WO2023068766A1 - Consumption power improvement-type amplifier circuit for detecting output signal and actively adjusting smps bias voltage - Google Patents

Consumption power improvement-type amplifier circuit for detecting output signal and actively adjusting smps bias voltage Download PDF

Info

Publication number
WO2023068766A1
WO2023068766A1 PCT/KR2022/015874 KR2022015874W WO2023068766A1 WO 2023068766 A1 WO2023068766 A1 WO 2023068766A1 KR 2022015874 W KR2022015874 W KR 2022015874W WO 2023068766 A1 WO2023068766 A1 WO 2023068766A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
amplifier
output
unit
smps
Prior art date
Application number
PCT/KR2022/015874
Other languages
French (fr)
Korean (ko)
Inventor
이상혁
Original Assignee
주식회사 데스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 데스코 filed Critical 주식회사 데스코
Publication of WO2023068766A1 publication Critical patent/WO2023068766A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/26Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes without control electrode or semiconductor devices without control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers

Definitions

  • the present invention relates to a power consumption improved amplifier circuit, and more particularly, to a power consumption improved amplifier circuit that actively adjusts an SMPS bias voltage by sensing an output signal.
  • an audio amplifier usually consists of a pre-amplifier and a power amplifier, and the signal adjusted by the pre-amplifier is sent to the power amplifier, and the power amplifier transmits this signal to the speaker as a load. It is amplified to the power that can be driven sufficiently.
  • Such a power amplifier also called a main amplifier, must respond instantaneously to a rapidly changing music waveform and send power required for the waveform to the speaker.
  • a voltage amplifier 1 for performing voltage amplification on the input fine acoustic signal; an output terminal power amplifier (2) for amplifying the power of the sound signal output through the voltage amplifier and outputting it to a speaker (SP); a power voltage supply unit (3) for supplying a basic voltage and a high voltage required in response to the level of the input signal in the power amplifier (2), including the power supply voltage required to drive each part of the amplifier;
  • the voltage of the sound signal output from the output stage power amplifier 2 is compared with the reference voltage using a comparator, etc., and outputs an on/off signal corresponding to the result to the high/low supply voltage control unit 5.
  • a voltage detector 4 High/low supply that turns on/off in response to the output signal of the output voltage detection unit 4 and outputs either the basic voltage or the high voltage output from the power supply voltage supply unit 3 to the power amplifier 2
  • a reactive power reduction circuit composed of the voltage controller 5 is employed.
  • the voltage of the sound signal output from the power amplifier 2 to the speaker SP is compared with the reference voltage in the output voltage detection unit 4, if it is less than the reference voltage.
  • Low" voltage for example, a DC voltage of 60V when the current output is less than 600W in an amplifier with a maximum output of 1200W
  • the "high" voltage among the voltages output from the power supply voltage supply unit 3 (for example, the maximum output of 1200W When the current output of the amplifier is a low power of 600W or more, a DC voltage of 120V) is supplied to the power amplifier 2.
  • the reactive power reduction circuit of the power amplifier having such a configuration, when the voltage of the acoustic signal actually output from the power amplifier exceeds 50% of the maximum output, but is relatively lower than 100% (for example, 900W) Regardless of the height of the voltage level (actually, when it is desirable to supply a voltage of about 90V) even in the case of a medium output), the highest voltage (for example, 120V) among the voltages output from the power supply voltage supply unit is supplied to the power amplifier.
  • the power amplification device which is a semiconductor device in the power amplifier, overheats in the process of consuming reactive power, resulting in thermal burnout and shortening its lifespan during long-term use.
  • the power amplification elements operate unstable, greatly reducing the efficiency of the output itself, and the size of the heat sink itself installed to smoothly cool the heat generated as described above is large.
  • the size of the power amplifier itself increases, which increases the production cost of the product.
  • Korean Patent No. 10-1086064 (Low Power Consumption and High Efficiency Output Audio Amplifier) has been proposed as a first prior art.
  • Korean Patent No. 10-1086064 Low Power Consumption and High Efficiency Output Audio Amplifier
  • the low power consumption and high efficiency output type audio amplifier is a known audio amplifier having a voltage amplifier 1, a power amplifier 2, and a power supply voltage supply unit 3. , a zener diode (ZD2) for detecting the output voltage of the power amplifier, a transistor (TR1) for variable bypass voltage, a transistor (TR2) for load control, a transistor (TR3) for variable gate voltage control, and a FET (FET 1 -FETn) for controlling power supply
  • a zener diode (ZD2) for detecting the output voltage of the power amplifier
  • TR1 for variable bypass voltage
  • TR2 transistor
  • TR3 for load control
  • TR3 for variable gate voltage control
  • FET FET
  • the low-power consumption and high-efficiency output type audio amplifier of the first prior art includes a voltage amplifier (1) for amplifying a voltage of an input minute sound signal; an output terminal power amplifier 2 for amplifying the power of the sound signal output through the voltage amplifier 1 and outputting the power to a speaker SP;
  • a protection resistor ( R1) is connected between the output terminal of the power amplifier 2 and the high voltage output terminal (HB+) of the power supply voltage supply unit 3, and the voltage within the sound signal output from the power amplifier 2 is the zener voltage within itself.
  • a zener diode (ZD1) for detecting an output voltage of the power amplifier, which transmits the abnormal voltage as a base bias voltage of the transistor (TR1) for variable bypass voltage in the case of an abnormality;
  • the amount of turn “on” is changed in real time, and bypasses from the high voltage output terminal (HB+) of the power voltage supply unit (3) to the low voltage output terminal (LB+) side.
  • a bypass voltage variable transistor TR1 which varies the base bias voltage of the load control transistor TR2 through a method of varying the amount of voltage drop to be applied; The turn “on” amount is changed in real time in response to the base bias voltage that is changed corresponding to the collector voltage of the variable bypass voltage transistor TR1, and between the collector and the low voltage output terminal LB+ of the power supply voltage supply unit 3.
  • a load adjusting transistor TR2 which adjusts the load amount of the gate voltage variable control transistor TR3 by changing the load resistance R2 and its own load amount in real time; Between the high voltage output terminal (HB+) and the low voltage output terminal (LB+) of the power voltage supply unit (3), it is installed in a form connected in series with the load adjustment transistor (TR2) to respond to the load that changes in real time.
  • FET for power supply control a gate voltage variable control transistor TR3 for varying the bias voltage applied to the gates of (FET 1 -FETn); It is connected in parallel between the high voltage output terminal (HB+) and the low voltage output terminal (LB+) of the power voltage supply unit 3 and responds to the gate bias voltage supplied through the gate voltage variable control transistor TR3. The amount of turn “on” is controlled, and the voltage output from the high voltage output terminal (HB+) of the power supply voltage supply unit (3) and supplied to the power amplifier (2) is voltage dropped in response to the voltage height of the sound signal that is changed in real time. It is characterized in that an additional installation of a FET (FET 1 -FETn) for power supply control to be supplied from.
  • the maximum bias voltage applied to the gate of the power supply control FET (FET 1 -FETn) is limited between the high voltage output terminal (HB+) of the power voltage supply unit (3) and the base of the transistor (TR3) for variable gate voltage control. It is characterized by further installing a zener diode (ZD1) for gate protection to
  • reverse voltage blocking diodes D1 and D2 are further interposed between the base of the bypass voltage variable transistor TR1 and the load control transistor TR2 and the power amplifier output voltage detecting zener diode ZD2, respectively. characterized by its installation.
  • the output from the high voltage output terminal HB+ of the power voltage supply unit 3 is When voltage is supplied to the power amplifier 2, it is characterized by further installing a high voltage driving state displaying light emitting diode (LED) that displays it with light.
  • LED light emitting diode
  • symbols D3 and D4 which are not explained, are diodes for blocking reverse voltage, and R3-R5 are resistors for load and protection.
  • the low power consumption and high efficiency output type audio amplifier to which the first prior art is applied is a known audio amplifier having a voltage amplifier 1, a power amplifier 2, and a power supply voltage supply unit 3, and outputs the power amplifier.
  • Voltage detection zener diode (ZD1), bypass voltage variable transistor (TR1), load control transistor (TR2), gate voltage variable control transistor (TR3) and power supply control FET (FET 1 -FETn) are additionally installed to provide power
  • the voltage output from the high voltage output terminal (HB+) of the power voltage supply unit (3) corresponds to the actual voltage size of the sound signal It is a major technical component that can be supplied by voltage drop in real time.
  • the zener diode (ZD1) for detecting the output voltage of the power amplifier is connected in series together with the protection resistor (R1) between the output terminal of the power amplifier (2) and the high voltage output terminal (HB+) of the power supply voltage supply unit (3). state, detects whether the voltage in the sound signal output from the power amplifier 2 is higher than the zener voltage (for example, 60V) when the amplifier is driven, and for variable bypass voltage when the output is lower than the zener voltage The base bias voltage of the transistor TR1 is blocked, and when the zener voltage is higher than the zener voltage (for example, 60V or higher), a voltage higher than the zener voltage is transferred to the base of the variable bypass voltage transistor TR1 as a bias voltage.
  • the zener diode (ZD1) for detecting the output voltage of the power amplifier is connected in series together with the protection resistor (R1) between the output terminal of the power amplifier (2) and the high voltage output terminal (HB+) of the power supply voltage supply unit (3).
  • the zener diode (ZD1) When the bias voltage supplied to the base of the variable bypass voltage transistor TR1 is cut off, the transistor TR2 for load control including the transistor TR1 for variable bypass voltage and the gate voltage The driving of the variable control transistor (TR3) is also blocked, and the power supply control FET (FET 1 -FETn) is also kept in an "off" state, so the voltage output through the high voltage output terminal (HB+) of the power voltage supply unit (3) (eg 120V) is blocked by the power supply control FET (FET 1 -FETn), and the voltage (eg 60V) output through the low voltage output terminal (LB+) of the power voltage supply unit 3 is the conventional amplifier As in, it has a form supplied to the power amplifier 2.
  • bypass voltage variable transistor TR1 is an NPN type transistor, and since the voltage in the acoustic signal output from the power amplifier 2 is higher than the zener voltage of the zener diode ZD1, the zener diode ZD1 The amount of turn “on” is changed in real time in response to the height of the base bias voltage supplied through, and the amount of voltage drop bypassed from the high voltage output terminal (HB+) to the low voltage output terminal (LB+) side of the power voltage supply unit 3 It serves to vary in response to the sound output signal, thereby varying the base bias voltage of the load adjusting transistor TR2 to be described later in accordance with the magnitude of the sound output signal.
  • the load adjusting transistor TR2 is a PNP type transistor and corresponds to the collector voltage of the bypass voltage variable transistor TR1 which is variable in response to a change in the voltage in the sound signal output from the power amplifier 2.
  • the amount of turn “on” is changed in real time, and the amount of turn “on” and the load resistance (R2) installed between its collector and the low voltage output terminal (LB+) of the power voltage supply unit 3
  • the output signal changes its load amount in real time, and performs a function of automatically adjusting the emitter load amount of the gate voltage variable control transistor TR3 to be described later in response to the size of the sound output signal.
  • the gate voltage variable control transistor TR3 is an NPN type transistor connected in series with the load control transistor TR2 between the high voltage output terminal HB+ and the low voltage output terminal LB+ of the power voltage supply unit 3.
  • Bias voltage applied to the gate of the power supply control FET (FET 1 -FETn) in response to the load amount changing in real time through the load amount adjusting transistor TR2 in response to the change in the output voltage of the power amplifier 2 It performs a function of changing the size of (half-wave pulse voltage in analog form corresponding to the size of the sound signal being output with medium or large output).
  • the above power supply control FETs (FET 1 -FETn) have their source and drain connected in parallel between the high voltage output terminal (HB +) and the low voltage output terminal (LB +) of the power voltage supply unit 3, respectively, and the gate is the gate It has a form connected to the emitter of the voltage variable control transistor TR3.
  • Such a power supply control FET corresponds to the change in the output voltage of the sound signal of the power amplifier 2 through the transistor for controlling the gate voltage variable (TR3).
  • the turn-on amount is controlled in response to the waveform gate bias voltage, and the voltage output from the high voltage output terminal (HB+) of the power supply voltage supply unit 3 and supplied to the power amplifier 2 corresponds to the voltage height of the sound output signal.
  • the voltage drops in real time to supply only the predetermined voltage for example, if the maximum output of the amplifier is 1200W, but the voltage of the sound signal output from the current power amplifier (2) is 900W, which is a medium output, only 90V of the maximum voltage of 120V passes) will fulfill the role of
  • the voltage of the sound signal output from the power amplifier 2 is higher than a certain voltage, a part of the maximum output voltage output from the power supply voltage supply unit 3 is voltage dropped in response to the height. It can be supplied to the power amplifier (2) in the state of power amplifier (2), so it is possible to reduce the reactive power that is unnecessary in the power amplifier (2) as much as possible, thereby reducing unnecessary power consumption (for example, 900W sound in an amplifier with a maximum sound signal output of 1200W) 300W when a signal is output) can be prevented, and since the power amplification element in the power amplifier 2 can be prevented from overheating and burnout due to reactive power, the lifespan itself can be greatly extended.
  • unnecessary power consumption for example, 900W sound in an amplifier with a maximum sound signal output of 1200W
  • the voltage in the sound signal output to the speaker SP is compared through a zener diode, and at a low output below the reference voltage
  • the outputs (HB+, HB-) of the supply unit 3 are always fixed, and the gate voltage supplied to the amplifier (power amplifier) is varied and supplied through a separate voltage variable circuit through the voltage variable circuit of the amplifier (power amplifier). In this way, since more than necessary voltage is continuously supplied from the power supply voltage supply unit 3 to the voltage variable circuit, energy waste still occurs and, as a result, there is a limit to improving power consumption.
  • Korean Patent No. 1431924 (Bias Adjustment Apparatus and Method for Amplifiers) has been disclosed as a second prior art.
  • Figures 3 and 4 show exemplary designs of bias adjustment using a switched mode power supply to isolate the supply voltage according to the second prior art.
  • the power amplifier 710 includes an NMOS transistor 712, an inductor 714, and a resistor 716 coupled to each other.
  • Inductor 714 is coupled to the Vsmps supply voltage provided by SMPS 720.
  • a P-channel metal oxide semiconductor (PMOS) transistor 722 has a source coupled to battery supply Vbat, a drain coupled to node X, and a gate coupled to SMPS control unit 726.
  • PMOS transistor 722 has its source coupled to circuit ground, its drain coupled to node X, and its gate coupled to SMPS control unit 726.
  • SMPS control unit 726 receives the output from processor 760 as well as the voltage at node Y (not shown in FIG. 3 for brevity) and receives a first control voltage for PMOS transistor 722 and NMOS A second control voltage for transistor 724 is generated.
  • An inductor 732 is coupled between node X and node Y.
  • Capacitor 734 is coupled between node Y and circuit ground.
  • An inductor 714 of power amplifier 710 is coupled to node Y providing a voltage of Vsmps.
  • Bias adjustment circuit 740 generates a Vbias voltage across NMOS transistor 712 of power amplifier 710 such that a target Ibias current is provided to power amplifier 710 .
  • NMOS transistor 752 has its drain coupled to Vdd, its gate coupled to control circuit 762, and its source coupled to one end of resistor 754.
  • resistor 754 The other end of resistor 754 is coupled to node X.
  • Op-amp 756 has two inputs coupled to the two ends of resistor 754 and an output coupled to ADC 758.
  • Processor 760 receives the digital output from ADC 758, directs control circuit 762 to produce a desired Ibias current, and bias circuit 770 to produce a desired Vbias voltage across NMOS transistor 712. ) to control.
  • NMOS transistor 752 is turned off and SMPS 720 is turned on to generate a Vsmps voltage for power amplifier 710 based on the Vbat voltage.
  • the SMPS control unit 726 may operate as a pulse width modulator (PWM) generator and may alternately turn the PMOS transistor 722 on and off. During the on state, PMOS transistor 722 is turned on and NMOS transistor 724 is turned off. The Vbat voltage is coupled through PMOS transistor 722 to inductor 732, which stores energy from the Vbat voltage.
  • PWM pulse width modulator
  • the Vbat voltage provides current to capacitor 734 and current amplifier 710 during the on state.
  • PMOS transistor 722 is turned off and NMOS transistor 724 is turned on.
  • the Vbat voltage is disconnected from inductor 732 by PMOS transistor 722.
  • Inductor 732 is coupled to circuit ground by NMOS transistor 724 and provides its stored energy to capacitor 734 and power amplifier 710 .
  • Capacitor 734 holds the Vsmps voltage approximately constant and also provides its charge to power amplifier 710 during the off state. Inductor 732 and capacitor 734 also form a low pass filter that suppresses ripple in the Vsmps voltage due to switching of MOS transistors 722 and 724.
  • SMPS 720 is turned off by turning off both MOS transistors 722 and 724.
  • NMOS transistor 752 is turned on and passes the Ibias current through resistor 754 to power amplifier 710.
  • Op-amp 756 senses/measures the voltage Vres across resistor 754.
  • ADC 758 quantizes the measured Vres voltage and provides the digitized Vres voltage to processor 760.
  • the processor 760 compares the calculated/measured Ibias current to the target Ibias current and controls the bias circuit 770 to generate a Vbias voltage such that the measured Ibias current matches the target Ibias current. . For example, if the measured Ibias current is less than the target Ibias current, processor 760 may control bias circuit 770 to increase the Vbias voltage, which then causes the Ibias current to increase. . If the measured Ibias current is greater than the target Ibias current, the reverse applies.
  • Processor 760 may direct control circuit 762 to turn off NMOS transistor 752 in a normal operating mode or to turn on NMOS transistor 752 in a bias adjustment mode. Processor 760 may also direct control circuit 762 to generate a control voltage for NMOS transistor 752 such that the Vsmps voltage in bias adjustment mode is similar to the Vsmps voltage in normal operating mode.
  • SMPS 720 is typically used to regulate the battery voltage or external voltage to a lower supply voltage for power amplifier 710 [0058], which then reduces power consumption and improves power-added efficiency (PAE). can also be improved.
  • the exemplary design shown in FIG. 3 utilizes SMPS 720 to isolate the Vbat voltage from node X, which is accomplished by turning off both MOS transistors 722 and 724. With node X disconnected from the Vbat voltage, an external current may be applied to power amplifier 710 through NMOS transistor 752 and resistor 754. This external current may be measured and generate an appropriate Vbias voltage across NMOS transistor 712 to obtain a target Ibias current for power amplifier 710. During the normal mode of operation, NMOS transistor 752 is turned off and does not affect the operation of power amplifier 710.
  • FIG. 4 shows a schematic diagram of another exemplary design of bias adjustment using SMPS 720.
  • Power amplifier 710 and SMPS 720 are coupled as described above with respect to FIG. 3 .
  • Bias adjustment circuit 742 generates a Vbias voltage across NMOS transistor 712 of power amplifier 710 such that a target Ibias current is provided to the power amplifier.
  • NMOS transistor 752, control circuit 762, and processor 760 are coupled as described above with respect to FIG.
  • Resistor 754 in FIG. 3 is replaced by a current source 764 capable of providing a known current of Ibias to power amplifier 710.
  • NMOS transistor 752 and current source 764 may also be replaced with a PMOS current source transistor controlled by control circuit 762 (or an ideal tunable current source).
  • Switch 772 has one terminal coupled to the gate of NMOS transistor 712 and the other terminal coupled to the drain of NMOS transistor 712 .
  • Switch 774 has one terminal coupled to the gate of NMOS transistor 712 and the other terminal coupled to the gate of NMOS transistor 782 .
  • Switches 772 and 774 receive the Vctrl control signal.
  • Switch 776 is coupled between the output of bias circuit 770 and resistor 716 and receives the control signal.
  • NMOS transistor 782 has its source coupled to circuit ground and its drain coupled to one input of op-amp 786.
  • PMOS transistor 784 has its drain and gate coupled to the drain of NMOS transistor 782 and its source coupled to Vdd. PMOS transistor 784 may also be replaced with a resistor having a known value.
  • Op-amp 786 has another input coupled to Vdd and an output coupled to ADC 758.
  • Processor 760 receives the digital output from ADC 758, directs control circuit 762 to provide the desired Ibias current, and bias circuit 770 to produce the desired Vbias voltage across NMOS transistor 712. to control
  • NMOS transistor 752 is turned off, switches 772 and 774 are open, switch 776 is closed, and SMPS 720 is turned on to power amplifier 710. Generate Vsmps voltage.
  • SMPS 720 is turned off by turning off both MOS transistors 722 and 724.
  • the target Ibias current may be converted to a corresponding target Icm current.
  • the op-amp 786 senses/measures the Vgs voltage of the PMOS transistor 784 in a state where the switches 772 and 774 are closed, the switch 776 is open, and the Vbias voltage is not connected.
  • ADC 758 quantizes the measured Vgs voltage and provides the digitized Vgs voltage to processor 760.
  • Processor 760 compares the calculated/measured Icm current to the target Icm current and determines the Vbias voltage such that the measured Icm current matches the target Icm current. For example, if the measured Icm current is less than the target Icm current, processor 760 may increase the Vbias voltage, which then causes both the Ibias current and the Icm current to be increased. If the measured Icm current is greater than the target Icm current, the reverse applies. Bias circuit 770 generates the Vbias voltage as indicated by processor 760 and applies the Vbias voltage through switch 776 with switches 772 and 774 open. The application of the Vbias voltage and the measurement of the Icm current may be performed sequentially or repeatedly.
  • the Icm current may be measured with the Vbias voltage disconnected by opening switch 776, and then the Vbias voltage may be applied with switches 772 and 774 closed.
  • Switch 776 disconnects bias circuit 770 when switches 772 and 774 are closed and the Icm current is being measured. Switches 772 and 774 are open while the Vbias voltage is connected.
  • the bias current of the power amplifier 710 can be measured, and the bias change due to aging, deformation in the IC process, power supply voltage, temperature, and/or other phenomena is compensated.
  • the bias current can be adjusted to
  • the second prior art although it relates to an amplifier circuit used in a transmitter stage, compensates in response to a bias change of the power amplifier 710, and among them, the technology of changing the voltage of the SMPS itself is partially It is implied.
  • the specific configuration of the circuit is insufficient to react to the peak waveform of the audio power amplifier that changes dramatically and appropriately send the power required for the peak waveform to the speaker, and in addition to the SMPS controller 726, the ADC 758 ) or a complicated IC chip such as the processor 760, there is a problem that the circuit becomes too heavy. That is, in the bias correction circuits 740 and 742 of the second prior art, since more power than the reduced power of the bias voltage of the power amplifier will be used in the processor or other control circuits, eventually to achieve the purpose of reducing power consumption. It's not a circuit, I'd say it's more for the purpose of bias matching.
  • both of the first and second prior arts do not mention the configuration of bias voltage adjustment to respond to the instantaneous peak voltage of the power amplifier.
  • the present invention reacts instantaneously to the peak waveform of the audio power amplifier and appropriately sends the bias voltage required for the peak waveform from the SMPS to the speaker.
  • An object of the present invention is to provide a power consumption improving amplifier circuit that detects an output signal to optimally reduce power consumption and actively adjusts an SMPS bias voltage.
  • a power consumption improving amplifier circuit that detects an output signal and actively adjusts an SMPS bias voltage, transmits the amplified signal from the power amplifier 110 to a speaker (SP)
  • the amplifier unit 100 further includes a peak voltage detection unit 120 outputting to but detecting a peak voltage output from an output terminal; And the peak voltage value detected by the peak voltage detection unit 120 is charged and maintained at the maximum peak value, compared with the reference voltage, the bias value is increased when the amplifier output is high, and the output value is adjusted in such a way that it is lowered when the amplifier output is low.
  • the SMPS unit 200 for outputting;
  • the SMPS unit 200 includes an input rectifier 260 for full-wave rectification of normal AC commercial power, an inverting unit 270 for inverting the power rectified by the input rectifier 260, A transformer 280 composed of a transformer that transforms the AC inverted by the inverting unit 270 into a voltage suitable for speaker power, and an output stage rectifier that rectifies and outputs the AC transformed by the transformer 280 again ( 290), a peak voltage charging unit 210 that senses, charges, and maintains the output of the amplifier unit, and a comparison unit 240 that compares the output voltage as it is or the amplified output voltage of the peak voltage charging unit 210 with a reference voltage. ) and a control signal generating unit 250 for controlling the inverting of the inverting unit 270 according to the output of the comparator 240.
  • the peak voltage detection unit 120 is connected to the output terminal (OUT_DETECT1) of the power amplification unit 110, and the peak voltage detection unit 120 has a divided voltage for voltage detection.
  • the connection terminal of the resistors R17 and R18 is connected to the output terminal LEVEL_DET12 of the amplifier unit through the diode D8 for half-wave rectification, so that the peak voltage of the amplifier output terminal sensed by the voltage-sensing voltage divider resistors R17 and R18 is a half-wave rectifier. It is characterized in that it is rectified and input to the SMPS unit (200).
  • the half-wave rectified peak voltage having an input terminal connected to the output terminal LEVEL_DET12 of the amplifier unit passes through a second resistor R2 for connection to the first amplifier U1-B.
  • the output terminal of the first amplifier (U1-B) is feedback-connected to the inverting input terminal through the second diode (D2) and the fourth resistor (R4), and at the same time, the first capacitor (C1)
  • the first amplifier (U1-B) feeds back the half-wave rectified DC voltage of the peak voltage detected at the output terminal of the amplifier unit (100), and the maximum peak value is charged in the first capacitor (C1). characterized in that it is maintained.
  • an amplification unit 220 for amplifying the output voltage of the peak voltage charging unit 210 is further included, and the comparator 240 compares the voltage amplified by the amplification unit 220 with a reference voltage. It is characterized by doing.
  • the limiting unit 230 is connected to the input side of the comparator 240, and the output of the amplifying unit 200 is limited by the limiting element of the limiting unit, so that an unnecessary constant voltage or a constant for amplifier protection is limited. It is characterized in that it is limited so that the output is not higher than the voltage.
  • the SMPS unit 200 further includes a bias setting switching unit 300 for generating a plurality of reference voltages by generating a reference voltage of the comparator 240.
  • a power consumption improvement amplifier circuit for actively adjusting the SMPS bias voltage by sensing the output signal; and a speaker (SP) for audio output of a signal amplified by the SMPS bias voltage corresponding to the output signal by the amplifier circuit.
  • SP speaker
  • the power consumption improvement type amplifier circuit of the present invention it is possible to optimally reduce power consumption by reacting instantaneously to a severely changing peak waveform of an audio power amplifier and appropriately sending a bias voltage required for such a peak waveform from the SMPS to a speaker. It is possible to optimally improve power consumption by actively adjusting the SMPS bias voltage by sensing the output signal for
  • FIG. 1 is a block diagram of an amplifier circuit for reducing reactive power generated in a power amplifier in a conventional amplifier.
  • FIG. 2 is a block diagram of an amplifier circuit for reducing reactive power generated from a power amplifier in an amplifier according to a first prior art
  • Figures 3 and 4 show exemplary designs of bias adjustment using a switched mode power supply to isolate the supply voltage according to the second prior art.
  • FIG. 5 is a circuit diagram of an amplifier unit in a power consumption improving amplifier circuit that actively adjusts an SMPS bias voltage by sensing an output signal according to the present invention.
  • FIG. 6 is a circuit diagram of an SMPS unit in a power consumption improving amplifier circuit that actively adjusts an SMPS bias voltage by sensing an output signal according to a first embodiment of the present invention.
  • FIG. 7 is a circuit diagram of an SMPS unit in a power consumption improving amplifier circuit that actively adjusts an SMPS bias voltage by sensing an output signal according to a second embodiment of the present invention.
  • FIG. 5 is a circuit diagram of an amplifier unit in a power consumption improving amplifier circuit that actively adjusts an SMPS bias voltage by sensing an output signal according to the present invention
  • FIG. 6 is a circuit diagram of an output signal according to a first embodiment of the present invention
  • 7 is a circuit diagram of the SMPS unit in the power consumption improvement type amplifier circuit that actively adjusts the SMPS bias voltage
  • FIG. This is the circuit diagram of the SMPS part in the amplifier circuit.
  • the power consumption improving amplifier circuit that detects the output signal and actively adjusts the SMPS bias voltage according to the first embodiment of the present invention transmits the signal amplified by the power amplifier 110 to the speaker.
  • an amplifier unit 100 that outputs to (SP) and further includes a peak voltage detection unit 120 that detects a peak voltage output from an output terminal; And the peak voltage value detected by the peak voltage detection unit 120 is charged to the maximum peak value and amplified to a required voltage value, compared with the reference voltage, the bias value is increased when the amplifier output is high, and the bias value is lowered when the amplifier output is low.
  • SMPS unit 200 that adjusts and outputs VCC and VEE values in a manner of; is composed of
  • the peak voltage detection unit 120 is connected to the output terminal (OUT_DETECT1) of the power amplification unit 110 composed of an RC circuit. It is connected to the output terminal (LEVEL_DET12) of the amplifier through the half-wave rectification diode (D8).
  • OUT_DETECT1 the output terminal of the power amplification unit 110 composed of an RC circuit.
  • LEVEL_DET12 the output terminal of the amplifier through the half-wave rectification diode (D8).
  • the peak voltage of the amplifier output stage sensed by the voltage-sensing voltage divider resistors R17 and R18 is input to the SMPS unit 200 of FIG. 6 .
  • Non-explanatory code 'RL' is a relay.
  • a transformer 280 composed of an inverting unit 270 that inverts the power rectified by the input rectifier 260 and a transformer that transforms the AC inverted by the inverting unit 270 into a voltage suitable for speaker power.
  • an output stage rectifier 290 that rectifies the alternating current transformed in the transformer 280 again, in the conventional SMPS unit 200, the peak voltage charging unit 210, the amplifying unit 220, the limiting unit ( 230), a comparison unit 240 and a control signal generator 250 are characterized in that it further comprises.
  • the peak voltage charging unit 210 having an input terminal connected to the output terminal (LEVEL_DET12) of the amplifier unit, the half-wave rectified peak voltage passes through the second resistor R2 for connection to the first amplifier. It is connected to the non-inverting input terminal of (U1-B), and the output terminal of the first amplifier (U1-B) is feedback-connected to the inverting input terminal through the second diode (D2) and the fourth resistor (R4), and at the same time, 1 is connected to the capacitor (C1).
  • a first resistor (R1) is connected to a 12V power supply in parallel with the second resistor (R2) at the non-inverting input terminal of the first amplifier (U1-B), for example, so that the minimum power is maintained. It is for In addition, a second capacitor C2, a third resistor R3, and a fifth resistor R5 are added as elements added to the first amplifier U1-B.
  • the inverting input terminal of the first amplifier (U1-B) (ie, the first capacitor (C1)) is connected to the second amplifier (U1-A) of the amplification unit (200) through a sixth resistor (R6). It is connected to the non-inverting input terminal, where voltage amplification is performed to the required voltage value.
  • the output terminal of the second amplifier (U1-A) is connected to the inverting input terminal through the fifth capacitor (C5) for feedback and the seventh resistor (R7), and the third capacitor (C3) and the eighth capacitor (C3) as other auxiliary elements. Resistor R8 is added.
  • the output terminal of the second amplifier U1-A of the amplification unit 200 is connected to the ratio of the comparator U3-A of the comparison unit 240 through the tenth resistor R10 and the eleventh resistor R11. It is connected to the inverting input terminal, and thus outputs an output value compared with the reference voltage generated by the reference voltage generating units (R12, R13, R14), and finally in response to the output of the comparator 240 described above, the SMPS It controls the power output.
  • the half-wave rectified DC voltage of the peak voltage detected at the output terminal of the amplifier unit is fed back in the first amplifier (U1-B) so that the maximum peak value is maintained after being charged in the first capacitor (C1), and the second After amplifying the voltage through the amplifier (U1-A) and changing it to the required voltage value (At this time, the maximum voltage of the DC voltage is limited by the Zener diode (U2) to increase the voltage of +VCC and -VEE above a certain level ), and is compared with the reference value of the comparator (U3-A).
  • the limit unit 230 is connected to the eleventh resistor R11 of the comparator 240, and the output of the amplification unit 200 is a limit element of the limit unit (for example, a zener diode U2). ), so that it is not output beyond a certain voltage for unnecessary or amplifier protection.
  • a limit element of the limit unit for example, a zener diode U2.
  • the lower power terminal of the light emitting unit of the photocoupler PC1 of the control signal generator 250 (for example, pin 2 of PC1 in FIG. 6) is connected. It is connected to the output terminal of the comparator U3-A of the comparator 240 through the resistor R15 and the anti-reverse diode D7, so that the resistance values of the reference voltage generators R12, R13, and R14 When the output value of the amplifier is a voltage higher than the set range than the comparison reference value, which is the voltage set by changing, the output value of the output terminal (No.
  • the control signal generator 250 The photocoupler (PC1) is conducted, and eventually, through this, it is applied to the control signal input terminal (MAIN_F / B) of the PWM controller 171 of the inverting unit 270 of the SMPS unit, thereby adjusting the PWM duty to invert
  • the switching devices 272 and 273 for example, MOS FET
  • the amplifier circuit of FIG. 6 when the output voltage of the SMPS is fixed in the amplifier, the voltage when used as a PA amplifier for high impedance (HIGH IMPEDANCE) is high, so the amplifier when used as an SR amplifier for low impedance (LOW IMPEDANCE) It is possible to solve the problem of increased switching loss and low power efficiency, and to improve power waste by increasing the power efficiency of the overall product, and furthermore, it is possible to respond to both PA and SR amplifiers.
  • the output terminal (pin 1) of the comparator (U3-A) is changed to a HIGH value, so that the photocoupler (PC1) of the control signal generator 250 is not conducted, and eventually through this, the control signal input terminal (MAIN_F) of the PWM controller 171 of the inverting unit 270 of the SMPS unit /B) so that the control signal is not applied, so that the PWM DUTY is adjusted to turn on/off the inverting switching elements 272 and 273 (for example, MOS FET) at a duty ratio of a low power factor, eventually, the SMPS
  • the output voltage is adjusted to a lower level, and in particular, according to the power consumption improving amplifier circuit of the present invention, it is possible to actively adjust the SMPS bias voltage by detecting the peak output signal with an extremely simple circuit.
  • the amplifier unit 100 is the same as that of the first embodiment of FIG. 5, except that there is a difference only in the SMPS unit 200'.
  • the SMPS unit (200' in FIG. 7) is also different from the SMPS unit (200 in FIG. 6) of the first embodiment only in the presence or absence of the bias setting switching unit 300, so other descriptions are omitted. , Only the bias setting switching unit 300 will be described hereinafter.
  • the SMPS unit 200' of the second embodiment has a plurality of reference voltage generating circuits for generating the reference voltage of the comparator 240', for example, the reference voltage for PA. It has generating circuits (R12, R13, R14) and reference voltage generating circuits for SR (R12, R13, R19), and a bias setting switching unit 300 for switching between them is added.
  • the reference voltage generator circuits R12, R13, and R14 for PA are relative to the inverting input terminal of the comparator U3-A.
  • the bias setting switching unit 300 is switched for SR (refer to the dotted line in FIG. 7)
  • the SR reference voltage generator circuits R12, R13, and R19 generate the comparator U3.
  • a relatively high reference voltage is applied to the inverting input terminal of -A).
  • the reference voltage value is set differently so that it can more reliably respond to both PA and SR fields with different operating voltages, thereby reducing consumption in most environments where the amplifier is used. It has the advantage of saving power as much as possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

The present invention is to provide a consumption power improvement-type amplifier circuit for detecting an output signal and actively adjusting an SMPS bias voltage in order to optimally reduce consumption power, the circuit comprising: an amplifier unit (100) which outputs a signal amplified by a power amplification unit (110) to a speaker (SP), and further includes a peak voltage detection unit (120) for detecting a peak voltage output from an output terminal; and an SMPS unit (200) which charges and maintains a peak voltage value detected by the peak voltage detection unit (120) at a maximum peak value, and outputs an output value after adjusting the output value in such a manner of increasing a bias value when an amplifier output determined through comparison with a reference voltage is higher than the reference voltage, and decreasing the bias value when the amplifier output is lower than the reference voltage.

Description

출력 신호를 감지하여 능동적으로 SMPS 바이어스 전압을 조절하는 소비 전력 개선형 앰프 회로Power consumption improvement amplifier circuit that detects the output signal and actively adjusts the SMPS bias voltage
본 발명은 소비 전력 개선형 앰프 회로에 관한 것으로, 더욱 상세하게는 출력 신호를 감지하여 능동적으로 SMPS 바이어스 전압을 조절하는 소비 전력 개선형 앰프 회로에 관한 것이다.The present invention relates to a power consumption improved amplifier circuit, and more particularly, to a power consumption improved amplifier circuit that actively adjusts an SMPS bias voltage by sensing an output signal.
일반적으로, 오디오 앰프는 보통 프리 앰프(Pre-amplifier)와 전력용 앰프(Power amplifier)로 이루어져 있고, 프리 앰프에서 조정된 신호는 전력용 앰프로 보내지고 전력용 앰프는 이 신호를 부하인 스피커를 충분히 구동시킬 수 있는 전력으로까지 증폭한다.In general, an audio amplifier usually consists of a pre-amplifier and a power amplifier, and the signal adjusted by the pre-amplifier is sent to the power amplifier, and the power amplifier transmits this signal to the speaker as a load. It is amplified to the power that can be driven sufficiently.
이와 같은 전력용 앰프는 주 앰프(main amplifier)라고도 불리며 심하게 변화하는 음악 파형에도 순간적으로 반응하여 파형에 필요한 전력을 스피커에 보내주어야 한다.Such a power amplifier, also called a main amplifier, must respond instantaneously to a rapidly changing music waveform and send power required for the waveform to the speaker.
한편, 일부 앰프에서는 전력 증폭기에서 발생되는 무효전력을 줄이기 위하여, 도 1 에서 보는 바와 같이, 입력되는 미세 음향신호에 대한 전압 증폭을 실시하는 전압 증폭기(1)와; 상기 전압 증폭기를 통해 출력되는 음향신호를 전력증폭시켜 스피커(SP)로 출력시켜 주는 출력단 전력 증폭기(2)와; 앰프의 각부 구동에 필요한 전원 전압을 포함하여 전력 증폭기(2)에서 입력신호의 레벨에 대응하여 필요로 하는 기본전압 및 높은 전압을 공급해 주는 전원전압 공급부(3)와; 상기 출력단 전력 증폭기(2)에서 출력되고 있는 음향신호의 전압과 비교기 등을 이용하여 기준전압과 상호 비교하여 그 결과에 대응되는 온/오프 신호를 하이/로우 공급전압 제어부(5)로 출력하는 출력 전압 검출부(4)와; 상기 출력전압 검출부(4)의 출력신호에 부응하여 온/오프되며 전원전압 공급부(3)에서 출력되고 있는 기본전압 또는 높은 전압 중 어느 한 전압을 전력 증폭기(2)에 출력시켜 주는 하이/로우 공급전압 제어부(5)로 구성된 무효전력 저감회로를 채택하고 있는 경우도 있다.On the other hand, in some amplifiers, in order to reduce the reactive power generated by the power amplifier, as shown in FIG. 1, a voltage amplifier 1 for performing voltage amplification on the input fine acoustic signal; an output terminal power amplifier (2) for amplifying the power of the sound signal output through the voltage amplifier and outputting it to a speaker (SP); a power voltage supply unit (3) for supplying a basic voltage and a high voltage required in response to the level of the input signal in the power amplifier (2), including the power supply voltage required to drive each part of the amplifier; The voltage of the sound signal output from the output stage power amplifier 2 is compared with the reference voltage using a comparator, etc., and outputs an on/off signal corresponding to the result to the high/low supply voltage control unit 5. a voltage detector 4; High/low supply that turns on/off in response to the output signal of the output voltage detection unit 4 and outputs either the basic voltage or the high voltage output from the power supply voltage supply unit 3 to the power amplifier 2 In some cases, a reactive power reduction circuit composed of the voltage controller 5 is employed.
이와 같은 구성을 갖는 전력 증폭기의 무효전력 저감회로는 전력 증폭기(2)에서 스피커(SP)로 출력되는 음향신호의 전압을 출력전압 검출부(4)에서 기준전압과 비교하는 방식을 통해 기준전압 미만이면 하이/로우 공급전압 제어부(5)로 "로우"신호를 발생시켜 하이/로우 공급전압 제어부(5) 내의 스위칭 트랜지스터를 "오프"시켜 주는 방식을 통해 전원전압 공급부(3)에서 출력되는 전압 중 "로우" 전압(예를 최대 출력 1200W의 앰프에서 현재출력이 600W 미만의 저출력인 경우 60V의 직류전압)이 전력 증폭기(2)에 공급되도록 하고, 기준전압 이상이면 하이/로우 공급전압 제어부(5)로 "하이 "신호를 발생시켜 하이/로우 공급전압 제어부(5) 내의 스위칭 트랜지스터를 "온"되도록 하는 방식을 통해 전원전압 공급부(3)에서 출력되는 전압 중 "하이" 전압(예를 최대 출력 1200W의 앰프에서 현재출력이 600W 이상의 저출력인 경우 120V의 직류전압)이 전력 증폭기(2)에 공급되도록 한다.In the reactive power reduction circuit of the power amplifier having such a configuration, the voltage of the sound signal output from the power amplifier 2 to the speaker SP is compared with the reference voltage in the output voltage detection unit 4, if it is less than the reference voltage. Of the voltage output from the power supply voltage supply unit 3 through a method of generating a “low” signal to the high/low supply voltage control unit 5 to “off” the switching transistor in the high/low supply voltage control unit 5 Low" voltage (for example, a DC voltage of 60V when the current output is less than 600W in an amplifier with a maximum output of 1200W) is supplied to the power amplifier 2, and if it is higher than the reference voltage, the high / low supply voltage control unit 5 The "high" voltage among the voltages output from the power supply voltage supply unit 3 (for example, the maximum output of 1200W When the current output of the amplifier is a low power of 600W or more, a DC voltage of 120V) is supplied to the power amplifier 2.
그러나, 이와 같은 구성을 갖는 전력 증폭기의 무효전력 저감회로는 실제 전력 증폭기에서 출력되는 음향신호의 전압이 예를 들어 최대 출력 대비 50%는 넘으나 100% 보다는 비교적 낮은 전압 경우(예를 들어 900W로 중출력일 경우)에도 그 전압레벨(실제로는 90V 정도의 전압을 공급해 주는 것이 바람직할 경우)의 높이에 무관하게 무조건 전원전압 공급부에서 출력되는 전압 중 최고 높은 전압(예를 들어 120V)을 전력 증폭기에 공급시켜 주게 된다.However, in the reactive power reduction circuit of the power amplifier having such a configuration, when the voltage of the acoustic signal actually output from the power amplifier exceeds 50% of the maximum output, but is relatively lower than 100% (for example, 900W) Regardless of the height of the voltage level (actually, when it is desirable to supply a voltage of about 90V) even in the case of a medium output), the highest voltage (for example, 120V) among the voltages output from the power supply voltage supply unit is supplied to the power amplifier. will be supplied to
이와 같이 전력 증폭기에서 출력되는 음향신호의 전압이 기준전압 이상이긴 하나 최대 출력레벨보다는 비교적 낮은 일부 음향신호 레벨임(예를 들어 중출력)에도 불구하고 무조건 최대로 높은 전압이 공급되므로 일부 무효전력이 발생되어 그로 인해 불필요하게 전력을 소비하게 됨은 물론 전력 증폭기 내 반도체 소자인 전력증폭소자가 무효전력를 소모하는 과정에서 과열되어 열 소손이 발생하게 될 뿐만 아니라 장기간 사용시 그 수명이 짧아지게 되는 문제점도 있다.In this way, even though the voltage of the sound signal output from the power amplifier is higher than the reference voltage, but the level of some sound signal is relatively lower than the maximum output level (for example, medium power), the highest voltage is supplied unconditionally, so that some reactive power is generated. As a result, power is consumed unnecessarily, and the power amplification device, which is a semiconductor device in the power amplifier, overheats in the process of consuming reactive power, resulting in thermal burnout and shortening its lifespan during long-term use.
또한, 상기와 같이 열이 발생하게 될 경우 전력증폭소자들이 불안정하게 작동하게 되어 출력 자체의 효율이 크게 저하되고, 또 상기와 같이 발생되는 열을 원활히 냉각시켜 주기 위해 설치되는 방열판 자체의 크기가 커지게 될 뿐만 아니라 결국, 전력 증폭기 자체의 크기가 커지게 되어 제품의 생산원가도 상승하게 되는 등의 문제점이 있다.In addition, when heat is generated as described above, the power amplification elements operate unstable, greatly reducing the efficiency of the output itself, and the size of the heat sink itself installed to smoothly cool the heat generated as described above is large. In addition, as a result, the size of the power amplifier itself increases, which increases the production cost of the product.
상기 문제점을 해소하기 위해 대한민국 특허 제10-1086064호(저소비전력 및 고효율 출력형 오디오 앰프)가 제1 종래기술로서 제안되었는바, 도 2는 상기 제1 종래기술에 따른 저소비전력 및 고효율 출력형 오디오 앰프를 보여주는 블럭도이다.In order to solve the above problem, Korean Patent No. 10-1086064 (Low Power Consumption and High Efficiency Output Audio Amplifier) has been proposed as a first prior art. Here is a block diagram showing the amplifier.
상기 제1 종래기술에 따른 저소비전력 및 고효율 출력형 오디오 앰프는, 도 2에서 보는 바와 같이, 전압 증폭기(1)와 전력 증폭기(2) 및 전원전압 공급부(3)를 구비한 공지된 오디오 앰프에 있어서, 전력 증폭기 출력전압 검출용 제너다이오드(ZD2)와 바이패스전압 가변용 트랜지스터(TR1), 부하량 조절용 트랜지스터(TR2), 게이트 전압 가변 제어용 트랜지스터(TR3) 및 전원공급 제어용 FET(FET1-FETn)를 부가 설치하여 전력 증폭기(2)에서 출력되는 음향신호 내 전압이 제너다이오드(ZD1)의 제너전압 이상일 때 전원전압 공급부(3)로부터 출력되는 높은 전압을 음향신호의 실제 전압 크기에 부응하여 실시간으로 전압 강하시켜 공급할 수 있도록 한 것을 특징으로 한다.As shown in FIG. 2, the low power consumption and high efficiency output type audio amplifier according to the first prior art is a known audio amplifier having a voltage amplifier 1, a power amplifier 2, and a power supply voltage supply unit 3. , a zener diode (ZD2) for detecting the output voltage of the power amplifier, a transistor (TR1) for variable bypass voltage, a transistor (TR2) for load control, a transistor (TR3) for variable gate voltage control, and a FET (FET 1 -FETn) for controlling power supply When the voltage in the sound signal output from the power amplifier 2 is higher than the zener voltage of the zener diode (ZD1) by additionally installing a high voltage output from the power voltage supply unit 3 in response to the actual voltage size of the sound signal in real time It is characterized in that it can be supplied by dropping the voltage.
즉, 상기 제1 종래기술의 저소비전력 및 고효율 출력형 오디오 앰프는, 입력되는 미세 음향신호에 대한 전압 증폭을 실시하는 전압 증폭기(1)와; 상기 전압 증폭기(1)를 통해 출력되는 음향신호를 전력증폭시켜 스피커(SP)로 출력시켜 주는 출력단 전력 증폭기(2)와; 앰프의 각부 구동에 필요한 전원 전압을 포함하여 전력 증폭기(2)에서 입력신호의 레벨에 대응하여 필요로 하는 높고 낮은 전압을 공급해 주는 전원전압 공급부(3)를 구비한 오디오 앰프에 있어서, 보호용 저항(R1)과 함께 상기 전력 증폭기(2)의 출력단자와 전원전압 공급부(3)의 높은 전압 출력단자(HB+) 사이에 연결되어 상기 전력 증폭기(2)에서 출력되는 음향신호 내 전압이 자체 내의 제너전압 이상일 경우 그 이상 전압을 바이패스전압 가변용 트랜지스터(TR1)의 베이스 바이어스 전압으로 전달해 주는 전력 증폭기 출력전압 검출용 제너다이오드(ZD1)와; 상기 제너다이오드(ZD1)를 통해 공급되는 베이스 바이어스 전압에 대응하여 턴 "온"량이 실시간으로 변화되며 전원전압 공급부(3)의 높은 전압 출력단자(HB+)에서 낮은 전압 출력단자(LB+) 측으로 바이패스되는 전압강하량을 가변시켜 주는 방식을 통해 부하량 조절용 트랜지스터(TR2)의 베이스 바이어스 전압을 가변시켜 주는 바이패스전압 가변용 트랜지스터(TR1)와; 상기 바이패스전압 가변용 트랜지스터(TR1)의 콜렉터 전압에 대응하여 변화되는 베이스 바이어스 전압에 대응하여 턴 "온"량이 실시간으로 변화되며 콜렉터와 전원전압 공급부(3)의 낮은 전압 출력단자(LB+) 사이에 설치된 부하 저항(R2)과 자체의 부하량을 실시간으로 변화시켜 게이트 전압 가변 제어용 트랜지스터(TR3)의 부하량을 조절해 주는 부하량 조절용 트랜지스터(TR2)와; 전원전압 공급부(3)의 높은 전압 출력단자(HB+)와 낮은 전압 출력단자(LB+) 사이에서 상기 부하량 조절용 트랜지스터(TR2)와 직렬 연결된 형태로 설치되어 실시간으로 변화되는 부하량에 부응하여 전원공급 제어용 FET(FET1-FETn)의 게이트에 인가되는 바이어스 전압을 가변시켜 주는 게이트 전압 가변 제어용 트랜지스터(TR3)와; 상기 전원전압 공급부(3)의 높은 전압 출력단자(HB+)와 낮은 전압 출력단자(LB+) 사이에서 각각 병렬 연결된 형태를 갖고 상기 게이트 전압 가변 제어용 트랜지스터(TR3)를 통해 공급되는 게이트 바이어스 전압에 부응하여 턴 "온"량이 제어되며 전원전압 공급부(3)의 높은 전압 출력단자(HB+)에서 출력되어 전력 증폭기(2)로 공급되는 전압이 실시간으로 변화되는 음향신호의 전압 높이에 대응하여 전압 강하된 상태에서 공급되게 하는 전원공급 제어용 FET(FET1-FETn);를 부가 설치한 것을 특징으로 한다.That is, the low-power consumption and high-efficiency output type audio amplifier of the first prior art includes a voltage amplifier (1) for amplifying a voltage of an input minute sound signal; an output terminal power amplifier 2 for amplifying the power of the sound signal output through the voltage amplifier 1 and outputting the power to a speaker SP; A protection resistor ( R1) is connected between the output terminal of the power amplifier 2 and the high voltage output terminal (HB+) of the power supply voltage supply unit 3, and the voltage within the sound signal output from the power amplifier 2 is the zener voltage within itself. a zener diode (ZD1) for detecting an output voltage of the power amplifier, which transmits the abnormal voltage as a base bias voltage of the transistor (TR1) for variable bypass voltage in the case of an abnormality; In response to the base bias voltage supplied through the zener diode (ZD1), the amount of turn “on” is changed in real time, and bypasses from the high voltage output terminal (HB+) of the power voltage supply unit (3) to the low voltage output terminal (LB+) side. a bypass voltage variable transistor TR1 which varies the base bias voltage of the load control transistor TR2 through a method of varying the amount of voltage drop to be applied; The turn “on” amount is changed in real time in response to the base bias voltage that is changed corresponding to the collector voltage of the variable bypass voltage transistor TR1, and between the collector and the low voltage output terminal LB+ of the power supply voltage supply unit 3. a load adjusting transistor TR2 which adjusts the load amount of the gate voltage variable control transistor TR3 by changing the load resistance R2 and its own load amount in real time; Between the high voltage output terminal (HB+) and the low voltage output terminal (LB+) of the power voltage supply unit (3), it is installed in a form connected in series with the load adjustment transistor (TR2) to respond to the load that changes in real time. FET for power supply control a gate voltage variable control transistor TR3 for varying the bias voltage applied to the gates of (FET 1 -FETn); It is connected in parallel between the high voltage output terminal (HB+) and the low voltage output terminal (LB+) of the power voltage supply unit 3 and responds to the gate bias voltage supplied through the gate voltage variable control transistor TR3. The amount of turn "on" is controlled, and the voltage output from the high voltage output terminal (HB+) of the power supply voltage supply unit (3) and supplied to the power amplifier (2) is voltage dropped in response to the voltage height of the sound signal that is changed in real time. It is characterized in that an additional installation of a FET (FET 1 -FETn) for power supply control to be supplied from.
또, 상기 전원전압 공급부(3)의 높은 전압 출력단자(HB+)와 게이트 전압 가변 제어용 트랜지스터(TR3)의 베이스 사이에는 전원공급 제어용 FET(FET1-FETn)의 게이트에 인가되는 최대 바이어스 전압을 제한하기 위한 게이트 보호용 제너다이오드(ZD1)를 더 설치한 것을 특징으로 한다.In addition, the maximum bias voltage applied to the gate of the power supply control FET (FET 1 -FETn) is limited between the high voltage output terminal (HB+) of the power voltage supply unit (3) and the base of the transistor (TR3) for variable gate voltage control. It is characterized by further installing a zener diode (ZD1) for gate protection to
또한, 상기 바이패스전압 가변용 트랜지스터(TR1)와 부하량 조절용 트랜지스터(TR2)의 베이스와 상기 전력 증폭기 출력전압 검출용 제너다이오드(ZD2) 사이에는 각각 역방향 전압 차단용 다이오드(D1)(D2)를 더 설치한 것을 특징으로 한다.In addition, reverse voltage blocking diodes D1 and D2 are further interposed between the base of the bypass voltage variable transistor TR1 and the load control transistor TR2 and the power amplifier output voltage detecting zener diode ZD2, respectively. characterized by its installation.
또, 상기 전원전압 공급부(3)의 낮은 전압 출력단자(LB+)와 바이패스전압 가변용 트랜지스터(TR1)의 이미터 사이에는 상기 전원전압 공급부(3)의 높은 전압 출력단자(HB+)에서 출력되는 전압이 전력 증폭기(2)에 공급될 때, 이를 불빛으로 표시해 주는 높은 전압 구동상태 표시용 발광다이오드(LED)를 더 설치한 것을 특징으로 한다.In addition, between the low voltage output terminal LB+ of the power voltage supply unit 3 and the emitter of the variable bypass voltage transistor TR1, the output from the high voltage output terminal HB+ of the power voltage supply unit 3 is When voltage is supplied to the power amplifier 2, it is characterized by further installing a high voltage driving state displaying light emitting diode (LED) that displays it with light.
여기서 미설명 부호 D3, D4는 역방향 전압 차단용 다이오드이고, R3-R5는 부하 및 보호용 저항이다.Here, symbols D3 and D4, which are not explained, are diodes for blocking reverse voltage, and R3-R5 are resistors for load and protection.
이와 같이 구성된 상기 제1 종래기술의 저소비전력 및 고효율 출력형 오디오 앰프에 대한 작용효과를 설명하면 다음과 같다.The effect of the low power consumption and high efficiency output type audio amplifier of the first prior art configured as described above will be described as follows.
먼저, 상기 제1 종래기술이 적용된 저소비전력 및 고효율 출력형 오디오 앰프는, 전압 증폭기(1)와 전력 증폭기(2) 및 전원전압 공급부(3)를 구비한 공지된 오디오 앰프에 있어서, 전력 증폭기 출력전압 검출용 제너다이오드(ZD1)와 바이패스전압 가변용 트랜지스터(TR1), 부하량 조절용 트랜지스터(TR2), 게이트 전압 가변 제어용 트랜지스터(TR3) 및 전원공급 제어용 FET(FET1-FETn)를 부가 설치하여 전력 증폭기(2)에서 출력되는 음향신호 내 전압이 제너다이오드(ZD1)의 제너전압 이상일 때 전원전압 공급부(3)의 높은 전압 출력단자(HB+)에서 출력되는 전압을 음향신호의 실제 전압크기에 부응하여 실시간으로 전압 강하시켜 공급할 수 있도록 한 것을 주요기술 구성요소로 한다.First, the low power consumption and high efficiency output type audio amplifier to which the first prior art is applied is a known audio amplifier having a voltage amplifier 1, a power amplifier 2, and a power supply voltage supply unit 3, and outputs the power amplifier. Voltage detection zener diode (ZD1), bypass voltage variable transistor (TR1), load control transistor (TR2), gate voltage variable control transistor (TR3) and power supply control FET (FET 1 -FETn) are additionally installed to provide power When the voltage in the sound signal output from the amplifier 2 is higher than the zener voltage of the zener diode (ZD1), the voltage output from the high voltage output terminal (HB+) of the power voltage supply unit (3) corresponds to the actual voltage size of the sound signal It is a major technical component that can be supplied by voltage drop in real time.
이때, 상기 전력 증폭기 출력전압 검출용 제너다이오드(ZD1)는 보호용 저항(R1)과 함께 상기 전력 증폭기(2)의 출력단자와 전원전압 공급부(3)의 높은 전압 출력단자(HB+) 사이에 직렬 연결된 상태를 갖고, 앰프의 구동시 상기 전력 증폭기(2)에서 출력되고 있는 음향신호 내 전압이 자체 내의 제너전압(예를 들어 60V) 이상인지를 검출하여, 제너전압 미만인 저출력일 때는 바이패스전압 가변용 트랜지스터(TR1)의 베이스 바이어스 전압을 차단하고, 제너전압 이상(예를 들어 60V 이상)일 때는 제너전압 이상인 전압을 바이패스전압 가변용 트랜지스터(TR1)의 베이스에 바이어스 전압으로 전달해 주게 된다.At this time, the zener diode (ZD1) for detecting the output voltage of the power amplifier is connected in series together with the protection resistor (R1) between the output terminal of the power amplifier (2) and the high voltage output terminal (HB+) of the power supply voltage supply unit (3). state, detects whether the voltage in the sound signal output from the power amplifier 2 is higher than the zener voltage (for example, 60V) when the amplifier is driven, and for variable bypass voltage when the output is lower than the zener voltage The base bias voltage of the transistor TR1 is blocked, and when the zener voltage is higher than the zener voltage (for example, 60V or higher), a voltage higher than the zener voltage is transferred to the base of the variable bypass voltage transistor TR1 as a bias voltage.
상기에서 제너다이오드(ZD1)를 통해 검출된 전력 증폭기(2)의 음향신호 출력전압이 제너전압 미만(예를 들이 최대 음향신호 출력이 1200W인 앰프에서 600W 미만의 저출력)이어서 제너다이오드(ZD1)에서 바이패스전압 가변용 트랜지스터(TR1)의 베이스에 공급되는 바이어스 전압을 차단하게 되면, 상기 바이패스전압 가변용 트랜지스터(TR1)를 포함하여 그 후단부에 설치되어 있는 부하량 조절용 트랜지스터(TR2)와 게이트 전압 가변 제어용 트랜지스터(TR3)의 구동도 차단되어 전원공급 제어용 FET(FET1-FETn)도 "오프"된 상태를 유지하게 되므로 전원전압 공급부(3)의 높은 전압 출력단자(HB+)를 통해 출력되는 전압(예를 들어 120V)이 전원공급 제어용 FET(FET1-FETn)에 의해 차단되고, 전원전압 공급부(3)의 낮은 전압 출력단자(LB+)를 통해 출력되는 전압(예를 들어 60V)이 종래 앰프에서와 마찬가지로 전력 증폭기(2)에 공급되는 형태를 갖는다.Since the output voltage of the sound signal of the power amplifier 2 detected through the zener diode (ZD1) is less than the zener voltage (for example, a low power of less than 600 W in an amplifier having a maximum sound signal output of 1200 W), the zener diode (ZD1) When the bias voltage supplied to the base of the variable bypass voltage transistor TR1 is cut off, the transistor TR2 for load control including the transistor TR1 for variable bypass voltage and the gate voltage The driving of the variable control transistor (TR3) is also blocked, and the power supply control FET (FET 1 -FETn) is also kept in an "off" state, so the voltage output through the high voltage output terminal (HB+) of the power voltage supply unit (3) (eg 120V) is blocked by the power supply control FET (FET 1 -FETn), and the voltage (eg 60V) output through the low voltage output terminal (LB+) of the power voltage supply unit 3 is the conventional amplifier As in, it has a form supplied to the power amplifier 2.
또한, 상기 바이패스전압 가변용 트랜지스터(TR1)는 NPN형 트랜지스터로써 전력 증폭기(2)에서 출력되고 있는 음향신호 내 전압이 제너다이오드(ZD1)의 제너전압보다 높은 전압이므로 인해 상기 제너다이오드(ZD1)를 통해 공급되는 베이스 바이어스 전압 높이에 대응하여 턴 "온"량이 실시간으로 변화되며, 전원전압 공급부(3)의 높은 전압 출력단자(HB+)에서 낮은 전압 출력단자(LB+) 측으로 바이패스되는 전압강하량을 음향출력신호에 대응하여 가변시켜 주는 역할을 수행하여 후술하는 부하량 조절용 트랜지스터(TR2)의 베이스 바이어스 전압을 음향출력신호의 크기에 대응하여 가변시켜 주게 된다.In addition, the bypass voltage variable transistor TR1 is an NPN type transistor, and since the voltage in the acoustic signal output from the power amplifier 2 is higher than the zener voltage of the zener diode ZD1, the zener diode ZD1 The amount of turn “on” is changed in real time in response to the height of the base bias voltage supplied through, and the amount of voltage drop bypassed from the high voltage output terminal (HB+) to the low voltage output terminal (LB+) side of the power voltage supply unit 3 It serves to vary in response to the sound output signal, thereby varying the base bias voltage of the load adjusting transistor TR2 to be described later in accordance with the magnitude of the sound output signal.
또, 상기 부하량 조절용 트랜지스터(TR2)는 PNP형 트랜지스터로써 전력 증폭기(2)에서 출력되고 있는 음향신호 내 전압의 변화에 대응하여 가변되는 상기 바이패스전압 가변용 트랜지스터(TR1)의 콜렉터 전압에 대응하여 변화되는 베이스 바이어스 전압에 대응하여 턴 "온"량이 실시간으로 가변되며, 자체의 콜렉터와 전원전압 공급부(3)의 낮은 전압 출력단자(LB+) 사이에 설치된 부하 저항(R2)과 턴 "온"량에 부응하여 자체의 부하량을 실시간으로 변화시켜 후술하는 게이트 전압 가변 제어용 트랜지스터(TR3)의 이미터 부하량을 음향출력신호의 크기에 대응하여 자동 조절해 주는 기능을 수행하게 된다.In addition, the load adjusting transistor TR2 is a PNP type transistor and corresponds to the collector voltage of the bypass voltage variable transistor TR1 which is variable in response to a change in the voltage in the sound signal output from the power amplifier 2. In response to the changing base bias voltage, the amount of turn “on” is changed in real time, and the amount of turn “on” and the load resistance (R2) installed between its collector and the low voltage output terminal (LB+) of the power voltage supply unit 3 In response to the output signal, it changes its load amount in real time, and performs a function of automatically adjusting the emitter load amount of the gate voltage variable control transistor TR3 to be described later in response to the size of the sound output signal.
한편, 상기 게이트 전압 가변 제어용 트랜지스터(TR3)는 NPN형 트랜지스터로써 전원전압 공급부(3)의 높은 전압 출력단자(HB+)와 낮은 전압 출력단자(LB+) 사이에서 상기 부하량 조절용 트랜지스터(TR2)와 직렬 연결된 형태로 설치되어, 전력 증폭기(2)의 출력전압 변화에 부응하여 부하량 조절용 트랜지스터(TR2)를 통해 실시간으로 변화되는 부하량에 대응하여 전원공급 제어용 FET(FET1-FETn)의 게이트에 인가되는 바이어스 전압(중출력 내지 대출력으로 출력되고 있는 음향신호의 크기에 대응하여 아날로그 형태의 반파형 펄스 전압)을 크기를 가변시켜 주는 기능을 수행하게 된다.Meanwhile, the gate voltage variable control transistor TR3 is an NPN type transistor connected in series with the load control transistor TR2 between the high voltage output terminal HB+ and the low voltage output terminal LB+ of the power voltage supply unit 3. Bias voltage applied to the gate of the power supply control FET (FET 1 -FETn) in response to the load amount changing in real time through the load amount adjusting transistor TR2 in response to the change in the output voltage of the power amplifier 2 It performs a function of changing the size of (half-wave pulse voltage in analog form corresponding to the size of the sound signal being output with medium or large output).
또, 상기한 전원공급 제어용 FET(FET1-FETn)들은 소오스와 드레인이 전원전압 공급부(3)의 높은 전압 출력단자(HB+)와 낮은 전압 출력단자(LB+) 사이에서 각각 병렬 연결되고 게이트는 게이트 전압 가변 제어용 트랜지스터(TR3)의 이미터에 연결된 형태를 갖는다.In addition, the above power supply control FETs (FET 1 -FETn) have their source and drain connected in parallel between the high voltage output terminal (HB +) and the low voltage output terminal (LB +) of the power voltage supply unit 3, respectively, and the gate is the gate It has a form connected to the emitter of the voltage variable control transistor TR3.
이와 같은 전원공급 제어용 FET(FET1-FETn)는 상기 게이트 전압 가변 제어용 트랜지스터(TR3)를 통해 전력 증폭기(2)의 음향신호 출력전압 변화에 부응하여 실시간으로 변화되는 형태로 공급되는 아날로그 형태의 반파형 게이트 바이어스 전압에 부응하여 턴 "온"량이 제어되며, 상기 전원전압 공급부(3)의 높은 전압 출력단자(HB+)에서 출력되어 전력 증폭기(2)로 공급되는 전압이 음향출력신호의 전압 높이에 대응하여 실시간으로 전압 강하하여 소정 전압만 공급(예를 들어 앰프의 최대 출력이 1200W인데 현재 전력 증폭기(2)에서 출력되는 음향신호의 전압이 중출력인 900W일 경우 최대전압 120V 중 90V만 통과)시켜 주는 역할을 수행하게 된다.Such a power supply control FET (FET 1 -FETn) corresponds to the change in the output voltage of the sound signal of the power amplifier 2 through the transistor for controlling the gate voltage variable (TR3). The turn-on amount is controlled in response to the waveform gate bias voltage, and the voltage output from the high voltage output terminal (HB+) of the power supply voltage supply unit 3 and supplied to the power amplifier 2 corresponds to the voltage height of the sound output signal. In response, the voltage drops in real time to supply only the predetermined voltage (for example, if the maximum output of the amplifier is 1200W, but the voltage of the sound signal output from the current power amplifier (2) is 900W, which is a medium output, only 90V of the maximum voltage of 120V passes) will fulfill the role of
이와 같이 상기 제1 종래기술에 의하면, 전력 증폭기(2)에서 출력되는 음향신호의 전압이 일정 전압 이상일 때, 그 높이에 부응하여 전원전압 공급부(3)에서 출력되는 최대 출력전압 중 일부를 전압 강하시킨 상태로 전력 증폭기(2)에 공급시켜 줄 수 있어 전력 증폭기(2)에서 불필요하게 소모되는 무효전력을 최대한 줄일 수 있어 불필요한 전력소모(예를 들어 최대 음향신호 출력이 1200W인 앰프에서 900W의 음향신호가 출력될 경우 300W)를 방지할 수 있을 뿐만 아니라, 전력 증폭기(2) 내의 전력증폭소자가 무효전력에 의해 과열되어 열 소손되는 것을 방지할 수 있으므로 수명 자체를 대폭 연장시킬 수 있다.As described above, according to the first prior art, when the voltage of the sound signal output from the power amplifier 2 is higher than a certain voltage, a part of the maximum output voltage output from the power supply voltage supply unit 3 is voltage dropped in response to the height. It can be supplied to the power amplifier (2) in the state of power amplifier (2), so it is possible to reduce the reactive power that is unnecessary in the power amplifier (2) as much as possible, thereby reducing unnecessary power consumption (for example, 900W sound in an amplifier with a maximum sound signal output of 1200W) 300W when a signal is output) can be prevented, and since the power amplification element in the power amplifier 2 can be prevented from overheating and burnout due to reactive power, the lifespan itself can be greatly extended.
그러나, 상기 제1 종래기술은, SMPS와 같은 전원전압공급부(3)의 전압 출력은 고정된 상태에서 스피커(SP)로 출력되는 음향 신호 내 전압을 제너 다이오드를 통해 비교하여, 기준 전압 이하인 저출력에서는 낮은 기본 전압을 공급하고, 기준 전압 이상인 중출력 내지 고출력인 경우에는 바이패스 전압 가변용 트랜지스터와 부하량 조절용 트랜지스터 및 게이트 전압 가변 제어용 트랜지스터를 통해 게이트 바이어스 전압을 가변하는 방식으로서, SMPS에 해당하는 전원전압공급부(3)의 출력(HB+, HB-)은 항상 고정되어 있고, 앰프(전력증폭기)의 전압 가변 회로를 통해 별도의 전압 가변 회로를 통해 앰프(전력증폭기)로 공급되는 게이트 전압을 가변하여 공급하는 방식인바, 전원전압공급부(3)로부터 필요 이상의 전압이 전압 가변 회로로 계속 공급되는 관계로, 여전히 에너지 낭비가 발생하게 되며 결국 소비전력 개선에 한계가 있는 기술이다.However, in the first prior art, in a state in which the voltage output of the power supply voltage supply unit 3 such as SMPS is fixed, the voltage in the sound signal output to the speaker SP is compared through a zener diode, and at a low output below the reference voltage A method of supplying a low basic voltage and varying the gate bias voltage through a transistor for variable bypass voltage, a transistor for load control, and a transistor for variable gate voltage control in the case of medium or high output above the reference voltage, and a power supply voltage corresponding to SMPS. The outputs (HB+, HB-) of the supply unit 3 are always fixed, and the gate voltage supplied to the amplifier (power amplifier) is varied and supplied through a separate voltage variable circuit through the voltage variable circuit of the amplifier (power amplifier). In this way, since more than necessary voltage is continuously supplied from the power supply voltage supply unit 3 to the voltage variable circuit, energy waste still occurs and, as a result, there is a limit to improving power consumption.
다른 한편, 이러한 제1 종래기술의 문제점을 인식한 것으로서, 대한민국 특허 제1431924호(증폭기들에 대한 바이어스 조정 장치 및 방법)가 제2 종래기술로서 개시된 바 있다.On the other hand, recognizing the problems of the first prior art, Korean Patent No. 1431924 (Bias Adjustment Apparatus and Method for Amplifiers) has been disclosed as a second prior art.
도 3 및 도 4는 제2 종래기술에 따른 공급 전압을 분리시키기 위해 스위칭된 모드 전력 공급기를 이용하는 바이어스 조정의 예시적인 설계를 나타낸다.Figures 3 and 4 show exemplary designs of bias adjustment using a switched mode power supply to isolate the supply voltage according to the second prior art.
즉, 상기 제2 종래기술은, 도 3 및 도 4에서 보는 바와 같이, 전력 증폭기(710)는, 상호 커플링되는 NMOS 트랜지스터(712), 인덕터(714), 및 저항기(716)를 포함한다. 인덕터(714)는 SMPS(720)에 의해 제공된 Vsmps 공급 전압에 커플링된다.That is, in the second prior art, as shown in FIGS. 3 and 4 , the power amplifier 710 includes an NMOS transistor 712, an inductor 714, and a resistor 716 coupled to each other. Inductor 714 is coupled to the Vsmps supply voltage provided by SMPS 720.
SMPS(720) 내에서, P-채널 금속 산화물 반도체(PMOS) 트랜지스터(722)는 배터리 전원 Vbat 에 커플링된 소스, 노드 X 에 커플링된 드레인, 및 SMPS 제어 유닛(726)에 커플링된 게이트를 갖는다. NMOS 트랜지스터(724)는 회로 그라운드에 커플링된 소스, 노드 X 에 커플링된 드레인, 및 SMPS 제어 유닛(726)에 커플링된 게이트를 갖는다. SMPS 제어 유닛(726)은 프로세서(760)로부터의 출력뿐만 아니라 노드 Y(간략함을 위해 도 3 에는 도시되지 않음)에서의 전압을 수신하고, PMOS 트랜지스터(722)에 대한 제1 제어 전압 및 NMOS 트랜지스터(724)에 대한 제2 제어 전압을 생성한다. 인덕터(732)는 노드 X 와 노드 Y 사이에 커플링된다. 캐패시터(734)는 노드 Y 와 회로 그라운드 사이에 커플링된다. 전력 증폭기(710)의 인덕터(714)는, Vsmps 전압을 제공하는 노드 Y 에 커플링된다.Within SMPS 720, a P-channel metal oxide semiconductor (PMOS) transistor 722 has a source coupled to battery supply Vbat, a drain coupled to node X, and a gate coupled to SMPS control unit 726. have NMOS transistor 724 has its source coupled to circuit ground, its drain coupled to node X, and its gate coupled to SMPS control unit 726. SMPS control unit 726 receives the output from processor 760 as well as the voltage at node Y (not shown in FIG. 3 for brevity) and receives a first control voltage for PMOS transistor 722 and NMOS A second control voltage for transistor 724 is generated. An inductor 732 is coupled between node X and node Y. Capacitor 734 is coupled between node Y and circuit ground. An inductor 714 of power amplifier 710 is coupled to node Y providing a voltage of Vsmps.
바이어스 조정 회로(740)는, 타겟 Ibias 전류가 전력 증폭기(710)에 제공되도록 전력 증폭기(710)의 NMOS 트랜지스터(712)에 대한 Vbias 전압을 생성한다. 회로(740) 내에서, NMOS 트랜지스터(752)는 Vdd 에 커플링된 드레인, 제어 회로(762)에 커플링된 게이트, 및 저항기(754)의 일 단에 커플링된 소스를 갖는다. Bias adjustment circuit 740 generates a Vbias voltage across NMOS transistor 712 of power amplifier 710 such that a target Ibias current is provided to power amplifier 710 . Within circuit 740, NMOS transistor 752 has its drain coupled to Vdd, its gate coupled to control circuit 762, and its source coupled to one end of resistor 754.
저항기(754)의 타단은 노드 X 에 커플링된다. op-amp(756)는 저항기(754)의 2 개의 단부에 커플링된 2 개의 입력들 및 ADC(758)에 커플링된 출력을 갖는다. 프로세서(760)는 ADC(758)로부터의 디지털 출력을 수신하고, 원하는 Ibias 전류를 생성하도록 제어 회로(762)를 다이렉팅하며, NMOS 트랜지스터(712)에 대해 원하는 Vbias 전압을 생성하도록 바이어스 회로(770)를 제어한다. The other end of resistor 754 is coupled to node X. Op-amp 756 has two inputs coupled to the two ends of resistor 754 and an output coupled to ADC 758. Processor 760 receives the digital output from ADC 758, directs control circuit 762 to produce a desired Ibias current, and bias circuit 770 to produce a desired Vbias voltage across NMOS transistor 712. ) to control.
통상의 동작 모드에서, NMOS 트랜지스터(752)는 턴 오프되고, SMPS(720)는 턴 온 되어 Vbat 전압에 기초하는 전력 증폭기(710)에 대한 Vsmps 전압을 생성한다. SMPS 제어 유닛(726)은 펄스 폭 변조기(PWM) 생성기로서 동작할 수도 있고, PMOS 트랜지스터(722)를 번갈아가며 턴온 및 턴오프할 수도 있다. 온 상태 동안, PMOS 트랜지스터(722)는 턴 온되고, NMOS 트랜지스터(724)는 턴 오프된다. Vbat 전압은 PMOS 트랜지스터(722)를 통해 인덕터(732)에 커플링되는데, 인덕터는 Vbat 전압으로부터의 에너지를 저장한다. In normal mode of operation, NMOS transistor 752 is turned off and SMPS 720 is turned on to generate a Vsmps voltage for power amplifier 710 based on the Vbat voltage. The SMPS control unit 726 may operate as a pulse width modulator (PWM) generator and may alternately turn the PMOS transistor 722 on and off. During the on state, PMOS transistor 722 is turned on and NMOS transistor 724 is turned off. The Vbat voltage is coupled through PMOS transistor 722 to inductor 732, which stores energy from the Vbat voltage.
Vbat 전압은 온 상태 동안 캐패시터(734) 및 전류 증폭기(710)에 전류를 제공한다. 오프 상태 동안, PMOS 트랜지스터(722)는 턴 오프되고, NMOS 트랜지스터(724)는 턴 온된다. Vbat 전압은 PMOS 트랜지스터(722)에 의해 인덕터(732)로부터 접속이 끊어진다. 인덕터(732)는 NMOS 트랜지스터(724)에 의해 회로 그라운드에 커플링되고, 그 저장된 에너지를 캐패시터(734) 및 전력 증폭기(710)에 제공한다.The Vbat voltage provides current to capacitor 734 and current amplifier 710 during the on state. During the off state, PMOS transistor 722 is turned off and NMOS transistor 724 is turned on. The Vbat voltage is disconnected from inductor 732 by PMOS transistor 722. Inductor 732 is coupled to circuit ground by NMOS transistor 724 and provides its stored energy to capacitor 734 and power amplifier 710 .
캐패시터(734)는 Vsmps 전압을 대략 일정하게 유지하고, 또한 오프 상태 동안 그 전하를 전력 증폭기(710)에 제공한다. 인덕터(732) 및 캐패시터(734)는 또한, MOS 트랜지스터들(722 및 724)의 스위칭으로 인한 Vsmps 전압에서의 리플(ripple)을 억제하는 로우패스 필터를 형성한다. Capacitor 734 holds the Vsmps voltage approximately constant and also provides its charge to power amplifier 710 during the off state. Inductor 732 and capacitor 734 also form a low pass filter that suppresses ripple in the Vsmps voltage due to switching of MOS transistors 722 and 724.
바이어스 조정 모드에서, MOS 트랜지스터들(722 및 724) 양자 모두를 턴 오프함으로써 SMPS(720)가 턴 오프된다. NMOS 트랜지스터(752)는 턴 온되고, Ibias 전류를 저항기(754)를 통해 전력 증폭기(710)로 패스한다. Op-amp(756)는 저항기(754) 양단의 전압 Vres 를 감지/측정한다. ADC(758)는 측정된 Vres 전압을 양자화하고, 디지털화된 Vres 전압을 프로세서(760)에 제공한다. 프로세서(760)는 ADC(758)로부터의 디지털화된 Vres 전압, 저항기(754)의 기지의 저항 Rres 에 기초하여 저항기(754)를 지나는 Ibias 전류를 계산하고, 또는 Ibias = Vres/Rres 이다. 프로세서(760)는, 측정된 Ibias 전류가 타겟 Ibias 전류에 매칭하도록 Vbias 전압을 생성하기 위해 Vbias 전압을 생성하도록 타겟 Ibias 전류에 대한 연산/측정된 Ibias 전류를 비교하고 바이어스 회로(770)를 제어한다. 예를 들어, 측정된 Ibias 전류가 타겟 Ibias 전류보다 작으면, 프로세서(760)는 바이어스 회로(770)를 제어하여 Vbias 전압을 증가시킬 수도 있는데, 이 Vbias 전압은 그 후 Ibias 전류로 하여금 증가하게 한다. 측정된 Ibias 전류가 타겟 Ibias 전류보다 크면, 반대의 경우가 적용된다. In bias adjustment mode, SMPS 720 is turned off by turning off both MOS transistors 722 and 724. NMOS transistor 752 is turned on and passes the Ibias current through resistor 754 to power amplifier 710. Op-amp 756 senses/measures the voltage Vres across resistor 754. ADC 758 quantizes the measured Vres voltage and provides the digitized Vres voltage to processor 760. Processor 760 calculates the Ibias current across resistor 754 based on the digitized Vres voltage from ADC 758, the known resistance Rres of resistor 754, or Ibias = Vres/Rres. The processor 760 compares the calculated/measured Ibias current to the target Ibias current and controls the bias circuit 770 to generate a Vbias voltage such that the measured Ibias current matches the target Ibias current. . For example, if the measured Ibias current is less than the target Ibias current, processor 760 may control bias circuit 770 to increase the Vbias voltage, which then causes the Ibias current to increase. . If the measured Ibias current is greater than the target Ibias current, the reverse applies.
프로세서(760)는 통상의 동작 모드에서 NMOS 트랜지스터(752)를 턴 오프하도록 또는 바이어스 조정 모드에서 NMOS 트랜지스터(752)를 턴 온하도록 제어 회로(762)를 다이렉팅할 수도 있다. 프로세서(760)는 또한, 바이어스 조정 모드에서 Vsmps 전압이 통상의 동작 모드에서의 Vsmps 전압과 유사하도록 NMOS 트랜지스터(752)에 대한 제어 전압을 생성하도록 제어 회로(762)를 다이렉팅할 수도 있다. Processor 760 may direct control circuit 762 to turn off NMOS transistor 752 in a normal operating mode or to turn on NMOS transistor 752 in a bias adjustment mode. Processor 760 may also direct control circuit 762 to generate a control voltage for NMOS transistor 752 such that the Vsmps voltage in bias adjustment mode is similar to the Vsmps voltage in normal operating mode.
SMPS(720)는 통상적으로, 배터리 전압 또는 외부 전압을 전력 증폭기(710)[0058] 에 대해 보다 낮은 공급 전압으로 조절하는데 이용되고, 이는 그 후 전력 소모를 감소시키고 PAE(power-added efficiency)를 향상시킬 수도 있다. 도 3 에 도시된 예시적인 설계는 SMPS(720)를 활용하여 노드 X 로부터 Vbat 전압을 분리시키는데, 이는 MOS 트랜지스터(722 및 724) 양자 모두를 턴 오프함으로써 달성된다. 노드 X 가 Vbat 전압으로부터 분리된 상태에서, 외부 전류가 NMOS 트랜지스터(752) 및 저항기(754)를 통해 전력 증폭기(710)에 인가될 수도 있다. 이 외부 전류가 측정될 수도 있고, NMOS 트랜지스터(712)에 대한 적절한 Vbias 전압을 생성하여 전력 증폭기(710)에 대한 타겟 Ibias 전류를 획득한다. 통상의 동작 모드 동안, NMOS 트랜지스터(752)는 턴 오프되고, 전력 증폭기(710)의 동작에 영향을 주지 않는다. SMPS 720 is typically used to regulate the battery voltage or external voltage to a lower supply voltage for power amplifier 710 [0058], which then reduces power consumption and improves power-added efficiency (PAE). can also be improved. The exemplary design shown in FIG. 3 utilizes SMPS 720 to isolate the Vbat voltage from node X, which is accomplished by turning off both MOS transistors 722 and 724. With node X disconnected from the Vbat voltage, an external current may be applied to power amplifier 710 through NMOS transistor 752 and resistor 754. This external current may be measured and generate an appropriate Vbias voltage across NMOS transistor 712 to obtain a target Ibias current for power amplifier 710. During the normal mode of operation, NMOS transistor 752 is turned off and does not affect the operation of power amplifier 710.
도 4는 SMPS(720)를 이용하는 바이어스 조정의 다른 예시적인 설계의 개략도를 나타낸다. 도 3 에 대해 전술된 바와 같이 전력 증폭기(710) 및 SMPS(720)가 커플링된다. 바이어스 조정 회로(742)는, 타겟 Ibias 전류가 전력 증폭기에 제공되도록 전력 증폭기(710)의 NMOS 트랜지스터(712)에 대한 Vbias 전압을 생성한다. 회로(742) 내에서, NMOS 트랜지스터(752), 제어 회로(762), 및 프로세서(760)는 도 3 에 대해 전술된 바와 같이 커플링된다. 도 3 의 저항기(754)는 전력 증폭기(710)에 Ibias 의 기지의 전류를 제공할 수 있는 전류 소스(764)로 대체된다. NMOS 트랜지스터(752) 및 전류 소스(764)는 또한, 제어 회로(762)에 의해 제어된 PMOS 전류 소스 트랜지스터(또는 이상적인 조정 가능한 전류 소스)로 대체될 수도 있다. 스위치(772)는 NMOS 트랜지스터(712)의 게이트에 커플링된 일 단자 및 NMOS 트랜지스터(712)의 드레인에 커플링된 다른 단자를 갖는다. 스위치(774)는 NMOS 트랜지스터(712)의 게이트에 커플링된 일 단자 및 NMOS 트랜지스터(782)의 게이트에 커플링된 다른 단자를 갖는다. 스위치들(772 및 774)은 Vctrl 제어 신호를 수신한다. 스위치(776)는 바이어스 회로(770)의 출력과 저항기(716) 사이에 커플링되고, 제어 신호를 수신한다. NMOS 트랜지스터(782)는 회로 그라운드에 커플링된 소스 및 op-amp(786)의 하나의 입력에 커플링된 드레인을 갖는다. PMOS 트랜지스터(784)는 NMOS 트랜지스터(782)의 드레인에 커플링된 드레인과 게이트 및 Vdd 에 커플링된 소스를 갖는다. PMOS 트랜지스터(784)는 또한, 기지의 값을 갖는 저항기로 대체될 수도 있다. Op-amp(786)는 Vdd 에 커플링된 다른 입력 및 ADC(758)에 커플링된 출력을 갖는다. 프로세서(760)는 ADC(758)로부터 디지털 출력을 수신하고, 원하는 Ibias 전류를 제공하도록 제어 회로(762)를 다이렉팅하며, NMOS 트랜지스터(712)에 대해 원하는 Vbias 전압을 생성하도록 바이어스 회로(770)를 제어한다.4 shows a schematic diagram of another exemplary design of bias adjustment using SMPS 720. Power amplifier 710 and SMPS 720 are coupled as described above with respect to FIG. 3 . Bias adjustment circuit 742 generates a Vbias voltage across NMOS transistor 712 of power amplifier 710 such that a target Ibias current is provided to the power amplifier. Within circuit 742, NMOS transistor 752, control circuit 762, and processor 760 are coupled as described above with respect to FIG. Resistor 754 in FIG. 3 is replaced by a current source 764 capable of providing a known current of Ibias to power amplifier 710. NMOS transistor 752 and current source 764 may also be replaced with a PMOS current source transistor controlled by control circuit 762 (or an ideal tunable current source). Switch 772 has one terminal coupled to the gate of NMOS transistor 712 and the other terminal coupled to the drain of NMOS transistor 712 . Switch 774 has one terminal coupled to the gate of NMOS transistor 712 and the other terminal coupled to the gate of NMOS transistor 782 . Switches 772 and 774 receive the Vctrl control signal. Switch 776 is coupled between the output of bias circuit 770 and resistor 716 and receives the control signal. NMOS transistor 782 has its source coupled to circuit ground and its drain coupled to one input of op-amp 786. PMOS transistor 784 has its drain and gate coupled to the drain of NMOS transistor 782 and its source coupled to Vdd. PMOS transistor 784 may also be replaced with a resistor having a known value. Op-amp 786 has another input coupled to Vdd and an output coupled to ADC 758. Processor 760 receives the digital output from ADC 758, directs control circuit 762 to provide the desired Ibias current, and bias circuit 770 to produce the desired Vbias voltage across NMOS transistor 712. to control
통상의 동작 모드에서, NMOS 트랜지스터(752)는 턴 오프되고, 스위치들(772 및 774)는 오픈되고, 스위치(776)는 클로징되며, SMPS(720)는 턴 온되어 전력 증폭기(710)에 대한 Vsmps 전압을 생성한다. In the normal mode of operation, NMOS transistor 752 is turned off, switches 772 and 774 are open, switch 776 is closed, and SMPS 720 is turned on to power amplifier 710. Generate Vsmps voltage.
바이어스 조정 모드에서, SMPS(720)는 MOS 트랜지스터들(722 및 724) 양자 모두를 턴 오프함으로써 턴 오프된다. NMOS 트랜지스터(752)는 턴 온되고, Ibias 의 기지의 전류를 전력 증폭기(710)로 패스한다. 스위치들(772 및 774)이 클로징되고, NMOS 트랜지스터들(712 및 782)은 전류 미러로서 동작한다. 동일한 DC 전압이 NMOS 트랜지스터들(712 및 782)의 게이트에 인가되기 때문에, NMOS 트랜지스터(782)를 지나는 Icm전류는 NMOS트랜지스터(712)를 지나는 Ibias 전류에 관련되고, 또는 Icm = Ibias/K 이며, 여기서 K 는 NMOS 트랜지스터(782)의 크기에 대한 NMOS 트랜지스터(712)의 크기의 비율이다. 타겟 Ibias 전류는 대응하는 타겟 Icm 전류로 변환될 수도 있다. Op-amp(786)는 스위치들(772 및 774)이 클로징되고, 스위치(776)는 오픈되며 Vbias 전압이 접속되지 않은 상태에서 PMOS 트랜지스터(784)의 Vgs 전압을 감지/측정한다. ADC(758)는 측정된 Vgs 전압을 양자화하고, 디지털화된 Vgs 전압을 프로세서(760)에 제공한다. 프로세서(760)는 PMOS 트랜지스터(784)의 기지의 드레인-소스 저항 Rds 및 ADC(758)로부터의 디지털화된 Vgs 전압에 기초하여 NMOS 트랜지스터(782)를 지나는 Icm 전류를 계산하고, 또는 Icm = Vgs/Rds 이다. Rds 는 PMOS 트랜지스터(784)를 특징지음으로써 결정될 수도 있다. 프로세서(760)는 타겟 Icm 전류에 대해 계산된/측정된 Icm 전류를 비교하고, 측정된 Icm 전류가 타겟 Icm 전류에 매칭하도록 Vbias 전압을 결정한다. 예를 들어, 측정된 Icm 전류가 타겟 Icm 전류보다 작으면, 프로세서(760)는 Vbias 전압을 증가시킬 수도 있는데, Vbias 전압은 그 후 Ibias 전류 및 Icm 전류 양자 모두로 하여금 증가되게 한다. 측정된 Icm 전류가 타겟 Icm 전류보다 크면, 반대의 경우가 적용된다. 바이어스 회로(770)는 프로세서(760)에 의해 나타나는 바와 같이 Vbias 전압을 생성하고, 스위치(772 및 774)가 오픈된 상태에서 스위치(776)를 통해 Vbias 전압을 인가한다. Vbias 전압의 인가 및 Icm 전류의 측정은 순차적으로 또는 반복적으로 수행될 수도 있다. 예를 들어, Icm 전류는 스위치(776)를 오픈함으로써 Vbias 전압이 접속되지 않은 상태에서 측정될 수도 있고, 그 후 Vbias 전압은 스위치들(772 및 774)이 클로징되는 상태에서 인가될 수도 있다. 스위치(776)는, 스위치들(772 및 774)이 클로징되고 Icm 전류가 측정되고 있는 경우 바이어스 회로(770)의 접속을 끊는다. Vbias 전압이 접속되는 동안 스위치들(772 및 774)이 오픈된다.In bias adjustment mode, SMPS 720 is turned off by turning off both MOS transistors 722 and 724. NMOS transistor 752 is turned on and passes the known current of Ibias to power amplifier 710. Switches 772 and 774 are closed, and NMOS transistors 712 and 782 act as current mirrors. Since the same DC voltage is applied to the gates of NMOS transistors 712 and 782, the Icm current through NMOS transistor 782 is related to the Ibias current through NMOS transistor 712, or Icm = Ibias/K, where K is the ratio of the size of NMOS transistor 712 to the size of NMOS transistor 782. The target Ibias current may be converted to a corresponding target Icm current. The op-amp 786 senses/measures the Vgs voltage of the PMOS transistor 784 in a state where the switches 772 and 774 are closed, the switch 776 is open, and the Vbias voltage is not connected. ADC 758 quantizes the measured Vgs voltage and provides the digitized Vgs voltage to processor 760. Processor 760 calculates Icm current across NMOS transistor 782 based on the known drain-source resistance Rds of PMOS transistor 784 and the digitized Vgs voltage from ADC 758, or Icm = Vgs/ is Rds. Rds may be determined by characterizing the PMOS transistor 784. Processor 760 compares the calculated/measured Icm current to the target Icm current and determines the Vbias voltage such that the measured Icm current matches the target Icm current. For example, if the measured Icm current is less than the target Icm current, processor 760 may increase the Vbias voltage, which then causes both the Ibias current and the Icm current to be increased. If the measured Icm current is greater than the target Icm current, the reverse applies. Bias circuit 770 generates the Vbias voltage as indicated by processor 760 and applies the Vbias voltage through switch 776 with switches 772 and 774 open. The application of the Vbias voltage and the measurement of the Icm current may be performed sequentially or repeatedly. For example, the Icm current may be measured with the Vbias voltage disconnected by opening switch 776, and then the Vbias voltage may be applied with switches 772 and 774 closed. Switch 776 disconnects bias circuit 770 when switches 772 and 774 are closed and the Icm current is being measured. Switches 772 and 774 are open while the Vbias voltage is connected.
결국, 상기 제2 종래기술에 따르면, 전력 증폭기(710)의 바이어스 전류를 측정할 수 있고, 에이징, 및 IC 프로세스에서의 변형, 전력 공급 전압, 온도, 및/또는 다른 현상으로 인한 바이어스 변화를 보상하도록 바이어스 전류를 조정할 수 있다.After all, according to the second prior art, the bias current of the power amplifier 710 can be measured, and the bias change due to aging, deformation in the IC process, power supply voltage, temperature, and/or other phenomena is compensated. The bias current can be adjusted to
상기 제2 종래기술은, 비록 송신기 단에 사용되는 앰프 회로에 관한 것이기는 하나, 전력 증폭기(710)의 바이어스 변화에 대응하여 보상을 행하며, 그 중에서는 SMPS 자체의 전압을 변경하는 기술이 부분적으로 암시되어 있기는 하다.The second prior art, although it relates to an amplifier circuit used in a transmitter stage, compensates in response to a bias change of the power amplifier 710, and among them, the technology of changing the voltage of the SMPS itself is partially It is implied.
그러나, 오디오용 전력용 앰프의 심하게 변화하는 피크 파형에 순간적으로 반응하여 그러한 피크 파형에 필요한 전력을 적절히 스피커로 보내주기에는, 회로의 구체적인 구성이 미흡하고, SMPS 제어기(726) 외에도, ADC(758)나 프로세서(760)와 같은 복잡한 IC 칩이 추가되어야 하므로, 회로가 너무 무거워진다는 문제점이 있다. 즉, 제2 종래기술의 바이어스 보정회로(740, 742)는, 전력증폭기의 바이어스 전압의 절감되는 전력보다 더 많은 전원이 프로세서나 기타 제어용 회로에서 사용될 것이므로, 결국 소비 전력 절감의 목적을 달성하기 위한 회로가 아니며, 바이어스 정합을 위한 목적이 더 크다고 할 것이다.However, the specific configuration of the circuit is insufficient to react to the peak waveform of the audio power amplifier that changes dramatically and appropriately send the power required for the peak waveform to the speaker, and in addition to the SMPS controller 726, the ADC 758 ) or a complicated IC chip such as the processor 760, there is a problem that the circuit becomes too heavy. That is, in the bias correction circuits 740 and 742 of the second prior art, since more power than the reduced power of the bias voltage of the power amplifier will be used in the processor or other control circuits, eventually to achieve the purpose of reducing power consumption. It's not a circuit, I'd say it's more for the purpose of bias matching.
더욱이, 상기 제1 및 제2 종래기술은 모두, 전력증폭기의 순간적인 피크 전압에 대응하기 위한 바이어스 전압 조정의 구성에 대해서는 언급이 없다.Moreover, both of the first and second prior arts do not mention the configuration of bias voltage adjustment to respond to the instantaneous peak voltage of the power amplifier.
본 발명은, 상기 제1 내지 제2 종래기술의 문제점에 대한 대책으로서, 오디오용 전력용 앰프의 심하게 변화하는 피크 파형에 순간적으로 반응하여 그러한 피크 파형에 필요한 바이어스 전압을 SMPS에서 적절히 스피커로 보내줌으로써 소비 전력을 최적으로 절감하기 위한 출력 신호를 감지하여 능동적으로 SMPS 바이어스 전압을 조절하는 소비 전력 개선형 앰프 회로를 제공하기 위한 것이다. The present invention, as a countermeasure against the problems of the first to second prior art, reacts instantaneously to the peak waveform of the audio power amplifier and appropriately sends the bias voltage required for the peak waveform from the SMPS to the speaker. An object of the present invention is to provide a power consumption improving amplifier circuit that detects an output signal to optimally reduce power consumption and actively adjusts an SMPS bias voltage.
더욱이, PA용과 SR용으로 각각 다르게 기준 전압을 설정하고, 스피커로 출력되는 음향 신호 내 피크 전압을 측정하여, 설정된 기준 전압 이하인 출력에서는 낮은 기본 전압을 공급하고, 설정된 기준 전압 이상의 출력이 감지되면, SMPS 자체에서 +VCC, -VCC 전압 출력이 가변되어 앰프로 공급되도록 함으로써, 기존 방식보다 더 저소비전력, 고효율 출력형 앰프를 구현 가능한 소비 전력 개선형 앰프 회로를 제공하기 위한 것이다. Furthermore, by setting different reference voltages for PA and SR, measuring the peak voltage in the sound signal output to the speaker, supplying a low basic voltage at an output below the set reference voltage, and detecting an output above the set reference voltage, It is to provide a power consumption improved amplifier circuit capable of realizing a lower power consumption and higher efficiency output type amplifier than the existing method by allowing the +VCC and -VCC voltage outputs to be varied and supplied to the amplifier in the SMPS itself.
상기의 목적을 달성하기 위한 본 발명의 일 측면에 따른 출력 신호를 감지하여 능동적으로 SMPS 바이어스 전압을 조절하는 소비 전력 개선형 앰프 회로는, 전력증폭부(110)에서 증폭된 신호를 스피커(SP)로 출력하되 출력단에서 출력되는 피크전압을 검출하는 피크전압 감지부(120)를 더 포함하는 앰프부(100); 및 상기 피크전압 감지부(120)에서 검출된 피크전압 값을 최대 피크 값으로 충전유지하여 기준 전압과 비교하여 앰프 출력이 높아지면 바이어스 값을 높여 주고 앰프 출력이 낮아지면 낮춰주는 방식으로 출력값을 조절하여 출력하는 SMPS부(200); 를 포함하며, 상기 SMPS부(200)는, 통상의 AC 상용전원을 전파정류하는 입력단 정류부(260)와, 상기 입력단 정류부(260)에서 정류된 전원을 인버팅하는 인버팅부(270)와, 상기 인버팅부(270)에서 인버팅된 교류를 스피커 전원에 적합한 전압으로 변압하는 변압기로 이루어지는 변압부(280)와, 상기 변압부(280)에서 변압된 교류를 다시 정류하여 출력하는 출력단 정류부(290)와, 상기 앰프부의 출력을 감지하여 충전 및 유지하는 피크전압 충전부(210)와, 상기 피크전압 충전부(210)의 그대로의 출력전압이나 증폭된 출력전압과 기준 전압을 비교하는 비교부(240)와, 상기 비교부(240)의 출력에 따라서 상기 인버팅부(270)의 인버팅을 제어하는 제어신호 발생부(250)를 포함하여 이루어지는 것을 특징으로 한다.According to one aspect of the present invention for achieving the above object, a power consumption improving amplifier circuit that detects an output signal and actively adjusts an SMPS bias voltage, transmits the amplified signal from the power amplifier 110 to a speaker (SP) The amplifier unit 100 further includes a peak voltage detection unit 120 outputting to but detecting a peak voltage output from an output terminal; And the peak voltage value detected by the peak voltage detection unit 120 is charged and maintained at the maximum peak value, compared with the reference voltage, the bias value is increased when the amplifier output is high, and the output value is adjusted in such a way that it is lowered when the amplifier output is low. SMPS unit 200 for outputting; The SMPS unit 200 includes an input rectifier 260 for full-wave rectification of normal AC commercial power, an inverting unit 270 for inverting the power rectified by the input rectifier 260, A transformer 280 composed of a transformer that transforms the AC inverted by the inverting unit 270 into a voltage suitable for speaker power, and an output stage rectifier that rectifies and outputs the AC transformed by the transformer 280 again ( 290), a peak voltage charging unit 210 that senses, charges, and maintains the output of the amplifier unit, and a comparison unit 240 that compares the output voltage as it is or the amplified output voltage of the peak voltage charging unit 210 with a reference voltage. ) and a control signal generating unit 250 for controlling the inverting of the inverting unit 270 according to the output of the comparator 240.
바람직하게는, 상기 앰프부(100)는, 상기 전력증폭부(110)의 출력단(OUT_DETECT1)에 상기 피크전압 감지부(120)가 접속되되, 상기 피크전압 감지부(120)에서는 전압감지용 분압저항(R17,R18)의 연결단에서 반파정류용 다이오드(D8)를 통해 앰프부의 출력단(LEVEL_DET12)으로 접속되어서, 상기 전압감지용 분압저항(R17,R18)에서 감지된 앰프출력단의 피크전압이 반파정류되어 상기 SMPS부(200)로 입력되는 것을 특징으로 한다.Preferably, in the amplifier unit 100, the peak voltage detection unit 120 is connected to the output terminal (OUT_DETECT1) of the power amplification unit 110, and the peak voltage detection unit 120 has a divided voltage for voltage detection. The connection terminal of the resistors R17 and R18 is connected to the output terminal LEVEL_DET12 of the amplifier unit through the diode D8 for half-wave rectification, so that the peak voltage of the amplifier output terminal sensed by the voltage-sensing voltage divider resistors R17 and R18 is a half-wave rectifier. It is characterized in that it is rectified and input to the SMPS unit (200).
더욱 바람직하게는, 상기 피크전압 충전부(210)는, 상기 앰프부의 출력단(LEVEL_DET12)과 접속된 입력단을 갖는 반파정류된 피크전압이 연결용 제2 저항(R2)을 통해 제1 증폭기(U1-B)의 비반전 입력단에 접속되며, 상기 제1 증폭기(U1-B)의 출력단은 제2 다이오드(D2) 및 제4 저항(R4)을 통해 반전입력단으로 피드백 연결됨과 동시에, 제1 콘덴서(C1)에 접속되어 이루어져서, 상기 앰프부(100)의 출력단에서 감지된 피크전압의 반파정류된 DC 전압을 상기 제1 증폭기(U1-B)에서 피드백시켜 최대 피크 값을 제1 콘덴서(C1)에 충전 후 유지되도록 하는 것을 특징으로 한다.More preferably, in the peak voltage charging unit 210, the half-wave rectified peak voltage having an input terminal connected to the output terminal LEVEL_DET12 of the amplifier unit passes through a second resistor R2 for connection to the first amplifier U1-B. ), and the output terminal of the first amplifier (U1-B) is feedback-connected to the inverting input terminal through the second diode (D2) and the fourth resistor (R4), and at the same time, the first capacitor (C1) After being connected to, the first amplifier (U1-B) feeds back the half-wave rectified DC voltage of the peak voltage detected at the output terminal of the amplifier unit (100), and the maximum peak value is charged in the first capacitor (C1). characterized in that it is maintained.
또한 바람직하게는, 상기 피크전압 충전부(210)의 출력전압을 증폭하는 증폭부(220)를 더 포함하여, 상기 비교부(240)에서는 상기 증폭부(220)에서 증폭된 전압과 기준 전압을 비교하는 것을 특징으로 한다.Also preferably, an amplification unit 220 for amplifying the output voltage of the peak voltage charging unit 210 is further included, and the comparator 240 compares the voltage amplified by the amplification unit 220 with a reference voltage. It is characterized by doing.
또한 바람직하게는, 상기 비교부(240)의 입력측에는 리미트부(230)가 연결되어, 상기 증폭부(200)의 출력이 리미트부의 리미트 소자에 의해 리미팅되어, 불필요한 일정 전압 혹은 앰프보호를 위한 일정 전압 이상으로는 출력되지 않도록 제한하는 것을 특징으로 한다.Also preferably, the limiting unit 230 is connected to the input side of the comparator 240, and the output of the amplifying unit 200 is limited by the limiting element of the limiting unit, so that an unnecessary constant voltage or a constant for amplifier protection is limited. It is characterized in that it is limited so that the output is not higher than the voltage.
또한 바람직하게는, 상기 SMPS부(200)는, 상기 비교부(240)의 기준전압 발생을 복수개의 기준전압을 발생시키도록 하기 위한 바이어스설정 절환부(300)를 더 포함하는 것을 특징으로 한다.Preferably, the SMPS unit 200 further includes a bias setting switching unit 300 for generating a plurality of reference voltages by generating a reference voltage of the comparator 240.
상기의 목적을 달성하기 위한 본 발명의 다른 측면에 따르면, 상기 출력 신호를 감지하여 능동적으로 SMPS 바이어스 전압을 조절하는 소비 전력 개선형 앰프 회로; 및 상기 앰프 회로에 의해 출력신호와 대응되는 SMPS 바이어스 전압으로 증폭된 신호를 음성 출력하는 스피커(SP); 를 포함하는 스피커 시스템이 제공된다.According to another aspect of the present invention for achieving the above object, a power consumption improvement amplifier circuit for actively adjusting the SMPS bias voltage by sensing the output signal; and a speaker (SP) for audio output of a signal amplified by the SMPS bias voltage corresponding to the output signal by the amplifier circuit. A speaker system including a is provided.
본 발명의 소비 전력 개선형 앰프 회로에 의하면, 오디오용 전력용 앰프의 심하게 변화하는 피크 파형에 순간적으로 반응하여 그러한 피크 파형에 필요한 바이어스 전압을 SMPS에서 적절히 스피커로 보내줌으로써 소비 전력을 최적으로 절감하기 위한 출력 신호를 감지하여 능동적으로 SMPS 바이어스 전압을 조절하는 소비 전력을 최적으로 개선하는 것이 가능하다. According to the power consumption improvement type amplifier circuit of the present invention, it is possible to optimally reduce power consumption by reacting instantaneously to a severely changing peak waveform of an audio power amplifier and appropriately sending a bias voltage required for such a peak waveform from the SMPS to a speaker. It is possible to optimally improve power consumption by actively adjusting the SMPS bias voltage by sensing the output signal for
더욱이, PA용과 SR용으로 각각 다르게 기준 전압을 설정하고, 스피커로 출력되는 음향 신호 내 피크 전압을 측정하여, 설정된 기준 전압 이하인 출력에서는 낮은 기본 전압을 공급하고, 설정된 기준 전압 이상의 출력이 감지되면, SMPS 자체에서 +VCC, -VCC 전압 출력이 가변되어 앰프로 공급되도록 함으로써, 기존 방식보다 더 저소비전력, 고효율 출력형 앰프를 구현 가능하다. Furthermore, by setting different reference voltages for PA and SR, measuring the peak voltage in the sound signal output to the speaker, supplying a low basic voltage at an output below the set reference voltage, and detecting an output above the set reference voltage, By allowing the +VCC and -VCC voltage outputs to be varied and supplied to the amplifier in the SMPS itself, it is possible to implement a low-power consumption and high-efficiency output type amplifier compared to the conventional method.
상기 목적 및 효과 외에 본 발명의 다른 목적 및 이점들은 첨부한 도면을 참조한 실시예에 대한 상세한 설명을 통하여 명백하게 드러나게 될 것이다.In addition to the above objects and effects, other objects and advantages of the present invention will become apparent through detailed description of the embodiments with reference to the accompanying drawings.
도 1은 종래의 앰프에서의 전력 증폭기에서 발생되는 무효전력을 줄이기 위한 앰프 회로의 블록도.1 is a block diagram of an amplifier circuit for reducing reactive power generated in a power amplifier in a conventional amplifier.
도 2는 제1 종래기술에 따른 앰프에서의 전력 증폭기에서 발생되는 무효전력을 줄이기 위한 앰프 회로의 블록 구성도.2 is a block diagram of an amplifier circuit for reducing reactive power generated from a power amplifier in an amplifier according to a first prior art;
도 3 및 도 4는 제2 종래기술에 따른 공급 전압을 분리시키기 위해 스위칭된 모드 전력 공급기를 이용하는 바이어스 조정의 예시적인 설계를 나타낸다.Figures 3 and 4 show exemplary designs of bias adjustment using a switched mode power supply to isolate the supply voltage according to the second prior art.
도 5는 본 발명에 관한 출력 신호를 감지하여 능동적으로 SMPS 바이어스 전압을 조절하는 소비 전력 개선형 앰프 회로에서의 앰프부 회로도.5 is a circuit diagram of an amplifier unit in a power consumption improving amplifier circuit that actively adjusts an SMPS bias voltage by sensing an output signal according to the present invention.
도 6은 본 발명의 제1 실시예에 따른 출력 신호를 감지하여 능동적으로 SMPS 바이어스 전압을 조절하는 소비 전력 개선형 앰프 회로에서의 SMPS부 회로도.6 is a circuit diagram of an SMPS unit in a power consumption improving amplifier circuit that actively adjusts an SMPS bias voltage by sensing an output signal according to a first embodiment of the present invention.
도 7은 본 발명의 제2 실시예에 따른 출력 신호를 감지하여 능동적으로 SMPS 바이어스 전압을 조절하는 소비 전력 개선형 앰프 회로에서의 SMPS부 회로도.7 is a circuit diagram of an SMPS unit in a power consumption improving amplifier circuit that actively adjusts an SMPS bias voltage by sensing an output signal according to a second embodiment of the present invention.
이하에서는, 첨부도면을 참고하여 본 발명에 따른 바람직한 실시예를 상세하게 설명하기로 한다. Hereinafter, preferred embodiments according to the present invention will be described in detail with reference to the accompanying drawings.
도 5는 본 발명에 관한 출력 신호를 감지하여 능동적으로 SMPS 바이어스 전압을 조절하는 소비 전력 개선형 앰프 회로에서의 앰프부 회로도이고, 도 6은 본 발명의 제1 실시예에 따른 출력 신호를 감지하여 능동적으로 SMPS 바이어스 전압을 조절하는 소비 전력 개선형 앰프 회로에서의 SMPS부 회로도이며, 도 7은 본 발명의 제2 실시예에 따른 출력 신호를 감지하여 능동적으로 SMPS 바이어스 전압을 조절하는 소비 전력 개선형 앰프 회로에서의 SMPS부 회로도이다.5 is a circuit diagram of an amplifier unit in a power consumption improving amplifier circuit that actively adjusts an SMPS bias voltage by sensing an output signal according to the present invention, and FIG. 6 is a circuit diagram of an output signal according to a first embodiment of the present invention 7 is a circuit diagram of the SMPS unit in the power consumption improvement type amplifier circuit that actively adjusts the SMPS bias voltage, and FIG. This is the circuit diagram of the SMPS part in the amplifier circuit.
(제1 실시예)(First embodiment)
먼저, 본 발명의 제1 실시예에 따른 출력 신호를 감지하여 능동적으로 SMPS 바이어스 전압을 조절하는 소비 전력 개선형 앰프 회로에 대하여, 도 5 및 도 6을 참조하여 설명한다.First, a power consumption improving amplifier circuit that detects an output signal and actively adjusts an SMPS bias voltage according to the first embodiment of the present invention will be described with reference to FIGS. 5 and 6 .
본 발명의 제1 실시예의 출력 신호를 감지하여 능동적으로 SMPS 바이어스 전압을 조절하는 소비 전력 개선형 앰프 회로는, 도 5 및 도 6에서 보는 바와 같이, 전력증폭부(110)에서 증폭된 신호를 스피커(SP)로 출력하되 출력단에서 출력되는 피크전압을 검출하는 피크전압 감지부(120)를 더 포함하는 앰프부(100); 및 상기 피크전압 감지부(120)에서 검출된 피크전압 값을 최대 피크 값으로 충전유지 및 필요한 전압 값으로 증폭하여 기준 전압과 비교하여 앰프 출력이 높아지면 바이어스 값을 높여 주고 앰프 출력이 낮아지면 낮춰주는 방식으로 VCC 및 VEE 값을 조절하여 출력하는 SMPS부(200); 로 구성되어 진다.As shown in FIGS. 5 and 6, the power consumption improving amplifier circuit that detects the output signal and actively adjusts the SMPS bias voltage according to the first embodiment of the present invention transmits the signal amplified by the power amplifier 110 to the speaker. an amplifier unit 100 that outputs to (SP) and further includes a peak voltage detection unit 120 that detects a peak voltage output from an output terminal; And the peak voltage value detected by the peak voltage detection unit 120 is charged to the maximum peak value and amplified to a required voltage value, compared with the reference voltage, the bias value is increased when the amplifier output is high, and the bias value is lowered when the amplifier output is low. SMPS unit 200 that adjusts and outputs VCC and VEE values in a manner of; is composed of
이와 같이 능동적으로 전원 바이어스 전압을 조절하는 경우, 앰프의 출력에 따라 동작에 필요한 최소한의 전압만 공급하게 되어, 앰프에서 사용하는 전력의 사용 효율을 극대화하게 되며, 이는 앰프 사용 시 요구되는 전기 에너지를 최대한 절약할 수 있는 추가적인 장점이 있다. In this way, when the power supply bias voltage is actively adjusted, only the minimum voltage necessary for operation is supplied according to the output of the amplifier, maximizing the efficiency of the power used by the amplifier, which reduces the electrical energy required when using the amplifier. There are additional advantages to maximizing savings.
이제, 본 발명의 제1 실시예의 소비 전력 개선형 앰프 회로의 앰프부(100)를, 도 5를 참조하여 더욱 상세히 설명하면, 스피커(SP)로 음성 신호를 증폭하여 출력하기 위한 통상의 증폭기 및 RC 회로로 이루어지는 전력증폭부(110)의 출력단(OUT_DETECT1)에 상기 피크전압 감지부(120)가 접속되는바, 상기 피크전압 감지부(120)에서는 전압감지용 분압저항(R17,R18)의 연결단에서 반파정류용 다이오드(D8)를 통해 앰프부의 출력단(LEVEL_DET12)으로 접속되어진다. 그리하여 상기 전압감지용 분압저항(R17,R18)에서 감지된 앰프출력단의 피크전압이 도 6의 SMPS부(200)로 입력되어 진다. 미설명부호 'RL'은 릴레이이다.Now, the amplifier unit 100 of the power consumption improved amplifier circuit according to the first embodiment of the present invention will be described in more detail with reference to FIG. 5, a conventional amplifier for amplifying and outputting a voice signal to a speaker SP, and The peak voltage detection unit 120 is connected to the output terminal (OUT_DETECT1) of the power amplification unit 110 composed of an RC circuit. It is connected to the output terminal (LEVEL_DET12) of the amplifier through the half-wave rectification diode (D8). Thus, the peak voltage of the amplifier output stage sensed by the voltage-sensing voltage divider resistors R17 and R18 is input to the SMPS unit 200 of FIG. 6 . Non-explanatory code 'RL' is a relay.
계속해서, 본 발명의 제1 실시예의 소비 전력 개선형 앰프 회로의 SMPS부(200)를, 도 6을 참조하여 더욱 상세히 설명하면, 통상의 AC 상용전원을 전파정류하는 입력단 정류부(260)와, 상기 입력단 정류부(260)에서 정류된 전원을 인버팅하는 인버팅부(270)와, 상기 인버팅부(270)에서 인버팅된 교류를 스피커 전원에 적합한 전압으로 변압하는 변압기로 이루어지는 변압부(280)와, 상기 변압부(280)에서 변압된 교류를 다시 정류하는 출력단 정류부(290)로 이루어지는 통상적인 SMPS부(200)에 있어서, 피크전압 충전부(210), 증폭부(220), 리미트부(230), 비교부(240) 및 제어신호 발생부(250)를 더 포함하는 것을 특징으로 한다.Subsequently, referring to FIG. 6, the SMPS unit 200 of the power consumption improvement type amplifier circuit of the first embodiment of the present invention will be described in more detail. A transformer 280 composed of an inverting unit 270 that inverts the power rectified by the input rectifier 260 and a transformer that transforms the AC inverted by the inverting unit 270 into a voltage suitable for speaker power. ) and an output stage rectifier 290 that rectifies the alternating current transformed in the transformer 280 again, in the conventional SMPS unit 200, the peak voltage charging unit 210, the amplifying unit 220, the limiting unit ( 230), a comparison unit 240 and a control signal generator 250 are characterized in that it further comprises.
상기 본 발명의 특징에 대해 좀더 상술하면, 앰프부의 출력단(LEVEL_DET12)과 접속된 입력단을 갖는 피크전압 충전부(210)에서는, 반파정류된 피크전압이 연결용 제2 저항(R2)을 통해 제1 증폭기(U1-B)의 비반전 입력단에 접속되는바, 상기 제1 증폭기(U1-B)의 출력단은 제2 다이오드(D2) 및 제4 저항(R4)을 통해 반전입력단으로 피드백 연결됨과 동시에, 제1 콘덴서(C1)에 접속되어 진다. 참고로, 상기 제1 증폭기(U1-B)의 비반전 입력단에는 상기 제2 저항(R2)과 병렬로 제1 저항(R1)이 일례로 12V 전원에 접속되는바, 이는 최소전원이 유지되도록 하기 위함이다. 그외, 상기 제1 증폭기(U1-B)에 부가되는 소자로서 제2 콘덴서(C2), 제3 저항(R3) 및 제5 저항(R5)이 추가된다.In more detail about the features of the present invention, in the peak voltage charging unit 210 having an input terminal connected to the output terminal (LEVEL_DET12) of the amplifier unit, the half-wave rectified peak voltage passes through the second resistor R2 for connection to the first amplifier. It is connected to the non-inverting input terminal of (U1-B), and the output terminal of the first amplifier (U1-B) is feedback-connected to the inverting input terminal through the second diode (D2) and the fourth resistor (R4), and at the same time, 1 is connected to the capacitor (C1). For reference, a first resistor (R1) is connected to a 12V power supply in parallel with the second resistor (R2) at the non-inverting input terminal of the first amplifier (U1-B), for example, so that the minimum power is maintained. It is for In addition, a second capacitor C2, a third resistor R3, and a fifth resistor R5 are added as elements added to the first amplifier U1-B.
한편, 상기 제1 증폭기(U1-B)의 반전입력단 (즉, 상기 제1 콘덴서(C1)) 은 제6 저항(R6)을 통해 상기 증폭부(200)의 제2 증폭기(U1-A)의 비반전 입력단에 접속되는바, 여기서 필요한 전압 값으로 전압 증폭을 하게 된다. 역시, 제2 증폭기(U1-A)의 출력단이 피드백용 제5 콘덴서(C5) 및 제7 저항(R7)을 통해 반전입력단에 접속되며, 그외 부수적인 소자로서 제3 콘덴서(C3) 및 제8 저항(R8)이 추가된다.Meanwhile, the inverting input terminal of the first amplifier (U1-B) (ie, the first capacitor (C1)) is connected to the second amplifier (U1-A) of the amplification unit (200) through a sixth resistor (R6). It is connected to the non-inverting input terminal, where voltage amplification is performed to the required voltage value. Also, the output terminal of the second amplifier (U1-A) is connected to the inverting input terminal through the fifth capacitor (C5) for feedback and the seventh resistor (R7), and the third capacitor (C3) and the eighth capacitor (C3) as other auxiliary elements. Resistor R8 is added.
이제, 상기 증폭부(200)의 제2 증폭기(U1-A)의 출력단은 제10 저항(R10) 및 제11 저항(R11)을 통해 상기 비교부(240)의 비교기(U3-A)의 비반전 입력단에 접속되는바, 그리하여, 기준전압 생성부(R12, R13, R14)에 의해 생성된 기준전압과 비교한 출력값을 출력하게 되고, 이상의 상기 비교부(240)의 출력에 응하여 최종적으로 SMPS의 전원출력을 제어하게 된다. (즉, 앰프부의 출력단에서 감지된 피크전압의 반파정류된 DC 전압을 상기 제1 증폭기(U1-B)에서 피드백시켜 최대 피크 값을 제1 콘덴서(C1)에 충전 후 유지되게 하고, 상기 제2 증폭기(U1-A)를 통해 전압 증폭을 하게 하여 필요한 전압 값으로 바꾼 후 (이때, 제너다이오드(U2)에 의해 DC전압의 최대 전압에 리미트를 걸어 +VCC와 -VEE의 전압을 일정 이상으로 증가하지 않게 한다), 상기 비교기(U3-A)의 기준값과 비교되어 진다.)Now, the output terminal of the second amplifier U1-A of the amplification unit 200 is connected to the ratio of the comparator U3-A of the comparison unit 240 through the tenth resistor R10 and the eleventh resistor R11. It is connected to the inverting input terminal, and thus outputs an output value compared with the reference voltage generated by the reference voltage generating units (R12, R13, R14), and finally in response to the output of the comparator 240 described above, the SMPS It controls the power output. (That is, the half-wave rectified DC voltage of the peak voltage detected at the output terminal of the amplifier unit is fed back in the first amplifier (U1-B) so that the maximum peak value is maintained after being charged in the first capacitor (C1), and the second After amplifying the voltage through the amplifier (U1-A) and changing it to the required voltage value (At this time, the maximum voltage of the DC voltage is limited by the Zener diode (U2) to increase the voltage of +VCC and -VEE above a certain level ), and is compared with the reference value of the comparator (U3-A).)
참고로, 상기 비교부(240)의 제11 저항(R11)에는 리미트부(230)가 연결되는 것이 바람직한바, 상기 증폭부(200)의 출력이 리미트부의 리미트 소자(일례로 제너다이오드(U2))에 의해 리미팅되어, 불필요한 혹은 앰프보호를 위한 일정 전압 이상으로는 출력되지 않도록 제한하도록 한다.For reference, it is preferable that the limit unit 230 is connected to the eleventh resistor R11 of the comparator 240, and the output of the amplification unit 200 is a limit element of the limit unit (for example, a zener diode U2). ), so that it is not output beyond a certain voltage for unnecessary or amplifier protection.
계속해서 상기 제어신호 발생부(250)에 대하여 더 상세히 설명하면, 상기 제어신호 발생부(250)의 포토커플러(PC1)의 발광부의 하위전원단 (일례로 도 6에서 PC1의 2번핀) 이 연결용 저항(R15) 및 역전방지용 다이오드(D7)를 통해 상기 비교부(240)의 비교기(U3-A)의 출력단에 접속되는바, 그리하여 기준전압발생부(R12,R13,R14)의 저항값을 변경하여 설정한 전압인 비교 기준값보다, 앰프의 출력값이 설정 범위 이상의 전압일 때, 상기 비교기(U3-A)의 출력단(1번핀)의 출력값이 LOW값으로 바뀌어 상기 제어신호 발생부(250)의 포토커플러(PC1)를 도통하게 하고, 결국, 이를 통해 SMPS부의 인버팅부(270)의 PWM 컨트롤러(171)의 제어신호 입력단(MAIN_F/B)으로 인가되고, 이로 인해 PWM DUTY가 조절되어 인버팅용 스위칭소자(272,273)(일례로 MOS FET)를 고역율의 듀티비로 온/오프함으로써, 결국, 상기 SMPS의 출력 전압을 보다 높게 조절하여 출력하게 된다.Continuing to explain the control signal generator 250 in more detail, the lower power terminal of the light emitting unit of the photocoupler PC1 of the control signal generator 250 (for example, pin 2 of PC1 in FIG. 6) is connected. It is connected to the output terminal of the comparator U3-A of the comparator 240 through the resistor R15 and the anti-reverse diode D7, so that the resistance values of the reference voltage generators R12, R13, and R14 When the output value of the amplifier is a voltage higher than the set range than the comparison reference value, which is the voltage set by changing, the output value of the output terminal (No. 1 pin) of the comparator (U3-A) is changed to a LOW value, and the control signal generator 250 The photocoupler (PC1) is conducted, and eventually, through this, it is applied to the control signal input terminal (MAIN_F / B) of the PWM controller 171 of the inverting unit 270 of the SMPS unit, thereby adjusting the PWM duty to invert By turning on/off the switching devices 272 and 273 (for example, MOS FET) at a high power factor duty ratio, the output voltage of the SMPS is eventually adjusted to be higher and output.
참고로, 도 6의 앰프 회로만으로도, 앰프에서 SMPS의 출력 전압이 고정되었을 때, 하이 임피던스(HIGH IMPEDANCE)용 PA 앰프로 사용할 때의 전압이 높아, 로우 임피던스(LOW IMPEDANCE)용 SR 앰프로 사용시 앰프의 스위칭 로스가 증가하고 전력 효율이 떨어지는 문제를 해결하고, 전체적인 제품의 전력 효율을 높여 전력 낭비를 개선할 수 있으며, 더 나아가 PA 앰프 및 SR 앰프 모두에 대해 대응하는 것이 가능하다.For reference, even with the amplifier circuit of FIG. 6, when the output voltage of the SMPS is fixed in the amplifier, the voltage when used as a PA amplifier for high impedance (HIGH IMPEDANCE) is high, so the amplifier when used as an SR amplifier for low impedance (LOW IMPEDANCE) It is possible to solve the problem of increased switching loss and low power efficiency, and to improve power waste by increasing the power efficiency of the overall product, and furthermore, it is possible to respond to both PA and SR amplifiers.
반대로, 상기 기준전압발생부(R12,R13,R14)의 저항값에 의해 설정된 비교 기준값보다, 앰프의 출력값이 설정 범위 이하의 전압일 때에는, 상기 비교기(U3-A)의 출력단(1번핀)의 출력값이 HIGH값으로 바뀌어, 상기 제어신호 발생부(250)의 포토커플러(PC1)를 도통하지 않게 하고, 결국 이를 통해 SMPS부의 인버팅부(270)의 PWM 컨트롤러(171)의 제어신호 입력단(MAIN_F/B)으로 제어신호가 인가되지 않도록 할 것인바, 이로 인해 PWM DUTY가 조절되어 인버팅용 스위칭소자(272,273)(일례로 MOS FET)를 저역율의 듀티비로 온/오프함으로써, 결국, 상기 SMPS의 출력 전압을 보다 낮게 조절하여 출력하게 되는바, 특히 본 발명의 소비 전력 개선형 앰프 회로에 의하면 극히 간단한 회로로서 피크 출력 신호를 감지하여 능동적으로 SMPS 바이어스 전압을 조절하는 것이 가능하게 된다.Conversely, when the output value of the amplifier is a voltage lower than the set range than the comparison reference value set by the resistance value of the reference voltage generator (R12, R13, R14), the output terminal (pin 1) of the comparator (U3-A) The output value is changed to a HIGH value, so that the photocoupler (PC1) of the control signal generator 250 is not conducted, and eventually through this, the control signal input terminal (MAIN_F) of the PWM controller 171 of the inverting unit 270 of the SMPS unit /B) so that the control signal is not applied, so that the PWM DUTY is adjusted to turn on/off the inverting switching elements 272 and 273 (for example, MOS FET) at a duty ratio of a low power factor, eventually, the SMPS The output voltage is adjusted to a lower level, and in particular, according to the power consumption improving amplifier circuit of the present invention, it is possible to actively adjust the SMPS bias voltage by detecting the peak output signal with an extremely simple circuit.
(제2 실시예)(Second embodiment)
이하, 본 발명의 제2 실시예에 따른 출력 신호를 감지하여 능동적으로 SMPS 바이어스 전압을 조절하는 소비 전력 개선형 앰프 회로에 대하여, 도 5 및 도 7을 참조하여 설명한다.Hereinafter, a power consumption improving amplifier circuit that detects an output signal and actively adjusts an SMPS bias voltage according to a second embodiment of the present invention will be described with reference to FIGS. 5 and 7 .
본 제2 실시예의 소비 전력 개선형 앰프 회로에서 앰프부(100)는 도 5의 제1 실시예의 경우와 동일하며, 다만 SMPS부(200')에 있어서만 차이가 있는바, 본 제2 실시예의 SMPS부(도 7의 200') 역시, 제1 실시예의 SMPS부(도 6의 200)와 비교하여, 바이어스설정 절환부(300)의 유무에 있어서만 차이가 있는바, 따라서 다른 설명은 생략하고, 이후 상기 바이어스설정 절환부(300)에 대해서만 설명한다.In the power consumption improving amplifier circuit of the second embodiment, the amplifier unit 100 is the same as that of the first embodiment of FIG. 5, except that there is a difference only in the SMPS unit 200'. The SMPS unit (200' in FIG. 7) is also different from the SMPS unit (200 in FIG. 6) of the first embodiment only in the presence or absence of the bias setting switching unit 300, so other descriptions are omitted. , Only the bias setting switching unit 300 will be described hereinafter.
즉, 본 제2 실시예의 SMPS부(200')는, 도 7에서 보듯이, 상기 비교부(240')의 기준전압 발생을 위한 기준전압발생회로가 복수개인바, 일례로, PA용 기준전압발생회로(R12,R13,R14)와 SR용 기준전압발생회로(R12,R13,R19)를 갖으며, 이들 간을 절환하기 스위칭하기 위한 바이어스설정 절환부(300)가 추가되어진다.That is, as shown in FIG. 7, the SMPS unit 200' of the second embodiment has a plurality of reference voltage generating circuits for generating the reference voltage of the comparator 240', for example, the reference voltage for PA. It has generating circuits (R12, R13, R14) and reference voltage generating circuits for SR (R12, R13, R19), and a bias setting switching unit 300 for switching between them is added.
즉, 상기 바이어스설정 절환부(300)가 PA용으로 스위칭되면 (도 7의 실선 참조), PA용 기준전압발생회로(R12,R13,R14)가 상기 비교기(U3-A)의 반전 입력단에 상대적으로 낮은 기준 전압을 인가하게 되며, 반면 상기 바이어스설정 절환부(300)가 SR용으로 스위칭되면 (도 7의 점선 참조), SR용 기준전압발생회로(R12,R13,R19)가 상기 비교기(U3-A)의 반전 입력단에 상대적으로 높은 기준 전압을 인가하게 된다.That is, when the bias setting switching unit 300 is switched for PA (refer to the solid line in FIG. 7), the reference voltage generator circuits R12, R13, and R14 for PA are relative to the inverting input terminal of the comparator U3-A. On the other hand, when the bias setting switching unit 300 is switched for SR (refer to the dotted line in FIG. 7), the SR reference voltage generator circuits R12, R13, and R19 generate the comparator U3. A relatively high reference voltage is applied to the inverting input terminal of -A).
결국, 본 제2 실시예의 소비 전력 개선형 앰프 회로에 의하면, 동작 전압이 상이한 PA와 SR 분야 모두에 대해 더욱 확실하게 대응 가능하도록 기준전압값을 다르게 설정하여, 앰프가 사용되는 대부분의 환경에서 소비 전력을 최대한 절약할 수 있는 장점이 있다. As a result, according to the power consumption improving amplifier circuit of the second embodiment, the reference voltage value is set differently so that it can more reliably respond to both PA and SR fields with different operating voltages, thereby reducing consumption in most environments where the amplifier is used. It has the advantage of saving power as much as possible.
또한, 소비자가 앰프 외부에 장착된 스위치를 PA용으로 사용 시에는 R14 쪽으로, SR용으로 사용 시에는 R19쪽으로 설정하면 더욱 확실하게 바이어스 전압의 설정 변경이 가능하다.In addition, if the customer sets the switch mounted on the outside of the amplifier to the R14 side when using it for PA and the R19 side when using it for SR, it is possible to change the setting of the bias voltage more reliably.
이상에서는 본 발명의 최적 실시예에 따라 본 발명을 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 변경 및 변형한 것도 본 발명에 속함은 당연하다.In the above, the present invention has been described according to the best embodiment of the present invention, but changes and modifications made by those skilled in the art within the scope of not departing from the technical idea of the present invention also belong to the present invention. Of course.

Claims (5)

  1. 전력증폭부(110)에서 증폭된 신호를 스피커(SP)로 출력하되 출력단에서 출력되는 피크전압을 검출하는 피크전압 감지부(120)를 더 포함하는 앰프부(100); 및 The amplifier unit 100 further includes a peak voltage detection unit 120 outputting the signal amplified by the power amplifier 110 to a speaker SP and detecting a peak voltage output from an output terminal; and
    상기 피크전압 감지부(120)에서 검출된 피크전압 값을 최대 피크 값으로 충전유지하여 기준 전압과 비교하여 앰프 출력이 높아지면 바이어스 값을 높여 주고 앰프 출력이 낮아지면 낮춰주는 방식으로 출력값을 조절하여 출력하는 SMPS부(200); The peak voltage value detected by the peak voltage detection unit 120 is charged and maintained at the maximum peak value, compared with the reference voltage, the bias value is increased when the amplifier output is high, and the output value is adjusted in such a way that it is lowered when the amplifier output is low. SMPS unit 200 outputting;
    를 포함하며, Including,
    상기 SMPS부(200)는, The SMPS unit 200,
    통상의 AC 상용전원을 전파정류하는 입력단 정류부(260)와, An input rectifier 260 for full-wave rectifying a normal AC commercial power supply;
    상기 입력단 정류부(260)에서 정류된 전원을 인버팅하는 인버팅부(270)와, An inverting unit 270 for inverting the power rectified by the input rectifying unit 260;
    상기 인버팅부(270)에서 인버팅된 교류를 스피커 전원 전압으로 변압하는 변압기로 이루어지는 변압부(280)와, A transformer 280 comprising a transformer for transforming the AC inverted by the inverting unit 270 into a speaker power supply voltage;
    상기 변압부(280)에서 변압된 교류를 다시 정류하여 출력하는 출력단 정류부(290)와, An output stage rectifier 290 that rectifies and outputs the AC transformed in the transformer 280 again;
    상기 앰프부의 출력을 감지하여 충전 및 유지하는 피크전압 충전부(210)와, A peak voltage charging unit 210 for sensing, charging, and maintaining the output of the amplifier unit;
    상기 피크전압 충전부(210)의 그대로의 출력전압이나 증폭된 출력전압과 기준 전압을 비교하는 비교부(240)와, A comparator 240 that compares an output voltage or amplified output voltage of the peak voltage charging unit 210 with a reference voltage;
    상기 비교부(240)의 출력에 따라서 상기 인버팅부(270)의 인버팅을 제어하는 제어신호 발생부(250)A control signal generator 250 controlling inverting of the inverting unit 270 according to the output of the comparator 240
    를 포함하여 이루어지는 것을 특징으로 하는 출력 신호를 감지하여 능동적으로 SMPS 바이어스 전압을 조절하는 소비 전력 개선형 앰프 회로.Power consumption improving amplifier circuit for actively adjusting the SMPS bias voltage by sensing the output signal, characterized in that comprising a.
  2. 제 1 항에 있어서,According to claim 1,
    상기 앰프부(100)는, 상기 전력증폭부(110)의 출력단(OUT_DETECT1)에 상기 피크전압 감지부(120)가 접속되되, 상기 피크전압 감지부(120)에서는 전압감지용 분압저항(R17,R18)의 연결단에서 반파정류용 다이오드(D8)를 통해 앰프부의 출력단(LEVEL_DET12)으로 접속되어서, 상기 전압감지용 분압저항(R17,R18)에서 감지된 앰프출력단의 피크전압이 반파정류되어 상기 SMPS부(200)로 입력되는 것을 특징으로 하는 출력 신호를 감지하여 능동적으로 SMPS 바이어스 전압을 조절하는 소비 전력 개선형 앰프 회로.In the amplifier unit 100, the peak voltage detection unit 120 is connected to the output terminal (OUT_DETECT1) of the power amplification unit 110, and the peak voltage detection unit 120 has a voltage-sensing dividing resistor (R17, R18) is connected to the output terminal (LEVEL_DET12) of the amplifier through the half-wave rectification diode (D8), and the peak voltage of the amplifier output terminal sensed by the voltage-sensing voltage divider resistors (R17, R18) is half-wave rectified and the SMPS A power consumption improving amplifier circuit that detects an output signal, characterized in that it is input to the unit 200, and actively adjusts the SMPS bias voltage.
  3. 제 2 항에 있어서,According to claim 2,
    상기 피크전압 충전부(210)는, 상기 앰프부의 출력단(LEVEL_DET12)과 접속된 입력단을 갖는 반파정류된 피크전압이 연결용 제2 저항(R2)을 통해 제1 증폭기(U1-B)의 비반전 입력단에 접속되며, 상기 제1 증폭기(U1-B)의 출력단은 제2 다이오드(D2) 및 제4 저항(R4)을 통해 반전입력단으로 피드백 연결됨과 동시에, 제1 콘덴서(C1)에 접속되어 이루어져서, 상기 앰프부(100)의 출력단에서 감지된 피크전압의 반파정류된 DC 전압을 상기 제1 증폭기(U1-B)에서 피드백시켜 최대 피크 값을 제1 콘덴서(C1)에 충전 후 유지되도록 하는 것을 특징으로 하는 출력 신호를 감지하여 능동적으로 SMPS 바이어스 전압을 조절하는 소비 전력 개선형 앰프 회로.In the peak voltage charger 210, the half-wave rectified peak voltage having an input terminal connected to the output terminal LEVEL_DET12 of the amplifier unit passes through a second resistor R2 for connection to the non-inverting input terminal of the first amplifier U1-B. , and the output terminal of the first amplifier (U1-B) is feedback-connected to the inverting input terminal through the second diode (D2) and the fourth resistor (R4) and connected to the first capacitor (C1), The half-wave rectified DC voltage of the peak voltage detected at the output terminal of the amplifier unit 100 is fed back to the first amplifier (U1-B) so that the maximum peak value is maintained after being charged in the first capacitor (C1). A power consumption improvement type amplifier circuit that actively adjusts the SMPS bias voltage by detecting the output signal to be
  4. 제 1 항에 있어서,According to claim 1,
    상기 피크전압 충전부(210)의 출력전압을 증폭하는 증폭부(220)를 더 포함하여, 상기 비교부(240)에서는 상기 증폭부(220)에서 증폭된 전압과 기준 전압을 비교하며,Further comprising an amplifier 220 that amplifies the output voltage of the peak voltage charging unit 210, the comparator 240 compares the voltage amplified by the amplifier 220 with a reference voltage,
    상기 비교부(240)의 입력측에는 리미트부(230)가 연결되어, 상기 증폭부(220)의 출력이 리미트부의 리미트 소자에 의해 리미팅되어, 불필요한 일정 전압 혹은 앰프보호를 위한 일정 전압 이상으로는 출력되지 않도록 제한하는 것을 특징으로 하는 출력 신호를 감지하여 능동적으로 SMPS 바이어스 전압을 조절하는 소비 전력 개선형 앰프 회로.A limiting unit 230 is connected to the input side of the comparator 240, and the output of the amplifying unit 220 is limited by the limiting element of the limiting unit, so that an unnecessary constant voltage or a constant voltage for amplifier protection is output. A power consumption improving amplifier circuit that detects an output signal and actively adjusts the SMPS bias voltage, characterized in that it is limited so as not to be.
  5. 제 1 항에 있어서,According to claim 1,
    상기 SMPS부(200)는, 상기 비교부(240)의 기준전압 발생을 복수개의 기준전압을 발생시키도록 하기 위한 바이어스설정 절환부(300)를 더 포함하는 것을 특징으로 하는 출력 신호를 감지하여 능동적으로 SMPS 바이어스 전압을 조절하는 소비 전력 개선형 앰프 회로.The SMPS unit 200 actively detects an output signal, characterized in that it further includes a bias setting switching unit 300 for generating a plurality of reference voltages by generating a reference voltage of the comparator 240. A power consumption improvement type amplifier circuit that adjusts the SMPS bias voltage with
PCT/KR2022/015874 2021-10-19 2022-10-18 Consumption power improvement-type amplifier circuit for detecting output signal and actively adjusting smps bias voltage WO2023068766A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210139639A KR102371669B1 (en) 2021-10-19 2021-10-19 A Power Amplifier Circuit
KR10-2021-0139639 2021-10-19

Publications (1)

Publication Number Publication Date
WO2023068766A1 true WO2023068766A1 (en) 2023-04-27

Family

ID=80812348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/015874 WO2023068766A1 (en) 2021-10-19 2022-10-18 Consumption power improvement-type amplifier circuit for detecting output signal and actively adjusting smps bias voltage

Country Status (2)

Country Link
KR (1) KR102371669B1 (en)
WO (1) WO2023068766A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102371669B1 (en) * 2021-10-19 2022-03-08 주식회사 데스코 A Power Amplifier Circuit
KR102578803B1 (en) * 2023-07-07 2023-09-15 황윤승 Audio amplifier effective for distortion,noises in high frequency and efficiency using pwm circuit corresponding to signal level

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090118458A (en) * 2008-05-14 2009-11-18 유수엽 Power supply for variable load active amplifier
KR101086064B1 (en) * 2011-06-24 2011-11-22 주식회사 동성씨앤티 Audio amplifier with low power consumption and high efficiency output
KR20120072646A (en) * 2010-12-24 2012-07-04 삼성전기주식회사 Switching mode power supply
JP2018129848A (en) * 2008-03-03 2018-08-16 クゥアルコム・インコーポレイテッドQualcomm Incorporated System and method of reducing power consumption for audio playback
KR102371669B1 (en) * 2021-10-19 2022-03-08 주식회사 데스코 A Power Amplifier Circuit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9166533B2 (en) 2009-07-30 2015-10-20 Qualcomm Incorporated Bias current monitor and control mechanism for amplifiers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018129848A (en) * 2008-03-03 2018-08-16 クゥアルコム・インコーポレイテッドQualcomm Incorporated System and method of reducing power consumption for audio playback
KR20090118458A (en) * 2008-05-14 2009-11-18 유수엽 Power supply for variable load active amplifier
KR20120072646A (en) * 2010-12-24 2012-07-04 삼성전기주식회사 Switching mode power supply
KR101086064B1 (en) * 2011-06-24 2011-11-22 주식회사 동성씨앤티 Audio amplifier with low power consumption and high efficiency output
KR102371669B1 (en) * 2021-10-19 2022-03-08 주식회사 데스코 A Power Amplifier Circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SWAGATAM: "SMPS 2 x 50V 350W Circuit for Audio Power Amplifiers", HOMEMADE CIRCUIT PROJECTS, 16 December 2019 (2019-12-16), pages 1 - 11, XP093058464, Retrieved from the Internet <URL:https://www.homemade-circuits.com/smps-2-x-50v-350w-circuit-for-audio/> [retrieved on 20230627] *

Also Published As

Publication number Publication date
KR102371669B1 (en) 2022-03-08

Similar Documents

Publication Publication Date Title
WO2023068766A1 (en) Consumption power improvement-type amplifier circuit for detecting output signal and actively adjusting smps bias voltage
US6343026B1 (en) Current limit circuit for interleaved converters
KR100940042B1 (en) Light emitting diode light driving apparatus
US20110194315A1 (en) Power supply circuit with a control terminal for different functional modes of operation
US10660176B2 (en) System and method for driving light source comprising voltage feedback circuit and current feedback circuit
US10827586B2 (en) Load control device for a light-emitting diode light source
WO2015137729A1 (en) Wireless power transfer system having wireless power transfer system-charger
WO1996011488A1 (en) Line powered dc power supply
WO2021040184A1 (en) Coil driving device
WO2014148767A1 (en) Led driving circuit using double bridge diode and led illumination device comprising same
EP3949100A1 (en) Methods and apparatus for continuous conduction mode operation of a multi-output power converter
US10893591B2 (en) Controllers, systems, and methods for driving a light source
CN101373925B (en) Power supply apparatus
KR101651508B1 (en) Dimming Type LED Lighting Device Including Element for providing Power with Electrolysis Capacitor-less
KR101029822B1 (en) Power Supply Apparatus For Light-Emitting Diode
JP4212366B2 (en) Switching power supply
CN109379806B (en) Dimming drive circuit, dimming controller and LED lamp
US6809939B1 (en) Synchronous rectifying control circuit of flyback switching power supply
WO2014014248A1 (en) Power supply circuit
WO2009145458A2 (en) Parallel connected switching converter using charge sharing
WO2022080624A1 (en) Adaptive soft-start and soft-stop device for converter
KR200228628Y1 (en) Electronic Stabilizer For Each Dimming Control
WO2015080467A1 (en) Power apparatus for led lighting
WO2017188757A2 (en) Dimming-type led lighting apparatus having electrolytic capacitor-less power supply device
WO2012023635A1 (en) Light-emitting diode driver for phase control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883988

Country of ref document: EP

Kind code of ref document: A1