는 방사선 또는 자기장을 가하게 되면 열을 발생시키는 특징을 가지므로, 자기공명영상장치(MRI)의 조영제나, 나노메디슨 분야에서의 약물 전달을 위한 자기 캐리어(magnetic carrier), 자기 또는 방사선 기반 온열 치료 등에 사용될 수도 있다.
온열 치료용 자성 입자로 산화철 자성 입자가 주로 사용된다. 산화철 자성 입자는 사용되는 운동량만큼의 에너지가 열로써 전환되어 방출되는 간접 밴드갭(indirect band gap)을 갖는 물질이기 때문이다. 그 중 Fe3O4 (마그네타이트) 또는 α-Fe2O3 (페라이트)계 자성 입자는 생체적합성, 열 유도능력, 화학적 안정성 및 특유의 자기적 특성을 가지고 있다. 이러한 특성 때문에 산화철 자성 입자의 온열 치료를 위한 자기 발열체로서 연구가 현재 활발히 진행되고 있으며, 미국 FDA에서 의료용으로 승인된 바도 있다. 그런데, 산화철 자성 입자 중, Fe3O4 입자는 나노 사이즈로서 그 결정상이 주변 환경의 조건에 따라 α-Fe2O3, γ-Fe3O4등으로 쉽게 변하고, 이에 따라 발열 특성과 그 자기적 특성이 변하여 열 생성 능력이 감소한다는 단점이 있다. 다른 물질로서는 Co, Ni, Mg 계열의 MFe2O4(M=Co,Ni,Mg) 나노입자에 대한 연구가 진행되고 있으나, 이 역시 낮은 발열 온도로 인해 생체 내부에 적용이 어렵다는 단점이 있다.
한편, 간암은 간세포에서 기원하는 악성 종양으로 세계적으로 발병률이 높은 암 가운데 하나이다. 우리나라의 경우 암 발생률에 있어 다섯번째로 높지만 사망률은 폐암에 이어 두번째로 높은 수치를 기록하여, OECD 국가 중 가장 높은 간암 사망률을 보인다.
현재 임상적으로 사용되는 대표적인 간암 치료제로는 바이엘의 넥사바, 에자이의 렌비마, 바이엘의 스티바가(Stivarga), 엑셀릭시스의 카보텍스(Cabometyx), 릴리의 사이람사(Cyramza) 등의 표적 치료제가 있다. 2005년에서 2018년 사이에, 바이엘의 넥사바가 1차 치료법으로서 승인된 유일한 표적 치료제였으나, 2018년에 승인된 에자이의 렌비마가 현재 표적 치료제로서 가장 효율이 높다고 알려져 있다.
하지만 간암은 약물에 대한 내성이 발생할 비율이 높고, 특히 절제나 색전술, 표적치료제를 사용하여 치료한 경우 재발률이 높은 편이며 반응률 또한 높지 않아 평균 생존률이 낮은 암종으로 분류된다. 또한 간암은 환자 대부분이 간경변증(80~90%)을 동반하여기 때문에, 암부위를 완전히 제거하기 어렵다. 또한 다발성으로 발생하고 조기 혈관을 침범하는 경우가 많아 단일요법으로 치료가 어렵고, 약물에 대한 높은 내성율이 높으며, 5년 내 재발할 확률이 90% 이상으로서 재발 및 전이 빈도 또한 높다. 간암을 치료하는 방법으로서 1차적으로 절제술을 시행하나, 절제술이 불가능한 경우 간동맥화학색전술(TACE)을 대표적인 치료법으로 사용되고 있다. TACE 시술은 간 종양에 영양을 공급하는 동맥을 찾아 항암제를 투여한 후 이를 차단하는 비수술적 간암 치료법으로, 대표적으로 리피오돌을 이용한 간 색전술이 임상적으로 가장 빈번하게 응용되어 왔으나, 시술 후 수상에 녹아 있는 항암제가 간암 부위에 축적되지 못하고 급속히 전신혈로 빠져나가 충분한 항암 효과를 얻지 못하는 문제점이 있다.
기존 FDA를 포함한 인증기관에서 승인받은 방사성 의약품(예를 들어, BEXXAR®/Tositumomab)의 경우 유기 리간드에 화학적으로 결합되어 있는 방사성 동위원소가 체내에서 분리되는 문제로 인해 갑상선 기능 파괴와 같은 부작용이 발생할 위험이 있어, 치료제로 사용하기에 문제점이 있다. 반면, 자성물질인 산화철의 경우 표면의 고유한 특성과 입자 크기 분포의 불균형 등으로 인해 신체 기관 내 축적율이 높고 배출이 잘 되지 않아 체내에서 독성을 유발하는 문제점이 있다.
[선행기술문헌]
[특허문헌]
한국등록특허공보 제10-2175448호
[비특허문헌]
Wust et al. Lancet Oncology, 2002, 3:487-497.
일 양상은 탄소수 4 내지 25의 지방족 탄화수소산염 및 아민계 화합물로 이루어진 군에서 선택되는 1종 이상의 화합물과 철의 복합체로부터 유래된 산화철을 포함하는 산화철 코어를 준비하는 단계;
상기 산화철 코어에 MAn을 혼합하고 가열하여 상기 산화철 코어에 MAn을 도입하는 단계; 및
상기 MAn이 도입된 산화철 코어에 BnX을 혼합하고 반응시켜 MXn을 형성하는 단계를 포함하고,
상기 M은 Cu, Sn, Pb, Mn, Ir, Pt, Rh, Re, Ag, Au, Pd 및 Os로 이루어진 군에서 선택되는 것이고,
상기 A 및 X는 각각 독립적으로 F, Cl, Br 및 I로 이루어진 군에서 선택되는 것이고,
상기 B는 Li, Na, 및 K로 이루어진 군에서 선택되는 것이고,
상기 n은 1 내지 6의 정수인 것이고,
상기 MXn을 형성하는 단계에서 친수성 리간드 및 폴산(folate), 글리시레티닉산(glycyrrhetinic acid), 및 글루코스(Glucose)로 이루어진 군에서 선택된 하나 이상을 추가로 혼합하는 것인 산화철 자성 입자의 제조방법을 제공한다.
다른 양상은 탄소수 4 내지 25의 지방족 탄화수소산염 및 아민계 화합물로 이루어진 군에서 선택되는 1종 이상의 화합물과 철의 복합체로부터 유래된 산화철을 포함하는 코어; MXn; 및 폴산(folate), 글리시레티닉산(glycyrrhetinic acid), 및 글루코스(Glucose)로 이루어진 군에서 선택된 하나 이상을 포함하는 산화철 자성 입자를 포함하고, 상기 M은 Cu, Sn, Pb, Mn, Ir, Pt, Rh, Re, Ag, Au, Pd 및 Os로 이루어진 군에서 선택되는 것이고, 상기 X는 F, Cl, Br 및 I로 이루어진 군에서 선택되는 것이고, 상기 n은 1 내지 6의 정수인 것이고, 상기 산화철 자성 입자는 6 nm 내지 20 nm의 평균 입자경을 갖는 것인 간암 치료용 조성물을 제공한다.
또 다른 양상은 상기 산화철 자성 입자를 포함하는 간세포 표적 전달체를 제공한다.
이하, 본 발명의 다양한 실시예가 기재된다. 본 발명은 특정 실시예에 대해 한정되지 아니며, 본 발명의 실시예들의 다양한 변경(Modification), 균등물(Equivalent) 및/또는 대체물(Alternative)을 포함하는 것으로 이해되어야 한다. 도면의 설명과 관련하여, 유사한 구성요소에 대해서는 유사한 참조 부호가 사용될 수 있다.
본 문서에서, "가진다", "가질 수 있다", "포함한다", 또는 "포함할 수 있다" 등의 표현은 해당 특징(예: 수치, 기능, 동작, 또는 부품 등의 구성요소)의 존재를 가리키며, 추가적인 특징의 존재를 배제하지 않는다.
본 문서에서, "A 또는 B", "A 또는/및 B 중 적어도 하나", 또는 "A 또는/및 B 중 하나 또는 그 이상" 등의 표현은 함께 나열된 항목들의 모든 가능한 조합을 포함할 수 있다. 예를 들면, "A 또는 B", "A 및 B 중 적어도 하나", 또는 "A 또는 B 중 적어도 하나"는, (1) 적어도 하나의 A를 포함, (2) 적어도 하나의 B를 포함, 또는 (3) 적어도 하나의 A 및 적어도 하나의 B 모두를 포함하는 경우를 모두 지칭할 수 있다.
본 문서에서 사용된 표현 "~하도록 구성된(또는 설정된)(Configured to)"은 상황에 따라, 예를 들면, "~에 적합한(Suitable for)", "~하는 능력을 가지는(Having the capacity to)", "~하도록 설계된(Designed to)", "~하도록 변경된(Adapted to)", "~하도록 만들어진(Made to)", 또는 "~를 할 수 있는(Capable of)"과 바꾸어 사용될 수 있다. 용어 "~하도록 구성(또는 설정)된"은 "특별히 설계된(Specifically designed to)"것 만을 반드시 의미하지는 않는다.
본 문서에서 사용된 용어들은 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 다른 실시예의 범위를 한정하려는 의도가 아닐 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다. 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 용어들은 본 문서에 기재된 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가질 수 있다. 본 문서에 사용된 용어들 중 일반적인 사전에 정의된 용어들은 관련 기술의 문맥 상 가지는 의미와 동일 또는 유사한 의미로 해석될 수 있으며, 본 문서에서 명백하게 정의되지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. 경우에 따라서, 본 문서에서 정의된 용어일지라도 본 문서의 실시예들을 배제하도록 해석될 수 없다.
본 문서에 개시된 실시예는 개시된, 기술 내용의 설명 및 이해를 위해 제시된 것이며, 본 발명의 범위를 한정하는 것은 아니다. 따라서, 본 문서의 범위는, 본 발명의 기술적 사상에 근거한 모든 변경 또는 다양한 다른 실시예를 포함하는 것으로 해석되어야 한다.
이하, 본 발명의 바람직한 실시 예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예의 구성은 본 발명의 가장 바람직한 일부 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
본 개시의 일 측면에 있어서, 용어 "약"은 구체적 수치에 포함되는 제조 공정상의 오차나 본 개시의 기술적 사상의 범주에 들어가는 약간의 수치 조정을 포함하는 의도로 사용되었다. 예를 들어, 용어 "약"은 그것이 지칭하는 값의 ±10%, 일 측면에서 ±5%, 또 다른 측면에서 ±2%의 범위를 의미한다.
이하에서는 본 발명에 대하여, 구체적으로 설명한다.
일 양상은, 탄소수 4 내지 25의 지방족 탄화수소산염 및 아민계 화합물로 이루어진 군에서 선택되는 1종 이상의 화합물과 철의 복합체로부터 유래된 산화철을 포함하는 산화철 코어를 준비하는 단계;
상기 산화철 코어에 MAn을 혼합하고 가열하여 상기 산화철 코어에 MAn을 도입하는 단계; 및
상기 MAn이 도입된 산화철 코어에 BnX을 혼합하고 가열하여 MXn을 형성하는 단계를 포함하고,
상기 M은 Cu, Sn, Pb, Mn, Ir, Pt, Rh, Re, Ag, Au, Pd 및 Os로 이루어진 군에서 선택되는 것이고,
상기 A 및 X는 각각 독립적으로 F, Cl, Br 및 I로 이루어진 군에서 선택되는 것이고,
상기 B는 Li, Na, 및 K로 이루어진 군에서 선택되는 것이고,
상기 n은 1 내지 6의 정수인 것이고,
상기 MXn을 형성하는 단계에서 친수성 리간드 및 폴산(folate), 글리시레티닉산(glycyrrhetinic acid), 및 글루코스(Glucose)로 이루어진 군에서 선택된 하나 이상을 추가로 혼합하는 것인 산화철 자성 입자의 제조방법을 제공한다.
상기 코어는 구체적으로 산화철 코어로서, 상기 복합체로부터 유래된 산화철을 포함한다. 상기 "산화철"은 철의 산화물로서, 예를 들어, Fe13O19, Fe3O4(magnetite), γ-Fe2O3(maghemite) 및 α-Fe2O3(hematite), β-Fe2O3(beta phase), ε-Fe2O3 (epsilon phase), FeO (Wustite), FeO2 (Iron Dioxide), Fe4O5, Fe5O6, Fe5O7, Fe25O32, 페라이트계(Ferrite type) 및 Delafossite로 이루어진 군에서 선택되는 1종 이상을 포함하는 것일 수 있으나 이에 제한되지 않는다.
용어 "중원자"는 예컨대, Mn, Co, Cu, Se, Sr, Mo, Ru, Rh, Pd, Ag, Cd, Sn, Ba, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb와 같은, B(보론)보다 더 무거운(heavier) 원자들을 포함하나, 이에 제한되는 것은 아니다. 본 발명의 산화철 자성 입자는 산화철 입자와 중원자-할로겐 화합물 간의 결합 및 중원자-할로겐 사이의 결합이 매우 안정적이어서, 각 구성 성분, 즉 산화철, 중원자 및 할로겐 원소 각각이 인체에 유발할 수 있는 부작용 우려가 거의 없다.
상기 MXn은 CuF, CuF2, CuF3, CuCl, CuCl2, CuBr, CuBr2, CuI, CuI2 및 CuI3로 이루어진 군에서 선택되는 1종 이상을 포함하는 것일 수 있으며, 바람직하게는 상기 MXn은 CuF, CuCl, CuBr 및 CuI로 이루어진 군에서 선택되는 1종 이상을 포함하는 것일 수 있다. 일 구체예에서, 상기 MXn은 CuI일 수 있다.
상기 제조방법에서, 상기 MAn은 CuF, CuF2, CuF3, CuCl, CuCl2 로 이루어진 군에서 선택되는 1종 이상을 포함하는 것이고, 상기 BnX은, LiI, NaI, 및 KI로 이루어진 군에서 선택되는 1종 이상을 포함하는 것일 수 있다.
상기 산화철 자성 입자에 MXn가 포함되어 있다는 의미는, 코어 표면 또는 산화철 입자와 MXn간에 물리적 또는 화학적 결합이 형성된 것일 수 있다. 구체적으로는 산화철 입자 사이에 MXn가 배치되는 것일 수 있고, 수소결합을 통하여 산화철과 MXn이 결합되어 있는 것일 수도 있으며, 상기 MXn를 산화철 코어 표면에 일반적인 코팅 방식을 도입하여 형성하거나, 확산 공정 또는 이온 주입 공정과 같은 도핑(doping) 방식을 도입하여 형성하거나, 쉘 구조를 형성할 수 있도록 MXn 내부에 산화철 결정핵을 형성시키는 것을 포함하는 것일 수 있다. 바람직하게는 상기 산화철 자성 입자의 코어에 MXn이 도핑된 것일 수 있다.
상기 산화철 자성 입자는 산화철 입자 주변에 MXn가 함께 존재하면서 자성을 갖고, 비교적 낮은 교류 자기장의 세기 및/또는 낮은 주파수인 자기장 또는 각종 방사선 조건 하에서 산화철의 조영 효과를 증폭시킬 수 있다.
일 구체예에서, 상기 산화철은 탄소수 4 내지 25의 지방족 탄화수소산염 및 아민계 화합물로 이루어진 군에서 선택되는 1종 이상의 화합물과 철의 복합체로부터 유래되는 것일 수 있다. 상기 탄소수 4 내지 25의 지방족 탄화수소산염의 예로서는, 부티르산염, 길초산염, 카프로산염, 에난트산염, 카프릴산, 펠라르곤산염, 카프르산염, 라우르산염, 미리스트산염, 펜타데실산염, 아세트산염, 팔미트산염, 팔미톨레산염, 마르가르산염, 스테아르산염, 올레산염, 박센산염, 리놀레산염, (9,12,15)-리놀렌산염, (6,9,12)-리놀렌산염, 엘레오스테아르산염, 튜베르큘로스테아르산염, 라키드산염, 아라키돈산염, 베헨산염, 리그노세르산염, 네르본산염, 세로트산염, 몬탄산염, 멜리스산염 및 1 개 이상의 아미노산을 포함하는 펩티드염으로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다. 이들 화합물을 단독 또는 2종 이상의 혼합산염의 형태로 사용할 수도 있다.
상기 탄소수 4 내지 25의 지방족 탄화수소산염을 이루는 금속 원소는 칼슘, 나트륨, 칼륨 및 마그네슘으로 이루어진 군에서 선택되는 1종 이상을 포함하는 것일 수 있다.
상기 아민계 화합물의 예로서는, 메틸아민, 에틸아민, 프로필 아민, 이소프로필아민, 부틸아민, 아밀아민, 헥실아민, 옥틸아민, 2-에틸헥실아민, 노닐아민, 데실아민, 라우릴 아민, 펜타데실아민, 세틸아민, 스테아릴아민 및 사이클로헥실아민, 다이메틸아민, 다이에틸아민, 다이프로필아민, 다이이소프로필아민, 다이부틸아민, 다이아밀아민, 다이옥틸아민, 다이(2-에틸 헥실)아민, 다이데실아민, 다이라우릴아민, 다이세틸아민, 다이스테아릴아민, 메틸스테아릴아민, 에틸스테아릴 아민 및 부틸스테아릴아민, 트라이에틸아민, 트라이아밀아민, 트라이헥실아민 및 트라이옥틸아민, 트라이알릴아민 및 올레일아민, 라우릴아닐린, 스테아릴아닐린, 트라이페닐아민, N,N-다이메틸아닐린 및 다이메틸벤질아닐린, 모노에탄올아민, 다이에탄올아민, 트라이에탄올아민, 다이메틸아미노에탄올, 다이에틸렌트라이아민, 트라이에틸렌테트라민, 테트라에틸렌펜타아민, 벤질아민, 다이에틸아미노프로필아민, 자일릴렌다이아민 (xylylenediamine), 에틸렌다이아민, 헥사메틸렌다이아민, 도데카메틸렌다이아민, 다이메틸에틸렌다이아민, 트라이에틸렌다이아민, 구아니딘, 다이페닐구아니딘, N,N,N',N'-테트라메틸-1,3-부탄다이아민, N,N,N',N'-테트라 메틸에틸렌다이아민, 2,4,6-트리스(다이메틸아미노메틸)페놀, 모르폴린, N-메틸모르폴린, 2-에틸-4-메틸이미다졸 및 1,8-다이아자비사이클로 (5,4,0)운데센-7(DBU)으로 이루어진 군에서 선택되는 1종 이상을 포함하는 것일 수 있다.
일 구체예에서, 상기 복합체는 철-올레산 복합체일 수 있다.
상기 X는 X의 방사성 동위원소 또는 X의 방사성 동위원소들의 혼합물을 포함하는 것일 수 있다. 용어 “방사성 동위원소”는 1종 이상의 원자가 동일한 원자 번호를 갖지만 자연에서 일반적으로 발견되는 원자 질량 또는 질량수(mass number)와 상이한 원자 질량 또는 질량수를 갖는 원자에 의해 대체된 화합물을 모두 지칭한다. 본 발명의 화합물에 포함하기에 적합한 동위원소의 예는 불소의 동위원소, 예를 들어, 18F; 염소의 동위원소, 예를 들어, 36Cl; 브롬의 동위원소, 예를 들어 75Br, 76Br, 77Br 및 82Br; 및 요오드의 동위원소, 예를 들어 123I, 124I, 125I 및 131I이 단독 또는 혼합되어 포함하는 것을 말한다.
상기 제조방법은, 상기 산화철 자성 입자를 6 nm 내지 20 nm의 평균 입자경을 갖도록 균일화하는 단계를 더 포함할 수 있다. 상기 산화철 자성 입자는 6 nm 내지 20 nm의 평균입자경(d50)을 갖는 것일 수 있다. 상기 평균입자경은 6 nm 내지 15 nm, 8 nm 내지 15 nm, 또는 8 nm 내지 12 nm 일 수 있다. 산화철 자성 입자의 평균입자경이 6nm 미만인 경우 신장으로 곧바로 배설되어 간암 치료할 수 있을 정도로 간에 축적되기 어려울 수 있다. 입자의 평균입자경이 20nm를 초과하는 경우 간 외에 다른 기관에 축적되거나 면역 반응을 유발할 수 있고, 배설 속도가 너무 느려져 오히려 독성을 유발할 수 있다. 산화철 자성 입자의 상기 평균입자경 범위는 간 내 대식세포인 쿠퍼세포에 의해서 잡히게 되어 단백질과 복합체를 이루어 간 내에 머무를 수 있도록 하므로, 상기 범위 미만인 경우 모세혈관을 통과하여 배설된다.
상기 산화철 자성 입자는 상기 MXn을 상기 탄소수 4 내지 25의 지방족 탄화수소산염 및 아민계 화합물로 이루어진 군에서 선택되는 1종 이상의 화합물과 철이 이루는 복합체 100 mol% 대비 약 1 내지 13 mol%, 바람직하게는 약 1 내지 8 mol%, 보다 바람직하게는 약 3 내지 8 mol%로 포함하는 것일 수 있다.
상기 산화철 자성 입자는, 상기 입자에 포함되는 산화철을 기준으로 MXn이 중량비로서, 1:0.005 내지 0.08, 바람직하게는 1: 0.008 내지 0.08의 비율로 포함되는 것일 수 있다. 상기 비율은 금속 함유량 분석 장비인 ICP (Inductively coupled plasma) Mass Spectroscopy 결과로서 측정되는 것일 수 있다. 상기 범위 내로 산화철 자성 입자에 MXn이 포함됨으로써, 우수한 비손실력을 확보할 수 있고, 외부 교류 자기장 하 또는 방사선 조사시 높은 온도변화를 확보할 수도 있다.
상기 제조방법은, 상기 코어를 준비하는 단계는 철할로겐염과 탄소수 4 내지 25의 지방족 탄화수소산염 및 아민계 화합물로 이루어진 군에서 선택되는 1종 이상의 화합물을 물의 존재 하에 반응시켜 산화철 코어를 형성하는 단계; 및 상기 산화철 코어를 분리하는 단계를 포함할 수 있다.
상기 철할로겐염은 철과 할로겐 원소가 이루는 염으로, 예를 들어, 염화제일철(FeCl2), 염화제이철(FeCl3) 등이 있으나 이에 제한되지 않는다.
상기 산화철 코어를 형성하는 단계는 보다 구체적으로 유기용매와 물의 혼합물인 용액에서 반응시키는 것일 수 있다. 상기 유기용매는 메탄올, 에탄올, 프로판올, 부탄올, 헥산, 클로로포름, 아세톤, 아세트산 또는 이들의 혼합물일 수 있으나 이에 제한되지 않는다. 상기 반응은 40 ℃ 내지 100 ℃, 40 ℃ 내지 80 ℃, 또는 40 ℃ 내지 60 ℃에서 3 시간 내지 6 시간 이상 반응시키는 것일 수 있고, 반응물인 산화철 코어가 포함된 유기층을 분리하고 상기 반응을 2 회 이상 반복할 수 있다.
상기 산화철 코어를 분리하는 단계는 100 ℃ 내지 120 ℃에서 유기용매를 증발시키는 단계를 더 포함할 수 있다.
상기 제조방법은, 상기 산화철 코어에 MAn을 도입하는 단계에서 질소 기체 하에 300 ℃ 내지 350 ℃의 고온에서 20 분 내지 40 분 간 반응시키는 것일 수 있다. 상기 MAn가 도입된 산화철 코어를 분리하기 위해서, 에탄올 및 헥산의 2:1 혼합물인 용액에 혼합하고 원심 분리하는 단계를 더 포함할 수 있다.
상기 제조방법은, MXn을 형성하는 단계에서 MAn이 도입된 산화철 코어에 A 원소를 X로 치환시킨다. 본 발명의 제조방법은 MXn을 코어에 곧바로 도입하는 방법이 아닌 이온교환 방식을 취하기 때문에, MXn의 도핑 효율이 높아 제조 효율이 높고, 균일하면서 높은 자성을 갖는 산화철 나노 입자를 제조할 수 있다.
상기 MXn을 형성하는 단계에서 친수성 리간드와 폴산, 글리시레티닉산, 및 글루코스로 이루어진 군에서 선택된 하나 이상을 추가로 혼합할 수 있다. 이 과정에서 MXn이 형성되면서 친수성 리간드와 폴산, 글리시레티닉산, 및 글루코스로 이루어진 군에서 선택된 하나 이상의 물질이 산화철 코어에 추가로 도입되어 전체적으로 산화철 자성 입자를 형성할 수 있다. MXn을 형성하는 단계는 이온 교환 효율을 높이고, 산화철 자성 입자의 크기를 균일하게 하기 위해서 마이크로웨이브, 가열, 소니케이션(sonication), 필터링, 여과, 원심분리 등을 가하는 단계를 더 포함할 수 있다.
일 구체예에서, 상기 산화철 자성 입자는 상기 산화철 입자 코어 표면의 적어도 일부분이 친수성 또는 전하를 띄는 리간드 또는 고분자로 코팅된 것일 수 있다. 상기 친수성 리간드는 일 구체예에 따른 산화철 자성 입자의 물에 대한 용해도를 증가시키고 안정화를 높이거나, 암 세포와 같은 특정 세포에 대한 표적화 또는 침투력을 증진시키기 위해 도입할 수 있다. 이러한 친수성 리간드는 생체 적합성을 갖는 것이 바람직할 수 있고, 예를 들어, 폴리에틸렌글리콜, 폴리에틸렌아민, 폴리에틸렌이민, 폴리아크릴산, 폴리말레산 무수물, 폴리비닐 알코올, 폴리비닐피롤리돈, 폴리비닐 아민, 폴리아크릴아미드, 폴리에틸렌글리콜, 인산-폴리에틸렌글리콜, 폴리부틸렌 테레프탈레이트, 폴리락트산, 폴리트리메틸렌 카보네이트, 폴리디옥사논, 폴리프로필렌옥시드, 폴리히드록시에틸메타크릴레이트, 녹말, 덱스트란 유도체, 술폰산아마노산, 술폰산펩티드, 실리카 및 폴리펩티드로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있으나, 이에 제한되지 않는다. 바람직하게는, 상기 친수성 리간드는 인산-폴리에틸렌글리콜 계 물질일 수 있고, 구체적으로 포스포에탄올아민-폴리에틸렌글리콜로서 예를 들어, 1,2-디스테로일-sn-글리세로-3-포스포에탄올아민-N-메톡시(폴리에틸렌 글리콜), 또는 1,2-디스테로일-sn-글리세로-3-포스포에탄올아민-N-(폴리에틸렌 글리콜)일 수 있다.
상기 산화철 자성 입자는 폴산, 글리시레티닉산, 및 글루코스로 이루어진 군에서 선택된 하나 이상을 포함하는 것일 수 있다. 폴산, 글리시레티닉산, 또는 글루코스는 특정 표적 기관 또는 표적 세포에 전달될 수 있도록 돕는 타겟팅 물질로서 기능할 수 있다. 보다 구체적으로, 상기 산화철 자성 입자는 글리시레티닉산을 포함하는 것이 바람직할 수 있고, 예를 들어, 글리시레티닉산 단일 물질; 글리시레티닉산 및 폴산의 조합; 글리시레티닉산 및 글루코스의 조합; 또는 글리시레티닉산, 폴산, 및 글루코스의 조합을 포함할 수 있다.
상기 폴산, 글리시레티닉산, 및 글루코스로 이루어진 군에서 선택된 하나 이상은 친수성 리간드에 결합된 것으로서, 친수성 리간드-폴산, 친수성 리간드-글리시레티닉산, 또는 친수성 리간드-글루코스로 포함된 것일 수 있다. 예를 들어 친수성 리간드가 인산-폴리에틸렌글리콜 계 물질인 경우, 1,2-디스테로일-sn-글리세로-3-포스포에탄올아민-N-(폴리에틸렌 글리콜)-폴산, 1,2-디스테로일-sn-글리세로-3-포스포에탄올아민-N-(폴리에틸렌 글리콜)-글리시레티닉산, 또는 1,2-디스테로일-sn-글리세로-3-포스포에탄올아민-N-(폴리에틸렌 글리콜)-글루코스 형태로 산화철 자성 입자에 포함될 수 있다.
상기 친수성 리간드 대 타겟팅 물질, 즉, 친수성 리간드 대 친수성 리간드-폴산, 친수성 리간드-글리시레티닉산, 및 친수성 리간드-글루코스 중 선택된 어느 하나의 중량비는, 15 내지 5:1, 12 내지 8:1, 10 내지 8:1, 또는 9:1일 수 있다. 친수성 리간드의 중량비 상기 중량비를 초과하거나 미달하는 경우 폴산, 글리시레티닉산, 또는 글루코스가 기여하는 자성약물전달 증가 효과가 감소할 수 있다.
상기 친수성 리간드와 친수성 리간드-폴산, 친수성 리간드-글리시레티닉산, 및 친수성 리간드-글루코스 중 선택된 어느 하나는, 그 합으로서 상기 코어 입자 표면적 1nm2 당 5 개 내지 15 개, 5 개 내지 12 개, 5 개 내지 10 개, 또는 7 개 내지 9 개로 포함될 수 있다. 상기 범위 미만인 경우 산화철 자성 입자의 수용성이 감소하여 전달 효율이 감소하거나, 혈전 형성, 부종, 통증 유발 등의 위험이 있을 수 있고, 상기 범위를 초과하는 경우 산화철 자성 입자의 크기가 너무 커지거나 자성이 감소할 수 있다.
상기 간암 치료용 조성물은 투여 방법, 투여 위치, 진단 대상이 되는 장기에 따라 약학적으로 허용되는 담체를 더 포함할 수 있다. 상기 간암 치료용 조성물은 정맥내 주입, 피하 주입, 근육 주입, 복강 주입, 병변내 주입, 종양내 주입 등으로 투여될 수 있으나, 바람직하게는 정맥 투여에 적합한 것일 수 있다. 상기 간암 치료용 조성물을 정맥 투여하는 경우 등장성 염화나트륨 용액, 한스 용액(Hank's solution), 링거 용액(Ringer's solution)과 같이 통상적으로 알려진 용매를 이용하여 수용성 용액 또는 현탁액의 제형일 수 있다.
상기 간암 치료용 조성물은 방사선, 자기장 및 전파와 같은 외부 자극과의 조합으로 사용되는 것으로서, 온열 치료에 적용할 수 있다. 상기 간암 치료용 조성물이 포함하는 산화철 자성 입자는 방사선, 자기장 및 전파와 같은 외부에서 유입되는 자극에 높은 반응성을 가지면서도 높은 비손실력을 확보할 수 있으므로 온열 치료에 적용할 수 있다. 용어 "온열 치료"는 신체 조직을 정상체온보다 높은 온도에 노출시킴으로써 암세포를 비롯한 병변 세포를 사멸시키거나 또는 이들 세포가 방사선 치료나 항암제 등에 대해 더 높은 민감성을 가지도록 하는 것을 의미한다.
MXn과 같은 중원자-할로겐 화합물의 경우, 중원자의 종류와 할로겐의 종류 (주기율 표상 F에서 I로 원자 껍질이 늘어날 수록 유전율/전자축전용량의 차이가 발생)에 따라 유전율 및 축전용량이 달라지기 때문에, 자성체인 산화철과 결합하여 자성의 세기를 올려줄 뿐 아니라, 화합물이 흡수할 수 있는 전자기장 에너지의 크기 또는 총량을 상승시킴으로써, 최종 산화철 기반 자성 입자에서 방출하는 열에너지의 양을 상승시킬 수 있게 된다. 이는 기존 고주파 (200 kHz 이상) 영역대 뿐만 아니라, 상대적으로 낮은 저주파와 중주파 (50Hz ~200kHz) 대역의 전자기장 에너지 환경에서도, 기존 산화철 기반 자성 입자 대비 높은 열에너지 방출(전환) 효율 (ILP: Intrinsic loss power)을 개선 또는 상승시킬 수 있다.
상기 제조방법에 의해 제조된 산화철 자성 입자는, 탄소수 4 내지 25의 지방족 탄화수소산염 및 아민계 화합물로 이루어진 군에서 선택되는 1종 이상의 화합물과 철의 복합체를 포함하는 코어; MXn; 및 폴산(folate), 글리시레티닉산(glycyrrhetinic acid), 및 글루코스(Glucose)로 이루어진 군에서 선택된 하나 이상을 포함하는 산화철 자성 입자를 포함하고, 상기 M은 Cu, Sn, Pb, Mn, Ir, Pt, Rh, Re, Ag, Au, Pd 및 Os로 이루어진 군에서 선택되는 것이고, 상기 X는 F, Cl, Br 및 I로 이루어진 군에서 선택되는 것이고, 상기 n은 1 내지 6의 정수인 것이고, 상기 산화철 자성 입자는 6 nm 내지 20 nm의 평균 입자경을 갖는 것일 수 있다.
상기 산화철 자성 입자는 간암 치료용으로 사용될 수 있다.
상기 간암 치료용 조성물에 포함된 산화철 자성 입자는 자성을 가지므로 자기적 성질을 이용하여 진단 기기에 적용할 수 있는 조영제로서 기능할 수 있다. 따라서 상기 간암 치료용 조성물은 별도의 추가적인 조영제 투여 없이도 암 진단을 할 수 있기 때문에, 암의 진단과 치료를 동시에 수행할 수 있다. 본 발명의 조성물을 이용하면 추가의 조영제 투여가 필요 없으므로 부작용 위험이 적고, 환자의 부담이 적은 장점을 갖는다. 상기 조성물을 적용할 수 있는 진단 기기는 제한이 없는 특징을 갖는다. 상기 산화철 자성 입자가 포함된 조영제는 음성 조영제 및 양성 조영제 성분을 모두 갖기 때문에, 높은 대조도를 가져 우수한 조영 효과를 나타낸다. 특히, 종래의 요오드 기반 (Iohexol또는 Iopamidol) 또는 금나노 CT 조영제들 보다 높은 방사선흡수 HU(hounsfield unit) 값 및 CT 조영효과를 보여준다. 기존 요오드기반 조영제의 경우 647 mg/ml 기준, 3000 HU (1mg 기준 4.6 HU), 금나노입자의 경우 1mg 기준 약 5~50 HU 값이라 보고되어 있다. 반면에, 본 발명의 산화철 자성 입자가 포함된 조영제의 경우, 1mg 기준 약 50~100HU값을 보여준다.
본 발명은 CT 조영제로서의 효과뿐만 아니라 X-선 영상, MRI(Magnetic Resonance Imaging), US, 광학적 영상, SPECT(Single Photon Emission Computed Tomography), PET(Positron Emission Tomography), MPI (Magnetic Particle Imaging), 평판 영상, 및 경직형, 가요성 또는 캡슐 내시경 검사 등의 조영제로서도 활용이 가능하다.
다양한 기기에 한 종류의 조영제가 활용될 수 있다는 것은 복합적인 검사가 필요한 경우 매우 유용할 수 있다. 예를 들어, CT 검사와 MRI 검사를 가까운 시간 내에 진행해야 하는 경우, CT용 조영제 1과 MRI용 조영제 2가 각각 별도로 체내에 투입되며, 서로 상이한 조영제가 체내에 섞이게 되면서 검사 결과를 불명확하게 할 수 있고, 개체가 매번 검사 마다 다른 조영제를 투여 받게 되면서 독성을 유발할 확률이 높아진다. 그러나, 본 발명의 산화철 자성 입자가 포함된 조영제는 다양한 기기에 제한없이 활용이 가능하므로 이러한 불편함을 감소시킬 수 있다
일 구체예에서, 상기 간암 치료용 조성물이 온열 치료 또는 진단에 이용되는 경우, 1 kHz 내지 1 MHz 이하의 주파수 또는 20 Oe(1.6 kA/m) 내지 200 Oe (16 kA/m) 이하의 세기를 갖는 자기장에서 조영 효과(contrast effect)를 나타낼 수 있다. 상기 조영제를 개체에 투여한 다음 조사하는 교류 자기장은 1 kHz 내지 1 MHz의 주파수, 또는 30 kHz 내지 120 kHz의 주파수를 갖는 것일 수 있다. 일반적으로, 단일항에서 삼중항으로 스핀 상태를 전환시키기 위해서는 1 MHz 이상의 교류 자기장을 인가해주어야 하나, 본 발명의 경우 수십 내지 수백 kHz의 교류 자기장 하에서도 삼중항 전이가 가능하다. 또한 교류 자기장은 20 Oe(1.6 kA/m) 내지 200 Oe(16.0 kA/m), 80 Oe(6.4 kA/m) 내지 160 Oe(12.7 kA/m), 또는 140 Oe(11.1 kA/m)의 자기장 세기를 갖는 것일 수 있다. 일 구체예에 따른 조영제는 기존 고에너지 방식과는 달리 비교적 인체에 무해한 낮은 자기장의 세기 및/또는 주파수의 교류 자기장에서도 사용될 수 있다는 점에서 유용하다.
본 발명의 조성물이 포함하는 산화철 자성 입자는 정맥으로 투여된 후 체내에서 2주 내에 소변으로 배설되는 특징을 갖는다. 또한 약 pH 5.5 내지 6.5의 산성에서 분해되지 않고, 체내 단백질에 비특이적으로 결합하지 않는 특징을 갖는다.
다른 양상은, 산화철 자성 입자를 포함하는 간세포 표적 전달체를 제공한다. 상기 간세포는 구체적으로 간암 세포일 수 있다.
상기 산화철 자성 입자는 간에 특이적으로 전달되므로, 활성 성분을 결합시킴으로써 상기 활성 성분을 간세포에 전달할 수 있다. 상기 “간에 특이적으로 전달”의 의미는 투여 후 24 시간 내 측정한 AUC의 50% 이상, 60% 이상, 70% 이상, 80% 이상, 또는 90% 이상이 간에 축적되는 것을 의미하고, 보다 구체적으로 혈관이 밀집된 신장 또는 폐에서 거의 축적되지 않는 것을 의미한다. 용어 “거의 축적되지 않는”은 투여 후 24 시간 내 측정한 AUC의 50% 미만, 40% 미만, 30% 미만, 20% 미만, 또는 10% 미만으로 축적되는 것을 의미한다. 상기 활성 성분은 간세포에 유익한 영양소 또는 간 질환을 치료하기 위한 약물일 수 있고, 예를 들어, 간암, 간염, 알코올성 간질환, 간경변, 지방간, 간경화 등의 질환을 치료하기 위한 약물일 수 있다. 간암 치료제로는 예를 들어, 소라페닙, 렌바티닙, 레고라페닙, 라무시루맙, 카보잔티닙, 아테졸리주맙 등이 있으나 이에 제한되지 않는다.
일 구체예에 따른 제조방법에 의해 제조된 나노입자를 포함하는 조성물은 간에 특이적으로 전달되므로, 다른 장기를 손상시키지 않고 간암 세포에 작용할 수 있다.
또한, 상기 나노입자는 체내에 일정 기간 잔존하다 몇 주 이내 체외로 배설되므로 축적된 산화철에 의한 장기 손상과 같은 부작용이 발생할 위험이 적다.
또한, 상기 나노입자는 산화철 자성 입자를 포함하여 방사선, 자기장 및 전파와 같은 외부에서 유입되는 자극에 높은 반응성을 갖고, 온열 치료용으로도 사용될 수 있다.
도 1은 본 발명의 일 구체예에 따른 나노입자의 제조 과정 및 구조를 도식화한 것이다.
도 2는 본 발명의 일 구체예에 따른 나노입자의 간암 세포내 흡수 효율을 보여주는 그래프이다.
도 3은 본 발명의 일 구체예에 따른 나노입자의 간 및 신장에 대한 생체 독성 시험 결과를 보여주는 그래프이다.
도 4는 본 발명의 일 구체예에 따른 나노입자의 동물 모델 내 생체 분포율을 보여주는 그래프이다.
도 5는 본 발명의 일 구체예에 따른 나노입자의 간암 세포에 대한 전달 효율을 보여주는 그래프이다.
도 6은 본 발명의 일 구체예에 따른 나노입자의 간암 치료 효과를 보여주는 그래프이다.
이하, 본 발명의 이해를 돕기 위하여 실시예 등을 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예들에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
실시예 1: GA(glycyrrhetinic acid)이 도입된 산화철 자성 입자의 제조
(a) 철-올레산 또는 철-올레아민복합체 형성
FeCl3·6H2O 16.218g(60mmol), 올레산나트륨(sodium oleate) 54.79g(180mmol), 헥산 224 ml, 에탄올 120 ml, 및 탈이온수 90 ml를 50℃에서 약 4시간 동안 900rpm으로 강하게 교반시키면서 반응시켰다. 반응액을 상온에서 냉각시킨 후 분별깔대기를 이용하여 투명한 아래층을 제거하고, 갈색의 상층 유기층에 물 100 ml를 혼합하여 흔들어준 후 다시 아래 물 층을 제거하였다. 이를 3번 반복하였다. 남은 갈색의 유기층을 비이커에 옮겨 헥산이 증발되도록 110 ℃에서 밤새 가열하여 산화철 코어 입자로서 철-올레산 복합체를 수득하였다.
(b) CuF2가 포함된 산화철 자성 입자 합성
상기에서 제조된 철-올레산 복합체 4.5 g(5 mmol)과 올레산 0.8 ml(2.5 mmol)을 혼합하고, CuF2 30.5 mg (0.3mmol) 및 1-옥타데센 15 ml를 추가하고 혼합하였다. 혼합액을 둥근 바닥플라스크에 넣고 30분 정도 진공 상태에서 90 ℃로 가열하여 기체와 수분을 제거하였다. 질소를 주입하고 200 ℃까지 온도를 올렸다. 이후 온도를 3.3℃/min 속도로 320℃까지 올려준 후 30분간 반응시켰다. 반응액을 냉각시킨 후 50 ml 코니컬 튜브(conical tube)에 옮기고, 에탄올 및 헥산을 2:1 비율로 30 ml 주입한 후 원심 분리하여 입자를 침전시켰다. 침전된 입자를 에탄올 25 ml 및 헥산 15 ml로 수세한 후 수득한 침전물을 헥산에 분산시켰다. 그런 다음 50 ml 바이알에 분주하고, 용매를 증발시킨 후 산화철로서 25mg/ml 농도가 되도록 톨루엔에 재분산 시켰다.
(c) CuF2가 포함된 산화철 자성 입자에 I 및 글리시레티닉산의 도입
CuF2가 포함된 산화철 자성 입자 10mg를 Chloroform 1mL에 분산시키고 탈이온수 2mL, NaI 20mg, 입자 표면적당(1nm2) 8개의 비율로 DSPE-PEG2000 (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000)과 DSPE-PEG2000-Glycyrrhetinic acid (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-(polyethylene glycol)- Glycyrrhetinic acid)를 중량비 9:1로 50mL 바이알에 넣고 Microwave 2.4GHz 1000W로 1분 동작 해준다.
Evaporator 이용하여 용액을 제거한 후 탈이온수 3ml를 가하고 5분 동안 sonication 하여 분산시킨다. 분산시킨 후 Amicon 100k에 에탄올과 탈이온수가 2:8 비율이 되도록 넣고 원심분리(5,000rpm, 5m)을 이용하여 워싱한다. 결과물을 다시 Amicon 100k에 탈이온수를 넣고 원심분리(5,000rpm, 5m)을 이용하여 워싱하고 산화철 나노 입자를 얻었다. 제조된 나노 입자의 평균입자경은 10nm였다.
실시예 2: 폴산(folic acid)이 도입된 산화철 자성 입자의 제조
상기 실시예 1과 동일하게 수행하되, 실시예 1-(c)의 CuF2가 포함된 산화철 자성 입자에 I 및 폴산을 도입하는 단계부터 하기와 같이 수행하였다.
CuF2가 포함된 산화철 자성 입자 10mg를 Chloroform 1mL에 분산시키고 탈이온수 2mL, NaI 20mg, 입자 표면적당(1nm2) 8개의 비율로 DSPE-PEG2000 (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000)과 DSPE-PEG2000-Folate (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-(polyethylene glycol)-Folic acid)를 중량비 9:1로 50mL 바이알에 넣고 Microwave 2.4GHz 1000W로 1분 동작 해주었다. 이하 과정은 실시예 1과 동일하게 수행하였다. 제조된 나노 입자의 평균입자경은 10nm였다.
실시예 3: Glu(Glucose)이 도입된 산화철 자성 입자의 제조
상기 실시예 1과 동일하게 수행하고, 실시예 1-(c)의 CuF2가 포함된 산화철 자성 입자에 I 및 글루코스를 도입하는 단계부터 하기와 같이 수행하였다.
CuF2가 포함된 산화철 자성 입자 10mg를 Chloroform 1mL에 분산시키고 탈이온수 2mL, NaI 20mg, 입자 표면적당(1nm2) 8개의 비율로 DSPE-PEG2000 (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000)과 DSPE-PEG2000-Glucose (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-(polyethylene glycol)-Glucose)를 중량비 9:1로 50mL 바이알에 넣고 Microwave 2.4GHz 1000W로 1분 동작 해주었다. 이하 과정은 실시예 1과 동일하게 수행하였다. 제조된 나노 입자의 평균입자경은 10nm였다.
실시예 4: GA 및 131I이 도입된 산화철 자성 입자의 제조
상기 실시예 1과 동일하게 수행하되, 실시예 1-(c)의 CuF2가 포함된 산화철 자성 입자에 131I 및 GA를 도입하는 단계부터 하기와 같이 수행하였다.
CuF2가 포함된 산화철 자성 입자 10mg를 Chloroform 1mL에 분산시키고 탈이온수 2mL, NaI131 1mL (185MBq(5mCi)), 입자 표면적당(1nm2) 8개의 비율로 DSPE-PEG2000(1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)]-2000)과 DSPE-PEG2000-Glycyrrhetinic acid) (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-(polyethylene glycol)- Glycyrrhetinic acid))를 중량비 9:1로 50mL 바이알에 넣고 Microwave 2.4GHz 1000W로 1분 동작 해주었다. 이하 과정은 실시예 1과 동일하게 수행하였다.
제조된 나노 입자의 평균입자경은 10nm였다. 상기 실험에서 제조된 GA 및 I131이 도입된 산화철 입자의 경우 gamma-counter로 방사선량을 측정 시 50MBq (1.35mCi)로 측정되었다.
비교예 1: I만이 도입된 산화철 자성 입자의 제조
상기 실시예 1과 동일하게 산화철 자성 입자를 합성하되, 실시예 1-(c)의 CuF2가 포함된 산화철 자성 입자에 I를 도입하는 단계부터 하기와 같이 수행하였다.
CuF2가 포함된 산화철 자성 입자 10mg를 Chloroform 1mL에 분산시키고 탈이온수 2mL, NaI 20mg, 입자 표면적당(1nm2) 8개의 비율로 DSPE-PEG2000(1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)]-2000)를 50mL 바이알에 넣고 Microwave 2.4GHz 1000W로 1분 동작 해준다. 이하 과정은 실시예 1과 동일하게 수행하였다.
비교예 2: 131I만이 도입된 산화철 자성 입자의 제조
상기 실시예 4와 동일하게 산화철 자성 입자를 합성하되, 실시예 1-(c)의 CuF2가 포함된 산화철 자성 입자에 131I를 도입하는 단계부터 하기와 같이 수행하였다.
CuF2가 포함된 산화철 자성 입자 10mg를 Chloroform 1mL에 분산시키고 탈이온수 2mL, NaI131 1mL (185MBq(5mCi)), 입자 표면적당(1nm2) 8개의 비율로 DSPE-PEG2000(1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)]-2000)를 50mL 바이알에 넣고 Microwave 2.4GHz 1000W로 1분 동작 해주었다. 이하 과정은 실시예 1과 동일하게 수행하였다.
시험예 1: 간암 세포내(in vitro) 흡수 시험
본 발명의 산화철 자성 입자의 세포내 흡수 정도를 시험하여 간암세포로의 전달 능력을 평가하였다. 구체적으로, 간암세포인 HepG2 세포에 각 산화철 자성입자를 200 mg/mL로 처리 및 각 시간별로 세포외에 존재하는 산화철 자성 입자를 제거한 후 세포를 산성용액으로 분해하여 4% potassium ferrocyanide solution을 첨가하여 시간에 따른 철 이온의 간암세포내 전달율을 Prussian blue 염색법을 통해 UV 흡광값으로 측정하였다.
그 결과를 도 2에 나타내었다. 실시예 1 내지 3의 경우 비교예 1에 비해 높은 간암세포 전달율을 보여주었으며 그 중, 실시예 1의 경우 가장 높은 간암세포내 전달율을 보여주었다.
시험예 2: 생체(in vivo) 독성 시험
본 발명의 산화철 자성 입자가 생체 독성을 갖는지 시험하였다. 구체적으로, Balb/c nude 마우스에 각 실시예 1 내지 3을 100 mg/kg으로 투여한 후, 투여 전과 투여 후 1일째, 7일째, 14일째, 28일째에 간 및 신장 효소에 대해 안와 채혈을 하여 혈액생화학적 수치를 검사하였다. 대조군에는 실시예 1 내지 3을 투여할 때 사용한 주사용수만을 투여하였다.
그 결과를 도 3에 나타내었다. 시험 결과 실시예 1 내지 3 모두 전체 관찰 기관 중 간과 신장 관련 효소 수치가 모두가 정상범위인 것으로 확인되었다.
시험예 3: 동물 모델의 생체 분포 시험
본 발명의 산화철 자성 입자의 간 전달 효과를 확인하기 위해 동물 실험을 진행하였다. 구체적으로, Balb/c nude 마우스에 실시예 1을 100 mg/kg으로 꼬리 정맥에 투여한 후, 시간별 ICP-MS 분석을 통한 철 이온 분석을 통해 체내의 각 기관 분포 및 시간에 따른 변화량을 확인하였다.
그 결과를 도 4에 나타내었다. 실시예 1의 각 분포를 각 장기 조직별로 관찰한 결과, 간에만 특이적으로 전달되고, 신장이나 폐에는 거의 전달되지 않으며, 간에 전달된 산화철 자성 입자는 약 2주 내에 거의 다 배설되는 것으로 확인되었다.
시험예 4: 간암 세포 전달 시험
본 발명의 산화철 자성 입자의 간 전달 효과를 확인하기 위해 동물 실험을 진행하였다. 사용된 동물 모델은 xenograft mouse model로서, Balb/c nude 마우스의 엉덩이 부위에 사람의 간암 세포를 이식하여 암을 유발시키는 방법으로 제작하였다. 제작된 xenograft mouse model에 실시예 1 및 비교군으로서 일반 산화철을 100 mg/kg으로 꼬리 정맥에 투여한 후, 시간별 ICP-MS 분석을 통한 철 이온 분석을 통해 간암 세포 전달율 및 체내 분포 및 시간에 따른 변화량을 확인하였다.
그 결과를 도 5에 나타내었다. 실시예 1의 각 분포를 각 장기 조직별로 관찰한 결과, 초기에는 간에 전달되었던 산화철 자성 입자가 시간이 지남에 따라 간암세포로 축적되는 것을 확인할 수 있었으며, 1주 후에 간암세포로 최대량이 축적되며 약 2주 후에 거의 다 배설되는 것으로 확인되었다. 또한, 신장이나 폐에는 거의 전달되지 않는 것으로 확인되었다. 그에 비해 일반산화철의 경우 약 2주가 경과한 후에도 간암세포에 전달되지 않는 것으로 관찰되었고, 대부분 간에 축적되어 배설되지 않는 것으로 확인되었다.
시험예 5: 간암 치료 시험
본 발명의 산화철 자성 입자의 간암 치료 효과를 확인하기 위해 동물 실험을 진행하였다. 구체적으로, Balb/c nude 마우스에 간암을 유발하고 GA를 포함하고 I131이 도핑된 자성약물전달체(with GA)인 실시예 4 및 I127이 도핑된 자성약물전달체(w/o GA)인 비교예 2의 간암 치료 효과를 확인하였다. 또한 실시예 4를 I131이 방사선량 별로 달리하여 간암 치료효과를 확인하였다.
그 결과를 도 6에 나타내었다. 3일, 7일, 10일, 14일 간격으로 종양 크기를 측정한 결과, GA를 포함하고 I131이 도핑된 자성약물전달체(with GA)인 실시예 4의 경우 PBS control 및 비교예 2에 비해 높은 간암 치료 효과를 보여 주었으며 방사선량이 높아질수록 간암 치료 효과도 높아짐을 보여 주었다.

Claims (10)

  1. 탄소수 4 내지 25의 지방족 탄화수소산염 및 아민계 화합물로 이루어진 군에서 선택되는 1종 이상의 화합물과 철의 복합체로부터 유래된 산화철을 포함하는 산화철 코어를 준비하는 단계;
    상기 산화철 코어에 MAn을 혼합하고 가열하여 상기 산화철 코어에 MAn을 도입하는 단계; 및
    상기 MAn이 도입된 산화철 코어에 BnX을 혼합하고 반응시켜 MXn을 형성하는 단계를 포함하고,
    상기 M은 Cu, Sn, Pb, Mn, Ir, Pt, Rh, Re, Ag, Au, Pd 및 Os로 이루어진 군에서 선택되는 것이고,
    상기 A 및 X는 각각 독립적으로 F, Cl, Br 및 I로 이루어진 군에서 선택되는 것이고,
    상기 B는 Li, Na, 및 K로 이루어진 군에서 선택되는 것이고,
    상기 n은 1 내지 6의 정수인 것이고,
    상기 MXn을 형성하는 단계에서 친수성 리간드와 폴산(folate), 글리시레티닉산(glycyrrhetinic acid), 및 글루코스(Glucose)로 이루어진 군에서 선택된 하나 이상을 추가로 혼합하는 것인 산화철 자성 입자의 제조방법.
  2. 청구항 1에 있어서, 상기 산화철 자성 입자를 6 nm 내지 20 nm의 평균 입자경을 갖도록 균일화하는 단계를 더 포함하는 것인 산화철 자성 입자의 제조방법.
  3. 청구항 1에 있어서,
    상기 MAn은 CuF, CuF2, CuF3, CuCl, CuCl2 로 이루어진 군에서 선택되는 1종 이상을 포함하는 것이고, 상기 BnX은, LiI, NaI, 및 KI로 이루어진 군에서 선택되는 1종 이상을 포함하는 것인 산화철 자성 입자의 제조방법.
  4. 청구항 1에 있어서, 상기 코어를 준비하는 단계는 철할로겐염과 탄소수 4 내지 25의 지방족 탄화수소산염 및 아민계 화합물로 이루어진 군에서 선택되는 1종 이상의 화합물을 물의 존재 하에 반응시켜 산화철 코어를 형성하는 단계; 및 상기 산화철 코어를 분리하는 단계를 포함하는 산화철 자성 입자의 제조방법.
  5. 청구항 4에 있어서, 상기 산화철 코어를 형성하는 단계는 유기용매와 물의 혼합물에서 반응시키는 것인 산화철 자성 입자의 제조방법.
  6. 청구항 1에 있어서, 상기 산화철은 Fe13O19, Fe3O4(magnetite), γ-Fe2O3(maghemite) 및 α-Fe2O3(hematite), β-Fe2O3(beta phase), ε-Fe2O3 (epsilon phase), FeO (Wustite), FeO2 (Iron Dioxide), Fe4O5, Fe5O6, Fe5O7, Fe25O32, 페라이트계(Ferrite type) 및 델라포시트(Delafossite)로 이루어진 군에서 선택되는 1종 이상을 포함하는 것인 산화철 자성 입자의 제조방법.
  7. 청구항 1에 있어서, 상기 X는 X의 방사성 동위원소 또는 X의 방사성 동위원소들의 혼합물을 포함하는 것인 산화철 자성 입자의 제조방법.
  8. 청구항 1에 있어서, 상기 친수성 리간드는 폴리에틸렌글리콜, 폴리에틸렌아민, 폴리에틸렌이민, 폴리아크릴산, 폴리말레산 무수물, 폴리비닐 알코올, 폴리비닐피롤리돈, 폴리비닐 아민, 폴리아크릴아미드, 폴리에틸렌글리콜, 인산-폴리에틸렌글리콜, 폴리부틸렌 테레프탈레이트, 폴리락트산, 폴리트리메틸렌 카보네이트, 폴리디옥사논, 폴리프로필렌옥시드, 폴리히드록시에틸메타크릴레이트, 녹말, 덱스트란 유도체, 술폰산아미노산, 술폰산펩티드, 실리카 및 폴리펩티드로 이루어진 군으로부터 하나 이상인 것인 산화철 자성 입자의 제조방법.
  9. 탄소수 4 내지 25의 지방족 탄화수소산염 및 아민계 화합물로 이루어진 군에서 선택되는 1종 이상의 화합물과 철의 복합체로부터 유래된 산화철을 포함하는 코어; MXn; 및 폴산(folate), 글리시레티닉산(glycyrrhetinic acid), 및 글루코스(Glucose)로 이루어진 군에서 선택된 하나 이상을 포함하는 산화철 자성 입자를 포함하고,
    상기 M은 Cu, Sn, Pb, Mn, Ir, Pt, Rh, Re, Ag, Au, Pd 및 Os로 이루어진 군에서 선택되는 것이고,
    상기 X는 F, Cl, Br 및 I로 이루어진 군에서 선택되는 것이고,
    상기 n은 1 내지 6의 정수인 것이고,
    상기 산화철 자성 입자는 6 nm 내지 20 nm의 평균 입자경을 갖는 것인,
    간암 치료용 조성물.
  10. 탄소수 4 내지 25의 지방족 탄화수소산염 및 아민계 화합물로 이루어진 군에서 선택되는 1종 이상의 화합물과 철의 복합체로부터 유래된 산화철을 포함하는 코어; MXn; 및 폴산(folate), 글리시레티닉산(glycyrrhetinic acid), 및 글루코스(Glucose)로 이루어진 군에서 선택된 하나 이상을 포함하는 산화철 자성 입자를 포함하고,
    상기 M은 Cu, Sn, Pb, Mn, Ir, Pt, Rh, Re, Ag, Au, Pd 및 Os로 이루어진 군에서 선택되는 것이고,
    상기 X는 F, Cl, Br 및 I로 이루어진 군에서 선택되는 것이고,
    상기 n은 1 내지 6의 정수인 것이고,
    상기 산화철 자성 입자는 6 nm 내지 20 nm의 평균 입자경을 갖는 것인,
    간세포 표적 전달체.
PCT/KR2022/016001 2021-10-21 2022-10-20 산화철 자성 입자를 포함하는 간암 치료용 조성물의 제조방법 및 산화철 자성 입자를 포함하는 간암 치료용 조성물 WO2023068828A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0140933 2021-10-21
KR1020210140933A KR20230057010A (ko) 2021-10-21 2021-10-21 산화철 자성 입자를 포함하는 간암치료용 조성물
KR1020210140936A KR20230057011A (ko) 2021-10-21 2021-10-21 산화철 자성 입자를 포함하는 간암치료용 조성물의 제조방법
KR10-2021-0140936 2021-10-21

Publications (1)

Publication Number Publication Date
WO2023068828A1 true WO2023068828A1 (ko) 2023-04-27

Family

ID=86059502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/016001 WO2023068828A1 (ko) 2021-10-21 2022-10-20 산화철 자성 입자를 포함하는 간암 치료용 조성물의 제조방법 및 산화철 자성 입자를 포함하는 간암 치료용 조성물

Country Status (1)

Country Link
WO (1) WO2023068828A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060228551A1 (en) * 2005-04-08 2006-10-12 Industrial Technology Research Institute Core-shell structure with magnetic, thermal, and optical characteristics and manufacturing method thereof
KR20150092743A (ko) * 2012-10-05 2015-08-13 연세대학교 산학협력단 민감화 물질을 포함하는 온열 치료용 조성물
KR102175449B1 (ko) * 2020-04-13 2020-11-06 주식회사 지티아이바이오사이언스 산화철/중원자-할로겐 화합물의 코어/쉘 구조 자성 나노입자

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060228551A1 (en) * 2005-04-08 2006-10-12 Industrial Technology Research Institute Core-shell structure with magnetic, thermal, and optical characteristics and manufacturing method thereof
KR20150092743A (ko) * 2012-10-05 2015-08-13 연세대학교 산학협력단 민감화 물질을 포함하는 온열 치료용 조성물
KR102175449B1 (ko) * 2020-04-13 2020-11-06 주식회사 지티아이바이오사이언스 산화철/중원자-할로겐 화합물의 코어/쉘 구조 자성 나노입자

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI JUANJUAN, CHA RUITAO, ZHANG YULONG, GUO HONGBO, LONG KEYING, GAO PANGYE, WANG XIAOHUI, ZHOU FENGSHAN, JIANG XINGYU: "Iron oxide nanoparticles for targeted imaging of liver tumors with ultralow hepatotoxicity", JOURNAL OF MATERIALS CHEMISTRY. B, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 6, no. 40, 17 October 2018 (2018-10-17), GB , pages 6413 - 6423, XP093058449, ISSN: 2050-750X, DOI: 10.1039/C8TB01657G *
MAZURENKO R.V., ABRAMOV М.V., MAKHNO S.М., GUNYA G.M., GORBIK P.P.: "Synthesis, Electrical and Magnetic Properties of Composites Copper Iodide/Magnetite-Polychlorotrifluoroethylene", PHYSICS AND CHEMISTRY OF SOLID STATE, vol. 18, no. 2, RU , pages 215 - 221, XP055859682, ISSN: 1729-4428, DOI: 10.15330/pcss.18.2.215-221 *
WANG ZHONGLING, ZHU JING, CHEN YINYIN, GENG KAIMING, QIAN NONG, CHENG LIANG, LU ZIWEI, PAN YUE, GUO LIANG, LI YONGGANG, GU HONGWEI: "Folic acid modified superparamagnetic iron oxide nanocomposites for targeted hepatic carcinoma MR imaging", RSC ADVANCES, vol. 4, no. 15, 1 January 2014 (2014-01-01), pages 7483 - 7490, XP055877003, DOI: 10.1039/c3ra45878d *

Similar Documents

Publication Publication Date Title
Chen et al. Radionuclide 131I labeled reduced graphene oxide for nuclear imaging guided combined radio-and photothermal therapy of cancer
EP2791254B1 (en) Functionalised silicon nanoparticles
WO2012007567A1 (en) Nanoparticle-guided radiotherapy
WO2006080243A1 (ja) 被覆磁性粒子含有製剤およびその製造方法、並びに診断治療システム
KR101536325B1 (ko) 전자기파를 이용한 암 온열치료용 감작제 조성물 및 이를 이용한 암 치료 방법
JP5859552B2 (ja) 病変部位の内照射治療用ナノ粒子及び治療システム
WO2023068828A1 (ko) 산화철 자성 입자를 포함하는 간암 치료용 조성물의 제조방법 및 산화철 자성 입자를 포함하는 간암 치료용 조성물
JPH05505629A (ja) 柔組織腫瘍の治療及び/又は診断方法
WO2023068829A1 (ko) 산화철 자성 입자를 포함하는 간암치료용 조성물
WO2022145968A1 (ko) 산화철 자성 입자
WO2022145970A1 (ko) 산화철 자성 입자
KR102385556B1 (ko) 산화철 자성 입자
KR20230057011A (ko) 산화철 자성 입자를 포함하는 간암치료용 조성물의 제조방법
US20220288206A1 (en) Nanoparticles for the treatment of cancer by radiofrequency radiation
CN114848854A (zh) 一种131i-hsa-icg纳米颗粒及其制备方法和应用
JP2002514159A (ja) 新規放射性医薬組成物とマトリクスおよびそれらの使用
EP3895734B1 (en) Iron oxide magnetic particles comprising copper(i)halides
KR20220095107A (ko) 산화철 자성 입자
Liu et al. Encapsulating doxorubicin in PEGylation metal-organic frameworks for combined radiation therapy in liver cancer treatment
Wu et al. MRI-guided photothermal/photodynamic immune activation combined with PD-1 inhibitor for the multimodal combination therapy of melanoma and metastases
CN109953973A (zh) 一种新型pH敏感磁靶向纳米载药体系及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22884050

Country of ref document: EP

Kind code of ref document: A1